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ABSTRACT 

 

2D AND 3D FINITE ELEMENT ANALYSES OF DYNAMIC 

DELAMINATION IN CURVED CFRP LAMINATES 

 

ATA, TAMER TAHİR 

Master of Science, Aerospace Engineering 

Supervisor: Assoc. Prof. Dr. Demirkan Çöker 

 

September 2019, 94 pages 

 

Most of the aerospace structures such as spars and ribs contain curved regions in which 

presence of curved region induces significant tensile stresses in the radial direction in 

these complex parts. Since composite materials inherently have low mechanical 

properties in the transverse direction, transverse tensile stresses developed in curved 

region cause delamination which reduces load carrying capacity of the component and 

even leads to collapse of the part. In this study, progressive interlaminar damage in 

curved CFRP composite laminates with two different ply architectures (unidirectional 

and fabric) are investigated by using ABAQUS/Explicit in conjunction with cohesive 

zone elements. The simulations are based on the experiments conducted by Tasdemir 

[ 1 ]. 2D and 3D finite element analyses of the considered two specimens (UD and 

fabric) are performed under moment/axial combined loading. In both 2D and 3D 

analyses, delamination is found to induce at the center of the curved region which is 

exactly the maximum radial stress location. 2D and 3D finite element analyses of 

dynamic delamination in curved composite laminates revealed that the crack 

propagation speeds inside the laminate varies as edge crack travels faster than center 

crack. For UD laminate, delamination initiates at the center of the width of the 

laminate and as the crack passes to arm region it travels in Mode-II dominancy at 

intersonic speeds. For fabric laminate, delamination initiates at the center of the width 
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of the laminate. It is interesting to observe the delamination onset at center of the width 

instead of free-edge where the material mismatch exists between different layer 

orientations. 3D analysis is found to capture effects that are not seen in the 2D analysis. 

The analysis agrees well with the experimental results in terms of damage initiation 

location through the thickness direction and load-displacement trend. To the author’s 

knowledge, this is the first study to model the dynamic delamination in curved CFRP 

laminates using 3D simulations.  

 

Keywords: Delamination, Cohesive Zone Method, Dynamic Fracture, Curved 

Composites  
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ÖZ 

 

BÜKÜMLÜ KARBON FİBER TAKVİYELİ PLASTİK LAMİNATLARDAKİ 

DİNAMİK DELAMİNASYONUN 2B VE 3B SONLU ELEMANLAR 

ANALİZİ  

 

ATA, TAMER TAHİR 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği 

Tez Danışmanı: Doç. Dr. Demirkan Çöker 

 

Eylül 2019, 94 sayfa 

 

Spar ve ribler gibi havacılık yapılarının birçoğu bükümlü bölgeler içermektedir. Bu 

bükümlü bölgelerin varlığından dolayı radyal yönde ciddi gerilmeler ortaya 

çıkmaktadır. Kompozit malzemeler genetikleri gereği fiber yönüne dik yönde düşük 

mekanik özellikler gösterdiğinden bükümlü bölgede meydan gelen bu gerilmeler yük 

taşıma kapasitesini düşürecek delaminasyona ve hatta yapının tamamen 

parçalanmasına sebep olabilir. Bu çalışmada, bükümlü kompozit yapılardaki tabakalar 

arası ilerleyen hasar, iki farklı serim mimarisi (UD ve kumaş) için yapışkan alan 

elemanları ile birlikte ABAQUS/Explicit kullanarak incelenmiştir. Yapılan 

simulasyonlar daha önce Tasdemir [ 1 ] tarafından yapılan deneylere dayanmaktadır. 

Söz konusu iki numune için iki ve üç boyutlu sonlu elemanlar analizi moment/eksenel 

kombine yüklemesi altında gerçekleştirilmiştir. Hem 2B hem 3B analizlerde, 

delaminasyonun maksimum radyal gerilmenin maksimum bükümlü bölge merkezinde 

meydana geldiği gözlemlenmiştir. Bükümlü kompozitlerdeki dinamik delamisyonun 

2B ve 3B sonlu elemanlar analizi, çatlak ilerleme hızının numune içerisinde 

değiştiğini ve serbest kenardaki çatlağın merkez çatlaktan daha hızlı ilerlediğini 

göstermiştir. UD laminat için, delaminasyon numune genişliğinin tam ortasında 

meydana geldikten sonra numunenin kol bölgesine ulaştığı anda Mode-II yükleme 
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altında intersonik olarak ilerlemiştir. Kumaş laminat için, delaminasyon numune 

genişliğinin tam ortasında meydana gelir. Delaminasyon başlangıcının, malzeme 

uyumsuzluğunun farklı katman oryantasyonları arasında maksimum olduğu serbest 

kenar yerine numune genişliğinin tam ortasında gözlemlenmesi ilgi çekicidir. Üç 

boyutlu analizlerde iki boyutlu analizlerde gözlemlenemeyen etkiler açık bir şekilde 

gözlemlenmiştir.Yapılan analizler kalınlık yönündeki hasar başlangıç yeri ve yük-

deplasman eğri trentleri açısından deneyler ile uyumlu sonuç göstermektedir.Yazarın 

bilgisine göre, bu çalışma CFRP laminatlardaki dinamik delaminasyonun 3B 

simulasyon kullanılarak modellenmesinde ilktir. 

 

Anahtar Kelimeler: Delaminasyon, Yapışkan Alan Metodu, Dinamik Kırılma, 

Bükümlü Kompozitler  
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CHAPTER 1  

 

1. INTRODUCTION 

 

Composites are replacing traditional materials in almost all engineering applications 

by providing design flexibilities in tailoring structures to meet load requirements with 

less material. Other advantages fostering the usage of composites other than metals 

and alloys are: high stiffness-to-weight and strength-to-weight ratios, damage 

tolerance, resistance to corrosion, non-conductivity and low thermal conductivity. 

With the recent advances in the manufacturing technologies, many complex shaped 

sub-components of structures are manufactured from composite materials which 

include curve regions as shown in Figure 1-1. 

 

Figure 1-1.Curve regions in complex shaped sub-components of various structures [ 2 ]. 
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Presence of curved region induces significant tensile stresses in the radial direction in 

these complex parts [ 3 ]. Since composite materials inherently have low mechanical 

properties in the transverse direction, transverse tensile stresses developed in curved 

region cause delamination which reduces load carrying capacity of the component and 

even leads to collapse of the part. Delamination phenomenon of the highly-curved 

composite laminates is commonly called unfolding failure, since the bending moment 

tries to unfold the curved region. The unfolding failure is separated into two kinds 

considering the initiation mechanism of delamination. The unfolding failure resulting 

from the tensile radial stresses at the curved region is called traditional unfolding, 

while the delamination triggered by a matrix crack is called induced unfolding in the 

literature [ 4 ]. While the main reason of the former is the high tensile radial stresses 

created from the bending of the curved laminate, the latter is emanated from a matrix 

crack that induces and propagates as a delamination. 

In the late 1960s, Lekhnitskii [ 5 ] derived the classical elasticity equations to calculate 

radial (σr), tangential (σθ) and shear (τrθ) stresses in a curvilinear-anisotropic 

homogeneous beam. The equations are based on the plane stress and small strain 

assumption. Kedward et al. [ 3 ] examined the work done by Lekhnitskii [ 5 ] and 

proposed a rather simplistic formula to calculate maximum radial stress at the curved 

region. Ko and Jackson [ 6 ] developed multilayer theory by considering boundary 

conditions at each layer interface in Airy stress function to calculate the maximum 

radial tensile stress and its location for the composite C-coupon. These three studies 

are the main bases of the analytical calculations performed in our study. 

Chang and Springer [ 7 ] performed finite element analysis based on plane strain 

theory to calculate stresses in the curved region of fiber reinforced composite 

materials. In-plane failure is predicted using the Tsai-Hill criterion whilst out-of-plane 

failure is predicted by a quadratic stress criterion proposed by the authors. 

Sun and Kelly [ 8 ] investigated matrix cracking and delamination of composite angle 

structures through experimentation and finite element analysis. Depending on the 
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stacking sequence they observed different initial failure modes. Intralaminar failure is 

predicted by using Tsai-Hill criterion and interlaminar failure is predicted by using 

maximum radial stress criterion. They concluded that since the out-of-plane stresses 

are dominant in the curved region, a failure criterion which considers only the two-

dimensional stress state is not adequate to predict the critical load. In the light of 

experimental studies [ 8 ], Sun and Kelly [ 9 ] incorporated a crack along radial 

direction into the finite element model and studied the crack branching by employing 

Virtual Crack Closure Technique (VCCT) introduced by Rybicki and Kanninen [ 10 

]. By analyzing the strain energy release rate as a function of crack length, they 

deduced that the initial delamination growth is unstable. 

In the early 1990’s, Martin [ 11 ] worked experimentally and numerically on unstable 

delamination of UD curved composite laminates under quasi-static loading. 

Interlaminar tension failure is predicted by a strength based failure criteria, and VCCT 

is used to attain all components of strain energy release rate. Examining the calculated 

strain energy release rates revealed that delamination initiates at the curved region 

dominantly in Mode-I. The maximum radial stress location is predicted by FEA and 

elasticity solution. Later, Martin and Jackson [ 12 ] carried out experimental, 

numerical and analytical investigation of the damage prediction in cross-ply curved 

composite laminates under static and cyclic loading. They used a proper layup, 

[04/903/05]s, to observe matrix crack induced delamination in the experiments clearly. 

FEA were performed to determine stress distribution of intact curved region, and 

VCCT was used to attain strain energy release rate distribution in a model in which 

matrix crack and delamination present. Comparative study within finite element 

results (2D Plain strain and 3D model) and closed form solution of Ko and Jackson [ 

6 ] is performed to obtain radial stress distribution through thickness. The location of 

maximum radial stress is found at the center-line (center of the width) in 3D analysis 

which is compared well with the analytical solution. The free edge stresses vary due 

to the free edge stress singularities. Strain Energy Release Rates (SERRs) at different 

delamination lengths were compared between 2D and 3D models. The calculated 
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SERRs at the center line in 3D analysis shows good correlation with the results from 

2D model. 

In 1996, Wisnom [ 13 ] analyzed the anticlastic curvature in pure bending both in 3D 

model and a 2D model assuming generalised plane strain. He found that as the width 

increases, the behavior at the center of the 3D model approaches generalised plane 

strain analysis. Comparison of the results between 3D and 2D models revealed 

significant variation of stresses along the width of the specimen as a result of the 

restraint on anticlastic bending due to curvature. 

At the beginning of 2000s, initiation and growth of delamination in L-shaped 

composite laminates are investigated by Wimmer et al. [ 14 ]. They used Puck First-

Ply Failure criterion in order to predict the interface damage. VCCT is employed for 

the propagation of the initiated delamination. In load-displacement curve, they 

observed that the load reduces abruptly due to the change of stiffness when the 

delamination initiates. Delamination grows in an unstable manner in conjunction with 

dynamic effects during the load drop. After a significant delamination size, the 

delamination propagates in a stable manner. Li et al. [ 15 ] reported immediate 

transition to dynamic fracture in static test as the load drops to zero instantaneously. 

In a series of recent studies, Gözlüklü et al. [ 16 ] - [ 17 ] have indicated that 

delamination of L-shaped composite materials is highly dynamic. They performed 

explicit FEA in conjunction with cohesive zone elements and experimental 

simulations under quasi – static loading. The main novelty of their studies was that 

while the loading is quasi-static, the behavior of the failure is dynamic. An initial crack 

at the center of the curved region was introduced in their study. In the study conducted 

in 2012 [ 16 ], the considered loading case was P-loading which was parallel to the 

one of the arms and in the study conducted in 2015 [ 17 ] the considered loading case 

was V-loading which was perpendicular to the one of the arms. Although the initial 

crack presents in the center of the curve, the mode dominance at the crack tip regions 

changes with the loading case. For the case of V-loading, the mode dominance at the 



 

 

 

5 

 

curved region on both sides of the crack is uniformly Mode-I. For the case of P-

loading, the left crack tip propagates under Mode-I dominancy whereas right crack tip 

propagates under Mode-II dominancy. They proposed a “sequential-analysis” method 

for the computational efficiency in which an explicit analysis followed by an implicit 

analysis. Moving harmonic radial stress contours (named “radial stress hot spots” in 

this study) attributed to the elasto-dynamic effects of the crack propagation are 

observed near the interface. Similar stress contours behind the crack tip were also 

observed in the studies of Coker et al. [ 18 ] - [ 19 ]. In an another study of Gözlüklü 

et al. [ 17 ], they investigated the dynamic delamination of L-shaped brackets 

numerically and experimentally. The simulations were performed with using bilinear 

CZM. The simulations showed that the delamination onset at the curved region is pure 

Mode-I and the crack tip speeds at that region is sub-Rayleigh. As the crack propagates 

to the arms, it sustains a speed faster than shear wave speed under pure Mode-II stress 

field. At the arm regions, shear Mach waves emerging from the crack fronts are 

observed since the crack tip speed is faster than the material shear wave speed 

(intersonic delamination). Their investigation has provided a significant link between 

super-shear earthquakes and intersonic delamination in L-shaped composite 

laminates. 

In addition to previously mentioned studies on failure of curved composite laminates, 

a comparison between 2D and 3D modelling of dynamic delamination initiation and 

propagation is required to gain a better understanding of the failure mechanisms. 

Modelling of delamination with 3D elements enables to investigate the effects of free-

edges in the composite laminates and studying Mode-III fracture effects. In this study, 

2D plane strain and full 3D delamination analysis of curved composite laminates are 

performed and compared in terms of load-displacement response, location of 

delamination initiation, stress states at the curved region and crack tip speeds. To the 

author’s knowledge, this study is the first study to model the dynamic delamination in 

curved CFRP laminates using 3D simulations. 
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CHAPTER 2  

 

2. METHOD 

 

Dynamic delamination in curved CFRP laminates is simulated by using explicit 

dynamics in conjunction with cohesive zone modelling and the virtual crack closure 

technique. Explicit dynamics algorithm, cohesive zone method, and virtual crack 

closure technique are elucidated with formulations in this chapter. 

2.1. Explicit Dynamics Algorithm 

The explicit dynamic integration method, also known as the forward Euler or central 

difference algorithm [ 20 ], calculates the kinematic conditions from the initial 

kinematic conditions already known from the previous increment at the beginning of 

each time increment. 

The nodal acceleration of each node at the beginning of the current increment (time t) 

is determined directly as the inverse of the nodal mass matrix times the net nodal force: 

𝑀𝑢̈|(𝑡) = (𝑃 − 𝐼)|(𝑡) (2.1) 

in which (M) is the lumped mass matrix. (P) and (I) are the external and internal load 

vectors, respectively. 

The governing partial differential equation defined in Eqn. (2.1) is turned into a set of 

coupled, nonlinear, ordinary differential equations in time by the finite element 

approximation. 

In explicit dynamics, the general form of the equations of motion are defined as 

follows: 

𝑢̇ = 𝑢̇|(𝑡=0) + ∫ 𝑢̈(𝑡)𝑑𝑡 (2.2) 
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𝑢 = 𝑢|(𝑡=0) + ∫ 𝑢̇(𝑡)𝑑𝑡 (2.3) 

ABAQUS/Explicit uses the central difference method to integrate the velocity and 

displacement field [ 20 ], explicitly. Velocity at time 𝑡 +
∆𝑡

2
 can written in terms of the 

acceleration at the current time increment and half-step backward velocity: 

𝑢̇|
(𝑡𝑛+

∆𝑡
2
)
= 𝑢̇|

(𝑡𝑛−
∆𝑡
2
)
+ 𝑢̈|(𝑡𝑛)∆𝑡 (2.4) 

Displacement at time 𝑡 + ∆𝑡 can be written in terms of the displacement at the current 

time increment and half-step ahead velocity, since the half-step ahead velocity is 

already calculated from Eqn. (2.4) and displacement at the current time increment is 

already known. 

𝑢|(𝑡𝑛+∆𝑡) = 𝑢|(𝑡𝑛) + 𝑢̇|
(𝑡𝑛+

∆𝑡
2
)
∆𝑡 (2.5) 

The displacement-time graph in Figure 2-1 summarizes the central difference 

integration method. Since velocity is the change of displacement with time, the 

velocity at time 𝑡𝑛 +
∆𝑡

2
 can be obtained by dividing the change in displacement 

between time increments 𝑡𝑛 + ∆𝑡 and 𝑡𝑛 to the time interval: 

𝑢̇|
(𝑡𝑛+

∆𝑡
2
)
=
(𝑢|(𝑡𝑛+∆𝑡) − 𝑢|(𝑡𝑛))

∆𝑡
 (2.6) 

Similarly, acceleration (rate of change of velocity) at time 𝑡𝑛 can be calculated from 

half-step ahead and half-step backward velocities as: 

𝑢̈|(𝑡𝑛) =

𝑢̇|
(𝑡𝑛+

∆𝑡
2
)
− 𝑢̇|

(𝑡𝑛−
∆𝑡
2
)

∆𝑡
 (2.7) 

Moreover, the acceleration (rate of change of velocity) at time 𝑡𝑛 can be written in 

terms of displacements at time 𝑡𝑛, (𝑡𝑛 + ∆𝑡) and (𝑡𝑛 − ∆𝑡) [ 22 ]: 
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𝑢̈|(𝑡𝑛) =
1

∆𝑡
(
𝑢𝑡𝑛+∆𝑡 − 𝑢𝑡𝑛

∆𝑡
−
𝑢𝑡𝑛 − 𝑢𝑡𝑛−∆𝑡

∆𝑡
) (2.8) 

Velocity at time 𝑡𝑛 +
∆𝑡

2
 can be obtained easily from Eqn. (2.7) by the known values 

of acceleration at time 𝑡𝑛 and velocity at time 𝑡𝑛 −
∆𝑡

2
. Half-step backward velocities 

are stored through the analysis for such kind of calculations. 

 

Figure 2-1. Central difference method scheme. 

The displacement at time 𝑡𝑛 + ∆𝑡 is calculated from Eqn. (2.6) by using the previously 

calculated half-step ahead velocity and the known displacement value at time 𝑡𝑛. 

Afterwards, the displacement at time 𝑡𝑛 + ∆𝑡 is used to calculate the strain, stress, and 

internal forces in the element. Then computation of acceleration at time 𝑡𝑛 + ∆𝑡 is 

completed as the inverse of the nodal lumped mass times the net nodal force. 

Flowchart for explicit time integration is given in Figure 2-2 to summarize the explicit 

time integration scheme in ABAQUS/Explicit. 
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Figure 2-2. Flowchart for ABAQUS / Explicit. 

Unlike the total step time, increment size needs not to be specified in 

ABAQUS/Explicit analyses. The increment size is internally calculated to fulfill the 

Courant-Friedrichs-Levy (CFL) stability condition and so to obtain accurate results. 

This condition limits the increment size such that the stress and shock waves in the 

model cannot travel more than the smallest mesh dimension in a single time step. The 

limited increment size is called the stable time increment and is calculated by dividing 

the smallest element length (𝐿𝑒) in the mesh to the dilatational wave speed of the 

material (𝐶𝑑): 

Δt =  
𝐿𝑒
𝐶𝑑

 (2.9) 

Stable time increment value (Δt) should be increased to shorten the simulation time. 

A few ways are listed below for this purpose: 

 Increasing element dimensions 

 Decreasing material stiffness (will result in a decrease in 𝐶𝑑 value) 

 Increasing material compressibility (will result in a decrease in 𝐶𝑑 value) 

 Increasing material density (will result in a decrease in 𝐶𝑑 value) 
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2.1.1. Quasi-Static Analysis Using Explicit Dynamics 

Explicit solver is generally preferred for modelling high rate dynamic problems (car 

crash, explosions, etc.) involving extensive deformations and implicit solver is 

preferred mostly for static problems. Due to the nature of the implicit solver, it fails to 

converge in large three-dimensional problems involving contact and material failure. 

In such simulations, the explicit solver is more efficient and cost-effective compared 

to the implicit solver. Notwithstanding, modelling the process in its experimental load 

rate is computationally impractical and would require millions of increments [ 21 ]. 

Mass scaling and increasing the loading rate (which is also used in our study) are the 

two generally used methods to hasten the analysis when dealing with the quasi-static 

loading. Since the step time for load introduction should be so large to vanish the 

inertia effects and so small to obtain reasonable solution time, it is determined by 

obtaining the first natural frequency of the specimen from eigenvalue analysis. In 

literature, generally a step time at least ten times the natural frequency of the structure 

is preferred for quasi-static loading. 

Loading is applied by using the below given smooth-step function which provides a 

gradual increase of load throughout the simulation to minimize the inertial effects; 

𝑈(𝑡) = 𝑈𝐿 [10 (
𝑡

𝑡𝐿
)
3

− 15 (
𝑡

𝑡𝐿
)
4

+ 6(
𝑡

𝑡𝐿
)
5

] (2.10) 

in which 𝑡𝐿 is the defined step time of explicit simulation and 𝑈𝐿 is the maximum 

prescribed displacement. 

2.1.2. Element Selection for Explicit Analyses 

Element types defined in ABAQUS/Explicit element library are evaluated for their 

adequateness to be employed in the analyses considering the numerical problems 

explained below. 

Due to the curved shape and applied load, which tries to unfold the curved region, the 

dominated behavior around the curve region is bending. Fully integrated first-order 
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continuum elements (CPS4, CPE4, and C3D8) exhibit unrealistic shear strain when 

subjected to bending. Hence the energy to bend the element goes into shearing which, 

results in overly stiff behavior of the element known as shear locking as shown in 

Figure 2-3. 

 

Figure 2-3. Bending behavior for a single fully integrated first-order continuum element. 

Using first-order-reduced integration elements (CPS4R, CPE4R, and C3D8R) 

eliminates shear locking, but these elements suffer from hourglassing. A single 

element through the thickness does not detect strain in bending which results in zero 

strain behavior. In this case, element deforms as shown in Figure 2-4 but has no strain 

values. 

 

Figure 2-4. Bending behavior for a single first-order reduced-integration element. 

In order to prevent unreliable results, multiple reduced integration elements should be 

used through the thickness (at least four elements). Fully integrated second-order 
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continuum elements (C3D20) can model bending-dominated problems more 

accurately [ 23 ]. Nevertheless, using second-order elements increases computational 

cost. Considering the computational efficiency, using reduced integration elements is 

more preferable. In case of not using multiple elements through the thickness, 

enhanced hourglass control based on enhanced strain methods should be used in order 

to prevent hourglassing. However, using enhanced hourglass control adds artificial 

energy to the system, hence artificial energy should be monitored throughout the 

analysis. Artificial strain energy (ALLAE) should be 1% of internal energy (ALLIE) 

which is the recommended threshold for a reliable analysis [ 21 ]. 

Therefore, either reduced-integration or incompatible mode elements should be used. 

In this study, first-order reduced integration solid elements with enhanced hourglass 

control are employed in the analysis. 
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2.2. Cohesive Zone Method (CZM) 

Local stress goes to infinity near the crack tip according to the theory of elasticity. The 

infinite stresses or stress singularities at the crack tip create contradiction in terms of 

failure mechanisms. Hence in order to avoid stress singularity at the crack tip, there 

have been many approaches to establish a relationship at the crack tip. One of the most 

common fracture mechanics approaches is the cohesive zone method (CZM) which is 

generally used in the simulation of delamination in laminated composite materials. 

In the cohesive zone method, a transition zone between elastic and stress-free zones 

ahead of the crack tip is assumed to exist as shown in Figure 2-5. This transition region 

is called as cohesive zone, which relates tractions to opening displacements 

(separations) across the interface. 

 

Figure 2-5. Cohesive zone ahead of the crack tip. 

The studies of Dugdale [ 24 ] and Barrenblatt [ 25 ] in the 1960s are the basis of the 

cohesive zone method. In 1976, Hillerborg et al. [ 26 ] came up with a similar model 

to Barenblatt’s which allows the onset of new cracks and propagation of the current 

cracks. The concept of CZM was implemented into brittle materials by Needleman [ 

27 ] in 1999 to simulate intersonic crack growth under shear loading.  
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In this study, the bilinear cohesive zone model is employed due to its proven success 

and simplicity in the modelling of delamination. Bilinear cohesive law for single-

mode and mixed-mode delamination cases are investigated in detail in the following 

sub-chapters. 

2.2.1. Single-Mode Delamination 

Single-mode delamination is investigated by considering only the Mode-I 

delamination case. Bilinear cohesive law for Mode-I delamination is depicted in 

Figure 2-6 in terms of tractions (𝑡) and displacements (𝛿). The required parameters to 

define bilinear constitutive law for Mode-I fracture are as follows; the elastic modulus 

or penalty stiffness of the interface (𝐸0), the interfacial tensile strength (𝑡𝐼
0), and the 

Mode-I fracture toughness (𝐺𝐼𝐶). 

 

Figure 2-6. Bilinear cohesive law for Mode-I delamination. 

The behavior of the material is initially linear elastic until the defined interlaminar 

tensile strength value (𝑡𝐼
0) at Point A. The slope of the linearly increasing traction up 

to the Point A is defined by the elastic modulus or penalty stiffness of the interface 

(𝐸0). This penalty stiffness of the interface is determined by using the below-given 

closed-form expression derived by Turon et al. [ 28 ]; 

A

𝛿𝐼
 𝛿𝐼

0

C
𝛿

𝑡𝐼
0

GIC

𝑡

B
𝑡𝐼

 𝐼

𝐸0

1 − 𝑑 𝐸0
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𝐾 =
𝛼𝐸33
𝑡

 (2.11) 

in which α is a parameter much greater than 1, E33 is the elastic modulus of the material 

in the out-of-plane direction and t is the thickness of an adjacent layer. The parameter 

α value is selected as 50 since it provides sufficient stiffness for the interface while 

avoiding convergence problems caused by an excessively stiff interface [ 28 ]. 

When the interlaminar tensile stress reaches the value of 𝑡𝐼
0, the material degrades 

progressively by following a linear softening response. A damage variable (𝐷) as a 

function of displacement at initial failure (𝛿𝐼
0), displacement at final failure (𝛿𝐼

 
), and 

displacement at an arbitrary point (𝛿𝐼) is defined in Eqn. (2.12). 

𝐷 =
𝛿𝐼
 
(𝛿𝐼 − 𝛿𝐼

0)

𝛿𝐼(𝛿𝐼
 
− 𝛿𝐼

0)
 (2.12) 

The damage variable (𝐷) is evolved from 0 at the damage initiation point (Point A) to 

1 at the final failure point (Point C). The stiffness reduction scheme by using the 

calculated damage variable (𝐷) is as follows [ 29 ]; 

𝐸0𝛿 𝛿𝐼 < 𝛿𝐼
0

(1 − 𝐷)𝐸0𝛿 𝛿𝐼
0 < 𝛿𝐼 < 𝛿𝐼

 

0 𝛿𝐼 ≥ 𝛿𝐼
 

 } = 𝑡𝐼 (2.13) 

Since the interlaminar tensile strength (𝑡𝐼
0) and penalty stiffness (𝐸0) are known, the 

displacement value at initial failure (𝛿𝐼
0) is calculated from Eqn. (2.14). 

𝛿𝐼
0 =

𝑡𝐼
0

𝐸0
 (2.14) 

The displacement value at the final failure (𝛿𝐼
 
) is obtained from Eqn. (2.15) by 

knowing that the area under the traction-separation curve exactly equals the Mode-I 

fracture toughness of the material. 



 

 

 

17 

 

𝛿𝐼
 
=
2𝐺𝐼𝐶

𝑡𝐼
0  (2.15) 

For any arbitrary point (such as Point B) on the line A-C, the determination of the 

damage variable (𝐷) is straightforward by knowing the calculated values of 𝛿𝐼
 
 and 

𝛿𝐼
0. 

2.2.2. Mixed-Mode Delamination 

In the case of mixed-mode delamination, the interactions between different fracture 

modes should be considered for both the initiation and propagation of delamination. 

Therefore, a quadratic stress criterion involving the nominal stress ratios is used in 

mixed-mode conditions for delamination initiation as defined in Eqn (2.16). Damage 

initiates when this equation equals to one. 

𝑓 = {
〈𝑡𝑛〉

𝑡𝑛
0 }

2

+ {
𝑡𝑠

𝑡𝑠
0}
2

+ {
𝑡𝑡

𝑡𝑡
0}

2

 (2.16) 

The subscripts n, s, and t are used for each fracture mode as normal, shear, and tearing, 

respectively. The symbol (< >) used in the normal stress component refers to the 

Macaulay bracket and it is defined as follow: 

〈𝑡𝑛〉 =
(𝑡𝑛 + |𝑡𝑛|)

2
 (2.17) 

As can be understood from the Eqn. (2.17), the Macaulay bracket in the first term 

implies that compressive stresses do not cause damage. 

Bilinear cohesive law for mixed-mode delamination is depicted in Figure 2-7. A 

mixed-mode damage variable (D) as a function of mixed-mode displacement at initial 

failure (𝛿𝑚
0 ), mixed-mode displacement at final failure (𝛿𝑚

 
), and mixed-mode 

displacement at an arbitrary point (𝛿𝑚) is defined in Eqn. (2.18). 
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𝐷 =
𝛿𝑚
 
(𝛿𝑚 − 𝛿𝑚

0 )

𝛿𝑚(𝛿𝑚
 
− 𝛿𝑚

0 )
 (2.18) 

 

Figure 2-7. Bilinear cohesive law for mixed-mode delamination [ 23 ]. 

The total relative displacement for mixed-mode delamination, 𝛿𝑚, at an arbitrary point 

(such as Point B) on line A-C is defined as follows [ 23] ,[ 29 ]; 

𝛿𝑚 = √< 𝛿𝑛 >2+ 𝛿𝑠2 + 𝛿𝑡
2 = √< 𝛿𝑛 >2+ 𝛿𝑠ℎ𝑒𝑎𝑟

2  (2.19) 

The relative displacement at the damage initiation for mixed-mode delamination, 𝛿𝑚
0 , 

is obtained as follows [ 29 ]; 

𝛿𝑚
0 =

{
 

 
𝛿𝑛
0𝛿𝑡

0√
1 + 𝛽2

(𝛿𝑡
0)2 + (𝛽𝛿𝑛

0)2
, 𝛿𝑛 > 0

𝛿𝑠ℎ𝑒𝑎𝑟
0 , 𝛿𝑛 ≤ 0

 (2.20) 

in which, 𝛽 is the mixed-mode ratio and defined in Eqn. (2.21) for 𝛿𝑛 greater than 

zero: 

𝛽 =
𝛿𝑠ℎ𝑒𝑎𝑟
𝛿𝑛

 (2.21) 
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In the calculation of the failure displacement at the decohesion for mixed-mode 

delamination, 𝛿𝑚
 

, the Benzeggagh and Kenane [ 30 ] criterion is considered. 

The Benzeggagh and Kenane (B-K) [ 30 ] criterion is a mixed-mode damage evolution 

criteria which takes into account the interaction of different fracture modes by 

providing a power-law relationship between fracture toughness values. The BK law 

model for the three-dimensional case is given in Eqn. (2.22): 

𝐺𝑒𝑞𝑢𝑖𝑣 𝐶 = 𝐺𝐼𝐶 + (𝐺𝐼𝐼𝐶 − 𝐺𝐼𝐶) (
𝐺𝐼𝐼 + 𝐺𝐼𝐼𝐼

𝐺𝐼 + 𝐺𝐼𝐼 + 𝐺𝐼𝐼𝐼
)
𝜂

 (2.22) 

where 𝜂 is a parameter obtained from mixed-mode bending (MMB) experiments. 

The failure displacement at the decohesion for mixed-mode delamination, 𝛿𝑚
 

, is 

defined in Eqn. (2.23) for the B-K criterion [ 30 ]; 

𝛿𝑚
 
=

{
 
 

 
 2

𝐾𝛿𝑚
0 [𝐺𝐼𝐶 + (𝐺𝐼𝐼𝐶 − 𝐺𝐼𝐶) (

𝛽2

1 + 𝛽2
)

𝜂

] 𝛿𝑛 > 0

√(𝛿𝑠
 
)
2
+ (𝛿𝑡

 
)
2
, 𝛿𝑛 ≤ 0

 (2.23) 

For any arbitrary point, 𝛿𝑚, (such as Point B) on the line A-C for mixed-mode 

delamination, the determination of the damage variable (𝐷) is straightforward by 

knowing the calculated values of 𝛿𝑚
 

 and 𝛿𝑚
0 . 

2.3. Virtual Crack Closure Method (VCCT) 

The Virtual Crack Closure Technique (VCCT) is predicated on Irwin’s concept of 

crack closure integral and is appropriate for computing energy release rates of each 

mode [ 31 ]. VCCT calculates strain-energy release rates, with the presumption that 

the energy required to enlarge two separate crack faces by a certain amount is identical 

to the energy required to close these two separate crack faces by the same amount. In 

Figure 2-8, the crack will propagate when the Eqn. (2.24) is satisfied for pure opening 

mode. The figure and following equation are given for pure opening mode and both 
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can be expressed in two and three dimensions for in-plane and out-of-plane shear 

modes, respectively [ 31 ], [ 32 ]. 

 

Figure 2-8. VCCT for Mode-I condition [ 33 ]. 

𝑓 =
𝐺𝐼
𝐺𝐼𝐶

=
1

2
(
𝑣1,6𝐹𝑣,2,5

𝑏𝑑
)
1

𝐺𝐼𝐶
≥ 1.0 (2.24) 

in which GI is the strain energy release rate in the opening mode, GIC is the critical 

strain energy release rate in the opening mode, v1,6 is the displacement in y-direction 

between point 1 and point 6, Fv,2,5 is the force in y-direction between point 2 and point 

5, b is the width of the specimen, and d is the length of the finite elements at the crack 

tip. 
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CHAPTER 3  

 

3. UD LAMINATE 

 

In this chapter, 2D and 3D finite element analyses of dynamic delamination in UD 

laminate are presented in detail. First, information about the generation of finite 

element models is given and then results obtained from 2D, and 3D finite element 

analyses are presented, respectively. 

3.1. Material 

The material used is AS4/8552 unidirectional prepreg with a density of 1580 kg/m3 

and cured ply thickness (CPT) of 0.188 mm. The elastic properties and strength values 

which are taken directly from Lopes et al. [ 34 ] are given in Table 3.1. Moreover, the 

interface properties of the used prepreg are given in Table 3.2. All interface values 

except strengths are taken from Lopes et al. [ 34 ]. Interface strengths denoted by 𝑡𝐼
0 

and 𝑡𝐼𝐼
0  in Table 3.2 are obtained from experiments conducted and presented in the 

next section according to ASTM Standard D6415 [ 35 ] and ASTM Standard D2344 

[ 36 ]. The curve fit factor obtained from mixed-mode bending (MMB) experiments, 

η, and the initial stiffness of the interface elements, 𝐸0, for mixed-mode energy release 

rate calculation are also given in Table 3.2. 

Table 3.1. Elastic constants of HexPly AS4/8552 UD prepreg. 

Elastic Properties E11 = 135000 MPa; E22 = E33 = 9600 MPa 

 v12 = v13 = 0.32; v23 = 0.487 

 G12 = G13 = 5300 MPa; G23 = 3400 MPa 
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Table 3.2. Interface properties of HexPly AS4/8552 UD prepreg. 

Interface Strength tI
0 = 79.07 MPa 

 tII
0 = tIII

0 = 106.4 MPa 

Fracture Toughness GIC = 0.28 N/mm 

 GIIC = GIIIC = 0.79 N/mm 

B-K Criterion Constant 

(η) 
1.45 

Interface Stiffness E0 = 2.6 × 106N/mm3 

 

The wave speeds (dilatational, shear, and Rayleigh wave) of the material are 

calculated using the formulas from Coker et al. [ 37 ]. 

The dilatational wave speed in the fiber direction can be calculated as; 

cd
ǁ = √(

c11

ρ
). (3.1) 

The dilatational wave speed perpendicular to the fiber direction can be calculated as; 

cd
⊥ = √(

c22

ρ
). (3.2) 

The shear wave speed can be expressed in terms of density (ρ) and in-plane shear 

modulus as; 

cs = √(
c66

ρ
) = √(

G12

ρ
). (3.3) 

The Rayleigh wave speed is the smallest of the roots obtained from the solution of 

Eqn. (3.4) in which stiffness matrix components are given for the plane stress state; 

(
c11
′ c22

′ −c12
′2

c22
′ c66

′ −
ρv2

c66
′ ) [

c22
′

c11
′ (1 −

ρv2

c66
′ )]

1
2⁄

−
ρv2

c66
′ (1 −

ρv2

c11
′ )

1
2⁄

= 0. (3.4) 
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In their study, Coker et al. [ 37 ] observed that the crack accelerates up to a maximum 

value of critical speed, Vc, under Mode-II condition. Huang et al. [ 38 ] derived the 

critical speed (Vc) for plane stress analytically as follows [ 39 ]; 

vc = √
c11𝑐22−𝑐12

2

𝑐66(𝑐12+𝑐22)
𝑐𝑠. (3.5) 

In order to calculate the dilatational, shear, Rayleigh, and critical wave speeds of the 

considered material by using Equations (3.1) - (3.5), components of the plane stress 

stiffness matrix should be calculated. Five independent elastic constants characterize 

a transversely isotropic material. The stress-strain relation of a transversely isotropic 

material is given below for 3D case: 

{
 
 

 
 
𝜎11
𝜎22
𝜎33
𝜎23
𝜎13
𝜎12}

 
 

 
 

=  

[
 
 
 
 
 
 
𝑐11 𝑐12 𝑐13 0 0 0
𝑐12 𝑐11 𝑐13 0 0 0
𝑐13 𝑐13 𝑐33 0 0 0
0 0 0 𝑐44 0 0
0 0 0 0 𝑐44 0

0 0 0 0 0
(𝑐11 − 𝑐12)

2 ]
 
 
 
 
 
 

{
 
 

 
 
ε11
𝜀22
𝜀33
𝛾23
𝛾13
𝛾12}

 
 

 
 

  (3.6) 

The nonzero stiffnesses in Eqn. (3.6) are calculated as follows [ 40 ]; 

c11 =
1 − 𝑣23𝑣32
E2E3Δ

 (3.7) 

 

c22 =
1 − 𝑣13𝑣31
E1E3Δ

 (3.8) 

 

c12 =
𝑣21 + 𝑣31𝑣23

E2E3Δ
= 

𝑣12 + 𝑣13𝑣32
E1E3Δ

 (3.9) 
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c23 =
𝑣32 + 𝑣12𝑣31

E1E3Δ
=  

𝑣23 + 𝑣21𝑣13
E1E2Δ

 (3.10) 

 

c13 =
𝑣31 + 𝑣21𝑣32

E2E3Δ
=  

𝑣13 + 𝑣12𝑣23
E1E2Δ

 (3.11) 

 

c33 =
1 − 𝑣12𝑣21
E1E2Δ

 (3.12) 

 

c44 = 𝐺23 (3.13) 

 

c55 = 𝐺31 (3.14) 

 

c66 = 𝐺12 (3.15) 

 

Δ =  
1 − 𝑣12𝑣21 − 𝑣23𝑣32 − 𝑣31𝑣13 − 2𝑣21𝑣32𝑣13

𝐸1𝐸2𝐸3
 (3.16) 

This 3D constitutive relation can be reduced for plane stress state by setting, 

σ33 = 0    τ23 = 0    τ31 = 0 (3.17) 

Plane stress state stress-strain relationship can be found as: 
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{

𝜎11
𝜎22
𝜏12

} =  [

𝑐11
′ 𝑐12

′ 0

𝑐12
′ 𝑐22

′ 0

0 0 𝑐66
′
] {

𝜀1
𝜀2
𝛾12

} (3.18) 

Then plane stress stiffness matrix components can be calculated as follows: 

𝑐11
′ =

E1
1 − 𝑣12𝑣21

= 𝑐11 −
𝑐12
2

𝑐22
 (3.19) 

 

𝑐22
′ =

E2
1 − 𝑣12𝑣21

= 𝑐22 −
𝑐23
2

𝑐22
 (3.20) 

 

𝑐12
′ =

𝑣21E1
1 − 𝑣12𝑣21

= 𝑐12 −
𝑐12𝑐23
𝑐22

 (3.21) 

 

𝑐66
′ = 𝐺12 = 𝑐66 (3.22) 

The calculated wave speeds of the unidirectional composite material are provided in 

Table 3.3 for both the plane stress and plane strain conditions. 

Table 3.3. Material wave speeds for AS4/8552 UD prepreg. 

 cd
ǁ  (𝑚/𝑠) cd

⊥ (𝑚/𝑠) cS (𝑚/𝑠) cR (𝑚/𝑠) vC (𝑚/𝑠) 

Plane-stress 9277 2473 1831 1811 8045 

Plane-strain 9377 2852 1831 1816 8045 

 

3.2. Material Tests for Interlaminar Strengths 

An accurate FEA of the delamination behavior of the curved laminate requires precise 

material properties. Even though the elastic properties of AS4/8552 UD material are 

widely available and used in the literature, the interlaminar properties can vary with 
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particular manufacturing processes. For this reason, experiments are conducted to 

obtain the interlaminar tensile and shear strengths of the AS4/8552 unidirectional 

material. 

3.2.1. Curved Beam Strength (CBS) Test 

Four-point bending experiments are conducted in order to determine interlaminar 

tensile strength (ILTS) of HexPly AS4/8552 UD Prepreg by following the standard 

ASTM test procedure [ 35 ]. 

Curved specimens are positioned in the 4-point bending fixture, as shown in Figure 

3-1. Experiments are conducted using Shimadzu Autograph AGS-J 10 kN testing 

machine, and load is applied in the vertical direction at 0.5 mm/sec under displacement 

control. 

 

Figure 3-1. (a) Intact specimen positioned on 4-point bending test fixture (b) specimen after the 

experiment. 

The line graph given in Figure 3-2 illustrates the load vs. displacement response of 

four specimens used in four CBS experiments. As is evident in the graph, the slopes 

of the curves are almost the same except one of the specimens, which has a slight 

difference. The maximum failure load or the strength values of the four specimens 

varies between 3529 N and 4744 N. Moreover, geometric dimensions and parameters 

used in the calculation of the curved beam strength are defined in Figure 3-3. 

(a) (b)
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Figure 3-2. Load-displacement curves of four CBS specimens. 

 

Figure 3-3. Geometric dimensions and parameters used in the calculation of the CBS [ 35 ]. 
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The curved beam strength, applied moment per unit width, is calculated by using the 

below-given equation; 

𝐶𝐵𝑆 =
𝑀

𝑤
=
𝑃𝑙0
𝑤

=
𝑃

2𝑤𝑐𝑜𝑠(𝜑)
(

𝑑𝑥
cos(𝜑)

+ (𝐷 + 𝑡)tan (𝜑)) (3.23) 

in which P refers to applied load at initial failure, 𝑤 is the width of the specimen, and 

𝑙0 is the distance between the centerlines of a top and bottom cylindrical loading bars 

along the leg of the specimen. The angle between the specimen’s leg and the horizontal 

line is defined as 𝜑 in Eqn. (3.23) and can be calculated by using the Eqn. (3.24) in 

terms of the diameter of the loading bars (𝐷), the vertical distance between a top and 

bottom loading bars (𝑑𝑦), the horizontal distance between a top and bottom loading 

bars (𝑑𝑥) and the thickness of the specimen (𝑡). 

𝜑 = sin−1 (
−𝑑𝑥(𝐷 + 𝑡) + 𝑑𝑦√𝑑𝑥2 + 𝑑𝑦2 − 𝐷2 − 2𝐷𝑡 − 𝑡2

𝑑𝑥2 + 𝑑𝑦2
) 

(3.24) 

The deflected vertical distance between a top and bottom loading bars (𝑑𝑦) at the 

ultimate load can be obtained from Eqn. (3.25); 

𝑑𝑦 = 𝑑𝑥 tan(𝜑) +
𝐷 + 𝑡

cos(𝜑𝑖)
− 𝛥 (3.25) 

Since the interlaminar tensile strength is defined as the maximum radial stress at the 

failure, the maximum radial stress calculation results in interlaminar tensile strength. 

This value is calculated by a simple strength approach proposed by Kedward [ 3 ]: 

𝜎𝑟
𝑚𝑎𝑥 =

3𝐶𝐵𝑆

2𝑡√𝑟𝑖𝑟𝑜
 (3.26) 
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The calculated curved beam strength of four different test specimens are presented in 

Table 3.4. The average of these four calculated curved beam strength values are used 

in the finite element analysis. 

Table 3.4. Results of four CBS experiments. 

Specimen Pmax(N) w(mm) Δ dy 𝝋 t(mm) CBS(N) σ𝑟(MPa) 

CBS Specimen 1 3529.5 24.90 5.117 29.33 0.668 5.52 2727.38 71.26 

CBS Specimen 2 3591.0 24.75 5.091 29.30 0.668 5.48 2791.80 73.59 

CBS Specimen 3 3994.0 24.75 5.540 28.82 0.657 5.46 3030.28 80.23 

CBS Specimen 4 4744.5 24.76 6.013 28.49 0.644 5.56 3520.64 91.19 

Average        79.07 

 

3.2.2. Short Beam Strength (SBS) Test 

Three-point bending experiments are conducted to measure interlaminar shear 

strength (ILSS) of HexPly AS4/8552 UD Prepreg by following the standard ASTM 

test procedure [ 36 ]. 

Figure 3-4 (a) and Figure 3-4 (b) show the test configuration for the short-flat laminate 

and the specimen positioned in the three-point bending fixture, respectively. 

Experiments are conducted using Shimadzu Autograph AGS-J 10 kN testing machine, 

and load is applied in the vertical direction at 0.5 mm/sec under displacement control. 

 

Figure 3-4. (a) 3-point bending test configuration [ 36 ], (b) specimen positioned on the three-point 

bending fixture. 
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The line graph given in Figure 3-5 illustrates the load vs. displacement response of 

four different specimens used in the short-beam strength experiments. As is evident in 

the graph, the behavior of the all specimens are almost the same until the failure load 

except SBS Specimen-1. The peak load recorded during the experiments is 10052 N 

which corresponds to 2.19 mm displacement for SBS Specimen-4. 

 

Figure 3-5. Load-displacement curves of four SBS specimens. 

ASTM standard test method for short-beam strength [ 36 ] specifies that unless mid-

plane interlaminar failure has been clearly observed in the experiments, the calculated 

short-beam strength cannot be attributed to the interlaminar shear strength. The 

expected failure mode to obtain interlaminar shear strength (ILSS) is identified in 

Figure 3-6 (a), and the observed failure mode in the experiments is presented in Figure 

3-6 (b). 
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Figure 3-6. Interlaminar shear failure (a) identified in the standard ASTM test procedure (b) in the 

short beam strength test. 

The short-beam strength is calculated by using the Eqn. (3.27) in terms of the peak 

load observed during the experiment (𝑃𝑚), width of the specimen (𝑏) and the measured 

thickness of the specimen (ℎ). 

𝐹𝑠𝑏𝑠 = 0.75 ×
𝑃𝑚
𝑏 × ℎ

 
(3.27) 

The summary of the calculations for four different specimens are presented in Table 

3.5 and the average of the four calculated short-beam strength values is taken and used 

in the analysis as interlaminar shear strength. 

Table 3.5. Results of four SBS experiments. 

Specimen Pmax (N) b (mm) h (mm) SBS (MPa) 

SBS Specimen-1 9833.0 11.96 5.86 105.22 

SBS Specimen-2 9896.5 12.02 5.83 105.92 

SBS Specimen-3 9922.0 11.93 5.87 106.26 

SBS Specimen-4 10051.50 11.93 5.84 108.20 

Average    106.40 

 

  

(a) (b)
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3.3. Geometry and Boundary Conditions 

Both 2D and 3D finite element models corresponding to the experimental 

configuration of the curved unidirectional CFRP composite laminate are developed. 

The geometrical properties of the considered specimen are illustrated in Figure 3-7. 

The upper and lower arm length (l) of the considered specimen is 76.36 mm. Inner 

radius (ri) and width (w) of the specimen are 8.0 mm and 25 mm, respectively. The 

laminate is composed of 30 UD plies of CFRP with a ply thickness of 0.188 mm which 

corresponds to 5.64 mm total thickness. 

 

Figure 3-7. Specimen geometry for the curved unidirectional laminate. 

In the experiments, displacement is prescribed to the specimen at the ends of the arms. 

The design of the experimental test fixture and installation of the specimen create 

combined loading at the curved region. The schematic of the experimental 

configuration is shown in Figure 3-8. The specimen ends are bolted to the freely 

rotating pins through which the axial load is applied in y-direction as shown in Figure 

3-8 (a). The magnified view in Figure 3-8 (b) shows the applied loading through the 

w

l

ri

t

Curved Region

Upper Arm

Lower Arm

l



 

 

 

33 

 

bolts at the ends of the specimen without constraining the rotation through freely 

rotating pins. 

 

Figure 3-8. Schematic of (a) experimental configuration showing how the specimen is located in the 

fixture and (b) the load transfer to the specimen through the freely rotating pins. 

The finite element idealization of the load and boundary conditions for 2D and 3D 

finite element models are shown in Figure 3-9 (a) and (b), respectively. In order to 

simulate the experimental configurations correctly, load and boundary conditions are 

imposed on the specimen using kinematic couplings which link the load introduction 

points to the specimen edge in all degrees of freedom. The finite element model of the 

specimen is allowed to move in the y-direction at the upper load introduction point 

and rotation around the z-axis is allowed at both upper and lower load introduction 

points. Allowing rotation around the z-axis accommodates a freely rotating pin clearly. 

All other degrees of freedom are fixed at both load introduction points. The maximum 

applied displacement at the upper load introduction point is set to 7 mm in both 2D 

and 3D models. 
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Figure 3-9. Finite element idealization of the boundary conditions for (a) 2D finite element model 

and (b) 3D finite element model. 

Using explicit dynamics to solve quasi-static problems in their real-time is 

prohibitively expensive in terms of computation time, which is directly proportional 

to analysis step time. Thus, simulating the real physical process at an artificially high 

speed is usually desirable. In general, inertia forces will not play a dominant role in 

quasi-static loading with an appropriate step time. Since the considered composite 

material is not rate-dependent, in this study artificially increasing the loading rate is 

preferred rather than mass-scaling technique. 

The loading rate is determined with modal analysis since the dominant mode will be 

the first mode shape in quasi-static simulations. The first natural frequency is attained 

as 649 Hz, which corresponds to 0.0015 s as a result of the modal analysis. This result 

reveals that the shortest step time for the quasi-static analysis should be 0.0015 s. The 

step time is selected as 0.007 s conservatively, which ends in a loading rate of 1 m/s 

in the quasi-static simulations presented here. Prescribed displacement is applied as a 

smooth-step function, which is formulated in Eqn. (3.28): 

(a) (b)
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𝑈(𝑡) = 𝑈𝐿 [10 (
𝑡

𝑡𝐿
)
3

− 15 (
𝑡

𝑡𝐿
)
4

+ 6(
𝑡

𝑡𝐿
)
5

] (3.28) 

where, 𝑈𝐿 is the maximum prescribed displacement value and 𝑡𝐿 is the determined 

total step time. Moreover, the loading profile is depicted in Figure 3-10. 

 

Figure 3-10. Loading profile of smooth step for quasi-static simulation of UD laminate. 
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3.4. Finite Element Modelling 

3.4.1. 2D FEM 

In the two-dimensional finite element model of the UD laminate, each layer is 

discretized with two 4-node bilinear reduced integration elements (CPE4R) through 

the thickness. Two-dimensional cohesive elements (COH2D4) available in 

ABAQUS/Explicit element library are employed to model all of the twenty-nine 

interfaces. The thickness of the cohesive elements at each interface are taken to be 

t=0.001 mm. The enhanced hourglass control approach is considered for bulk material 

representation to prevent hourglassing. The penalty stiffness of the interface elements 

(𝐸0) is calculated as 2.6×106 N/mm3 by using Eqn. (2.11), and the exponent of the B-

K law is specified as 1.45. The sweep mesh technique is used to align the cohesive 

elements with thickness direction, as shown below in Figure 3-11 from the bottom to 

the top face. The correct definition of thickness direction is crucial in cohesive element 

modelling since the element elongation will represent the separation of the laminas. 

 

Figure 3-11. Top and bottom faces of (a) 2D cohesive element and (b) 3D cohesive element with the 

defined thickness direction. 

The mesh density of the finite element model is determined after a detailed mesh study 

that considers load-displacement behavior and stress distributions at different sections. 

The magnified view of the mesh at the mid-line is shown, and element dimensions in 

this region are summarized in Figure 3-12. In the graphic, the parameters measured 

along the ordinate are the element height which changes from 84 µm to 143 µm due 
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to the curved region and element width we=94 µm which is constant through the 

thickness direction. 

The two-dimensional finite element model of the UD laminate includes 52200 first-

order quad elements of type CPE4R and 25230 first-order quad elements of type 

COH2D4. The total number of elements is 77430. Moreover, the total number of 

nodes is 78392 which corresponds to 156966 number of degrees of freedom. 

ABAQUS calculates the stable time increment as 1.472 × 10-10 s. The analysis was 

performed on a high-performance cluster consisting of 72 CPU cores. A single 

simulation takes more than 33 hrs. 

 

Figure 3-12. Magnified view of the mesh at the center-line of the 2D FEM of UD laminate and details 

of interface modelling. 

The interpenetration of adjacent layers behind the crack tip in the arm region may 

occur after separation due to large applied displacements. Thus, contact interactions 

in normal and tangential directions are considered between the adjacent layers with 

the General Contact Algorithm of ABAQUS to prevent the layer interpenetration.  
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3.4.2. 3D FEM 

In the three-dimensional FE model of the UD laminate, the bulk region is discretized 

by reduced integration continuum solid elements, which are denoted as C3D8R in 

ABAQUS/Explicit element library. Unlike the two-dimensional FE model, the three-

dimensional FE model includes only one interface, which is located between the 12th 

and 13th layers from the inner radius as shown below in Figure 3-13. This location is 

determined from the results of two-dimensional analysis. The main reason for 

modelling only one interface in the 3D FE model is to reduce computational time. The 

mesh density of the 3D model differs from the 2D model again due to computational 

efficiency. Using the same mesh density of the two-dimensional finite element model 

and modelling all twenty-nine interfaces would result in more than 10 million 

elements, which requires excessive CPU time. 

Since all layers of the UD laminate have the same orientation, the first twelve layers 

(defined as inner region in Figure 3-13) are considered as a single layer with a 

thickness of 12 × 0.188 mm. Then, this single layer is discretized with eight elements 

through the thickness to generate a reduced 3D FE model. The remaining eighteen 

layers (defined as outer region in Figure 3-13) are considered as another single layer 

with a thickness of 18 × 0.188 mm and discretized with twelve elements through the 

thickness. Around the curve region, there are two elements per three degrees sweep 

and in the width direction there are 88 elements. The three-dimensional FE model 

includes 936320 first-order hexahedral elements of type C3D8R and 46816 first-order 

hexahedral elements of type COH3D8. The total number of elements is 983136, and 

the total number of nodes is 1043616 with 3142602 numbers of degrees of freedom. 

ABAQUS calculates the stable time increment as 1.651 × 10-8 s. The analysis was 

performed on a high-performance cluster consisting of 72 CPU cores. A single 

simulation takes around more than 32 hrs. As mentioned in the section on 2D finite 

element modelling, contact interactions in normal and tangential directions are also 

considered for 3D FE models between the adjacent layers with the General Contact 

Algorithm of ABAQUS to prevent the layer interpenetration. 
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Figure 3-13. 3D FE model details in terms of interface modelling and mesh density. 

3.5. Results 

3.5.1. 2D FEA Results 

Excessive oscillations on the load-displacement curve due to failure of cohesive 

elements are ubiquitous in simulations when the explicit solver is employed. In 

literature, several studies mentioned severe oscillations and their solutions for these 

oscillations [ 43 ]. Although larger analysis duration would result in a load-

displacement curve with less severe oscillations, it increases the computational cost of 

the analysis. An approach to lessen the computational cost of the analysis is to follow 

the sequential analysis (with larger analysis duration for explicit solver) proposed by 

Gozluklu and Coker [ 16 ] in which the implicit analysis is used for the linear behavior 

before failure, and explicit analyses is used after the peak (failure) load. However, this 

sequential method requires the re-run of the model. Without re-running another 

simulation, we decided to evaluate the energy history during the analysis to attain the 

filtered load-displacement curve which is believed to be the most accurate behavior. 
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Strain and fracture energies as a function of time for the 2D Plane strain FEA of the 

curved UD CFRP laminate are shown in Figure 3-14. Fracture energy remains zero 

until the sudden increase at t= 5.7000 ms. The sudden increase in the fracture energy 

and sudden decrease in the strain energy is attributed to the instantaneous load drop 

(intersonic delamination) observed in the experiments [ 1 ]. As shown in the magnified 

view, the sudden increase in the fracture energy almost stops at t= 5.7112 ms which is 

actually the endpoint of the sudden load-drop in the load-displacement curve. The 

high-frequency oscillations on the load-displacement curve after t= 5.7112 ms are 

filtered by adding a linear trend line in MS Excel, and the load values between 5.7000 

and 5.7112 ms are attained by considering a linear decrease between the corresponding 

load values of these two time instants. 

 

Figure 3-14. Strain and fracture energy history of 2D FEA of curved UD CFRP laminate. 

The same approach used in the evaluation of fracture and strain energies can also be 

used for internal and kinetic energies since the sudden increase in the kinetic energy 

and sudden decrease in the internal energy is attributed to the instantaneous load drop 

(intersonic delamination) observed in the experiments [ 1 ]. The kinetic and total strain 
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(internal) energy history is presented in Figure 3-15. The comparison of kinetic and 

internal energy shows that the applied quasi-static approach is appropriate, since the 

kinetic energy is small relative to internal energy throughout the analysis. 

 

Figure 3-15. Internal and kinetic energy history of 2D FEA of curved UD CFRP laminate. 

The load-displacement response of the curved UD CFRP laminate from the 2D FEA 

is shown on the left-hand side of Figure 3-16 with grey color. The load-displacement 

data (grey) is filtered in order to eliminate high-frequency noise, which occurs mainly 

due to the reflection of stress waves at the material boundaries after the failure of the 

interface elements. Both filtered and unfiltered curves show linear elastic behavior 

until the failure load of 1379 N. After the peak load (Point a), a sudden dynamic failure 

occurs which extends to both arms from the curved region. The stiffness of the UD 

laminate before failure is 206.91 N/mm, which shows good agreement with the 

experimental results as 218 N/mm [ 1 ]. The delamination reaches the arm region in 4 

µs and causes a 346 N reduction in the load-carrying capacity of the intact UD CFRP 

laminate (Point b). The total load drop occurs in 11.3 µs when the crack extends for 

46.02 mm (Point c). The length of the crack at the arm region at “Point c” corresponds 
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to 43% of the arm length. Finally, the simulation is completed as the maximum applied 

displacement value is reached. The final deformed shape of the curved UD CFRP 

laminate is shown in Figure 3-16 (Point d). The second stiffness is calculated to be 

45.03 N/mm. 

 

Figure 3-16. Load-displacement curves for 2D FEA of curved UD CFRP laminate under quasi-static 

loading and crack locations on load-displacement curve for critical points. 

Evolution of the opening stress, 𝜎33, contours in the curved region of UD CFRP 

laminate before and after failure are shown in Figure 3-17. Although the simulations 

are performed for the whole geometry, only the upper part is plotted here for the 

visualization since the results are symmetric according to the mid-line. Continuous 

radial stress distribution at the curved region is disrupted as the damage variable of 

the interface elements reaches 0.999 at 0.3 µs before the delamination initiation. 

Delamination initiates when the applied displacement reaches 6.67 mm (1379 N) at 

t=0.0057 s. This time is considered as 𝑡0 from now on. After delamination initiation, 

due to high radial stresses shown by red color, it propagates dynamically in the curved 

region for 3.9 µs. The speed of the crack tip can be inferred from the concentration of 

stress distribution at the crack tip. The stress concentration at the crack tip shows that 

crack travels at very high speeds in the beginning and slows down as it propagates to 
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the arm. The stress concentration in front of the crack tip also decreases as the crack 

slows down. 

 

Figure 3-17. Evolution of the opening stress contours in the curved region of UD CFRP laminate 

before and after delamination onset. 

Figure 3-18 shows the normal stress contours, 𝜎33, of four instants as the delamination 

propagates through the upper arm. Shear Mach waves radiating from the crack tip in 

the shape of inclined normal stresses are pointed out by red lines. Other inclined stress 

waves behind the shear Mach wave front can be attributed to the reflections of the 

waves from the free surfaces of the specimen. Local hot spots of stress concentrations 

are observed on the sliding crack surfaces due to elastodynamic waves. 

 

Figure 3-18. Normal stresses at the upper arm and shear Mach wave fronts pointed out with red 

lines. 
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The crack length is determined by using these snapshots at different time instants and 

the crack tip speed is calculated from the derivative of the crack length using moving 

three-point quadratic line fit. The line graph given in Figure 3-19 shows how the crack 

extension and crack tip speed changes with time. 

 

Figure 3-19. Crack extension and crack tip speed versus time curves for delamination propagating 

through upper arm of curved UD CFRP laminate. 

It is clear from the previous radial stress plots that delamination initiation at the curved 

region is Mode-I dominated. Under Mode-I dominancy, a crack cannot exceed 

Rayleigh wave speed. Therefore, crack tip speed at the initiation can be neglected. 

After initiation, delamination grows at sub-Rayleigh speed in the curved region. The 

crack reaches the upper arm region at t=3.9 µs which corresponds to a crack length of 

8.06 mm. Crack tip speed hits a peak value of 6264 m/s which is above the shear wave 

speed of the material in the arm region. The crack extension reaches 46.76 mm in 12 

µs. The sharp rise in the crack extension can be attributed to the intersonic 

delamination propagation. Although the crack tip speed fluctuates slightly between 
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shear wave speed and critical wave speed for eight µs, the main trend is downward. 

Afterwards, crack decelerates to sub-Rayleigh speeds around 1000 m/s at t=12.5 µs. 

The crack tip propagates at sub-Rayleigh speeds for six µs and then remains steady 

for 16.5 µs having the crack length of 49.70 mm. Detailed inspection of crack 

extension and tip speeds reveals that the crack passes material shear wave speed and 

travels in an approximate speed of 6000 m/s, which lies between the shear wave speed 

and the critical wave speed. Hence, the crack propagation in the arm region under 

Mode-II domination is intersonic. The shear Mach waves radiating from the crack tip 

can be observed in Figure 3-18. These waves also indicate that the crack is moving 

faster than the shear wave speed of the bulk material at the interface [ 18 ]. 

Virtual Crack Closure Technique (VCCT) analysis is performed to attain the strain 

energy release rates at the crack tip. The line graph given in Figure 3-20 illustrates the 

strain energy release rates for Mode-I (GI) and Mode-II (GII) as a function of crack 

length along curved UD CFRP laminate. 

 

Figure 3-20. Strain energy release rates for Mode-I and Mode-II as a function of crack length along 

curved UD CFRP laminate. 
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Crack initiates under pure Mode-I condition where the critical Mode-I SERR is 0.28 

N/mm. Delamination grows in the curved region under Mode-I dominancy. As it 

develops both in the curved and arm region, the effect of Mode-II becomes visible and 

from that time on the delamination propagates under mixed-mode loading until the 

end of the loading. 

The phase angle, Ѱ, is calculated with the following formula to see the mixed-mode 

effect on the delamination propagation: 

Ѱ = 𝑡𝑎𝑛−1(√
𝐺𝐼𝐼
𝐺𝐼
) (3.29) 

The mode-mixity defined by phase angle is given as a function of crack length in 

Figure 3-21 showing that the Mode-I dominant delamination in the center of the 

curved region (Ѱ = 0°) transitioning to Mode-II dominant delamination growth in the 

arm region (Ѱ ≈ 80°). 

 

Figure 3-21. The mode-mixity defined by phase angle as a function of crack length. 
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3.5.2. 3D FEA Results 

The excessive oscillations on the load-displacement curve of 3D FEA of the curved 

UD CFRP laminate are filtered by examining the history of strain and fracture energy 

extracted during the simulations as done in 2D FEA. 

History plots of the strain and fracture energies for the 3D FE model of the curved UD 

CFRP laminate appears, as shown in Figure 3-22. Fracture energy remains zero until 

the sudden increase at t= 5.7070 ms. As the damage occurs and propagates, the fracture 

energy dissipated during the failure of interface elements increases instantaneously. 

As shown in the magnified view, the sudden increase in the fracture energy almost 

stops at t= 5.7490 ms which is actually the endpoint of the sudden load-drop in the 

load-displacement curve. The high-frequency oscillations on the load-displacement 

curve after t= 5.7490 ms are filtered by adding a linear trend line in MS Excel, and the 

load values between 5.7070 and 5.7490 ms are attained by considering a linear 

decrease between the corresponding load values of these two time instants. 

 

Figure 3-22. Strain and fracture energy history for 3D FEA of curved UD CFRP laminate. 
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The kinetic and total strain (internal) energy history is presented in Figure 3-23. At t= 

5.7070 ms, total strain energy decreases suddenly and the kinetic energy increases in 

the same manner. Both kinetic and total strain energy oscillates significantly as the 

delamination propagates through the arms. Comparison of the kinetic and total strain 

(internal) energy history shows that the kinetic energy is small relative to internal 

energy throughout the analysis. The criterion for quasi-static loading that kinetic 

energy must be small relative to total strain energy has been satisfied, even for the 

severe increase during the delamination onset. 

 

Figure 3-23. Internal and kinetic energy history for 3D FEA of curved UD CFRP laminate. 

The load-displacement response of curved UD CFRP laminate from the 3D FEA is 

shown in the left-hand side of the Figure 3-24 with grey color. The load-displacement 

data (grey) is filtered in order to eliminate high-frequency noise, which occurs mainly 

due to the reflection of stress waves at the material boundaries after the failure of the 

interface elements. Both filtered and unfiltered curves show linear elastic behavior 

until the failure load of 1338.52 N. After the peak load (Point a), a sudden dynamic 
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UD laminate before failure is 200.61 N/mm, which shows good agreement with the 

experimental results as 218 N/mm [ 1 ]. The delamination at the free edge reaches the 

arm region in 14 µs and causes a 314 N reduction in load carrying capacity of the 

intact curved UD CFRP laminate (Point b). The total load drop occurs in 42 µs when 

the edge crack extends for 47.55 mm and center crack extends for 41.79 mm (Point 

c). The length of the crack at the arm region at “Point c” corresponds to 42% of the 

arm length. Finally, the simulation is completed as the maximum applied displacement 

value is reached. The final deformed shape of the curved UD CFRP laminate is shown 

in Figure 3-24 (Point d). The second stiffness is calculated to be 96.41 N/mm. 

 

Figure 3-24. Load - displacement curves for 3D FEA of curved UD CFRP laminate under quasi-

static loading and crack locations on load-displacement curve for critical points. 

Delamination initiation and propagation inside the specimen can be clearly seen in 

Figure 3-25 where the delamination region for each time frame is colored as dark grey. 

The delamination initiates exactly at the center of the specimen along the width 

direction. Then it propagates in two directions; into the arm region and towards the 

free edge of the specimen. The crack tip propagating through the arm region (parallel 

to the longitudinal direction) is called center crack, and the crack tip propagating 

through the width direction and after reaching the free edge continues through the arm 

region is called edge crack. The crack tip speed in the width direction is calculated to 
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be sub-Rayleigh and is not inspected in detail. Since the crack front is almost 

symmetric in both directions that crack propagates, only one half of the delamination 

front is investigated in detail by considering one crack tip at the center and one crack 

tip at the free edge. As illustrated in Figure 3-25, center crack is initially faster than 

the edge crack, but as soon as the edge crack reaches the free-edge it gains a peak 

speed of 5000 m/s, catching up and passing the center crack. Afterwards, since there 

is not sufficient energy for intersonic crack propagation, both edge crack tip and center 

crack tip propagate at sub-Rayleigh wave speeds to the end of the loading. 

 

Figure 3-25. Delamination initiation and propagation path inside the curved UD CFRP laminate. 

The radial stress fields of center (W/2) and edge (W) sections in the upper-half curved 

region of the 3D FE model before and after failure are presented in Figure 3-26. 
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is plotted here for visualization since the results are symmetric according both to the 

mid-line and center-line. Continuous radial stress distribution at the curved region is 

disrupted as the damage variable of the interface elements reaches 0.98 at one µs 

before delamination initiation. Delamination initiates when the applied displacement 

reaches 6.67 mm (1339 N). After initiation of the center crack, it propagates to the 

arm region in 7 µs. During this time, no delamination is observed at the edge section. 

 

Figure 3-26. Contours of radial stresses at the center and edge sections of the curved UD CFRP 

laminate before and after center crack initiation. 

Contours of normal stresses at the center and edge sections are given in Figure 3-27 

for the time instants of Δt = 8 µs, Δt = 9 µs and Δt = 10 µs. The normal stress lines in 

front of the crack tip in Figure 3-27 can be attributed to the shear Mach waves, since 

the center crack propagates faster than the material shear wave speed at the considered 

time frames and the crack propagation is under Mode-II dominancy in this region. 
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Figure 3-27. Crack propagation in the center section of upper arm region after the initiation of center 

crack with normal stress lines forming the shear Mach wave front. 

Crack propagation in the edge section of the upper arm region after edge crack 

initiation with normal stress lines forming the shear Mach wave front is illustrated in 

Figure 3-28. As soon as the edge crack reaches the arm region, it sustains a speed 

value of 5000 m/s as mentioned earlier. Similar to the center crack, normal stress lines 

in front of the edge crack tip are attributed as shear Mach waves as shown in Figure 

3-28. 

 

Figure 3-28. Crack propagation in the edge section of upper arm region after edge crack initiation 

with normal stress lines forming the shear Mach wave front. 
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function of time are plotted in Figure 3-29 in which ‘EOCRC’ defines the end of the 

curve region at the center plane. Center crack tip propagates at sub-Rayleigh speed 

around 1300 m/s until Δt = 6 μs. Between Δt = 6 μs and Δt = 7 μs, the center crack 

reaches the arm of the specimen as it speed-ups. Afterwards, the center crack tip speed 

reaches its maximum value of Vm = 3233 m/s at Δt = 8 μs. Following the maximum 

speed, the center crack tip speed gradually slows down to sub-Rayleigh speed as it 

propagates through the specimen arm. 

 

Figure 3-29. Center crack extension and tip speeds for the curved UD CFRP laminate. 

Edge crack extension is determined by using the snapshots at different time instants, 

and edge crack tip speed is calculated from the derivative of the crack length using 

moving three-point quadratic line fit. The edge crack extension and tip speeds as a 

function of time are plotted in Figure 3-30 in which ‘EOCRE’ defines the end of the 

curve region at the free edge. Edge crack occurs when the transverse crack at the 

curved region reaches the free edge of the specimen at Δt=11 µs. After four µs from 

the edge crack onset, it passes to the arm region. In the arm region, it develops to 

intersonic speeds for approximately ten µs. 

0

1000

2000

3000

4000

5000

6000

7000

8000

9000

10000

0

5

10

15

20

25

30

35

40

45

50

0 5 10 15 20 25 30 35 40

C
ra

ck
 T

ip
 S

p
ee

d
 (m

/s
)

C
ra

ck
 E

xt
en

si
o

n
 (m

m
)

t (µs)

Center Crack Extension - 3D FEA

Center Crack Tip Speed - 3D FEA

Cd

Vc

CR
CS

EO
C

R
C



 

 

 

54 

 

 

Figure 3-30. Edge crack extension and crack tip speeds for the curved UD CFRP laminate. 

Mode-Mixity 

The strain energy release rates (SERR) in all the three fracture modes are obtained by 

using the Virtual Crack Closure Technique (VCCT). A 3D finite element model is 

generated in conjunction with cohesive surface behaviour between adjacent sub-

laminates, as defined earlier in the 3D FEM section. This model is loaded until the 

initial delamination occurs, since initial delamination or crack is required for a VCCT 

analysis. Then with this deformed configuration, the loading is continued with the 

defined VCCT criterion for the bonded region of the critical interface. The strain 

energy release rates (SERR) in all the three fracture modes are extracted, and two 

different phase angles are calculated using the below-given formulas to observe the 

interaction of different fracture modes. 
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The mode-mixity between Mode-II and Mode-I is defined by Ѱ𝐼𝐼,𝐼: 

Ѱ𝐼𝐼,𝐼 = 𝑡𝑎𝑛−1(√
𝐺𝐼𝐼
𝐺𝐼
) (3.30) 

where 𝐺𝐼 and 𝐺𝐼𝐼 are the Mode-I and Mode-II strain energy release rates, respectively. 

The mode-mixity between Mode-III and Mode-I is defined by Ѱ𝐼𝐼𝐼,𝐼: 

Ѱ𝐼𝐼𝐼,𝐼 = 𝑡𝑎𝑛−1(√
𝐺𝐼𝐼𝐼
𝐺𝐼

) (3.31) 

where 𝐺𝐼 and 𝐺𝐼𝐼𝐼 are the Mode-I and Mode-III strain energy release rates, 

respectively. 

Figure 3-31 presents the strain energy release rates in three modes at Δt = 2 µs after 

the onset of delamination. The crack front extends approximately 6 mm along the 

width direction. The Mode-I strain energy-release rate is dominant among all the strain 

energy release rates. The delamination at the center of the specimen propagates under 

mode-mixity with the minor contribution of Mode-II at time Δt = 2 µs. Moreover, at 

the edges of the crack front, the propagation is again under mode-mixity with the 

minor contribution of Mode-III. 

Phase angles, Ѱ (w), as a function of width at Δt=2 µs are also given in Figure 3-31 to 

explain the mode-mixity along the width direction, clearly. ѰII,I defines the mode-

mixity between Mode-II and Mode-I as the phase angle of ѰII,I ≈ 90° yields a pure 

Mode-II crack propagation. ѰIII,I defines the mode-mixity between Mode-III and 

Mode-I as the phase angle of ѰIII,I ≈ 90° yields a pure Mode-III crack propagation. 
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Figure 3-31. Strain energy release rates (SERR) and phase angles as a function of width at Δt=2 µs. 

Strain energy release rate components at Δt=7 µs are given in Figure 3-32. At this time 

instant, the length of the crack front is approximately 18 mm along the width direction. 

The Mode-II energy-release rate increases significantly at the center as the Mode-I 

energy-release rate decreases. The presence of the Mode-III energy-release rate 

becomes visible as shoulders approximately 3 mm away from the center. Phase angles, 

Ѱ (w), as a function of width at Δt=7 µs are also given in Figure 3-32. The 

delamination at the center of the specimen propagates under mode-mixity with the 

major contribution of Mode-II and minor contribution of Mode-I at time Δt = 7 µs. 

Moreover, at the edges of the crack front, the propagation is again under mode-mixity 

with the minor contribution of Mode-III and the major contribution of Mode-I. 
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Figure 3-32. Strain energy release rates (SERR) and phase angles as a function of width at Δt=7 µs. 

Figure 3-33 depicts the change of strain energy release rates across the width when 

the edge crack occurs at Δt=11 µs. At the center of the width, again Mode-II is 

dominant with a peak value of 0.562 N/mm. At the free edges, the Mode-III strain 

energy release rate increases significantly compared to previous time instants. Phase 

angles as a function of width at Δt=11 µs are also given in Figure 3-33. All three of 

the fracture modes contribute to crack propagation along the crack front with different 

dominances. At the center of the width, again the dominant fracture mode is Mode-II 

and at the edges of the crack front Mode-I becomes dominant as Mode-II strain energy 

release rates decrease dramatically. The contribution of Mode-II to propagation at the 
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free edges is negligible compared to the other two modes, and the contribution of 

Mode-III to propagation at the center of the width is negligible. 

 

Figure 3-33. Strain energy release rates (SERR) and phase angles as a function of width at Δt=11 µs. 

The strain energy release rates as a function of the width of the specimen at Δt=13 µs 

are given in Figure 3-34. At this time instant, the edge crack passes to arm region 

under Mode-III dominancy. The contribution of Mode-I to propagation at the free edge 

is negligible as the values are too small compared to other components. At the center 

of the width, again the dominancy of Mode-II continues. Moreover, mode-mixities at 

Δt=13 µs expressed by two phase-angles are given in Figure 3-34. The Mode-II 
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dominancy is observed to drop significantly at the free edge. The change of phase 

angle, Ѱ𝐼𝐼𝐼,𝐼, along the width of the specimen shows that the effect of Mode-III at the 

free edge is more dominant. 

 

Figure 3-34. Strain energy release rates (SERR) and phase angles as a function of width at Δt=13 µs. 
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3.6. Discussion 

The load-displacement response of curved unidirectional CFRP laminate under quasi-

static moment-axial combined loading from the 2D (blue), and 3D (red) simulations 

are compared with the experimental results (grey) [ 1 ] in Figure 3-35. The load-

displacement behavior is linear elastic until sudden dynamic failure, which occurs due 

to a single main delamination that extends to both arms from the curved region. The 

stiffness before failure in the experiments is captured very well by both 2D and 3D 

simulations. The peak load before crack initiation is almost identical for 2D and 3D 

models with 1380 N for 2D Plane strain FEA and 1330 N for the 3D FEA, which is 

within the scatter of the experiments. 

 

Figure 3-35. Load-displacement curves for curved UD CFRP laminate under quasi-static moment-axial 

combined loading from experiments [ 1 ] compared with 2D and 3D FEA simulations. 

Under displacement-control, an almost instantaneous load drop occurs after peak load 

is attained in the simulations as with the experiments, where the load drops to 400 N. 

As the displacement is increased afterwards, the load increases with a much smaller 

slope, corresponding to the reduced stiffness of the curved beam. 
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In 2D FEA, the cohesive elements at the interface of the 12th and 13th layers are 

degraded and failed when the maximum radial stress reaches the value of interlaminar 

tensile strength. The stiffness degradation of the cohesive elements at the center-line 

in the thickness direction are shown in Figure 3-36. Moreover, radial stresses in 

thickness direction extracted from 2D FEA and calculated analytical stress values 

according to Lekhnitskii [ 5 ] are compared in Figure 3-36. As it can be seen from the 

Figure 3-36 the interface elements at the other interfaces are not degraded in the 

center-line of the curved region. This information is considered when modelling the 

3D finite element model with only one interface. 

 

Figure 3-36. Radial stress distribution and stiffness degradation scalar (SDEG) of cohesive elements 

in the interfaces. 

A qualitative comparison between experiments and 2D simulations are shown in 

Figure 3-37. The Tresca strain field just before failure and a camera picture after 

failure showing the location of the delamination is shown in Figure 3-37 (a). This is 

compared to a snapshot of the finite element contours of radial stresses before failure, 

and the delamination location after failure shown in Figure 3-37 (b) compares 

qualitatively well with the experiments. 
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Figure 3-37. Qualitative comparison of experimental and finite element analyses results. 

Crack tip speed as a function of the crack tip location from the center of the curved 

region for 2D crack tip and 3D crack tip at the center and the free edge are shown in 

Figure 3-38. The calculated crack tip speeds from 2D FEA is higher compare to center 

and edge crack throughout the analysis. In the arm region; center crack travels at 

intersonic speeds for 4 µs, edge crack travels at intersonic speeds for 6 µs, and 2D 

crack travels at intersonic speeds for 15 µs. 

 

Figure 3-38. Crack tip speed as a function of the crack tip location from the center of the curved 

region for 2D crack tip, 3D crack tip at the center and at the edge. 
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In 2D finite element results, it is observed that the crack initiates with a speed value 

higher than the material shear wave speed which is not reasonable considering that a 

crack cannot exceed the Rayleigh wave speed of the material under Mode-I loading. 

In 3D finite element results; while the edge crack exceeds the Rayleigh wave speed of 

the material but in this case the crack is under mixed mode loading, the center crack 

travels with a speed less than Rayleigh wave speed in the curved region. In the curved 

region, center crack is mainly effected by Mode-I loading which is reasonable 

considering sub-Rayleigh wave speeds. The center crack propagates at intersonic 

speed for a crack length of 11 mm, and the edge crack propagates at intersonic speed 

for a crack length of 32 mm while the 2D crack develops at intersonic speed for 35 

mm. As a result of these observations, it is clear that 2D crack and 3D edge crack show 

similar behavior. 

3.7. Conclusions 

2D and 3D explicit finite element analyses of dynamic delamination in curved UD 

CFRP laminate, [0]30, were carried out under moment/axial combined loading in 

conjunction with cohesive zone elements. The following conclusions are drawn as a 

result of the 2D and 3D FE analyses: 

 Load-displacement curves show good correlations with experimental results [ 

1 ] in terms of stiffnesses before failure and major delamination location in 

thickness. 

 2D and 3D finite element analyses of dynamic delamination in curved CFRP 

laminates revealed that the crack propagation speeds inside the specimen 

varies as edge crack travels faster than center crack. 

 Although delamination initiates at intersonic speeds under Mode-I condition 

in 2D FEA, it initiates at subsonic speeds under Mode-I condition in 3D FEA. 

This result shows that the 3D model predicts initiation speed of delamination 

more reasonably, since it is known that a crack under Mode-I dominancy 

cannot exceed the Rayleigh wave speed of the material. 
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 Stress contour varies inside the specimen and results obtained at the center 

section of the 3D model are more consistent with 2D plane strain results. 

 As the crack passes to arm region, it travels in Mode-II dominancy with 

intersonic speed. Shear Mach waves radiating from the crack tip are observed 

clearly as a result of both 2D and 3D simulations. 

 The 2D crack and the 3D edge crack show similar behavior in terms of crack 

tip speeds. 

 In 3D FE results, the effect of Mode-III on delamination propagation is 

observed clearly dominantly at the free edges. 
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CHAPTER 4  

 

4. FABRIC LAMINATE 

 

In this chapter, 2D and 3D FE analyses of dynamic delamination in fabric laminate 

are presented in detail. First, information about the generation of finite element models 

is given and then results are presented for both 2D and 3D finite element analyses, 

respectively. 

4.1. Material 

Mechanical and interface properties of AS4/8552 5HS fabric are provided in Table 

4.1 and Table 4.2. The mechanical properties are taken from the material specification 

datasheet [ 41 ]. The average of compressive and tensile measured mean values is 

taken in order to obtain modulus values in warp and weft directions. Interlaminar 

normal and shear strengths are taken as tI
0 = 53 MPa and tI

0 = 79 MPa by considering 

the values of [ 42 ] and experimental results of curved fabric laminate [ 1 ]. Moreover, 

fracture toughness values for each mode are taken from [ 38 ]. 

Table 4.1. Material properties of HexPly AS4/8552 5 HS fabric. 

Density 1570 kg/m3 

Cured Ply Thickness 0.280 mm 

Elastic Properties E11= E22=64000 MPa; E33=8500 MPa; 

 ѵ12=0.046; ѵ13= ѵ23=0.30 

 G12 =4900 MPa; G13=G23=3700 MPa; 
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Table 4.2. Interface properties of HexPly AS4/8552 5 HS fabric. 

Interface Strength tI
0 = 53 MPa; 

 tII
0 = tIII

0 = 79 MPa 

Fracture Toughness GI,C=0.3753 N/mm; 

 GII,C = GIII,C = 1.4671 N/mm 

B-K Criterion Constant 

(η) 
2.25 

Interface Stiffness K=1.0×106 N/mm3 

 

The dilatational, shear, and Rayleigh wave speeds of the fabric material are calculated 

using the formulas provided in Section 3.1. 

Table 4.3. Material wave speeds for HexPly AS4/8552 5 HS fabric. 

 cl
ǁ (𝑚/𝑠) cl

⊥ (𝑚/𝑠) cS (𝑚/𝑠) cR (𝑚/𝑠) vC (𝑚/𝑠) 

Plane-stress 6391 6391 1767 1761 6243 

Plane-strain 6434 6434 1767 1761 6243 

 

4.2. Geometry and Boundary Conditions 

Both 2D and 3D finite element models corresponding to the experimental 

configuration [ 1 ] of the curved fabric CFRP laminate are developed. The geometrical 

properties of the considered fabric specimen are illustrated in Figure 4-1. The upper 

and lower arm length (l) of the considered specimen is 66.94 mm. Inner radius (ri) and 

width (w) of the specimen are 8.0 mm and 25 mm, respectively.  
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Figure 4-1. Specimen geometry for the curved fabric CFRP laminate. 

The fabric laminate is composed of 18 fabric plies of CFRP with a ply thickness of 

0.28 mm which corresponds to 5.04 mm total thickness. The stacking sequence of the 

fabric laminate is [(45/0)7,45/45/0/45] as shown below in Figure 4-2. 

 

Figure 4-2. Stacking sequence of the curved fabric laminate. 

Boundary conditions are the same as defined for the curved UD CFRP laminate in 

Section 3.3 except for the maximum applied displacement. Prescribed maximum 
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displacement is set to 16 mm, and it is applied to the specimen by a smooth step 

amplitude as defined in Eqn. (3.28). The loading profile of the smooth step for quasi-

static simulation of curved fabric laminate is depicted in Figure 4-3. A total of 16 mm 

displacement is applied in 16 ms which corresponds to an average loading rate of 1 

m/s. 

 

Figure 4-3. Loading profile of smooth step for quasi-static simulation of curved fabric laminate. 

4.3. Finite Element Modelling 

4.3.1. 2D FEM 

In the two-dimensional FE model of the curved fabric CFRP laminate, each layer is 

discretized with two 4-node bilinear reduced integration elements (CPE4R) through 

the thickness. Two-dimensional cohesive elements (COH2D4) available in 

ABAQUS/Explicit element library are employed to model all of the seventeen 

interfaces. The thickness of the cohesive elements at each interface are taken to be 

t=0.001 mm. The enhanced hourglass control approach is used for bulk material 

representation to prevent hourglassing of the reduced integration elements. The 

penalty stiffness (𝐸0) is calculated as 1.0×106 N/mm3 by using Eqn. (2.11), and the 

exponent of the B-K law is specified as 2.25. The sweep mesh technique is used to 
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correctly align cohesive elements at the layer interfaces like the FE model of the 

curved UD CFRP laminate. The mesh density used in the 2D FE model of the curved 

UD CFRP laminate is also preferred for the 2D FE model of the curved fabric 

laminate. Magnified view of the mesh at the center-line is shown, and element 

dimensions in this region are given in Figure 4-4. The element height changes from 

84 µm to 137 µm due to the curved region and element width, we=140 µm, is constant 

through the thickness direction. 

 

Figure 4-4. Magnified view of the mesh at the center line of the 2D FEM of fabric laminate and 

details of interface modelling. 

The two-dimensional finite element model of the fabric laminate includes 31320 first-

order quad elements of type CPE4R and 14790 first-order quad elements of type 

COH2D4. The total number of elements is 46110. Moreover, the total number of 

nodes is 47036 which corresponds to 94182 number of degrees of freedom. ABAQUS 
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calculates the stable time increment as 2.882 × 10-10 s. The analysis was performed on 

a high-performance cluster consisting of 72 CPU cores. A single simulation takes 

more than 21 hrs. Contact interactions in normal and tangential directions are defined 

between the adjacent layers to prevent penetration of layers under large values of 

prescribed displacements. 

4.3.2. 3D FEM 

In the three-dimensional FE model of the fabric laminate, the bulk region is discretized 

by reduced integration continuum solid elements which are denoted as C3D8R in 

ABAQUS/Explicit element library. Like the two-dimensional FE model, the three-

dimensional FE model includes all the interfaces since the stacking sequence is 

complicated compared to UD laminate. The main reason for modelling all the 

interfaces in the 3D FE model is the mismatch of the material properties at the free 

edge where the delamination onset is expected due to stress singularities at the 

interfaces of differently oriented layers. The mesh density of the 3D FE model differs 

from the 2D FE model due to computational efficiency. Using the same mesh density 

of the 2D FE model would result in more than 7 million elements which require 

excessive CPU time and RAM. 

Mesh density and interface modelling details of the 3D FE model of the curved fabric 

laminate are shown in Figure 4-5. In order to have an appropriate computational time, 

each solid layer is discretized with only one element in the thickness direction. Around 

the curve region, there are two elements per three degrees sweep and in the width 

direction there are 90 elements. The 3D FE model of the curved fabric laminate 

includes 874800 first-order hexahedral elements of type C3D8R and 826200 first-

order hexahedral elements of type COH3D8. The total number of elements is 

1701000. Moreover, and the total number of nodes is 1772316 with 5336616 numbers 

of degrees of freedom. ABAQUS calculates the stable time increment as 2.517 × 10-8 

s. The analysis was performed on a high-performance cluster consisting of 72 CPU 

cores. A single simulation takes around more than 139 hrs. As mentioned in the section 
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on 2D FE modelling, contact interactions in normal and tangential directions are also 

considered for 3D FE models between the adjacent layers with the General Contact 

Algorithm of ABAQUS to prevent layer interpenetration. 

 

Figure 4-5. 3D FEM details of fabric laminate in terms of interface modelling and mesh density. 

4.4. Results 

4.4.1. 2D FEA Results 

When the defined damage variable of the cohesive element reaches the value of one, 

which means failure of the considered element at that time instant, excessive 

oscillations occur on the load-displacement curve due to wave propagations and 

reflections at specimen boundaries in such a small time increment (stable time 

increment in explicit analysis in the order of 10-8 – 10-9). In order to eliminate these 

high-frequency noises in the load-displacement curve, noise filters such as 

Butterworth or Chebyshev filters can be used, or the step time can be increased. The 

former approach cannot show the sharp load drop, and the latter needs long 

computational time which is unreasonable. A sequential analysis proposed by 

45° Layers

0° Layers

Cohesive Elements
(COH3D8)



 

 

 

72 

 

Gozluklu and Coker [ 16 ] can be used which includes the continuation of an implicit 

analysis by explicit analysis. However, this approach requires a transition from 

implicit to explicit analysis which requires re-run of the finite element model and post-

processing. In this study, another technique is proposed which is to filter the high-

frequency noise on the load-displacement curve by examining the history of various 

energy components extracted during the simulations. 

History plots of the strain and fracture energies for the 2D Plane Strain FE model of 

the curved fabric CFRP laminate appears as shown in Figure 4-6. 

 

Figure 4-6. Strain and fracture energy history for 2D plane strain analysis of curved fabric CFRP 

laminate. 

Fracture energy remains zero until the damage initiation point, which corresponds to 

t= 11.9916 ms. As the damage occurs and propagates, the energy dissipated during the 

failure of interface elements increases instantaneously. The same instantaneous 

change is seen in the strain energy as a decrease. Both the sudden drop in strain energy 

and sudden increase in fracture energy clearly indicates the time point of the 

delamination initiation. The end of the instantaneous increase or instantaneous 

decrease is attributed as the end of the load drop in the load-displacement curve. By 
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knowing the damage initiation and end of the instantaneous load drop, a line is fitted 

to high-frequency noise and a filtered load-displacement curve is attained as done for 

curved UD CFRP laminate. 

The kinetic and total strain (internal) energy histories are presented in Figure 4-7. At 

t= 11.9916 ms, total strain energy decreases suddenly and the kinetic energy increases 

in the same manner. Both kinetic and total strain energy oscillate significantly as the 

delamination propagates through the arms. Comparison of the kinetic and total strain 

(internal) energy history shows that the kinetic energy is small relative to the internal 

energy throughout the analysis. The criterion for quasi-static loading that kinetic 

energy must be small relative to total strain energy has been satisfied, even for the 

severe increase during the delamination onset. 

 

Figure 4-7. Internal and kinetic energy history for 2D plane strain analysis of curved fabric CFRP 

laminate. 

The load-displacement response of curved fabric CFRP laminate from the 2D FEA is 

shown on the left-hand side of the Figure 4-8 with grey color. The load-displacement 

data (grey) is filtered in order to eliminate high-frequency noise, which occurs mainly 

due to the reflection of stress waves at the material boundaries after the failure of the 
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interface elements. Both filtered and unfiltered curves show linear elastic behavior 

until the failure load of 850 N. After the peak load (Point a), the interface elements 

degrade completely and a sudden dynamic failure occurs which extends to both arms 

from the curved region. The stiffness of the fabric laminate before failure is 59.32 

N/mm, which shows good agreement with the experimental results. The delamination 

reaches the arm region in 4.7 µs and causes a 170 N reduction in load-carrying 

capacity of the intact fabric laminate (Point b). The total load drop occurs in 17 µs 

when the crack extends for 36.464 mm (Point c). The length of the crack at the arm 

region at “Point c” corresponds to 42% of the arm length. Finally, the simulation is 

completed as the maximum applied displacement value is reached. The final deformed 

shape of the curved fabric CFRP laminate is shown in Figure 4-8 (Point d). The second 

stiffness is calculated to be 21.1 N/mm which aggress well with the averaged 

experimental second stiffness (19.5 N/mm). 

 

Figure 4-8. Load – displacement curve for 2D FEA of curved fabric CFRP laminate. 

Evolution of the opening stress, 𝜎33, contours in the curved region of fabric CFRP 

laminate before and after failure are shown in Figure 4-9. Although the simulations 

are performed for the whole geometry, only the upper part is plotted here for 
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visualization since the results are symmetric according to the mid-line. Continuous 

radial stress distribution at the curved region is disrupted as the damage variable of 

the interface elements reaches 0.999 at 0.8 µs before delamination initiation. 

Delamination initiates when the applied displacement reaches 14.34 mm (850 N) at t= 

0.0119915 s. This time is considered as 𝑡0 from now on. After delamination initiation, 

due to high radial stresses shown by red color, it propagates dynamically to the arm 

region after the last frame at 4.7 µs. The speed of the crack tip can be inferred from 

the concentration of stress distribution at the crack tip showing that the crack tip 

travels at very fast speed in the beginning and slowing down at the arm. The stress 

concentration in front of the crack tip also decreases as the crack slows down. 

 

Figure 4-9. Evolution of the opening stress contours in the curved region of fabric CFRP laminate 

before and after delamination onset. 

The contours of normal stress in the upper arm region at four different time instances 

are shown in Figure 4-10. Shear Mach waves radiating from the crack tip in the shape 

of inclined normal stresses are pointed out by red lines. Other inclined stress waves 

behind the shear Mach wave front can be attributed to the reflections of the waves 

from the free surfaces of the specimen. Local hot spots of stress concentrations are 

observed on the sliding crack surfaces due to elastodynamic waves. 

∆t= -1.5µs ∆t= 1.7µs∆t= 1.2µs∆t= -0.8µs ∆t= 2.7µs ∆t= 4.7µs∆t= 2.2µs

σ33 (MPa)

t0



 

 

 

76 

 

 

Figure 4-10. Shear Mach waves radiated from the crack tip and reflecting waves behind the crack tip 

for four time instances for curved fabric CFRP laminate. 

The crack length is determined by using snapshots at different time instants, and the 

crack tip speed is calculated from the derivative of the crack length using moving 

three-point quadratic line fit for 2D simulations of curved fabric CFRP laminate. 

Crack extension and crack tip speed as a function of time are plotted in Figure 4-11. 

Delamination initiates intersonically at the 7th interface of the eighteen-layer curved 

fabric laminate and decelerates to sub-Rayleigh speeds as it propagates to the arms. 

At Δt=4.7 µs, the delamination passes to arm region with an approximate speed of 

1100 m/s. After passing to the arm region, the delamination accelerates to a peak speed 

value of 3533 m/s in 2.8 µs. In the arm region, the delamination travels in intersonic 

speeds for 7.5 µs which corresponds to 21.94 mm crack length. After Δt=14.5 µs, 

crack decelerates to sub-Rayleigh speeds and stops at Δt=20 µs for one µs. Although 

crack tip speed reaches approximately 1000 m/s for several time instants, it arrests 

after Δt=28 µs. A total of 41.85 mm crack length is reached during the propagation of 

the crack, the majority of which attained during intersonic propagation. 

∆t= 8.6µs ∆t= 10.3µs ∆t= 12.3µs ∆t= 13.9µs

σ33 (MPa)



 

 

 

77 

 

 

Figure 4-11. Crack tip speed as a function of time and crack extension for 2D FEA of curved fabric 

CFRP laminate. 

4.4.2. 3D FEA Results 

The oscillations on the load-displacement curve of 3D FEA of the curved fabric 

laminate are filtered by examining the history of strain and fracture energy extracted 

during the simulations as previously done in 2D FEA. 

History plots of the strain and fracture energies for the 3D FE model of the curved 

fabric CFRP laminate appears, as shown in Figure 4-12. Fracture energy remains zero 

until the sudden increase at t= 13.069 ms. As the damage occurs and propagates, the 

fracture energy dissipated during the failure of interface elements increases 

instantaneously. The end of the instantaneous increase or instantaneous decrease is 

attributed as the end of the load drop in the load-displacement curve. By knowing the 

damage initiation and end of the instantaneous load drop, a line is fitted to high- 

frequency noise and filtered load-displacement curve is attained. 
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Figure 4-12. Strain and fracture energy history for 3D FEA of curved fabric CFRP laminate. 

The kinetic and total strain (internal) energy history are presented in Figure 4-13. At 

t= 13.069 ms, total strain energy decreases suddenly and the kinetic energy increases 

in the same manner. Both kinetic and total strain energy oscillate significantly as the 

delamination propagates through the arms. 

 

Figure 4-13. Internal and kinetic energy history for 3D FEA of curved fabric CFRP laminate. 
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Comparison of the kinetic and total strain (internal) energy history shows that the 

kinetic energy is small relative to the internal energy throughout the analysis. The 

criterion for quasi-static loading that kinetic energy must be small relative to total 

strain energy has been satisfied, even for the severe increase during the delamination 

onset. 

The load-displacement response of curved fabric CFRP laminate from the 3D FEA is 

shown in the left hand side of the Figure 4-14 with grey color. 

 

Figure 4-14. Load – displacement curve for 3D FEA of curved fabric CFRP laminate. 

The load-displacement data (grey) is filtered in order to eliminate high frequency noise 

which occurs mainly due to moving stress waves after failure of interface elements. 

Both filtered and unfiltered curves show linear elastic behavior until the failure load 

of 772 N. After the peak load (Point a), the interface elements at the 6th interface 

degrade completely and a sudden dynamic failure occurs which extends to both arms 

from the curved region. The stiffness of the fabric laminate before failure is 50.56 

N/mm. The delamination at the free edge reaches the arm region in 17 µs and causes 

a 227 N reduction in load carrying capacity of the intact fabric laminate (Point b). The 

total load drop occurs in 40 µs when the edge crack extends for 26.83 mm and center 
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crack extends for 22.39 mm (Point c). The length of the crack at the arm region at 

“Point c” corresponds to 28% of the arm length. Finally, the simulation is completed 

as the maximum applied displacement value is reached. The final deformed shape of 

the curved fabric CFRP laminate is shown in Figure 4-14 (Point d). The second 

stiffness is calculated to be 24.84 N/mm. 

Delamination onset and growth inside the curved fabric specimen can be clearly seen 

in Figure 4-15 where the delamination region for each time frame is colored as dark 

grey. 

 

Figure 4-15. Delamination initiation and propagation path inside the curved fabric CFRP laminate. 
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The delamination initiates exactly at the center of the width of the specimen. Then it 

propagates in two directions; into the arm region and towards the free edge of the 

specimen. The crack tip speed in the width direction is calculated to be sub-Rayleigh 

and is not inspected in detail. Since the crack front is almost symmetric in both 

directions that crack propagates, only one half of the delamination front is investigated 

in detail by considering one crack tip at the center and one crack tip at the free edge. 

As illustrated in Figure 4-15, center crack is initially faster than the edge crack, but as 

soon as the edge crack reaches to the free-edge it reaches a peak speed of 2637 m/s, 

catching up and passing the center crack. Afterwards, since there is not sufficient 

energy for intersonic crack propagation, both edge crack tip and center crack tip 

propagate at sub-Rayleigh wave speeds to the end of the loading. 

The center crack extension and tip speeds as a function of time are plotted in Figure 

4-16 for the curved fabric CFRP laminate. 

 

Figure 4-16. Center crack tip speed as a function of time and crack extension for 3D FEA of curved 

fabric CFRP laminate. 

Center crack initiates with a sub-Rayleigh speed of 1700 m/s. As the center crack 

propagates through arms, it slows down to 550 m/s. After passing to the arm region, 
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the center crack propagates almost at a constant speed of 500 m/s. During the 

propagation stage of the center crack, it develops to a crack length of 22 mm in 40 µs. 

Variation of the edge crack tip speed and crack extension with respect to time are 

presented in Figure 4-17 for 3D FEA of curved fabric CFRP laminate. The initial time 

is taken to be the time at which the peak load is attained, which also corresponds to 

the initiation of delamination at the center of the width of the specimen. 

 

Figure 4-17. Edge crack tip speed as a function of time and crack extension for 3D FEA of curved 

fabric CFRP laminate. 

The edge crack in the fabric laminate initiates 16 µs after peak load and attains an 

intersonic speed value of 2407 m/s in 2 µs. Then it decreases to sub-Rayleigh wave 

speed of approximately 1700 m/s for 2µ. However, it immediately increases to a 

maximum crack tip speed of 2700 m/s at the end of the curved region (EOCR). 

Afterwards, at the arm region the crack gradually slows down to zero crack tip speed 

in 13 µs. During the propagation stage, edge crack gains a crack length of 26 mm in 

40µs with traveling at intersonic speeds for five µs through all failure process. Unlike 

center crack, edge crack sustains speed values above shear wave speed during the 

propagation stage. 
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4.5. Discussion 

The load-displacement response of curved fabric CFRP laminate under quasi-static 

moment-axial combined loading from the 2D (blue), and 3D (red and black) 

simulation is compared with the experimental results (grey) [ 1 ] in Figure 4-18. The 

load-displacement behaviour is linear elastic until sudden dynamic failure, which 

occurs due to a single main delamination that extends to both arms from the curved 

region. The stiffness before failure in the experiments is captured very well by 2D 

simulation but not with 3D (red) simulation. The peak load before crack initiation is 

850 N for 2D plane strain and 771 N for 3D FEA, respectively.  

 

Figure 4-18. Load-displacement curves for curved fabric laminate under quasi-static moment-axial 

combined loading from experiments [ 1 ] compared with 2D and 3D FEA simulations. 

The peak load and stiffness before the failure of the 3D FEA is not consistent with the 

2D FEA and experimental results. The main reason for this nonconformity can be 

attributed to the modelling of each layer with a single reduced integration solid 

element. In order to attain a reasonable computational time, better stiffness results and 

failure load behavior, a second 3D FE model is generated considering only one 

interface (6th interface) at which a cohesive law is implemented. In our case, the 6th 
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interface is used, which is found to be the critical interface from the previous 2D finite 

element analysis. Besides, the 6th and 7th layers are modeled with two elements in the 

thickness direction since accurate stress and displacement values are desired at this 

local region. The remaining layers (the first 5 and last 11 layers from the inner radius) 

are considered as an equivalent laminate with the 3D equivalent laminate properties 

calculated according to Sun and Li [ 44 ]. This “global-local” method is developed by 

Sun and Liao [ 45 ] and used to model thick laminates away from the regions where 

accurate results are desired. The load-displacement curve for this case is shown in 

Figure 4-18 as the black line. The stiffness and failure load of the “global-local” 

approach agrees well with the experiments. 

Crack tip speeds as a function of crack extensions for the center, edge, and 2D cracks 

are presented in Figure 4-19. 

 

Figure 4-19. Crack tip speeds as a function of crack extensions for center, edge and 2D cracks. 

In 2D FEA of the curved fabric laminate, the crack initiates intersonically and 

throughout all analysis it travels at intersonic speeds for 18 µs. The 3D FEA results 

show that the center crack does not exceed the shear wave speed of the material during 
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all analysis. However, edge crack exceeds shear wave speed for only 5µs throughout 

the analysis. 

The comparison of radial stresses at the mid-line of the center plane and free edge 

plane with the analytical solution [ 6 ] is given in Figure 4-20. Maximum radial 

stresses at the center and free edge plane are 52 MPa and 44 MPa, respectively. Both 

stresses are observed to occur at 37% of the thickness from the inner radius. The 

analytical solution calculated according to Ko and Jackson [ 6 ] predicts the maximum 

radial stress as 54 MPa which is also located at 37% of the thickness from the inner 

radius. The center plane and analytical solution show similar behavior in terms of 

radial stress distribution at the mid-line. 

 

Figure 4-20. Radial stresses at the mid-line of center plane and free edge plane compared with the 

analytical solution. 
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Damage variables (SDEG) of the interface elements at the mid-line of the center plane 

and the free edge plane are presented in Figure 4-21 for eight µs before the initiation 

of delamination. While the damage variable of the interface elements at the center 

plane attains a value of 0.714 at the 6th interface, the damage variable of the interface 

elements at the free edge plane attains a peak value of 0.89 at the 16th interface. This 

is due to the material mismatch between differently oriented layers at the free edge. 

The peak value of the damage variable is observed to attain at the center plane as the 

load increases. Finally, the delamination initiates at the center plane. 

 

Figure 4-21. Damage variable (SDEG) of the interface elements at mid-line of center plane and free 

edge plane for 3D FEA of fabric laminate. 
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4.6. Conclusions 

2D and 3D explicit finite element analyses of dynamic delamination in curved fabric 

CFRP laminate, [(45/0)7,45/45/0/45], were carried out under moment/axial combined 

loading in conjunction with cohesive zone elements. The following conclusions are 

drawn as a result of the 2D and 3D FE analyses: 

 Load-displacement curves of 2D FEA and 3D FEA of global/local approach 

show good correlations with experimental results [ 1 ]. 

 Delamination initiates at the center of the width of the fabric laminate. It is 

interesting to observe the delamination onset at center of the width instead of 

free-edge where the material mismatch exists between different layer 

orientations. 

 For 2D FEA, the delamination initiates intersonically at the 7th interface which 

corresponds to 38% of the thickness from the inner radius. In the upper arm 

region of the fabric laminate, the delamination accelerates to a peak speed 

value of 3533 m/s in 2.8 µs. 

 Shear Mach waves radiating from the crack front in the form of radial stresses 

are only observed in the 2D FEA of curved fabric laminate. 

 For 3D FEA, the delamination initiates at the 6th interface with a speed value 

of 1700 m/s which is sub-Rayleigh. This critical interface corresponds to 33% 

of the thickness from inner radius. 

 For 3D calculations, crack tip speeds are found to be different in the center and 

edge. 

 Center crack never exceeds shear wave speed of the material throughout the 

analysis. 

 The results of the 2D and 3D FEA show good correlation with the experimental 

results [ 1 ] in which the main delamination is also observed between 30% the 

60% of the thickness from inner radius. 
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 APPENDICES 

 

A. Beowolf Cluster Setup 

A Beowolf cluster consists of 8 nodes is setup and used in the numerical calculations. 

Figure A.1 illustrates the schematic of the cluster setup. The head node, tata0, is 

connected to the internet and all other nodes are connected to Ethernet switch which 

provides communication between them. A KVM switch provides to monitor the 

display of the command window with only using one monitor, keyboard and mouse.  

 

Figure A.1. Beowolf Cluster Setup Scheme. 

The steps to setup a Beowolf cluster is as given below: 

 Installation of the same operating system to all nodes. 

 Introducing all nodes to each other with hostname lists and IP addresses 

 Internet connection setup to head node (tata0) 

 Installation of SSH server to all nodes 
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 Installation of NFS (Network File Sharing System) to all nodes 

 Installation of MPI (Message Passing Interface) to all nodes 

 Giving administrative privileges to all MPI users 

 Installation of Fortran and other required compilers 

 Installation of ABAQUS 
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