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ABSTRACT 

 

BELIEF PROPAGATION DECODING USING FACTOR GRAPH 

PERMUTATIONS 

 

Tosun, Berna 

Master of Science, Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Melek Diker Yücel 

 

September 2019, 88 pages 

 

Capacity-achieving polar codes, introduced by Arıkan have attracted significant 

attention over a decade. The bottleneck in coding is the decoder structure that achieves 

good performance with low hardware implementation cost and high throughput. 

Unlike the successive cancellation decoder, belief propagation decoder that can be 

improved by decoding on multiple factor graphs, allows for parallel decoding. For a 

polar code of length N, there are (𝑙𝑜𝑔2𝑁)! = 𝑛! different permutations of the layers in 

the factor graph. Multiple factor graph belief propagation decoders that employ 𝑛 

factor graphs have the complexity of O(𝑁(log 𝑁)2), and the choice of proper sets 

among 𝑛! factor graphs for performance optimization is a challenging topic that has 

not yet been fully explored.  

 

In this thesis, belief propagation decoding performance of polar codes over the 

additive white Gaussian noise channel is studied, by using single or multiple factor 

graphs within the decoder. The performance gap between the best and worst single 

factor graph decoders is found; and for multiple factor graph decoders, it is shown that 

random choice of factor graphs is incompetent for long code lengths. Two set-choice 

methods, MaxSON and MaxofMax rules are suggested for multiple factor graph 

decoders with n elements, as an alternative to the cyclically shifted set of factor graphs. 
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Performance of proposed set-choice rules are compared with cyclic, random and two 

other multiple factor graph belief propagation decoders given in the literature, for 

different code lengths with 6 ≤ 𝑙𝑜𝑔2𝑁 ≤ 14. 
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ÖZ 

 

FAKTÖR DİYAGRAM PERMÜTASYONLARI KULLANARAK İNANÇ 

YAYILIMLI KOD ÇÖZME 

 

Tosun, Berna 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği 

Tez Danışmanı: Doç. Dr. Melek Diker Yücel 

 

Eylül 2019, 88 sayfa 

 

Arıkan tarafından önerilmiş ve kanal kapasitesine ulaştığı kanıtlanmış olan kutupsal 

kodlar, on yıldan beri büyük ilgi toplamaktadır. Kodlamadaki en önemli sorun, iyi bir 

başarımı, düşük donanım masrafı ve yüksek hızda sağlayabilecek bir kod çözücü 

yapısıdır. Çok faktör diyagram kullanarak başarımı iyileştirilebilen inanç yayılımlı 

kod çözücüsü, ardışık götürme kod çözücüsünün aksine, paralelleştirmeye olanak 

tanır. N uzunluğunda bir kutupsal koda ait faktör diyagramının iç kademeleri 

(𝑙𝑜𝑔2𝑁)! = 𝑛! farklı şekilde değiştirilebilir. 𝑛 faktör diyagramı kullanan inanç 

yayılımlı kod çözücülerin karmaşıklığı, O(𝑁(log 𝑁)2) büyüklüğündedir ve başarımı 

eniyileştirmek için 𝑛! faktör diyagram arasından en uygun kümelerin seçimi, henüz 

tümüyle araştırılmamış, tetikleyici bir konudur.  

 

Bu tezde, beyaz Gaussian gürültüsü eklenmiş kanalda, kutupsal kodların, tek veya çok 

faktör diyagramlı inanç yayılımı kod çözücüsü başarımları üzerinde çalışılmıştır. Tek 

faktör diyagramlı kod çözücülerin en iyi ve en kötüleri arasındaki başarım farkları 

bulunmuş; ayrıca çok faktör diyagramlı kod çözücülerde rassal küme seçiminin büyük 

n’ler için yararsızlığı gösterilmiştir. Döngüsel kaymalarla elde edilen döngüsel 

kümeden farklı bir seçenek olarak, çok faktör diyagramlı kod çözücüler için MaxSON 

ve MaxofMax diye adlandırılan iki tane n-elemanlı küme seçim yöntemi önerilmiştir. 
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Önerilen küme seçim yöntemlerinin başarımları, döngüsel, rassal ve literatürde geçen 

iki diğer çok faktör diyagramlı inanç yayılımlı kod çözücünün başarımlarıyla, 6 

≤ 𝑙𝑜𝑔2𝑁 ≤ 14 eşitsizliğini sağlayan farklı kod boyları için karşılaştırılmıştır.  

  

Anahtar Kelimeler: Kutupsal Kodlar, İnanç Yayılımı, Çok Faktör Diyagramlı Kod 

Çözücü 
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CHAPTER 1  

 

1. INTRODUCTION 

 

“The fundamental problem of communication is that of reproducing at one point either 

exactly or approximately a message selected at another point” [Shannon, 1948]. Main 

purpose of a communication system is transmitting the information to the receiver in 

an efficient and reliable way, in the presence of noise. To attain this objective, the 

common procedure is to add a structured redundancy to the data before transmission. 

The way of adding the redundancy is called channel coding. An illustration of a 

simplified communication system is shown in Figure 1.1. 

 

 

Figure 1.1. Simplified communication system. 

 

1.1. Channel Coding  

The field of channel coding began with Shannon’s information theory [Shannon, 

1948], which tells us the amount of information that a channel can carry; in other 

words, the capacity of the channel. One of his main results is that data transmission is 

possible with arbitrarily small error probabilities, if the transmission rate is below or 

equal to the channel capacity, which can only be achieved asymptotically by coding 

schemes with codewords of infinite length. However, such an increase in codeword 

length has implications on the complexity of encoders and decoders. For the next half 

of the 20th century, the main objective has been to find practical coding schemes that 

approach the Shannon’s capacity limit. 
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The majority of practical channel codes have been developed in the early ages of 

coding theory, including the Golay codes [Golay, 1949], Hamming codes [Hamming, 

1950], Reed Muller codes [Reed, 1954], [Muller, 1954], convolutional codes [Elias, 

1955], Reed-Solomon codes [Reed and Solomon, 1960], Low-Density Parity-Check 

(LDPC) codes [Gallager, 1962], and turbo codes [Berrou & Glavieux, 1993]. 

 

Turbo codes are the first practically implemented codes that have performed close to 

Shannon’s capacity limit. Because of their relatively low complexity, turbo codes have 

been the core of 3G/4G communication systems.  With the technological 

developments and advancement of simpler decoder structures, the invention of the 

turbo codes have started a revolution that have caused the rediscovery of LDPC codes 

[MacKay and Neal, 1996] and they have been serious competitors to turbo codes in 

practical applications. Turbo codes and LDPC codes are then unified within the 

concept of “codes defined on graphs” by Wiberg [Wiberg, Loeliger & Kötter, 1995], 

[Wiberg, 1996] that is widely used in many applications since then.   

 

With the introduction of polar codes, which are invented by Arıkan [Arıkan, 2008] a 

decade ago, one can achieve reliable data transmission with low computational 

complexity, at rates close to the capacity for any binary input discrete memoryless 

channel (BDMC) [Arıkan, 2009]. Polar codes are commonly decoded by simple 

decoders like successive cancellation (SC) or belief propagation (BP), or by their more 

complicated versions such as the successive cancellation list (SCL), or the multiple 

factor graph BP decoders. The performance of polar codes in comparison with LDPC 

and turbo codes is presented in Figure 1.2. For all the coding schemes in the figure, 

the code length is N = 1024 (only the LDPC code has N = 1056) and the code rate is 

R = 1/2. Turbo codes in Figure 1.2 are encoded according to the WCDMA and LTE 

standards and LDPC codes are encoded according to the WiMax standard. One 

observes from Figure 1.2 that polar codes under the CRC aided decoding algorithms 

(i.e., CA-SCL(32) and aCA-SCL(1024) in the figure, with list sizes of 32 and 1024 
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respectively) outperform the turbo or LDPC codes by up to 0.7 dB at the BLER 

of 10–4. Because of their promising performance, we focus on the belief propagation 

decoders for polar codes in this thesis. 

 

 

Figure 1.2. Performance comparison of rate-0.5 polar, turbo codes of length 1024 and LDPC code of 

length 1056 (reproduced from [Niu et al. 2014]). 

 

1.2. Overview of Polar Codes 

Polar codes are based on channel polarization, which transforms two independent 

binary-input discrete memoryless channels (BDMC) into two polarized channels that 

can be called “a good channel and a bad channel” with regard to their reliabilities. 

When channel polarization is recursively applied to the polarized channels of the 

previous step, the transformed channels start to dissociate so much after a number of 

steps, creating extreme channels such that the reliabilities of the good and bad 

channels differ remarkably. The good channels become almost noiseless, and the bad 

ones become very noisy channels.   
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The code construction of an (𝑁, 𝐾) polar code with block length 𝑁 =  2𝑛 is based on 

choosing the 𝐾 best channels among 𝑁 polarized channels for sending the information 

bits, and freezing the remaining 𝑁 −  𝐾 channels, which have lower capacities. This 

process corresponds to mapping input bits into codewords by using a 𝐾 ×  𝑁 generator 

matrix, whose  𝐾 rows are selected with respect to the reliabilities of the corresponding 

channels from the rows of 𝐹⊗𝑛; i.e., the 𝑛𝑡ℎ-Kronecker product of the base matrix 

𝐹 =  [
1 0
1 1

]. Although both polar and Reed Muller (RM) codes use generator 

matrices constructed from the rows of 𝐹⊗𝑛; the design philosophy of polar codes is 

fundamentally different from that of the RM codes. Generator matrix of the RM code 

chooses the rows of 𝐹⊗𝑛, which maximize the minimum distance of the code; whereas 

the polar code selects the paths with the highest channel capacities. 

 

To construct the polar codes, Arıkan uses the symmetric capacity 𝐼(𝑊) and the 

Bhattacharyya parameter 𝑍(𝑊), as measures of rate and reliability respectively. In his 

seminal study [Arıkan, 2009], Arıkan states that although “the code construction 

problem can be solved in principle by computing all Bhattacharyya parameters, there 

is unfortunately no efficient algorithm for doing this. One exception is the binary 

erasure channel for which 𝑍(𝑊𝑖) can all be calculated in time O(𝑁), thanks to the 

recursive formulas”. So, a wide range of approximate construction methods are 

proposed starting from early studies [Mori and Tanaka, 2009a], [Zhao et al., 2011], 

[Bonik et al., 2012], [Trifonov, 2012], [Li and Yuan, 2013], [Tal and Vardy, 2013]; 

and many algorithms have been devised for the additive white Gaussian noise 

(AWGN) channel case [Kern et al., 2014], [Wu et al., 2014 ], [Zhang et al., 2014 ]. 

Along with the estimation of Bhattacharyya parameters for which Arıkan has 

suggested the Monte-Carlo approach [Arıkan, 2009], the density evaluation [Mori and 

Tanaka, 2009a], [Tal and Vardy, 2013] and Gaussian approximation methods 

[Trifonov, 2012], [Li and Yuan, 2013] are also proposed. 
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In coding theory, most of the codes are universal. One of the drawbacks of the polar 

code construction is that polar codes are not universal. This means code construction 

depends on the respective channel parameter, e.g. the signal to noise ratio (SNR) for 

the additive white Gaussian noise (AWGN) channel, or the erasure probability (𝜖) for 

the binary erasure channel (BEC). A change in code construction with changing SNR 

is not desired; therefore, there are a few recent attempts to design universal polar codes 

[Sasoglu & Wang, 2014], [Hassani & Urbanke, 2014], [Alsan, 2014]. However, in 

return for universality, their designs require higher complexity at the decoder or 

encoder. On the other hand, Vangala et al. propose a simple search algorithm to find 

the best design-SNR and use it for a range of possible SNRs [Vangala, Viterbo & 

Hong, 2015]. They compare various polar code constructions and draw the conclusion 

that, the Bhattacharyya parameters computed with a design-SNR of 0 dB, works well 

for the AWGN. 

 

1.3. Overview of Decoding Algorithms of Polar Code 

As the first polar decoder, Arıkan proposed successive cancellation (SC) decoding 

algorithm that has a complexity of O(𝑁 𝑙𝑜𝑔2𝑁), in which all information bits are 

sequentially decided subject to the previously estimated bits and the channel 

information [Arıkan, 2009]. The error performance of polar codes with the SC 

algorithm can be asymptotically optimum for infinitely long code lengths; however, it 

is worse than those of turbo or LDPC codes for short and moderate code lengths. To 

improve the performance of polar code decoders, successive cancellation list (SCL) 

[Tal and Vardy, 2011] decoding algorithm has been introduced, which achieves a 

performance comparable to that of the low-density parity-check (LDPC) codes. 

Another decoding algorithm, cyclic redundancy check (CRC) aided SCL (CA-SCL) 

decoding [Niu & Chen, 2012] has shown even better performance than turbo codes. 

Nevertheless, due to the serial processing nature of the SC, it suffers a high latency 

and limited throughput. With that specific aim to reduce the latency while increasing 

the throughput, some decoding algorithms, such as simplified successive cancellation 
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(SSC) [Yazdi & Kschischang, 2011], maximum likelihood SSC (ML-SSC) [Sarkis & 

Gross, 2013], and repetition single parity check ML-SSC (RSM-SSC) [Giard, Sarkis, 

Thibeault & Gross, 2014] have been proposed. Recent studies show that the SC bit-

flip decoder (SCF) has similar BLER performance with the CA-SCL [Zhang, Qin, 

Zhang, Zhang, & Chen, 2017], [Zhang, Qin, Zhang, & Chen, 2018], [Chandesris, 

Savin & Declercq, 2018]. 

 

Apart from serial processing algorithms, some researchers investigate the usage of 

belief propagation (BP) decoding, which works more in parallel and suitable for high-

speed and low-latency applications. BP decoding is an iterative message passing 

algorithm, which is based on the encoding graphs, which will be referred to as factor 

graphs (FGs) of the polar code in this work. Log-likelihood ratios (LLR) of the 

messages pass along the factor graph [Forney, 2001], Nit (number of iteration) times 

iteratively, if there is no other early stopping condition. Arıkan has shown that the BP 

decoding algorithm has performance advantages for polar codes over Reed-Muller 

codes [Arıkan, 2008]. There is an extensive literature on the comparison of polar code 

decoders with the SC, some improved forms of the SC and the BP decoding algorithms 

[Hussami, Korada, & Urbanke, 2009], [Korada, 2009], [Arıkan, 2010]. Eslami and 

Pishro-Nik have performed simulations showing that the error floor performance is 

superior to that of the LDPC codes [Eslami & Pishro-Nik, 2010], [Eslami & Pishro-

Nik, 2013]. Implementing BP on field programmable gate arrays (FPGA) has been 

attempted by Pamuk [Pamuk, 2011], where he also states that for efficient hardware 

design, the message passing algorithm can be approximated to min-sum (MS) 

algorithm at the cost of some performance degradation. Yuan and Parhi further have 

suggested scaled min-sum (SMS) algorithm to remove this performance loss [Yuan & 

Parhi, 2013]. Then the same authors have improved the efficiency of their algorithm 

by suggesting some early termination criteria [Yuan & Parhi, 2014a]. Furthermore, 

Xu et al. show that the same decoding performance of the SMS algorithm with 92.8% 

reduced amount of computations can be achieved with the scheduling method that 
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they call XJ-BP MS algorithm [Xu, Che, & Choi, 2015]. When they compare with the 

conventional MS BP decoding, their proposed method reduces the computations by 

90.4% and significantly improves the decoding performance. Some other studies show 

that the bit mapping scheme can improve the performance of concatenated polar codes 

with the LDPC codes [Yu, Shi, Deng & Li, 2018]. Hybrid BP-SC(L) decoders also 

achieve good BLER performance [Yuan et al., 2014b] [Cammerer et al., 2017]. 

Inspired by the successive cancellation flip (SCF) decoder, bit-flip is introduced to the 

BP decoder; the proposed belief propagation flip (BPF) decoder achieves significant 

SNR gain comparable to that of the CA-SCL decoder with a moderate list size [Yu et 

al., 2019]. 

 

The subject of permuted factor graphs (FGs) under BP decoding is mentioned in the 

studies for error-correction performance of Korada [Korada, 2009]. Different 

permutations of the layers in the factor graph can construct 𝑛! (where n = 𝑙𝑜𝑔2𝑁) 

different FG representations for a polar code of length N. Due to the different order of 

processing in the decoding graph, for each codeword and noise realization, each 

individual factor graph representation may have different performance. That means, 

if one FG used for decoding does not succeed in, the other may successfully decode 

that same code block. Decoding on different FGs in parallel and combining all 

obtained decoding results has also been mentioned in Korada’s studies [Korada, 

2009]. In the same studies, it is suggested to use only the n of 𝑛! permutations, 

obtained by the cyclic shifts, as multiple-FG decoders. Multiple factor graph BP 

decoders has also been studied recently. It is shown that based on different 

permutations of the polar code factor graphs, a new CRC-aided variant of the BP 

decoder approaches the error ratio performance of the state-of-the-art SCL decoder of 

a plain polar code, in the high SNR region [Elkelesh, Ebada, Cammerer, & Brink, 

2018a]. However, the required number of randomly selected parallel BP decoders to 

achieve a reasonable error probability, is too high for practical applications. Based on 

this study, a BP list (BPL) decoder is proposed that also includes the cyclically shifted 

set of n FGs among 𝐿 > 𝑛 different FG sets, which reaches the performance of the 
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randomly selected FG decoder sets using less number of FGs [Elkelesh, Ebada, 

Cammerer, & Brink, 2018b]. According to these results, FG decoder set needs to be 

constructed wisely. Some design algorithms are proposed to find suitable FG sets for 

decoding with multiple factor graph realizations [Doan, Hashemi, Mondelli, Gross, 

2018], [Doğan, 2015], [Peker, 2018] and [Akdoğan, 2018]. We also consider the same 

multiple BP decoding scheme and propose a new way of choosing n FGs with good 

performance for polar BP decoders.  

 

1.4. Aim and Organization of the Thesis 

In this thesis, single factor graph (single-FG) and multiple factor graph (multiple-FG), 

belief propagation (BP) decoding performances of (𝑁, 𝐾)  =  (2𝑛, 2𝑛−1) polar codes 

over a binary input AWGN channel are examined. Throughout the simulations, a 

perfect knowledge-based early stopping criterion is used in the BP decoder, except for 

the last three figures of Chapter 3, where a more practical stopping condition is 

utilized. The aim of the study can be summarized as: 

 To examine the BP decoding performance difference of polar codes between 

the reference factor graph (RFG) decoder, which has the stage order n-…-2-1 

and the inverse RFG (IRFG) decoder, whose stage order is 1-2-…-n, in terms 

of the block (codeword) error ratio (BLER).  

 To explore the performance difference between those constructed with the 

PCC-0 algorithm suggested in [Vangala et al., 2015] and those designed with 

respect to the specific SNR of the utilized channel, for polar BP decoders at 

different code lengths. 

 To compare the single-FG and multiple-FG decoder performances of polar BP 

decoders. 

 To find good performing multiple-FG sets of FGs with permuted stage orders. 

To compare their performance with the ones suggested in the literature. 
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 To make a performance comparison of multiple-FG belief propagation 

decoders for the polar and RM codes.  

 

The remainder of this paper is organized as follows: 

 

In Chapter 2, the basic concepts of polar code construction and BP decoding of polar 

codes are briefly introduced. The core concepts of channel polarization, capacity 

calculation for AWGN channel and the relation between capacities and Bhattacharyya 

parameters are reviewed.  

 

In Chapter 3, after determining the required number of iterations for the BP decoder 

at different code lengths, BLER performances of single FG decoders; i.e., the 

reference FG (RFG) or its inverse (IRFG), are found in simulations over the binary 

AWGN channels for (𝑁, 𝐾)  =  (2𝑛, 2𝑛−1) polar codes. Performances of polar BP 

decoders are evaluated for polar codes designed at fixed design-SNRs, and also at 

variable, channel-specific design-SNRs. Then, BLER performances of single-FG 

decoders are compared with those of the multiple-FG decoders, which consist of either 

randomly or deterministically selected FG sets, such as the cyclic n-FG decoder 

constructed from cyclically shifted forms of the RFG. In order to improve the choice 

of the FGs in the n-FG belief propagation decoder, two methods, MaxSON and 

MaxofMax, are proposed for selecting n FGs with respect to their stage order numbers 

(SONs). Moreover, the difference between multiple-FG belief propagation decoder 

performances of the RM codes and polar codes is investigated. Lastly, a performance 

comparison between the methods proposed in this work and multiple-FG BP decoders 

suggested in the literature is given.     

 

In Chapter 4, main contributions of this thesis are discussed. 
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CHAPTER 2  

 

2. POLAR CODES 

 

In this chapter, we review the polar code construction based on the work of Arıkan 

[Arıkan, 2009]. After some preliminary information, the calculation of channel 

capacities and the selection of information channels by channel combining and 

splitting are summarized [Arıkan, 2009]. The construction of polar codes for a binary 

input AWGN channel is reviewed. The factor graph (FG) representation to be used in 

encoding and decoding operations is given. Finally, belief propagation (BP) decoding 

is described briefly.  

 

2.1. Preliminaries  

Let 𝑊: 𝑋{0, 1}  →  𝑌 be an arbitrary binary-input discrete memoryless channel (B-

DMC) where 𝑋 is input alphabet, 𝑌 is output alphabet, and 𝑊(𝑦|𝑥) is channel 

transition probability {𝑊(𝑦|𝑥): 𝑥 ∈  𝑋, 𝑦 ∈  𝑌}. Given a B-DMC 𝑊, let 𝐼(𝑊) denote 

the symmetric capacity defined as the mutual information (in bits) between the input 

and output terminals of 𝑊 when the input is chosen from the uniform distribution on 

𝑋. 𝐼(𝑊) is the highest rate at which reliable communication is possible across 𝑊. 

Another parameter of primary interest for this study is Bhattacharyya parameter 

𝑍(𝑊) which is an upper bound on probability of maximum likelihood (ML) decision 

error for each use of 𝑊 to transmit a 0 or 1.  

 

Symmetric capacity:  𝐼(𝑊) = ∑ ∑
1

2 𝑥 ∈ 𝑋𝑦 ∈ 𝑌 𝑊(𝑦|𝑥) log
𝑊(𝑦|𝑥) 

1

2
(𝑊(𝑦|0)+𝑊(𝑦|1))

     (2.1) 

                                 

Bhattacharyya parameter:  𝑍(𝑊) =  ∑ √𝑊(𝑦|0)𝑊(𝑦|1)𝑦 ∈ 𝑌 .                   (2.2) 
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Let 𝑢 =  [𝑢𝑖]1×𝑁 and 𝑥 =  [𝑥𝑖]1×𝑁 be the information and the code sequences 

with 𝑁 = 2𝑛 respectively. 𝑊𝑁: 𝑋𝑁 → 𝑌𝑁 with transition probability (𝑦1
𝑁|𝑥1

𝑁) =

 Π𝑖=1
𝑁 (𝑥𝑖|𝑦𝑖) represents the 𝑁 times employments of the channel 𝑊. 𝑎1

𝑁 is also used 

to denote a row vector (𝑎1, … , 𝑎𝑁). The length of information and code sequences is 

equal to 𝑁 since information sequence consists of 𝐾 information bits and 𝑁 − 𝐾 

frozen bits for a polar code Ƥ(𝑁, 𝐾). Code rate 𝑅 =  𝐾/𝑁 .comes from the frozen bits 

in the information sequence.  The encoding carried out in GF (2) is 

 

𝑥 =  𝑢 ·  𝐺𝑁 .     (2.3) 

 

The Kronecker product of two matrices 𝐴 and 𝐵 is written as 𝐴 ⊗  B, and the 𝑛𝑡ℎ 

Kronecker power of 𝐴 is 𝐴⊗n, where Kronecker power is defined by 𝐴⊗n ≜ 𝐴 ⊗

 𝐴⊗n−1 = 𝐴⊗n−1  ⊗  𝐴. Arıkan’s input transformation matrix is given by 𝐺𝑁 =

𝐺2
⊗𝑛 

where 𝐺2 = [
1 0
1 1

] and 𝑛 = 𝑙𝑜𝑔2𝑁. Unless specified otherwise, all vectors, 

matrices, and operations on them is carried out over the binary field GF (2). For 𝑎1
𝑁, 

𝑏1
𝑁 vectors over GF (2) we use 𝑎1

𝑁 ⊕ 𝑏1
𝑁 to denote their component wise modulo-2 

summation. 

 

Choosing the rows of 𝐺2
⊗𝑛, which forms the generator matrix of the code, is the main 

idea of the polar code construction which explained in the next sections.  

 

Through the thesis, binary phase-shift keying (BPSK) modulation and binary input 

additive white Gaussian noise (BAWGN) channel model are considered. The 

BAWGN channel is the most common approach to model the effect of random sources 

which occur in the nature. For 𝑊: 𝑋 {0, 1}  →  𝑌, the channel output is given by 

 

𝑦𝑖  =  (1 –  2𝑥𝑖 )√
𝑅𝐸𝑏
𝑁0
2

 + 𝑛𝑖,    (2.4) 
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where 𝑥 ∈  𝑋 {0, 1}, 𝑦 ∈  𝑌,  𝑛𝑖  ~ Ɲ (0, 1). 𝐸𝑏 denotes the energy spent per each 

information bit. In our work, we used BPSK modulation such that it maps 0  √
𝑅𝐸𝑏
𝑁0
2

  

and 1  −√
𝑅𝐸𝑏
𝑁0
2

 and the channel had normal distribution Ɲ (0, 1). For a given code 

rate R, SNR (dB) for the given channel is 𝐸𝑏/𝑁0. The distribution of 𝑛𝑖 is equal to 

 

𝑝𝑛𝑖
(𝑛𝑖) =

1

√2𝜋𝜎2 
exp (−

𝑛𝑖
2

2𝜎2
) ,      𝜎2 = 1.               (2.5) 

 

The decoders used in the thesis work in the log-likelihood ratio (LLR) domain which 

corresponds to how many times more likely the data are under one model than the 

other. The corresponding soft information for the input alphabet {0, 1} can be 

calculated as follows: 

 

𝐿𝐿𝑅(𝑦𝑖) = 𝑙𝑛
𝑝(𝑦𝑖|𝑥𝑖=0)

𝑝(𝑦𝑖|𝑥𝑖=1)
.  

    

In our case it can be simplified as:   

 

 𝐿𝐿𝑅(𝑦𝑖) = 2𝑦𝑖√
𝑅𝐸𝑏
𝑁0
2

.                     (2.6) 

 

For SNR = 𝐸𝑏/𝑁0 (dB) and the 𝐸𝑐 =  
𝑅𝐸𝑏
𝑁0
2

. 

 

Figure 2.1 shows the conditional probability distributions of the AWGN channel 

output for BPSK modulation. 

 



 

 

 

14 

 

 

Figure 2.1. Conditional probability distribution for BPSK modulation over AWGN channel. 

 

2.2. Polar Coding 

Channel polarization is an operation by which one creates, from 𝑁 independent copies 

𝑊 of a given B-DMC, a set of 𝑁 channels {𝑊𝑁
(𝑖)

: 1 ≤ 𝑖 ≤ 𝑁}  that show a polarization 

effect; in the sense that as 𝑁 becomes large, the symmetric capacity terms 

{𝐼(𝑊𝑁
(𝑖)

)} tend towards either 0 or 1 for almost all indices 𝑖. This operation consists 

of two phases called channel combining and channel splitting. 

 

2.2.1. Channel Combining 

To produce a vector channel 𝑊𝑁: 𝑋𝑁 → 𝑌𝑁 one needs to combine copies of given a 

B-DMC, 𝑊, in a recursive manner; first starting with two independent copies of 𝑊1 ≜

 𝑊 to create 𝑊2: 𝑋2 → 𝑌2 by applying the transform 𝐺2 = [
1 0
1 1

] as shown in Figure 

2.2. The transition probabilities for the channel 𝑊2 are 

 

𝑊2(𝑦1, 𝑦2|𝑢1, 𝑢2) = 𝑊(𝑦1|𝑢1 ⊕ 𝑢2)𝑊(𝑦2|𝑢2).      (2.7) 

 

Since a linear transformation is applied for mapping 𝑢1 
2
 𝑥1

2 and since 𝑢𝑖’s have an 

identically independent distribution (i.i.d.), the symmetric capacity for the channel 𝑊2 

is equal to two times the symmetric capacity of the channel 𝑊. 
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𝐼(𝑊2) = 𝐼(𝑈1, 𝑈2; 𝑌1, 𝑌2) = 𝐼(𝑋1, 𝑋2; 𝑌1, 𝑌2) = 𝐼(𝑋1; 𝑌1) + 𝐼(𝑋2; 𝑌2) 

 = 2𝐼(𝑊)               (2.8) 

 

 

Figure 2.2. Channel combining for 𝑊2. 

 

The next recursion, which is shown in Figure 2.3, is applied by combining two 

independent copies of 𝑊2 to create 𝑊4: 𝑋4 → 𝑌4 with transition probabilities  

 

𝑊4(𝑦1
4|𝑢1

4) = 𝑊2(𝑦1
2|𝑢1 ⊕ 𝑢3, 𝑢2 ⊕ 𝑢4)𝑊2(𝑦3

4|𝑢3, 𝑢4).  (2.9) 

 

The mapping 𝑢1 
4
 𝑥1

4 can be written as 𝑥1
4 = 𝑢1

4𝐺4,  

 

 where    𝐺4 = 𝐺2
⊗2 = [

1 0
1 1

0 0
0 0

1 0
1 1

1 0
1 1

]. 
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Figure 2.3. The relation of channel 𝑊4 with 𝑊2 and 𝑊1. 

 

The recursion occurs until creating 𝑁 channels 𝑊𝑁: 𝑋𝑁 → 𝑌𝑁. The general form of 

the channel is shown in Figure 2.4. The general transition probability for the channel 

𝑊𝑁 is 

 

𝑊𝑁(𝑦1
𝑁|𝑢1

𝑁) =  𝑊𝑁(𝑦1
𝑁|𝑢1

𝑁𝐺𝑁) = 𝑊𝑁

2

(𝑦1

𝑁

2 |𝑢1

𝑁

2 ⊕ 𝑢𝑁

2
+1

𝑁 ) 𝑊𝑁

2

(𝑦𝑁

2
+1

𝑁 |𝑢𝑁

2
+1

𝑁 ),   (2.10) 

 

given that     𝐺𝑁 = 𝐺2
⊗n

,     𝑥1
𝑁 = 𝑢1

𝑁 𝐺𝑁 = 𝑢1
𝑁𝐺2

⊗n,     

 

     𝑢1

𝑁

2     = (𝑢1, 𝑢2, … , 𝑢𝑁

2

)  and   

 

 𝑢𝑁

2
+1

𝑁 = ( 𝑢𝑁

2
+1

, 𝑢𝑁

2
+2

, … , 𝑢𝑁). 

 

According to the chain rule for mutual information, the symmetric capacity for the 

combined channel becomes 

 

      𝐼(𝑊𝑁) = 𝐼(𝑈𝑁; 𝑌𝑁) = 𝐼(𝑋𝑁; 𝑌𝑁) = 𝑁𝐼(𝑊).  (2.11) 
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Figure 2.4. The construction of 𝑊𝑁 from two copies of 𝑊𝑁/2. 

 

2.2.2. Channel Splitting 

Next step of channel polarization is channel splitting of previously combined vector 

channel 𝑊𝑁 back into a set of 𝑁 binary input coordinate channels. 

 

Starting with 𝑁 =  2, a new channel can be designed by assuming 𝑢1 as the 

input 𝑦1, 𝑦2 as the output and 𝑢2 as random for the channel shown in Figure 2.5. 

Resulting channel can be represented as 𝑊2
(1)

: 𝑋 → 𝑌2. The transition probability for 

this split channel is  

 

𝑊2
(1)(𝑦1

2|𝑢1) ≜ ∑
1

2
𝑊𝑢2

(𝑦1|𝑢1 ⊕ 𝑢2)𝑊(𝑦2|𝑢2).         (2.12) 
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The other channel, represented with 𝑊2
(2)

: 𝑋 →  𝑌2 ×  𝑋, can be defined so as  𝑢2 is 

the input and 𝑦1, 𝑦2 and  𝑢1 are the outputs. Its transition probability becomes 

 

𝑊2
(2)(𝑦1

2, 𝑢1|𝑢2) ≜
1

2
𝑊(𝑦1|𝑢1 ⊕ 𝑢2)𝑊(𝑦2|𝑢2).         (2.13) 

 

Figure 2.5. The split channels 𝑊2
(1)

 and 𝑊2
(2)

 after channel splitting for 𝑁 =  2. 

 

The mutual information of the channel 𝑊2 can be split as 𝐼(𝑊2) =

𝐼(𝑈1, 𝑈2; 𝑌1, 𝑌2) = 𝐼(𝑈1; 𝑌1, 𝑌2) + 𝐼(𝑈2; 𝑌1, 𝑌2,𝑈1) =  𝐼(𝑊2
(1)

) +  𝐼(𝑊2
(2)

) such that 

equation (2.14) holds for symmetric capacities of split channels, with equality only if 

𝐼(𝑊) equals 0 or 1. In other words, they are polarized.  

 

           𝐼(𝑊2
(1)

) ≤ 𝐼(𝑊) ≤ 𝐼(𝑊2
(2)

)     (2.14) 

 

The other important parameter for polar codes is the reliability parameter, 

Bhattacharyya parameter 𝑍(𝑊), shown in equation (2.2). After applying channel 

splitting, Arıkan shows that [Arıkan, 2009] Bhattacharyya parameters of bit channels 

have bounds 

 

𝑍(𝑊2
(2)

) = 𝑍(𝑊)2,      (2.15) 

 

𝑍(𝑊2
(2)

) ≤ 𝑍(𝑊) ≤ 𝑍(𝑊2
(1)

) ≤ 2𝑍(𝑊) − 𝑍(𝑊)2.   (2.16) 
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When the channel splitting operation is recursively applied, the channels, which are 

represented as 𝑊𝑁
(𝑖)

: 𝑋 →  𝑌𝑁 × 𝑋𝑖−1,    1 ≤ 𝑖 ≤ 𝑁, can be defined by the transition 

probabilities  

 

𝑊𝑁
(𝑖)

(𝑦1
𝑁 , 𝑢1

𝑖−1|𝑢𝑖) ≜ ∑
1

2𝑁−1 𝑊𝑁𝑢𝑖+1
𝑁 ∈𝑋𝑁−𝑖 (𝑦1

𝑁|𝑢1
𝑁),        (2.17) 

 

where 𝑢1
𝑖−1, 𝑦1

𝑁 are the input and output of the channel 𝑊𝑁
(𝑖)

successively. Generalized 

representation of channel splitting can be seen in Figure 2.6. 

 

 

Figure 2.6. Channel splitting of 𝑊𝑁 into 𝑁 distinct channels 𝑊𝑁
(𝑖)

  . 

 

Applying the chain rule of the mutual information one obtains  

 

    𝐼(𝑊𝑁) = 𝑁𝐼(𝑊) = 𝐼(𝑋𝑁; 𝑌𝑁)  = 𝐼(𝑈𝑁; 𝑌𝑁) 

        = ∑ 𝐼(𝑈𝑖;  𝑌𝑁 , 𝑈𝑖−1)𝑁
𝑖=1 .           (2.18) 
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2.2.3. Channel Polarization 

For each bit channel 𝑊𝑁
(𝑖)

, channel splitting moves the rate and reliability away from 

the center such that they are pushed to the extremes 0 and 1.  For any B-DMC  

 

𝐼(𝑊𝑁
(2𝑖−1)

) ≤ 𝐼 (𝑊𝑁

2

(𝑖)
) ≤ 𝐼(𝑊𝑁

(2𝑖)
) ,   (2.19) 

𝑍(𝑊𝑁
(2𝑖−1)

) ≥ 𝑍 (𝑊𝑁

2

(𝑖)
) ≥ 𝑍(𝑊𝑁

(2𝑖)
).   (2.20) 

 

The Bhattacharyya parameter further satisfies that  

 

𝑍(𝑊𝑁
(2𝑖)

) = 𝑍 (𝑊𝑁

2

(𝑖)
)

2

,     (2.21) 

𝑍(𝑊𝑁
(2𝑖−1)

) ≤ 2𝑍 (𝑊𝑁

2

(𝑖)
) − 𝑍 (𝑊𝑁

2

(𝑖)
)

2

.   (2.22) 

 

The cumulative rate and reliability for the split channels satisfy equations (2.23) and 

(2.24), 

 

∑ 𝐼(𝑊𝑁
(𝑖)

) = 𝑁𝐼(𝑊)𝑁
𝑖=1 ,    (2.23) 

 

∑ 𝑍(𝑊𝑁
(𝑖)

) ≤ 𝑁𝑍(𝑊)𝑁
𝑖=1 .    (2.24) 

 

The Bhattacharyya parameter is an upper bound on the transmission error probability 

of maximum-likelihood (ML) decision for each use of the channel to transmit a 0 and 

1. That means it can be used to measure the error performance of the bit channel. By 

selecting bit channels which has smaller 𝑍(𝑊𝑁
(𝑖)

) values one can assign the noiseless 

information channels. However, the equalities in equation (2.22) and (2.24) are 
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achieved only if 𝑊 is a binary erasure channel (BEC(𝜖)), where 𝜖 is the erasure 

probability of the channel [Arıkan, 2009]. 𝑍(𝑊𝑁
(𝑖)

), the erasure probability of the 

channel 𝑊𝑁
(𝑖)

 can be computed recursively with initial value 𝑍(𝑊1
(𝑖)

) = 𝑍0 = 𝜖.  Due 

to its simplicity, equality in (2.22) has been widely used for the class of binary-input 

discrete memoryless channels as well. What we are concerned in this study is polar 

code construction in AWGN channels.   

 

By using (2.21) and (2.22), Zhao, Shi, and Wang have constructed polar codes, whose 

information channels are selected by doing modifications on the Bhattacharyya 

parameter recursion formulas [Zhao et al., 2011] given by 

 

  Type I:  𝑍(𝑊𝑁
(2𝑖−1)

) = 2𝑍 (𝑊𝑁

2

(𝑖)
) − 𝑍 (𝑊𝑁

2

(𝑖)
)

2

      (2.25) 

 

Type II:                             𝑍(𝑊𝑁
(2𝑖−1)

) =  𝑍 (𝑊𝑁

2

(𝑖)
)       (2.26) 

 

  Type III:  𝑍(𝑊𝑁
(2𝑖−1)

) = 0.5 (2𝑍 (𝑊𝑁

2

(𝑖)
) − 𝑍 (𝑊𝑁

2

(𝑖)
)

2

+ 𝑍 (𝑊𝑁

2

(𝑖)
)). (2.27) 

 

They have compared the polar code performances over BSC, AWGN and Rayleigh 

channels by selecting the Bhattacharyya parameter of the split channel 𝑊𝑁
(2𝑖−1)

 as 

Type I, II and III successively. According to their simulation results, Type I 

Bhattacharyya parameter has shown the best performance for these channel types 

[Zhao et al., 2011]. That result supports the idea of using the equality in (2.22) for the 

Bhattacharyya parameter calculation in AWGN channels; therefore we also use Type 

I in our simulations. 
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The definition of the Bhattacharyya parameter given in (2.2) can be extended from 

discrete to continuous channels in order to find the best initial value of the 

Bhattacharyya parameter for AWGN channels [Zhao et al., 2011]. 

 

𝑍(𝑊) =  ∫ √𝑊(𝑦|0)𝑊(𝑦|1) 𝑑𝑦.    (2.28) 

 

For the AWGN channel with Ɲ (0, 𝜎), suppose that signal energy of a BPSK signal is 

1, then the Bhattacharyya parameter can be simplified by substituting the conditional 

probability distributions in equation (2.28) with equations (2.29) and (2.30). 

 

𝑊(𝑦|0) =
1

√2𝜋𝜎2 
exp (−

(𝑦−1)2

2𝜎2 ).    (2.29) 

 

𝑊(𝑦|1) =
1

√2𝜋𝜎2 
exp (−

(𝑦+1)2

2𝜎2 ).    (2.30) 

 

 

𝑍(𝑊) =  ∫ √
1

√2𝜋𝜎2 
exp (−

(𝑦 − 1)2

2𝜎2
)

1

√2𝜋𝜎2 
exp (−

(𝑦 + 1)2

2𝜎2
) 𝑑𝑦 

     = exp(−
1

2𝜎2) =  exp(−𝑆𝑁𝑅) = exp (−
𝑅𝐸𝑏

𝑁0
).   

   

Then the initial value, 𝑍(𝑊1
(1)

) = 𝑍0 of the recursive algorithm can be obtained by 

 

𝑍(𝑊1
(1)

) = 𝑍0 = exp(−𝑆𝑁𝑅) .     (2.31) 

 

Since the operational SNR might be modified and the Bhattacharya parameter depends 

on it, code construction may change which is not practical. Therefore, for other 

channels, Arıkan [Arıkan, 2008] proposed a heuristic method which offers behaving 

other channel as an equivalent of BEC, which has the same channel capacity because 
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of the fact that the exact code construction rule for arbitrary binary-input channels is 

too complicated. He suggested that given an arbitrary binary-input channel with 

capacity 𝐶 bits, use the polar code that is matched to the BEC with erasure rate   =

 1 −  𝐶, meaning that the BEC that has same capacity as the given channel. The 

original recursive algorithm requires an initial value and this was proposed by Arıkan 

as 0.5 for any channel [Arıkan, 2008]. On the other hand, it shown that channel–

specific designs (specific SNR corresponding to the specific AWGN) has better 

performances over the polar codes designed at constant design SNR, 𝑍0 =

0.5 [Zhao et al. , 2011]. Some researchers attempt to find universal polar code 

construction. Vangala suggested that choosing the constant design-SNR of 0 dB and 

obtaining 𝑍0 by using equation (2.31) one can obtain polar codes with good 

performances [Vangala et al. 2015]. This design method is preferred in our studies 

mostly. In addition to this, in some cases, polar codes which are adaptively constructed 

with changing SNR is also included for comparison.  

 

2.2.4. Polar Encoding 

In the previous parts, we have presented how to obtain polarized N distinct channels. 

The basic idea of polar coding is sending the data only through noiseless channels, 

which have smaller 𝑍(𝑊𝑁
(𝑖)

) values by the polarization effect of channel combining 

and channel splitting operations. For a polar code Ƥ (𝑁, 𝐾) with block length 𝑁 =  2𝑛, 

𝑛 ≥  0, and code rate 𝑅 =  𝐾/𝑁, let 𝑢 = [𝑢𝑖]1𝑥𝑁  be the information and 𝑥 = [𝑥𝑖]1𝑥𝑁  

be the code sequences. K information bits are sent through noiseless channels and the 

remaining 𝑁 − 𝐾 bits are set as frozen bits; i.e., one sends predetermined 0’s through 

that noisy channels.  The encoding carried out in GF (2) is 𝑥 =  𝑢 ·  𝐺𝑁 where 𝐺𝑁 =

𝐺2
⊗n

    and 𝐺2 = [
1 0
1 1

]. 
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2.2.4.1. Factor Graph (FG) Representation of Polar Codes 

The encoding operation 𝑥 =  𝑢 ·  𝐺𝑁 can be performed by using corresponding factor 

graph (FG) representation. There are 𝑙𝑜𝑔2𝑁 = 3 stages for channel combining 

operation when 𝑁 is equal to 8 as illustrated in Figure 2.7 and Figure 2.8 shows its FG 

representation.  

 

Figure 2.7. The constructed channel 𝑊8.  

 

 

Figure 2.8. Z-shape factor graph representation corresponding to the polar code generator matrix G8.  
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Polar code with length 𝑁 = 2𝑛 there are 𝑛! different FG representations which can be 

obtained by changing the order of the stages used for generating the FG. For code 

length 𝑁 =  8 there are 6 different FG types. The one shown in Figure 2.8 with 

simplified Z-shape connections, is named as “3-2-1” FG that is used for construction 

of polar codes. 

 

Each factor graph contains 𝑛 stages and each stage has 𝑁/2 many Z-shape 

connections. Each stage contains 𝑁 input nodes and 𝑁 output nodes so that the output 

of a stage is the input for another stage. Numbering the stages from 1 to n, we refer to 

each FG by the left-to right appearance of stages [Doğan, 2015]. In every stage, input 

nodes are connected as Z-shape by skipping 2(𝑛−1)  −  1 nodes, where 𝑛 is the stage 

number. For example, the stage named as 1, connects inputs by omitting 2(1−1) –  1 =

0 nodes that means it connects consecutive input nodes. The stage 2 connects the 

nodes by omitting 2(2−1)  −  1 = 1 and stage 3 connects them by passing over 

2(3−1)  −  1 = 3 nodes. Figure 2.9 shows all different FG representations for the polar 

code with code length 𝑁 =  8.  In this study, the FG having stage order n-…-2-1 is 

called the reference factor graph (RFG) and the one with the stage order 1-2-…-n is 

called the inverse-RFG (IRFG). 
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Figure 2.9. All different FG representations for polar code with 𝑁 =  8. 

 

2.2.4.2. Selecting Frozen Nodes in AWGN Channel 

As we have explained in previous sections, the reliability parameter 𝑍(𝑊) is used for 

selecting the nodes in which information is sent. Choosing the design-SNR as 0 dB as 

suggested [Vangala et al. 2015], with the algorithm given below, one can calculate N 

distinct channel parameters in equations (2.21) and (2.25) recursively.    
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Table 2.1. Algorithm based on the Bhattacharyya bounds 

Algorithm based on the Bhattacharyya bounds 

 

INPUT : N, K, and design-SNR EdB = (REb/N0 in dB) 

OUTPUT:  Ƒi , i∈( 0, 1,…,N ) 

 

z(0)[N] = {0}, idx[N] = {0} 

 

1  :   SNR = 10EdB/10 and n = log2 N 

2  :   initialize z(0)[0] = exp (-SNR) 

3  :   for  j = 1 : n    do              For each stage in IRFG, left-to-right 

4  :       u = 2j 

5  :       for    t = 0 : u/2 - 1 do                    For each connection 

6  :             T = z(0)[t] 

7  :             z(0)[t]= 2T - T2                              Upper channel 

8  :             z(0)[u/2 + t] = T2                           Lower channel 

9  :       end 

10:   end 

11:   [z(0), idx]sort (z(0), “descending”) 

12:   Ƒ = idx[0:N−K−1] 

 

// Ƒ: indices of the greatest N - K elements 

 

As an example, choosing the code length 𝑁 =  8, let 𝑢 = [𝑢𝑖]1𝑥𝑁 be the information 

sequence, and 𝑥 = [𝑥𝑖]1𝑥𝑁 be the code sequence where i ∈ {1, 2, 3, 4, 5, 6, 7, 8}. For 

code rate 𝑅 =  0.5 there are 4 information bits and 4 frozen bits. Bhattacharyya 

parameters calculated with the algorithm given in Table 2.1 are z(0)[8] = [0.9745, 

0.4410, 0.5911, 0.0363, 0.7062, 0.0637, 0.1300, 0.0003]. The detail of the calculation 

of the Bhattacharyya parameters is also explained in Figure 2.10 by using the factor 
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graph representation. After the final recursion, the indices of small Bhattacharyya 

parameters, i.e. 𝑖𝑖𝑛𝑓𝑜 =  {4, 6, 7, 8},  are selected to send information bits and the other 

ones, i.e. 𝑖𝑓𝑟𝑜𝑧𝑒𝑛  =  {1, 2, 3, 5}, are selected for frozen bits which are predetermined 

as 0’s. Now, let the information word be 𝑢 𝑖
(4)

=  [1, 1, 0, 1] for 𝑖𝑖𝑛𝑓𝑜 =  {4, 6, 7, 8},  

then 𝑢 = [𝑢𝑖]1𝑥8 becomes 𝑢 =  [0, 0, 0, 1, 0, 1, 0, 1]. The code sequence is 𝑥 =  𝑢 ·

 𝐺𝑁. This is the same operation with selecting the rows of 𝐺𝑁 matrix such that they 

corresponds to the indices of information word, 𝑖𝑖𝑛𝑓𝑜 , in the information sequence u 

and applying the matrix transform to the information word 𝑢 𝑖
(4)

. The encoding 

operation carried out in (2.32) is presented in Figure 2.11 with factor graph 

implementation. 

 

𝑢𝑖
(4)

 ·  𝐺𝑁𝑖𝑖𝑛𝑓𝑜

(4)
= [1 1 0 1]  · [

1
1

1
1

1 1
0 0

0 0 0 0
1 1 0 0

1 0 1 0
1 1 1 1

1 0 1 0
1 1 1 1

] 

 

  = [1 1 0 0 0 0 1 1]                   (2.32) 

 

 

Figure 2.10. Factor graph representation of Ƥ(8, 4) polar code encoding for the information word  

[1, 1, 0, 1]. 
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In Figure 2.10, the recursive algorithm of Bhattacharyya parameter calculation is 

illustrated by using inverse reference factor graph (IRFG) representation because 

splitting operations in Figure 2.7 is conducted inside out, which can be represented 

using the RFG and operating from right to left, or using the IRFG and calculating from 

left to right. The reason why the least possible Bhattacharyya parameters are only 

ensured by the RFG stage order is explained in [Arıkan, 2009]. Each initial node is 

fed with design-SNR of 0 dB, for the initialization of the Bhattacharyya parameter. 

Each Z-shape creates one “bad” and one “good” channel, represented as W- and W+ 

successively in Figure 2.10. The good channels have smaller values compared to the 

bad channels at the end of that stage. The calculations for “𝑛” stages are done 

recursively to obtain final values of polarized bit channels at the end.   

 

 

Figure 2.11. Factor graph representation of Ƥ(8, 4) polar code encoding for the information word  

[1, 1, 0, 1]. 

 

After one calculates the Bhattacharyya parameters, fixed frozen input nodes are 

chosen as the ones with the largest Bhattacharyya parameters. Polar code encoding is 

done through the medium of reference factor graph (RFG) as given in Figure 2.11, 
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where the red rectangles correspond to frozen nodes and the white rectangles indicate 

the information nodes. If a node is made up of only frozen nodes, it becomes a frozen 

node as well. The first and the fifth output nodes at the end of the first stage can be 

shown as examples for that situation. Frozen nodes serve an important function in 

decision making mechanism of polar decoders, which is explained in following 

section. 

 

2.2.5. Belief Propagation Decoding Algorithm 

Belief propagation (BP) decoding algorithm is a message passing algorithm, in which 

one retrieves the information bits through iterations by using factor graphs [Forney, 

2001]. As explained in previous sections, polar code FGs are composed of  𝑛 = 𝑙𝑜𝑔2𝑁 

stages, which can be permuted in 𝑛! ways. Hence the BP decoder can use any one of 

𝑛! different FGs to decode a received channel sequence. We use the log-likelihood 

ratios (LLRs) of the channel output in (2.6). The LLR values are iteratively propagated 

through the FG until the maximum number of iterations is reached. Then a hard 

decision based decoding algorithm is applied to the final LLR values and the output 

is compared with the perfect knowledge-based input data.  

 

Two types of the LLR messages are used through the decoding process; one is left-to-

right messages (L-messages) and the other is right-to-left messages (R-messages). 

Each Z-shape structure has two input and two output nodes.  Processing detail of a 

single Z-shape connection is demonstrated in Figure 2.12, where a Z-shape contains 

4 variable nodes and 2 check nodes and each Z-shape has two input nodes and two 

output nodes, represented with 𝑣𝐼 and 𝑣𝑂 respectively. The 𝑗 and 𝑘 indicates the rows 

of the diagram, where 𝑗&𝑘 ∈  {1,2, … , 𝑁}, i indicates stage number, where 𝑖 ∈

 {1, 2, … , 𝑛} and iteration number is represented with 𝑡. 

 



 

 

 

31 

 

  

Figure 2.12. Diagram of single Z-shape processing element in the polar BP decoder.  

 

Output nodes of each stage feed input nodes of the following stage; thus, in an FG 

representation of a polar code Ƥ(𝑁, 𝐾), there are 𝑛𝑁 check nodes and (𝑛 + 1)𝑁 

variable nodes. In Figure 2.13, check nodes and variable nodes of Ƥ(8, 4) are presented 

with squares and circles successively on the RFG representation.  

 

 

Figure 2.13. Check (square) and variable (circle) nodes of Ƥ(8, 4) on RFG representation.  

 

The initial values of L-messages at the first stage are set using the a priori information 

available to the decoder and, thus, zero for non-frozen bits and infinity for frozen bits, 

respectively. The initial values of R-messages at the (𝑛 + 1)th stage are initialized with 

the LLR values of the channel output. All other nodes except for the frozen nodes are 

designated as zero. The important point here is to define all the frozen nodes in the FG 
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representation, since it changes according to the factor graph of selected decoder 

structure. The L and R-messages are updated in each processing element with the 

following equations: 

 

𝑅𝑣𝑂(𝑖,𝑗)
𝑡 = f (𝑅𝑣𝐼(𝑖,𝑗)

𝑡−1  ⊞  𝐿𝑣𝑂(𝑖,𝑘)
𝑡−1 + 𝑅𝑣𝐼(𝑖,𝑘)

𝑡−1 ),            (2.33) 

   𝑅𝑣𝑂(𝑖,𝑘)
𝑡 = f (𝑅𝑣𝐼(𝑖,𝑗)

𝑡−1  ⊞  𝐿𝑣𝑂(𝑖,𝑗)
𝑡−1 ) + 𝑅𝑣𝐼(𝑖,𝑘)

𝑡−1 ,    (2.34) 

 𝐿𝑣𝐼(𝑖,𝑗)
𝑡 = f (𝐿𝑣𝑂(𝑖,𝑗)

𝑡−1  ⊞  𝐿𝑣𝑂(𝑖,𝑘)
𝑡−1 + 𝑅𝑣𝐼(𝑖,𝑘)

𝑡−1 ),   (2.35) 

 𝐿𝑣𝐼(𝑖,𝑘)
𝑡 = f (𝑅𝑣𝐼(𝑖,𝑗)

𝑡−1  ⊞  𝐿𝑣𝑂(𝑖,𝑗)
𝑡−1 ) + 𝐿𝑣𝑂(𝑖,𝑘)

𝑡−1 .   (2.36) 

 

where 𝑓(𝑥 ⊞  𝑦) = 𝑥 ⊞  𝑦 is commonly referred to as the box-plus operator, which 

corresponds to binary XOR operation and it is defined as follows 

 

𝑓(𝑥 ⊞  𝑦) = log (
1+𝑒𝑥+𝑦

𝑒𝑥+𝑒𝑦 ).      (2.37) 

 

In our decoding version, iterations start from the rightmost of the FG, with right-to-

left message (L-messages) propagations as it is used in [Xu et al., 2015] and in 

[Akdoğan, 2018]; and continues with left-to-right (R-messages) propagations. This 

process is called as one iteration. When a processing element has a frozen node with 

the LLR value of infinity, the importance of frozen variables arises. It may even 

correct a wrong estimation. Thus one can infer that the FGs having more frozen nodes 

may correct more decoding errors during iterations, as demonstrated by [Doğan, 

2015].  

 

To increase the decoder performance, we have a stop and check condition after every 

ten iterations, i.e. 10, 20, 30..., tmax. At each stop and check point, LLR values of 

estimated code sequence ẍ, (𝐿𝐿𝑅(ẍ)), are computed for all bits according to 
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𝐿𝐿𝑅(ẍ𝑗) = 𝐿𝑣𝐼(𝑛+1,𝑗)
𝑡𝑚𝑎𝑥 + 𝑅𝑣𝐼(𝑛+1,𝑗)

𝑡𝑚𝑎𝑥 .    (2.38) 

 

The code bits are estimated using hard decisions and compared with the exact 

transmitted code bits, which is called perfect knowledge-based (PKB) early stopping. 

If the estimated codeword ẍ is the same as the transmitted codeword 𝑥, then the 

iterations stop and the codeword is counted as correctly decoded. If PKB stopping 

does not occur, iterations progress. After a predefined maximum number of iterations 

is reached, the estimated codeword ẍ is compared to the transmitted codeword 𝑥 one 

last time to decide if it is correctly decoded or not. If the estimated codeword still does 

not matches to the transmitted codeword, it is counted as undecoded. Perfect 

knowledge-based early stopping yields simulation curves, which are more of a bound 

rather than real decoder performances. For that reason, while we compare our results 

with those in the literature in the last three figures of Chapter 3, we replace the PKB 

stopping with a practical stopping criterion. 
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CHAPTER 3  

 

3. SIMULATION RESULTS 

 

In this chapter, simulation results for single or multiple factor graph (FG) belief 

propagation (BP) decoders of (𝑁, 𝐾, 𝑅)  =  (2𝑛, 2𝑛−1, 0.5) polar (and Reed-Muller) 

codes are presented. Section 3.1 is about determining the required number of iterations 

for the BP decoder. In Section 3.2, the block error ratio (BLER) performances of 

single-FG belief propagation decoders using either the reference factor graph  (RFG) 

with stage order n-…2-1, or its inverse with stage order 1-2-…n (IRFG) are found. 

Simulations are made for 𝑛 =  6, … , 12 (sometimes for 𝑛 =  13 and 14 as well) and 

performances of (2𝑛,  2𝑛−1) polar codes are compared. The SNR gain of the RFG 

decoder over the IRFG decoder is found with respect to two design criteria: i) fixed 

design-SNR of 0 dB [Vangala et al. 2015], ii) channel-specific design-SNRs 

corresponding to the SNR of the specific channel. In Section 3.3, multiple factor graph 

BP decoding performances of polar codes are discussed and two methods that we call 

“MaxSON” and “MaxofMax” are proposed for choosing the n-FG sets of multiple-

FG decoders. In Section 3.4, single-FG and multiple-FG BP decoding performances 

of the RM and polar codes are compared, and an exhaustive comparison is given for 

the (128, 64) codes over all possible FGs. Finally in Section 3.5, our set-choice 

methods for multiple factor graph BP decoders, MaxSON and MaxofMax, are briefly 

compared with similar decoders in the literature [Doan, Hashemi, Mondelli, Gross, 

2018], [Elkelesh, Ebada, Cammerer, Brink, 2018a], [Elkelesh et al., 2018b].   

In each simulation, N-bit codeword blocks are formed from K random information 

bits, generated with uniform distribution. Each bit is passed through an AWGN 

channel with a pre-chosen SNR. Output blocks of the channel are decoded either by 

single-FG or multiple-FG belief propagation decoders.  
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3.1. Choice of the Required Number of iterations According to the Code Length  

In this part of the work, we have attempted to understand how the decoding 

performance of the BP decoder changes when the number of iterations varies. For this 

purpose, at a certain SNR value we have calculated the BLER (block error ratio) 

performance for different code lengths, such that 𝑁 = 2𝑛 for 𝑛 =  6, … , 12 with 

𝑅 being equal to 0.5. To make a fair comparison, SNR values for different 𝑁 values 

are selected to have similar BLER performances. The BP decoder is implemented 

using the reference factor graph, RFG with stage order n-…2-1.  Table 3.1 shows the 

BLER values found in simulations. 

 

Table 3.1. BLER performances with changing n and changing iteration number. 

SNR 2 dB 2dB 1.8 dB 1.75 dB 1.7 dB 1.5 dB 1.3 dB 

Iteration 

number n = 6 n = 7 n = 8 n = 9 n = 10 n = 11 n = 12 

5 0.195 0.206 0.329 0.536 0.860 1.000 1.000 

10 0.180 0.180 0.222 0.279 0.295 0.511 0.949 

20 0.173 0.168 0.193 0.214 0.187 0.259 0.458 

30 0.171 0.164 0.182 0.201 0.170 0.203 0.332 

40 0.170 0.162 0.180 0.195 0.162 0.171 0.291 

50 0.170 0.159 0.175 0.195 0.155 0.160 0.256 

60 0.171 0.159 0.176 0.191 0.151 0.141 0.231 

70 0.169 0.158 0.172 0.189 0.148 0.135 0.216 

80 0.170 0.158 0.171 0.189 0.144 0.125 0.206 

90 0.168 0.158 0.171 0.187 0.142 0.123 0.191 

100 0.168 0.158 0.171 0.186 0.138 0.121 0.185 

120 0.168 0.158 0.165 0.186 0.137 0.121 0.176 

130 0.168 0.157 0.165 0.184 0.137 0.121 0.170 

140 0.168 0.157 0.164 0.182 0.136 0.118 0.167 

150 0.168 0.157 0.163 0.180 0.135 0.117 0.163 

160 0.168 0.155 0.163 0.180 0.135 0.116 0.163 

200 0.168 0.155 0.163 0.180 0.133 0.107 0.156 

220 0.168 0.155 0.163 0.180 0.133 0.105 0.154 

250 0.168 0.155 0.163 0.180 0.132 0.104 0.152 
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In Table 3.1, each column shows the performance at a given code length and SNR 

value and each row corresponds to the BLER values after using a certain number of 

BP decoding iterations. “One iteration” in the given FG, which is the RFG with stage 

order n-…2-1 in this case, indicates ”the propagation of LLR values from right to left 

and updating L-messages then propagation of LLRs from left to right and updating R-

messages”. Whenever the estimated codeword ẍ is the same as the transmitted 

codeword x, it is counted as decoded. Each simulation uses 1000 codewords and since 

the SNR values are adjusted for an approximate BLER on the order of 10−1, 100-170 

undecoded blocks remain at the end. For example for 𝑛 =  6 (𝑁 =  64) when the 

iteration number is 5, the RFG decoder recovers 805 of the codeword blocks and 195 

out of 1000 remains undecoded. However, if the number of iterations is increased to 

40, additional 25 blocks are solved and the number of undecoded word is reduced to 

170. It seems that after a certain iteration number, increasing number of iterations has 

no significant effect on recovery. This number varies according to the chosen code 

length. In fact, it seems to increase proportionally with the logarithm of the code length 

according to Figure 3.1, in which we plot the selected number of iterations given in 

Table 3.1, versus the base 2 logarithm of the code length (𝑛 =  𝑙𝑜𝑔2𝑁). The 

complexity of the single-FG BP decoder, that is O(𝑁(𝑙𝑜𝑔𝑁)) also increases with 

length, so it requires more iterations to get more reliable LLR values. However, 

increasing the number of iterations improves the BLER performance at the cost of 

decreasing the decoder speed. Therefore, in practical decoders, the optimal number of 

iterations for each code length should be selected taking this conflict into account.  
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Figure 3.1. Required iteration numbers versus 𝑛, where the code length 𝑁 = 2𝑛. 

 

It can be observed from Table 3.1 that the numbers plotted in Figure 3.1 is sufficient 

for meaningful performance. For each codeword length, the rest of the study can be 

carried out with these selected iteration numbers. However, in our simulations, since 

we also have the knowledge of transmitted bits, we have used its advantage to increase 

the decoder speed. In compliance with the algorithm, BP decoding terminates after a 

check point, if the estimated codeword ẍ is the same as the transmitted codeword 𝑥. 

Check points are settled at every 10 iterations during simulations and the maximum 

number of iterations is limited to 200. If the condition ẍ =  𝑥 is not fulfilled at any 

checkpoint and the maximum number of iterations is reached, the corresponding word 

is counted as not decoded.  

 

3.2. Single Factor Graph BP Decoding Performance of Polar Codes over AWGN 

The aim of this section is to observe the single factor graph BP decoding performance 

of polar codes when the code length changes. As the performance measure, the “block 

(codeword) error ratio (BLER)”; i.e., the ratio of undecoded words is computed over 

the simulated AWGN channel. As suggested by Akdoğan, we name each factor graph 
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(FG) by its “stage order number (SON)”, which is defined as the “n-digit integer” 

corresponding to its stage order from left to right [Akdoğan, 2018]; so that 𝑛! different 

FGs that have different stage permutations can be discriminated. The FG with the 

highest SON value that has the stage order n…-2-1, is called the “reference FG” and 

abbreviated as “RFG” [Peker, 2018]. If the stage order is reversed, one obtains the FG 

with the smallest SON that we call the “inverse RFG” and abbreviate as “IRFG” in 

this study. For instance, if 𝑁 =  64 = 26, the RFG has SON = 654321 and the IRFG 

has SON = 123456. Single-FG decoding performance of the RFG BP decoder is 

known to be much better than that of the IRFG BP decoder, as observed in previous 

studies for the polar codes designed over BECs [Doğan, 2015], [Peker, 2018], 

[Akdoğan, 2018]. In this section, we provide a comparison of the RFG and IRFG BP 

decoders, for the polar codes designed over AWGN channels.  

 

An adaptive polar code is designed specifically for an AWGN channel with a specific 

design-SNR and it is supposed to perform the best at this SNR value. However, 

Vangala, Viterbo and Hong compare four different polar code construction methods 

at different design-SNR values [Vangala, Viterbo & Hong, 2015] and they draw the 

conclusion that there are some fixed optimum design-SNRs for each construction 

method. For the construction method that they call PCC-0, which is also used in our 

work, they claim that the optimum design-SNR is 0 dB. In other words, they state that 

the polar code designed by PCC-0 at the design-SNR of 0 dB performs better than 

those designed at other design-SNRs for all SNR values. 

 

In order to check the validity of this statement, we pick an example polar code Ƥ(1024, 

512) for 𝑛 =  10, and plot the BLERs of the RFG BP decoder for two cases: i) 

suggested fixed design-SNR of 0 dB [Vangala et al. 2015], ii) channel-specific design-

SNRs corresponding to the SNR of the specific channel. We observe in Figure 3.2 that 

Vangala’s assertion is not true, because for the fixed design-SNR of 0 dB, the BLER 

found in our simulations is 2-3 times that of the channel-specific design at each 𝑆𝑁𝑅 ≥

1.5 dB. Similarly, at a given BLER, the gain of the channel-specific design over the 
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0-dB design is measured around 0.2-0.3 dB for the BLERs between 10−1 and 10−5 of 

Figure 3.2. Keeping this in mind, unless otherwise is specified, we continue with the 

fixed design-SNR of 0 dB in our simulations, for the sake of simplicity. 

 

 

Figure 3.2. Performances of RFG BP decoders for Ƥ(1024, 512) codes, constructed using  

i) fixed design-SNR of 0 dB (yellow), ii) channel-specific design-SNR at each SNR (red).  

 

Next, we explore the performance variation of the RFG BP decoder with increasing 

code length, by obtaining the BLERs of the RFG decoders for rate-0.5 polar codes 

designed for the AWGN channels at 0 dB. The simulations are carried out for 6 ≤

𝑛 ≤ 12 (and also for 𝑛 = 13, 14 in some cases), until a minimum value of 150 block 

errors are found. The results given in Figure 3.3 for 6 ≤ 𝑛 ≤ 14 show that the 

approximate gain obtained by doubling the code length is 0.27 dB at BLER = 10−2, 

0.35 dB at BLER = 10−3 and 0.4 dB at BLER = 10−4. 
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Figure 3.3. BLER of the RFG decoder for polar codes with design-SNR of 0 dB, versus the channel 

SNR. From top to bottom - Blue: n = 6, Ƥ(64, 32), Black: n = 7, Ƥ(128, 64), Pink: n = 8, Ƥ(256, 128), 

Green: n = 9, Ƥ(512, 256), Yellow: n = 10, Ƥ(1024, 512), Purple: n = 11, Ƥ(2048, 1024), Red: n = 12, 

Ƥ(4096, 2048), Brown: n = 13, Ƥ(8192, 4096), Gray: n = 14, Ƥ(16384, 8192). 

 

Since we want to compare the BLER performances of two extreme decoders, namely 

the RFG and IRFG BP decoders; we repeat the channel-specific design-SNR 

experiment of Figure 3.2 for the IRFG BP decoders as well. Instead of the example 

polar code Ƥ(1024, 512), we now plot the BLERs of the RFG and IRFG decoders for 

6 ≤ 𝑛 ≤ 11, corresponding to two cases in Figure 3.4: i) suggested fixed design-SNR 

of 0 dB [Vangala et al. 2015], ii) channel-specific design-SNRs at each SNR, in 

addition to the BLERs of the RFG decoder. What we now observe is somewhat 

incomprehensible for 𝑛 = 6 and the RFG of 𝑛 =11, where the performance does not 

improve with channel-specific design; whereas in all other cases, channel-specific 

design outperforms the fixed-SNR design. At a given BLER, say 10−3, the IRFG BP 

decoding gain of the channel-specific design over the 0-dB design varies between 0 

and 2.9 dB (IRFG curves of 𝑛 =11) as can be observed in Figure 3.4.  
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Figure 3.4. BLER performances of the RFG (solid) and the IRFG (dashed) BP decoders for  

n = 6, Ƥ(64, 32), n = 7, Ƥ(128, 64), n = 8, Ƥ(256, 128), n = 9, Ƥ(512, 256), n = 10, Ƥ(1024, 512) and n 

= 11, Ƥ(2048, 1024) codes, constructed using i) fixed design-SNR of 0 dB (yellow curves),  

ii) channel-specific design-SNR at each SNR (red curves).  

 



 

 

 

43 

 

Again keeping this information in mind, unless otherwise is specified, we simplify our 

simulations by choosing a fixed design-SNR of 0 dB in the remaining part of this 

work. In order to compare the RFG BP decoder performance of rate-0.5 polar codes 

given in Figure 3.3 with the performance of the inverse RFG BP-decoder; we plot in 

Figure 3.5 the BLER performance of the IRFG decoder for 6 ≤ 𝑛 ≤ 12, on top of 

Figure 3.3 using dotted curves. As in the simulations of Figure 3.3, each simulation 

point for the IRFG decoder is obtained by counting 150 block errors so that the 

reliabilities of all simulation points are equalized.  

 

 

Figure 3.5. BLER of the RFG and IRFG decoders versus channel SNR with design-SNR of 0 dB. 

Solid lines refer to RFG, and dotted ones of the same color refer to IRFG performances for the same 

code length. Blue: n = 6, Ƥ(64, 32), Black: n = 7, Ƥ(128, 64), Pink: n = 8, Ƥ(256, 128), Green: n = 9, 

Ƥ(512, 256), Yellow: n = 10, Ƥ(1024, 512), Purple: n = 11, Ƥ(2048, 1024),  

Red: n = 12, Ƥ(4096, 2048). 

 

Expectedly, all the dotted curves corresponding to the IRFG decoders have more 

degraded performances than solid curves corresponding to the RFG decoders, as 
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observed in Figure 3.5. Remarkably, the gap between the performances of the RFG 

and IRFG decoders seems to grow when the code length increases. Among all rate-

0.5 polar codes with lengths 𝑁 ≤  4096, the RFG performance of Ƥ(4096, 2048) is 

the best one (solid red curve) as expected; however, its IRFG performance, quite 

unpredictably,  is the worst (dotted red curve). On the other hand, Ƥ(64, 32) that gives 

the anticipated worst RFG performance (solid blue curve) has astonishingly the best 

IRFG performance (dotted blue curve). 

 

The gain of the RFG decoder over the IRFG decoder seems to increase linearly with 

increasing 𝑛, for instance at BLER = 10−2, the gain starts from 0.6 dB for 𝑛 = 6, and 

increases to 7.6 dB for 𝑛 = 12. Figure 3.6 shows this gain; i.e., the difference of the 

SNR values to achieve a BLER = 10−2 for the RFG and IRFG decoders of the rate 

0.5 polar codes with length 2𝑛. On the same figure, we also include the equivalent 

gain (of the RFG over the IRFG decoder) for adaptive polar codes constructed using 

channel-specific design-SNR at each channel SNR.  

 

 

Figure 3.6. Gain of the RFG decoder over the IRFG decoder at BLER = 10−2 versus 𝑛  

for polar codes constructed using i) fixed design-SNR of 0 dB (yellow curve),  

ii) channel-specific design-SNR at each channel SNR (red curve).    
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This rapid increase of the RFG decoding performance over the IRFG performance 

with increasing 𝑛 also indicates that random choice of FGs in multiple-FG decoder 

sets as suggested in the literature [Elkelesh et al., 2018a] may not be effective for high 

values of 𝑛. Instead, one needs to optimize the chosen FGs by considering a limited 

variety of FGs, in a group of “suitable” decoders, which exclude the IRFG as well as 

those having similar performances to that of the IRFG. 

 

It is also of interest to repeat the simulations of Figure 3.5 for a BEC(ϵ) with various 

erasure rates ϵ. We present the associated results for 6 ≤ 𝑛 ≤ 12 in Appendix A, for 

comparison with those given by the related theses completed at METU ([Doğan, 

2015], [Peker, 2018] and [Akdoğan, 2018]). 

 

3.3. Multiple Factor Graph BP Decoding Performance of Polar Codes over the 

AWGN 

A multiple-FG decoder consists of 𝑀 >  1 factor graphs, which attempt to decode 

cooperatively. If the received N-bit block is decoded by the first FG, the remaining 

FGs need not be used. Otherwise, the undecoded 𝑁-bit block is submitted to the 

second FG, which either decodes the block or submits it to the next FG. This procedure 

is repeated for each FG; and the decoding operation is finished if any one of the FGs 

in the set decodes the received N-bit block. Otherwise, the raw block is submitted to 

the next FG until all FGs in the set are exhausted. So, a received block remains 

undecoded, only if the BP decoders of all the FGs in the set are unsuccessful.  

 

When a new factor graph is in use, rather than employing the log likelihood ratios 

(LLRs) of the previous factor graph, LLRs are computed from the original channel 

output data and the BP decoding algorithm uses the stage order of the new factor graph 

representation (starting from its last stage; i.e., from right to left). Akdoğan calls this 

method the “independent multiple-FG decoding” as opposed to the “dependent 
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multiple-FG decoding”, in which FGs operate successively by utilizing the final LLRs 

of the previous FG within the set [Akdoğan, 2018].  

 

3.3.1. Randomly Chosen Multiple Factor Graph BP Decoding Performance of 

Polar Codes over the AWGN 

In this section, BLER performance of randomly chosen multiple-FG decoders is 

studied. As the number of FGs in the set, we choose 𝑛 =  𝑙𝑜𝑔2𝑁, and perform n-FG 

decoding as opposed to the single-FG decoders of Section 3.2. We know that the 

original factor graph of polar codes, the RFG, is one of the decoders with the best 

performance among 𝑛! FGs [Doğan, 2015], [Peker, 2018], [Akdoğan, 2018], [Elkelesh 

et al, 2018]. Therefore, to increase the performance of the multiple-FG decoder, the 

RFG that has the SON = n…21 is always kept in the decoder set and the rest of the 

(𝑛 − 1) factor graphs are randomly selected out of (𝑛! − 1) FGs with equal 

probabilities. We first examine the performance of the Ƥ(128, 64) polar code over the 

AWGN channel with constant SNR (2 dB). In each simulation, 104 channel output 

blocks are submitted to the decoder, and the RFG is used as the first decoder. If the 

RFG fails to decode, a random FG among (7!– 1) = 5039 FG’s is invoked. Blocks that 

cannot be decoded by an FG are attempted by another randomly chosen FG, until the 

7th FG is reached. 7-FG BP decoding performances of 10 different random 7-FG sets 

are shown in Figure 3.7. 
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Figure 3.7. BLER performance of ten random 7-FG decoders for Ƥ(128, 64) at SNR=2dB, versus the 

number of factor graphs. 

 

A sample decoder set for Ƥ(128, 64) corresponding to Series 4 in Figure 3.7 is 

exemplified in Table 3.2.  

 

Table 3.2. Stage order numbers (SONs) and number of decoded words out of 10000 blocks for a 

sample set of random factor graphs (FGs) used in 7-FG decoders of Ƥ(128, 64) at SNR=2dB. 

 1st FG 2nd FG 3rd FG 4th FG 5th FG 6th FG 7th FG 

SON 7654321 2174536 6132457 5672431 2345716 5216347 2463175 

Number of 

decoded 

words 

 

8590 

 

 

148 

 

94 

 

121 

 

41 

 

11 

 

46 

 

It can be seen from Figure 3.7 that all 10 different random factor graph sets have 

similar performances. The RFG decoder initially performs ~0.14 error-ratio and after 

6 more decoder’s attempts, the BLER value decreases to ~0.09 at that specific noise 

realization, which is simulated using the same seed in all ten cases for fair comparison.  
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There are many studies on the performance of polar codes using cyclic shift multiple-

FG BP decoders, the complexity of which is O(𝑁(𝑙𝑜𝑔𝑁)2) [Korada, 2009], [Hussami 

et al., 2009], [Elkelesh et al., 2018a] [Elkelesh et al., 2018b], [Doan, Hashemi, 

Mondelli, Gross, 2018]. Cyclic shift factor graph sets have 𝑛 elements that can be 

created from the reference factor graph by shifting each stage cyclically from right to 

left (or from left to right) one by one. Theoretically, the overall n-FG performance 

doesn’t change since the order of the FGs in the set does not matter if the set remains 

the same. For 𝑛 =  7, the factor graphs of the cyclic multiple-FG decoder have the 

SONs: 7654321, 6543217, 5432176, 4321765, 3217654, 2176543 and 1765432. 

 

   

Figure 3.8. BLER comparison of the cyclic 7-FG BP decoder with ten random 7-FG BP decoders for 

Ƥ(128, 64) at 𝑆𝑁𝑅 = 2 dB. 

 

In Figure 3.8, we plot the cyclic 7-FG performance on the left alone, and then on the 

right, we merge it onto the performances of all ten randomly chosen 7-FG sets shown 

in Figure 3.7. The graph on the right shows us that random and cyclic BP decoders 

follow a similar trend for 𝑛 =  7. One may say that the deterministic cyclic 7-FG BP 

decoder for Ƥ(128, 64) performs better than approximately half of the ten randomly 

chosen 7-FG sets, and worse than the other half. Hence, it seems safer to use the cyclic 

set of 7 FGs rather than a random set. 
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Next, random n-FG BP decoder tests are carried out for Ƥ(1024, 512), to see the 

performance for a larger code length. Again, the first FG of the set is selected as the 

RFG decoder, having the stage order:10-9-8-7-6-5-4-3-2-1, and the remaining nine 

FGs are chosen randomly. SNR value of the channel is set to 1.5 dB to have similar 

BLER performance with the Ƥ(128, 64) case and 103 codeword blocks are used for 

each simulation. It is also of interest to compare the performance of the cyclic 10-FG 

decoder with those of random 10-FG sets. So, in Figure 3.9, we plot the cyclic 10-FG 

performance on the left alone, and then on the right, we merge it onto the performances 

of ten random FG sets. One observes that for 𝑛 =  10, the cyclic decoder is better 

than ~70% of the ten random sets (Figure 3.9), as opposed to ~50% observed for 𝑛 =

 7 (Figure 3.8). 

 

By comparing Figure 3.9 with Figure 3.8, one also observes that the performances of 

randomly chosen n-FG sets start to differ more as n increases. In some sets of Figure 

3.9 such as Series 10, good FG combinations might coincide and create an effective 

increase in performance; whereas in some others, worse combination of FGs might 

meet by chance as in Series 1.  As also suggested by rapidly increasing gain of the 

RFG over the IRFG in Figure 3.6; as 𝑛 increases, an n-FG decoder with randomly 

chosen FGs may function much more poorly than the RFG alone. Hence, random 

choice of n-FG decoders seems not suitable for large values of 𝑛. 
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Figure 3.9. BLER comparison of the cyclic 10-FG BP decoder with ten random 10-FG BP decoders 

for Ƥ(1024, 512) at 𝑆𝑁𝑅 = 1.5 dB. 

 

Still, the question arises that “How many FGs should be chosen for better performance 

in terms of both speed and BLER of Ƥ(1024, 512) BP decoders?” So, we increase the 

number of permuted factor graphs to 100 and make other ten simulations by using 104 

different codewords at 𝑆𝑁𝑅 =  1.5 dB. Results are presented in Figure 3.10 at 

quantized steps of 10 FGs; i.e., for 10k-FG decoders, where 𝑘 = 1, … ,10.  

 

 

Figure 3.10. BLER of multiple-FG BP decoder for Ƥ(1024, 512) at 𝑆𝑁𝑅 = 1.5 dB versus the  

number of FGs, for cyclic 10-FG and ten random choices of 100-FG decoders. 
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Figure 3.10 shows that if one uses randomly chosen 99 FGs together with the RFG 

decoder instead of single RFG decoder, the block error-ratio decreases from ~0.18 to 

~0.12 for Ƥ(1024, 512). However, the slope of the BLER decrease may be very small 

if the set size is less than 90 (as in Series 1, blue curve of Figure 3.10) or larger than 

20 (as in Series 2, orange curve of Figure 3.10). Besides, increasing the number of 

factor graphs more than enough, causes the decoder work more slowly.   

 

As stated before, the results in this section are consistent with the results in Figures 

3.5 and 3.6 of Section 3.2; which show that as n increases, IRFG and RFG decoder 

performances have huge differences in their BLER performances. For the polar code 

Ƥ(1024, 512), 10! = 3,628,800 different FG representations exist and randomly 

composed FG sets have poor decoding performances with a large probability. On the 

other hand, the cyclic 10-FG decoder, whose FGs are chosen deterministically is more 

promising, since it performs better than ~70% of the random 10-FG sets generated in 

our simulations. 

 

In order to determine well performing multiple-FG sets, one may need to focus on 

single decoding performances of each FG. For example, in Figure 3.9, Series 10 shows 

a drastic performance gain at the 7th decoder which has stage order number, SON = 

968A374512 (calling 10 = A). Similarly, in Series 4, it is the 8th decoder with SON = 

97548A6213 that shows an abrupt performance gain. Moreover, in Figure 3.10, the 

BLER of Series 1 decreases after the 94th FG with SON = 86A7953241 and that of 

Series 2 after its 15th FG having SON = A967538421.  

 

All these factor graph representations with better decoding performances seem to 

possess a common characteristic: They all have the small stage numbers at the end. 

Therefore, we think that this characteristic might be taken into consideration while 

selecting the FG sets of multiple-FG decoders. Next section gives our deterministic 

set selection methods in more detail.  
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3.3.2. Predetermined Multiple Factor Graph BP Decoding Performance of Polar 

Codes over the AWGN 

Previous section reveals that for the long code lengths, the FG sets of multiple-FG 

decoders should be selected deterministically; because, performance gain might not 

be obtained by random selection. Therefore, in this part of the study, we try to find a 

legitimate approach to construct n-FG sets (i.e., to find the SONs of FGs in the set) 

better than the cyclic n-FG set for the multiple-FG decoder.   

 

Stage order number (SON) uniquely defines an FG representation [Akdoğan, 2018]. 

The performance of a single-FG BP decoder, is shown to be positively correlated with 

the number of frozen variables in its representation; and also with the sum of capacities 

of all information transmission paths [Doğan, 2015], [Peker, 2018]. These two 

parameters are abbreviated as FV (the number of frozen variables) and CS (capacity 

sum of information channels) and discussed extensively in the related three M.Sc. 

theses completed at METU [Doğan, 2015], [Peker, 2018], [Akdoğan, 2018], where 

polar codes are designed and simulated over BECs. 

 

Akdoğan has also studied over the BEC channel and found the single-FG BP decoding 

performances of the FGs versus their SON [Akdoğan, 2018]. We perform a similar 

simulation over the AWGN channel and in Figure 3.11, we plot the BLER 

performances over an AWGN channel at 𝑆𝑁𝑅 =  1.5 dB for all single-FG BP 

decoders of Ƥ(64, 32), against their SON. This experiment is only carried out for 𝑛 =

 6 due to the formidable profusion of possible FG representations for larger block 

lengths. The horizontal axis of Figure 3.11 corresponds to the sorted SONs in 

ascending order; i.e., it starts with 123456, 123465, and ends with 654312, 654321.  
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Figure 3.11. BLERs of single-FG BP decoders for Ƥ(64, 32) over the AWGN with SNR = 1.5 dB, 

versus their SONs sorted in ascending order (where circles indicate the selection of MaxSON, and 

triangles show the selection of MaxofMax sets). 

 

In Figure 3.11, we differentiate the SONs starting with different numbers by different 

colors. Therefore, in each group starting with the same stage number, the leftmost part 

of the color region corresponds to the minimum SON and the rightmost part 

corresponds to the maximum SON. Since 𝑛 =  6, in each color group there are 5!  =

 120 SONs. When the SONs are sorted from the smallest to the largest; one obtains 

the BLER performances shown in Figure 3.11 over the AWGN with 𝑆𝑁𝑅 =  1.5 dB.   

 

According to this graph, the FGs with maximum SONs in each 120-element group 

seem to have relatively good BLER performances. They are marked with circles in 

Figure 3.11. We base our first proposal for the selection of n FGs of the n-FG BP 

decoder upon this observation; so, we pick the maximum SONs in each group (starting 

with a different stage order) to form an n-element set. For 𝑁 =  64, this rule 

corresponds to the 6-element set: {654321, 564321, 465321, 365421, 265431, 

165432} as the FGs of the n-FG BP decoder, which is going to be referred to as the 
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MaxSON decoder choice from now on. One may notice that the first and the last 

elements of the MaxSON set are shared by the cyclic set as well. 

 

Another good performing group is indicated with triangles in Figure 3.11, which has 

the SONs ending with 321; i.e., 654321, 645321, 564321, 546321, 465321 and 

456321. In other words, they are the ones constructed by shuffling the first 3 digits of 

the SON of the RFG decoder. For 𝑛 >  6, similar n-element sets can be generated by 

keeping the last (𝑛 −4) digits of the SON fixed, while permuting the first 4 digits of 

the RFG, so that 4!  =  24 different SON values are obtained. For the n-FG decoder, 

one can choose the n biggest values out of these 24 SONs if 𝑛 ≤ 24. We name the FG 

set chosen this way as the MaxofMax set. So, for 7 ≤ 𝑛 ≤ 14, we compare the 

performance of the n-FG sets chosen as  

 

i) all cyclic rotations of the RFG,  

ii) MaxSON set; i.e., the maximum SONs starting with each one of the n stages,  

iii) MaxofMax set; i.e., the n maximum SONs in the set of permuted first 4 digits.  

 

Notice that all these set choices contain the RFG as their principal element. Moreover, 

the first and second rules share a second FG as well, which is the FG starting with 

stage 1. The third rule is defined for 𝑛 ≥ 7 and applicable only to 𝑛 ≤ 24, or 𝑁 ≤ 

16,777,216; which seems sufficient for practical purposes. A slightly modulated form 

of the MaxofMax rule can also be used for 𝑛 = 6; by permuting the first 3 digits of 

the 6-digit SONs instead of their first 4 digits. 
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Figure 3.12. BLER performances of the cyclic shift, MaxSON and MaxofMax choices for the FG set 

of the n-FG BP decoder for various code lengths 𝑁 = 2𝑛=128, 256, 512, 1024, 2048 and 4096; where 

the AWGN channel SNRs are adjusted as 2, 1.8, 1.75, 1.7, 1.4 and 1.35 dB respectively. 

 

In Figure 3.12, the BLER performances of the three set-choice methods are plotted 

versus the number of factor graphs for 7 ≤ 𝑛 ≤ 12. For each code length, we choose 
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a specific SNR value so that the RFG decoders of all lengths display approximately 

the same performances. 104 codewords are used in all simulations, and randomizing 

seeds of noise samples are kept the same in all simulations to compare the 

performances of the three set-choice rules fairly.  

 

According to the results presented in Figure 3.12, although the performance of the 

cyclic decoder for Ƥ(128, 64) is better than those of the MaxSON and MaxofMax 

choices; as N grows, the cyclic choice of FGs quickly loses this advantage and 

becomes the worst among the three choices. On the other hand, the MaxSON choice 

seems to be the best for 𝑁 = 256, 512 and 1024, and the MaxofMax choice starts to 

slightly outperform it for 𝑁 = 2048 and 4096. Both suggested methods become more 

profitable than the cyclic decoder structure for 𝑁 > 128 and it seems worthwhile to 

prefer them. Appendix B focuses on polar codes Ƥ(1024, 512) and Ƥ(2048, 1024) to 

analyze the individual effects of single-FG performances of the 𝑛 factor graphs in 

MaxofMax and MaxSON decoders. 

 

To have a better understanding of the performance of the suggested choices of n-FG 

sets, we focus on higher code lengths with 10 ≤ 𝑛 ≤ 14, and find the BLER 

performance versus a wider SNR range for the cyclic, MaxSON and MaxofMax n-FG 

belief propagation decoders (together with a randomly chosen set for 10 ≤ 𝑛 ≤ 12). 

Figure 3.13 summarizes the results of this experiment, where we compare the block 

error ratio performances of the single RFG and multiple n-FG BP decoders for 

Ƥ(1024, 512), Ƥ(2048, 1024), Ƥ(4096, 2048), Ƥ(8192, 4096) and Ƥ(16384, 8192). The 

number of maximum iterations is chosen as 200, and all noise realizations are kept the 

same for fair comparison. The BP decoder having the best performance among single-

FG decoders; i.e., the RFG is included as a reference in Figure 3.13, to observe the n-

FG decoder gain over single-FG performance. For each polar code Ƥ(2𝑛, 2𝑛−1), the 

FG sets formed either by cyclic shifts or by our MaxSON and MaxofMax rules, are of 

size 𝑛.  
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Figure 3.13. BLER performances of RFG as compared to n-FG BP decoders chosen randomly or 

deterministically by cyclic, MaxSON and MaxofMax rules for Ƥ(1024, 512), Ƥ(2048, 1024), Ƥ(4096, 

2048); and by cyclic, MaxSON, MaxofMax rules for Ƥ(8192, 4096) and Ƥ(16384, 8192). 
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We observe that the BLER performance of the RFG (blue curve) is the worst in all 

five figures of Figure 3.13 as expected, because the other BP decoders are multiple-

FG decoders. However, as the code length N increases, both the cyclic n-FG (dark 

blue curve) and the randomly chosen (pink curve) n-FG decoders start to approach the 

RFG curve; and somewhat astonishingly, a randomly chosen 12-FG decoder for 

Ƥ(4096, 2048) performs exactly the same as the single RFG decoder. On the other 

hand, performances of both of our set choices (dashed black and red curves) seem 

quite satisfactory. They are the best ones in all cases, the MaxofMax rule of set choice 

being somewhat beaten by the MaxSON rule; but the inner-competition between them 

seems to become more driving as 𝑁 grows. The gain of the MaxSON decoder (dashed 

red curve) over the cyclic decoder (dark blue curve) at BLER= 10−3 is 0.13, 0.16, 

0.23, 0.32 and 0.38 dB respectively for the rate-0.5 polar codes Ƥ(1024, 512), Ƥ(2048, 

1024), Ƥ(4096, 2048), Ƥ(8192, 4096) and Ƥ(16384, 8192). Even though the BP 

decoder whose FGs are chosen by the MaxofMax rule doesn’t work as effectively as 

the MaxSON decoder for 𝑛 = 10 and 11; it performs as well as the MaxSON decoder 

for 𝑛 = 12, 13 and 14. The SNR gain of the MaxofMax decoder over the cyclic 

decoder at BLER= 10−3 is 0.2, 0.29 and 0.45 dB respectively for the codes Ƥ(4096, 

2048), Ƥ(8192, 4096) and Ƥ(16384, 8192). 

  

In Figure 3.14, we plot the SNR gains of the MaxSON and MaxofMax decoders over 

the cyclic decoder versus 𝑛 for a fixed BLER = 10−3. When the performance for all 

the code lengths is taken into account, the MaxSON decoder seems to be more 

beneficial than the MaxofMax decoder in general. 
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Figure 3.14. SNR gains at BLER = 10−3 of the MaxSON and MaxofMax n-FG BP decoders over the 

cyclic n-FG BP decoder versus 𝑛.  

 

3.4. Performance Comparison of Multiple Factor Graph BP Decoding for Polar 

Codes and Reed-Muller Codes 

It is a well-known fact that polar codes are close cousins of the Reed-Muller (RM) 

codes; and they only differ by the selection rule of the rows of the G2
⨂𝑛 matrix 

mentioned in Section 2.1: “Polar codes select the rows of G2
⨂𝑛 so as to minimize the 

Bhattacharyya parameters and RM codes select them to maximize their Hamming 

weights.” The aim of this section is to present some experimental results showing the 

differences between the BP decoder performances of polar and RM codes. Since the 

code rate is chosen as 0.5 throughout the thesis, we simulate RM codes of rate 0.5.  

 

First, the performances of the (2𝑛, 2𝑛−1) RM and polar codes for different code lengths 

are compared in Figure 3.15 and quite surprisingly, it is observed that for the RM 

codes, if one increases the code length, single-FG (RFG in this case) BP decoder 

performance decreases. Hence, while for 𝑛 =  7, RFG BP decoders for polar and RM 

codes have similar BLER performances; for 𝑛 =  9 and 11, polar RFG decoders have 

considerably better performances than the RM decoders. 
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Figure 3.15. BLER of the RFG decoder for polar (solid lines) and RM codes (dashed lines), versus 

the channel SNR, where red, green and purple curves are corresponding respectively to  

(𝑁, 𝐾) = (128, 64), (512, 256), and (2048, 1024) codes.  

 

In order to explore the contribution of multiple-FG decoding, we plot the 120-FG 

performance of RM codes for 𝑛 = 9, in Figure 3.16. Set choice of the 120-FG BP 

decoder is done by slightly modifying the MaxofMax algorithm; and the first 5 stages 

are permuted instead of 4, so as to generate 5! = 120 factor graphs.  

 

 

Figure 3.16. BLER performance comparison between the RFG and 120-FG BP decoders of RM 

codes and the RFG decoder of polar codes for (N, K) = (512, 256). 
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Results of Figure 3.16 show that the RFG BP decoder for the (512, 256) polar codes 

over-performs the 120-FG BP decoder for the (512, 256) RM codes at low SNRs. 

However, the performance of the 120-FG decoder gets better in the high SNR region.  

 

Figure 3.16 leads one to investigate the required number of decoders for the RM code 

to achieve the polar code’s performance. Since the number of multiple-FGs is very 

high for longer code lengths, a practical value of 𝑛 =  7 is chosen in order to cover 

all possible FGs in the multiple-FG decoder set. So, 7!  = 5040 FGs are used for 

comparison with the earlier studies of Peker, performed for a BEC, where multiple-

FG BP decoders are selected among the maximum equi-FV sets up to 152 FGs [Peker, 

2018]. In Figure 3.17, we compare the performances of 5040-FG decoders (ranked in 

decreasing order of SON), for the RM and adaptive polar codes designed over a 

BEC(𝜖) with the erasure probability 𝜖 = 0.35. (Note that the adaptive polar code 

designed for 𝜖 = 0.35 turns out to be the same as the polar code designed for 𝜖 = 0.5 

in this case.)  

 

 

Figure 3.17. BLER performance comparison of multiple-FG BP decoders for the RM codes and 

adaptive polar codes for (N, K) = (128, 64) over a BEC(𝜖) with 𝜖 =0.35.. 
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In Figure 3.17, which shows the simulation results over a BEC(𝜖) with erasure rate 𝜖 

= 0.35, the multiple-FG BP decoder for the RM code starts to perform better than the 

polar multiple-FG BP decoder, if the number of FGs is greater than 850. However, the 

trend with increasing n (shown in Figure 3.15) of deteriorating BP decoding 

performance for the RM codes should also be taken into consideration.  

 

We also perform a similar simulation over an AWGN at SNR = 2 dB. In Figure 3.18, 

simulation results plotted for multiple-FG BP decoding of the adaptive polar code 

(designed at 2 dB) seem to be better than that of the RM code, if the number of FGs 

is less than approximately 2500; but both performances reach the same point at the 

end of the experiment. The performance of the multiple-FG BP decoder of the polar 

code designed at 0 dB is better than that of RM code till M is approximately 250 but 

for higher values of M, it is quite similar to that of the RM code as well. 

 

 

Figure 3.18. BLER performance comparison of multiple-FG BP decoders for the RM codes and polar 

codes with parameters (N, K) = (128, 64) over an AWGN at 𝑆𝑁𝑅 =  2𝑑𝐵.  
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3.5. Performance Comparison with Other Multiple Factor Graph BP Decoders 

over the AWGN 

Belief propagation decoding using factor graphs with permuted stages is extensively 

discussed in the literature [Doan et al., 2018], [Elkelesh et al., 2018a], [Elkelesh et al., 

2018b], [Hashemi et al., 2018]. In this section, we compare the performance of our 

set-choice proposals (MaxSON and MaxofMax) with some of them, by using polar 

codes constructed both at some constant design-SNRs and according to the specific 

channel SNR.   

 

One of these studies carried out for Ƥ(1024, 512) by Doan, Hashemi, Mondelli and 

Gross compares the performances of multiple-FG decoders such as PBP-CS (meaning 

“permuted BP decoder with cyclic shift” that we call “cyclic 10-FG” in our work), and 

PBP-B10 (meaning “permuted BP decoder with the best 10 FGs”, whose 10 FGs are 

chosen by Doan et al. beforehand to maximize the probability of successful decoding), 

and SCL32 (successive cancellation-list decoder of list size 32), with the single-FG 

decoders such as BP (that we call the RFG in our work) and SC (successive 

cancellation) decoders [Doan et al., 2018].  

 

In Figure 3.19, we plot our performance results (dashed curves) obtained by the RFG, 

cyclic, MaxofMax and MaxSON decoders, together with Doan et al.’s results (solid 

curves) for the polar code Ƥ(1024, 512), for which the design SNR is not stated. So, 

we compare their results with four choices of the design-SNR, three of them being 

constant and the last one being variable design SNRs. One of the constant design SNRs 

that we pick is Arıkan’s suggestion (Z0 = 0.5 corresponding to SNR = −1.59 dB) 

[Arıkan, 2008]; the second one is Vangala’s proposal (0 dB SNR) [Vangala et al., 

2015]; and the third constant design SNR is chosen as 0.5 dB. The last performance 

curve in Figure 3.19 is obtained for channel-specifically designed polar codes, where 

we vary the design-SNR of the polar code in each simulation point, with steps of 0.5 
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dB (or 0.2 dB for our last cyclic, MaxSON and MaxofMax points in the last sub-figure 

of Figure 3.19). 

 

 

 

 

Figure 3.19. BLER performance comparison between the BP decoders of our study (shown by dashed 

lines) and another study in the literature reproduced from [Doan et al., 2018]) (shown by solid lines); 

where our first three figures are obtained for Ƥ(1024, 512) constructed at fixed design-SNRs (−1.59, 

0, 0.5 dB) and last one is constructed with variable, channel-specific design-SNR.  
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One observes from the dashed curves of Figure 3.19 that the BP decoding performance 

of polar codes is highly dependent on the design SNR. Among the chosen four cases, 

our dashed simulation curves have the worst performance for the fixed design-SNR of 

−1.59 dB (Z0 = 0.5) and the best performance for the channel-specific design with 

variable design-SNR. When the polar codes are designed adaptively at each channel 

SNR, it can be seen from the last sub-figure of Figure 3.19 that all of our dashed curves 

become better. However, the fact that our BP decoding algorithm uses perfect 

knowledge based (PKB) decisions for early termination causes our BLER curves be 

better than would be obtained in practice. Since Doan et al. use a practical decision 

criterion, a fair comparison is not possible at this point. Therefore, we delay our 

comments on performance comparison to the end of this chapter, where we add a 

practical criterion for early termination. 

 

Two other studies on multiple-FG BP decoders are carried out for Ƥ(2048, 1024) 

codes by Elkelesh, Ebada, Cammerer and Brink in 2018[Elkelesh et al., 2018a], 

[Elkelesh et al., 2018b]. The design of polar codes used by Elkelesh et al. is according 

to Arıkan’s suggested method for AWGNs [Arıkan, 2009]. In order to find a 

comparable design-SNR with Elkelesh et al.’s work, we plot the BLER performances 

polar codes we’ve designed at different design-SNRs in Figure 3.20.  

 

Elkelesh et al.’s single BP decoder is the same as our RFG BP decoder, and their BP 

list decoder, BPL [Elkelesh et al., 2018a] with a list size of 𝐿 = 10 is a multiple FG 

decoder, whose FGs are created with random permutations; so, while comparing its 

performance with that of our cyclic 11-FG decoder, one may expect a worse BLER 

curve similar to Ƥ(2048, 1024) curves of Figure 3.13. On the other hand, their BPL 

[Elkelesh et al., 2018b] decoder with a list size of 𝐿 = 32 includes randomly generated 

(32 – 11 = 21) FGs, in addition to the 11 cyclic permutations of the RFG. So, it is 

expected to perform better than the cyclic 11-FG decoder and our MaxSON 11-FG 

decoder.  
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Since our decoders use perfect knowledge based (PKB) decisions for early 

termination, we avoid comparison with the results in the literature, until we add a 

practical stopping criterion to our BP decoding as in Figures 3.21, 3.22 and 3.23.  

 

 

 

 

Figure 3.20. BLER performance comparison for Ƥ(2048, 1024), constructed at different design-

SNRs, between the decoders of our study (shown by dashed lines) and another one in the literature 

(shown by solid lines, reproduced from [Elkelesh et al., 2018a] and [Elkelesh et al., 2018b]). 
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The last sub-figure of Figure 3.20 corresponds to the channel-specific design that is 

expected to work the best; and it seems to result in quite satisfactory performance for 

the MaxSON 11-FG decoder. However, rather unpredictably, the RFG decoder of the 

channel-specifically designed Ƥ(2048, 1024) code has worse performance than that of 

the fixed 0.5 dB design. This is also verified in Appendix C, in which the performance 

comparison between our RFG and MaxSON decoders is given for different design 

SNRs. 

 

As emphasized above, our simulation results presented up to this point demonstrate 

the BLER performances of the proposed BP decoders, stopped by early decisions 

based on the perfect knowledge of the transmitted bits. Since in practical applications 

the receiver doesn’t know the transmitted bits; the promising performance of the 

MaxSON decoder should be tested under a practical decision criterion as well. For 

this purpose, we repeat some simulations, and instead of the PKB decisions of the 

previous simulations, we stop the BP decoding algorithm by a cyclic redundancy 

check (CRC) decision. We generate 𝑟 bits of CRC for 𝐾 − 𝑟 input bits, at the cost of 

rate loss = 𝑟/𝑁. At each step of 10 BP iterations, we check whether the CRC of input 

bits is satisfied. Decoding stops when either the CRC is fulfilled, or the maximum 

number of 200 iterations is reached. The CRC polynomial of length 16 that we use is 

𝑥16 + 𝑥12 + 𝑥5 + 1, and the corresponding rate loss is reflected to the SNR in the 

horizontal axis of the related figures. 

 

Figure 3.21 and Figure 3.22 show the BLER performance comparison of the polar 

codes under perfect knowledge based (PKB) and CRC based early termination 

algorithms for polar codes of lengths 𝑁 = 1024 and 2048. Dashed lines show the PKB 

performances of the RFG, cyclic and MaxSON decoders and the solid lines of 

corresponding colors show the CRC16 based practical decisions. Green lines display 

the SCL32 (successive cancellation-list decoder of list size 32) decoder performances. 

We select the design-SNR of 0.5 dB in both cases, in order to keep the performances 
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of the RFGs in ours (found by CRC16 based decisions) and others [Doan et al., 2018], 

[Elkelesh et al., 2018a], [Elkelesh et al., 2018b] comparable, so that a base of reference 

is provided for the multiple-FG performance comparison of the proposed BP decoders.   

 

 

Figure 3.21. BLER performance for Ƥ(1024, 512), constructed at 0.5 dB design-SNR, of our RFG, 

cyclic and MaxSON decoders using perfect knowledge based (PKB) and CRC based early 

termination, (Doan’s curves are reproduced from [Doan et al., 2018]). 
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One observes from Figure 3.21 that Doan’s RFG (blue) and cyclic 10-FG (dark blue) 

decoders have very similar performance to ours obtained with CRC16 decisions, 

which forms a fair comparison base. Although Doan’s 10-FG and our MaxSON 10-

FG (with CRC16) decoders also have similar performance, ours seems more 

preferable because of its deterministic MaxSON rule of choosing 10 FGs, instead of 

Doan et al.’s experimental method of selecting 10 FGs to maximize the probability of 

successful decoding. The performance loss of the CRC16 decisions over PKB 

decisions is around 0.18 dB; approximately 0.15 dB of which corresponding to the 

rate loss (𝑟/𝑁 = 16/1024) penalty of CRC16 that is reflected to the horizontal axis. 

So, with CRC16 based decisions, the MaxSON 10-FG decoder is observed to no 

longer compete with the SCL32 decoder, which is only possible with PKB decisions 

for 𝑁 = 1024. 

 

 

Figure 3.22. BLER performance for Ƥ(2048, 1024), constructed at 0.5 dB design-SNR, of our RFG 

and MaxSON decoders using perfect knowledge based (PKB) and CRC based termination, 

(Elkelesh’s curves are reproduced from [Elkelesh et al., 2018a] and [Elkelesh et al., 2018b].). 
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In Figure 3.22 that is plotted for 𝑁 = 2048, again a fair comparison base is achieved 

because of the matching performances of Elkelesh’s RFG and our RFG (with CRC16 

decisions). Since the CRC rate loss (𝑟/𝑁 = 16/2048) penalty that is reflected to the 

horizontal axis (~0.08 dB) is smaller than the 𝑁 = 1024 case, the performance of the 

MaxSON 11-FG (CRC16) decoder is now comparable to that of the SCL32 decoder 

for 𝑁 = 2048. This performance looks quite promising since the multiple-FG BP 

decoder has the potential of reaching much higher speeds, because of the parallel 

implementation of multiple factor graphs.  

 

Finally, we plot the BLER and BER performances of the RFG and MaxSON decoders 

for Ƥ(1024, 512) and Ƥ(2048, 1024) in Figure 3.23. Solid lines display the BLER and 

dashed lines show the BER performances. We plot the BER curves of the MaxSON 

decoders by considering two different FGs in the multiple FG set. Whenever a 

received block remains undecoded, we either reflect it to the BER of the 𝐾 − 𝑟 

information bits found by 200 iterations of the first FG in the set, that is the RFG, or 

to the information bits found by the last FG within the set of the MaxSON decoder. 

Of course, the second BER is expected to be higher, because the individual 

performance of the last FG is quite bad; but we wonder how much this difference is. 

It can be seen from Figure 3.23 that the BER performance of the last FG is so bad that 

it is almost equal to the BER performance of the RFG decoder. Although for the 

MaxSON decoder, the number of undecoded blocks is less than that of the RFG 

decoder, the BER found for the last FG approaches the BER of the single-FG 

performance of the RFG. On the other hand, the BER performance of the MaxSON 

decoder calculated by the first FG (i.e., the RFG in the n-FG set) is better than the 

single-FG performance of the RFG decoder by up to 0.5 dB at a BER value of 10−5. 
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Figure 3.23. BLER (solid lines) and BER(dashed lines) performances for Ƥ(1024, 512) and Ƥ(2048, 

1024), constructed at 0.5 dB design-SNR, between our RFG and MaxSON decoders using CRC16 

based early termination. 
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CHAPTER 4  

 

4. CONCLUSION 

 

In this thesis, belief propagation (BP) decoders for rate-0.5 polar codes designed over 

binary-input additive white Gaussian noise channels are studied, also glancing at the 

BP decoder performance of the Reed-Muller codes in a few cases. For a polar code 

Ƥ(𝑁, 𝐾) = Ƥ(2𝑛, 2𝑛−1), there are 𝑛! different factor graph (FG) representations whose 

decoding performances may differ; so, we explore the problem of finding better 

performing FG sets for the multiple-FG belief propagation decoder, by simulations 

performed for 𝑛 ≤ 14 and 𝑁 ≤ 16384.  

 

Early studies have shown that among single-FG BP decoders, the reference factor 

graph (RFG) BP decoder performance is one of the best and the inverse-RFG (IRFG) 

performance is the worst [Doğan, 2015], [Peker, 2018], [Akdoğan, 2018]. Exploring 

the performance variation of the RFG and the IRFG BP decoders for polar codes 

designed over the AWGN channels at 0 dB, one of our noteworthy observations is 

that, as the code length increases from 64 to 4096, the RFG decoder performance 

improves whereas the IRFG performance degrades. Hence the polar code Ƥ(4096, 

2048) performs as the best single-FG BP decoder; but its IRFG decoder, quite 

unpredictably, performs as the worst one. On the other hand, while the polar code 

Ƥ(64, 32) gives the anticipated worst RFG performance, it has the best IRFG 

performance. Our simulation results show that the gain of the RFG decoder over the 

IRFG decoder increases linearly with the increasing code length 𝑛, from 0.6 dB for 

𝑛 = 6 to 7.6 dB for 𝑛 = 12,  at the BLER = 10−2.  

 

Since the gap between the RFG and the IRFG performance increases with length, 

multiple-FG BP decoder sets combined of FGs with random stage permutations don’t 
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function well for long code lengths. In other words, when the code length 𝑁 = 2𝑛 

increases, a random FG chosen among 𝑛! different factor graphs has a smaller chance 

of performing effectively. Hence, the total performance of a randomly chosen 

multiple-FG set decreases with a high probability.  

 

Noticing that random selection is not a good option for generating multiple-FG sets of 

BP decoders, we aim at a wiser method to create n-FG decoders. Observing the 

performance of all 𝑛! single-FG BP decoders for Ƥ(64, 32) over an AWGN channel at 

1.5 dB versus their stage order numbers (SONs) (introduced by Akdoğan [Akdoğan, 

2018]); we propose two different n-FG decoder selection algorithms, namely the 

MaxSON and MaxofMax rules explained on pages 53 and 54.  

 

For polar codes Ƥ(2𝑛, 2𝑛−1) with 6≤ 𝑛 ≤14, designed over an AWGN at 0 dB, the 

performances of the MaxSON and MaxofMax decoders are compared to the cyclic 

and randomly constructed n-FG decoders, which are frequently mentioned in the 

literature [Korada, 2009], [Hussami et al., 2009], [Elkelesh et al., 2018a], [Elkelesh et 

al., 2018b], [Doan, Hashemi, Mondelli, Gross, 2018]. It is observed that both rules of 

choosing n FGs that we propose give much better results than those of the cyclic n-

FG decoder. The SNR gain of our MaxSON n-FG decoder over the cyclic decoder 

increases with the increasing code length 𝑛, and approaches to 0.38 dB at BLER 

= 10−3, for Ƥ(16384, 8192) and 𝑛 = 14. 

 

When the BP decoding performances of the polar codes and Reed-Muller (RM) codes 

are compared; our results show that the single-FG (RFG) performance of a polar code 

is much better than that of the corresponding RM code, and the gap between their 

performances increases with the code length. However, with multiple-FG BP 

decoders, polar and RM code performances are observed to approach each other as 

the number of utilized FGs increases. 
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Set choice methods of MaxSON and MaxofMax that we present in this study are 

observed to compete with similar multiple-FG belief propagation decoders in the 

literature [Doan et al., 2018], [ Elkelesh et al., 2018a] and [Elkelesh et al., 2018b], in 

terms of not only performance, but also the ease in their formation that uses only the 

SONs of the FGs.  

 

Since we mainly use perfect knowledge based (PKB) decisions for early termination, 

the BLER curves found in most simulations of this study form lower bounds to those 

which would be obtained in practice. In order to compare the performance of our 

decoders with the results in the literature, we modify the early termination decisions 

of the BP decoding algorithm and use a 16-bit cyclic redundancy check (CRC16) 

instead of the PKB decisions, in the last three figures of Chapter 3. Our simulations 

for Ƥ(1024, 512), with CRC16 yielding a rate loss of 𝑟/𝑁 = 16/1024 that is reflected 

to the SNR axis as a 0.15 dB-penalty, show that the MaxSON 10-FG decoder has 

equivalent performance to Doan’s 10-FG decoder that uses the best 10 FGs chosen by 

performing pre-simulations of single-FG decoding to find the most successful FGs. 

We reason that the MaxSON decoder, whose FG set is chosen deterministically 

depending on the stage order numbers (SONs), should be more preferable since 

optimization by pre-simulations may complicate the initialization of the BP decoding 

practice. However, our MaxSON 10-FG decoder cannot reach the block error ratio 

performance of SCL decoder with list size of 32 for Ƥ(1024, 512) under CRC based 

decoding algorithm, which looks reasonable considering the more complicated 

decoding of SCL32. 

 

On the other hand, for Ƥ(2048, 1024), the smaller SNR penalty of 0.08 dB resulting 

from the use of CRC16 (with rate loss 𝑟/𝑁 = 16/2048) allows our n-FG BP decoders 

be more competitive. The MaxSON 11-FG decoder has the same performance with 

Elkelesh et al.’s BPL decoder that uses 32 FGs, 11 of them taken from the cyclic set 

and the remaining 21 are chosen randomly. More importantly, Figure 3.22 on page 69 

emphasizes that the performance of our MaxSON 11-FG BP decoder reaches to that 
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of SCL32 decoder. This performance looks quite promising since the multiple-FG BP 

decoder has the potential of reaching much higher speeds, because of the parallel 

implementation of multiple factor graphs. 

 

As a future work, it is of interest to explore whether the performance of some cyclic 

redundancy check aided BP list decoders (which will perhaps be abbreviated as CA-

BPL decoders) would compete with today’s attention-receiving-performance of the 

successive cancellation list (CA-SCL) decoders. 
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APPENDICES 

 

 

A. RFG over IRFG BP Decoder Gain for Polar Code Designed over 

Binary Erasure Channels 

 

 

 

It may be of interest to examine whether the BP decoders of the polar codes designed 

over BECs behave similarly to those designed over AWGN channels; so we produce 

Figure A.1 and Figure A.2 for a visual comparison with Figure 3.5 and Figure 3.4 

respectively. 

One observes from Figure A.1 that the RFG and IRFG decoder performances over 

BECs are not as separated as in the AWGN channels of Figure 3.5. Moreover, RFGs 

as well as IRFGs are more clustered in their groups, as opposed to the AWGN channel 

case. Doubling the code length seems to produce no gain for the passage of RFG 

decoders from 𝑛 = 6 to 7, or the passage of IRFG decoders from 𝑛 = 8 to 7, as a result 

of this clustering. 

 

Figure A.2 shows that while channel-specific design shows better performance than 

fixed-design erasure rate of 0.5 for the RFG decoder, performance remains the same 

for the IRFG BP decoder of Ƥ(1024, 512) codes. 
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Figure A.1. BLER of the RFG and IRFG decoders versus the channel erasure rate. Solid lines refer to 

RFG and dotted ones of the same color refer to IRFG performances for the same code lengths.  

Blue curves: n = 6, Ƥ(64, 32), Black curves: n = 7, Ƥ(128, 64), Pink curves: n = 8, Ƥ(256, 128), Green 

curves: n = 9, Ƥ(512, 256), Yellow curves: n = 10, Ƥ(1024, 512),  

Purple curves: n = 11, Ƥ(2048, 1024), Red curves: n = 12, Ƥ(4096, 2048). 

 

 

Figure A.2. BLER performances of the RFG and IRFG BP decoders for Ƥ(1024, 512) codes, 

constructed using i) fixed design-erasure-rate of 0.5,  

ii) channel-specific design at each erasure-rate. 
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B. Some Considerations about Multiple-FG Set Choice 

 

 

 

Simulation results suggest that the gain accomplished by the multiple-FG decoder is 

due to the correct combination of different stage permutations in the n-element sets of 

FGs. So, we focus on polar codes Ƥ(1024, 512) and Ƥ(2048, 1024) to analyze the 

individual effects of single-FG performances of the n factor graphs in MaxofMax and 

MaxSON decoders. 

 

In Figure B.1 we try to show the effects of individual 1-FG performances of the FGs 

in the n-element BP decoder sets, which are formed either by cyclic shifts or by the 

MaxSON and MaxofMax rules; to the overall n-FG performance, for Ƥ(1024, 512) at 

SNR = 1.7 dB and Ƥ(2048, 1024) at SNR = 1.4 dB. Each row in the figure indicates 

the individual 1-FG BP decoding BLERs of the n factor graphs, which belong to the 

sets chosen by the MaxofMax and MaxSON rules (the cyclic set obtained by cyclic 

shifts of the RFG stages is also included in the last column for Ƥ(1024, 512)). BLERs 

are found over the same 104 AWGN output words at a certain SNR, with the same 

randomizing noise seed.  

 

The plots on the left of Figure B.1 show the performances of the n-FG BP decoders. 

On the tables, rows circled by blue curves have similar 1-FG performances and their 

contribution to the multiple-FG decoder performance is similar. The rows circled by 

red curves, show a noteworthy feature, that even a worse 1-FG performing component 

of the n-element FG set may contribute to the n-FG decoder performance (see the 6th 

and 7th elements of the MaxSON set contributing to the n-FG performance, more than 

the same numbered elements in the MaxofMax set having better 1-FG performances). 

Therefore, we conclude that the combination of good performing single-FG decoders 

may not always result in a performance increment of the multiple-FG decoder, which 

is an observation supported in the literature as well [Akdoğan, 2018]. After the BLER 
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of the n-FG decoder reduces to a certain point, the rows circled by black curves suggest 

that contributions from the last elements of the n-FG sets are not appreciable and the 

amount of the contribution seems not depending significantly on the individual 1-FG 

performances. Besides, bad performing single-FG decoders, which approximately 

have BLERs of more than 0.5 do not contribute to multiple-FG decoder performance 

at all. The same observation can also be made by examining the 1-FG performances 

of the cyclic decoder for Ƥ(1024, 512), in which the factor graphs used after the 4th 

FG seem to have very small contributions to the performance of the10-FG decoder. 

 

 

Figure B.1. Effects of individual 1-FG performances of the FGs in the n-element BP decoder sets 

(formed either by cyclic shifts or by the MaxSON and MaxofMax rules), to the overall n-FG 

performance; for Ƥ(1024, 512) at SNR = 2 dB and Ƥ(2048, 1024) at SNR = 1.7 dB. 
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C. BLER Comparison of Some BP Decoders over the AWGN for Polar 

Code Constructions Using Fixed or Channel-Specific Design-SNRs 

 

 

 

We compare the BP decoding performances of the polar codes designed with respect 

to a fixed design SNR of −1.59, 0, 0.5 and 1 dB, to those of the adaptive polar codes 

designed with respect to the specific SNR of the AWGN channel over which they are 

used. Chosen BP decoders are the single RFG and MaxSON n-FG, for Ƥ(1024, 512) 

and Ƥ(2048, 1024) in Figures C.1 and C.2 respectively. 

 

One observes in Figure C.1 that using channel-specific design for Ƥ(1024, 512) 

improves the MaxSON decoder performance much more than it affects the RFG 

decoder. The SNR gain of the “MaxSON 10-FG decoder over the RFG” in case of the 

channel-specific design is more than twice of the “MaxSON over the RFG” gain 

corresponding to the fixed 0 dB-design. 

 

 

Figure C.1. BLER performances of multiple-FG BP decoder performances for Ƥ(1024, 512) codes, 

constructed using either fixed design-SNR of 0 dB (solid curves), or channel-specific design-SNR 

(dashed curves).  
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RFG decoder performance increases with the design-SNR in Figure C.1, and its 

performance for a fixed design SNR of 1 dB is similar to that of the channel-specific 

design. However, in case of the MaxSON 10-FG decoder, the performance of the 

channel-specific design outperforms that of the 1 dB design-SNR by 0.25 dB at BLER 

= 10−3 and by 0.5 dB at BLER = 10−4. 

For Ƥ(2048, 1024), we have confusingly seen that the RFG decoder performance for 

the channel-specific design is almost the same as that of the fixed design-SNR of 0 

dB; whereas the 0.5 and 1 dB designs are better. More expectedly, the MaxSON 11-

FG decoder appears to be the best for the channel-specific design; however, the fixed 

design SNR of 1 dB performs very close to it. 

 

 

Figure C.2. BLER performances of multiple-FG BP decoder performances for Ƥ(2048, 1024) codes, 

constructed using either fixed design-SNR of 0 dB (solid curves), or channel-specific design-SNR 

(dashes curves).   

 

 


