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ABSTRACT

BELIEF PROPAGATION DECODING USING FACTOR GRAPH
PERMUTATIONS

Tosun, Berna
Master of Science, Electrical and Electronics Engineering
Supervisor: Assoc. Prof. Dr. Melek Diker Yiicel

September 2019, 88 pages

Capacity-achieving polar codes, introduced by Arikan have attracted significant
attention over a decade. The bottleneck in coding is the decoder structure that achieves
good performance with low hardware implementation cost and high throughput.
Unlike the successive cancellation decoder, belief propagation decoder that can be
improved by decoding on multiple factor graphs, allows for parallel decoding. For a
polar code of length N, there are (log,N)! = n! different permutations of the layers in
the factor graph. Multiple factor graph belief propagation decoders that employ n
factor graphs have the complexity of O(N(log N)?), and the choice of proper sets
among n! factor graphs for performance optimization is a challenging topic that has

not yet been fully explored.

In this thesis, belief propagation decoding performance of polar codes over the
additive white Gaussian noise channel is studied, by using single or multiple factor
graphs within the decoder. The performance gap between the best and worst single
factor graph decoders is found; and for multiple factor graph decoders, it is shown that
random choice of factor graphs is incompetent for long code lengths. Two set-choice
methods, MaxSON and MaxofMax rules are suggested for multiple factor graph

decoders with n elements, as an alternative to the cyclically shifted set of factor graphs.



Performance of proposed set-choice rules are compared with cyclic, random and two
other multiple factor graph belief propagation decoders given in the literature, for

different code lengths with 6 < log,N < 14.

Keywords: Polar Codes, Belief Propagation, Multiple Factor Graph Decoder
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FAKTOR DiYAGRAM PERMUTASYONLARI KULLANARAK INANC
YAYILIMLI KOD COZME

Tosun, Berna
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi
Tez Danmismani: Dog. Dr. Melek Diker Yiicel

Eylil 2019, 88 sayfa

Arikan tarafindan onerilmis ve kanal kapasitesine ulastig1 kanitlanmis olan kutupsal
kodlar, on yildan beri biiyiik ilgi toplamaktadir. Kodlamadaki en 6nemli sorun, iyi bir
basarimi, diisiik donanim masrafi ve yiiksek hizda saglayabilecek bir kod ¢oziicii
yapisidir. Cok faktor diyagram kullanarak basarimi iyilestirilebilen inang yayiliml
kod ¢oziiciisii, ardisik gotiirme kod ¢oziiciisliniin aksine, paralellestirmeye olanak
tanir. N uzunlugunda bir kutupsal koda ait faktor diyagraminin i¢ kademeleri
(log,N)! = n! farkli sekilde degistirilebilir. n faktdr diyagrami kullanan inang
yayitliml kod ¢oziiciilerin karmagsikligi, O(N (log N)?) biiyiikliigiindedir ve basarimi
eniyilestirmek icin n! faktor diyagram arasindan en uygun kiimelerin se¢imi, heniiz

tiimiiyle arastirilmamus, tetikleyici bir konudur.

Bu tezde, beyaz Gaussian giiriiltiisii eklenmis kanalda, kutupsal kodlarin, tek veya ¢ok
faktor diyagramli inang yayilimi kod ¢oziiciisii basarimlari tizerinde ¢aligilmistir. Tek
faktor diyagramli kod ¢oziiciilerin en iyi ve en kotiileri arasindaki basarim farklari
bulunmus; ayrica ¢ok faktor diyagramli kod ¢oziiciilerde rassal kiime se¢iminin biiytlik
n’ler igin yararsizligi gosterilmistir. Dongiisel kaymalarla elde edilen dongiisel
kiimeden farkli bir secenek olarak, ¢cok faktor diyagramli kod ¢oziiciiler icin MaxSON

ve MaxofMax diye adlandirilan iki tane n-elemanli kiime se¢im yontemi dnerilmistir.

Vil



Onerilen kiime se¢im ydntemlerinin basarimlari, dongiisel, rassal ve literatiirde gecen
iki diger ¢ok faktor diyagramli inang yayilimli kod ¢oziiciiniin basarimlariyla, 6

< log,N < 14 esitsizligini saglayan farkli kod boylar1 i¢in karsilagtirilmistir.

Anahtar Kelimeler: Kutupsal Kodlar, Inan¢ Yayilimi, Cok Faktér Diyagramli Kod
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CHAPTER 1
INTRODUCTION

“The fundamental problem of communication is that of reproducing at one point either
exactly or approximately a message selected at another point” [Shannon, 1948]. Main
purpose of a communication system is transmitting the information to the receiver in
an efficient and reliable way, in the presence of noise. To attain this objective, the
common procedure is to add a structured redundancy to the data before transmission.
The way of adding the redundancy is called channel coding. An illustration of a

simplified communication system is shown in Figure 1.1.

KBits [ ¢ N Bits N Bits ["Channel | K Bits
— Channel Transmitter Receiver Channel —>
Encoder Decoder

Figure 1.1. Simplified communication system.

1.1. Channel Coding

The field of channel coding began with Shannon’s information theory [Shannon,
1948], which tells us the amount of information that a channel can carry; in other
words, the capacity of the channel. One of his main results is that data transmission is
possible with arbitrarily small error probabilities, if the transmission rate is below or
equal to the channel capacity, which can only be achieved asymptotically by coding
schemes with codewords of infinite length. However, such an increase in codeword
length has implications on the complexity of encoders and decoders. For the next half
of the 20" century, the main objective has been to find practical coding schemes that

approach the Shannon’s capacity limit.



The majority of practical channel codes have been developed in the early ages of
coding theory, including the Golay codes [Golay, 1949], Hamming codes [Hamming,
1950], Reed Muller codes [Reed, 1954], [Muller, 1954], convolutional codes [Elias,
1955], Reed-Solomon codes [Reed and Solomon, 1960], Low-Density Parity-Check
(LDPC) codes [Gallager, 1962], and turbo codes [Berrou & Glavieux, 1993].

Turbo codes are the first practically implemented codes that have performed close to
Shannon’s capacity limit. Because of their relatively low complexity, turbo codes have
been the core of 3G/4G communication systems. With the technological
developments and advancement of simpler decoder structures, the invention of the
turbo codes have started a revolution that have caused the rediscovery of LDPC codes
[MacKay and Neal, 1996] and they have been serious competitors to turbo codes in
practical applications. Turbo codes and LDPC codes are then unified within the
concept of “codes defined on graphs” by Wiberg [Wiberg, Loeliger & Kétter, 1995],
[Wiberg, 1996] that is widely used in many applications since then.

With the introduction of polar codes, which are invented by Arikan [Arikan, 2008] a
decade ago, one can achieve reliable data transmission with low computational
complexity, at rates close to the capacity for any binary input discrete memoryless
channel (BDMC) [Arikan, 2009]. Polar codes are commonly decoded by simple
decoders like successive cancellation (SC) or belief propagation (BP), or by their more
complicated versions such as the successive cancellation list (SCL), or the multiple
factor graph BP decoders. The performance of polar codes in comparison with LDPC
and turbo codes is presented in Figure 1.2. For all the coding schemes in the figure,
the code length is N = 1024 (only the LDPC code has N = 1056) and the code rate is
R = 1/2. Turbo codes in Figure 1.2 are encoded according to the WCDMA and LTE
standards and LDPC codes are encoded according to the WiMax standard. One
observes from Figure 1.2 that polar codes under the CRC aided decoding algorithms
(i.e., CA-SCL(32) and aCA-SCL(1024) in the figure, with list sizes of 32 and 1024



respectively) outperform the turbo or LDPC codes by up to 0.7 dB at the BLER
of 10™*. Because of their promising performance, we focus on the belief propagation

decoders for polar codes in this thesis.
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Figure 1.2. Performance comparison of rate-0.5 polar, turbo codes of length 1024 and LDPC code of
length 1056 (reproduced from [Niu et al. 2014]).

1.2. Overview of Polar Codes

Polar codes are based on channel polarization, which transforms two independent
binary-input discrete memoryless channels (BDMC) into two polarized channels that
can be called “a good channel and a bad channel” with regard to their reliabilities.
When channel polarization is recursively applied to the polarized channels of the
previous step, the transformed channels start to dissociate so much after a number of
steps, creating extreme channels such that the reliabilities of the good and bad
channels differ remarkably. The good channels become almost noiseless, and the bad

ones become very noisy channels.



The code construction of an (N, K) polar code with block length N = 2™ is based on
choosing the K best channels among N polarized channels for sending the information
bits, and freezing the remaining N — K channels, which have lower capacities. This
process corresponds to mapping input bits into codewords by usinga K x N generator
matrix, whose K rows are selected with respect to the reliabilities of the corresponding

channels from the rows of F®": i.e., the nt"-Kronecker product of the base matrix
F = E (1)] Although both polar and Reed Muller (RM) codes use generator

matrices constructed from the rows of F®™; the design philosophy of polar codes is
fundamentally different from that of the RM codes. Generator matrix of the RM code
chooses the rows of F®™, which maximize the minimum distance of the code; whereas

the polar code selects the paths with the highest channel capacities.

To construct the polar codes, Arikan uses the symmetric capacity I(W) and the
Bhattacharyya parameter Z (W), as measures of rate and reliability respectively. In his
seminal study [Arikan, 2009], Arikan states that although “the code construction
problem can be solved in principle by computing all Bhattacharyya parameters, there
is unfortunately no efficient algorithm for doing this. One exception is the binary
erasure channel for which Z(W;) can all be calculated in time O(N), thanks to the
recursive formulas”. So, a wide range of approximate construction methods are
proposed starting from early studies [Mori and Tanaka, 2009a], [Zhao et al., 2011],
[Bonik et al., 2012], [Trifonov, 2012], [Li and Yuan, 2013], [Tal and Vardy, 2013];
and many algorithms have been devised for the additive white Gaussian noise
(AWGN) channel case [Kern et al., 2014], [Wu et al., 2014 ], [Zhang et al., 2014 ].
Along with the estimation of Bhattacharyya parameters for which Arikan has
suggested the Monte-Carlo approach [Arikan, 2009], the density evaluation [Mori and
Tanaka, 2009a], [Tal and Vardy, 2013] and Gaussian approximation methods
[Trifonov, 2012], [Li and Yuan, 2013] are also proposed.



In coding theory, most of the codes are universal. One of the drawbacks of the polar
code construction is that polar codes are not universal. This means code construction
depends on the respective channel parameter, e.g. the signal to noise ratio (SNR) for
the additive white Gaussian noise (AWGN) channel, or the erasure probability (€) for
the binary erasure channel (BEC). A change in code construction with changing SNR
is not desired; therefore, there are a few recent attempts to design universal polar codes
[Sasoglu & Wang, 2014], [Hassani & Urbanke, 2014], [Alsan, 2014]. However, in
return for universality, their designs require higher complexity at the decoder or
encoder. On the other hand, Vangala et al. propose a simple search algorithm to find
the best design-SNR and use it for a range of possible SNRs [Vangala, Viterbo &
Hong, 2015]. They compare various polar code constructions and draw the conclusion
that, the Bhattacharyya parameters computed with a design-SNR of 0 dB, works well
for the AWGN.

1.3. Overview of Decoding Algorithms of Polar Code

As the first polar decoder, Arikan proposed successive cancellation (SC) decoding
algorithm that has a complexity of O(N log,N), in which all information bits are
sequentially decided subject to the previously estimated bits and the channel
information [Arikan, 2009]. The error performance of polar codes with the SC
algorithm can be asymptotically optimum for infinitely long code lengths; however, it
is worse than those of turbo or LDPC codes for short and moderate code lengths. To
improve the performance of polar code decoders, successive cancellation list (SCL)
[Tal and Vardy, 2011] decoding algorithm has been introduced, which achieves a
performance comparable to that of the low-density parity-check (LDPC) codes.
Another decoding algorithm, cyclic redundancy check (CRC) aided SCL (CA-SCL)
decoding [Niu & Chen, 2012] has shown even better performance than turbo codes.
Nevertheless, due to the serial processing nature of the SC, it suffers a high latency
and limited throughput. With that specific aim to reduce the latency while increasing

the throughput, some decoding algorithms, such as simplified successive cancellation



(SSC) [Yazdi & Kschischang, 2011], maximum likelihood SSC (ML-SSC) [Sarkis &
Gross, 2013], and repetition single parity check ML-SSC (RSM-SSC) [Giard, Sarkis,
Thibeault & Gross, 2014] have been proposed. Recent studies show that the SC bit-
flip decoder (SCF) has similar BLER performance with the CA-SCL [Zhang, Qin,
Zhang, Zhang, & Chen, 2017], [Zhang, Qin, Zhang, & Chen, 2018], [Chandesris,
Savin & Declercq, 2018].

Apart from serial processing algorithms, some researchers investigate the usage of
belief propagation (BP) decoding, which works more in parallel and suitable for high-
speed and low-latency applications. BP decoding is an iterative message passing
algorithm, which is based on the encoding graphs, which will be referred to as factor
graphs (FGs) of the polar code in this work. Log-likelihood ratios (LLR) of the
messages pass along the factor graph [Forney, 2001], Nj; (number of iteration) times
iteratively, if there is no other early stopping condition. Arikan has shown that the BP
decoding algorithm has performance advantages for polar codes over Reed-Muller
codes [Arikan, 2008]. There is an extensive literature on the comparison of polar code
decoders with the SC, some improved forms of the SC and the BP decoding algorithms
[Hussami, Korada, & Urbanke, 2009], [Korada, 2009], [Arikan, 2010]. Eslami and
Pishro-Nik have performed simulations showing that the error floor performance is
superior to that of the LDPC codes [Eslami & Pishro-Nik, 2010], [Eslami & Pishro-
Nik, 2013]. Implementing BP on field programmable gate arrays (FPGA) has been
attempted by Pamuk [Pamuk, 2011], where he also states that for efficient hardware
design, the message passing algorithm can be approximated to min-sum (MS)
algorithm at the cost of some performance degradation. Yuan and Parhi further have
suggested scaled min-sum (SMS) algorithm to remove this performance loss [Yuan &
Parhi, 2013]. Then the same authors have improved the efficiency of their algorithm
by suggesting some early termination criteria [Yuan & Parhi, 2014a]. Furthermore,
Xu et al. show that the same decoding performance of the SMS algorithm with 92.8%
reduced amount of computations can be achieved with the scheduling method that



they call XJ-BP MS algorithm [Xu, Che, & Choi, 2015]. When they compare with the
conventional MS BP decoding, their proposed method reduces the computations by
90.4% and significantly improves the decoding performance. Some other studies show
that the bit mapping scheme can improve the performance of concatenated polar codes
with the LDPC codes [Yu, Shi, Deng & Li, 2018]. Hybrid BP-SC(L) decoders also
achieve good BLER performance [Yuan et al., 2014b] [Cammerer et al., 2017].
Inspired by the successive cancellation flip (SCF) decoder, bit-flip is introduced to the
BP decoder; the proposed belief propagation flip (BPF) decoder achieves significant
SNR gain comparable to that of the CA-SCL decoder with a moderate list size [Yu et
al., 2019].

The subject of permuted factor graphs (FGs) under BP decoding is mentioned in the
studies for error-correction performance of Korada [Korada, 2009]. Different
permutations of the layers in the factor graph can construct n! (where n =log,N)
different FG representations for a polar code of length N. Due to the different order of
processing in the decoding graph, for each codeword and noise realization, each
individual factor graph representation may have different performance. That means,
if one FG used for decoding does not succeed in, the other may successfully decode
that same code block. Decoding on different FGs in parallel and combining all
obtained decoding results has also been mentioned in Korada’s studies [Korada,
2009]. In the same studies, it is suggested to use only the n of n! permutations,
obtained by the cyclic shifts, as multiple-FG decoders. Multiple factor graph BP
decoders has also been studied recently. It is shown that based on different
permutations of the polar code factor graphs, a new CRC-aided variant of the BP
decoder approaches the error ratio performance of the state-of-the-art SCL decoder of
a plain polar code, in the high SNR region [Elkelesh, Ebada, Cammerer, & Brink,
2018a]. However, the required number of randomly selected parallel BP decoders to
achieve a reasonable error probability, is too high for practical applications. Based on
this study, a BP list (BPL) decoder is proposed that also includes the cyclically shifted
set of n FGs among L > n different FG sets, which reaches the performance of the



randomly selected FG decoder sets using less number of FGs [Elkelesh, Ebada,
Cammerer, & Brink, 2018b]. According to these results, FG decoder set needs to be
constructed wisely. Some design algorithms are proposed to find suitable FG sets for
decoding with multiple factor graph realizations [Doan, Hashemi, Mondelli, Gross,
2018], [Dogan, 2015], [Peker, 2018] and [Akdogan, 2018]. We also consider the same
multiple BP decoding scheme and propose a new way of choosing n FGs with good

performance for polar BP decoders.

1.4. Aim and Organization of the Thesis

In this thesis, single factor graph (single-FG) and multiple factor graph (multiple-FG),
belief propagation (BP) decoding performances of (N, K) = (2",2"1) polar codes
over a binary input AWGN channel are examined. Throughout the simulations, a
perfect knowledge-based early stopping criterion is used in the BP decoder, except for
the last three figures of Chapter 3, where a more practical stopping condition is
utilized. The aim of the study can be summarized as:

e To examine the BP decoding performance difference of polar codes between
the reference factor graph (RFG) decoder, which has the stage order n-...-2-1
and the inverse RFG (IRFG) decoder, whose stage order is 1-2-...-n, in terms
of the block (codeword) error ratio (BLER).

e To explore the performance difference between those constructed with the
PCC-0 algorithm suggested in [Vangala et al., 2015] and those designed with
respect to the specific SNR of the utilized channel, for polar BP decoders at
different code lengths.

e To compare the single-FG and multiple-FG decoder performances of polar BP
decoders.

e To find good performing multiple-FG sets of FGs with permuted stage orders.

To compare their performance with the ones suggested in the literature.



e To make a performance comparison of multiple-FG belief propagation

decoders for the polar and RM codes.

The remainder of this paper is organized as follows:

In Chapter 2, the basic concepts of polar code construction and BP decoding of polar
codes are briefly introduced. The core concepts of channel polarization, capacity
calculation for AWGN channel and the relation between capacities and Bhattacharyya

parameters are reviewed.

In Chapter 3, after determining the required number of iterations for the BP decoder
at different code lengths, BLER performances of single FG decoders; i.e., the
reference FG (RFG) or its inverse (IRFG), are found in simulations over the binary
AWGN channels for (N,K) = (2" 2" 1) polar codes. Performances of polar BP
decoders are evaluated for polar codes designed at fixed design-SNRs, and also at
variable, channel-specific design-SNRs. Then, BLER performances of single-FG
decoders are compared with those of the multiple-FG decoders, which consist of either
randomly or deterministically selected FG sets, such as the cyclic n-FG decoder
constructed from cyclically shifted forms of the RFG. In order to improve the choice
of the FGs in the n-FG belief propagation decoder, two methods, MaxSON and
MaxofMax, are proposed for selecting n FGs with respect to their stage order numbers
(SONs). Moreover, the difference between multiple-FG belief propagation decoder
performances of the RM codes and polar codes is investigated. Lastly, a performance
comparison between the methods proposed in this work and multiple-FG BP decoders

suggested in the literature is given.

In Chapter 4, main contributions of this thesis are discussed.
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CHAPTER 2

POLAR CODES

In this chapter, we review the polar code construction based on the work of Arikan
[Arikan, 2009]. After some preliminary information, the calculation of channel
capacities and the selection of information channels by channel combining and
splitting are summarized [Arikan, 2009]. The construction of polar codes for a binary
input AWGN channel is reviewed. The factor graph (FG) representation to be used in
encoding and decoding operations is given. Finally, belief propagation (BP) decoding

Is described briefly.

2.1. Preliminaries

Let W: X{0,1} — Y be an arbitrary binary-input discrete memoryless channel (B-
DMC) where X is input alphabet, Y is output alphabet, and W (y|x) is channel
transition probability {W (y|x): x € X,y € Y}.GivenaB-DMC W, let [(W) denote
the symmetric capacity defined as the mutual information (in bits) between the input
and output terminals of W when the input is chosen from the uniform distribution on
X. I(W) is the highest rate at which reliable communication is possible across W.
Another parameter of primary interest for this study is Bhattacharyya parameter
Z (W) which is an upper bound on probability of maximum likelihood (ML) decision

error for each use of W to transmit a O or 1.

Symmetric capacity: /(W) =Y ey X xex % W(y|x)log l(w(yT(l)()erl;i(y|1)) (2.1)
2

Bhattacharyya parameter:  Z(W) = X, cy \/W(y|0)W(y| 1). (2.2)
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Let u = [u;lixy and x = [x;]1xy be the information and the code sequences
with N = 2™ respectively. Wy: XN - YN with transition probability (y|x)) =
Y, (x;|y;) represents the N times employments of the channel W. alY is also used
to denote a row vector (a4, ..., ay). The length of information and code sequences is
equal to N since information sequence consists of K information bits and N — K
frozen bits for a polar code P(N, K). Code rate R = K /N .comes from the frozen bits

in the information sequence. The encoding carried out in GF (2) is

x = u - Gy. (2.3)

The Kronecker product of two matrices A and B is written as A ® B, and the nt"
Kronecker power of A is A®™, where Kronecker power is defined by A®™ 2 4 ®

A®BP1 = A®n-1 @ A Arikan’s input transformation matrix is given by Gy =

1 0
1 1

matrices, and operations on them is carried out over the binary field GF (2). For a¥,

Gz®"where G, = ] andn = log,N. Unless specified otherwise, all vectors,

bY vectors over GF (2) we use al¥ @ bY to denote their component wise modulo-2

summation.

Choosing the rows of GZ®", which forms the generator matrix of the code, is the main

idea of the polar code construction which explained in the next sections.

Through the thesis, binary phase-shift keying (BPSK) modulation and binary input
additive white Gaussian noise (BAWGN) channel model are considered. The
BAWGN channel is the most common approach to model the effect of random sources

which occur in the nature. For W: X {0,1} — Y, the channel output is given by

RE
Vi = (1 - 2xi) Tob +Tli, (24)

2
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where x € X{0,1},y € Y, n; ~N (0,1). E, denotes the energy spent per each

REb

information bit. In our work, we used BPSK modulation such that it maps 0 >

2

and1 > — REb and the channel had normal distribution N (0, 1). For a given code

2

rate R, SNR (dB) for the given channel is E;, /N,. The distribution of n; is equal to

Pr(n) = —=exp (- 25), o%=1. (2.5)

The decoders used in the thesis work in the log-likelihood ratio (LLR) domain which
corresponds to how many times more likely the data are under one model than the
other. The corresponding soft information for the input alphabet {0,1} can be

calculated as follows:

_ p(yilx;=0)
LLR(y:) = lnp(y Ix;=1)"

In our case it can be simplified as:

LLR(y;) = 2y; \/RT” (2.6)

For SNR = E, /N, (dB) and the E, = S22

No
2

Figure 2.1 shows the conditional probability distributions of the AWGN channel
output for BPSK modulation.
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p(ylx)
p(yl 1)
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Figure 2.1. Conditional probability distribution for BPSK modulation over AWGN channel.

2.2. Polar Coding

Channel polarization is an operation by which one creates, from N independent copies

W of a given B-DMC, a set of N channels {W,&"): 1 <i < N} that show a polarization

effect; in the sense that as N becomes large, the symmetric capacity terms

{I(W,&i))} tend towards either 0 or 1 for almost all indices i. This operation consists

of two phases called channel combining and channel splitting.

2.2.1. Channel Combining

To produce a vector channel Wy: XN — YV one needs to combine copies of given a

B-DMC, W, in a recursive manner; first starting with two independent copies of W, &
W to create W,: X2 — Y2 by applying the transform G, = [1 (1)] as shown in Figure

2.2. The transition probabilities for the channel W, are

Wo(y1, y2lug, up) = W(yilug @ u)W (v, |u,). 2.7)
Since a linear transformation is applied for mapping u? 5 x? and since u;’s have an

identically independent distribution (i.i.d.), the symmetric capacity for the channel W,

is equal to two times the symmetric capacity of the channel W/,

14



I(Wz) = I(Up Uy; Y1:Y2) = I(X1,X2; Y1:Y2) = I(X1; Y1) + I(Xzi Yz)
=2I(W) (2.8)

Uy . . Y1
O—— W -

U9 xIo W Y2

W

Figure 2.2. Channel combining for W,.

The next recursion, which is shown in Figure 2.3, is applied by combining two

independent copies of W, to create W,: X* — Y* with transition probabilities

W4(yf‘|u‘1‘) = Wz()’12|u1 @D us,u, O u4)W2(y§|u3,u4). (2.9)

The mapping uf > x{ can be written as x{ = ufG,,

1 0 0 O
where Gy = GD? = % (1) g 8 .
1 1 1 1
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Figure 2.3. The relation of channel W, with W, and W;.

The recursion occurs until creating N channels Wy: XN — YV, The general form of
the channel is shown in Figure 2.4. The general transition probability for the channel
Wy is

N

WM ) = WY [ Gy) = Wy <yf
2

N

2 N N
u> Pu Wn
1 g+1> Py <yN+1

N
uLl), (2.10)

2

2

given that Gy = G2, xN =ul Gy = ul G2,
N
ulz = (ul, Uy, ,uﬂ) and
2
ul = (uN Un u )
- N, ,UN ) ..., N |-
E.|.1 2+1 2+2

According to the chain rule for mutual information, the symmetric capacity for the

combined channel becomes

I(Wy) = I(UY;YN) = I(XV;YN) = NI(W). (2.11)
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Figure 2.4. The construction of Wy, from two copies of Wy /,.

2.2.2. Channel Splitting

Next step of channel polarization is channel splitting of previously combined vector

channel Wy back into a set of N binary input coordinate channels.

Starting with N = 2, a new channel can be designed by assuming u; as the

input y,,y, as the output and u, as random for the channel shown in Figure 2.5.
Resulting channel can be represented as WZ(D:X — Y2, The transition probability for

this split channel is

WV (2 luy) £ By s W Gy @ )W (v21). (2.12)

17



The other channel, represented with WZ(Z):X - Y% x X, can be defined so as u, is

the input and y;, v, and u, are the outputs. Its transition probability becomes

WP (2, usluy) 2 S W (sl @ u)W (v2luz). (2.13)

& ‘;I w |——>
F 3
Loymmp 2

sz(l}

A 4

Figure 2.5. The split channels Wz(l) and WZ(Z) after channel splitting for N = 2.

The mutual information of the channel W, can be split as I(W,) =
1(Uy, Uy V1, Yy) = I(Us; V1, %) + 1(Uy; Yy, Y, U = I(Wz(l)) + I(WZ(Z))such that

equation (2.14) holds for symmetric capacities of split channels, with equality only if

I[(W) equals 0 or 1. In other words, they are polarized.
() < 1w) < 1(w,) (2.14)

The other important parameter for polar codes is the reliability parameter,
Bhattacharyya parameter Z (W), shown in equation (2.2). After applying channel
splitting, Arikan shows that [ Arikan, 2009] Bhattacharyya parameters of bit channels
have bounds

Z(w®) = zw)?, (2.15)
zZ(w?) < zw) < z2(WP) < 2z2(W) - Z(W)>. (2.16)
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When the channel splitting operation is recursively applied, the channels, which are

represented as W.": X — YN x Xi=1, 1< i < N, can be defined by the transition

probabilities
W (i ) 2 T exw-i g Way O/ ud), (2.17)

where ut~, yV are the input and output of the channel W,&i)successively. Generalized

representation of channel splitting can be seen in Figure 2.6.

i (1) Y1
— i —
ul -{1 N
) y2 i
: — WN i
) " — = ”
UN-1 N YN-1
—_— -
Up .}TN
S -+ yN
Uy (N) F——
EE—— WN " fv:l

Figure 2.6. Channel splitting of Wy, into N distinct channels W,V(i) .

Applying the chain rule of the mutual information one obtains

I(Wy) = NIW) = I1(XN; YY) = 1(UY;YN)
=yN 1(U; YN, U1, (2.18)
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2.2.3. Channel Polarization

For each bit channel W,éi), channel splitting moves the rate and reliability away from

the center such that they are pushed to the extremes 0 and 1. For any B-DMC

(W) < I(Wé”) < 1(w?), (2.19)
Z(W* ) 2 z <Wg(i)> > z(w*?). (2.20)

The Bhattacharyya parameter further satisfies that

2
Z(w*) =z (Wé”) , (2.21)

2

2
Z(wm V) <2z <Wﬂ(")> ~ z( &") . (2.22)

2 2

The cumulative rate and reliability for the split channels satisfy equations (2.23) and
(2.24),

Loa(wy?) = Niw), (2.23)
L z(w?) < NZw). (2.24)

The Bhattacharyya parameter is an upper bound on the transmission error probability
of maximume-likelihood (ML) decision for each use of the channel to transmit a 0 and

1. That means it can be used to measure the error performance of the bit channel. By
selecting bit channels which has smaller Z(W,&i)) values one can assign the noiseless

information channels. However, the equalities in equation (2.22) and (2.24) are
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achieved only if W is a binary erasure channel (BEC(€)), where € is the erasure

probability of the channel [Arikan, 2009]. Z (W,&i)), the erasure probability of the

channel WAE") can be computed recursively with initial value Z(Wl(i)) =Z, = €. Due

to its simplicity, equality in (2.22) has been widely used for the class of binary-input
discrete memoryless channels as well. What we are concerned in this study is polar

code construction in AWGN channels.

By using (2.21) and (2.22), Zhao, Shi, and Wang have constructed polar codes, whose
information channels are selected by doing modifications on the Bhattacharyya

parameter recursion formulas [Zhao et al., 2011] given by

2
Type I: Z(w V) = 2z (Wﬂ“)) —7 <W§')> (2.25)
Type II: Z(W;Zi—”) =7 (W&”) (2.26)
2
. - - 2 .
Type iz z(w V) = 0.5( 22 (Wé”) - Z< é”) +2Z (W&”) .(2.27)
2 2 2

They have compared the polar code performances over BSC, AWGN and Rayleigh

channels by selecting the Bhattacharyya parameter of the split channel W,\EZH) as
Type I, Il and Il successively. According to their simulation results, Type |
Bhattacharyya parameter has shown the best performance for these channel types
[Zhao et al., 2011]. That result supports the idea of using the equality in (2.22) for the
Bhattacharyya parameter calculation in AWGN channels; therefore we also use Type

I in our simulations.
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The definition of the Bhattacharyya parameter given in (2.2) can be extended from
discrete to continuous channels in order to find the best initial value of the
Bhattacharyya parameter for AWGN channels [Zhao et al., 2011].

ZW) = [JWHIOW(y[D) dy. (2.28)

For the AWGN channel with N (0, ), suppose that signal energy of a BPSK signal is
1, then the Bhattacharyya parameter can be simplified by substituting the conditional
probability distributions in equation (2.28) with equations (2.29) and (2.30).

1 -1)2

W10) = g exp (- 520). (2.29)
1 1)?

W(yll) = WEXI) (— (y;;z) ) (230)

3 1 -1\ 1 (v +1)?
zn= | j seror (-2 e ()

1 RE
= exp(—5;) = exp(—SNR) = exp (— N—Ob)

Then the initial value, Z(Wf”) = Z, of the recursive algorithm can be obtained by
Z(W) = Z, = exp(=SNR). (2.31)

Since the operational SNR might be modified and the Bhattacharya parameter depends
on it, code construction may change which is not practical. Therefore, for other
channels, Arikan [Arikan, 2008] proposed a heuristic method which offers behaving

other channel as an equivalent of BEC, which has the same channel capacity because
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of the fact that the exact code construction rule for arbitrary binary-input channels is
too complicated. He suggested that given an arbitrary binary-input channel with
capacity C bits, use the polar code that is matched to the BEC with erasure rate =
1 — C, meaning that the BEC that has same capacity as the given channel. The
original recursive algorithm requires an initial value and this was proposed by Arikan
as 0.5 for any channel [Arikan, 2008]. On the other hand, it shown that channel—
specific designs (specific SNR corresponding to the specific AWGN) has better
performances over the polar codes designed at constant design SNR, Z, =
0.5 [Zhao et al.,2011]. Some researchers attempt to find universal polar code
construction. Vangala suggested that choosing the constant design-SNR of 0 dB and
obtaining Z, by using equation (2.31) one can obtain polar codes with good
performances [Vangala et al. 2015]. This design method is preferred in our studies
mostly. In addition to this, in some cases, polar codes which are adaptively constructed

with changing SNR is also included for comparison.

2.2.4. Polar Encoding

In the previous parts, we have presented how to obtain polarized N distinct channels.
The basic idea of polar coding is sending the data only through noiseless channels,
which have smaller Z(W,&D) values by the polarization effect of channel combining

and channel splitting operations. For a polar code P (N, K) with block length N = 2",
n > 0,andcoderate R = K/N,letu = [u;],,n betheinformationand x = [x;]1,n
be the code sequences. K information bits are sent through noiseless channels and the
remaining N — K bits are set as frozen bits; i.e., one sends predetermined 0’s through

that noisy channels. The encoding carried out in GF (2) isx = u - Gy where Gy =

2" and G, = H g :
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2.2.4.1. Factor Graph (FG) Representation of Polar Codes

The encoding operation x = u - Gy can be performed by using corresponding factor
graph (FG) representation. There are log,N = 3 stages for channel combining
operation when N is equal to 8 as illustrated in Figure 2.7 and Figure 2.8 shows its FG

representation.
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Figure 2.7. The constructed channel Wg.
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Figure 2.8. Z-shape factor graph representation corresponding to the polar code generator matrix Gs.



Polar code with length N = 2™ there are n! different FG representations which can be
obtained by changing the order of the stages used for generating the FG. For code
length N = 8 there are 6 different FG types. The one shown in Figure 2.8 with
simplified Z-shape connections, is named as “3-2-1" FG that is used for construction

of polar codes.

Each factor graph contains n stages and each stage has N/2 many Z-shape
connections. Each stage contains N input nodes and N output nodes so that the output
of a stage is the input for another stage. Numbering the stages from 1 to n, we refer to
each FG by the left-to right appearance of stages [Dogan, 2015]. In every stage, input
nodes are connected as Z-shape by skipping 2~ — 1 nodes, where n is the stage
number. For example, the stage named as 1, connects inputs by omitting 2= - 1 =
0 nodes that means it connects consecutive input nodes. The stage 2 connects the
nodes by omitting 2(3~Y — 1 = 1and stage 3 connects them by passing over
2G-D — 1 = 3 nodes. Figure 2.9 shows all different FG representations for the polar
code with code length N = 8. In this study, the FG having stage order n-...-2-1 is
called the reference factor graph (RFG) and the one with the stage order 1-2-...-n is
called the inverse-RFG (IRFG).

25



1-2-3 Graph 1-3-2 Graph

Figure 2.9. All different FG representations for polar code with N = 8.

2.2.4.2. Selecting Frozen Nodes in AWGN Channel

As we have explained in previous sections, the reliability parameter Z (W) is used for
selecting the nodes in which information is sent. Choosing the design-SNR as 0 dB as
suggested [Vangala et al. 2015], with the algorithm given below, one can calculate N

distinct channel parameters in equations (2.21) and (2.25) recursively.
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Table 2.1. Algorithm based on the Bhattacharyya bounds

Algorithm based on the Bhattacharyya bounds

INPUT : N, K, and design-SNR Egs = (REu/No in dB)
OUTPUT: Fi,i€(0,1,...,.N)

O[N] = {0}, idx[N] = {0}

1 : SNR = 105810 and n = log, N

2 : initialize zZ@[0] = exp (-SNR)

3: forj=1:n do —> For each stage in IRFG, left-to-right
4 u=2j

5: for t=0:u/2-1do —> For each connection
6 T =2O[1]

7 zO[t]= 2T - T2 —> Upper channel
8 zO[u/2 +1 = T2 = Lower channel
9 end

10: end

11: [29, idx]sort (z©@, “descending™)
12: F =idx[0:N—-K-1]

// F: indices of the greatest N - K elements

As an example, choosing the code length N = 8, let u = [u;];,y be the information
sequence, and x = [x;],,y be the code sequence where i € {1, 2, 3,4, 5, 6, 7, 8}. For
code rate R = 0.5 there are 4 information bits and 4 frozen bits. Bhattacharyya
parameters calculated with the algorithm given in Table 2.1 are z[8] = [0.9745,
0.4410, 0.5911, 0.0363, 0.7062, 0.0637, 0.1300, 0.0003]. The detail of the calculation

of the Bhattacharyya parameters is also explained in Figure 2.10 by using the factor
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graph representation. After the final recursion, the indices of small Bhattacharyya
parameters, i.e. i;,r, = {4, 6,7, 8}, are selected to send information bits and the other

ones, i.e. irrozen = {1,2,3,5}, are selected for frozen bits which are predetermined

as 0°s. Now, let the information word be u ' = [1,1,0,1] for iz, = {4,6,7,8},
then u = [u;],,g becomesu = [0,0,0,1,0,1,0,1]. The code sequence isx = u -
Gy. This is the same operation with selecting the rows of G, matrix such that they

corresponds to the indices of information word, i;,s,, in the information sequence u

and applying the matrix transform to the information word ul@.The encoding

operation carried out in (2.32) is presented in Figure 2.11 with factor graph

implementation.

1 1 1.1 0 0 0 o0
@ @ _ /1 10 0 1.1 0 O
Ui Oni, =111 0 17 5 4 g1 0 1 0
11 1 11111
=1 1 0 0 0 0 1 1] (2.32)
initial Z(W,) o
exp(-0dB)=exp(-1) Stage 1 Stage 2 Stage 3 BEZ:":;H:"
0.3679 W 2772 0.6005 %:H- 0.2525 0.9745 W---
0.3679 We?> = 04354 W7 0.8404 0.4410 W+--

0.6005 ~"W-+  0.0183 0.5811 Y-+

0.3679 EI .
0.3679 Z 0-1354 “.T ! 0.5606 0.0363 W+t~
0.3679 0-6005 ﬂ 0.2525 0.7062 Vy--+
0.3679 Z 1352 0.5404 [] 00837 w+-+
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X 0.0003 yy+++
0.3679 :

Figure 2.10. Factor graph representation of P(8, 4) polar code encoding for the information word
[1,1,0,1].
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In Figure 2.10, the recursive algorithm of Bhattacharyya parameter calculation is
illustrated by using inverse reference factor graph (IRFG) representation because
splitting operations in Figure 2.7 is conducted inside out, which can be represented
using the RFG and operating from right to left, or using the IRFG and calculating from
left to right. The reason why the least possible Bhattacharyya parameters are only
ensured by the RFG stage order is explained in [Arikan, 2009]. Each initial node is
fed with design-SNR of 0 dB, for the initialization of the Bhattacharyya parameter.
Each Z-shape creates one “bad” and one “good” channel, represented as W~ and W*
successively in Figure 2.10. The good channels have smaller values compared to the
bad channels at the end of that stage. The calculations for “n” stages are done

recursively to obtain final values of polarized bit channels at the end.

Bharttacharva Information Code
Parameter sequence sequence
0.9745 u o I fﬂ M 1 X
0.4410 u, o [ - / 1 X2
0.5911 U3 0 X3

:\J
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]
=
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-
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Fal
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1
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Figure 2.11. Factor graph representation of P(8, 4) polar code encoding for the information word
[1,1,0,1].
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After one calculates the Bhattacharyya parameters, fixed frozen input nodes are
chosen as the ones with the largest Bhattacharyya parameters. Polar code encoding is
done through the medium of reference factor graph (RFG) as given in Figure 2.11,
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where the red rectangles correspond to frozen nodes and the white rectangles indicate
the information nodes. If a node is made up of only frozen nodes, it becomes a frozen
node as well. The first and the fifth output nodes at the end of the first stage can be
shown as examples for that situation. Frozen nodes serve an important function in
decision making mechanism of polar decoders, which is explained in following

section.

2.2.5. Belief Propagation Decoding Algorithm

Belief propagation (BP) decoding algorithm is a message passing algorithm, in which
one retrieves the information bits through iterations by using factor graphs [Forney,
2001]. As explained in previous sections, polar code FGs are composed of n = log,N
stages, which can be permuted in n! ways. Hence the BP decoder can use any one of
n! different FGs to decode a received channel sequence. We use the log-likelihood
ratios (LLRs) of the channel output in (2.6). The LLR values are iteratively propagated
through the FG until the maximum number of iterations is reached. Then a hard
decision based decoding algorithm is applied to the final LLR values and the output

is compared with the perfect knowledge-based input data.

Two types of the LLR messages are used through the decoding process; one is left-to-
right messages (L-messages) and the other is right-to-left messages (R-messages).
Each Z-shape structure has two input and two output nodes. Processing detail of a
single Z-shape connection is demonstrated in Figure 2.12, where a Z-shape contains
4 variable nodes and 2 check nodes and each Z-shape has two input nodes and two
output nodes, represented with v; and v, respectively. The j and k indicates the rows
of the diagram, where j&k € {1,2,..,N},i indicates stage number, where i €

{1, 2, ...,n} and iteration number is represented with t.
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Figure 2.12. Diagram of single Z-shape processing element in the polar BP decoder.

Output nodes of each stage feed input nodes of the following stage; thus, in an FG
representation of a polar code P(N, K), there are nN check nodes and (n+ 1)N
variable nodes. In Figure 2.13, check nodes and variable nodes of P(8, 4) are presented

with squares and circles successively on the RFG representation.
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Figure 2.13. Check (square) and variable (circle) nodes of P(8, 4) on RFG representation.

The initial values of L-messages at the first stage are set using the a priori information
available to the decoder and, thus, zero for non-frozen bits and infinity for frozen bits,
respectively. The initial values of R-messages at the (n + 1)'" stage are initialized with
the LLR values of the channel output. All other nodes except for the frozen nodes are

designated as zero. The important point here is to define all the frozen nodes in the FG
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representation, since it changes according to the factor graph of selected decoder
structure. The L and R-messages are updated in each processing element with the

following equations:

Roowp = f (Rurijy B Lug(ory + Roin): (2.33)
Rooim = f(Ruyiy B Ligtiy) + Ruginy (2.34)
Loy = f (Logiiy B Liginy + Rurin)s (2.35)
Luiry = £ (Roipy B Ligti) + Ligtis- (2.36)

where f(x B y) = x H y is commonly referred to as the box-plus operator, which

corresponds to binary XOR operation and it is defined as follows

fx B y) =log (). (2.37)
In our decoding version, iterations start from the rightmost of the FG, with right-to-
left message (L-messages) propagations as it is used in [Xu et al., 2015] and in
[Akdogan, 2018]; and continues with left-to-right (R-messages) propagations. This
process is called as one iteration. When a processing element has a frozen node with
the LLR value of infinity, the importance of frozen variables arises. It may even
correct a wrong estimation. Thus one can infer that the FGs having more frozen nodes
may correct more decoding errors during iterations, as demonstrated by [Dogan,
2015].

To increase the decoder performance, we have a stop and check condition after every

ten iterations, i.e. 10, 20, 30..., tmax. At each stop and check point, LLR values of

estimated code sequence X, (LLR (5&)), are computed for all bits according to
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LLR(%;) = L% o + REM% . (2.38)

The code bits are estimated using hard decisions and compared with the exact
transmitted code bits, which is called perfect knowledge-based (PKB) early stopping.
If the estimated codeword %X is the same as the transmitted codeword x, then the
iterations stop and the codeword is counted as correctly decoded. If PKB stopping
does not occur, iterations progress. After a predefined maximum number of iterations
is reached, the estimated codeword X is compared to the transmitted codeword x one
last time to decide if it is correctly decoded or not. If the estimated codeword still does
not matches to the transmitted codeword, it is counted as undecoded. Perfect
knowledge-based early stopping yields simulation curves, which are more of a bound
rather than real decoder performances. For that reason, while we compare our results
with those in the literature in the last three figures of Chapter 3, we replace the PKB

stopping with a practical stopping criterion.
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CHAPTER 3

SIMULATION RESULTS

In this chapter, simulation results for single or multiple factor graph (FG) belief
propagation (BP) decoders of (N,K,R) = (2",2"1,0.5) polar (and Reed-Muller)
codes are presented. Section 3.1 is about determining the required number of iterations
for the BP decoder. In Section 3.2, the block error ratio (BLER) performances of
single-FG belief propagation decoders using either the reference factor graph (RFG)
with stage order n-...2-1, or its inverse with stage order 1-2-...n (IRFG) are found.
Simulations are made forn = 6, ...,12 (sometimes forn = 13 and 14 as well) and
performances of (2", 2"1) polar codes are compared. The SNR gain of the RFG
decoder over the IRFG decoder is found with respect to two design criteria: 1) fixed
design-SNR of 0 dB [Vangala et al. 2015], ii) channel-specific design-SNRs
corresponding to the SNR of the specific channel. In Section 3.3, multiple factor graph
BP decoding performances of polar codes are discussed and two methods that we call
“MaxSON” and “MaxofMax” are proposed for choosing the n-FG sets of multiple-
FG decoders. In Section 3.4, single-FG and multiple-FG BP decoding performances
of the RM and polar codes are compared, and an exhaustive comparison is given for
the (128, 64) codes over all possible FGs. Finally in Section 3.5, our set-choice
methods for multiple factor graph BP decoders, MaxSON and MaxofMax, are briefly
compared with similar decoders in the literature [Doan, Hashemi, Mondelli, Gross,
2018], [Elkelesh, Ebada, Cammerer, Brink, 2018a], [Elkelesh et al., 2018b].

In each simulation, N-bit codeword blocks are formed from K random information
bits, generated with uniform distribution. Each bit is passed through an AWGN
channel with a pre-chosen SNR. Output blocks of the channel are decoded either by

single-FG or multiple-FG belief propagation decoders.
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3.1. Choice of the Required Number of iterations According to the Code Length

In this part of the work, we have attempted to understand how the decoding
performance of the BP decoder changes when the number of iterations varies. For this
purpose, at a certain SNR value we have calculated the BLER (block error ratio)
performance for different code lengths, such that N = 2™ for n = 6,...,12 with
R being equal to 0.5. To make a fair comparison, SNR values for different N values
are selected to have similar BLER performances. The BP decoder is implemented
using the reference factor graph, RFG with stage order n-...2-1. Table 3.1 shows the

BLER values found in simulations.

Table 3.1. BLER performances with changing n and changing iteration number.

SNR 2dB 2dB 18dB 175dB 1.7dB 1.5dB 1.3dB

Iteration

number n==6 n=7 n=8 n=9 n=10 n=11 n=12
5 0.195 0.206 0.329 0.536 0.860 1.000 1.000
10 0.180 0.180 0.222 0.279 0.295 0.511 0.949
20 0.173 0.168 0.193 0.214 0.187 0.259 0.458
30 0.171 0.164 0.182 0.201 0.170 0.203 0.332
40 0.170 0.162 0.180 0.195 0.162 0.171 0.291
50 0.170 0.159 0.175 0.195 0.155 0.160 0.256
60 0.171 0.159 0.176 0.191 0.151 0.141 0.231
70 0.169 0.158 0.172 0.189 0.148 0.135 0.216
80 0.170 0.158 0.171 0.189 0.144 0.125 0.206
90 0.168 0.158 0.171 0.187 0.142 0.123 0.191

100 0.168 0.158 0.171 0.186 0.138 0.121 0.185
120 0.168 0.158 0.165 0.186 0.137 0.121 0.176
130 0.168 0.157 0.165 0.184 0.137 0.121 0.170
140 0.168 0.157 0.164 0.182 0.136 0.118 0.167
150 0.168 0.157 0.163 0.180 0.135 0.117 0.163
160 0.168 0.155 0.163 0.180 0.135 0.116 0.163
200 0.168 0.155 0.163 0.180 0.133 0.107 0.156
220 0.168 0.155 0.163 0.180 0.133 0.105 0.154
250 0.168 0.155 0.163 0.180 0.132 0.104 0.152
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In Table 3.1, each column shows the performance at a given code length and SNR
value and each row corresponds to the BLER values after using a certain number of
BP decoding iterations. “One iteration” in the given FG, which is the RFG with stage
order n-...2-1 in this case, indicates “the propagation of LLR values from right to left
and updating L-messages then propagation of LLRs from left to right and updating R-
messages”. Whenever the estimated codeword x is the same as the transmitted
codeword x, it is counted as decoded. Each simulation uses 1000 codewords and since
the SNR values are adjusted for an approximate BLER on the order of 10~%, 100-170
undecoded blocks remain at the end. For example forn = 6 (N = 64) when the
iteration number is 5, the RFG decoder recovers 805 of the codeword blocks and 195
out of 1000 remains undecoded. However, if the number of iterations is increased to
40, additional 25 blocks are solved and the number of undecoded word is reduced to
170. It seems that after a certain iteration number, increasing number of iterations has
no significant effect on recovery. This number varies according to the chosen code
length. In fact, it seems to increase proportionally with the logarithm of the code length
according to Figure 3.1, in which we plot the selected number of iterations given in
Table 3.1, versus the base 2 logarithm of the code length (n = log,N). The
complexity of the single-FG BP decoder, that is O(N(logN)) also increases with
length, so it requires more iterations to get more reliable LLR values. However,
increasing the number of iterations improves the BLER performance at the cost of
decreasing the decoder speed. Therefore, in practical decoders, the optimal number of

iterations for each code length should be selected taking this conflict into account.
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Figure 3.1. Required iteration numbers versus n, where the code length N = 2™,

It can be observed from Table 3.1 that the numbers plotted in Figure 3.1 is sufficient
for meaningful performance. For each codeword length, the rest of the study can be
carried out with these selected iteration numbers. However, in our simulations, since
we also have the knowledge of transmitted bits, we have used its advantage to increase
the decoder speed. In compliance with the algorithm, BP decoding terminates after a
check point, if the estimated codeword % is the same as the transmitted codeword x.
Check points are settled at every 10 iterations during simulations and the maximum
number of iterations is limited to 200. If the condition X = x is not fulfilled at any
checkpoint and the maximum number of iterations is reached, the corresponding word

is counted as not decoded.

3.2. Single Factor Graph BP Decoding Performance of Polar Codes over AWGN

The aim of this section is to observe the single factor graph BP decoding performance
of polar codes when the code length changes. As the performance measure, the “block
(codeword) error ratio (BLER)”; i.e., the ratio of undecoded words is computed over

the simulated AWGN channel. As suggested by Akdogan, we name each factor graph
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(FG) by its “stage order number (SON)”, which is defined as the “n-digit integer”
corresponding to its stage order from left to right [Akdogan, 2018]; so that n! different
FGs that have different stage permutations can be discriminated. The FG with the
highest SON value that has the stage order n...-2-1, is called the “reference FG” and
abbreviated as “RFG” [Peker, 2018]. If the stage order is reversed, one obtains the FG
with the smallest SON that we call the “inverse RFG” and abbreviate as “IRFG” in
this study. For instance, if N = 64 = 2°, the RFG has SON = 654321 and the IRFG
has SON = 123456. Single-FG decoding performance of the RFG BP decoder is
known to be much better than that of the IRFG BP decoder, as observed in previous
studies for the polar codes designed over BECs [Dogan, 2015], [Peker, 2018],
[Akdogan, 2018]. In this section, we provide a comparison of the RFG and IRFG BP

decoders, for the polar codes designed over AWGN channels.

An adaptive polar code is designed specifically for an AWGN channel with a specific
design-SNR and it is supposed to perform the best at this SNR value. However,
Vangala, Viterbo and Hong compare four different polar code construction methods
at different design-SNR values [Vangala, Viterbo & Hong, 2015] and they draw the
conclusion that there are some fixed optimum design-SNRs for each construction
method. For the construction method that they call PCC-0, which is also used in our
work, they claim that the optimum design-SNR is 0 dB. In other words, they state that
the polar code designed by PCC-0 at the design-SNR of 0 dB performs better than
those designed at other design-SNRs for all SNR values.

In order to check the validity of this statement, we pick an example polar code P(1024,
512) for n = 10, and plot the BLERs of the RFG BP decoder for two cases: i)
suggested fixed design-SNR of 0 dB [Vangala et al. 2015], ii) channel-specific design-
SNRs corresponding to the SNR of the specific channel. We observe in Figure 3.2 that
Vangala’s assertion is not true, because for the fixed design-SNR of 0 dB, the BLER
found in our simulations is 2-3 times that of the channel-specific design at each SNR >

1.5 dB. Similarly, at a given BLER, the gain of the channel-specific design over the
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0-dB design is measured around 0.2-0.3 dB for the BLERSs between 10~* and 10~5 of
Figure 3.2. Keeping this in mind, unless otherwise is specified, we continue with the

fixed design-SNR of 0 dB in our simulations, for the sake of simplicity.

RFG (fixed 0-dB design)
1E+0

—&— RFG (channel-specific design)

1E-1

1E-2

BLER

1E-3

1E4

SNR (DB)

1E-5

Figure 3.2. Performances of RFG BP decoders for (1024, 512) codes, constructed using
i) fixed design-SNR of 0 dB (yellow), ii) channel-specific design-SNR at each SNR (red).

Next, we explore the performance variation of the RFG BP decoder with increasing
code length, by obtaining the BLERs of the RFG decoders for rate-0.5 polar codes
designed for the AWGN channels at 0 dB. The simulations are carried out for 6 <
n < 12 (and also for n = 13, 14 in some cases), until a minimum value of 150 block
errors are found. The results given in Figure 3.3 for 6 <n < 14 show that the
approximate gain obtained by doubling the code length is 0.27 dB at BLER = 1072,
0.35dB at BLER = 1073 and 0.4 dB at BLER = 10™*.

40



1.E+0

1E1
1.E-2

o

w
1.3 =
1.E-4 .

®

LESS SNR (DB)

0 05 1 15 2 25 3 35 4 45 5 55 6 65
—&=— RFG n=6 —&— RFG n=7 RFG n=8 —&=— RFG n=9 RFG n=10
—&=— RFG n=11 ©— RFG n=12 === RFG n=13 RFG n=14

Figure 3.3. BLER of the RFG decoder for polar codes with design-SNR of 0 dB, versus the channel
SNR. From top to bottom - Blue: n = 6, P(64, 32), Black: n =7, P(128, 64), Pink: n = 8, P(256, 128),
Green: n =9, P(512, 256), Yellow: n = 10, P(1024, 512), Purple: n = 11, P(2048, 1024), Red: n = 12,

P(4096, 2048), Brown: n = 13, P(8192, 4096), Gray: n = 14, P(16384, 8192).

Since we want to compare the BLER performances of two extreme decoders, namely
the RFG and IRFG BP decoders; we repeat the channel-specific design-SNR
experiment of Figure 3.2 for the IRFG BP decoders as well. Instead of the example
polar code P(1024, 512), we now plot the BLERs of the RFG and IRFG decoders for
6 < n < 11, corresponding to two cases in Figure 3.4: i) suggested fixed design-SNR
of 0 dB [Vangala et al. 2015], ii) channel-specific design-SNRs at each SNR, in
addition to the BLERs of the RFG decoder. What we now observe is somewhat
incomprehensible for n = 6 and the RFG of n =11, where the performance does not
improve with channel-specific design; whereas in all other cases, channel-specific
design outperforms the fixed-SNR design. At a given BLER, say 1073, the IRFG BP
decoding gain of the channel-specific design over the 0-dB design varies between 0
and 2.9 dB (IRFG curves of n =11) as can be observed in Figure 3.4,
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Figure 3.4. BLER performances of the RFG (solid) and the IRFG (dashed) BP decoders for
n =6, P(64,32),n=7, P(128, 64), n = 8, P(256, 128), n =9, P(512, 256), n = 10, P(1024, 512) and n
=11, P(2048, 1024) codes, constructed using i) fixed design-SNR of 0 dB (yellow curves),

ii) channel-specific design-SNR at each SNR (red curves).
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Again keeping this information in mind, unless otherwise is specified, we simplify our
simulations by choosing a fixed design-SNR of 0 dB in the remaining part of this
work. In order to compare the RFG BP decoder performance of rate-0.5 polar codes
given in Figure 3.3 with the performance of the inverse RFG BP-decoder; we plot in
Figure 3.5 the BLER performance of the IRFG decoder for 6 < n < 12, on top of
Figure 3.3 using dotted curves. As in the simulations of Figure 3.3, each simulation
point for the IRFG decoder is obtained by counting 150 block errors so that the
reliabilities of all simulation points are equalized.
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Figure 3.5. BLER of the RFG and IRFG decoders versus channel SNR with design-SNR of 0 dB.
Solid lines refer to RFG, and dotted ones of the same color refer to IRFG performances for the same
code length. Blue: n = 6, P(64, 32), Black: n =7, P(128, 64), Pink: n = 8, P(256, 128), Green: n = 9,

P(512, 256), Yellow: n = 10, P(1024, 512), Purple: n = 11, P(2048, 1024),
Red: n =12, P(4096, 2048).

Expectedly, all the dotted curves corresponding to the IRFG decoders have more

degraded performances than solid curves corresponding to the RFG decoders, as
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observed in Figure 3.5. Remarkably, the gap between the performances of the RFG
and IRFG decoders seems to grow when the code length increases. Among all rate-
0.5 polar codes with lengths N < 4096, the RFG performance of P(4096, 2048) is
the best one (solid red curve) as expected; however, its IRFG performance, quite
unpredictably, is the worst (dotted red curve). On the other hand, P(64, 32) that gives
the anticipated worst RFG performance (solid blue curve) has astonishingly the best
IRFG performance (dotted blue curve).

The gain of the RFG decoder over the IRFG decoder seems to increase linearly with
increasing n, for instance at BLER = 1072, the gain starts from 0.6 dB for n = 6, and
increases to 7.6 dB for n = 12. Figure 3.6 shows this gain; i.e., the difference of the
SNR values to achieve a BLER = 1072 for the RFG and IRFG decoders of the rate
0.5 polar codes with length 2™. On the same figure, we also include the equivalent
gain (of the RFG over the IRFG decoder) for adaptive polar codes constructed using

channel-specific design-SNR at each channel SNR.

Gain (dB)
B
]
[

fixed 0-dB design

. —8— channel-specific design

5 6 7 8 9 10 11 12 13

Figure 3.6. Gain of the RFG decoder over the IRFG decoder at BLER = 1072 versus n
for polar codes constructed using i) fixed design-SNR of 0 dB (yellow curve),

ii) channel-specific design-SNR at each channel SNR (red curve).
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This rapid increase of the RFG decoding performance over the IRFG performance
with increasing n also indicates that random choice of FGs in multiple-FG decoder
sets as suggested in the literature [Elkelesh et al., 2018a] may not be effective for high
values of n. Instead, one needs to optimize the chosen FGs by considering a limited
variety of FGs, in a group of “suitable” decoders, which exclude the IRFG as well as

those having similar performances to that of the IRFG.

It is also of interest to repeat the simulations of Figure 3.5 for a BEC(€) with various
erasure rates €. We present the associated results for 6 < n < 12 in Appendix A, for
comparison with those given by the related theses completed at METU ([Dogan,
2015], [Peker, 2018] and [Akdogan, 2018]).

3.3. Multiple Factor Graph BP Decoding Performance of Polar Codes over the
AWGN

A multiple-FG decoder consists of M > 1 factor graphs, which attempt to decode
cooperatively. If the received N-bit block is decoded by the first FG, the remaining
FGs need not be used. Otherwise, the undecoded N-bit block is submitted to the
second FG, which either decodes the block or submits it to the next FG. This procedure
is repeated for each FG; and the decoding operation is finished if any one of the FGs
in the set decodes the received N-bit block. Otherwise, the raw block is submitted to
the next FG until all FGs in the set are exhausted. So, a received block remains

undecoded, only if the BP decoders of all the FGs in the set are unsuccessful.

When a new factor graph is in use, rather than employing the log likelihood ratios
(LLRs) of the previous factor graph, LLRs are computed from the original channel
output data and the BP decoding algorithm uses the stage order of the new factor graph
representation (starting from its last stage; i.e., from right to left). Akdogan calls this

method the “independent multiple-FG decoding” as opposed to the “dependent
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multiple-FG decoding”, in which FGs operate successively by utilizing the final LLRs
of the previous FG within the set [Akdogan, 2018].

3.3.1. Randomly Chosen Multiple Factor Graph BP Decoding Performance of
Polar Codes over the AWGN

In this section, BLER performance of randomly chosen multiple-FG decoders is
studied. As the number of FGs in the set, we choose n = log,N, and perform n-FG
decoding as opposed to the single-FG decoders of Section 3.2. We know that the
original factor graph of polar codes, the RFG, is one of the decoders with the best
performance among n! FGs [Dogan, 2015], [Peker, 2018], [Akdogan, 2018], [Elkelesh
et al, 2018]. Therefore, to increase the performance of the multiple-FG decoder, the
RFG that has the SON = n...21 is always kept in the decoder set and the rest of the
(n — 1) factor graphs are randomly selected out of (n!—1) FGs with equal
probabilities. We first examine the performance of the P(128, 64) polar code over the
AWGN channel with constant SNR (2 dB). In each simulation, 10* channel output
blocks are submitted to the decoder, and the RFG is used as the first decoder. If the
RFG fails to decode, a random FG among (7!- 1) = 5039 FG’s is invoked. Blocks that
cannot be decoded by an FG are attempted by another randomly chosen FG, until the
7" FG is reached. 7-FG BP decoding performances of 10 different random 7-FG sets

are shown in Figure 3.7.
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Figure 3.7. BLER performance of ten random 7-FG decoders for P(128, 64) at SNR=2dB, versus the

number of factor graphs.

A sample decoder set for P(128, 64) corresponding to Series 4 in Figure 3.7 is
exemplified in Table 3.2.

Table 3.2. Stage order numbers (SONs) and number of decoded words out of 10000 blocks for a
sample set of random factor graphs (FGs) used in 7-FG decoders of P(128, 64) at SNR=2dB.

1'FG 2" FG 39 FG AN FG 5" FG 6" FG 7hFG
SON 7654321 | 2174536 | 6132457 | 5672431 | 2345716 | 5216347 | 2463175
Number of
decoded 8590 148 94 121 41 11 46
words

It can be seen from Figure 3.7 that all 10 different random factor graph sets have
similar performances. The RFG decoder initially performs ~0.14 error-ratio and after
6 more decoder’s attempts, the BLER value decreases to ~0.09 at that specific noise

realization, which is simulated using the same seed in all ten cases for fair comparison.
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There are many studies on the performance of polar codes using cyclic shift multiple-
FG BP decoders, the complexity of which is O(N(logN)?) [Korada, 2009], [Hussami
et al., 2009], [Elkelesh et al., 2018a] [Elkelesh et al., 2018b], [Doan, Hashemi,
Mondelli, Gross, 2018]. Cyclic shift factor graph sets have n elements that can be
created from the reference factor graph by shifting each stage cyclically from right to
left (or from left to right) one by one. Theoretically, the overall n-FG performance
doesn’t change since the order of the FGs in the set does not matter if the set remains
the same. For n = 7, the factor graphs of the cyclic multiple-FG decoder have the
SONs: 7654321, 6543217, 5432176, 4321765, 3217654, 2176543 and 1765432.
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0.19 0.19 —--s--seriest o--Series2 Series3
0.18 =s=cyclic 0.18 Ser!es4 -----Ser!ess --o—- Ser!ess
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Figure 3.8. BLER comparison of the cyclic 7-FG BP decoder with ten random 7-FG BP decoders for
P(128, 64) at SNR = 2 dB.

In Figure 3.8, we plot the cyclic 7-FG performance on the left alone, and then on the
right, we merge it onto the performances of all ten randomly chosen 7-FG sets shown
in Figure 3.7. The graph on the right shows us that random and cyclic BP decoders
follow a similar trend for n = 7. One may say that the deterministic cyclic 7-FG BP
decoder for P(128, 64) performs better than approximately half of the ten randomly
chosen 7-FG sets, and worse than the other half. Hence, it seems safer to use the cyclic

set of 7 FGs rather than a random set.

48



Next, random n-FG BP decoder tests are carried out for P(1024, 512), to see the
performance for a larger code length. Again, the first FG of the set is selected as the
RFG decoder, having the stage order:10-9-8-7-6-5-4-3-2-1, and the remaining nine
FGs are chosen randomly. SNR value of the channel is set to 1.5 dB to have similar
BLER performance with the P(128, 64) case and 10% codeword blocks are used for
each simulation. It is also of interest to compare the performance of the cyclic 10-FG
decoder with those of random 10-FG sets. So, in Figure 3.9, we plot the cyclic 10-FG
performance on the left alone, and then on the right, we merge it onto the performances
of ten random FG sets. One observes that for n = 10, the cyclic decoder is better
than ~70% of the ten random sets (Figure 3.9), as opposed to ~50% observed forn =
7 (Figure 3.8).

By comparing Figure 3.9 with Figure 3.8, one also observes that the performances of
randomly chosen n-FG sets start to differ more as n increases. In some sets of Figure
3.9 such as Series 10, good FG combinations might coincide and create an effective
increase in performance; whereas in some others, worse combination of FGs might
meet by chance as in Series 1. As also suggested by rapidly increasing gain of the
RFG over the IRFG in Figure 3.6; as n increases, an n-FG decoder with randomly
chosen FGs may function much more poorly than the RFG alone. Hence, random

choice of n-FG decoders seems not suitable for large values of n.
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Figure 3.9. BLER comparison of the cyclic 10-FG BP decoder with ten random 10-FG BP decoders
for (1024, 512) at SNR = 1.5 dB.

Still, the question arises that “How many FGs should be chosen for better performance
in terms of both speed and BLER of P(1024, 512) BP decoders?” So, we increase the
number of permuted factor graphs to 100 and make other ten simulations by using 10*
different codewords at SNR = 1.5 dB. Results are presented in Figure 3.10 at
quantized steps of 10 FGs; i.e., for 10k-FG decoders, where k = 1, ...,10.
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Figure 3.10. BLER of multiple-FG BP decoder for (1024, 512) at SNR = 1.5 dB versus the

number of FGs, for cyclic 10-FG and ten random choices of 100-FG decoders.
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Figure 3.10 shows that if one uses randomly chosen 99 FGs together with the RFG
decoder instead of single RFG decoder, the block error-ratio decreases from ~0.18 to
~0.12 for P(1024, 512). However, the slope of the BLER decrease may be very small
if the set size is less than 90 (as in Series 1, blue curve of Figure 3.10) or larger than
20 (as in Series 2, orange curve of Figure 3.10). Besides, increasing the number of

factor graphs more than enough, causes the decoder work more slowly.

As stated before, the results in this section are consistent with the results in Figures
3.5 and 3.6 of Section 3.2; which show that as n increases, IRFG and RFG decoder
performances have huge differences in their BLER performances. For the polar code
P(1024, 512), 10! = 3,628,800 different FG representations exist and randomly
composed FG sets have poor decoding performances with a large probability. On the
other hand, the cyclic 10-FG decoder, whose FGs are chosen deterministically is more
promising, since it performs better than ~70% of the random 10-FG sets generated in

our simulations.

In order to determine well performing multiple-FG sets, one may need to focus on
single decoding performances of each FG. For example, in Figure 3.9, Series 10 shows
a drastic performance gain at the 7" decoder which has stage order number, SON =
968A374512 (calling 10 = A). Similarly, in Series 4, it is the 8" decoder with SON =
97548A6213 that shows an abrupt performance gain. Moreover, in Figure 3.10, the
BLER of Series 1 decreases after the 94" FG with SON = 86A7953241 and that of
Series 2 after its 15" FG having SON = A967538421.

All these factor graph representations with better decoding performances seem to
possess a common characteristic: They all have the small stage numbers at the end.
Therefore, we think that this characteristic might be taken into consideration while
selecting the FG sets of multiple-FG decoders. Next section gives our deterministic

set selection methods in more detail.

51



3.3.2. Predetermined Multiple Factor Graph BP Decoding Performance of Polar
Codes over the AWGN

Previous section reveals that for the long code lengths, the FG sets of multiple-FG
decoders should be selected deterministically; because, performance gain might not
be obtained by random selection. Therefore, in this part of the study, we try to find a
legitimate approach to construct n-FG sets (i.e., to find the SONs of FGs in the set)
better than the cyclic n-FG set for the multiple-FG decoder.

Stage order number (SON) uniquely defines an FG representation [Akdogan, 2018].
The performance of a single-FG BP decoder, is shown to be positively correlated with
the number of frozen variables in its representation; and also with the sum of capacities
of all information transmission paths [Dogan, 2015], [Peker, 2018]. These two
parameters are abbreviated as FV (the number of frozen variables) and CS (capacity
sum of information channels) and discussed extensively in the related three M.Sc.
theses completed at METU [Dogan, 2015], [Peker, 2018], [Akdogan, 2018], where
polar codes are designed and simulated over BECs.

Akdogan has also studied over the BEC channel and found the single-FG BP decoding
performances of the FGs versus their SON [Akdogan, 2018]. We perform a similar
simulation over the AWGN channel and in Figure 3.11, we plot the BLER
performances over an AWGN channel at SNR = 1.5 dB for all single-FG BP
decoders of P(64, 32), against their SON. This experiment is only carried out forn =
6 due to the formidable profusion of possible FG representations for larger block
lengths. The horizontal axis of Figure 3.11 corresponds to the sorted SONSs in
ascending order; i.e., it starts with 123456, 123465, and ends with 654312, 654321.
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Figure 3.11. BLERs of single-FG BP decoders for P(64, 32) over the AWGN with SNR = 1.5 dB,
versus their SONs sorted in ascending order (where circles indicate the selection of MaxSON, and

triangles show the selection of MaxofMax sets).

In Figure 3.11, we differentiate the SONSs starting with different numbers by different
colors. Therefore, in each group starting with the same stage number, the leftmost part
of the color region corresponds to the minimum SON and the rightmost part
corresponds to the maximum SON. Since n = 6, in each color group there are 5! =
120 SONs. When the SONs are sorted from the smallest to the largest; one obtains
the BLER performances shown in Figure 3.11 over the AWGN with SNR = 1.5 dB.

According to this graph, the FGs with maximum SONs in each 120-element group
seem to have relatively good BLER performances. They are marked with circles in
Figure 3.11. We base our first proposal for the selection of n FGs of the n-FG BP
decoder upon this observation; so, we pick the maximum SONSs in each group (starting
with a different stage order) to form an n-element set. For N = 64, this rule
corresponds to the 6-element set: {654321, 564321, 465321, 365421, 265431,
165432} as the FGs of the n-FG BP decoder, which is going to be referred to as the
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MaxSON decoder choice from now on. One may notice that the first and the last

elements of the MaxSON set are shared by the cyclic set as well.

Another good performing group is indicated with triangles in Figure 3.11, which has
the SONs ending with 321; i.e., 654321, 645321, 564321, 546321, 465321 and
456321. In other words, they are the ones constructed by shuffling the first 3 digits of
the SON of the RFG decoder. For n > 6, similar n-element sets can be generated by
keeping the last (n —4) digits of the SON fixed, while permuting the first 4 digits of
the RFG, so that 4! = 24 different SON values are obtained. For the n-FG decoder,
one can choose the n biggest values out of these 24 SONs if n < 24. We name the FG
set chosen this way as the MaxofMax set. So, for 7 < n < 14, we compare the

performance of the n-FG sets chosen as

i) all cyclic rotations of the RFG,
i) MaxSON set; i.e., the maximum SONs starting with each one of the n stages,
iii) MaxofMax set; i.e., the n maximum SONSs in the set of permuted first 4 digits.

Notice that all these set choices contain the RFG as their principal element. Moreover,
the first and second rules share a second FG as well, which is the FG starting with
stage 1. The third rule is defined for n > 7 and applicable only to n < 24, or N <
16,777,216; which seems sufficient for practical purposes. A slightly modulated form
of the MaxofMax rule can also be used for n = 6; by permuting the first 3 digits of
the 6-digit SONs instead of their first 4 digits.

54



0.16 P(128,64) —O——cyclic 0.17 P(256,128) == cyclic

0.15 rqke 2. MaxSON 0.16 «s - MaxSON

0.14 =ri—- MaxofiMax 0.15 —-&-- MaxofMax
0.13 0.14
0.12 0.13
0.11 0.12
0.1 0.11
0.09 0.1
0.08 0.09
0.07 0.08
NUMBER OF EACTOR GRAPHS
0.06 NUMBER OF|FACTOR GRAPHS 0.07
012 3 45 6 7 8 910111213 012 3456 7 8 910111213
0.18 =& cyclic 0.14
P(512,256) i ’ ’,D(1024 512) —0— cyclic
0.17 4 MaxSON /
0.13 <o VTaXSON
0.16 sphcrMaoiMax |\ | -L&-- MaxofMax
0.15 0.11
0.14 0.1
013 o & \‘.\%
13 [ 0.09 g B
) '7‘_._ ...‘--."_‘F-
0.12 * B Y 0.08 * L.‘__‘
. i
0.11 "*.._ 0.07 i e
#..# Rl TRP "
0.1 0.06
0.09 0.05
NUMBER OF FACTOR GRAPHS NUMBER OF FACTOR GRAPHS
0.08 0.04
012 3 456 7 8 910111213 012 3 456 7 8 910111213
0.16 0.14 oo
P(2048]1024) P(4096,2048) i
0.15 0.13 re<besx MaxSON
0.14 %W 0.12 --&-- MaxofMax
e : 9-60-0-60060600606°0
0.13 ‘\“_‘ =9 cytlic 0.11 \\
0.12 z sesttens MAXSON o1 ‘i
o AR e ? L o
011 |5 \i &-r MaxofMax 0.09 & k
= % f .,
0.1 ‘i\* 0.08 b
0.09 ""%,,‘ 0.07 x‘:-.
o Sk d &,
0.08 A--p 0.06 h
t'.-_*._.t..q....t..q_..*
0.07 0.05 Rt
0.06 NUMBER OF FACTOR|GRAPHS 0.04 NUMBER OF FACTOR GRAPHS
012 3 456 7 8 910111213 012 3 456 7 8 910111213

Figure 3.12. BLER performances of the cyclic shift, MaxSON and MaxofMax choices for the FG set
of the n-FG BP decoder for various code lengths N = 2™"=128, 256, 512, 1024, 2048 and 4096; where
the AWGN channel SNRs are adjusted as 2, 1.8, 1.75, 1.7, 1.4 and 1.35 dB respectively.

In Figure 3.12, the BLER performances of the three set-choice methods are plotted

versus the number of factor graphs for 7 < n < 12. For each code length, we choose
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a specific SNR value so that the RFG decoders of all lengths display approximately
the same performances. 10* codewords are used in all simulations, and randomizing
seeds of noise samples are kept the same in all simulations to compare the

performances of the three set-choice rules fairly.

According to the results presented in Figure 3.12, although the performance of the
cyclic decoder for P(128, 64) is better than those of the MaxSON and MaxofMax
choices; as N grows, the cyclic choice of FGs quickly loses this advantage and
becomes the worst among the three choices. On the other hand, the MaxSON choice
seems to be the best for N = 256, 512 and 1024, and the MaxofMax choice starts to
slightly outperform it for N = 2048 and 4096. Both suggested methods become more
profitable than the cyclic decoder structure for N > 128 and it seems worthwhile to
prefer them. Appendix B focuses on polar codes P(1024, 512) and P(2048, 1024) to
analyze the individual effects of single-FG performances of the n factor graphs in
MaxofMax and MaxSON decoders.

To have a better understanding of the performance of the suggested choices of n-FG
sets, we focus on higher code lengths with 10 <n < 14, and find the BLER
performance versus a wider SNR range for the cyclic, MaxSON and MaxofMax n-FG
belief propagation decoders (together with a randomly chosen set for 10 < n < 12).
Figure 3.13 summarizes the results of this experiment, where we compare the block
error ratio performances of the single RFG and multiple n-FG BP decoders for
P(1024,512), P(2048, 1024), P(4096, 2048), P(8192, 4096) and P(16384, 8192). The
number of maximum iterations is chosen as 200, and all noise realizations are kept the
same for fair comparison. The BP decoder having the best performance among single-
FG decoders; i.e., the RFG is included as a reference in Figure 3.13, to observe the n-
FG decoder gain over single-FG performance. For each polar code P(2", 2" 1), the
FG sets formed either by cyclic shifts or by our MaxSON and MaxofMax rules, are of

size n.
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Figure 3.13. BLER performances of RFG as compared to n-FG BP decoders chosen randomly or

deterministically by cyclic, MaxSON and MaxofMax rules for P(1024, 512), P(2048, 1024), P(4096,
2048); and by cyclic, MaxSON, MaxofMax rules for P(8192, 4096) and P(16384, 8192).
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We observe that the BLER performance of the RFG (blue curve) is the worst in all
five figures of Figure 3.13 as expected, because the other BP decoders are multiple-
FG decoders. However, as the code length N increases, both the cyclic n-FG (dark
blue curve) and the randomly chosen (pink curve) n-FG decoders start to approach the
RFG curve; and somewhat astonishingly, a randomly chosen 12-FG decoder for
P(4096, 2048) performs exactly the same as the single RFG decoder. On the other
hand, performances of both of our set choices (dashed black and red curves) seem
quite satisfactory. They are the best ones in all cases, the MaxofMax rule of set choice
being somewhat beaten by the MaxSON rule; but the inner-competition between them
seems to become more driving as N grows. The gain of the MaxSON decoder (dashed
red curve) over the cyclic decoder (dark blue curve) at BLER= 1073 is 0.13, 0.16,
0.23,0.32 and 0.38 dB respectively for the rate-0.5 polar codes P(1024, 512), P(2048,
1024), P(4096, 2048), P(8192, 4096) and P(16384, 8192). Even though the BP
decoder whose FGs are chosen by the MaxofMax rule doesn’t work as effectively as
the MaxSON decoder for n = 10 and 11; it performs as well as the MaxSON decoder
for n = 12, 13 and 14. The SNR gain of the MaxofMax decoder over the cyclic
decoder at BLER= 1072 is 0.2, 0.29 and 0.45 dB respectively for the codes P(4096,
2048), P(8192, 4096) and P(16384, 8192).

In Figure 3.14, we plot the SNR gains of the MaxSON and MaxofMax decoders over
the cyclic decoder versus n for a fixed BLER = 1073, When the performance for all
the code lengths is taken into account, the MaxSON decoder seems to be more
beneficial than the MaxofMax decoder in general.
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Figure 3.14. SNR gains at BLER = 102 of the MaxSON and MaxofMax n-FG BP decoders over the

cyclic n-FG BP decoder versus n.

3.4. Performance Comparison of Multiple Factor Graph BP Decoding for Polar
Codes and Reed-Muller Codes

It is a well-known fact that polar codes are close cousins of the Reed-Muller (RM)
codes; and they only differ by the selection rule of the rows of the G?" matrix
mentioned in Section 2.1: “Polar codes select the rows of GS™ so as to minimize the
Bhattacharyya parameters and RM codes select them to maximize their Hamming
weights.” The aim of this section is to present some experimental results showing the
differences between the BP decoder performances of polar and RM codes. Since the

code rate is chosen as 0.5 throughout the thesis, we simulate RM codes of rate 0.5.

First, the performances of the (2", 2"~1) RM and polar codes for different code lengths
are compared in Figure 3.15 and quite surprisingly, it is observed that for the RM
codes, if one increases the code length, single-FG (RFG in this case) BP decoder
performance decreases. Hence, while forn = 7, RFG BP decoders for polar and RM
codes have similar BLER performances; forn = 9 and 11, polar RFG decoders have

considerably better performances than the RM decoders.
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Figure 3.15. BLER of the RFG decoder for polar (solid lines) and RM codes (dashed lines), versus
the channel SNR, where red, green and purple curves are corresponding respectively to
(N, K) = (128, 64), (512, 256), and (2048, 1024) codes.

In order to explore the contribution of multiple-FG decoding, we plot the 120-FG
performance of RM codes for n = 9, in Figure 3.16. Set choice of the 120-FG BP
decoder is done by slightly modifying the MaxofMax algorithm; and the first 5 stages

are permuted instead of 4, so as to generate 5! = 120 factor graphs.
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Figure 3.16. BLER performance comparison between the RFG and 120-FG BP decoders of RM
codes and the RFG decoder of polar codes for (N, K) = (512, 256).
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Results of Figure 3.16 show that the RFG BP decoder for the (512, 256) polar codes
over-performs the 120-FG BP decoder for the (512, 256) RM codes at low SNRs.
However, the performance of the 120-FG decoder gets better in the high SNR region.

Figure 3.16 leads one to investigate the required number of decoders for the RM code
to achieve the polar code’s performance. Since the number of multiple-FGs is very
high for longer code lengths, a practical value of n = 7 is chosen in order to cover
all possible FGs in the multiple-FG decoder set. So, 7! = 5040 FGs are used for
comparison with the earlier studies of Peker, performed for a BEC, where multiple-
FG BP decoders are selected among the maximum equi-FV sets up to 152 FGs [Peker,
2018]. In Figure 3.17, we compare the performances of 5040-FG decoders (ranked in
decreasing order of SON), for the RM and adaptive polar codes designed over a
BEC(e) with the erasure probability e = 0.35. (Note that the adaptive polar code
designed for e = 0.35 turns out to be the same as the polar code designed for € = 0.5
in this case.)
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Figure 3.17. BLER performance comparison of multiple-FG BP decoders for the RM codes and
adaptive polar codes for (N, K) = (128, 64) over a BEC(¢) with € =0.35..
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In Figure 3.17, which shows the simulation results over a BEC(¢) with erasure rate €
= 0.35, the multiple-FG BP decoder for the RM code starts to perform better than the
polar multiple-FG BP decoder, if the number of FGs is greater than 850. However, the
trend with increasing n (shown in Figure 3.15) of deteriorating BP decoding

performance for the RM codes should also be taken into consideration.

We also perform a similar simulation over an AWGN at SNR = 2 dB. In Figure 3.18,
simulation results plotted for multiple-FG BP decoding of the adaptive polar code
(designed at 2 dB) seem to be better than that of the RM code, if the number of FGs
is less than approximately 2500; but both performances reach the same point at the
end of the experiment. The performance of the multiple-FG BP decoder of the polar
code designed at 0 dB is better than that of RM code till M is approximately 250 but

for higher values of M, it is quite similar to that of the RM code as well.
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Figure 3.18. BLER performance comparison of multiple-FG BP decoders for the RM codes and polar
codes with parameters (N, K) = (128, 64) over an AWGN at SNR = 2dB.

62



3.5. Performance Comparison with Other Multiple Factor Graph BP Decoders
over the AWGN

Belief propagation decoding using factor graphs with permuted stages is extensively
discussed in the literature [Doan et al., 2018], [Elkelesh et al., 2018a], [Elkelesh et al.,
2018b], [Hashemi et al., 2018]. In this section, we compare the performance of our
set-choice proposals (MaxSON and MaxofMax) with some of them, by using polar
codes constructed both at some constant design-SNRs and according to the specific
channel SNR.

One of these studies carried out for (1024, 512) by Doan, Hashemi, Mondelli and
Gross compares the performances of multiple-FG decoders such as PBP-CS (meaning
“permuted BP decoder with cyclic shift” that we call “cyclic 10-FG” in our work), and
PBP-B10 (meaning “permuted BP decoder with the best 10 FGs”, whose 10 FGs are
chosen by Doan et al. beforehand to maximize the probability of successful decoding),
and SCL32 (successive cancellation-list decoder of list size 32), with the single-FG
decoders such as BP (that we call the RFG in our work) and SC (successive

cancellation) decoders [Doan et al., 2018].

In Figure 3.19, we plot our performance results (dashed curves) obtained by the RFG,
cyclic, MaxofMax and MaxSON decoders, together with Doan et al.’s results (solid
curves) for the polar code P(1024, 512), for which the design SNR is not stated. So,
we compare their results with four choices of the design-SNR, three of them being
constant and the last one being variable design SNRs. One of the constant design SNRs
that we pick is Arikan’s suggestion (Zo = 0.5 corresponding to SNR = —1.59 dB)
[Arikan, 2008]; the second one is Vangala’s proposal (0 dB SNR) [Vangala et al.,
2015]; and the third constant design SNR is chosen as 0.5 dB. The last performance
curve in Figure 3.19 is obtained for channel-specifically designed polar codes, where

we vary the design-SNR of the polar code in each simulation point, with steps of 0.5

63



dB (or 0.2 dB for our last cyclic, MaxSON and MaxofMax points in the last sub-figure
of Figure 3.19).
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Figure 3.19. BLER performance comparison between the BP decoders of our study (shown by dashed
lines) and another study in the literature reproduced from [Doan et al., 2018]) (shown by solid lines);
where our first three figures are obtained for P(1024, 512) constructed at fixed design-SNRs (—1.59,

0, 0.5 dB) and last one is constructed with variable, channel-specific design-SNR.

64



One observes from the dashed curves of Figure 3.19 that the BP decoding performance
of polar codes is highly dependent on the design SNR. Among the chosen four cases,
our dashed simulation curves have the worst performance for the fixed design-SNR of
—1.59 dB (Zo = 0.5) and the best performance for the channel-specific design with
variable design-SNR. When the polar codes are designed adaptively at each channel
SNR, it can be seen from the last sub-figure of Figure 3.19 that all of our dashed curves
become better. However, the fact that our BP decoding algorithm uses perfect
knowledge based (PKB) decisions for early termination causes our BLER curves be
better than would be obtained in practice. Since Doan et al. use a practical decision
criterion, a fair comparison is not possible at this point. Therefore, we delay our
comments on performance comparison to the end of this chapter, where we add a

practical criterion for early termination.

Two other studies on multiple-FG BP decoders are carried out for P(2048, 1024)
codes by Elkelesh, Ebada, Cammerer and Brink in 2018[Elkelesh et al., 2018a],
[Elkelesh et al., 2018b]. The design of polar codes used by Elkelesh et al. is according
to Arikan’s suggested method for AWGNs [Arikan, 2009]. In order to find a
comparable design-SNR with Elkelesh et al.’s work, we plot the BLER performances
polar codes we’ve designed at different design-SNRs in Figure 3.20.

Elkelesh et al.’s single BP decoder is the same as our RFG BP decoder, and their BP
list decoder, BPL [Elkelesh et al., 2018a] with a list size of L = 10 is a multiple FG
decoder, whose FGs are created with random permutations; so, while comparing its
performance with that of our cyclic 11-FG decoder, one may expect a worse BLER
curve similar to P(2048, 1024) curves of Figure 3.13. On the other hand, their BPL
[Elkelesh et al., 2018b] decoder with a list size of L = 32 includes randomly generated
(32 - 11 = 21) FGs, in addition to the 11 cyclic permutations of the RFG. So, it is
expected to perform better than the cyclic 11-FG decoder and our MaxSON 11-FG

decoder.
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Since our decoders use perfect knowledge based (PKB) decisions for early
termination, we avoid comparison with the results in the literature, until we add a

practical stopping criterion to our BP decoding as in Figures 3.21, 3.22 and 3.23.
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Figure 3.20. BLER performance comparison for P(2048, 1024), constructed at different design-
SNRs, between the decoders of our study (shown by dashed lines) and another one in the literature
(shown by solid lines, reproduced from [Elkelesh et al., 2018a] and [Elkelesh et al., 2018b]).
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The last sub-figure of Figure 3.20 corresponds to the channel-specific design that is
expected to work the best; and it seems to result in quite satisfactory performance for
the MaxSON 11-FG decoder. However, rather unpredictably, the RFG decoder of the
channel-specifically designed P(2048, 1024) code has worse performance than that of
the fixed 0.5 dB design. This is also verified in Appendix C, in which the performance
comparison between our RFG and MaxSON decoders is given for different design
SNRs.

As emphasized above, our simulation results presented up to this point demonstrate
the BLER performances of the proposed BP decoders, stopped by early decisions
based on the perfect knowledge of the transmitted bits. Since in practical applications
the receiver doesn’t know the transmitted bits; the promising performance of the
MaxSON decoder should be tested under a practical decision criterion as well. For
this purpose, we repeat some simulations, and instead of the PKB decisions of the
previous simulations, we stop the BP decoding algorithm by a cyclic redundancy
check (CRC) decision. We generate r bits of CRC for K — r input bits, at the cost of
rate loss = r/N. At each step of 10 BP iterations, we check whether the CRC of input
bits is satisfied. Decoding stops when either the CRC is fulfilled, or the maximum
number of 200 iterations is reached. The CRC polynomial of length 16 that we use is
x4+ x'2 + x> + 1, and the corresponding rate loss is reflected to the SNR in the

horizontal axis of the related figures.

Figure 3.21 and Figure 3.22 show the BLER performance comparison of the polar
codes under perfect knowledge based (PKB) and CRC based early termination
algorithms for polar codes of lengths N = 1024 and 2048. Dashed lines show the PKB
performances of the RFG, cyclic and MaxSON decoders and the solid lines of
corresponding colors show the CRC16 based practical decisions. Green lines display
the SCL32 (successive cancellation-list decoder of list size 32) decoder performances.

We select the design-SNR of 0.5 dB in both cases, in order to keep the performances
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of the RFGs in ours (found by CRC16 based decisions) and others [Doan et al., 2018],
[Elkelesh et al., 2018a], [Elkelesh et al., 2018b] comparable, so that a base of reference

is provided for the multiple-FG performance comparison of the proposed BP decoders.
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Figure 3.21. BLER performance for P(1024, 512), constructed at 0.5 dB design-SNR, of our RFG,
cyclic and MaxSON decoders using perfect knowledge based (PKB) and CRC based early

termination, (Doan’s curves are reproduced from [Doan et al., 2018]).
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One observes from Figure 3.21 that Doan’s RFG (blue) and cyclic 10-FG (dark blue)
decoders have very similar performance to ours obtained with CRC16 decisions,
which forms a fair comparison base. Although Doan’s 10-FG and our MaxSON 10-
FG (with CRC16) decoders also have similar performance, ours seems more
preferable because of its deterministic MaxSON rule of choosing 10 FGs, instead of
Doan et al.’s experimental method of selecting 10 FGs to maximize the probability of
successful decoding. The performance loss of the CRC16 decisions over PKB
decisions is around 0.18 dB; approximately 0.15 dB of which corresponding to the
rate loss (r/N = 16/1024) penalty of CRC16 that is reflected to the horizontal axis.
So, with CRC16 based decisions, the MaxSON 10-FG decoder is observed to no
longer compete with the SCL32 decoder, which is only possible with PKB decisions
for N = 1024.
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Figure 3.22. BLER performance for P(2048, 1024), constructed at 0.5 dB design-SNR, of our RFG
and MaxSON decoders using perfect knowledge based (PKB) and CRC based termination,
(Elkelesh’s curves are reproduced from [Elkelesh et al., 2018a] and [Elkelesh et al., 2018b].).
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In Figure 3.22 that is plotted for N = 2048, again a fair comparison base is achieved
because of the matching performances of Elkelesh’s RFG and our RFG (with CRC16
decisions). Since the CRC rate loss (r/N = 16/2048) penalty that is reflected to the
horizontal axis (~0.08 dB) is smaller than the N = 1024 case, the performance of the
MaxSON 11-FG (CRC16) decoder is now comparable to that of the SCL32 decoder
for N = 2048. This performance looks quite promising since the multiple-FG BP
decoder has the potential of reaching much higher speeds, because of the parallel

implementation of multiple factor graphs.

Finally, we plot the BLER and BER performances of the RFG and MaxSON decoders
for P(1024, 512) and P(2048, 1024) in Figure 3.23. Solid lines display the BLER and
dashed lines show the BER performances. We plot the BER curves of the MaxSON
decoders by considering two different FGs in the multiple FG set. Whenever a
received block remains undecoded, we either reflect it to the BER of the K —r
information bits found by 200 iterations of the first FG in the set, that is the RFG, or
to the information bits found by the last FG within the set of the MaxSON decoder.
Of course, the second BER is expected to be higher, because the individual
performance of the last FG is quite bad; but we wonder how much this difference is.
It can be seen from Figure 3.23 that the BER performance of the last FG is so bad that
it is almost equal to the BER performance of the RFG decoder. Although for the
MaxSON decoder, the number of undecoded blocks is less than that of the RFG
decoder, the BER found for the last FG approaches the BER of the single-FG
performance of the RFG. On the other hand, the BER performance of the MaxSON
decoder calculated by the first FG (i.e., the RFG in the n-FG set) is better than the
single-FG performance of the RFG decoder by up to 0.5 dB at a BER value of 107>,
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CHAPTER 4

CONCLUSION

In this thesis, belief propagation (BP) decoders for rate-0.5 polar codes designed over
binary-input additive white Gaussian noise channels are studied, also glancing at the
BP decoder performance of the Reed-Muller codes in a few cases. For a polar code
P(N,K) = P(2",2"1), there are n! different factor graph (FG) representations whose
decoding performances may differ; so, we explore the problem of finding better
performing FG sets for the multiple-FG belief propagation decoder, by simulations
performed for n < 14 and N < 16384.

Early studies have shown that among single-FG BP decoders, the reference factor
graph (RFG) BP decoder performance is one of the best and the inverse-RFG (IRFG)
performance is the worst [Dogan, 2015], [Peker, 2018], [Akdogan, 2018]. Exploring
the performance variation of the RFG and the IRFG BP decoders for polar codes
designed over the AWGN channels at 0 dB, one of our noteworthy observations is
that, as the code length increases from 64 to 4096, the RFG decoder performance
improves whereas the IRFG performance degrades. Hence the polar code P(4096,
2048) performs as the best single-FG BP decoder; but its IRFG decoder, quite
unpredictably, performs as the worst one. On the other hand, while the polar code
P(64, 32) gives the anticipated worst RFG performance, it has the best IRFG
performance. Our simulation results show that the gain of the RFG decoder over the
IRFG decoder increases linearly with the increasing code length n, from 0.6 dB for
n =610 7.6 dB forn = 12, at the BLER = 1072,

Since the gap between the RFG and the IRFG performance increases with length,

multiple-FG BP decoder sets combined of FGs with random stage permutations don’t
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function well for long code lengths. In other words, when the code length N = 2™
increases, a random FG chosen among n! different factor graphs has a smaller chance
of performing effectively. Hence, the total performance of a randomly chosen
multiple-FG set decreases with a high probability.

Noticing that random selection is not a good option for generating multiple-FG sets of
BP decoders, we aim at a wiser method to create n-FG decoders. Observing the
performance of all n! single-FG BP decoders for P(64, 32) over an AWGN channel at
1.5 dB versus their stage order numbers (SONs) (introduced by Akdogan [Akdogan,
2018]); we propose two different n-FG decoder selection algorithms, namely the

MaxSON and MaxofMax rules explained on pages 53 and 54.

For polar codes P(2",2™"1) with 6< n <14, designed over an AWGN at 0 dB, the
performances of the MaxSON and MaxofMax decoders are compared to the cyclic
and randomly constructed n-FG decoders, which are frequently mentioned in the
literature [Korada, 2009], [Hussami et al., 2009], [Elkelesh et al., 2018a], [Elkelesh et
al., 2018b], [Doan, Hashemi, Mondelli, Gross, 2018]. It is observed that both rules of
choosing n FGs that we propose give much better results than those of the cyclic n-
FG decoder. The SNR gain of our MaxSON n-FG decoder over the cyclic decoder
increases with the increasing code length n, and approaches to 0.38 dB at BLER
= 1073, for P(16384, 8192) and n = 14.

When the BP decoding performances of the polar codes and Reed-Muller (RM) codes
are compared; our results show that the single-FG (RFG) performance of a polar code
IS much better than that of the corresponding RM code, and the gap between their
performances increases with the code length. However, with multiple-FG BP
decoders, polar and RM code performances are observed to approach each other as

the number of utilized FGs increases.
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Set choice methods of MaxSON and MaxofMax that we present in this study are
observed to compete with similar multiple-FG belief propagation decoders in the
literature [Doan et al., 2018], [ Elkelesh et al., 2018a] and [Elkelesh et al., 2018b], in
terms of not only performance, but also the ease in their formation that uses only the
SON: s of the FGs.

Since we mainly use perfect knowledge based (PKB) decisions for early termination,
the BLER curves found in most simulations of this study form lower bounds to those
which would be obtained in practice. In order to compare the performance of our
decoders with the results in the literature, we modify the early termination decisions
of the BP decoding algorithm and use a 16-bit cyclic redundancy check (CRC16)
instead of the PKB decisions, in the last three figures of Chapter 3. Our simulations
for P(1024, 512), with CRC16 vyielding a rate loss of r/N = 16/1024 that is reflected
to the SNR axis as a 0.15 dB-penalty, show that the MaxSON 10-FG decoder has
equivalent performance to Doan’s 10-FG decoder that uses the best 10 FGs chosen by
performing pre-simulations of single-FG decoding to find the most successful FGs.
We reason that the MaxSON decoder, whose FG set is chosen deterministically
depending on the stage order numbers (SONSs), should be more preferable since
optimization by pre-simulations may complicate the initialization of the BP decoding
practice. However, our MaxSON 10-FG decoder cannot reach the block error ratio
performance of SCL decoder with list size of 32 for P(1024, 512) under CRC based
decoding algorithm, which looks reasonable considering the more complicated
decoding of SCL32.

On the other hand, for P(2048, 1024), the smaller SNR penalty of 0.08 dB resulting
from the use of CRC16 (with rate loss r/N = 16/2048) allows our n-FG BP decoders
be more competitive. The MaxSON 11-FG decoder has the same performance with
Elkelesh et al.’s BPL decoder that uses 32 FGs, 11 of them taken from the cyclic set
and the remaining 21 are chosen randomly. More importantly, Figure 3.22 on page 69
emphasizes that the performance of our MaxSON 11-FG BP decoder reaches to that
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of SCL32 decoder. This performance looks quite promising since the multiple-FG BP
decoder has the potential of reaching much higher speeds, because of the parallel

implementation of multiple factor graphs.

As a future work, it is of interest to explore whether the performance of some cyclic
redundancy check aided BP list decoders (which will perhaps be abbreviated as CA-
BPL decoders) would compete with today’s attention-receiving-performance of the

successive cancellation list (CA-SCL) decoders.
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APPENDICES

A. RFG over IRFG BP Decoder Gain for Polar Code Designed over
Binary Erasure Channels

It may be of interest to examine whether the BP decoders of the polar codes designed
over BECs behave similarly to those designed over AWGN channels; so we produce
Figure A.1 and Figure A.2 for a visual comparison with Figure 3.5 and Figure 3.4

respectively.

One observes from Figure A.1 that the RFG and IRFG decoder performances over
BECs are not as separated as in the AWGN channels of Figure 3.5. Moreover, RFGs
as well as IRFGs are more clustered in their groups, as opposed to the AWGN channel
case. Doubling the code length seems to produce no gain for the passage of RFG
decoders from n = 6 to 7, or the passage of IRFG decoders fromn = 81to 7, as a result

of this clustering.
Figure A.2 shows that while channel-specific design shows better performance than

fixed-design erasure rate of 0.5 for the RFG decoder, performance remains the same
for the IRFG BP decoder of P(1024, 512) codes.
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Figure A.1. BLER of the RFG and IRFG decoders versus the channel erasure rate. Solid lines refer to
RFG and dotted ones of the same color refer to IRFG performances for the same code lengths.
Blue curves: n = 6, P(64, 32), Black curves: n =7, P(128, 64), Pink curves: n = 8, P(256, 128), Green
curves: n =9, P(512, 256), Yellow curves: n = 10, P(1024, 512),

Purple curves: n = 11, P(2048, 1024), Red curves: n = 12, P(4096, 2048).
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Figure A.2. BLER performances of the RFG and IRFG BP decoders for P(1024, 512) codes,
constructed using i) fixed design-erasure-rate of 0.5,

ii) channel-specific design at each erasure-rate.
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B. Some Considerations about Multiple-FG Set Choice

Simulation results suggest that the gain accomplished by the multiple-FG decoder is
due to the correct combination of different stage permutations in the n-element sets of
FGs. So, we focus on polar codes P(1024, 512) and P(2048, 1024) to analyze the
individual effects of single-FG performances of the n factor graphs in MaxofMax and
MaxSON decoders.

In Figure B.1 we try to show the effects of individual 1-FG performances of the FGs
in the n-element BP decoder sets, which are formed either by cyclic shifts or by the
MaxSON and MaxofMax rules; to the overall n-FG performance, for P(1024, 512) at
SNR = 1.7 dB and P(2048, 1024) at SNR = 1.4 dB. Each row in the figure indicates
the individual 1-FG BP decoding BLERS of the n factor graphs, which belong to the
sets chosen by the MaxofMax and MaxSON rules (the cyclic set obtained by cyclic
shifts of the RFG stages is also included in the last column for P(1024, 512)). BLERS
are found over the same 10* AWGN output words at a certain SNR, with the same

randomizing noise seed.

The plots on the left of Figure B.1 show the performances of the n-FG BP decoders.
On the tables, rows circled by blue curves have similar 1-FG performances and their
contribution to the multiple-FG decoder performance is similar. The rows circled by
red curves, show a noteworthy feature, that even a worse 1-FG performing component
of the n-element FG set may contribute to the n-FG decoder performance (see the 6™
and 7" elements of the MaxSON set contributing to the n-FG performance, more than
the same numbered elements in the MaxofMax set having better 1-FG performances).
Therefore, we conclude that the combination of good performing single-FG decoders
may not always result in a performance increment of the multiple-FG decoder, which
is an observation supported in the literature as well [Akdogan, 2018]. After the BLER
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of the n-FG decoder reduces to a certain point, the rows circled by black curves suggest
that contributions from the last elements of the n-FG sets are not appreciable and the
amount of the contribution seems not depending significantly on the individual 1-FG
performances. Besides, bad performing single-FG decoders, which approximately
have BLERs of more than 0.5 do not contribute to multiple-FG decoder performance
at all. The same observation can also be made by examining the 1-FG performances
of the cyclic decoder for P(1024, 512), in which the factor graphs used after the 4™

FG seem to have very small contributions to the performance of thel0-FG decoder.
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Figure B.1. Effects of individual 1-FG performances of the FGs in the n-element BP decoder sets
(formed either by cyclic shifts or by the MaxSON and MaxofMax rules), to the overall n-FG
performance; for P(1024, 512) at SNR = 2 dB and P(2048, 1024) at SNR = 1.7 dB.
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C. BLER Comparison of Some BP Decoders over the AWGN for Polar
Code Constructions Using Fixed or Channel-Specific Design-SNRs

We compare the BP decoding performances of the polar codes designed with respect
to a fixed design SNR of —1.59, 0, 0.5 and 1 dB, to those of the adaptive polar codes
designed with respect to the specific SNR of the AWGN channel over which they are
used. Chosen BP decoders are the single RFG and MaxSON n-FG, for P(1024, 512)
and P(2048, 1024) in Figures C.1 and C.2 respectively.

One observes in Figure C.1 that using channel-specific design for P(1024, 512)
improves the MaxSON decoder performance much more than it affects the RFG
decoder. The SNR gain of the “MaxSON 10-FG decoder over the RFG” in case of the
channel-specific design is more than twice of the “MaxSON over the RFG” gain
corresponding to the fixed 0 dB-design.
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Figure C.1. BLER performances of multiple-FG BP decoder performances for P(1024, 512) codes,
constructed using either fixed design-SNR of 0 dB (solid curves), or channel-specific design-SNR

(dashed curves).
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RFG decoder performance increases with the design-SNR in Figure C.1, and its
performance for a fixed design SNR of 1 dB is similar to that of the channel-specific
design. However, in case of the MaxSON 10-FG decoder, the performance of the
channel-specific design outperforms that of the 1 dB design-SNR by 0.25 dB at BLER
=10"3and by 0.5 dB at BLER = 107*.

For P(2048, 1024), we have confusingly seen that the RFG decoder performance for
the channel-specific design is almost the same as that of the fixed design-SNR of 0
dB; whereas the 0.5 and 1 dB designs are better. More expectedly, the MaxSON 11-
FG decoder appears to be the best for the channel-specific design; however, the fixed

design SNR of 1 dB performs very close to it.
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Figure C.2. BLER performances of multiple-FG BP decoder performances for P(2048, 1024) codes,
constructed using either fixed design-SNR of 0 dB (solid curves), or channel-specific design-SNR

(dashes curves).

88



