
 

 

SPAM DETECTION BY USING NETWORK AND TEXT EMBEDDING 

APPROACHES 

 

 

 

A THESIS SUBMITTED TO 

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES 

OF 

MIDDLE EAST TECHNICAL UNIVERSITY 

 

 

 

 

BY 

 CENNET MERVE YILMAZ 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS 

FOR 

THE DEGREE OF MASTER OF SCIENCE 

IN 

INDUSTRIAL ENGINEERING 

 

 

 

 

AUGUST 2019





 

 

Approval of the thesis: 

 

SPAM DETECTION BY USING NETWORK AND TEXT EMBEDDING 

APPROACHES 

 

 

submitted by CENNET MERVE YILMAZ in partial fulfillment of the requirements 

for the degree of Master of Science in Industrial Engineering Department, Middle 

East Technical University by, 

 

Prof. Dr. Halil Kalıpçılar 

Dean, Graduate School of Natural and Applied Sciences 

 

 

Prof. Dr. Yasemin Serin 

Head of Department, Industrial Engineering 

 

 

Assoc. Prof. Dr. Cem İyigün 

Supervisor, Industrial Engineering, METU 

 

 

Assist. Prof. Dr. Ahmet Onur Durahim 

Co-Supervisor, Management Information Systems, Boğaziçi 

University 

 

 

 

Examining Committee Members: 

 

Assoc. Prof. Dr. Altan Koçyiğit 

Informatics Institute, METU 

 

 

Assoc. Prof. Dr. Cem İyigün 

Industrial Engineering, METU 

 

 

Assoc. Prof. Dr. Pekin Erhan Eren 

Informatics Institute, METU 

 

 

Assist. Prof. Dr. Ahmet Onur Durahim 

Management Information Systems, Boğaziçi University 

 

 

Assist. Prof. Dr. Bahar Çavdar 

Industrial Engineering, METU 

 

 

Date: 21.08.2019 

 



 

 

 

iv 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also declare 

that, as required by these rules and conduct, I have fully cited and referenced all 

material and results that are not original to this work. 

 

 

Name, Surname:  

 

Signature: 

 

 Cennet Merve Yılmaz 

 



 

 

 

v 

 

ABSTRACT 

 

SPAM DETECTION BY USING NETWORK AND TEXT EMBEDDING 

APPROACHES 

 

Yılmaz, Cennet Merve 

Master of Science, Industrial Engineering 

Supervisor: Assoc. Prof. Dr. Cem İyigün 

Co-Supervisor: Assist. Prof. Dr. Ahmet Onur Durahim 

 

August 2019, 85 pages 

 

Authenticity and reliability of the information spread over the cyberspace is becoming 

increasingly important, especially in e-commerce. This is because potential customers 

check reviews and customer feedbacks online before making a purchasing decision. 

Although this information is easily accessible through related websites, lack of 

verification of the authenticity of these reviews raises concerns about their reliability. 

Besides, fraudulent users disseminate disinformation to deceive people into acting 

against their interest. So, detection of fake and unreliable reviews is a crucial problem 

that must be addressed. 

In this study, we analyze and compare three different spam review detection 

approaches, DocRep, NodeRep and SPR2EP, that utilize review text only, network 

information only and the one that is proposed in this study that incorporates knowledge 

extracted from the textual content of the reviews with information obtained by 

exploiting the underlying reviewer-product network structure, respectively. One of the 

important contributions of this study is the proposed framework, SPR2EP, is that it 

benefits from both review text and network information. In SPR2EP approach, first, 

feature vectors are learned for each review, reviewer and product by utilizing state-of-

the-art algorithms developed for learning document and node embeddings, and then 



 

 

 

vi 

 

these are fed into a classifier to identify opinion spam. It minimizes the feature 

engineering effort. The effectiveness of our framework approaches that utilize 

network embeddings over existing techniques on detecting spam reviews is 

demonstrated in three different data sets containing online reviews. 

 

 

Keywords: Review Spam Detection, Feature Learning, Document and Node 

Embeddings, Web mining  

 



 

 

 

vii 

 

ÖZ 

 

SOSYAL AĞ ANALİZİ VE METİN MADENCİLİĞİ KULLANARAK 

YANILTICI YORUMLARI TESPİT ETME 

 

Yılmaz, Cennet Merve 

Yüksek Lisans, Endüstri Mühendisliği 

Tez Danışmanı: Doç. Dr. Cem İyigün 

Ortak Tez Danışmanı: Dr. Öğr. Üyesi Ahmet Onur Durahim 

 

Ağustos 2019, 85 sayfa 

 

Siber ortama yayılmış bilgilerin doğruluğu ve tutarlı olmasının önemi her gecen gün 

daha da önemli hale gelmektedir. Potansiyel müşterilerin satın alma işlemleri 

öncesinde müşteri yorumlarını ve önerilerini internet üzerinden görüntüleyebilir 

olması, bilgi tutarlığının önemini özellikle e-ticaret (sanal ticaret) alanında daha da 

arttırmaktadır. Günümüzde bilginin bu kadar kolay erişilebilir olmasının yanında, 

ulaşılan bilginin doğruluğuyla ilgili kontrollerin yetersiz oluşu, bu bilginin güvenilir 

olup olmadığıyla ilgili kaygılar oluşturmaktadır. Ayrıca, hileli kullanıcılar 

spam(istenmeyen) bilgiler paylaşarak insanları yanlış yönlendirmektedir. Bu 

sebeplerle, güvenlik araştırmacıları tarafından hatalı ya da yanlış kullanıcı 

yorumlarının denetlenmesi kritik bir problem haline dönüşmüştür. 

Bu çalışmada, DocRep, NodeRep ve SPR2EP yaklaşımlarıyla spam kullanıcı 

yorumlarını analiz ettik ve bu yaklaşımların farklarını inceledik. Çalışmamız için 

kullanıcı yorum metinlerinden ve sosyal ağ bağlantı bilgilerinden yararlandık. 

Kullandığımız yöntemler, yorum metinlerinden elde edilen bilgi ve kullanıcı – ürün 

ağ yapısı bilgisini birleştirmektedir. Kullanıcıların, yazdıkları yorumlar ve 

yorumladıkları ürün arasında makine öğrenmesi algoritmaları kullanılarak, her yorum, 

kullanıcı ve ürün için, bu birleşenlerin özelliklerini yansıtan vektörler oluşturuldu ve 



 

 

 

viii 

 

oluşturulan bu vektörler kullanıcı yorumlarının spam olup olmadığını belirlemek için 

sınıflandırıcı algoritmaların girdisi olarak kullanıldı. Yapılan karşılaştırmalı çalışma 

neticesinde, sadece sosyal ağlardan yararlanan yaklaşım kullanıcı yorumu verişinde 

diğer yaklaşımlara göre daha yüksek performans elde edilmiştir 

 

 

Anahtar Kelimeler: Yanıltıcı yorum Tespiti, Makine Öğrenmesi, Metin Madenciliği, 

Sosyal Ağ Analizi 

 



 

 

 

ix 

 

To my family, Burak & Ayşe 



 

 

 

x 

 

ACKNOWLEDGEMENTS 

 

I would like to gratefully acknowledge various people who have been journeyed with 

me in recent years as I worked on this thesis. Firstly, I would like to thank Assoc. Prof. 

Dr. Cem İyigün and Assist. Prof. Dr. Ahment Onur Durahim for their expertise, 

assistance, guidance and patience throughout the process of writing this study. 

Without their help, patience and tolerance, this work would not have been possible. I 

would like to thank my committee members Assoc. Prof. Dr. Altan Koçyiğit, Assoc. 

Prof. Dr. Pekin Erhan Eren and Assist. Prof. Dr. Bahar Çavdar for their support, 

suggestions, and encouragement. Secondly, I am so grateful my family namely my 

parents, Hatice and Ali, and my brothers, Mustafa and Ahmet who helped and 

encouraged me. I would like to thank my friends, especially Ayşe, Gizem, Çiğdem 

and Pınar, for their attention and support in this way. It was a very long way for me. 

Last but not least, I want to express my deepest gratitude to Burak for all kinds of 

support. 



 

 

 

xi 

 

TABLE OF CONTENTS 

 

ABSTRACT ................................................................................................................. v 

ÖZ vii 

ACKNOWLEDGEMENTS ......................................................................................... x 

TABLE OF CONTENTS ........................................................................................... xi 

LIST OF TABLES ................................................................................................... xiii 

LIST OF FIGURES ................................................................................................. xiv 

1. INTRODUCTION ................................................................................................ 1 

2. BACKGROUND and LITERATURE REVIEW ................................................. 7 

2.1. Text Mining Approaches ................................................................................... 8 

2.1.1. Word Embeddings .................................................................................... 10 

2.1.2. Paragraph Embeddings ............................................................................. 11 

2.2. Social Network Analysis Approaches ............................................................. 12 

2.2.1. Graph Theory ............................................................................................ 12 

2.2.2. Network Node Embeddings ...................................................................... 14 

2.3. Spam Detection Approaches ........................................................................... 15 

3. PROBLEM DEFINITION and RELATED WORK ........................................... 19 

3.1. Problem Definition .......................................................................................... 19 

3.2. Representation Learning Algorithms .............................................................. 23 

3.2.1. Word2vec .................................................................................................. 23 

3.2.2. Doc2vec .................................................................................................... 28 

3.2.2.1. Paragraph Vector: A distributed memory model ............................... 29 

3.2.2.2. Paragraph Vector without word ordering: Distributed bag of words . 30 



 

 

 

xii 

 

3.2.3. Node2vec .................................................................................................. 31 

3.3. Binary Classifiers ............................................................................................ 35 

3.3.1. Logistic Regression .................................................................................. 35 

3.3.2. Decision Tree Algorithm .......................................................................... 36 

3.3.3. Random Forest ......................................................................................... 39 

3.3.4. Gradient Boosting ..................................................................................... 40 

3.3.5. Neural Networks ....................................................................................... 42 

4. PROPOSED ALGORITHM AND EXPERIMENTAL RESULTS  .................. 45 

4.1. Data Description ............................................................................................. 46 

4.2. Learning Review Embeddings ........................................................................ 47 

4.3. Performance Measures .................................................................................... 52 

4.3.1. ROC AUC ................................................................................................ 52 

4.3.2. Average Precision ..................................................................................... 54 

4.4. Evaluation ....................................................................................................... 55 

5. CONCLUSION AND FUTURE WORK ........................................................... 77 

REFERENCES .......................................................................................................... 81 

 

 



 

 

 

xiii 

 

LIST OF TABLES 

 

TABLES 

Table 4.1. Review datasets used in this study ............................................................ 47 

Table 4.2. Best Node2vec settings ............................................................................. 49 

Table 4.3 Embedding algorithm training parameters for each feature size ............... 51 

Table 4.4. AP and AUC Performances of Compared Methods on Datasets .............. 56 

Table 4.5. AP and AUC Performances of different classifiers for 3 dimensions on 

YELPCHI Dataset ...................................................................................................... 60 

Table 4.6. AP and AUC Performances of different classifiers for 3 dimensions on 

YELP NYC Dataset ................................................................................................... 66 

Table 4.7. AP and AUC Performances of different classifiers for 3 dimensions on 

YELP ZIP Dataset ...................................................................................................... 72 

 



 

 

 

xiv 

 

LIST OF FIGURES 

 

FIGURES 

Figure 2.1 Text mining framework .............................................................................. 9 

Figure 3.1. Overview of SPR2EP .............................................................................. 22 

Figure 3.2. CBOW model .......................................................................................... 24 

Figure 3.3. Skip-gram model ..................................................................................... 26 

Figure 3.4. Distributed Memory Model of Paragraph Vectors (PV-DM) 

Representation ........................................................................................................... 30 

Figure 3.5. Distributed Bag of Words version of Paragraph Vector (PV-DBOW) 

Representation ........................................................................................................... 30 

Figure 3.6. Biased random walk procedure with parameters p & q .......................... 33 

Figure 3.7 Boosting procedure .................................................................................. 41 

Figure 3.8. Multi-layer perceptron (MLP) representation ......................................... 44 

Figure 4.1 Representation of embedding combinations at feature size of 384 .......... 51 

Figure 4.2 Representation of embedding combinations at feature size of 96 ............ 51 

Figure 4.3. Receiver Operating Characteristic Curve Interpretation ......................... 53 

Figure 4.4. ROC AUC Performances on YELP CHI Dataset for NodeRep.............. 61 

Figure 4.5. ROC AUC Performances on YELP CHI Dataset for DocRep................ 61 

Figure 4.6. ROC AUC Performances on YELP CHI Dataset for SPR2EP ............... 62 

Figure 4.7. AP Performances on YELP CHI Dataset for NodeRep .......................... 62 

Figure 4.8. AP Performances on YELP CHI Dataset for DocRep ............................ 63 

Figure 4.9. AP Performances on YELP CHI Dataset for SPR2EP ........................... 63 

Figure 4.10. ROC AUC Performances on YELP NYC Dataset for NodeRep .......... 67 

Figure 4.11. ROC AUC Performances on YELP NYC Dataset for DocRep ............ 67 

Figure 4.12.  ROC AUC Performances on YELP NYC Dataset for SPR2EP .......... 68 

Figure 4.13. AP Performances on YELP NYC Dataset for NodeRep....................... 68 

Figure 4.14. AP Performances on YELP NYC Dataset for DocRep......................... 69 



 

 

 

xv 

 

Figure 4.15. AP Performances on YELP NYC Dataset for SPR2EP ........................ 69 

Figure 4.16. ROC AUC Performances on YELP ZIP Dataset for NodeRep ............. 73 

Figure 4.17. ROC AUC Performances on YELP ZIP Dataset for DocRep ............... 73 

Figure 4.18. ROC AUC Performances on YELP ZIP Dataset for SPR2EP .............. 74 

Figure 4.19. AP Performances on YELP ZIP Dataset for NodeRep ......................... 74 

Figure 4.20. AP Performances on YELP ZIP Dataset for DocRep ........................... 75 

Figure 4.21. AP Performances on YELP ZIP Dataset for SPR2EP ........................... 75 

 



 

 

 

xvi 

 



 

 

 

1 

 

CHAPTER 1  

 

1. INTRODUCTION 

 

The dissemination of disinformation and the difficulty of distinguishing legitimate 

information from fake one such as fake news and reviews is a vital problem in today’s 

internet world. Nevertheless, the Internet is the most important source of information, 

particularly the shared experiences of people on products and services, and the size 

and value of this information increase day by day. In order to get insights from 

people’s experiences, one could find excessive information from the reviews and 

articles written on a particular topic/product on different websites, social media 

accounts and blog posts. While the popularity of the Internet grows as an information 

source, it also leads to growing diffusion of disinformation, and particularly as the 

number of reviews increases, fake/spam reviews also increase. Besides, the detection 

of spam reviews rendered difficult as spammers and researchers working on detecting 

spam reviews play a cat and mouse game. Reviews written on products and services 

have a great effect on purchasing decisions of customers, and most of the time 

spammers diffuse disinformation to exploit this fact and deceive customers to act 

against their own interest. As a consequence of this situation, people always consult 

reviews but do not trust them. The 70 percent of the American people check reviews 

before purchasing, but only 59 percent trust recommendations according to the market 

research conducted by Mintel [1]. Also, Yelp [2] declared that the percentage of fake 

reviews increased to 20% in 2013 while that ratio was 5% in 2006. 

When some spam actions aim to cheat people and reach their private information, 

some such actions mislead people into purchasing products and services they would 

not otherwise buy. Jindal and Liu [3] stated that spam reviews can be split into three 

categories as untruthful reviews, reviews on brands and non-reviews. Reviews on 



 

 

 

2 

 

brands aim to mislead users and gives not useful feedbacks on specific brand or 

product. 

Non-reviews contain unrelated text or advertisements. Therefore, detection of non-

reviews and reviews on a brand by buyers are easier than the detection of untruthful 

reviews. Following are the two YELP reviews, where one of them is fake and the other 

is authentic. 

Review 1: “Noise, noise, noise! Unbelievable! Between the overly loud music and the 

tons of loud motorcycles, people screaming - this is ridiculous!” 

Review 2: “The only place inside the Loop that you can stay for $55/night. Also, the 

only place you can have a picnic dinner and get a little frisky on the 17th floor roof 

and then wake up in your room the next morning to an army of ants going in on your 

picnic leftovers.” 

It is hard to distinguish these two reviews whether they are fake or not for regular 

internet users. However, it is possible to detect and classify these reviews with 

machine learning techniques with the help of information other than the textual 

content itself. The only information exposed to internet users is the review text and it 

is nearly impossible for them to identify whether a particular review is fake or not by 

just analyzing this raw text. Actually, textual content is not the only information that 

can be obtained from online reviews. Reviews also contain metadata, such as IP 

address of the source and session duration, which is not accessible by internet users. 

Review metadata is actually a fruitful source of information which can be utilized in 

spam detection. Reviewer of the review and the reviewed product are considered as 

the most important attributes of reviews [4]. Some of the reviews are written by the 

paid reviewers and they are mostly paid by product/service providers. Paid reviewers’ 

accounts are typically new accounts compared to the legitimate user accounts, and 

paid reviewers have more than one account and use them to promote or demote a 

particular product/service. As a result, how many reviews written by the same account, 

IP address and historic actions of account can be utilized as the features through which 



 

 

 

3 

 

one may improve the detection of spam accounts and reviews. Additionally, 

product/service specific features including the price range of the product and sales 

amount of the product, average review rating of the product, average feature specific 

rating of the product and the number of reviews written for a product can help to 

identify spam accounts or reviews. 

Spam detection studies mostly employ data/text mining and network based 

approaches. There are also studies that aim to combine both data/text mining and 

network based techniques. In this respect, one of the earliest studies in literature 

belongs to Jindal and Liu [5] where a logistic regression based spam classifier is built 

which is fed by review features like content characteristics, rating, title, and review 

feedback. Besides, there are several works based on text mining approaches that focus 

on unigram, bigram and trigram bag of words features [6,8]. On the other hand, 

proposed network based approaches use the relational structure of review network and 

utilize graph theoretical approaches [9,11]. 

This study mainly aims to compare and aggregate approaches proposed for detecting 

untruthful reviews by combining and utilizing features generated via textual and 

network based approaches. In order to accomplish this task, three different spam 

review approach are created and compared by utilizing the features generated from 

the review text and reviewer-product network via adapting document and node 

embedding algorithms, namely Doc2vec and Node2vec, respectively. We named our 

classifiers as DocRep, NodeRep and SPR2EP based on the algorithms that we used. 

DocRep and NodeRep use Doc2vec and Node2vec algorithms, respectively. SPR2EP 

combines the outputs of these two algorithms, Doc2vec and Node2vec. SPR2EP 

stands for Semi-Supervised Spam Review Detection Framework.  Doc2vec algorithm 

is proposed by Le and Mikolov [12] and used for generating document embeddings 

from their textual content. Doc2vec gives an opportunity to assign a single vector 

representation to each review that can be utilized to distinguish fake reviews from 

authentic ones. Similarly, Node2vec algorithm [13] can be used to generate node 

embeddings in a network by taking into account the network connectivity. Node2vec 



 

 

 

4 

 

provides us vector representation for every reviewer and product through the 

underlying reviewer-product network which is constructed by using review metadata. 

Every review written on a product with a given rating represents the relation between 

a reviewer and a product in the reviewer-product network of the proposed framework. 

The reviewer of the review and the reviewed product are considered as neighboring 

nodes in the network and the corresponding rating of the review is taken as the weight 

of the edge between these neighboring nodes. Resulting network is then fed into 

Node2vec algorithm to transform it to lower dimensional feature space. The reasoning 

behind employing a node embedding algorithm like Node2vec in spam detection is 

that spam reviewers mostly write spam reviews, and it is assumed that spam reviewers 

and products show similar network characteristics. 

Both Doc2vec and Node2vec algorithms are unsupervised learning algorithms. And, 

this is especially advantageous for spam detection since it may not be an easy task to 

gather annotated dataset for a task where the labeling of the input data, that is 

identifying a review as spam or legitimate, is proven to be difficult [4]. Besides, huge 

amounts of unlabeled review data can be easily obtained from the social media and 

blog websites. 

This study investigates the ways to exploit the predictive capabilities of the vector 

representations of reviews, reviewers and products obtained by applying Doc2vec and 

Node2vec algorithms on raw spam review dataset. Those vector representations are 

fed into various binary classification algorithms, both individually and combined, to 

understand the individual contributions of the document and node embeddings and to 

make an assessment of the effectiveness of semi-supervised learning in spam 

detection. Besides, performances of the proposed approaches are compared with the 

previous works to appreciate the improvements achieved. 

Main contributions.of this study.can.be.summarized as follows; 

• To the best of our knowledge, dense document and node embeddings are 

utilized, for the first time, for spam review detection. And, the assessment 



 

 

 

5 

 

of the performances of the classifiers built by using document (review) and 

node (reviewer and product) embeddings separately and in combination 

have been provided. Also, results of this work are compared with the 

performance results of the previous state-of-the-art techniques. 

• Semi-supervised learning frameworks are compared where manual feature 

engineering, which is time consuming and additionally requires expert 

knowledge, is eliminated by creating review, reviewer and product 

embeddings in an unsupervised manner. Besides, exploiting the value of big 

data through unsupervised learning is of utmost importance, and 

accomplished here via consolidating the advantages of efficiently learning 

dense and low-dimensional review, reviewer and product feature vectors 

from huge amounts of unlabeled review data and using them for extracting 

insights. 

 

 





 

 

 

7 

 

CHAPTER 2  

 

2. BACKGROUND AND LITERATURE REVIEW 

 

This study aims to solve spam detection problem with machine learning approaches 

by discovering patterns in the data. It is possible to categorize machine learning 

approaches to supervised, unsupervised and semi-supervised learning mainly. In 

supervised learning, machine learning algorithm is worked on a labeled dataset in 

which each record has outcome information. This gives opportunity to detect the 

patterns and relationships between target variable and the rest of the dataset based on 

information it has already. Classification and regression are supervised algorithms. 

Classification algorithms aims to predict labels when regression algorithms are used 

to predict continuous target. Our study benefits from the binary classification 

algorithms which are Logistic Regression, CART Decision Tree, Gradient Boosting, 

Random Forest and Multilayer Perceptron (Neural Network). On the other hand, 

unsupervised learning algorithms learn from the unlabeled dataset by detecting the 

patterns in the unlabeled data. Clustering algorithms which are k-means, hierarchical 

and probabilistic clustering, etc. and data dimensionality reduction algorithms which 

are Singular-Value Decomposition (SVD), Principal Component Analysis (PCA), etc. 

are unsupervised learning algorithms. Additionally, autoencoders are classified as 

unsupervised deep learning algorithm. This method is similar to data dimensionality 

reduction techniques which aim to represent input data in latent vector space. The 

difference is that it uses many layers to represent input, and updates weights many 

times between layers. Compatible with the difference arising from the availability of 

labelled data between supervised and unsupervised learning, semi-supervised learning 

could be defined based on the availability of labelled data as well. It sits between the 

supervised and unsupervised learning. Semi-supervised learning takes both labelled 

and unlabelled data as an input. It uses mostly unlabelled data.  



 

 

 

8 

 

Our study includes three main parts. In the first part, different semi-supervised 

learning techniques which are based on text and network mining are used. In the 

second part, classification algorithms which are supervised learning are used to predict 

labels in the dataset. In the last part, performances of supervised methods which are 

applied on the data produced in semi-supervised manner are compared. Therefore, this 

chapter is organized as follows. Text mining and network analysis concepts will be 

introduced. Data dimensionality reduction is described, and feature embeddings will 

be introduced. After text and network analysis framework is introduced, it will be 

described how those concepts are used in feature embedding manner. Spam detection 

approaches will also be introduced. Classification techniques and performance 

measures will be described. 

 

2.1. Text Mining Approaches 

Text mining aims to extract useful information from the unstructured textual data by 

detecting patterns. It converts unstructural data to structural data. Overall process of 

the text mining includes the steps: text preproccessing, text transformation, feature 

selection, text mining methods and evaluation which is shown in Figure 2.1 [14]. 

Text Preprocessing 

Text preproccesing includes tokenization, stopword removal and stemming steps 

generally. Prior to those steps, there is need to do some basic data cleaning and 

normalization operations such as converting all letters to same case, cleaning numbers 

and punctuations, removing punctuations and links in text. 

• Tokenization: Tokenization is the process of splitting the given text into 

smaller pieces called tokens. This step divides whole document into words. 

 

 



 

 

 

9 

 

• Stop word Removal: In this step, most common words like “the”, “a”, “on”, 

“all” are removed. This is because, they are not shown any statistical 

importance or any sentimental effect to model. 

 

Figure 2.1 Text mining framework 

 

 

• Stemming: Stemming is used to reduce a word to its root/stem. E.g. Flying, 

Flew word to Fly. The algorithm proposed by Port, known as a Port’s 

stemming algorithm is widely used [15]. 

 

Text Transformation / Feature Generation  

In this step, text document is converted into bag of words or vector space document 

model notation, which can be used for further effective analysis task. 

Feature Selection/Attribute Selection 

This phase mainly performs removing features that are considered irrelevant for 

mining purpose. This procedure gives advantage of smaller dataset size, less 

computations and minimum search space required. This step may not be applicable 

for all text mining procedure and can change algorithm to algorithm. 

 

 



 

 

 

10 

 

Text Mining Methods  

There are different text mining methods as in Data mining had been proposed such as: 

Clustering, Classification, Information retrieval, Topic discovery, Summarization, 

Topic extraction, LDA. In this step, the output of the approach is provided. The steps 

up to now are the prior steps to main text mining algorithm. They help to text mining 

methods to increase the efficiency and performance of text mining algorithm.  

Interpretation or Evaluation  

In this step, performance of model is measured, and result are assessed based on ROC, 

Precision & Recall, Accuracy, F1-F2 measure, etc. 

 

2.1.1. Word Embeddings 

Word embeddings are distributed word representations which are dense as opposed to 

the shallow representations obtained via bag of words approach. Each dimension of a 

word embedding encodes latent syntactic and semantic features of the words. They 

are introduced by Bengio et. al. [16] where the word embeddings are learned by using 

neural language model. In their study, authors presented a probabilistic approach 

based on the co-occurrences of the words. 

Two recent proposals have become popular for creating the word embeddings, namely 

Word2vec [17] and Glove [18]. Both of them output word embeddings for each word 

in a given corpus, and proposed algorithms are based on the co-occurrence of the 

words in a given context which are used to capture the semantic properties and reflect 

it in the word embeddings. 

Word2vec presents two different algorithms, “Skip-gram” and “Continuous Bag-of- 

Words (CBOW)” , and captures the co-occurrences of words in local context windows 

at any time by maximizing the co-occurrence probability of the target word and the 

surrounding words inside the context window [17]. On the other hand, “GloVe” 

algorithm constitutes a global co-occurrence matrix of words which includes counts 



 

 

 

11 

 

of co-occurrences of words in the given text in addition to the words considered in 

their respective context windows [18]. It is stated that Glove is a count-based approach 

whereas Word2vec is a predictive approach. Another argument is that Word2vec 

model suffers from ignoring the global word co-occurrence statistics of a given corpus, 

and it only considers the context windows of the words across the entire corpus [19]. 

In order to address this problem, Pennington et al. [18], proposed GloVe approach 

which differs from Word2vec method by taking into account the global statistics of 

word co-occurrences in a given corpus in addition to the statistics of local context 

windows. 

Word embeddings have extensively been used in research domains that contain natural 

language processing tasks such as named-entity recognition (NER) and sentiment 

analysis. In a recent study, Unanue et al. [20] utilized word embeddings together with 

bidirectional LSTM [26] in order to perform health-domain NER. Santos and Gatti 

[27], on the other hand, developed a deep convolutional neural network that exploits 

from character to sentence level information for doing sentiment analysis. 

 

2.1.2. Paragraph Embeddings 

In text classification tasks, one attempts to categorize documents based on their textual 

content. So, machine learning algorithms expect feature representations for the 

documents in order to classify them to their respective categories. In order to use the 

proposed word embedding algorithms for that purpose, previous studies follow 

different paths to generate document embeddings such as averaging the words that 

occur in the document as well as taking weighted average of the words in a document 

by considering their bag of words scores such as TF-IDF [23]. In order to improve the 

performance of the document embeddings used in classification tasks computed via 

combining the word embeddings of the words in the document, Mikolov et. al. [12] 

proposed Doc2vec algorithm that learns embeddings for word sequences (sentences 

or paragraphs) known as paragraph embedding. While Word2vec algorithm produces 



 

 

 

12 

 

word embeddings, Doc2vec algorithm constructs paragraph embeddings by keeping 

semantic and syntactic relations of the words by additionally taking the paragraph 

structure into account. Similar to Word2vec, Doc2vec also contains two methods; 

“Distributed Memory Model of Paragraph Vectors (PV-DM)” and “Distributed Bag 

of Words version of Paragraph Vector (PV-DBOW)”. PV-DM works in the same way 

with CBOW of Word2vec and uses document vectors to predict its document words. 

On the other hand, PV-DOW works in the same way with skip-gram method of 

Word2vec and uses a small window of words and concatenates them with the 

document vector to predict a document word. 

 

2.2. Social Network Analysis Approaches 

Social network analysis aims to detect and investigate social structures in networks. 

Components of network are represented with nodes and edges. Nodes are connected 

with edges. It is closely related with graph theory. In the next section, graph theory 

will be introduced to explain social network analysis better. 

 

2.2.1. Graph Theory 

A graph is a mathematical model defined as an ordered pair 𝐺 =  (𝑉, 𝐸), where 𝑉 is 

a set of vertices and 𝐸 is a set of edges such that 𝐸 =  {(𝑢, 𝑣) | 𝑢, 𝑣 ∈  𝑉 }. Vertices 

correspond to entities and edges correspond to relationships between them. Usually, a 

graph is represented by an adjacency matrix 𝐴, of dimensions |𝑉 |  × |𝑉 |: 

Aij = {
1, if (𝑣𝑖,𝑣𝑗  )  ∈  E(G)

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 

A graph can be of different types and the most important categories are described:  

• undirected: given a pair of nodes u and v, the edge (u, v) is identical to the 

one (v, u).  



 

 

 

13 

 

• directed: edges have orientations and so E is a set of ordered pair of nodes. 

• weighted: edges have assigned a number 𝑤𝑖𝑗, the weight, which can represent 

different variables, such as a cost, a length or a capacity, depending on the 

modelled domain. In this case, the adjacency matrix is extended to consider 

the weights and each entry becomes 𝑎𝑖𝑗 = 𝑤𝑖𝑗. 

• multigraph: multiple edges between each pair of nodes are allowed and 

labelling for each node and edge is introduced. Formally, it can be defined as 

𝐺 =  (𝑉, 𝐸, 𝑅) where 𝑉 is a set of vertices, 𝑅 is a set of relations, and 𝐸 is a 

set of labelled edges, (𝑢, 𝑣, 𝑟), where 𝑢, 𝑣 ∈  𝑉 and 𝑟 ∈  𝑅. 

 

Centrality Measures 

In graph theory, there are certain measures which explain graph. In this section, those 

measures will be introduced. 

• “Degree Centrality: “Given a node v, normalized degree centrality is given 

by where 𝑑𝑒𝑔(𝑣) is the degree of the node and N is the number of nodes 

present in the graph.  

 
𝐷(𝑣) =

deg (𝑣)

𝑁 − 1
   

 

• “Closeness Centrality: “Given a node 𝑣, normalized closeness centrality is 

given by where 𝑑(𝑢, 𝑣) is the distance between node u and v. 

 
𝐶(𝑣) =

𝑁 − 1

∑ 𝑑(𝑢, 𝑣)𝑢
   

 

• “Betweenness Centrality: “Given a node v, betweenness centrality is given 

by where 𝜎𝑠𝑡(𝑣) are the shortest path between s and t that pass through v and 

𝜎𝑠𝑡 are all the shortest path between s and t. [24] 



 

 

 

14 

 

 
𝐵(𝑣) = ∑

𝜎𝑠𝑡(𝑣)

𝜎𝑠𝑡
𝑠≠𝑣≠𝑡𝜖𝑉

   

 

2.2.2. Network Node Embeddings 

Similar to the word and document embedding algorithms, the aim of node embedding 

algorithm is to learn low-dimensional and dense feature vectors for the nodes from the 

underlying network by regarding the network structure such as homophily and 

structural equivalence in an unsupervised manner. These node embeddings then can 

be used in tasks such as node classification and edge prediction [13]. 

Early studies in unsupervised tasks [25] and locally linear embedding (LLE) utilize 

important eigenvectors of the adjacency matrix of a network as feature vector 

representations of nodes in the network. They set their problem as a dimensionality 

reduction and solved by applying eigenmaps [26]. More recent methods use neural 

networks to represent nodes in dense low-dimensional vectors by reflecting the 

network structure in those vectors. The main idea to preserve the homophily and 

structural equivalence is to focus on both first-order proximity as well as the higher-

order proximity. First-order proximity corresponds the direct connection between 

nodes and the second-order proximity corresponds the common neighbors of nodes 

which are not connected directly and so on.  

LINE [27] presented a framework where the node embeddings are obtained by 

concatenating the first-order and second-order proximity embeddings. DeepWalk is 

another node embedding algorithm proposed by Perozzi et al. [28] which uses 

Word2vec’s skip-gram algorithm. First, node sequences are generated via random 

walk, and then these sequences are supplied to the skip-gram algorithm as if they are 

sentences. Similar to DeepWalk, Node2vec algorithm proposed by Grover and 

Leskovec [13] also learns node embeddings using skip-gram algorithm based on the 

sequences generated via random walks. The main difference between Node2vec and 

DeepWalk is that Node2vec uses biased random walk while generating the node 



 

 

 

15 

 

sequences. The sampling strategy of Node2vec provides flexible neighbourhood 

sampling strategy which provides smooth interpolation between Breath-first sampling 

(BFS) and Deep-first sampling (DFS) with biased random walk. In BFS, sampling is 

based on immediate nodes and it reflects the structural equivalence. In DFS, nodes are 

sampled sequentially at increasing distance and it corresponds to homophily and 

macro-view of network. The bias is created in random walk with in-out node 

parameters which direct the random walk to generate sequences through BFS or DFS 

fashion. 

In the proposed framework, due to the better performances achieved, Node2vec is 

employed for generating the reviewer and product embeddings. 

 

2.3. Spam Detection Approaches 

As the amount of opinion reviews shared online grows rapidly, detection of fake 

reviews becomes more crucial. As a result, spam detection attracts the attention of 

researchers from both academia and industry. One of the earliest studies on opinion 

spam detection is done by Jindal and Liu [5]. In their study, ground-truth labels are 

assumed to be untruthful for the duplicated reviews, whereas non-duplicated reviews 

are considered as truthful. However, it is possible to say that all duplicate or near-to-

duplicate reviews may not be untruthful. This approach is more like plagiarism or 

duplicate review detection. It is the preferred choice since setting a ground-truth label 

for untruthful reviews is not an easy task because of the difficulty of differentiating 

spam reviews from the legitimate ones. In model building, features based on review 

text, product, and reviewer are used. Information retrieval based evaluation is used in 

some other studies in order to set ground-truth labels by recruiting human judges [9], 

[29]. The main drawbacks of using human judgment on spam review labeling are 

obviously the difficulty of applying this method to large datasets and the questionable 

trustworthiness of human labeling. 



 

 

 

16 

 

You and Gretzel [30] focused on explaining deceptive opinions with the 

psychologically relevant linguistic features. They applied a standard statistical test 

manually to 40 truthful and 42 untruthful hotel review data to show the relation 

between linguistic features and their corresponding labels. Lim et al. [29] used rating 

behaviors of reviewers and products and applied regression to identify the spam 

reviewers. Mukherjee et al. [31] also focused on reviewer behaviors to interpret the 

YELP filtering algorithm and developed an author spamicity. Bayesian model based 

on the idea that a group of online users may work together to create spam reviews. 

They have not used the textual information in their work and claimed that behavioral 

features are more effective than linguistic features. Fei at al. [32] exploited bursts of 

reviews by detecting reviewers’ co-occurrence in bursts as a Markov Random Field 

(MRF) and employed Loopy Belief Propagation method to identify the spam 

reviewers. Cheng et al. [33], in a case study, investigated the characteristics of spam 

messages and spammer behaviors on a web forum. Bhat and Abulaish [34] proposed 

a community-based framework to identify spammers in online social networks. Their 

framework aimed at exploiting social network characteristics of community formation 

by legitimate users in that respect. Wang et al. [9] proposed utilizing the user-review-

product network, and defined scores for trustiness of users, honesty of reviews, and 

reliability of products to identify online store spam users. On the other hand, Rayana 

and Akoglu [35] proposed a method that uses a combination of user-review network 

features in conjunction with the hand-crafted features in their scoring algorithm. 

Our study investigates the effectiveness and efficiency of employing previously 

proposed unsupervised methods used for learning document and node embeddings 

within a spam review detection framework. Both of these methods aim to generate 

dense low-dimensional feature vectors for reviews and nodes in the reviewer-product 

network. In our study, the assessment of the performances obtained from the spam 

detection models created by feeding these feature vectors into various binary 

classification algorithms is also performed. 

 



 

 

 

17 

 

 





 

 

 

19 

 

CHAPTER 3  

 

3. PROBLEM DEFINITION AND RELATED WORK 

 

In this study, we propose a solution framework to spam detection problem by using 

text mining and social network analysis approaches. Therefore, the background 

information and literature review on spam detection, text mining and social network 

analysis are given in previous chapter. In this chapter, we firstly explain our problem 

definition and introduce related work and approach to our problem. 

 

3.1. Problem Definition 

As discussed in previous chapters, online opinion reviews have an essential effect on 

the purchasing behaviour of customers. Consequently, the internet is the prior source 

to provide this information, especially the experience of other customers on products 

and services. Opinion based information on products and services grow day by day in 

the internet environment. Although this growth seems as useful for potential buyers, 

another issue arises here; spam behaviour and the reliability of opinion reviews. Most 

of the potential buyers have already realized this issue and they read the opinion 

reviews on the product/service before purchasing but the majority of potential buyers 

do not trust the online opinion reviews [1]. By addressing this problem, spam detection 

algorithms aim to distinguish genuine and fake reviews to help potential buyers on 

their product selection decisions. In literature, there are early studies which take spam 

detection problem as plagiarism or duplicated review selection problem. Also, some 

approaches apply human judgement. However, it is hard to distinguish online reviews 

by human-being, and it is not an efficient way of labeling regarding time and 

workforce. As a result, the trustworthiness of human labelling and application to large 

data sets make using human judgement for spam detection questionable. In literature, 

there are also different approaches which use psychologically relevant linguistic 



 

 

 

20 

 

features or behavioral features. Psychologically relevant linguistic features are created 

by using text data. Behavioral features benefit from the network data with Bayesian 

approach. The assumption behind this approach is that online user groups work 

together to create spam reviews. There are also community-based approaches which 

benefit from social networks. 

Consequently, spam detection literature is built on mostly community-based and text-

based approaches. Community-based approaches use social network and graph theory 

approaches. Text-based methods benefit from linguistic, semantic features of spam 

data. Here, there is a need to state that the gaps in spam detection literature: there are 

very few approaches which benefit from community-based and text-based approaches 

at the same time in spam detection literature. In literature, it is observed that spam 

detection problem is addressed to either community-based or text-based solutions. In 

this study, we propose community and text based solutions at the same time to the 

spam detection problem. This difference is a significant contribution to literature. 

Some of the text-based approaches use human-judgement labelling and this is not 

feasible for large data sets. Our approach is applicable to large data sets also.  When 

we compare our approach with the approaches which use community-based and text-

based solutions at the same time, the difference is feature engineering effort. In those 

approaches, there is a lot of effort for hand-crafted model features which benefit from 

the user-product network and review text data. However, one of the most critical 

superiority of our approach is feature learning. In this study, user-product network and 

review information are converted to low-dimensional vector space thanks to 

Node2vec and Doc2vec algorithms.  

Our work proposes a seamless and modular framework to online opinion spam 

problem by utilizing both network information and text information. We use feature 

learning algorithms to reduce large data to low dimensional vector space. Those low 

dimensional vector spaces for network and text information can be used together or 

separately as an input of classification algorithms. Additionally, our study tries to 



 

 

 

21 

 

answer which of the network and text algorithms performs better in which 

classification algorithms. 

We propose our approach to spam detection problem by considering the gaps in 

literature. Additionally, we tested our approach, conducted sensitivity analysis with 

different parameter sets and compared our approach with state-of-art approaches in 

literature. In the light of this information, our work contributions can be listed as 

follows: 

• Text data and social network data are used together as a model input 

• Feature embeddings approach used first time according to our knowledge in 

spam detection 

• It can be used for large data sets 

• It minimizes the feature engineering effort and creates features automatically 

• It can be used real-time labeling 

By considering all those gaps, our solution to this problem is published in ASONAM 

2018 [36]. The approach in the published work is the same in this thesis. However, 

the work is extended with the detailed parameter and classifier performance analyses 

in this thesis. The performance of SPR2EP approach is measured with the default 

model parameters and its superior performance is proven with respect to other state-

of-art spam detection techniques in ASONAM 2018 publication [36].  In addition to 

our publication, we search for better parameter setting and to improve the 

predictability power of our proposed framework in this work. This study also 

investigates the contribution of network and text embeddings to model performance. 

Therefore, we introduce three different approaches considered for spam review 

detection in this work. In the text-only approach, DocRep, representations are learned 

for the reviews by utilizing a document representation learning algorithm (Doc2vec) 

and used as features for creating spam review detection model. In the network-only  



 

 

 

22 

 

Figure 3.1. Overview of SPR2EP 

 

approach, NodeRep, representations are learned for the network nodes via a node 

representation learning algorithm (Node2vec) and used as features for creating a 

classifier. Lastly, a recently proposed framework SPR2EP [36] depicted in Figure 3.1 

is analyzed. In this framework, reviewer, restaurant/hotel and review feature 

representations1 are learned and used in detecting spam reviews. First of all, reviewer-

product network is generated by creating a link between reviewers and products if a 

reviewer has written a review on a product. All those approaches create embeddings 

in unsupervised manner and their outputs are fed into various classification algorithms 

to build classifiers for spam review detection.  

The performance of machine learning methods depends on preprocessing and 

transformation of input data. Feature engineering step is the prior and one of the most 

important steps of modelling. Mostly, feature engineering methods include manual 

and human intervention steps to improve classifier model performance. In spite of this, 

representation learning extracts useful common information automatically for feature 

detection or classification. Also, we investigated the effect of classification algorithm 

to performance results. In this work, Logistic Regression, Decision Tree, Random 

                                                 
1 Representations and embeddings have been used interchangeably throughout this study. 



 

 

 

23 

 

Forest, Gradient Boosting Machine and Neural Networks are used as binary 

classification algorithms. In the next sections, those representation learning and 

classification algorithms will be explained.   

 

3.2. Representation Learning Algorithms 

3.2.1. Word2vec 

Word2vec is a group of related models that are used to produce word embeddings. 

This study does not utilize from Word2vec algorithm, but Word2vec algorithm is the 

ancestor algorithm of Doc2vec. Therefore, Word2vec is explained prior to Doc2vec 

section. In Word2vec two-layer neural networks are used to construct linguistic 

context of words. Word2vec requires as its input a big corpus of text and generates a 

vector space, typically several hundred dimensions, with a corresponding vector in the 

space being allocated to each distinctive phrase in the corpus. Word2vec was 

developed at Google in 2013 by a research team led by Tomas Mikolov [17].  

Word similarity is the measure of the proximity of two-word vectors. Also, word 

vectors capture linguistic properties of words and relations. With the compositionality 

of space, arithmethic operations can be applied to vectors. This example can explain 

better by the usage of word vectors; vec(“king”) - vec(“man”) + vec(“woman”) is 

close to vec(“queen”) and vec(“Ankara”) - vec(“Turkey”) + vec(“France”) is close to 

vec(“Paris”). 

Word2vec algorithm can learn the word embeddings in two different way; Continuous 

Bag of Words (CBOW) and Skip-gram. CBOW method predicts a target word by using 

context when Skip-gram predicts the context of each word. Word2vec algorithm maps 

every word w in dictionary V to vector w(t) which is a column matrix of W. Word2vec 

is an unsupervised algorithm and initial W matrix is constructed randomly. The CBOW 

model predicts a word w(t) using the context of it, w(t − n), ..., w(t − 1), w(t + 1)..., 

w(t + n). On the other hand, Skip-gram algorithm predicts each word in the context 



 

 

 

24 

 

using the word w(t). In the CBOW, the hidden layer is the summation or average of 

the input word vectors. Given a sentence w1, w2, ..., wT , the objective function is to 

maximize the log likelihood of the language model: 

  

 

 1

𝑇
∑ log𝑃(𝑤𝑡|𝑤𝑡−𝑘, … , 𝑤𝑡−1, 𝑤𝑡+1, … , 𝑤𝑡+𝑘)

𝑇−𝑘

𝑡=𝑘

 (3.1) 

 

The model receives a window of k words around the target word wt at each time step 

t, rather than feeding k previous words into the model; 

 

Figure 3.2. CBOW model 

 



 

 

 

25 

 

There is a need to calculate the posterior probability distribution of the target word 

given a specific context. The softmax function which is shown in Equation (3.2) helps 

to calculate this distribution for the given specific context: 

 

 
𝑃(𝑤𝑡|𝑤𝑡−𝑘, … , 𝑤𝑡−1, 𝑤𝑡+1, … , 𝑤𝑡+𝑘) =

𝑒𝑦𝑤𝑡

∑ 𝑒𝑦𝑖𝑖
 (3.2) 

 

where yi is the output of the i-th unit in the output layer 

From Equation (3.2), it is also concluded that CBOW is a precognitive model which 

uses the context of word to predict center word. However, skip-gram aims to predict 

the context of word by using the center word. The input layer is a so-called "1-hot 

vector" for the Skip-gram model, which copies the embedding to the hidden layer for 

a word in the word vector matrix. The objective function predicts the word appearing 

in the context of the directed word: 

 

 
1

𝑇
∑ ∑ log 𝑃(𝑤𝑡+𝑗|𝑤𝑡)

𝑗=𝑘

𝑗=−𝑘,𝑗≠0

𝑗=𝑘

𝑡=𝑘

 (3.3) 

 

Where T is the length of the whole sentence. For both variants, back propagation of 

the neural network and Stochastic Gradient Descent (SGD) on the objective function 

update the parameter Θ = (W, U) iteratively: 

 
Θ ← Θ − η

∂log𝑃

𝜕Θ
 (3.4) 

 

The Word2Vec framework's goal is to predict word or word context based on used 

approach in it, i.e. CBOW or skip-gram. By maximizing the objective function, word 

embeddings are learned. Those word embeddings can be used not only for single 



 

 

 

26 

 

phrases but also for brief sentence segments [5]. They give efficient results for the 

document representation. 

 

Figure 3.3. Skip-gram model 

 

In this study, Skip-gram model will be used. Evaluation of skip-gram is 

computationally hard with softmax. Therefore, Mikolov proposed Hierarchical 

Softmax and Negative sampling algorithms to learn word embeddings for skip-gram 

algorithm [17]. By using softmax function, skip-gram can be written like below; 

 

 
𝑝(𝑤𝑂|𝑤𝐼) =

exp (𝑣′𝑤𝑂
𝑇
𝑣𝑤𝐼)

∑ exp (𝑣′𝑤
𝑇
𝑣𝑤𝐼)

𝑊
𝑤=1

 (3.5) 

 



 

 

 

27 

 

where vw and vw ′ are the “input” and “output” vector representations of w, and W is 

the number of words in the vocabulary. In Equation (3.5), computing time  p(wO|wI ) 

depends on the size of vocabulary and it is not efficient to use softmax algorithm 

because of the cost of computing. 

One of the efficient algorithms of softmax is hierarchical softmax. The hierarchical 

softmax utilizes from binary tree representation. In the output layer, each word is the 

child node of the tree, W words and binary tree representation shows the relative 

probabilities of each word. Those relative probabilities of each word are used to define 

random walk. 

More exactly, every term w can be reached by a suitable word order from the tree's 

root. In Equation (3.6), posterior probability of word co-occurrence where n(w, j) is 

the j-th node on the path from the root to w, and let L(w) is the length of this path. 

Based on this notation root is defined as n(w, 1) . Additionally, ch(n) is an arbitrary 

fixed child of inner node, n and  ⟦𝑥⟧ is defined as 1 if x is true and -1 otherwise. Hence, 

𝑝(𝑤𝑂|𝑤𝐼 ) is defined by Hierarchical softmax as follows: 

 

 

𝑝(𝑤|𝑤𝐼) = ∏ 𝜎(⟦𝑛(𝑤, 𝑗 + 1) = 𝑐ℎ(𝑛(𝑤, 𝑗))⟧ ∙ 𝑣′𝑛(𝑤,𝑗)
𝑇
𝑣𝑤𝐼)

𝐿(𝑤)−1

𝑗=1

 (3.6) 

 

where 𝜎(𝑥)  =  1/(1 +  𝑒𝑥𝑝(−𝑥)). It can be verified that∑ 𝑝(𝑤|𝑤𝐼)
𝑊
𝑤=1  =  1. This 

implies that the cost of computing 𝑙𝑜𝑔 𝑝(𝑤𝑂|𝑤𝐼 ) and 𝛻 𝑙𝑜𝑔 𝑝(𝑤𝑂|𝑤𝐼 ) is 

proportional to 𝐿(𝑤𝑂), which is not higher than log W on average. The hierarchical 

softmax formulation proposes only one  representation 𝑣𝑤 for each word w and one 

representation 𝑣′𝑛 for every inner node n of the binary tree. This will reduce the 

computation cost of standard softmax function. This is because, softmax function 

assigns two different representations which are 𝑣𝑤 and 𝑣′𝑤 to each word. 



 

 

 

28 

 

It is proposed that Negative Sampling can be used in skip-gram algorithm and 

objective function of model is given in Equation 3.7. 

 

 

𝑙𝑜𝑔 𝜎(𝑣′𝑤𝑂
𝑇
𝑣𝑤𝐼) +∑𝐸𝑤𝑖~𝑃𝑛(𝑤)

𝑘

𝑖=1

[𝑙𝑜𝑔 𝜎(−𝑣′𝑤𝑖
𝑇
𝑣𝑤𝐼)] (3.7) 

 

which is used to replace every 𝑙𝑜𝑔 𝑃(𝑤𝑂|𝑤𝐼 ) term in the Skip-gram objective. Hence, 

the objective is to use logistic regression to differentiate the target word 𝑤𝑂 from the 

noise distribution 𝑃𝑛(w), where there are k negative samples for each data sample. In 

other words, k is the number of noise words not all words in the vocabulary (V). 

Negative sampling assigns high probabilities to the real words, and low probabilities 

to noise words in the objective function. Using noise words give opportunity to train 

model faster. 

 

3.2.2. Doc2vec 

Doc2vec algorithm is derived by Word2vec algorithm. Here the basic idea comes from 

the structure of Word2vec which word vectors are used to predict the next word in 

context. Although the word vectors start with the random values, they learn the 

semantic structure in context. Learning semantic features is not prior goal but the 

additional benefit of this predictive task. This idea is also useful for paragraph vectors 

which can be utilized for prediction of next word when many contexts sampled from 

paragraph are given. 

Doc2vec converts each paragraph to one vector. This final vector is the combination 

of vector learned by the “Standard Paragraph Vector with Distributed Memory (PV-

DM)” or “Vector Learned by the Paragraph Vector with Distributed Bag of Words 

(PVDBOW)” [12]. 

 



 

 

 

29 

 

3.2.2.1. Paragraph Vector: A distributed memory model 

In Paragraph Vector framework, there are unique vectors for each paragraph and word. 

Each column of matrix D represents a paragraph and each column of matrix W 

represents a word (see Figure 3.4). To predict the next word in a window, the 

paragraph and word vectors can be concatenated or averaged. 

The idea behind to use paragraph vector with word vector is to utilize from the 

information which is gained from other contexts. Word vectors keep only the context 

information and paragraph vectors add the information coming from other contexts. 

Since this approach keeps the information from other contexts on memory, it is called 

“Distributed Memory Model of Paragraph Vectors (PV-DM)”. 

The paragraph token can be thought of as another word. It acts as a memory that 

remembers what is missing from the current context – or the topic of the paragraph. 

This is the reason why it is called “Distributed Memory Model of Paragraph Vectors 

(PV-DM)”. 

The contexts of algorithm have fixed-length and are obtained by sliding window over 

the paragraph. All contexts generated from the same paragraph are used to construct 

the paragraph vector. In addition to this, the word matrix is shared across all 

paragraphs. This method can be thought as analogous of the Skip-gram of Word2vec.  

The paragraph vectors and word vectors learn by using stochastic gradient descent via 

backpropagation. For each iteration, a fixed-length context is sampled from a random 

paragraph, the error gradient is calculated, and the parameters of model are updated. 

PV-DM is represented in Figure 3.4. 

After being trained, the paragraph vectors can be used as features. These features can 

be fed directly to conventional machine learning techniques such as logistic 

regression, support vector machines or K-means. In this study, we feed these features 

to logistic regression. 



 

 

 

30 

 

 

Figure 3.4. Distributed Memory Model of Paragraph Vectors (PV-DM) Representation 

 

3.2.2.2. Paragraph Vector without word ordering: Distributed bag of words 

“Distributed Memory Model of Paragraph Vectors (PV-DM)” develops paragraph 

vector to predict the next word in the context window. Distributed Bag of Words 

version of Paragraph Vector (PV-DBOW) develops paragraph vector to predict words 

randomly sampled from the paragraph other than next word in the context window. 

This method is similar to CBOW in Word2vec. In PV-DBOW, a text window is 

sampled, and a random word is sampled from this text window at each iteration. 

Stochastic gradient descent is used in PV-DBOW. As a result, this technique which is 

represented in Figure 3.5 forms the classifier vector of paragraph. 

 

Figure 3.5. Distributed Bag of Words version of Paragraph Vector (PV-DBOW) Representation 



 

 

 

31 

 

3.2.3. Node2vec 

Node2vec is inspired from Word2vec algorithm, which is proposed by Leskovec [13]. 

It is a semi-supervised algorithm for scalable feature learning in networks. The 

algorithm returns feature representations of nodes similar to word2vec. They 

maximize the likelihood of preserving network neighborhoods of nodes in a d-

dimensional feature space.  

Feature learning framework is similar to word2vec. Let G = (V, E) be a given network. 

It can be used both directed and undirected graphs. Additionally, it works with 

weighted and unweighted network. Mapping function is defined as  f : V → Rd  where 

V is the set of nodes and Rd  is the feature representation with dimension d and f is a 

matrix with size |V | × d . The neighborhood of source node u ∈ V as a Ns(u) ⊂ V is 

generated with sampling strategy S. 

 

In this algorithm, Skip-gram architecture is applied to networks. Objective function is 

to maximize the log-probability of observing a network neighborhood Ns(u) for a node 

u given that its feature representation, given by f: 

max
𝑓

∑ log𝑃𝑟(𝑁𝑠(𝑢)|𝑓(𝑢))

 𝑢 ∈ 𝑉 

 

 

The model has two assumptions; Conditional Independence.and.Symmetry in feature 

space. The assumptions of algorithm are given below; 

• Conditional independence assumes that presence probability of a 

neighborhood node is independent of presence of any other neighborhood node 

given the feature representation of the source. With this idea, likelihood of 

objective can be written below; 



 

 

 

32 

 

𝑃𝑟(𝑁𝑠(𝑢)|𝑓(𝑢)) = ∏ Pr (𝑛𝑖|𝑓(𝑢))

𝑛𝑖∈ 𝑁𝑠(𝑢)

 

 

• Symmetry in feature space assumes that the effect of a source node and 

neighborhood node on each other is symmetrical. Therefore, the conditional 

presence probability of every source-neighborhood node pair is modelled as: 

Pr (𝑛𝑖|𝑓(𝑢)) =
𝑒𝑥𝑝(𝑓(𝑛𝑖) ∙ 𝑓(𝑢))

∑ 𝑒𝑥𝑝(𝑓(𝑣) ∙ 𝑓(𝑢))𝑣∈ 𝑉

 

 

With these assumptions, objective function is simplified to the equation below; 

 

max
𝑓

∑ [− log 𝑍𝑢 + ∑ 𝑒𝑥𝑝(𝑓(𝑛𝑖) ∙ 𝑓(𝑢))

𝑛𝑖∈ 𝑁𝑠(𝑢)

]

 𝑢 ∈ 𝑉 

 

where Zu is the per-node partition matrix; 

𝑍𝑢 = ∑ 𝑒𝑥𝑝(𝑓(𝑢) ∙ 𝑓(𝑣))

𝑣∈ 𝑉

 

 

Node2vec algorithm also uses the random walk when creating paths -similar to 

sentences in Word2vec-, but the random walk of Node2vec is biased. Node2vec creates 

biased random walks by combining Breath-first Sampling (BFS) and Depth-first 

Sampling (DFS) strategy. BFS takes the immediate neighbors of source node and DFS 

makes sequentially sampling at increasing distance from the source node. Node2vec 

algorithm introduced to 2nd order random walk with return (p) and in-out (q) 

parameters which seek bias (α) to combine the BFS and DFS.  



 

 

 

33 

 

𝛼𝑝𝑞(𝑡, 𝑥) =

{
 
 

 
 
1

𝑝
 𝑖𝑓 𝑑𝑡𝑥 = 0

1  𝑖𝑓 𝑑𝑡𝑥 = 1
1

𝑞
 𝑖𝑓 𝑑𝑡𝑥 = 2

 

In Figure 3.6, random walk representation is given. The current state of random walk 

is node v and the previous state was t. For the current state, random walk should decide 

where it will go based on the transition probabilities of neighbor nodes. Transition 

probability is defined as  πvx = αpq(t, x)· wvx, where and dtx denotes the shortest path 

distance between nodes t and x. Possible dtx values are in {0, 1, 2}, and p and q are 

essential parameters to walk. Those parameters intuitively regulate how quickly the 

walk explores and leaves the starting node u neighborhood. The parameters in specific 

enable our search method to interpolate between BFS and DFS and thus reflect an 

affinity for distinct concepts of node equivalences. 

 

 

Figure 3.6. Biased random walk procedure with parameters p & q 

Node2vec algorithm covers the homophily and structural equivalence with 

interpolation of BFS and DFS. Nodes that are highly interconnected should be 

embedded closely together based on the homophily hypothesis. By comparison, nodes 

that have similar structural roles in networks should be embedded closely together 

based on the structural equivalence hypothesis. These equivalence concepts are not 

exclusive in real-world; networks frequently display both behaviors where some nodes 

display homophily while others represent structural equivalence. 



 

 

 

34 

 

The main contributions of Node2vec are given below; 

• Node2vec is proposed as an efficient scalable algorithm for network-based 

feature learning that efficiently optimizes a new network-aware, neighborhood 

objective that uses SGD. 

• It shows how Node2vec complies with proven network science principles and 

provides flexibility in discovering embeddings that conform to distinct 

equivalences. 

• Node2vec is a feature learning method that works on neighborhood preserving 

objectives, from nodes to pairs of nodes for edge-based prediction tasks. 

As a result, the pseudocode of the node2vec algorithm is given below; 

 

 

 



 

 

 

35 

 

3.3. Binary Classifiers 

In this section, classifier model algorithms used in this study will be explained. All of 

those algorithms are used with binary classification purpose. In the binary 

classification, model tries to predict dependent variables which only take values as 0 

or 1. This dependent variable is a target variable and implies event for 1 and non-event 

for 0. All classifier algorithms models relationship between independent variables and 

dependent variables. Logistic regression, decision tree, random forest, gradient 

boosting and neural networks are used in this study and will be explained in this 

section. 

 

3.3.1. Logistic Regression  

Similar to all binary classification algorithms, logistic regression also aims to find the 

relation between independent variables and dependent variable. Logistic regression is 

one of the most interpretable algorithms amongst classifiers and easy to explain 

relations which affect dependent variable. Runtime and calculation effort are very low 

when compared to other classifiers. Logistic regression proposes probability of event 

as an output. p is defined as probability of event and 1-p is probability of non- event. 

Based on this definitions, odds ratio is defined as: 

𝑜𝑑𝑑𝑠 =
𝑝

1 − 𝑝
 

In Logistic Regression, p, probability of event is defined with independent variable x 

as α+βx. This rough estimation does not give a value which is between 0 and 1. To 

get results between 0 and 1, logistic regression uses natural logarithm by addressing 

natural logarithm of odds to relation of independent variables, α+βx. In equation (3.8), 

model equation is presented: 

 𝑙𝑜𝑔𝑖𝑡(𝑦)  =  𝑙𝑛(𝑜𝑑𝑑𝑠)  =  𝑙𝑛( 
𝑝

1 − 𝑝
  )  =  𝛼 +  𝛽𝑥 (3.8) 

 



 

 

 

36 

 

By extracting p from equation (3.8), the following equation is derived: 

 p =
 e α+βx 

1 + e α+βx 
=

1

1 + e−(α+βx) 
   

 

(3.9) 

Equation (3.9) gives the formula of event occurrence probability for only one variable 

and formula is defined for many independent variables in the Equation (3.10). 

 
p =

 e α+β1x1+⋯+β𝑘 𝑥𝑘

1 +  e α+β1x1+⋯+β𝑘 𝑥𝑘
=

1

1 + e−( e 
α+β1x1+⋯+β𝑘 𝑥𝑘) 

   

 

(3.10) 

Logistic regression model is fitted by using the Equation (3.10) based on maximum 

likelihood estimation where yi is the value of random variable between 0 and 1, and pi 

is the probability of ith observation. Maximum likelihood estimation finds the values 

of α and β which maximizes the function L. 

 
𝐿 =∏ P𝑖

1−𝑦𝑖(1 – P𝑖)
𝑦𝑖

𝑛

𝑖=1
 (3.11) 

 

Although logistic regression model looks like simple linear regression model, the 

underlying distribution is binomial, and α and β parameters cannot be estimated in the 

same way as for simple linear regression [37].   

 

3.3.2. Decision Tree Algorithm  

Decision tree algorithms [38,39] are some of the most popular machine learning 

algorithms to build models have higher interpretability power. The reason why they 

are so popular is their capability and advantage to select from all attributes used to 

describe the data, a subset of attributes that are relevant for classification, identify 

complex predictive relations among attribute and produce classifiers that are easy to 

comprehend for humans [40]. 

A decision tree breaks data to subsets which are called nodes. The final subsets are 

called leaf nodes which is not split and there are internal nodes before final subsets 



 

 

 

37 

 

and they can split. Internal nodes are splitted with respect to rules on model feature 

values. In decision tree, there are branches which connect internal nodes to each other 

and internal nodes to leaf nodes. Leaf nodes are labeled based on the majority of 

dependent values. For the binary classification, leaf nodes are final subsets of model 

data which labeled 0 or 1.   

In literature, many different decision tree algorithms which include ID3, C4.5, J48, 

NB Tree and CART. In this study, CART algorithm is used. Relevant notation is given 

below: 

𝑌 The dependent variable, or target variable. It can be ordinal 

categorical, nominal categorical or continuous. 

If Y is categorical with J classes, its class takes values in C = 

{1, …, J}. 

𝑋𝑚, 𝑚 = 1,…,M The set of all predictor variables. A predictor can be ordinal 

categorical, nominal categorical or continuous. 

ℎ = {𝑥𝑛, 𝑦𝑛}1
𝑁 The whole learning sample. 

ℎ(𝑡) The learning samples that fall in node t. 

𝑤𝑛 The case weight associated with case n. 

𝑓𝑛 The frequency weight associated with case n. Non-integral 

positive value is rounded to its nearest integer. 

𝜋(𝑗), 𝑗 = 1,… , 𝐽 Prior probability of Y = j, j = 1, …, J. 

𝑝(𝑗, 𝑡), 𝑗 = 1,… , 𝐽 The probability of a case in class j and node t. 

𝑝(𝑡) The probability of a case in node t. 

𝑝(𝑗|𝑡), 𝑗 = 1,… , 𝐽 The probability of a case in class j given that it falls into node 

t. 

𝐶(𝑗|𝑡) The cost of miss-classifying a class j case as a class i case. 

Clearly 𝐶(𝑗|𝑗) = 0 

 

Decision tree algorithm tries to create splits which has the “purest” child nodes. At 

each iteration, purity of nodes increases by splitting to child nodes. At each split, nodes 

are split based on only one variable. A tree starts to grow from the root node and 

repeats the following steps on each node: 

• Among available model features, there is need to define the best split and 

feature at the root node. 



 

 

 

38 

 

• Split the node to child nodes with respect to criterion which gives the 

maximum purity on each child node. There are different criteria to calculate 

impurity of node, for example Gini, Twoing, and ordered Twoing criteria. In 

this study, Gini is used as splitting criteria. 

• Repeat the process if stopping criteria or maximum purity does not apply. 

At node t, the best split s is chosen to maximize a splitting criterion ∆i(s,t). When the 

impurity measure for a node can be defined, the splitting criterion corresponds to a 

decrease in impurity 

If Y is categorical, there are three splitting criteria available: Gini, Twoing, and ordered 

Twoing criteria. At node t, 𝜋(𝑗) is the prior probability and let probabilities 

𝑝( 𝑗, 𝑡) , 𝑝(𝑡) 𝑎𝑛𝑑 𝑝( 𝑗 | 𝑡) be estimated by: 

 
𝑝(𝑗, 𝑡) =

𝜋(𝑗)𝑁𝑤,𝑗(𝑡)

𝑁𝑤,𝑗
, 

 

𝑝(𝑡) =∑𝑝(𝑗, 𝑡),

𝑗

 

 

𝑝(𝑗|𝑡) =
𝑝(𝑗, 𝑡)

𝑝(𝑡)
=

𝑝(𝑗, 𝑡)

∑ 𝑝(𝑗, 𝑡)𝑗
 

 

where 

 

𝑁𝑤,𝑗 =∑𝑤𝑛𝑓𝑛
𝑛𝜖ℎ

𝐼(𝑦𝑛 = 𝑗) 

 

𝑁𝑤,𝑗(𝑡) = ∑ 𝑤𝑛𝑓𝑛
𝑛𝜖ℎ(𝑡)

𝐼(𝑦𝑛 = 𝑗) 
(3.12) 

 

with I(a = b) being indicator function taking value 1 when a = b , 0 otherwise. 

The Gini impurity measure at a node t is defined as: 



 

 

 

39 

 

 𝑖(𝑡) =∑𝐶(𝑖|𝑗)𝑝(𝑖|𝑡)𝑝(𝑗|𝑡)

𝑖,𝑗

 (3.13) 

The Gini splitting criterion is the decrease of impurity defined as: 

 ∆𝑖(𝑠, 𝑡)  =  𝑖(𝑡)  −  𝑝𝐿𝑖(𝑡𝐿)  −  𝑝𝑅𝑖(𝑡𝑅) (3.14) 

 

where 𝑝𝐿 and  𝑝𝑅 are probabilities of sending a case to the left child node  𝑡𝐿 and to 

the right child node   𝑡𝐿 respectively. They are estimated as 𝑝𝐿 = 𝑝(𝑡𝐿)/𝑝(𝑡) and  

𝑝𝑅 = 𝑝(𝑡𝑅)/𝑝(𝑡)[38]. 

 

3.3.3. Random Forest 

Random forest [41] is a machine learning algorithm which consists of  the individually 

created decision trees. This is the reason why it is called “Random Forest”. It is an 

ensemble-based learning algorithm and the idea behind ensemble approach is to 

decrease variance. In Random Forest, bagging which stands for Bootstrap 

Aggregation is used for ensembling model. Bootstrap is a method from statistics 

traditionally used to measure uncertainty of some estimator. Bagging also allows for 

handling of missing features. 

A downside to bagged trees is that the interpretability inherent in the single decision 

tree is lost. One method by which to re-gain some amount of insight is through a 

technique called variable importance measure. For each feature, find each split that 

uses it in the ensemble and average the decrease in loss across all such splits. With 

random forests, it is allowed a subset of features to be used at each split. This provides 

a decrease in correlation ρ which leads to a decrease in variance. Again, there is also 

an increase in bias due to the restriction of the feature space, but as with vanilla bagged 

decision trees this proves to not often be an issue. Finally, even powerful predictors 

will no longer be present in every tree (assuming sufficient number of trees and 

sufficient restriction of features at each split), allowing for more graceful handling of 

missing predictors. 



 

 

 

40 

 

There is a true population N that we wish to compute an estimator for, as well a 

training set S sampled from N (S ∼ N). While it can be found an approximation by 

computing the estimator on S, we cannot know what the error is with respect to the 

true value. To do so there is a need to multiple independent training sets 𝑆1, 𝑆2, . .. all 

sampled from N. However, the assumption that S = N is set, it can be generated a new 

bootstrap set Z sampled with replacement from S (Z ∼ S, |Z| = |S|). In fact, we can 

generate many such samples 𝑍1, 𝑍2, … . , 𝑍𝑀. We can then look at the variability of our 

estimate across these bootstrap sets to obtain a measure of error. 

Now, returning to ensembling, machine learning model 𝐺𝑚  is trained on each 𝑍𝑚 and, 

and a new aggregate predictor is defined as: 

 
𝐺(𝑋) =∑

𝐺𝑚(𝑥)

𝑀
𝑚

 (3.15) 

 

Bagging creates less correlated predictors than if they were all simply trained on S, 

thereby decreasing ρ. While the bias of each individual predictor increases due to each 

bootstrap set not having the full training set available, in practice it has been found 

that the decrease in variance outweighs the increase in bias. Also note that increasing 

the number of predictors M can’t lead to additional overfitting, as ρ is insensitive to M 

and therefore overall variance can only decrease. An additional advantage of bagging 

is called out-of-bag estimation. It can be shown that each bootstrapped sample only 

contains approximately 
2

3
  of S, and thus the other 

1

3
  can be used as an estimate of 

error, called out-of-bag error. In the limit, as M →∞, out-of-bag error gives an 

equivalent result to leave-one-out cross-validation [42]. 

 

3.3.4. Gradient Boosting 

Bagging is a variance-reducing technique, whereas boosting is used for bias reduction. 

Boosting models uses decision trees which produce high bias, low variance models. 



 

 

 

41 

 

These trees are also known as weak learners. Continuing our exploration via the use 

of decision trees, we can make them into weak learners by allowing each tree to only 

make one decision before making a prediction; these are known as decision stumps. 

 

Figure 3.7 Boosting procedure 

Figure 3.7 shows the intuition behind the boosting. First graph represents the initial 

dataset and it is splitted with the single decision stump on the middle plot. The key 

idea is to track which examples the classifier got wrong, and increase their relative 

weight compared to the correctly classified examples. In the third plot, new single 

decision stump is introduced and, it is more incentivized to correctly classify these 

“hard negatives”. This process continue and examples are reweighted at each step. At 

the end of the process, the combination of those weak learners create ensemble 

classifier. 

Algorithm 1: Forward Stagewise Additive Modeling 

 Input: Labeled training data (𝑥1, 𝑦1), (𝑥2, 𝑦2), … (𝑥𝑁 , 𝑦𝑁) 
 Output: Ensemble classifer 𝑓(𝑥) 
1 Initialize 𝑓0(x) = 0 
2 for m = 0 to M do 
3  Compute (𝐵𝑚, 𝛾𝑚) = 𝑎𝑟𝑔𝑚𝑖𝑛𝛽,𝛾 ∑ 𝐿(𝑦𝑖, 𝑓𝑚−1(𝑥𝑖)  +  𝛽𝐺(𝑥𝑖; 𝛾))

𝑁
𝑖=1  

4  Set 𝑓𝑚(𝑥)  =  𝑓𝑚−1(𝑥)  + 𝛽𝑚𝐺(𝑥; 𝑦𝑖) 
5 End 
6 𝑓(𝑥)  =  𝑓𝑚(𝑥) 

 

Close inspection reveals that few assumptions are made about the learning problem at 

hand, the only major ones being the additive nature of the ensembling as well as the 

fixing of all previous weightings and parameters after a given step. We again have 



 

 

 

42 

 

weak classifiers 𝐺(𝑥), though this time we explicitly parameterize them by their 

parameters γ. At each step we are trying to find the next weak learner’s parameters 

and weighting so to best match the remaining error of the current ensemble. As a 

concrete implementation of this algorithm, using a squared loss would be the same as 

fitting individual classifiers to the residual 𝑦𝑖 − 𝑓𝑚−1(𝑥𝑖).  

In general, it is not always easy to write out a closed-form solution to the minimization 

problem presented in Forward Stagewise Additive Modeling.  One of the most obvious 

things to do in this case would be to take the derivative of the loss and perform gradient 

descent. In gradient boosting, we instead compute the gradient at each training point 

with respect to the current predictor (typically a decision stump): 

 
𝑔𝑖  =

𝜕𝐿(𝑦, 𝑓(𝑥𝑖))

 𝜕𝑓(𝑥𝑖)
 (3.16) 

 

We then train a new regression predictor to match this gradient and use it as the 

gradient step. In Forward Stagewise Additive Modeling, this works out to [42]: 

 𝛾𝑖 = 𝑎𝑟𝑔𝑚𝑖𝑛𝛾∑(𝑔𝑖 − 𝐺(𝑥𝑖; 𝛾))
2

𝑖−1

 (3.17) 

 

3.3.5. Neural Networks 

A multilayer perceptron (MLP) is a type of feedforward artificial neural network 

which includes at least three layers of nodes: an input layer, a hidden layer and .an 

output layer. Each node other than the input .nodes is a neuron that uses a 

nonlinear xactivationxxfunction. At the training stage of Multilayer perceptron 

algorithm, backpropagation is used for learning and updating parameters [43]. 

Activation function of MLP is non-linear and this gives an opportunity to recognize 

data which is not separable with linear activation function.  

In the first layer of MLP, there are M linear combinations of the d-dimension inputs: 

https://en.wikipedia.org/wiki/Feedforward_neural_network
https://en.wikipedia.org/wiki/Artificial_neural_network
https://en.wikipedia.org/wiki/Activation_function
https://en.wikipedia.org/wiki/Multilayer_perceptron#cite_note-1


 

 

 

43 

 

 

𝑏𝑗 =∑𝑤𝑗𝑖
(1)
𝑥𝑖

𝑑

𝑖=0

       𝑗 = 1,2, … ,𝑀. 
 

(3.18) 

 

In Equation (3.18),  𝑏𝑗 is activation, 𝑤𝑗𝑖
(1)

 is the weight and 𝑥𝑖 is the bias. Nonlinear 

activation function, specifically a sigmoid in here transforms all of 𝑏𝑗’s. 

 

 
𝑧𝑗 = ℎ(𝑏𝑗) =

1

1 + 𝑒−𝑏𝑗
 

 

(3.19) 

 

In Equation (3.19), 𝑧𝑗 represents the output of hidden layers and takes the activation 

value of first layer, 𝑏𝑗 as an input. Sigmoid function transforms first-layer to hidden-

layer. Hidden-layer is transformed to second-layer. It needs to note that transformation 

from hidden-layer to second-layer is liner in order to get K dimensional output when 

the transformation from first-layer to hidden-layer is non-linear: 

 

 

𝑎𝑘 =∑𝑤𝑘𝑗
(2)𝑧𝑗

𝑀

𝑗=0

       𝑘 = 1,2, … , 𝐾. (3.20) 

 

𝑤𝑘𝑗
(2)

 represents the weights for second layer and 𝑧𝑗 is the bias. Output of MLP is 

derived by running sigmoid function on the second-layer: 

 
𝑦𝑘 = 𝑔(𝑎𝑘) =

1

1 + 𝑒−𝑎𝑘
 

 
(3.21) 

   

As a result, the closed form formula can be written for MLP output as [44]: 

 



 

 

 

44 

 

 

𝑦𝑘 =∑𝑤𝑘𝑗
(2)ℎ𝑗∑𝑤𝑗𝑖

(1)𝑥𝑖

𝑑

𝑗=0

𝑀

𝑗=0

       𝑘 = 1,2, … , 𝐾. (3.22) 

 

This is illustrated in Figure 3.8. 

 

Figure 3.8. Multi-layer perceptron (MLP) representation 

 

 

 

 



 

 

 

45 

 

CHAPTER 4  

 

4. PROPOSED ALGORITHM AND EXPERIMENTAL RESULTS  

 

In this chapter, we introduce three different approaches considered for spam review 

detection. In the text-only approach, DocRep, representations are learned for the 

reviews by utilizing a document representation learning algorithm (Doc2vec) and used 

as features for creating spam review detection model. In the network-only approach, 

NodeRep, representations are learned for the network nodes via a node representation 

learning algorithm (Node2vec) and used as features for creating a classifier. Lastly, a 

recently our proposed framework SPR2EP [36]. In this framework, reviewer, 

restaurant/hotel and review feature representations are learned and used in detecting 

spam reviews. First of all, reviewer-product network is generated by creating a link 

between reviewers and products if a reviewer has written a review on a product.  

The product mentioned here refers to the restaurants and hotels in the datasets used in 

this study. Then, by running Node2vec algorithm on this network, vector 

representations for reviewers and products are learned. Similarly, by running Doc2vec 

algorithm where inputs are the reviews, vector representations for the reviews are 

learned again in an unsupervised manner. Finally, a combination of these 

representations is fed into various classification algorithms to build classifiers for 

spam review detection.  

In the following subsections, detailed explanation of the approaches considered in this 

study will be presented. Firstly, datasets and their characteristics are described. Then, 

performances of the models generated separately via document and node embeddings, 

DocRep and NodeRep respectively, are compared. Finally, the models created using 

the concatenated document and node embeddings will be explained and their 

performances will be compared to those of DocRep and NodeRep and the previous 



 

 

 

46 

 

studies. In order to perform a fair comparison, we considered various embedding sizes, 

and classification algorithms which are employed with their parameters left at their 

default values.  

The performance of machine learning methods depends on preprocessing and 

transformation of input data. Feature engineering step is the prior and one of the most 

important steps of modelling. Mostly, feature engineering methods include manual 

and human intervention steps to improve classifier model performance. In spite of this, 

representation learning extracts useful common information automatically for feature 

detection or classification. In the next sections, those algorithms will be explained.   

 

4.1. Data Description 

To assess the approaches considered in this study, three different datasets which 

include the reviews gathered from yelp.com are used. The first one named YELPCHI 

includes the reviews for restaurants and hotels in Chicago. This dataset includes 

separate datasets for Restaurants and Hotels and the names of users and products are 

anonymized. The other two datasets, named YELPNYC and YELPZIP include 

reviews only for restaurants. YELPNYC includes the reviews in New York area, 

whereas YELPZIP dataset is larger and contains reviews for the restaurant in states of 

New Jersey (NJ), Vermont (VT), Connecticut (CT), and Pennsylvania (PA). Table 4.1 

gives the summary statistics of these data sets. The YELPCHI dataset is collected by 

Mukherjee et al. [39] and used by Mukherjee et al. [39] and Rayana and Akoglu [43]. 

Other two datasets are collected and used by Rayana and Akoglu [43] and shared also 

with the authors of this study. 

YELP [2] uses an undisclosed spam review classification algorithm to label reviews 

as genuine and fake. It separates the fake reviews as filtered and shows unfiltered 

reviews as recommended by default. These three datasets include both genuine and 

fake reviews. It is worthy of notice that, although the labeling and filtering algorithm 

of YELP could not be perfect, the labels included in these datasets are assumed to be 



 

 

 

47 

 

providing us the ground-truth labels as it is also stated in the previous works [39,43]. 

Since the detection of the spam reviews just from the raw review text is difficult for 

humans, the labeling algorithm of YELP using various features that human may not 

obtain is assumed to provide more reliable ground-truth labels than manual-only 

approaches used in some of the previous works. 

 

Table 4.1. Review datasets used in this study 

Dataset 
# Reviews 

(filtered %) 

# Users 

(spammer % ) 

# Products 

(rest. & hotel) 

YELPCHI 
67,395 

(13.23%) 

38,063  

(20.33%) 
201 

YELPNYC 
359,052 

(10.27%) 

160,225  

(17.79%) 
923 

YELPZIP 
608,598 

(13.22%) 

260,277  

(23.91%) 
5,044 

 

 

4.2. Learning Review Embeddings 

In this study, three different approaches are presented and compared based on their 

spam review detection performances. For a fair comparison between the performances 

of these approaches, three different dimensions of 96, 192 and 384 are selected as 

feature vectors size and these features are fed into classification algorithms to achieve 

the best performance. So, in order to generate a classification model in NodeRep 

where the input dimension is 384, the size parameter for the node embeddings in 

Node2vec algorithm is set to 192 so as to get the combined reviewer-product 

embedding size of 384. Similarly, the corresponding DocRep model with 384 input 

features is generated by running Doc2vec on review text with embedding size of 384. 

On the other hand, in order to get input feature vector of size 384 for the SPR2EP 

approach, node embeddings of size 128 is obtained by running Node2vec and then 



 

 

 

48 

 

these reviewer-product representations, where each node contribute 128 features, are 

combined with additional 128 features coming from the review representation which 

is obtained by running Doc2vec. Respective representations for input features of sizes 

96 and 192 are obtained similarly and used as input in generating review detection 

models. 

In the first approach, DocRep, Doc2vec [12] algorithm is used to create review 

embeddings from raw review texts. Doc2vec algorithm learns feature vectors for every 

review in each one the three datasets independently. PV-DM is the method of choice 

of Doc2vec algorithm in our study. Window size, which is the maximum distance 

between predicted word and context word within a document, and the number of 

epochs is both set to 10. Another parameter of choice is the minimum count which is 

used to ignore all the words with a total frequency lower than this value. The minimum 

count value is set to 1 in order to achieve the best representations for the reviews. 

Every review is converted to the vector embeddings of various sizes since both the 

performances of DocRep and SPR2EP review detection models utilize features 

generated by Doc2vec method. 

In the second approach, NodeRep, Node2vec [13] algorithm is utilized to extract the 

feature embeddings for the nodes of reviewer-product network. The weighted version 

of Node2vec is used in this study. The reviewer-product network, constructed by 

taking into account the reviews regarding a reviewer-product pair together with its 

rating, is fed into the Node2vec algorithm as an undirected weighted network. Here, 

review ratings are used as edge weights to take advantage of the rating information. 

The random walk length, window size and the number of walks started on each node 

are all set to 10. Random walks are repeated with respect to number of walks 

parameter.  

In order to get the most out of the network information, we performed a grid search 

over the two important parameters of Node2vec algorithm, breadth first sampling 

parameter p and deep first sampling parameter q. We have decided to run a grid search 



 

 

 

49 

 

over p, q ϵ {0.25, 0.5, 1, 2, 4} as it is done in the original work [13] for each dataset. 

In order to find the best pair of parameters, we generate logistic regression models 

with feature vector size of 128 and perform 10-fold cross validation. As a result, we 

achieved best performances for each dataset with the p and q values in Table 4.2 and 

used them to generate node features for further analysis.  

 

Table 4.2. Best Node2vec settings 

  YELPCHI YELPNYC YELPZIP 

Node2vec 

settings (p,q) 
(4, 1) (0.5, 2) (1,0.25) 

 

Last approach, SPR2EP framework is based on learning the feature vectors of the 

reviewers and hotels/restaurants which are considered as nodes on the reviewer-

product network and concatenating them with the learned feature vectors for the 

reviews. So, SPR2EP consists not only of generating and using the representations for 

the review text but also representations obtained for the weighted reviewer-product 

network nodes. Therefore, two processes operate in parallel for exploiting the review 

text and the underlying reviewer-product network structure separately. 

The main objective of this study is to analyse and compare various spam review 

detection approaches. In this respect, three different approaches are considered for 

learning representations of the reviews to be used in creating classification models. 

These approaches aimed at learning these representations both from the raw review 

text as well as the reviewer-product pairs since these pairs are considered as attributes 

of the reviews. Here, Doc2vec algorithm outputs representations for each review via 

considering the structure of raw review texts. On the other hand, Node2vec output 

features for reviewer and product nodes, by exploiting the underlying reviewer-

product network structure, which are then combined for a particular review. As a 



 

 

 

50 

 

result, Doc2vec algorithm provides vector embeddings of size 96, 192 and 384 for 

every review. Node2vec algorithm also provides vector embeddings of size 96, 192, 

and 384 for every review to be used in NodeRep and SPR2EP where each one of the 

embeddings obtained for the corresponding reviewer and product nodes contribute the 

half.   

In the next section, accuracy performances of the three models will be presented and 

compared with the performances obtained in the previous state-of-the-art studies. To 

make a fair comparison among all the approaches considered here and to observe the 

relative improvements achieved through textual and network features, and the effect 

of different embedding sizes on the performance, feature dimensions are set to 96, 

192, and 384. So, both of the three spam review detection models are generated with 

review feature vectors of size 96, 192, and 384. DocRep model uses the feature 

embeddings created by considering only the review text, whereas NodeRep model 

uses the combination of two feature vectors of size 192 obtained for each reviewer 

and product pair regarding a review in case of feature dimension of 384. The last 

model, SPR2EP, utilizes the feature vectors for each review that are generated by 

concatenating the corresponding document vector for the review, and node feature 

vectors of the corresponding reviewer and product. For this combined model, we have 

run both Doc2vec and Node2vec algorithms with embedding vector sizes of 32, 64, 

and 128, so that the size of the concatenated embedding vectors for each review is 96, 

192 and 384, respectively. For example, SPR2EP combines the output of DocRep with 

feature vector of size 128 and the output of NodeRep with feature vector of size 128 

for feature vector of size 384. NodeRep algorithm is trained with feature vector of size 

128 but it produces 256 feature size by augmenting reviewer and product features. As 

a result, SPR2REP input with feature vector of size 384 includes 128 features coming 

from DocRep and 256 features coming from NodeRep. In Table 4.3, model parameters 

are given for each setting. It should be noted that NodeRep model produces double 

features because of combining the reviewer and product features. The vector 



 

 

 

51 

 

embedding combinations of feature size of 96 and 384 are represented at Figures 4.1 

and 4.2. 

Table 4.3 Embedding algorithm training parameters for each feature size 

    SPR2EP 

Feature 

Size 
NodeRep DocRep  NodeRep DocRep  

96 48 96 32 32 

128 64 128 48 48 

384 192 384 128 128 

 

 

Figure 4.1 Representation of embedding combinations at feature size of 384 

 

 

Figure 4.2 Representation of embedding combinations at feature size of 96 

All computational results in this study are obtained by using 10-fold-cross validation. 

Multilayer Perceptron, Logistic Regression, CART Decision Tree, Gradient Boosting, 

and Random Forest classifiers are adapted to discriminate between spam and 

legitimate reviews. All the classification algorithms are employed with their 

parameters left at their default values as explained in scikit-learn2. Implementation of 

the proposed framework is done in Python3 programming language. Doc2vec features 

                                                 
2 http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegressionCV.html 
3 www.python.org 

http://scikit-learn.org/stable/modules/generated/sklearn.linear_model.LogisticRegressionCV.html


 

 

 

52 

 

are obtained using gensim4 library. Similarly, Node2vec implementation also uses 

Word2vec module of the gensim library after the creation of random walks in the 

network, based on a blend of BFS and DFS strategies. Additionally, networkx5 library 

is utilized in Node2vec algorithm, which provides an opportunity to work with graph 

structures. For the data preprocessing and cleaning stages, pandas6 and numpy7 

libraries are used. 

 

4.3. Performance Measures 

4.3.1. ROC AUC 

This measure is selected because our datasets are unbalanced. Also, we use this 

measure to compare the same size datasets. Basically, ROC AUC is Area Under Curve 

of Receiver Operating Curve. To calculate this measure, we used prediction scores 

and target class information of observations. ROC is a graphical plot of the true 

positive rate (TPR) against the false positive rate (FPR) at various threshold settings. 

TPR is also known as recall and sensitivity. TPR is the ratio of correctly predicted 

positive observations (TP) to positive observations (P); 

𝑇𝑃𝑅 =
𝑇𝑃

𝑃
 

FRP is also known as (1-specifity) or Type I Error. FPR is the ratio of incorrectly 

predicted negative observations as positive (FP) to negative observations (N); 

𝐹𝑃𝑅 =
𝐹𝑃

𝑁
 

It measures the quality of ranking. When calculating TP and FP, it is also essential to 

define thresholds. It is possible to create many different thresholds between 1 and n 

                                                 
4 https://radimrehurek.com/gensim/ 

5 https://networkx.github.io/ 

6 https://pandas.pydata.org/ 
7 http://www.numpy.org/ 

https://radimrehurek.com/gensim/
https://networkx.github.io/


 

 

 

53 

 

which is the scored number of observations. In this study, we used score and target 

values. This approach sets different thresholds for each observation. It sorts scores 

from the highest to the lowest and sets lowering thresholds. If the observation has true 

value, the curve gets along in TPR direction. If the observation has false value, the 

curve gets along in FPR direction. ROC is scaled between 0 and 1 in x and y axes. 

ROC AUC calculates the area under the curve. The maximum value that ROC AUC 

can take is 1, which is a perfect classification. For random guessing, it takes 0.5. The 

contribution of the prediction algorithm is compared based on random guessing most 

of the time. 

In Figure 4.4, score values and observation classes are given for 20 data points. There 

is a representation of the ROC curve [45]. 

 

Figure 4.3. Receiver Operating Characteristic Curve Interpretation 



 

 

 

54 

 

4.3.2. Average Precision 

This measure is selected because our datasets are unbalanced. Also, we use this 

measure to compare the same size datasets. It is calculated by utilizing precision-recall 

curve. Precision measures the accuracy of predictions. Precision is the ratio of 

correctly predicted positive predictions (TP) to all positive predictions which are the 

sum of correctly predicted positive predictions (TP) and incorrectly predicted negative 

observations (FP); 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

 

Recall is True Positive Ratio (TPR). It measures the performance of detecting positive 

observations. It is ratio of the ratio of correctly predicted positive observations (TP) 

to positive observations (P); 

𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

 

Precision and Recall are the single measures for each scored dataset. However, it is 

possible to calculate them for each ranked observation and Precision-Recall curve can 

be plotted from the highest-score observation to lowest-score observation, which is 

the curve of precision function of recall, between 0 and 1. 

Average Precision, AP uses precision and recall values at the threshold k, for every 

observation and sums the Precision of each observation with the weights which is a 

difference between recall of current observation and the recall of previous observation 

[46];  

𝐴𝑃 =∑(𝑅𝑘

𝑛

𝑘=1

− 𝑅𝑘−1)𝑃𝑘 



 

 

 

55 

 

4.4. Evaluation 

All classification models are evaluated and compared in terms of average precision 

(AP) and area under the ROC curve (AUC). We compared performances of NodeRep, 

DocRep, SPR2EP (Node embeddings (Node2vec) + Review embeddings (Doc2vec)) 

with SpEagle [43], method of Wang et al. [9] and random review ranking where the 

performance values are taken from [43]). Both SpEagle and method of Wang et al. are 

applied on the same dataset used in this study and with the same purpose, spam 

detection, and have made comparisons with previously proposed approaches. SpEagle 

[20] uses behavioural text and product-reviewer relation by applying manual feature 

engineering methods. Similar to our approach, SpEagle handles spam detection with 

methods that utilize both graph and textual information altogether. On the other hand, 

the approach of Wang et al. [9] uses only network information and does not use review 

text. Our approach has three different perspectives, and considers utilizing the 

underlying network structure, and review text individually, and then a combination of 

these two. Therefore, we have selected SpEagle and the approach of Wang et al. as 

the state-of-the art approaches for performance comparisons. 

Table 4.4 provides performance results of the methods in terms of AP and AUC over 

all three datasets. Here only the best results obtained from three methods proposed 

here are given. Detailed performance results for each feature dimensions and 

classification algorithms can be found in Tables 4.5, 4.6 and 4.7 for YELPCHI, 

YELPNYC and YELPZIP datasets respectively. The result of NodeRep algorithm is 

quite high with respect to DocRep algorithm. This may be due to the fact that NodeRep 

algorithm utilizes both underlying network structure together with the review rating 

information, whereas DocRep only considers review text to generate feature vectors 

for the reviews.  

 



 

 

 

56 

 

Table 4.4. AP and AUC Performances of Compared Methods on Datasets 

  AP AUC 

  
     

Y’CHI 

       

Y’NYC 

   

Y’ZIP 

     

Y’CHI 

       

Y’NYC 

   

Y’ZIP 

Random 0.133 0.103 0.132 0.500 0.500 0.500 

Wang et. Al 0.152 0.126 0.180 0.506 0.542 0.598 

SpEagle 0.324 0.246 0.332 0.789 0.770 0.794 

NodeRep 0.373 0.397 0.506 0.788 0.816 0.860 

DocRep 0.276 0.224 0.296 0.715 0.725 0.734 

SPR2EP 0.659 0.323 0.422 0.890 0.806 0.831 

 

It is possible to conclude that, it is crucial for the spam review detection models to 

exploit the relational structure between reviewers and products for improving their 

performances. The resulting performance values for NodeRep models are also better 

than Random and method of Wang et.al [9] for every dataset. As well, NodeRep by 

itself obtains results that are very close to the results of the state-of-the-art SpEagle 

method. The most promising results are achieved by NodeRep and SPR2EP methods 

where the classifier is trained by node embeddings only and concatenating the 

embeddings obtained from Node2vec and Doc2vec algorithms altogether, 

respectively.  

As it is stated, previous part compares our approach by using logistic regression with 

the existing algorithms. In this part, we will train our model and compare within our 

own experimental setting. To achieve this purpose, we propose 3 different parameter 

settings for feature size. In the previous part, we only used logistic regression classifier 

for making a fair comparison with the other approaches. As it is described, Logistic 

regression is one of the most basic algorithms. It has low computational effort, but it 



 

 

 

57 

 

is not perfect when it comes to predictability power. Therefore, we used other 

classification algorithms with Logistic Regression to see the performances under 

different classifiers and feature size settings. We applied different feature sizes and 

classifiers for all 3 datasets.  

We didn't conduct hyperparameter tuning for classifiers and their parameters are given 

below; 

• Logistic Regression (LR): L2 Regularization 

• Decision Tree (CART): Splitting Criteria is Gini 

• Gradient Boosting Machine (GBM): #of estimators is 100 and max 

depth=3 

• Neural Network (NN): # of hidden layer is 100 

• Random Forest (RF): #of estimators is 10 

Performance measures that we used in this part are the same here, ROC AUC and 

Average Precision. For CHI Dataset, performances are given in Table 4.5 and the 

relations between performances are visualized in Figures 4.4, 4.5, 4.6, 4.7, 4.8 and 4.9. 

In CHI Dataset, Decision Tree classifier gives a poor performance for 3 approaches 

obviously. As it is stated before, Decision Tree uses Gini coefficient as a splitting 

criterion, and there is no max dept criterion is set. Best performances for NodeRep, 

DocRep and SPR2EP are observed at GBM, LR and NN, respectively. For NodeRep, 

there is an increasing trend when feature size increases. Min ROC AUC performance 

changes between 0.634 and 0.783 where feature size is 96. This range is quite wide, 

and when we exclude CART performance due to the low performance, ROC AUC 

range changes between 0.738 and 0.783 for feature size 96 for NodeRep. All of the 

algorithms except CART shows ROC AUC performance above 0.70. It is possible to 

say that they show fair performances in LR, NN, RF and GBM classifiers. 

Specifically, LR ROC AUC performance is 0.738 and NN, RF and GBM 



 

 

 

58 

 

performances between 0.773 and 0.783 for the feature size of 96. As a conclusion, 

NN, RF and GBM performances shows superior performance with respect to LR and 

CART in this feature size for NodeRep algorithm. For other feature sizes, 192 and 

384, ROC AUC performances (except CART performance) are between 0.751 and 

0.788 and between 0.757 and 0.798 respectively. It is observed that min and max ROC 

AUC performances increase when the feature size increases. NN ROC AUC 

performance of NodeRep decreases when feature size increases. As a result, GBM and 

RF performances increase with the feature size and they show better performances 

than other algorithms. There is need to note that this performance increase with feature 

size is a slight increase. For NodeRep, this behaviour will be investigated on other 

data sets. Average Precision is another performance measure, and its trend is 

compatible with ROC AUC performance. Both GBM and RF show better performance 

for AP similar to ROC AUC. 

In DocRep for CHI Dataset, CART shows significantly low performance. 

Additionally, CART, RF and NN ROC AUC performances are below 0.70, which can 

be classified as poor performance. DocRep LR and GBM performances are very close 

to each other, and they show better performances. When GBM performance is stable 

on different dimensions, there is a slight increase in LR performances. Average 

Precision results show the same behavior with ROC AUC. 

It can be concluded that LR and GBM show better performances for NodeRep and 

DocRep in CHI Dataset. NodeRep performances are better than DocRep 

performances. When the best ROC AUC performances of NodeRep are in 0.77-0.80 

interval, the interval is 0.70-0.72 for DocRep. According to this comparison, it can be 

concluded that captured network information with NodeRep has more contribution 

than the captured review information with DocRep in the same feature sizes. 

In the last setting, SPR2EP augments NodeRep and DocRep features and comparisons 

amongst all three approaches are done in the same feature size. CART performances 

of SPR2EP in CHI Dataset are poor like other approaches’ CART performances. RF 



 

 

 

59 

 

performances are also quite low, similar to DocRep trend. For SPR2EP, LR, GBM 

and NN show better performances which are between 0.80 and 0.90 in all feature size 

settings and LR and GBM performances are very close to each other. ROC AUC 

performance interval of SPR2EP are above the other best performance intervals of 

algorithms. Combining network and review features boosted ROC AUC performance. 

However, this effect can be seen in AP performances more dramatically. SPR2EP AP 

performances for NodeRep, DocRep and SPR2EP are in 0.341-0.373, 0.26-0.276, 

0.631-0.659 ranges, respectively. For YELPCHI Dataset, SPR2EP shows higher 

performance than NodeRep and DocRep. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 

 

60 

 

Table 4.5. AP and AUC Performances of different classifiers for 3 dimensions on YELPCHI Dataset 

     NodeRep   DocRep   SPR2EP  

Feature 

Dimension Classifier  AUC   AP   AUC   AP   AUC   AP  

96 LR 

         

0.738  

         

0.291  

         

0.704  

         

0.260  

         

0.807  

         

0.436  

96 CART 

         

0.634  

         

0.214  

         

0.520  

         

0.138  

         

0.600  

         

0.183  

96 GBM 

         

0.783  

         

0.338  

         

0.703  

         

0.259  

         

0.833  

         

0.472  

96 NN 

         

0.774  

         

0.323  

         

0.643  

         

0.204  

         

0.890  

         

0.659  

96 RF 

         

0.773  

         

0.341  

         

0.565  

         

0.159  

         

0.774  

         

0.374  

192 LR 

         

0.751  

         

0.306  

         

0.710  

         

0.268  

         

0.814  

         

0.453  

192 CART 

         

0.640  

         

0.221  

         

0.515  

         

0.137  

         

0.599  

         

0.182  

192 GBM 

         

0.788  

         

0.346  

         

0.704  

         

0.254  

         

0.832  

         

0.461  

192 NN 

         

0.766  

         

0.301  

         

0.638  

         

0.196  

         

0.878  

         

0.624  

192 RF 

         

0.777  

         

0.350  

         

0.549  

         

0.152  

         

0.767  

         

0.355  

384 LR 

         

0.757  

         

0.312  

         

0.715  

         

0.276  

         

0.828  

         

0.477  

384 CART 

         

0.640  

         

0.222  

         

0.511  

         

0.135  

         

0.601  

         

0.183  

384 GBM 

         

0.793  

         

0.352  

         

0.701  

         

0.250  

         

0.828  

         

0.456  

384 NN 

         

0.766  

         

0.294  

         

0.648  

         

0.205  

         

0.880  

         

0.631  

384 RF 

         

0.788  

         

0.373  

         

0.542  

         

0.149  

         

0.748  

         

0.328  

 



 

 

 

61 

 

 

Figure 4.4. ROC AUC Performances on YELP CHI Dataset for NodeRep 

 

Figure 4.5. ROC AUC Performances on YELP CHI Dataset for DocRep 

96 192 384

LR 0.738 0.751 0.757

CART 0.634 0.640 0.640

GBM 0.783 0.788 0.793

NN 0.774 0.766 0.766

RF 0.773 0.777 0.788

0.738 

0.751 
0.757 

0.634 
0.640 0.640 

0.783 
0.788 

0.793 

0.774 
0.766 0.766 0.773 

0.777 
0.788 

 0.620

 0.640

 0.660

 0.680

 0.700

 0.720

 0.740

 0.760

 0.780

 0.800
A

U
C

NodeRep-YELPCHI

96 192 384

LR 0.704 0.710 0.715

CART 0.520 0.515 0.511

GBM 0.703 0.704 0.701

NN 0.643 0.638 0.648

RF 0.565 0.549 0.542

0.704 0.710 0.715 

0.520 0.515 0.511 

0.703 0.704 0.701 

0.643 0.638 
0.648 

0.565 
0.549 

0.542 

 0.500

 0.550

 0.600

 0.650

 0.700

 0.750

A
U

C

DocRep-YELPCHI



 

 

 

62 

 

 

Figure 4.6. ROC AUC Performances on YELP CHI Dataset for SPR2EP 

 

Figure 4.7. AP Performances on YELP CHI Dataset for NodeRep 

96 192 384

LR 0.807 0.814 0.828

CART 0.600 0.599 0.601

GBM 0.833 0.832 0.828

NN 0.890 0.878 0.880

RF 0.774 0.767 0.748

0.807 0.814 
0.828 

0.600 0.599 0.601 

0.833 0.832 0.828 

0.890 
0.878 0.880 

0.774 0.767 
0.748 

 0.590

 0.640

 0.690

 0.740

 0.790

 0.840

 0.890

A
U

C

SPR2EP-YELPCHI

96 192 384

LR 0.291 0.306 0.312

CART 0.214 0.221 0.222

GBM 0.338 0.346 0.352

NN 0.323 0.301 0.294

RF 0.341 0.350 0.373

0.291 

0.306 
0.312 

0.214 
0.221 0.222 

0.338 
0.346 

0.352 

0.323 

0.301 
0.294 

0.341 
0.350 

0.373 

 0.200

 0.220

 0.240

 0.260

 0.280

 0.300

 0.320

 0.340

 0.360

 0.380

 0.400

A
P

NodeRep-YELPCHI



 

 

 

63 

 

 

Figure 4.8. AP Performances on YELP CHI Dataset for DocRep 

 

Figure 4.9. AP Performances on YELP CHI Dataset for SPR2EP 

96 192 384

LR 0.260 0.268 0.276

CART 0.138 0.137 0.135

GBM 0.259 0.254 0.250

NN 0.204 0.196 0.205

RF 0.159 0.152 0.149

0.260 
0.268 

0.276 

0.138 0.137 0.135 

0.259 0.254 0.250 

0.204 
0.196 

0.205 

0.159 
0.152 0.149 

 0.100

 0.150

 0.200

 0.250

 0.300
A

P

DocRep-YELPCHI

96 192 384

LR 0.436 0.453 0.477

CART 0.183 0.182 0.183

GBM 0.472 0.461 0.456

NN 0.659 0.624 0.631

RF 0.374 0.355 0.328

0.436 
0.453 

0.477 

0.183 0.182 0.183 

0.472 0.461 0.456 

0.659 

0.624 0.631 

0.374 
0.355 

0.328 

 0.150

 0.250

 0.350

 0.450

 0.550

 0.650

A
P

SPR2EP-YELPCHI



 

 

 

64 

 

For NYC Dataset, performances are given in Table 4.6 and the relations between 

performances are visualized in Figures 4.10, 4.11, 4.12, 4.13, 4.14 and 4.15. In NYC 

Dataset, Decision Tree classifier gives a poor performance for three approaches. Best 

performances for NodeRep, DocRep and SPR2EP are observed at RF, LR and NN, 

respectively. For the NodeRep, there is an increasing trend when feature size 

increases. Min ROC AUC performance changes between 0.647 and 0.813 where 

feature size is 96. This range is quite wide, and when we exclude CART performance 

due to the low performance, ROC AUC range changes between 0.747 and 0.783 for 

feature size 96 for NodeRep. All of the algorithms except CART shows ROC AUC 

performance above 0.70. It is possible to say that they show fair performances in LR, 

NN, RF and GBM classifiers. Specifically, LR ROC AUC performance is 0.747 and 

NN, RF and GBM performances between 0.783 and 0.813 for the feature size of 96. 

As a conclusion, NN, RF and GBM show superior performance with respect to LR 

and CART in this feature size for NodeRep algorithm. For other feature sizes, 192 and 

384, ROC AUC performances (except CART performance) are between 0.759 and 

0.818 and between 0.763 and 0.816 respectively. It is observed that min and max ROC 

AUC performances don’t show any trend when feature size increases. As a result, NN 

and RF algorithms show better performances than other algorithms. Average Precision 

is another performance measure, and its trend is compatible with ROC AUC 

performance. However, AP performance of RF is significantly higher than other 

algorithms for NodeRep. 

In DocRep for NYC Dataset, CART shows significantly low performance. 

Additionally, CART and RF ROC AUC performances are below 0.70, which can be 

classified as poor performance. This behavior is also seen in CHI Dataset. DocRep LR 

and GBM performances are very close to each other, and they show better 

performances. NN performances show a different trend in NYC Dataset when it is 

compared with CHI Dataset. When GBM performance is stable on different 

dimensions, there is a slight increase in LR performances. Average Precision results 

show the same behavior with ROC AUC. 



 

 

 

65 

 

It can be concluded that RF and NN show better performances for NodeRep and 

DocRep in NYC Dataset. NodeRep performances are better than DocRep 

performances. When the best ROC AUC performances of NodeRep are in 0.81-0.82 

interval, the performance interval is 0.71-0.73 for DocRep. According to this 

comparison, it can be concluded that captured network information with NodeRep has 

more contribution than the captured review information with DocRep in the same 

feature sizes for NYC dataset. The same behavior is observed in CHI Dataset. 

In the last setting, SPR2EP augments NodeRep and DocRep features and comparisons 

amongst all three approaches are conducted in the same feature size for NYC Dataset. 

CART performances of SPR2EP in NYC Dataset are poor, like other approaches’ 

CART performances. CART performance behavior of SPR2EP is also similar to CHI 

Dataset. RF performances are also quite low, similar to DocRep trend. For SPR2EP, 

LR, GBM and NN show better performances which are between 0.77 and 0.81 in all 

feature size settings and LR and GBM performances are very close to each other. ROC 

AUC performance interval of SPR2EP are very close to the best performance intervals 

of NodeRep but quite lower than it. It shows better performance than DocRep. 

 

 

 

 

 

 

 

 

 



 

 

 

66 

 

Table 4.6. AP and AUC Performances of different classifiers for 3 dimensions on YELP NYC Dataset 

     NodeRep   DocRep   SPR2EP  

Feature 

Dimension Classifier  AUC   AP   AUC   AP   AUC   AP  

96 LR 

         

0.747  

         

0.228  

         

0.711  

         

0.209  

         

0.779  

         

0.266  

96 CART 

         

0.647  

         

0.194  

         

0.521  

         

0.108  

         

0.583  

         

0.138  

96 GBM 

         

0.783  

         

0.276  

         

0.708  

         

0.214  

         

0.797  

         

0.300  

96 NN 

         

0.803  

         

0.314  

         

0.702  

         

0.209  

         

0.806  

         

0.323  

96 RF 

         

0.813  

         

0.371  

         

0.579  

         

0.132  

         

0.736  

         

0.248  

192 LR 

         

0.759  

         

0.239  

         

0.717  

         

0.217  

         

0.788  

         

0.279  

192 CART 

         

0.649  

         

0.196  

         

0.516  

         

0.106  

         

0.596  

         

0.147  

192 GBM 

         

0.788  

         

0.290  

         

0.707  

         

0.213  

         

0.802  

         

0.305  

192 NN 

         

0.809  

         

0.317  

         

0.683  

         

0.187  

         

0.801  

         

0.308  

192 RF 

         

0.818  

         

0.391  

         

0.564  

         

0.126  

         

0.759  

         

0.287  

384 LR 

         

0.763  

         

0.248  

         

0.725  

         

0.224  

         

0.797  

         

0.296  

384 CART 

         

0.649  

         

0.195  

         

0.516  

         

0.106  

         

0.609  

         

0.157  

384 GBM 

         

0.790  

         

0.293  

         

0.707  

         

0.213  

         

0.807  

         

0.310  

384 NN 

         

0.806  

         

0.312  

         

0.653  

         

0.158  

         

0.781  

         

0.273  

384 RF 

         

0.816  

         

0.397  

         

0.554  

         

0.122  

         

0.767  

         

0.307  

 



 

 

 

67 

 

 

Figure 4.10. ROC AUC Performances on YELP NYC Dataset for NodeRep 

 

Figure 4.11. ROC AUC Performances on YELP NYC Dataset for DocRep  

96 192 384

LR 0.747 0.759 0.763

CART 0.647 0.649 0.649

GBM 0.783 0.788 0.790

NN 0.803 0.809 0.806

RF 0.813 0.818 0.816

0.747 
0.759 0.763 

0.647 0.649 0.649 

0.783 0.788 0.790 
0.803 0.809 0.806 
0.813 0.818 0.816 

 0.600

 0.650

 0.700

 0.750

 0.800

 0.850
A

U
C

NodeRep-YELPNYC

96 192 384

LR 0.711 0.717 0.725

CART 0.521 0.516 0.516

GBM 0.708 0.707 0.707

NN 0.702 0.683 0.653

RF 0.579 0.564 0.554

0.711 
0.717 

0.725 

0.521 0.516 0.516 

0.708 

0.707 0.707 
0.702 

0.683 

0.653 

0.579 
0.564 

0.554 

 0.500

 0.550

 0.600

 0.650

 0.700

 0.750

A
U

C

DocRep-YELPNYC



 

 

 

68 

 

 

Figure 4.12.  ROC AUC Performances on YELP NYC Dataset for SPR2EP 

 

Figure 4.13. AP Performances on YELP NYC Dataset for NodeRep 

96 192 384

LR 0.779 0.788 0.797

CART 0.583 0.596 0.609

GBM 0.797 0.802 0.807

NN 0.806 0.801 0.781

RF 0.736 0.759 0.767

0.779 0.788 

0.797 

0.583 
0.596 

0.609 

0.797 0.802 

0.807 
0.806 0.801 

0.781 

0.736 0.759 

0.767 

 0.550

 0.600

 0.650

 0.700

 0.750

 0.800

A
U

C

SPR2EP-YELPNYC

96 192 384

LR 0.228 0.239 0.248

CART 0.194 0.196 0.195

GBM 0.276 0.290 0.293

NN 0.314 0.317 0.312

RF 0.371 0.391 0.397

0.228 
0.239 

0.248 

0.194 0.196 0.195 

0.276 
0.290 0.293 

0.314 0.317 0.312 

0.371 

0.391 0.397 

 0.160

 0.210

 0.260

 0.310

 0.360

A
P

NodeRep-YELPNYC



 

 

 

69 

 

 

Figure 4.14. AP Performances on YELP NYC Dataset for DocRep 

 

Figure 4.15. AP Performances on YELP NYC Dataset for SPR2EP 

96 192 384

LR 0.209 0.217 0.224

CART 0.108 0.106 0.106

GBM 0.214 0.213 0.213

NN 0.209 0.187 0.158

RF 0.132 0.126 0.122

0.209 
0.217 

0.224 

0.108 0.106 0.106 

0.214 0.213 0.213 0.209 

0.187 

0.158 

0.132 
0.126 0.122 

 0.100

 0.120

 0.140

 0.160

 0.180

 0.200

 0.220

 0.240

A
P

DocRep-YELPNYC

96 192 384

LR 0.266 0.279 0.296

CART 0.138 0.147 0.157

GBM 0.300 0.305 0.310

NN 0.323 0.308 0.273

RF 0.248 0.287 0.307

0.266 
0.279 

0.296 

0.138 
0.147 

0.157 

0.300 0.305 
0.310 

0.323 0.308 

0.273 

0.248 

0.287 

0.307 

 0.120

 0.170

 0.220

 0.270

 0.320

A
P

SPR2EP-YELPNYC



 

 

 

70 

 

For ZIP Dataset, performances are given in Table 4.7 and the relations between 

performances are visualized in Figures 4.16, 4.17, 4.18, 4.19, 4.20 and 4.21. In ZIP 

Dataset, Decision Tree classifier gives a poor performance for 3 approaches obviously. 

Best performances for NodeRep, DocRep and SPR2EP are observed at RF, LR and 

NN, respectively. For the NodeRep, there is an increasing trend when feature size 

increases. Min ROC AUC performance changes between 0.686 and 0.86 where feature 

size is 96. This range is quite wide, and when we exclude CART performance due to 

the low performance, ROC AUC range changes between 0.781 and 0.86 for feature 

size 96 for NodeRep. All of the algorithms except CART shows ROC AUC 

performance above 0.78. It is possible to say that they show good performances in LR, 

NN, RF and GBM classifiers. Specifically, LR ROC AUC performance is 0.781 and 

NN, RF and GBM performances between 0.801 and 0.85 for the feature size of 96. As 

a conclusion, NN, RF and GBM performances show superior performance with 

respect to LR and CART in this feature size for NodeRep algorithm. This is also the 

case for other datasets. For different feature sizes, 192 and 384, ROC AUC 

performances (except CART performance) are between 0.784 and 0.856 and between 

0.789 and 0.86 respectively. It is observed that min and max ROC AUC performances 

don’t show any trend when feature size increases. Performances in different feature 

sizes are very close to each other for NodeRep. Average Precision is another 

performance measure, and its trend is compatible with ROC AUC performance. 

However, AP performance of RF is significantly higher than other algorithms for 

NodeRep. 

In DocRep for ZIP Dataset, CART shows significantly low performance. 

Additionally, CART and RF ROC AUC performances are below 0.70. This can be 

classified as poor performance. This behavior is also seen in CHI and NYC Datasets. 

DocRep LR and GBM performances are very close to each other, and they show better 

performances. NN performances show the same trend in ZIP Dataset when it is 

compared with NYC Dataset. When GBM performance is stable on different 

dimensions, there is a slight increase in LR performances. This is also similar to NYC 



 

 

 

71 

 

Dataset, but it is different than CHI Dataset. Average Precision results show the same 

behavior with ROC AUC. 

It can be concluded that RF and NN shows better performances for NodeRep in ZIP 

Dataset. NodeRep performances are better than DocRep performances. When the best 

ROC AUC performances of NodeRep are in 0.85-0.86 interval, the performance 

interval is 0.72-0.74 for DocRep. According to this comparison, it can be concluded 

that captured network information with NodeRep has more contribution than the 

captured review information with DocRep in the same feature sizes for ZIP dataset. 

The same behavior is observed in other datasets. 

In the last setting, SPR2EP augments NodeRep and DocRep features and comparisons 

amongst all three approaches are done in the same feature size for ZIP Dataset. CART 

performances of SPR2EP in ZIP Dataset are poor, like other approaches’ CART 

performances. CART performance behavior of SPR2EP is also similar to other 

datasets. For SPR2EP, all algorithms except CART show good performances which 

are between 0.79 and 0.83 in all feature size settings and LR and GBM performances 

are very close to each other. ROC AUC performance interval of SPR2EP are very 

close to the best performance intervals of NodeRep but quite lower than it. It shows 

better performance than DocRep.  

 

 

 

 

 

 

 

 



 

 

 

72 

 

Table 4.7. AP and AUC Performances of different classifiers for 3 dimensions on YELP ZIP Dataset 

     NodeRep   DocRep   SPR2EP  

Feature 

Dimension Classifier  AUC   AP   AUC   AP   AUC   AP  

96 LR 

         

0.781  

         

0.339  

         

0.721  

         

0.280  

         

0.803  

         

0.373  

96 CART 

         

0.685  

         

0.273  

         

0.526  

         

0.140  

         

0.628  

         

0.208  

96 GBM 

         

0.801  

         

0.362  

         

0.712  

         

0.269  

         

0.811  

         

0.379  

96 NN 

         

0.822  

         

0.408  

         

0.731  

         

0.293  

         

0.831  

         

0.422  

96 RF 

         

0.850  

         

0.475  

         

0.591  

         

0.173  

         

0.797  

         

0.362  

192 LR 

         

0.784  

         

0.342  

         

0.727  

         

0.289  

         

0.809  

         

0.382  

192 CART 

         

0.681  

         

0.268  

         

0.522  

         

0.139  

         

0.646  

         

0.226  

192 GBM 

         

0.804  

         

0.364  

         

0.712  

         

0.266  

         

0.813  

         

0.380  

192 NN 

         

0.827  

         

0.415  

         

0.717  

         

0.275  

         

0.828  

         

0.414  

192 RF 

         

0.856  

         

0.493  

         

0.575  

         

0.165  

         

0.817  

         

0.404  

384 LR 

         

0.789  

         

0.347  

         

0.734  

         

0.296  

         

0.811  

         

0.387  

384 CART 

         

0.690  

         

0.280  

         

0.520  

         

0.138  

         

0.644  

         

0.224  

384 GBM 

         

0.805  

         

0.368  

         

0.710  

         

0.263  

         

0.815  

         

0.380  

384 NN 

         

0.825  

         

0.408  

         

0.688  

         

0.238  

         

0.814  

         

0.383  

384 RF 

         

0.860  

         

0.506  

         

0.566  

         

0.160  

         

0.821  

         

0.419  

 



 

 

 

73 

 

 

Figure 4.16. ROC AUC Performances on YELP ZIP Dataset for NodeRep 

 

Figure 4.17. ROC AUC Performances on YELP ZIP Dataset for DocRep 

96 192 384

LR 0.781 0.784 0.789

CART 0.685 0.681 0.690

GBM 0.801 0.804 0.805

NN 0.822 0.827 0.825

RF 0.850 0.856 0.860

0.781 0.784 0.789 

0.685 0.681 
0.690 

0.801 0.804 0.805 

0.822 0.827 0.825 

0.850 
0.856 0.860 

 0.650

 0.700

 0.750

 0.800

 0.850
A

U
C

NodeRep-YELPZIP

96 192 384

LR 0.721 0.727 0.734

CART 0.526 0.522 0.520

GBM 0.712 0.712 0.710

NN 0.731 0.717 0.688

RF 0.591 0.575 0.566

0.721 
0.727 0.734 

0.526 0.522 0.520 

0.712 0.712 

0.710 

…

0.717 

0.688 

0.591 

0.575 
0.566 

 0.500

 0.550

 0.600

 0.650

 0.700

 0.750

A
U

C

DocRep-YELPZIP



 

 

 

74 

 

 

Figure 4.18. ROC AUC Performances on YELP ZIP Dataset for SPR2EP 

 

Figure 4.19. AP Performances on YELP ZIP Dataset for NodeRep 

96 192 384

LR 0.803 0.809 0.811

CART 0.628 0.646 0.644

GBM 0.811 0.813 0.815

NN 0.831 0.828 0.814

RF 0.797 0.817 0.821

0.803 

0.809 

0.811 

0.628 

0.646 0.644 

0.811 

0.813 

0.815 
0.831 0.828 

0.814 

0.797 

0.817 

0.821 

 0.620

 0.670

 0.720

 0.770

 0.820

A
U

C

SPR2EP-YELPZIP

96 192 384

LR 0.339 0.342 0.347

CART 0.273 0.268 0.280

GBM 0.362 0.364 0.368

NN 0.408 0.415 0.408

RF 0.475 0.493 0.506

0.339 0.342 0.347 

0.273 0.268 
0.280 

0.362 0.364 0.368 

0.408 0.415 0.408 

0.475 
0.493 

0.506 

 0.200

 0.250

 0.300

 0.350

 0.400

 0.450

 0.500

A
P

NodeRep-YELPZIP



 

 

 

75 

 

 

Figure 4.20. AP Performances on YELP ZIP Dataset for DocRep 

 

Figure 4.21. AP Performances on YELP ZIP Dataset for SPR2EP 

96 192 384

LR 28.0% 28.9% 29.6%

CART 14.0% 13.9% 13.8%

GBM 26.9% 26.6% 26.3%

NN 29.3% 27.5% 23.8%

RF 17.3% 16.5% 16.0%

28.0%
28.9%

29.6%

14.0% 13.9% 13.8%

26.9% 26.6% 26.3%

29.3%

27.5%

23.8%

17.3%
16.5% 16.0%

10.0%

15.0%

20.0%

25.0%

30.0%
A

P

DocRep-YELPZIP

96 192 384

LR 37.3% 38.2% 38.7%

CART 20.8% 22.6% 22.4%

GBM 37.9% 38.0% 38.0%

NN 42.2% 41.4% 38.3%

RF 36.2% 40.4% 41.9%

37.3%

38.2%

38.7%

20.8%

22.6% 22.4%

37.9%

38.0%

38.0%

42.2%
41.4%

38.3%

36.2%

40.4%

41.9%

20.0%

25.0%

30.0%

35.0%

40.0%

A
P

SPR2EP-YELPZIP



 

 

 

76 

 

As a conclusion of all comparisons, there are some highlights on the performances. 

CART performances of all algorithms are very poor. DocRep shows the lowest 

performances amongst the three approaches. NodeRep and SPR2EP performances are 

close to each other. It is observed that SPR2EP shows better performance than 

NodeRep performance in CHI Dataset. In NYC and ZIP Datasets, NodeRep 

performances are quite better than SPR2EP algorithm. However, it can be concluded 

that SPR2EP and NodeRep show performances which are close to each other. For all 

algorithms and datasets, LR performances are increases with the feature sizes. RF 

algorithm can be selected as the best performing algorithm for NodeRep based on the 

performances on three different datasets. Similarly, LR for DocRep and NN for 

SPR2EP show the best performances. Increasing feature size does not have a 

significant effect on the performances.  

 

 



 

 

 

77 

 

CHAPTER 5  

 

5. CONCLUSION AND FUTURE WORK 

In this study, a comprehensive comparison of spam review detection approaches is 

performed by taking into account the reviewer-product network together with review 

texts. In this respect, low-dimensional dense feature vectors are automatically learned 

without applying any hand-crafted feature engineering effort in an unsupervised 

manner. Then, these are used to build various binary classification models to 

distinguish spam reviews from authentic ones. 

In the network-only approach, only the learned network embeddings are used as input 

features whereas in the review-only approach, only the features learned for the review 

texts are used in building respective spam review detection classifiers. 

Three processes constitute the last approach, a semi-supervised learning framework 

named SPR2EP, where first two processes create node embeddings from the network 

data, and document embeddings from the reviews’ textual data which can be run 

independently in parallel. The last process integrates the embeddings learned in the 

previous steps by concatenating them into feature vectors for the reviews, and uses 

them to train a classifier.  

In order to investigate the effectiveness of utilizing the information extracted from the 

review text and the underlying network structure, we built binary classification models 

for each approach with varying embedding sizes and different classification 

algorithms. Then, we compare their performances against each other and the existing 

techniques proposed in the literature, as well.  

Accordingly, the first model, DocRep, is built by using review embeddings learned by 

using only review texts. The second model, NodeRep, is created by using reviewer 

and product embeddings learned from the underlying reviewer-product network 

structure. And the last one, SPR2EP, is built by utilizing combined feature vectors of 



 

 

 

78 

 

the reviews which are obtained by concatenating the embeddings learned for review 

text, reviewer and product.  

All three models are built using five different classification methods and for three 

different feature dimensions and comparisons are made by considering AP, average 

precision and AUC, area under the ROC curve performance measures obtained via 

10-fold cross-validation. 

The experimental results show that the detection model that is built by utilizing the 

combined feature vectors, SPR2EP, achieves the best performance, with AUC values 

of 0.890, for CHI Dataset. On the other hand, models generated with only utilizing the 

node embeddings, NodeRep, achieved the best performance for NYC and ZIP datasets 

with AUC values of 0.816 and 0.860, respectively. Although the best performing 

models are SPR2EP for CHI Dataset and NodeRep for the other datasets, their 

performances are very close to each other. 

The huge gap between the performances of DocRep approach and the other two 

approaches provides an evidence for the effectiveness of utilizing underlying network 

structure in spam review detection. So, this observation implies that bringing the 

features extracted from network and textual data together and utilizing them in 

creating a machine learning model would exhibit improved spam detection capability 

if the network size is small. Otherwise, one should exploit the information contained 

in the underlying network structure which happens to be more valuable than the one 

obtained from textual content.  

To conclude, our results show the fact that NodeRep and SPR2EP methods are 

superior to the previously proposed state-of-the-art techniques and can be efficiently 

used for spam review detection. 

Incorporating the time dimension into the representation generation framework can be 

considered as a future work. Besides, the use of deep neural network architectures can 

also be investigated for designing an end to end spam review detection framework 

which incorporates more powerful representations of spam reviews extracted from 



 

 

 

79 

 

raw review texts and underlying reviewer-product network structure into 

distinguishing of the spam reviews from the legitimate ones. Additionally, the effect 

of data and network size to the performance can be investigated with a different 

experiment setting on ZIP Dataset which is the biggest dataset that we used in our 

experiment in this work. It can be divided into the increasing size of bins. Reviews 

can be sampled randomly with different sizes, and the effect of increasing data size on 

the performance of NodeRep, DocRep and SPR2REP approaches can be analyzed. 

 





 

 

 

81 

 

 

 

REFERENCES 

 

[1] M. Team, "70% of Americans seek out opinions before purchasing", Mintel, 

(2018). [Online]. Available: http://www.mintel.com/press-centre/social-and-

lifestyle/seven-in-10-americans-seek-out-opinions-before-making-purchases. 

[Accessed: 08- Apr- 2018]. 

[2] "Yelp", Yelp, (2018). [Online]. Available: https://www.yelp.com. [Accessed: 

08- Apr- 2018]. 

[3] N. Jindal, B. Liu, Analyzing and detecting review spam, Seventh IEEE 

International Conference on Data Mining (ICDM 2007), IEEE, (2007), 547–

552. doi: 10.1109/icdm.2007.68. 

[4] M. Crawford, T. M. Khoshgoftaar, J. D. Prusa, A. N. Richter, and H. Al 

Najada, Survey of review spam detection using machine learning techniques, 

Journal of Big Data 2 (1), (2015), 23. doi: 10.1186/s40537-015-0029-9. 

[5] N. Jindal, B. Liu, Opinion spam and analysis, Proceedings of the 2008 

International Conference on Web Search and Data Mining, ACM, (2008), 

219–230. doi: 10.1145/1341531.1341560. 

[6] F. Li, M. Huang, Y. Yang, and X. Zhu, Learning to identify review spam, 

IJCAI Proceedings International Joint Conference on Artificial Intelligence 

22, (2011), 2488. 

[7] M. Ott, Y. Choi, C. Cardie, and J. T. Hancock, Finding deceptive opinion spam 

by any stretch of the imagination, Proceedings of the 49th Annual Meeting of 

the Association for Computational Linguistics:    Human Language 

Technologies 1, Association for Computational Linguistics, (2011), 309–319. 

[8] S. Feng, R. Banerjee, and Y. Choi, Syntactic stylometry for deception 

detection, Proceedings of the 50th Annual Meeting of the Association for 

https://doi.org/10.1145/1341531.1341560


 

 

 

82 

 

Computational Linguistics: Short Papers 2, Association for Computational 

Linguistics, (2012), 171–175. 

[9] G. Wang, S. Xie, B. Liu, and S. Y. Philip, Review graph based online store 

review spammer detection, 2011 IEEE 11th international conference on Data 

Mining, IEEE, (2011), 1242– 1247. doi: 10.1109/ICDM.2011.124. 

[10] H. Li, A. Mukherjee, B. Liu, R. Kornfield, and S. Emery, Detecting 

campaign promoters on twitter using markov random fields, 2014 IEEE 

International Conference on Data Mining, IEEE, (2014), 290–299. doi: 

10.1109/ICDM.2014.59. 

[11] Q. Le, T. Mikolov, Distributed representations of sentences and 

documents, Proceedings of the 31st International Conference on Machine 

Learning (ICML-14), (2014), 1188– 1196. 

[12] A. Grover, J. Leskovec, Node2vec: Scalable feature learning for 

networks, Proceedings of the 22nd ACM SIGKDD international conference 

on Knowledge discovery and data mining, ACM, (2016), 855–864. doi: 

10.1145/2939672.2939754. 

[13] E.P. Lim, V.A. Nguyen, N. Jindal, B. Liu, and H. W. Lauw, Detecting 

product review spammers using rating behaviors, Proceedings of the 19th 

ACM international conference on Information and knowledge management, 

ACM, (2010), 939–948. doi: 10.1145/1871437.1871557. 

[14] KB. Sathees, RA Karthika, Survey on text mining process and 

techniques, International Journal of Advanced Research in Computer 

Engineering & Technology, (2014) Jul, 2279-2284. 

[15] R.A. Saravanan, MR. Babu Text Mining Techniques and Its 

Applications: A Survey, International Journal of Computer Science and 

Technology. (2017) Sep, 33-35. 

[16] Y. Bengio, R. Ducharme, P. Vincent, and C. Jauvin, A neural 

probabilistic language model, Journal of machine learning research 3 (Feb), 

2003, 1137–1155. 

https://doi.org/10.1109/ICDM.2011.124
https://doi.org/10.1109/ICDM.2014.59
https://doi.org/10.1145/2939672.2939754
https://doi.org/10.1145/1871437.1871557


 

 

 

83 

 

[17] T. Mikolov, K. Chen, G. Corrado, and J. Dean, Efficient estimation of 

word representations in vector space, arXiv preprint arXiv:1301.3781, (2013). 

[18] J. Pennington, R. Socher, and C. Manning, Glove: Global vectors for 

word representation, Proceedings of the 2014 conference on empirical 

methods in natural language processing (EMNLP), (2014), 1532–1543. doi: 

10.3115/v1/D14-1162. 

[19] M. Baroni, G. Dinu, and G. Kruszewski, Don’t count, predict! a 

systematic comparison of context-counting vs. context-predicting semantic 

vectors, ACL (1), (2014), 238–247. doi: 10.3115/v1/P14-1023. 

[20] I.J. Unanue, E.Z. Borzeshi, and M. Piccardi, M, Recurrent neural 

networks with specialized word embeddings for health-domain named-entity 

recognition, Journal of biomedical informatics, 76, (2017) 102-109. doi: 

10.1016/j.jbi.2017.11.007. 

[21] S. Hochreiter, J. Schmidhuber, Long short-term memory, Neural 

computation 9(8), (1997), 1735-1780. doi: 10.1162/neco.1997.9.8.1735. 

[22] C. dos Santos, M.Gatti, Deep convolutional neural networks for 

sentiment analysis of short texts, Proceedings of COLING 2014, the 25th 

International Conference on Computational Linguistics: Technical Papers, 

(2014), 69-78. doi: 10.1109/ICCAR.2017.7942788. 

[23] A. Bharati, K. V. C. Kamisetty, and R. S. S. Bendre, A document space 

model for automated text classification based on frequency distribution across 

categories, International Institute of Information Technology technical report, 

(2002). 

[24] M. Gasparini, Community Analysis Using Graph Representation 

Learning on Social Networks, Politecnico do Milano, (2017). 

[25] M. Belkin, P. Niyogi, Laplacian eigenmaps and spectral techniques for 

embedding and clustering, Advances in neural information processing 

systems, (2002), 585–591. 

https://doi.org/10.1016/j.jbi.2017.11.007


 

 

 

84 

 

[26] S. T. Roweis, L. K. Saul, Nonlinear dimensionality reduction by locally 

linear embedding, science 290 (5500), (2000), 2323–2326. doi: 

10.1126/science.290.5500.2323. 

[27] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, Line: Large-

scale information network embedding, Proceedings of the 24th International 

Conference on World Wide Web, International World Wide Web Conferences 

Steering Committee, (2015), 1067–1077. doi: 10.1145/2736277.2741093. 

[28] B. Perozzi, R. Al-Rfou, and S. Skiena, Deepwalk: Online learning of 

social representations, Proceedings of the 20th ACM SIGKDD international 

conference on Knowledge discovery and data mining, ACM, (2014), 701–710. 

doi: 10.1145/2623330.2623732. 

[29] E.P. Lim, V.A. Nguyen, N. Jindal, B. Liu, and H. W. Lauw, Detecting 

product review spammers using rating behaviors, Proceedings of the 19th 

ACM international conference on Information and knowledge management, 

ACM, (2010), 939–948. doi: 10.1145/1871437.1871557. 

[30] K.H. Yoo, U. Gretzel, Comparison of deceptive and truthful travel 

reviews, Information and communication technologies in tourism 2009, 

(2009), 37–47. 

[31] A. Mukherjee, V. Venkataraman, B. Liu, and N. S. Glance, What yelp 

fake review filter might be doing?, ICWSM, (2013), 409-418. 

[32] G. Fei, A. Mukherjee, B. Liu, M. Hsu, M. Castellanos, and R. Ghosh, 

Exploiting burstiness in re-views for review spammer detection, ICWSM 13, 

(2013), 175–184. 

[33] L.C. Cheng, J. C. Tseng, and T.-Y. Chung, Case study of fake web 

reviews, Proceedings of the 2017 IEEE/ACM International Conference on 

Advances in Social Networks Analysis and Mining 2017, ACM, (2017), 706–

709. doi: 10.1145/3110025.3110119. 

[34] S. Y. Bhat, M. Abulaish, Community-based features for identifying 

spammers in online social networks, Advances in Social Networks Analysis 

https://doi.org/10.1145/1871437.1871557


 

 

 

85 

 

and Mining (ASONAM), 2013 IEEE/ACM International Conference, (2013), 

100-107. doi: 10.1145/2492517.2492567. 

[35] S. Rayana, L. Akoglu, Collective opinion spam detection: Bridging 

review networks and metadata, Proceedings of the 21th acm sigkdd 

international conference on knowledge discovery and data mining, ACM, 

(2015), 985–994. doi: 10.1145/2783258.2783370. 

[36] C. M. Yilmaz and A. O. Durahim, SPR2EP: A Semi-Supervised Spam 

Review Detection Framework, 2018 IEEE/ACM International Conference on 

Advances in Social Networks Analysis and Mining (ASONAM), Barcelona, 

Spain, (2018), 306-313. doi: 10.1109/ASONAM.2018.8508314. 

[37] N. Torosyan, Application of binary logistic regression in credit scoring, 

University of Tartu, (2017). 

[38] JR. Quinlan, Simplifying decision trees, International journal of man-

machine studies. 1987 Sep 1;27(3):221-34. 

[39] L. Breiman, J. H. Friedman, R. A. Olshen,, and C. J. Stone,  

Classification and Regression Trees, Chapman & Hall/CRC, (1984). 

[40] XL. Li, editor, Biological data mining in protein interaction networks, 

Igi Global, (2009 May 31). 

[41] Hastie, T., Tibshirani, R., Friedman, J., The elements of statistical 

learning: data mining, inference and prediction, Springer, (2009). 

[42] R.John, L.,Townshend, Ensembling Models, CS229 Lecture notes, 

Standford University 

[43] F.  Rosenblatt, Principles of Neurodynamics: Perceptrons and the 

Theory of Brain Mechanisms. Spartan Books, Washington DC, (1961). 

[44] S. Renals, Multi-Layer Neural Networks, Teaching Courses, 

University of Edinburg, (2014). 

[45] T. Fawcett T, An introduction to ROC analysis, Pattern recognition 

letters, (2006);27(8):861-74. 

[46] M., Zhu,  Recall, Precision and Average Precision, Teaching Courses, 

University of Waterloo,  (2004). 



 

 

 

86 

 

 



 

 

 

87 

 

 


