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ABSTRACT 

 

PREDICTING ACTUAL LOAD DEMAND IN DISTRIBUTION SYSTEMS 

WITH HIGH PV PENETRATION 

 

Yıldız, Ufuk 

Master of Science, Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Murat Göl 

 

September 2019, 74 pages 

 

Because of the increasing environmental concerns, governmental incentives and 

developing photovoltaic (PV) technology, PV systems have become increasingly 

popular in recent years. Despite the environmental and economic benefits of PV 

systems, installation of high number of PV systems brings new challenges in power 

system operation and management. Due to high number of PV systems at low voltage 

distribution systems and the computational load of communication and data analysis, 

the amount of power generated by these systems cannot be monitored. Therefore, it 

creates operational difficulties for the supply and demand balance for power system 

operators.  

The load demand estimation methods currently used by the electricity grid operators 

cannot provide enough performance for systems with high number of PV systems. The 

main reason for this is that although the demand for load depends on social and 

economic conditions, solar energy production varies depending on geographical and 

climatic conditions. In order to provide better results, the generation data of each PV 

system should be obtained. As can be expected, monitoring all PV systems 

individually will be very costly. 
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This thesis aims to predict actual load demand in distribution systems with high PV 

penetration by predicting total solar power generation. The proposed method uses a 

small number of measurements and probabilistic knowledge on cloudiness over a city.  

Numerical simulations for the methodology are provided based on measurements 

taken from several points in Ankara, Turkey. Numerical results prove that the 

accuracy of the proposed methods for the actual load demand prediction is getting 

better when total solar power generation is predicted by methodology stated in this 

thesis. 

 

Keywords: Photovoltaic System, PV Generation Prediction, Actual Load Demand, 

Load Demand Prediction, Kalman Filter  
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ÖZ 

 

ALÇAK GERİLİM GÜNEŞ ENERJİSİ SİSTEMLERİNİN VARLIĞINDA 

YÜK TALEP TAHMİNİ 

 

Yıldız, Ufuk 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği 

Tez Danışmanı: Doç. Dr. Murat Göl 

 

Eylül 2019, 74 sayfa 

 

Artan çevresel kaygılar, devletin verdiği teşvikler ve gelişmekte olan fotovoltaik (PV) 

teknolojisi ile birlikte elektrik sistemlerindeki PV sistemler son yıllarda giderek daha 

popüler hale gelmiştir. PV sistemlerin çevresel ve ekonomik faydalarına rağmen çok 

sayıda PV sisteminin kurulması elektrik dağıtım şebekelerinin işletimi ve yönetiminde 

yeni zorluklar doğurmaktadır. Alçak gerilim dağıtım sistemlerinde güneş enerjisi 

sistemlerinin sayılarının fazlalığı ve iletişim ile veri analizinin hesapsal yükünden 

dolayı, bu sistemlerde üretilen enerji miktarı izlenememektedir. Dolayısıyla elektrik 

şebekesi operatörleri için arz talep dengesinin sağlanması adına operasyonel zorluklar 

yaratmaktadır. 

Hali hazırda elektrik şebekesi tarafından kullanılan yük talep tahmin metotları alçak 

gerilim güneş enerjisi üretiminin fazla olduğu sistemler için yeterli performansı 

gösterememektedir. Bu yetersizliğin başlıca sebebi yük talebinin sosyal ve ekonomik 

koşullara bağlı olmasına rağmen, güneş enerjisi üretiminin coğrafi ve iklimsel 

koşullara bağlı olarak değişmesidir. Kullanılan metotların daha iyi sonuç verebilmesi 

için her güneş enerjisi panelinin üretim verisinin alınması gerekmektedir. Tahmin 

edilebileceği gibi bu çözüm oldukça maliyetlidir.  
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Bu çalışma kapsamında az miktarda farklı yerden alınan gerçek zamanlı ölçümler ile 

alçak gerilim güneş enerji panellerinin bölgesel üretimleri için matematiksel modeller 

oluşturulup tahminler yapılarak doğruluk oranı daha yüksek yük talep tahminlerinin 

elde edilmesi amaçlanmaktadır.  

Sayısal sonuçlar Türkiye’nin Ankara ilinin birkaç noktasından alınan ölçümlere 

dayanarak elde edilmiştir. Elde edilen sonuçlar toplam güneş enerjisi üretimi için bu 

tezde belirtilen metot ile tahmin yapıldığında gerçek yük talep tahmini için önerilen 

yöntemlerin doğruluğunun arttığını kanıtlamaktadır. 

 

Anahtar Kelimeler: Fotovoltaik Sistem, PV Üretim Tahmini, Gerçek Yük Talebi, Yük 

Talep Tahmini, Kalman Filtresi 
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CHAPTER 1  

 

1. INTRODUCTION 

 

The importance given to renewable energy sources and as a result of this, the 

contribution of power generation by renewable energy, particularly PV systems, to 

electricity supply is constantly increasing day by day over the world as can be seen in 

Fig. 1-1 thanks to the increasing environmental concerns, governmental incentives and 

the decreasing cost of PV systems with technical improvements. 

 

Figure 1-1. Renewable Power Generation and Capacity as a Share of Global Power 

2008-2018 [1] 

The rate of current solar developments is continuously increasing. As an important 

milestone, grid-connected solar power capacity reached 100 GW in 2016. In 2017, 

total of 99.1 GW of grid-connected PV systems were installed which was almost 30% 
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over the year-on-year growth of previous year as shown in Fig. 1-2 [1]. Also, that was 

almost equal to total capacity the world had in 2012.   

 

Figure 1-2. Evaluation of Global Annual Solar PV Installed Capacity 2000-2018 [1] 

Accordingly, total global solar power capacity broke the 400 GW threshold in 2017 

after it exceeded the 300 GW level in 2016 and the 200 GW level in 2015. In 2018, 

annual installation of solar power passed 100 GW level and total global solar power 

capacity reached 500 GWp or 0.5 TWp as shown in Fig. 1-3 [1]. 

 

Figure 1-3. Global Total Solar PV Installed Capacity 2000-2018 [1] 
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The increase in solar power capacity is a consequence of the significant decrease in 

the cost of PV modules which continues to decrease as shown in Fig. 1-4 [1]. In 

February 2018, the lowest solar power price was recorded as a new world record with 

2.34 US cents/kWh in Saudi Arabia [1]. 

 

Figure 1-4. Solar Electricity Generation Cost in Comparison with Other Power 

Resources 2009-2018 [1] 

In addition to its environmental and economic benefits, the installation of large amount 

of PV systems injects additional uncertainties in power system operation for utilities 

and system operators. One of the important effects of high penetration of PV systems 

is that forecast of electricity demand becomes less reliable. Electricity demand 

forecasting area is quite mature in the literature. Although the theories are well-

developed, all of those methods require proper sets of data. The distribution system 

operators have been collecting electricity demand data however, measurements are 

only available at the HV/MV transformer substation. As the number of low voltage 

PV systems increases, the collected data become related to the net demand rather than 

actual demand. Fig. 1-5 shows the change in daily load curve with PV integration for 

fair and cloudy days. The area represented by blue color indicates net power demand 

from the grid and the area represented by yellow color indicates the power demand 

met by solar power generated by PV systems. 
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(a) Daily Load Profile without PV Integration 

          

(b) Daily Load Profile with PV Integration for a Fair Day 
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(c) Daily Load Profile with PV Integration for a Cloudy Day 

Figure 1-5. Daily Load Profiles 

In order to maintain proper system operation, actual demand should be known. 

Especially day-ahead decisions on market and system operation requires actual 

demand forecast of the upcoming day. Considering that the electricity demand 

characteristic is almost independent of solar power generation, as demand is affected 

mostly by the socio-economic and human factors while solar power generation is 

related to weather conditions, forecast of the actual demand becomes cumbersome as 

the PV systems populate. In order to forecast the actual demand, net electricity demand 

and solar power generation should be forecasted separately. However, an exact 

determination of the total solar power generation is not possible in today’s distribution 

systems. Building an infrastructure to monitor, collect, archive and manage solar 

power generation data for every small-scale low voltage PV system would be very 

costly and computationally expensive. Even if there are methods for forecasting solar 

power generation, they rely on the weather forecast [2-4]. Although the weather 

forecasts have low resolution, because of the uncertainty in the cloudiness, pretty 

accurate forecasts can be performed for centralized PV systems connected to medium 
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voltage or high voltage power systems. However, because of the small sizes of the 

roof-top systems, the forecast accuracy drops for low voltage PV systems. Note that, 

effect of a single roof-top system is negligible however, in cities with high roof-top 

PV penetration, this decreased accuracy will end up with a significant uncertainty of 

power generation amount. Even if the ground-mounted PV systems are dominant in 

the solar market, rooftop PV systems have a great potential in the mid- to long-term 

as shown in Fig. 1-6. 

 

Figure 1-6. Scenarios for Solar PV Rooftop Development 2019-2023 [1] 

This thesis proposes a method to predict actual load demand based on the prediction 

of the total solar power generation at a certain geographic area with a small number 

of monitored PV systems in order to improve situational awareness and provide an 

actual demand data with reduced bias. 

1.1. Literature Review 

In this section, literature reviews on total PV generation prediction and actual load 

demand prediction methods are provided. 
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1.1.1. Literature Review of Total PV Generation Prediction 

Installation of PV system can be ground-mount or roof-top. Even if the ground-

mounted PV systems constitutes higher fraction of the total PV systems installed, 

number of roof-top PV systems has already reached significant amount, and it is 

expected to increase further in the near future as can be seen in Fig. 1-6. Roof-top PV 

systems are normally located behind-the-meter (BTM) and invisible to system 

operators. BTM PV system is a PV system that generates power in order to use at the 

building that the system is installed, and its generation is not monitored and not known 

by the system operators. This unknown power generation brings new challenges to 

power system operation, and hence researchers started to pay attention to predicting 

BTM solar power generation. Although PV generation forecasting area is quite mature 

and several papers were published to review existing studies [2-5], the literature on 

predicting BTM solar power generation is still very limited.  

In [6], a data-driven method based on dimension reduction and mapping functions is 

proposed to estimate the power generation of BTM PV by using a small number of 

representative PV systems and assuming the capacities of PV systems are already 

known. Proposed methodology is composed of four stages. In first stage, solar power 

generation data and any other available information are collected from the available 

sites within the area of interest over a limited time. In second stage, data dimension 

reduction is applied in order to obtain smaller subset of available information that 

represents same as all information acquired in first stage and get rid of unnecessary 

information. In third stage, mapping function is built that maps the total power 

generation from all PV systems to the information from subset of available 

information which are obtained in previous stage. Finally, the generation from all PV 

systems are predicted by using subset of information which is decided in second stage 

and mapping function built in third stage. Shaker et al. implemented five data 

dimension reduction techniques, namely, Principal Component Analysis (PCA), k-

means Clustering, a proposed hybrid k-means+PCA approach, Relief, and 

Correlation-based Feature Selection (CFS) and four mapping functions, namely, 
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Linear Regression, Kalman Filter, Multi-Layer Perceptrons (MLP) and Wavelet 

Neural Networks (WNM). The methodology was evaluated using the PV generation 

data of California’s power system with a total of 405 sites. The results showed that 

accuracy changes according to both data dimension reduction technique and mapping 

function employed, and they were provided with daily root mean squared error 

(DRMSE). Hybrid k-means + PCA approach with Linear Regression gave best 

prediction with DRMSE between 553kW and 65kW and representative PV systems 

between 2 and 30. When number of representative PV systems increases, the accuracy 

is getting better and DRMSE decreases for all techniques as expected.   

In [7], the methodology is proposed based on the work in [6] by the same researchers. 

Previous work is improved by adding new features. In this work, uncertainty 

associated with the predicted power generation is also provided. This model does not 

need the historical information unlike in [6]. Since the model updates parameters 

continuously, it can easily adopt the future growth of capacity of BTM PV systems. 

Also, it relies on data from a limited number of sites. The methodology starts with 

selecting subset of PV systems within the specified sub-regions. The fuzzy numbers 

associated with each sub-region are developed by using information acquired from 

selected PV systems. Then, a small number of representative PV systems are chosen, 

and their real time power generation is used as the inputs of the model. Finally, the 

model calculates a fuzzy number associated with the real time power generation from 

all the PV systems within the region based on the existing BTM PV capacity of each 

sub-region. In this work, no numerical result was given for model accuracy. 

1.1.2. Literature Review of Actual Load Demand Prediction 

A large number of methods for load demand forecasting have been proposed in 

literature. They can be categorized into statistical methods and artificial intelligence 

methods. Mostly used statistical methods are linear regression [8-10], multiple linear 

regression [11,12], autoregressive moving average methods (ARMA) [13], 

autoregressive integrated moving average methods (ARIMA) [14], exponential 
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smoothing [15,16] and Kalman filter [17]. Some of frequently used artificial 

intelligence methods are artificial neural networks (ANN) [18-20], support vector 

machine (SVM) [21-23], genetic algorithm [24] and fuzzy logic [25]. 

These methods forecast the net load demand, rather than the actual load demand. In 

recent years, researchers started to devote more efforts to forecast actual load demand. 

In [26], A. Kaur et al. aims to obtain actual load forecasting methodology for micro 

grids with high PV penetration. They implemented methodology in two different 

approach such that integrated and additive model. Solar power is forecasted based on 

clear sky model and load demand is forecasted by using different methods namely, 

autoregressive model, autoregressive model with exogenous input and support vector 

regression (SVR). For additive actual load forecasting, solar power and load demand 

are forecasted individually and then combined at the end. On the other hand, for 

integrated net load forecasting, where the solar power forecast is used as one of the 

input parameters for the load forecast model. The results showed that integrated model 

gives better results than additive model in terms of all error metrics. 

In [27], classical neural network-based model is implemented to analyze impact the 

penetration of PV systems on load forecasting. They proposed the power penetration 

index that represent the amount of the penetration of PV systems to the distribution 

system. They have trained their model for different amount of PV penetration by 

changing power penetration index and obtained load forecasting results. They stated 

that proposed method is effective in improving the accuracy for load forecasting. 

In [28], probabilistic actual load demand forecasting method was proposed 

considering a high BTM PV penetration. The idea of the proposed method is to extract 

the PV generation from the net load demand and then to forecast the actual load 

demand more accurate. 
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1.2. Thesis Outline 

This thesis consists of five chapters. In the first chapter, motivation for this thesis is 

introduced. The reasons and effects of the high PV penetration to electricity grid in 

the world is discussed.  

Chapter 2 provides a detailed description of photovoltaic effect, solar irradiance, PV 

cells, modules, arrays, systems and types of PV systems. The story of photovoltaics, 

how it all began and concept of it are explained. Solar irradiance which is the main 

source of photovoltaic effect and PV generation are examined. Also, what is PV cell 

and what is difference between cell, module, array and system are described, and types 

of PV systems are added. Additionally, bivariate normal distribution which will be the 

algorithm for predicting BTM PV generation is explained. Finally, Kalman filtering 

that will be used for prediction actual load demand is also summarized. 

Chapter 3 introduces the proposed methods. First, the proposed method to predict total 

solar power generated by BTM PV systems in considered area is explained. Then, the 

proposed method to predict actual load demand that takes BTM solar power 

generation into consideration is presented.  

Chapter 4 focuses on the tests which are done to evaluate proposed methods. Method 

proposed for prediction of total solar power generated in considered area is tested 

individually based on the solar radiation data collected in the city of Ankara, Turkey. 

Method proposed for the prediction of actual load demand is demonstrated on IEEE 

33 Bus Distribution network by using the system data and the solar radiation data 

collected to evaluate the proposed method.  

Chapter 5 summarizes the main contributions achieved throughout the thesis studies 

and possible future works. 
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CHAPTER 2  

 

2. BACKGROUND REVIEW 

 

This chapter introduces the technical background, which will conduce the reader 

understand the presented study. Firstly, PV systems will be explained. Then, impacts 

of high PV penetration on distribution system will be provided. Finally, basics of 

bivariate normal distribution and Kalman filtering will be introduced. 

2.1. PV Systems 

PV system is a power system designed to convert light energy directly into electricity. 

It is a clean, quiet and reliable way of generating electricity. Since the source of light 

is usually the sun, they are also called solar power systems. A summary of related 

topics to PV systems is provided next. 

2.1.1. Photovoltaic Effect 

The photovoltaic effect is the basic physical process of creation of electric current in 

a material when it is exposed to light. Sunlight consists of photons, and these photons 

contain different amounts of energies. When photons strike a PV cell, they may be 

reflected or absorbed. The energy of absorbed photon is transferred to an electron in 

an atom of the material. Electron can escape from its normal position to become part 

of the current in an electrical circuit with its newfound energy [29]. It is demonstrated 

in Fig. 2-1. 
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Figure 2-1. Photovoltaic Effect 

The photovoltaic effect was first described in 1839 by French physicist Edmond 

Becquerel. He found that certain materials would produce small amount of electric 

current when exposed to light. He placed two coated platinum electrodes in a container 

with an electrolyte and observed the current flowing between them when exposed to 

light [29]. Becquerel’s experiment can be illustrated as in Fig. 2-2. 

 

Figure 2-2. Illustration of Becquerel’s experiment [30] 

The next significant photovoltaic development was observation of William Adams 

and Richard Evans Day. They found out that a selenium rod provided with platinum 

electrodes can produce electrical energy when it is exposed to light. This is the first 
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time for that it was proven that a solid body can directly convert light energy into 

electrical energy [30]. 

 

Figure 2-3. Sample geometry used by Adams and Day [30] 

Major improvements for commercializing PV was taken in the 1940s and early 1950s 

after the Czochralski developed a process for producing highly pure crystalline silicon. 

This greatly increases the efficiency of silicon-based cells. In 1954, the first viable 

silicon PV cells are developed by Bell Laboratories scientists. This is the first solar 

cell which can convert enough of the sun’s energy into power to run every day 

electrical equipment [29]. 

2.1.2. Solar Irradiance 

Solar irradiance is the power received from the sun per unit area in the form of 

electromagnetic radiation. Since the main source of light is sun, solar irradiance has 

direct influence on the generation of PV system. Sunlight is radiated from the sun in 

all directions and starts to travel. When it reaches the atmosphere, its strength reduces 

to certain level. After it enters the atmosphere, its strength continues to decrease by 

scattering and absorbing by the clouds, dust and air molecules shown in Fig. 2-4. 

Sunlight that reaches the surface of PV modules without absorption and scattering is 

defined as direct solar radiation. Sunlight reflected by the ground is defined as 

reflected solar radiation. Sunlight scattered by the air molecules, dust etc. is defined 

as diffuse solar radiation. 
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Figure 2-4. The path of solar radiation [31] 

The strength of solar irradiance depends on the length of travel. Longer distance will 

result in weaker solar irradiance. Thus, polar regions will receive less solar irradiance 

because the sunlight needs to travel a longer distance to the polar regions. Global 

horizontal irradiation is the total irradiance from the sun on a horizontal surface of 

Earth can be seen in Fig. 2-5. It is the sum of direct irradiation and diffuse horizontal 

irradiation. Also, same map for Turkey where measurements are taken for test and 

evaluation can be seen in Fig. 2-6. 
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Figure 2-5. Global Horizontal Irradiation for World [32] 

 

Figure 2-6. Global Horizontal Irradiation for Turkey [32] 
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This solar irradiance could be used as another form of energy. It can be captured by 

the solar collector which turn it into heat to provide hot water or heating in buildings. 

A large area of sunlight can be concentrated onto a small area by parabolic mirrors to 

acquire several thousand degrees Celsius. This heat can be used either for heating 

purposes or to generate electricity. Another way to make use of sunlight is to produce 

power from it by photovoltaic effect.  

2.1.3. PV Cell 

The basic unit in a PV system is PV cell which converts sunlight energy to electricity 

using semiconductor materials that exhibit the photovoltaic effect. Although many 

semiconductor materials are available, single-crystal silicon is the most popular for 

commercial cells since silicon is the second most abundant element in the Earth after 

oxygen. A conventional crystalline silicon PV cell can be seen in Fig. 2-7. 

 

Figure 2-7. Single PV Cell [33] 

PV cells are made of at least two layers of semiconductor material seen in Fig. 2-8. 

One layer has a positive charge, the other negative. When light strikes the cell, some 

of the photon from the light are absorbed by the semiconductor atoms, and the energy 

of absorbed atoms frees electrons from the cell’s negative layer to flow through an 

external circuit and back into positive layer. This flow of electrons produces electric 

current. 
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Figure 2-8. Basic Solar Cell Construction [34]  

Ideal PV cells behave like a current source connected in a parallel with a diode. This 

model is completed with resistors to represents the losses. The most common circuits’ 

equivalent to PV cell is shown in Fig. 2-9. 
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(a) Simplified Equivalent Circuit 

 

(b) Standard Equivalent Circuit 

 

(c) The Two-diode Model 

Figure 2-9. Equivalent circuits of PV cell [30] 
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PV cell produce DC current electricity and current times voltage equals to power, so 

I-V curves can be created to the current and voltage characteristics of a PV cell, 

module or array giving a detailed description of its solar energy conversion ability and 

efficiency. Fig. 2-10 shows I-V characteristics of a typical silicon PV cell operating 

under normal conditions. 

 

Figure 2-10. I-V Characteristics of a Typical Silicon PV Cell [35] 

When the PV cell is open-circuited, the current will be at its minimum and the voltage 

across the cell at its maximum, known as the PV cells open circuit voltage, or 𝑉𝑜𝑐. 

When the PV cell is short-circuited, the voltage across the PV cell is at its minimum 

and the current flowing out of the cell reaches its maximum known as the PV cells 

short circuit current, or 𝐼𝑠𝑐.  

PV cell can work from the short circuit current (𝐼𝑠𝑐) at zero output volt, to zero current 

at the full open circuit voltage (𝑉𝑜𝑐). However, there is one point which the power 

reaches its maximum value, at 𝐼𝑚𝑝 and 𝑉𝑚𝑝 known as the PV cells maximum power 

point, or 𝑀𝑝𝑝. Therefore, the ideal operation of PV cell is defined to be at the 

maximum power point.  

However, capacity of power generation of single PV cell is limited. PV cells can be 

wired or connected in either series or parallel combinations, or both to increase its 

power generation capacity. 
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2.1.4. PV Modules, Arrays and Systems 

The most basic part of a PV system is the cell. In order to increase produced electric 

current or power, lots of individual PV cells are interconnected together in a sealed, 

weatherproof package called a module. When two modules are wired together in 

series, their voltage is doubled while the current stays constant. When two modules 

are wired in parallel, their current is doubled while the voltage stays constant. To 

achieve the desired voltage and current, modules are wired in series and parallel into 

what is called a PV array shown in Fig. 2-11. The flexibility of the modular PV system 

allows designers to create solar power systems that can meet a wide variety of 

electrical needs, no matter how large or small. 

 

Figure 2-11. Photovoltaic Cell, Module and Array [34] 

2.1.5. Types of PV Systems 

2.1.5.1. Direct PV Systems 

These are the simplest PV systems with the fewest components. They include only the 

PV module and the load. The DC output is immediately directed to DC loads. Because 

they do not have batteries and are not tied to the grid, they only power the loads when 

the sun is shining. 
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2.1.5.2. Off-Grid PV Systems 

Off-grid PV systems, which are also called stand-alone PV systems can consist of the 

PV modules, load and batteries for energy storage as seen in Fig. 2-12. The power 

generated by PV modules is in the form of DC which feeds through a charge controller 

and is stored in the batteries when the power is needed it flows through and inverter 

to change it to AC for use in loads. 

 

Figure 2-12. Typical Off-Grid PV System 

2.1.5.3. Grid-Connected PV Systems 

Grid-connected PV system is a PV system that is connected to the utility grid. Like 

off-grid PV system, grid-connected PV system consists of the PV module, inverter 

and loads as seen in Fig. 2-13. Unlike off-grid power systems, a grid-connected system 

rarely includes an integrated battery solution, as they are still very expensive. It 

additionally has grid-connection equipment. They range from small residential and 

commercial rooftop systems to large utility-scale solar power stations. When power is 

generated by the PV system in the form of DC that is converted to AC by the inverter 

and then used directly in property. When no power is being generated by the PV 

system, power is drawn from the grid. When possible, excess power generated by PV 

system can be back into the grid. Grid-connected PV systems in the world account for 

about 99% of the installed capacity compared to stand alone systems, which use 

batteries. Battery-less grid connected PV systems are cost effective and require less 

maintenance [36]. 
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Figure 2-13. Typical Grid-Connected PV System 

2.1.5.4. Hybrid PV Systems 

Hybrid PV systems combine the off-grid and grid-connected PV systems. The hybrid 

system can be considered as off-grid solar with utility back-up power, or grid-

connected solar includes battery back-up as seen in Fig. 2-14. 

 

Figure 2-14. Typical Hybrid PV System 

2.2. The Impacts of Increased PV Penetration on Distribution Systems 

Solar PV systems look to be a good option for improving the performance of the power 

system. It can provide required power for increasing load and reduce the cost of the 

electricity prices. As the price of the solar PV decreases, the capacity of PV systems 
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increases accordingly. However, increased PV generation in distribution systems has 

several negative impacts on the distribution grid as well as positive impacts. Some of 

the important issues are related to voltage quality, power quality, harmonics and power 

balancing.  

2.2.1. Voltage Quality 

Large number of PV systems in distribution system can affect the voltage level of the 

system. Traditionally, in distribution systems the power flow is unidirectional from 

the medium voltage system to the low voltage systems. Thus, in normal operation, the 

current flows from distribution transformer to the loads, which results in voltage drops 

along the feeder line due to transformer and line impedances. There are some voltage 

regulation devices, such as step voltage regulators, on-load tap changing transformers, 

switched capacitors to compensate voltages because voltage level at load locations 

must be maintained within specified ranges for safe operation. However, when 

penetration of PV systems reaches significant level, there are moments when the 

generation is more than demand, especially in sunny days and at noon. As a result, the 

voltage at the Point of Common Coupling (PCC) of the inverter and grid increases. 

Therefore, direction of power flow changes and power starts to flow from PV systems 

to distribution transformer. This opposite direction of flow cause overloading of the 

distribution feeders and higher power losses. It also affects the operation of voltage 

regulators [37]. 

Voltage quality can also be affected by the additional variability associated with 

weather-dependent PV generation characteristic. PV generation could vary 

continuously due to variations in solar irradiance caused by the movement of clouds 

and resulting shadows.  

2.2.2. Power Quality 

PV systems are normally designed to supply only real power which means that PV 

inverters operate at unity power factor in order to increase the active power generated. 

If PV systems partially supply required power by the loads, active power supplied 
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from the utility will decrease. However, reactive power requirements are still the same 

and have to be supplied by the utility. This high rate of reactive power supply causes 

the system power factor to decrease. In this case, distribution transformers operate at 

low power factor. Efficiency of transformer decreases as their operating power factor 

decreases. This led to overall losses in distribution transformer increase which reduces 

the overall system efficiency. 

2.2.3. Harmonics 

When penetration of PV systems in distribution systems increases, the harmonic 

distortion of current and voltage waveform draws the attention. It is due to fact that 

PV inverters inject harmonics into the system during conversion of DC current to AC 

current in order to synchronize with the AC main supply. Although the inverters inject 

current harmonics into the system, they do not have significant impact on voltage 

harmonics [38]. If the high frequency harmonics produced by the inverters are not 

properly filtered, they mainly lead to increased losses in distribution system through 

heating. They also cause the stray and eddy current losses and reduce the transformers 

life due to increased temperature in the windings [39]. 

2.2.4. Power Balancing 

With the increasing penetration of PV systems to the power system, extra effort has to 

be made in order to maintain supply-demand balance. When power injection from PV 

systems to the power system increases, the amount of power generation by 

conventional power generators should be reduced. Since PV generation could vary 

continuously due to variations in solar irradiance, achieving the balance of supply and 

demand could be challenging. 

2.3. Bivariate Normal Distribution 

The normal distribution, also called the Gaussian distribution and the bell curve, is a 

distribution that occurs naturally in many situations that describes how the values of 

variable are distributed. It is a symmetric distribution where most of the variables 
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group together around the central peak and the probabilities for values further away 

from the mean decrease equally in both directions. The general formula for the 

probability density function of the normal distribution is: 

 
𝑓(𝑥) =  

1

√2𝜋𝜎2
𝑒
−
(𝑥−µ)2

2𝜎2   (2.1) 

 

 
= 

1

√2𝜋𝜎2
 𝑒𝑥𝑝 {−

(𝑥 − µ)2

2𝜎2
} (2.2) 

 

where,  

μ is the mean or expectation of the random variable ‘𝑥’,  

𝜎 is the standard deviation of the random variable ‘𝑥’.  

The parameters for the normal distribution define its shape and probabilities entirely. 

The shape of it varies according to parameter values as shown in the Fig. 2-15. 

 

Figure 2-15. Normal Distributions [40] 
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The values group together around the mean. The standard deviation expresses how 

much the values differ from the mean. If the standard deviation is high, the values 

spread out and will be further from the mean.  

The properties for the probability density function curve as follows,  

• The total area under the normal curve represents the sum of all probabilities for a 

random variable and is equal to 1.  

• The probability for a normal random variable 𝑋 equals any specified value is 0.  

• The probability for 𝑋 is greater than any specified value 𝑥 equals the area under the 

normal curve between 𝑥 and plus infinity.  

• The probability for 𝑋 is less than any specified value 𝑥 equals the area under the 

normal curve between 𝑥 and minus infinity.  

• The probability for 𝑋 is between any specified value 𝑥 and any specified value 𝑦 

equals the area under the normal curve between 𝑥 and 𝑦.  

For every normal distribution curve: 

• Almost 68.2% of values falls within the mean and 1 standard deviation distance.  

• Almost 95.6% of values falls within the mean and 2 standard deviation distance.  

• Almost 99.8% of values falls within the mean and 3 standard deviation distance.  

as stated in Fig. 2-16. 
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Figure 2-16. Probability of Normal Distribution [41] 

Normal distribution of a single random variable is called univariate normal 

distribution. On the other hand, normal distribution of a group of random variables is 

called multivariate normal distribution. Bivariate normal distribution is a special case 

of the multivariate normal distribution and it is made up of two independent random 

variables.  

𝑍 and 𝑇 are two independent normal random variables, and two other random 

variables 𝑋 and 𝑌 of the form 

 𝑋 = 𝑎𝑍 + 𝑏𝑇, (2.3) 

 

 𝑌 = 𝑐𝑍 + 𝑑𝑇, (2.4) 

 

where 𝑎, 𝑏, 𝑐, 𝑑, are some scalars. Since they can be expressed as a linear function of 

independent normal random variable, 𝑋 and 𝑌 are also normal. Moreover, since 𝑋 and 

𝑌 are linear functions of the same two independent normal random variables, their 

joint PDF takes a special form, known as the bivariate normal PDF.  

For a given two variables 𝑥, 𝑦 𝜖 ℝ, the bivariate normal probability density function 

is, 

 

𝑓(𝑥, 𝑦) =  

𝑒𝑥𝑝 {−
1

2(1 − 𝜌2)
[
(𝑥 − 𝜇𝑥)

2

𝜎𝑥
2 +

(𝑦 − 𝜇𝑦)
2

𝜎𝑦
2 −

2𝜌(𝑥 − 𝜇𝑥)(𝑦 − 𝜇𝑦)
𝜎𝑥𝜎𝑦

]}

2𝜋𝜎𝑥𝜎𝑦√1 − 𝜌2
 (2.5) 
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where, 

𝜇𝑥  ∈  ℝ and 𝜇𝑦  ∈  ℝ are the marginal means of random variables ‘𝑥’ and ‘𝑦’ 

𝜎𝑥  ∈  ℝ
+ and 𝜎𝑦  ∈  ℝ

+ are the marginal standard deviations of random variables 

‘𝑥’ and ‘𝑦’ 

0 ≤ |𝑝| < 1 is the correlation coefficient 

 𝑋 and 𝑌 are normally distributed and denoted as 𝑋~𝑁(𝜇𝑋 , 𝜎𝑋
2) and 𝑌~𝑁(𝜇𝑦, 𝜎𝑦

2) 

 

Figure 2-17. Bivariate Normal Distribution [42] 

The bivariate normal PDF has several useful properties. In this work, property of the 

conditional distribution will be used. If a pair of 𝑋 and 𝑌 has bivariate normal 

distribution, the conditional expectations (𝑋|𝑌) and 𝐸(𝑌|𝑋) will be a linear function of 

𝑌 and 𝑋, respectively. The relationship can be described as follows: 
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               𝐸(𝑌|𝑋) = 𝐸(𝑌) + 𝜌𝑋,𝑌. 𝜎𝑌

𝑋 − 𝐸(𝑋)

𝜎𝑋
 (2.6) 

 

where 𝐸(𝑋) and 𝐸(𝑌) are the expected values of 𝑋 and 𝑌, respectively, 𝜎𝑋 and 𝜎𝑌 are 

the standard deviations of 𝑋 and 𝑌, respectively and 𝜌𝑋,𝑌 is the correlation coefficient. 

2.4. Kalman Filter 

Kalman filter which is also called 1inear quadratic estimator is a useful tool for a 

variety of different applications. It does what all filters do which is to let something 

pass through while something else does not. A Kalman filter sorts out the useful parts 

of information which have some error or noise and figures out what actually happened. 

It can be used in any place where there is uncertain information about some dynamic 

system. 

An example diagram of Kalman filter can be seen in Fig. 2-18. 

 

Figure 2-18. Diagram of Kalman Filter 

Kalman filter is used to estimate states for linear dynamical systems in state space 

format, i.e. 

        𝑥𝑘 = 𝐹𝑘−1𝑥𝑘−1 + 𝐺𝑘−1𝑢𝑘−1 + 𝑤𝑘−1 (2.7) 

 

 𝑦𝑘 = 𝐻𝑘𝑥𝑘 + 𝑣𝑘 (2.8) 

 

where, 
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𝑥𝑘 is the state vector at time instant 𝑘, 

𝑥𝑘−1 is the state vector at time instant 𝑘 − 1, 

𝑦𝑘 is the output vector at time instant 𝑘, 

𝑢𝑘−1 is the input vector at time instant 𝑘 − 1, 

𝑤𝑘−1 is the process noise vector at time instant 𝑘 − 1, 

𝑣𝑘−1 is the measurement noise vector at time instant 𝑘 − 1, 

𝐹𝑘−1 is the state system matrix at time instant 𝑘 − 1, 

The state vector, 𝑥, are the values which will be tried to be estimated by the filter. The 

output vector, 𝑦, are the measurements. Measurements should be expressed in terms 

of the states. The input vector, 𝑢, can be any information which can help to define the 

system dynamics. The random variables, 𝑤 and 𝑣, represents the process and 

measurement noise, respectively. They are assumed to be zero mean and used to 

determine the process and measurement noise covariance matrices Q and R. System 

matrices, F, G and H, contain the coefficients of the equations.  

The Kalman filter is a recursive process which is composed of prediction followed by 

a correction. The all information about the state is used to project the filter forward 

and predict the next state. The process is started with initial estimate, 𝑥 0, and initial 

state error covariance matrix, 𝑃0, Kalman filter procedure is applied recursively at 

each time step. First, the state vector is predicted from the state dynamic equation 

using, 

      �̂�𝑘|𝑘−1 = 𝐹𝑘−1�̂�𝑘−1 + 𝐺𝑘−1𝑢𝑘−1 (2.9) 

 

where �̂�𝑘|𝑘−1 is the predicted state vector before correction, �̂�𝑘−1 is the previous 

estimated state vector. Next, the state error covariance matrix is predicted using, 

       𝑃𝑘|𝑘−1 = 𝐹𝑘−1𝑃𝑘−1𝐹
𝑇
𝑘−1 + 𝑄𝑘−1 (2.10) 
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where 𝑃𝑘|𝑘−1 is the predicted state error covariance matrix before correction, 𝑃𝑘−1 is 

the previous estimated state error covariance matrix, and 𝑄 is the process noise 

covariance matrix. Once the predicted values are obtained, the Kalman gain matrix, 

𝐾𝑘, is calculated using, 

           𝐾𝑘 = 𝑃𝑘|𝑘−1𝐻
𝑇
𝑘(𝐻𝑘𝑃𝑘|𝑘−1𝐻

𝑇
𝑘 + 𝑅𝑘)

−1 (2.11) 

where 𝐻 is a matrix necessary to define the output equation and 𝑅 is the measurement 

noise matrix. The state vector is then updated by using the calculated Kalman gain 

matrix in order to correct the prediction by the appropriate amount, as in, 

  

          �̂�𝑘 = �̂�𝑘|𝑘−1 + 𝐾𝑘(𝑧𝑘 − 𝐻𝑘�̂�𝑘|𝑘−1) 

 

(2.12) 

Similarly, the state error covariance is updated by, 

 𝑃𝑘 = (𝐼 − 𝐾𝑘𝐻𝑘)𝑃𝑘|𝑘−1 (2.13) 

 

where I is an identity matrix. 

Recursive operation of the Kalman filter can be seen in Fig. 2-19. 

 

Figure 2-19. A recursive operation of the Kalman filter 
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CHAPTER 3  

 

3. PROPOSED METHOD 

After presenting the general introduction and detailed literature review in Chapter 1, 

required technical background for helping the reader to understand the concept is 

reviewed in Chapter 2. In this chapter, proposed methods will be explained. The 

proposed method aims to acquire actual load demand from measurements available at 

the HV/MV transformer substation and small number of PV systems generation 

measurements. It is proposed as a two-step method. First, total PV generation is 

obtained by predicting generation amounts of unmonitored PV systems. Then, actual 

load demand prediction is performed based on total PV generation prediction. 

 

3.1. Total PV Generation Prediction 

This section explains the proposed method for the prediction of solar power generated 

by BTM PV systems whose generations are not monitored continuously. The proposed 

method assumes,  

• the rated power and location of every single PV system in considered area is 

known,  

• factors affecting PV performance are almost same for each PV system in the 

considered area, such as; 

▪ PV cell material, e.g. silicon, 

▪ Global horizontal irradiation, which depends on latitude, season, time 

of day and altitude, 

▪ tilt angle, 

▪ ambient temperature. 
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Considering that many distribution system operators can collect information on the 

power-rating, cell-type and tilt angle while the meters at those locations are changed 

to four-quadrant meters, and the parameters affecting the PVE performance will not 

vary considerable across a city, the assumptions can be considered as realistic. 

Power generation of PV systems is affected by several factors, but it is mostly 

determined by irradiation amount. The irradiation amount at different points in a city 

are related to the cloudiness of the sky. It is expected that cloudiness conditions of two 

close locations are more similar compared to more distant ones [43,44], such that their 

correlation is high. This constitutes the core of the proposed approach. As the distance 

between those two locations decreases, similarity between the cloudiness patterns 

observed at those locations increases. Therefore, one can use a representative PV 

system to predict total solar generation of the all other systems provided that the 

distances among the representative site and the other systems are limited. In a large 

city, utilization of a single representative site is not possible, therefore, the considered 

region should be divided into sub-regions. In order to divide the system into sub-

regions, one may collect irradiation data from different points of the whole considered 

region, and then compare the correlation among the observed values corresponding to 

the same time. In this step, it is not required to collect data from every single PV 

system in the whole considered area. Irradiation data from some different points can 

be collected in order to obtain correlation between irradiation between two different 

points with respect to distance. If the correlation coefficient goes down below a certain 

value, that distance determines the radius of sub-region. 

Once the sub-regions are determined, the proposed method collects data from the 

representative sites and predicts the total solar generation of the city based on the 

bivariate normal distribution. 

The flow chart of the proposed method is presented in Fig. 3-1, and details of each 

step of the proposed method are presented in the following sub-sections. 
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Figure 3-1. Flow Chart for Predicting Total Solar Power Generation 

Step-1. PV Generation Characterization 

This step is the offline modeling of the relation between the representative site and 

other PV systems in sub-region. Once the model is constructed, this step does not have 

to be reperformed. Note that, as the proposed modeling provides the relation between 

the representative site and any point in the sub-region, even if new PV systems are 

added, running this stage again will be redundant. 

Distance between two PV systems and the cloudiness of the sky are the most 

significant factors that determines the probabilistic relation between generation 

amounts of those two PV systems. As the distance increases, the uncertainty between 

the generation amounts of the PV systems increases. Similarly, as the cloudiness level 

increases, the uncertainty increases as well. In order to obtain a probabilistic model of 

the relation between generation amounts of the any PV systems and the representative 

site, this study proposes to form correlation versus distance curves. Since correlation 

is also affected by cloudiness amount considerably, three curves are formed based on 

the cloudiness level of the sky, such that: 

• Fair, 

• Partly cloudy, 

• Mostly cloudy. 
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One can model the relation between the representative site and other systems which 

are located at any point in the same sub-region based on the correlation, as shown 

below. 

 
𝜌𝑋𝑤𝑌𝑑

𝑤 = 
𝑐𝑜𝑣(𝑋𝑤, 𝑌𝑑

𝑤)

𝜎𝑋𝑤𝜎𝑌𝑑
𝑤

 (3.1) 

 

where, 

𝜌𝑋𝑤𝑌𝑑
𝑤 is the correlation between 𝑋𝑤and 𝑌𝑑

𝑤, 

𝑋𝑤is the solar radiation corresponding to the day type ‘𝑤’ recorded at the 

representative site, 

𝑌𝑑
𝑤is the solar radiation corresponding to the day type ‘𝑤’ recorded at location ‘𝑑 ', 

𝜎𝑋𝑤is the standard deviation of the solar radiation corresponding to the day type ‘𝑤’ 

recorded at the representative site, 

𝜎𝑌𝑑
𝑤is the standard deviation of the solar radiation corresponding to the day type ‘𝑤’ 

recorded at location ‘𝑑 ', 

𝑤 is the day type, such that 𝑤 can be fair, partly cloudy or mostly cloudy. 

In order to form the model, solar irradiation data from different points in a sub-region 

are collected. One of those points is the representative PV site. As the correlation 

between the generated power and solar irradiation is very high, one can collect power 

generation instead of solar radiation as well. Note that, this stage is offline and 

performed once. No communication infrastructure is required, rather mobile 

pyranometers or data recording energy analyzers can be used.  

Fig. 3-2 presents sample regression curves for fair, partly cloudy and mostly cloudy 

weather conditions. The data used to form those curves were collected in the city of 

Ankara, Turkey by two different pyranometers. Every three points in different colors 

for same distance in this figure has been obtained after a month of data collected 
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period. During these periods, solar irradiation data has been continuously collected 

from representative PV site location by one of the pyranometer and for each period 

solar irradiation data has been collected from a point as far as the distance specified in 

the graph by other pyranometer. After obtaining solar irradiation data, they have been 

categorized into three groups as fair, partly cloudy and mostly cloudy according to 

weather conditions and correlation between two measurements from representative 

PV site location and from other points were calculated using (3.1). One can determine 

approximate value of the required correlation value corresponding to a location using 

those curves. 

 

Figure 3-2. Correlation Variation with Respect to Distance and Cloudiness 

Those curves show that there is a correlation between the power generations of PV 

systems within a certain area considerably up to 5km radius, and the amount of 

correlation changes according to the level of cloudiness as can be seen from closer in 

Fig. 3-3.   
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Figure 3-3. Correlation Variation with Respect to Distance and Cloudiness up to 6 

km 

5 km can be considered as good distance because BTM PV generations in Ankara 

which is a quite big city can be predicted with just 10 representative sites as illustrated 

in Fig. 3-4. 

 

Figure 3-4. Example Sub-regions of Ankara 
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Step-2. Weather Condition Identification 

The weather condition identification aims to classify the cloudiness of the sky, based 

on the recorded power generation data. Although cloudiness level is published online 

by many different sources, it in general corresponds to a large area for a long duration 

(hours) and may not reflect the actual condition at the considered region. More 

accurate information about cloudiness level is required to obtain more accurate 

predictions. 

The daily generation curve of a PV system varies according to effective solar 

irradiation reaching the surface of the solar panels. It has a continuous cosine-like 

shape on a sunny day, while it is distorted on cloudy days. The similarity between the 

solar power generation pattern and cosine function is visualized in Fig. 3-5. 

 

Figure 3-5. Normalized Generation vs. Reference Cosine Function 

In order to categorize days, this similarity is utilized, such that a cosine curve which 

is adjusted according to sunshine duration and expected rated power generation 

corresponding to the considered day is compared to the gathered measurements. The 

comparison is performed with values corresponding to the most up-to-date one hour 

assuming the measurements are collected once in every five minutes, since cloudiness 
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level may change during a day. The deviation of the measured values from the cosine 

curve is used as the measure of the similarity, where: 

 

        𝜎𝑡 = √
‖𝑥[𝑡 − 𝑁 + 1: 𝑡] − 𝑥[𝑡 − 𝑁 + 1: 𝑡]‖

𝑁
 (3.2) 

 

where: 

𝜎𝑡 is the deviation amount between reference cosine curve and the measurements at 

time instant ‘𝑡’, 

𝑥[𝑡 − 𝑁 + 1: 𝑡] is the reference cosine curve, 

𝑥[𝑡 − 𝑁 + 1: 𝑡] is the vector of recorded measurements, 

𝑁 is the number samples corresponding to one hour. 

As mentioned in the previous sub-section, days are categorized into three groups based 

on the cloudiness. Therefore, two threshold values, such as 𝜎1 and 𝜎2 should be 

chosen. Those threshold values can be determined heuristically by examining the 

obtained 𝜎𝑡 values and the observed cloudiness level. For instance, in this study, 

threshold values are determined by comparing cosine-like function and existing 

measurements taken before and cloud cover index. These values will probably change 

depending on the location of PV systems among all over the world. The flow chart of 

the cloudiness level detection is presented in Fig. 3-6. 
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Figure 3-6. Flow Chart for the Cloudiness Level Detection 

Step-3. Prediction of Behind-the-Meter PV Generation 

The power generation of a PV system can be predicted based on another PV system 

power generation, which is the representative site, using conditional expectation. To 

define the conditional expectation relation, firstly the probabilistic distribution should 

be investigated. It is known that the probability distribution of the solar power 

generation is Gaussian. Having the three cloudiness level categories, the mean and 

variance values will differ for each category. 

If two variables have normal distribution, and they have a normal distribution when 

both are added together, it is said that those variables are in a bivariate normal. Fig. 3-

7 shows the bivariate normal distribution of the solar power generation deviation from 

expected generations recorded on cloudy days, and recorded at two location, which 

are 1.2 km apart. 
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Figure 3-7. Bivariate Normal Distribution 

Having a bivariate normal distribution, the conditional expectation between the 

reference site and other PV systems can be represented as follows. 

 
         𝐸(𝑌𝑑

𝑤|𝑋𝑤) = 𝐸(𝑌𝑑
𝑤) + 𝜌𝑋𝑤𝑌𝑑

𝑤𝜎𝑌𝑑
𝑤
𝑋𝑤 − 𝐸(𝑋𝑤)

𝜎𝑋𝑤
 (3.3) 

 

where, 

𝐸(𝑋𝑤) is the expectation (mean) of 𝑋𝑤 

𝐸(𝑌𝑤) is the expectation of 𝑌𝑑
𝑤,  

𝐸(𝑌𝑑
𝑤|𝑋𝑤) is the conditional expectation of 𝑌𝑑

𝑤given 𝑋𝑤,  

𝜌𝑋𝑤𝑌𝑑
𝑤, 𝜎𝑋𝑤and 𝜎𝑌𝑑𝑤are determined using the collected data at Step-1. Although 

power generation amounts of two PV systems are dependent on the cloudiness level 

of the sky, they are independent of each other so (𝑌𝑑
𝑤) = 𝐾𝐸(𝑋𝑤), and 𝜎𝑌𝑑

𝑤 =  𝐾𝜎𝑋𝑤, 

and hence (3) can be reformulated as follows. 

 𝐸(𝑌𝑑
𝑤|𝑋𝑤) = 𝐾𝜌𝑋𝑤𝑌𝑑

𝑤𝑋𝑤 + (1 − 𝜌𝑋𝑤𝑌𝑑
𝑤)𝐾𝐸(𝑋𝑤) (3.4) 
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where, 

K is the ratio of the rated power of the unmonitored PV system to that of the 

representative site. 

3.2. Actual Load Demand Prediction 

Prediction of actual load demand is conducted based on the measurement taken from 

distribution substation which indicates the power drawn from the transmission system. 

This power does not represent the actual power consumed within the distribution 

system because some amount of load is supplied by distributed PV systems within 

distribution system. Hence, measurements can be considered as net load demand for 

that distribution system. 

Then, the net load from the grid 𝑃𝑛𝑒𝑡  for any given time 𝑡 for distribution systems 

with high PV penetration can be expressed as, 

      𝑃𝑛𝑒𝑡 (𝑡) =  𝑃𝑇(𝑡) − 𝑃𝑝𝑣(𝑡) (3.5) 

 

where, 

𝑃𝑇(𝑡) is the total or actual load, 

𝑃𝑝𝑣(𝑡) is the load demand met by solar power generated by PV systems, 

Thus, if the PV generations can be added to the net load, then a more accurate actual 

load demand prediction can be achieved. However, a high percentage of the PV 

systems in distribution system are not monitored due to additional cost for sensors, 

data logging equipment and communication.  

The basic idea of the proposed method is thus first predicting total power generation 

of unmonitored PV systems by using proposed method, and second predicting the 

actual load demand by adding PV generations to the net load. Since load demand is 

periodic, it is possible to use well-developed Kalman filter algorithm to determine the 
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actual load in each time step considering that measurements have uncertainties due to 

measurement and process error. 

For a system with high PV penetration, mainly in the form of small-scale roof-top PV, 

the equations for Kalman filter can be constructed as follows, 

 𝑃𝐿,𝑘 = 𝑃𝐿,𝑘−1,𝑘−1 + 𝐴𝐿,𝑘−1 + 𝑤𝑘−1 
(3.6) 

 𝑃𝑖𝑛𝑗,𝑘 = 𝑃𝐿,𝑘 −  𝑃𝑃𝑉,𝑘 + 𝑣𝑘    (3.7) 

 

where, 

𝑃𝐿,𝑘 is the actual demand at time instant 𝑘, 

𝑃𝑖𝑛𝑗,𝑘 is the net load measurement at the substation at time instant 𝑘, 

𝐴𝐿,𝑘−1 is the expected demand change at time instant 𝑘 − 1, 

𝑃𝑃𝑉,𝑘 is the total PV generation prediction within distribution network at time instant 

𝑘, 

𝑤𝑘−1 is the process noise at time instant  𝑘 − 1, 

𝑣𝑘 is the measurement noise at time instant 𝑘. 

After starting with initial assumptions, actual loads for each time step 𝑘, can be 

predicted by Kalman filter’s prediction followed by correction process. 

3.3. Chapter Summary and Conclusions 

In this chapter, BTM PV generation prediction and actual load demand prediction 

methods were proposed. The method proposed for BTM PV generation prediction has 

three main steps. In the first step, solar radiation data are collected from the specified 

sub-regions to model the relation between the solar irradiation of various points and 

the representative site. This step is a one-time job conducted before running the 

proposed prediction and does not need to be reperformed when new PV systems are 



 

 

 

45 

 

installed. Thus, the method can easily adopt the future growth of capacity of BTM PV 

systems. In the second step, cloudiness level detection is applied in order to categorize 

days. This is because correlation versus distance curves are obtained for each type of 

days namely, fair, partly cloudy, mostly cloudy separately in the first step by using 

same cloudiness level detection algorithm. Since the correlation is also affected by 

cloudiness amount as well as distance between representative sites and any point in 

considered area, cloudiness level of day should be considered for more accurate 

prediction. In the last step, generations of BTM PV systems within the specified sub-

regions are predicted by using conditional expectation. 

Once the method starts prediction, firstly cloudiness characterization is performed, 

followed by the computation of conditional expectation of the generation of BTM PV 

systems by using correlation coefficient which is obtained in first stage.  

The method proposed for actual load demand prediction is based on well-known 

Kalman filtering algorithm. The contribution here is taking PV generations which is 

not actually known or monitored and has direct impact on load demand into account 

unlike traditional methods. 
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CHAPTER 4  

 

4. TESTS AND EVALUATION OF THE PROPOSED METHOD 

 

This chapter presents the conducted tests and numerical results to validate the 

proposed method. Three different tests are done in order to validate three main parts 

of the proposed method, namely cloudiness level detection, total PV generation 

prediction and actual load demand prediction. Results of these tests are illustrated 

under related subsections. 

4.1. Weather Condition Identification 

This section presents the result of weather condition identification algorithm which is 

explained in the previous chapter. Fig. 4-1(a) shows the determined cloudiness levels 

corresponding to each hour of a single day. The solar power generation recorded on 

this day can be seen in Fig. 4-1(b). The deviation in the morning hours are higher, 

since the mismatch between the used reference cosine function and the realized power 

generation is higher. The cosine function is used for the sake of simplicity. One may 

use a fitted generation curve as the reference. The σ1 and σ2 are determined by 

examining the data. Note that, those values may change based on the geographical 

location of the considered region. 
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(a) Cloudiness Level Classification 

 

(b) PV Generation 

Figure 4-1. Power Generation on the Cloudiness Level Classified Day 
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It can be obviously seen that the algorithm is for predicting cloudiness level if the 

thresholds σ1 and σ2 are chosen appropriate. 

4.2. Total PV Generation Prediction 

This section presents tests and evaluation of the proposed method for predicting total 

solar power generation individually. In this work, the solar radiation data is collected 

in the city of Ankara, Turkey, using pyranometers. The representative site is located 

at the Department of Electrical and Electronics Engineering of the Middle East 

Technical University (METU) shown by red map marker on Fig. 4-2 and solar 

irradiation is continuously recorded with pyranometer as can be seen in Fig. 4-3. The 

other data collection points which simulate behind-the-meter PV panels are shown by 

blue map markers on Fig. 4-2 and solar irradiation is recorded with mobile 

pyranometer as shown in Fig. 4-4. Besides the irradiation data, solar power generation 

data corresponding to the 50 kWp PV system located at METU are also utilized for 

the statistical analysis of the solar power generation with respect to weather 

conditions. All power generation data are recorded with 5-minute intervals for each 

day from 01.01.2013 to 31.12.2016. 

 

Figure 4-2. Data Collection Points 
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Figure 4-3. Pyranometer Used in Representative Site 

 

Figure 4-4. Pyranometer Used in Data Collection Points 

Fig. 4-5 shows the relation between the irradiation data and solar power generation. 

Considering Fig. 4-5, it can be concluded that the solar power generation is highly 

correlated to solar irradiation, and hence the relation among the solar irradiation data 

of different locations can be applied to solar power generation amounts as well. In 

other words, one can use both power generation and solar irradiation data to employ 

the proposed method. 
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(a) Power Generation Data and Solar Irradiation Data – Fair Day 

   

(b) Power Generation Data and Solar Irradiation Data – Cloudy Day 

Figure 4-5. Generation and Irradiation Data Recorded Under Different Weather 

Conditions 
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As mentioned in Chapter 2, the collected data was used to form the correlation 

regression curves with respect to distance to the representative site for all three 

cloudiness level categories. The obtained curves are shown in Fig. 3-3. As seen in Fig. 

3-3, as the distance increases, fitting the correlation to a function becomes more 

cumbersome, therefore the distance between the representative site and the other PV 

systems should be limited. For this experiment, it seems the method is capable of being 

good predictions in sub-region with 5 km radius. Note that, the correlation values 

significantly differ for different cloudiness level. Therefore, to obtain a more accurate 

predict, it is essential to form specific correlation curves for each weather condition. 

Once the correlation values are determined, the proposed method can be run with real 

time data. In the real time operation, the first step is the classification of each hour 

based on cloudiness level with proposed algorithm tested in previous sub-section, as 

proper correlation values should be utilized.  

The power production of PV plant that is not monitored can be predicted based on 

(3.4). The results of the proposed method are compared to the measured realization 

and presented in Fig. 4-6. The mismatch between the prediction and the realization is 

quantified using the root mean square error (RMSE), which is defined below. The 

RMSE values for different cases are presented in Table 1. 

                𝑅𝑀𝑆𝐸 = √𝑚𝑒𝑎𝑛((𝑃𝑟𝑒𝑎𝑙 − 𝑃𝑒𝑠𝑡𝑖𝑚𝑎𝑡𝑒𝑑)2) (4.1) 

 

where, 

𝑃𝑟𝑒𝑎𝑙 is the vector of realized power generation values, 

𝑃𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛 is the vector of predicted power generation values. 
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(a) Fair day, Distance Between the Representative Site and the Predicted PV 

Generation is 0.6 km 

                  

(b) Cloudy day, Distance Between the Representative Site and the Predicted PV 

Generation is 1.75 km 
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(c) Cloudy day, Distance Between the Representative Site and the Predicted PV 

Generation is 12.5 km 

Figure 4-6. Predicted vs. Measured Solar Power Generation for Different Distances 

and Types of Days 

Table 4-1. RMSE Values 

 d=0.6km d=5.6km d=12km 

Fair 4% 12.8% 14.9% 

Partly Cloudy 10.2% 18.2 % 24.9% 

Mostly Cloudy 13.9% - 27.4% 

 

4.3. Actual Load Demand Prediction 

This section presents test and evaluation of the proposed method for predicting actual 

load based on prediction of total PV generation obtained in previous step. The 

algorithm is developed on MATLAB platform to implement power flow analysis and 

Kalman filtering. In this work, IEEE 33 bus radial distribution system which can be 

seen in Appendix A is modified to use as test case. Eight PV systems are connected to 

different load points in the system. Four of them are stated as representative PV sites 
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which are being monitored continuously, and others are not monitored, and their 

generations are predicted. Since total PV generation was predicted at 5-minute 

intervals, injected power values at distribution substation point are needed to be 

specified at each 5-minute. Since system data has only instantaneous load demand for 

each bus, it is extended to have 5-minutes intervals such that each bus has daily load 

profile in 5-minute resolution and system data is the peak value of a day. The structure 

of typical radial distribution network can be represented as in Fig. 4-7. 

 

Figure 4-7. Example of Radial Distribution Network Supplying Different Types of 

Loads 

In order to get more realistic results daily load profile for each bus is created according 

to different types of load which can be in distribution network. Typical daily load 

profiles for different types of load can be seen in Fig. 4-8. 
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(a) Daily Load Curve for Residential Load 

 

(b) Daily Load Curve for Commercial Load 
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(c) Daily Load Curve for Industrial Load 

Figure 4-8. Daily Load Curves for Different Types of Load 

The algorithm is developed on MATLAB platform using MATPOWER tool to 

perform the load flow analysis to obtain injected powers at substation point. 

MATPOWER is an open-source optimization and simulation tool implemented in 

MATLAB for power grid research.  It is capable of providing power flow and optimal 

power flow solution. It has several test cases both transmission and distribution system 

for which power flow problem can be solved with command in just one-line [45]. 

Power flow is solved for a single day in order to obtain measurements at the HV/MV 

transformer substation at 5-minute interval. Example output of power flow 

calculations by MATPOWER can be seen in Appendix B. After perform load flow 

analysis and obtain measurements at 5-minute interval, Kalman filter algorithm is 

implemented in MATLAB as stated in Table 4-2. 
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Table 4-2. Implemented Kalman Filter Algorithm 

Prediction Update 

𝑃𝐿,𝑘
− = 𝑃𝐿,𝑘−1 + 𝐴𝐿,𝑘−1 

𝑃𝑘
− = 𝑃𝑘−1 + 𝑄𝑘−1 

𝐾𝑘  =
𝑃𝑘

−

𝑃𝑘
− + 𝑅

 

𝑃𝐿,𝑘 = 𝑃𝐿,𝑘
− + 𝐾𝑘 ( 𝑃𝑖𝑛𝑗,𝑘 + 𝑃𝑃𝑉,𝑘 − 𝑃𝐿,𝑘

−) 

𝑃𝑘  = (1 − 𝐾𝑘) 𝑃𝑘
− 

 

The implemented Kalman filtering is executed over 288-time steps, and the predicted 

and true actual load are provided in Fig. 4-9. 

 

Figure 4-9. Predicted by Kalman Filtering and True Actual Load 

If the proposed method for predicting total PV generation is not used and unmonitored 

PV systems’ generations are considered to be equal to monitored PV, the daily load 

curve would be assumed as in Fig. 4-10. 
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Figure 4-10. Predicted by Scaling and True Actual Load 

If only monitored PV systems are considered and added on measurement at HV/MV 

transformer substation without considering the unmonitored PV systems, the daily 

load curve would be assumed as in Fig. 4-11. 

 

Figure 4-11. Measured Plus Monitored PV Generation and True Load 
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If monitored PV generations are also not considered and only measurement at HV/MV 

transformer substation is considered as load which conventional load demand 

estimation methods do, then the daily load curve would be assumed as in Fig. 4-12. 

 

Figure 4-12. Measured and True Load 

Additional tests are conducted in order to observe performance of proposed method if 

the efficiencies of unmonitored PV’s decrease. As expected, error between predicted 

actual load demand and real actual load demand increases, however Kalman filtering 

tries to reduce uncertainties by providing smoothing and gives better results than 

directly adding net load demand and total PV generation prediction. 
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(a) When One PV’s Efficiency Drops to 90% 

 

(b) When All Four PV’s Efficiencies Drop to 90% 
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(c) When All Four PV’s Efficiencies Drop to 80% 

Figure 4-13. Predicted by Kalman Filtering and True Actual Load when PV 

Efficiency Drops 

4.4. Chapter Summary and Conclusions 

In this chapter, tests and evaluations for proposed methods was conducted. The results 

showed that the proposed method can predict the generation of BTM PV systems with 

a good accuracy up to a certain distance with inversely proportional to the cloudiness 

level. The accuracy of the proposed method can be improved by increasing number of 

the representative sites, and hence decreasing the size of the region of interest and 

collecting more data before prediction process. For the actual load demand prediction 

method, it is superior to traditional methods accuracy mostly depends on the accuracy 

of BTM generation prediction method. When the penetration of BTM PV systems is 

quite low, actual load demand can be found by simply adding predicted BTM PV 

generation to the net load measurements. However, when the penetration of BTM PV 

systems increases, Kalman filtering gives better results by considering uncertainties 

in all measurements. 
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CHAPTER 5  

 

5. CONCLUSION AND FUTURE WORK 

Load demand forecasting is extremely important for power system operators in 

electricity generation, transmission, distribution and markets. Accurate models for 

load demand forecasting are essential to the operation and planning of a power system. 

However, because of the increasing PV penetration at the distribution system, mainly 

the small size of the roof-top PV systems, the existing forecast model’s accuracy 

drops. Because all of those methods require proper set of data however, as the number 

of BTM PV systems increases, the collected data by system operators become related 

to net demand, rather than the actual power demand considering that the distribution 

systems are monitored only at the substations between the transmission and 

distribution networks. As a result of this, determining the actual power demand of the 

customers become problematic. 

The main motivation of this thesis is to develop a method for predicting actual load 

demand with better accuracies. Although the main focus of the thesis was the 

predicting actual load demand, a method for predicting BTM PV generation is also 

developed. The proposed method predicts actual load demand by assuming: 

• the rated power and location of every single PV system in considered area is 

known.  

• Any obstacle except moving clouds does not block sunlight over the PV 

systems during the day. 

• Any factor affecting the efficiency of PV systems affects all PV systems in 

considered area in the same way. 

The contribution of the proposed work can be listed as follows: 

• The proposed method provides actual load demand prediction. 
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• The proposed method does not require continuous measurement of every 

single PV system at the considered area, rather characterizes the generation 

profiles of PV systems at different locations under various weather conditions 

based on prior measurements. 

• Communication burden of the proposed method is low.  

• Computational complexity of the proposed method is low. 

• The proposed method provides automatic weather condition classification 

based on the measurement to prevent continuous data acquisition from 

meteorological center and to improve accuracy of available weather forecasts. 

Future work can focus on demonstrating the algorithm on real distribution system with 

real data. In addition, the algorithm can be demonstrated on larger cities with larger 

data set. Finally, further analysis of the algorithm’s sensitivity to additional system 

changes can be investigated.
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APPENDIX A 

6. 33 BUS RADIAL DISTRIBUTION SYSTEM 

 

Figure A- 1. 33 Bus Radial Distributon Network 
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Table A- 1. Bus Data 

Bus i Type Pd(kW) Qd(kVar) 

1 3 0 0 

2 1 100 60 

3 1 90 40 

4 1 120 80 

5 1 60 30 

6 1 60 20 

7 1 200 100 

8 1 200 100 

9 1 60 20 

10 1 60 20 

11 1 45 30 

12 1 60 35 

13 1 60 35 

14 1 120 80 

15 1 60 10 

16 1 60 20 

17 1 60 20 

18 1 90 40 

19 1 90 40 

20 1 90 40 

21 1 90 40 

22 1 90 40 

23 1 90 50 

24 1 420 200 

25 1 420 200 

26 1 60 25 

27 1 60 25 

28 1 60 20 

29 1 120 70 

30 1 200 600 

31 1 150 70 

32 1 210 100 

33 1 60 40 
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Table A- 2. Branch Data 

From bus To bus r (Ω) x (Ω) b 

1 2 0.0922 0.0470 0 

2 3 0.4930 0.2511 0 

3 4 0.3660 0.1864 0 

4 5 0.3811 0.1941 0 

5 6 0.8190 0.7070 0 

6 7 0.1872 0.6188 0 

7 8 0.7114 0.2351 0 

8 9 1.0300 0.7400 0 

9 10 1.0440 0.7400 0 

10 11 0.1966 0.0650 0 

11 12 0.3744 0.1238 0 

12 13 1.4680 1.1550 0 

13 14 0.5416 0.7129 0 

14 15 0.5910 0.5260 0 

15 16 0.7463 0.5450 0 

16 17 1.2890 1.7210 0 

17 18 0.7320 0.5740 0 

2 19 0.1640 0.1565 0 

19 20 1.5042 1.3554 0 

20 21 0.4095 0.4784 0 

21 22 0.7089 0.9373 0 

3 23 0.4512 0.3083 0 

23 24 0.8980 0.7091 0 

24 25 0.8960 0.7011 0 

6 26 0.2030 0.1034 0 

26 27 0.2842 0.1447 0 

27 28 1.0590 0.9337 0 

28 29 0.8042 0.7006 0 

29 30 0.5075 0.2585 0 

30 31 0.9744 0.9630 0 

31 32 0.3105 0.3619 0 

32 33 0.3410 0.5302 0 

21 8 2.0000 2.0000 0 

9 15 2.0000 2.0000 0 

12 22 2.0000 2.0000 0 

18 33 0.5000 0.5000 0 

25 29 0.5000 0.5000 0 
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APPENDIX B 

7. POWER FLOW RESULT FROM MATPOWER 

 

Figure B- 1. Power Flow Result from MATPOWER 
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Figure B -1. Power Flow Result from MATPOWER (cont’d) 
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Figure B -1. Power Flow Result from MATPOWER (cont’d) 

 

 


