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ABSTRACT 

 

RADAR RESOURCE ALLOCATION OPTIMIZATION IN PHASED ARRAY 

RADAR SYSTEMS 

 

Serbest, İzzet 

Master of Science, Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Mustafa Kuzuoğlu 

 

September 2019, 74 pages 

 

The demand for enhanced radar technologies has grown while mission requests have 

become more complex. Development of Active Electronically Scanned Array (AESA) 

Technologies has created enormous functional achievements. Development of radar 

platforms has led to the radar resource allocation issues and adaptive Radar Resource 

Management (RRM) studies for Multi-Function Radars. Combining the functionality 

of different tasks in one special device also makes resource allocation process more 

challenging due to its comprehensive capabilities. Such complicated systems have 

become an example of technology in which multiple tasks can share multiple 

resources in order to satisfy their requirements. Therefore, resource optimization 

strategy is becoming more crucial for radar systems. 

This thesis is mainly focused on radar resource allocation in order to ensure 

optimization of radar resources in an efficient way. A proposed resource allocation 

approach described in [1] is applied in detail. Optimization-based measurement 

policies are studied for online beam scheduling in real-time. Radar tasks by which 

resource allocation is held are approached like series of independent tracking and 

searching subtasks in the system. Using the independent subtask approach makes 

optimization easier and converts it to a known general integer linear programming 
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problem. The optimization problem is modeled to maximize overall utility function 

based on tracking quality in real time while meeting resource constraints. Connection 

of radar tasks is handled via constraints of the resources, and the constraints are 

included in a resource allocation algorithm using Lagrange relaxation method. 

In addition, different performance measures are used in optimization to reflect 

different aspects which are important at the slow time level. As an example, 

implementation and testing of tracking in clutter using Probabilistic Data Association 

is studied. Using PDA filter, control of the gating thresholds gives rise to a different 

optimization problem solution. 

 

Keywords: Sensor Management, Resource Allocation, Optimization-based 

Scheduling, Lagrange Relaxation Method, Dynamic Programming  
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ÖZ 

 

FAZ DIZILI RADAR SISTEMLERINDE KAYNAK TAHSISI 

OPTIMIZASYONU 

 

Serbest, İzzet 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği 

Tez Danışmanı: Prof. Dr. Mustafa Kuzuoğlu 

 

Eylül 2019, 74 sayfa 

 

Gelişerek artan ve karmaşık hale gelen görev ihtiyaçları nedeniyle gelişen radar 

teknolojilerine olan gereksinim artmaktadır. Özellikle elektronik tarama dizili radar 

teknolojisi, radarların fonksiyonel özelliklerini büyük ölçüde geliştirmiştir. Fakat bu 

gelişim ile artan görev yoğunluğu, radar kaynak tahsisi sorununu ortaya çıkarmıştır. 

Birden fazla ihtiyacın, tek bir kaynağı kullanması, radarlarda kaynak ihtisasının 

optimizasyonunu zorunlu hale getirmiştir. 

Bu tezde, radarın huzme-zaman kaynak planlamasını verimli bir şekilde yapabilmek 

için geliştirilen gerçek zamanlı Lagrange rahatlatma modeli [1] gerçeklenmeye 

çalışılmıştır. Model, huzme planlaması yapabilmek için radarın takip ve arama 

görevlerini birbirinden bağımsız olacak şekilde tanımlamış ve optimizasyon 

problemini çözümü bilinen tamsayı doğrusal problemine dönüştürmüştür. Bu şekilde 

hedeflerin belirli bir zaman diliminde izleme kalitesini maksimuma çıkarmayı 

amaçlamaktadır. Görev paylaşımında kullanılan kısıtlamalar, Lagrange rahatlatma 

metodundan yararlanılarak optimizasyon problemine dahil edilmiştir.  

Bu tezde ayrıca modele, farklı performans ölçümleri eklenerek farklı senaryolar 

oluşturulmuş optimizasyon modelinin gelişimi gözlenmiştir. Olasılıklı Veri 

İlişiklendirme filtresinin karmaşa içeren izlemede uygulanması ve test edilmesi örnek 
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olarak verilebilir. Olasılıklı veri ilişiklendirmenin kullanılmasıyla birlikte kontrol 

edilen kapı eşikleri, farklı bir optimizasyon problemi çözümüne yol açar. 

Anahtar Kelimeler: Sensör Yönetimi, Kaynak Tahsisi, Optimizasyon Tabanlı 

Planlama, Lagrange Rahatlatma Yöntemi, Dinamik Programlama 
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CHAPTER 1  

 

1. INTRODUCTION 

 

1.1. Overview of Radar Resource Management 

Multi-function (MF) radar platforms are enhanced systems which must satisfy a wide 

range of on-demand services. These services, which can be considered as tasks, can 

be target tracking, sector scanning, missile guidance, terrain imaging (Synthetic-

aperture radar - SAR), etc. Although these services seem to be extensive, they are 

strictly limited, and resource centers usually have limited capacity to host these data 

and applications. This leads to a strong motivation to design scheduling policies and 

optimize utilization of services. In radar, the scheduling policies of the tasks are 

managed by a central subsystem which is called Radar Resource Management (RRM). 

The subsystem, which is critical to the operational success of an MF Radar, optimizes 

the radar resource usage in order to achieve maximum performance where the 

optimality is defined according to pre-defined cost functions. A typical resource 

management model is stated in [2] and it is given in Figure 1.1. 
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Figure 1.1: An MF Radar Resource Management Model [2] 

In order to describe a resource management problem, system performance criteria and 

its resources must be well defined. The main goal of resource management is to 

increase the overall system performance, which usually depends on the quality of the 

radar output, while maintaining the radar resources below the acceptable level. The 

main resources of the radar are energy, time and processing budget. The challenge of 

resource management emerges when these resources are not sufficient to perform all 

the tasks. Some of the tasks might be done by degraded performance due to non-

available resources or may not even be able to be performed. In these cases, to 

maintain acceptable quality of service (QoS), several resource management 

algorithms are used in the radar systems.  

RRM algorithms are grouped into five following categories [2]: 

• Artificial intelligence algorithms 

• Quality of service (QoS) resource allocation management (Q-RAM) 

algorithms 
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• Waveform-aided algorithms 

• Adaptive update rate algorithms 

• Dynamic programming algorithms 

All the algorithms stated above must perform two basic issues which are task 

prioritization and task scheduling. These algorithms are also essentially the elements 

of two classes which are entitled as “non-adaptive” or “adaptive”. In non-adaptive 

scheduling algorithm, the radar scheduler includes some heuristic rules and follows a 

pre-defined guideline. Therefore, the resource evaluation is not performed in real-

time. In adaptive scheduling, algorithms are much more complicated than non-

adaptive case and they have much more computational complexity, however they are 

more efficient. Because of high performance requirements particularly, advanced MF 

Radars mostly use adaptive scheduling algorithms. 

Basic outlines of existing resource management algorithms are summarized as 

follows. 

Artificial intelligence algorithms: These algorithms handle resource management 

problems by using neural network, expert system or fuzzy logic approaches. Neural 

network algorithms are used in not only task prioritization but also in task scheduling 

issues. RRM is handled by using multi-layer neural systems. Feature of task vector is 

the input to the multi-layer neural network, whose layers are linked together with 

specific weight values. In the testbed, training data is used to extract the weights of 

the neurons.  In the radar operation, the trained neural network generates the priorities 

based on all pre-given target feature data and task scheduling is performed based on 

these results [3-5]. In expert systems, system control operations are decided by the 

database of the pre-determined rules. Other artificial intelligence algorithms, such as 

fuzzy logic approaches, resolve task priority issues in terms of an adaptive scheduler. 

The basic task of the adaptive scheduler is to decide the task prioritization by means 

of the fuzzy variables which are commonly tracking quality, friend or foe information 

and target behavior kinematics.  
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Quality of service (QoS) Algorithms: Q-RAM algorithms are based on the concept 

of quality of service (QoS). Originally, QoS algorithms have been introduced by 

International Telecommunication Union in 1994 in the field of internet services. 

Afterwards, similar algorithms have been utilized in radar applications [6]. These 

algorithms are similar to dynamic programming algorithms, but the aim of Q-RAM 

algorithms is to select an operation point for each task to maximize the global system 

utility in the system operation. Individual tasks in the system routine are combined in 

an appropriate way to describe the overall utility function, which is also called as 

quality space. Task scheduling and prioritization decisions are made by the operation 

setpoint where the compound utility function and resource constraints met.  

Mathematical representation of this approach is expressed below [7]. 

   𝑠𝑢𝑏𝑗𝑒𝑐𝑡 𝑡𝑜: ∀1≤𝑘≤𝑚    ∑ 𝑅𝑖𝑘 ≤ 𝑅𝑖𝑘
𝑚𝑎𝑥𝑛

𝑖=1  

∀1≤𝑘≤𝑚,1≤𝑖≤𝑛   𝑅𝑖𝑘 = 𝑔𝑖𝑘(∅𝑖) 

𝑢𝑖  𝑖𝑠 𝑡ℎ𝑒 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑖
𝑡ℎ 𝑡𝑎𝑠𝑘 

∅𝑖 𝑠𝑒𝑡 − 𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑎𝑠𝑘 𝑖 

𝑅𝑖𝑘 𝑖𝑠 𝑡ℎ𝑒 𝑘
𝑡ℎ 𝑠ℎ𝑎𝑟𝑒𝑑 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 𝑜𝑓 𝑡𝑎𝑠𝑘 𝑖  

𝑔 𝑖𝑠 𝑎 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 𝑡ℎ𝑎𝑡 𝑠𝑝𝑒𝑐𝑖𝑓𝑖𝑒𝑠 𝑡ℎ𝑒 𝑎𝑚𝑜𝑢𝑛𝑡 𝑜𝑓 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒𝑠 𝑟𝑒𝑞𝑢𝑖𝑟𝑒𝑑 

𝑓𝑜𝑟 𝑎 𝑡𝑎𝑠𝑘 𝑡𝑜 𝑜𝑝𝑒𝑟𝑎𝑡𝑒 𝑎𝑡 𝑒𝑎𝑐ℎ 𝑠𝑒𝑡 − 𝑝𝑜𝑖𝑛𝑡 

𝑤ℎ𝑒𝑟𝑒 𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑢𝑡𝑖𝑙𝑖𝑡𝑦 𝑎𝑛𝑑 𝑚 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑟𝑒𝑠𝑜𝑢𝑟𝑐𝑒 

  The details of such formulations can be found in the literature [6] and [8]. 

Waveform-Aided Algorithms: The aim of these algorithms is to select the most 

effective waveforms from a fixed library while maintaining the high-level radar 

performance. In waveform-aided algorithms, waveform selection can be made by 

different approaches. One example to minimize the tracking errors is presented by 

 𝑚𝑎𝑥𝑖𝑚𝑖𝑧𝑒: 𝑢(∅1,, ∅2,. . . , ∅𝑛 ) =  ∑𝑢𝑖(∅𝑖)

𝑛

𝑖=1

 (𝑆𝑦𝑠𝑡𝑒𝑚 𝑈𝑡𝑖𝑙𝑖𝑡𝑦) (1.1) 
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Scala [9]. In the paper, radar waveforms are selected for providing minimum target 

uncertainty and minimum detection time. In [10], waveforms are selected with the 

help of a neural network algorithm to minimize the clutter and jamming effect. 

Examples of such approaches exist in the literature [11-13].  

Adaptive Update Rate Algorithms: These algorithms can be considered as 

extensions of traditional trackers having uniform update rates. The main purpose of 

such algorithms is to maintain a required level of tracking performance. Therefore, the 

update rate is closely related to the radar surroundings, target characteristics, and 

target maneuvering level. In contrast to waveform-aided algorithms, the adaptive 

update rate algorithms aim to minimize the target revisit time rather than minimizing 

environmental degradation. Spacing in track update tasks results less usage of the 

radar resources. Therefore, adaptive update rate algorithms are resource-aided 

algorithms. Adaptive update rate algorithms are described in [10] and [14]. 

Dynamic Programming Algorithms: Dynamic programming algorithms approach 

the resource management problem as if it is Multi-Armed Bandit Problem (MAP) 

involving Hidden Markov Models (HMM). The aim of these algorithms is to 

maximize radar performance selecting the best task decision based on a discrete time 

stochastic control process model. Since radar technologies are gradually becoming 

more complex, radar system operations and their constraints are also getting more 

complicated. Therefore, finding the optimal solution requires high computational 

workload because of the dimensionality problem of the states. In this approach, the 

most important workload is to set the system objective function and its constraints. 

Since MF Radar is one of the most complicated sensors in military platforms, it is hard 

to cover all the tasks and constraints because of the difficulty in computational 

implementation. Objective function is usually non-linear and the optimization 

problem is NP-hard. In addition to that, stochastic approach used for modeling also 

creates the complexity. Nevertheless, this research area has attracted attention 

recently, since these algorithms provide encouraging solutions by employing digital 

https://en.wikipedia.org/wiki/Mathematical_model
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optimization techniques. Further researches in this direction are explained in [15] and 

[16]. 

 In this thesis, one of the specialized dynamic programming algorithms is 

implemented.   

1.2. Outline and Summary of Contributions 

The approach given in [1] is taken as a basis and the method is further developed and 

implemented in the thesis. A study has been performed to find out how the algorithm 

developed in [1] performs according to changing system models and environmental 

situations. This thesis is not a direct implementation of [1], and the method is enhanced 

and modified in certain aspects. The main contributions and modifications can be 

summarized as follows 

• In addition to the Kalman filter, we have employed a tracking algorithm by 

adding PDA filter. 

• The approaches which are presented in [1] such as Markov decision process 

modelling, two timescales scheduling are also utilized in the thesis. However, 

unlike [1], a different approach is used to create the cost and utility functions.  

• We have developed the simulation environment by adding track initiation, 

“tracking mixes” event, different kinematic models, missing targets and clutter 

in the trajectories.  

• Target tracking techniques such as Track While Scan (TWS), adaptive 

tracking and Lagrange-based tracking have been compared with each other, 

and the performance of the algorithms are discussed. 

1.2.1. Chapter 2 

This chapter presents brief information about radar systems. Although basic working 

principles of the radar have stayed the same since its first release, there have been 

many developments and improvements on radar capabilities. Therefore, the basic 

principle of operation of radar is simple to understand, however, the system theory 
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can be quite complex.  The information described in this chapter will clarify overall 

concept of the study.  In the chapter, fundamentals of radar principle are introduced. 

Radar block diagram and its operation are described briefly. This section also presents 

radar signal modelling, detection and estimation theory. After presenting the 

fundamentals of radar system, measurement and target motion model are also 

explained in this chapter. 

1.2.2. Chapter 3 

This section describes the structure of the radar resource management model on which 

the thesis is based. To describe the optimization problem, utility functions based on 

performance measures, target state dynamics, cost functions and constraints are 

explained in detail. Besides that, for the solution of optimization problem, to find the 

optimum policy, problem relaxation techniques based on Lagrange duality and the 

other assumptions are described further. 

The following parts of the chapter provide the theoretical background of Lagrange 

relaxation and solution approach of the optimization problem. Furthermore, the model 

and algorithms that we used in this thesis are also detailed. The solution considers an 

online implementation of optimization problem, which operates in real-time. 

1.2.3. Chapter 4 

In the chapter, the simulated target tracking scenarios with different performance 

measures are performed.  The experimental results used to make a comparison on 

different performance models are also discussed. Comments are provided for each 

scenario of the model, which lead to recommendations for future studies. 

 

 

 



 

 

 

8 

 

 

 

 

 



 

 

 

9 

 

CHAPTER 2  

 

2. FUNDAMENTALS OF THE RADAR PRINCIPLE 

 

2.1. Introduction to Radar 

A radar is a system that uses electromagnetic waves in order to determine the velocity, 

location (distance), elevation (altitude) of the objects and the direction of travel. Radar 

systems, like other complex electronics systems, are composed of several major 

subsystems and many individual circuits. Although modern radar systems are quite 

complicated, their operation can be easily understood by using a basic block diagram 

of the system which is shown in Figure 2.1. Most radar systems can be considered as 

a variation of this system. In order to better understand the radar structure, elements 

of the block diagram are described briefly in the following sections. 
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Figure 2.1: A Typical Block Diagram of Multi-function Radar [17] 

2.1.1. Subsystems of Multi-Function Radar 

2.1.1.1. Transmitter Subsystem 

MF radar steers the signal in a different way than traditional radars produced in earlier 

years. In contrast to traditional radars, MF Radar uses a large number of 

Transmitter/Receiver blocks, named as TR modules, just behind the planar array 

(composed of many small antennas on a flat panel) for signal amplification and 

transmission purposes. Using this type of modules enables more efficient usage of 

energy as well as steering the beam electronically. This method also allows radar to 

accelerate beam position movements. 

In order to detect the objects / targets surrounding the radar, a pulsed signal is 

generated by the RF synthesizer, which is commonly called as Direct Digital 

Synthesis. Then, the signal is transmitted to the input of TR modules under processor 

control. Each TR module changes the phase of the signal in a unique way in order to 

achieve spatial selectivity of the signal which is known as beamforming.  The signals 
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from each element are added together in the desired direction, and beamforming 

technique cancel out other signal directions known as interference. This capability 

obviates the need for motors and moving parts, which increases the reliability and 

agility but also it can decrease the cost of the system. Final stage of the transmitter 

path, planar array antenna steers the radar beam. 

2.1.1.2. Receiver Subsystem 

Reflected signal from the target, which is time delayed, Doppler shifted, attenuated 

version is received by T/R modules. Commonly, T/R modules convert the signal to IF 

frequency in the first step. Secondly, signal is delivered to analog-digital converters 

(ADC) and first signal processing step, which includes digital down conversion and 

range gating, occurs in these time intervals. Furthermore, the received signals from 

each element are added together in order to realize the digital beamforming operation. 

After receiver subsystem, the digitized signal is sent to the radar processing subsystem 

for advanced signal processing operations. 

2.1.1.3. Radar Processing Subsystem 

In general, Radar Processing Subsystem have two basic functions. These are: 

• performing, controlling and scheduling radar tasks called as radar system 

management function. 

• processing all incoming received radar data, preparing and servicing them 

properly for users called as radar signal processing function. 

The most important issue to be mentioned is that radar resource management is 

performed in this subsystem.  
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2.1.2. Radar Signal Modelling 

For comprehensive information, radar signal modelling also needs to be explained. 

This section presents the basic signal model used in the radar operations. In MF Radar, 

all incident signals are summed coherently with a specific time delay (or phase shift) 

at each antenna element.  

To define the signal, let us denote the antenna element position 𝒓 = (𝑥, 𝑦, 𝑧)𝑇  in terms 

of a Cartesian coordinate system. In collaboration with the antenna position, the angle 

of incidence of an incoming plane wave is also expressed by 𝒖 which is the unit 

direction vector in the antenna coordinate system. 𝒖 is also named as “direction of 

cosines” and is shown in Figure 2.2. 

 

Figure 2.2: Direction Cosines [18] 

The path length difference between the antenna element at position 𝒓 and the origin is 

described by (2.1).  

 

After describing spatial information, a transmitted signal at each element is expressed 

as follows [18],  

 

 𝒓𝑇𝒖 = 𝑥𝑢 + 𝑦𝑣 + 𝑧𝑤 =  |𝑟|. |𝑢|=1. cos(𝑟, 𝑢)   (2.1) 

 𝑠𝑟(𝑡, 𝒖) = 𝑏. 𝑒
𝑗2𝜋𝑓𝑡. 𝑒𝑗2𝜋𝑓𝒓

𝑇𝒖
𝒄⁄    (2.2) 
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where 𝑓 is the transmit frequency and 𝑐 is the velocity of light. Correspondingly, the 

designated beam in direction 𝑢0 with 𝑁 antenna elements are expressed as (2.3). 

The superscript 𝑯 indicates conjugate transpose transformation. 𝒂 𝑯(𝒖𝟎)  is the 

steering vector. Finally, for the case of a linear antenna with equidistant elements 

where 𝑥𝑘 =
𝑘𝑑λ

2
 (distance of the elements is 

𝑑λ

2
) results in the well-known function 

 

In addition to the transmitted signal, each returning signal can be expressed as a set of 

reflections and each reflected signal is a time delayed, Doppler shifted, phase shifted 

and attenuated version of the transmitted signal which come back to the radar.  Assume 

that the reflection process is linear and frequency independent within the bandwidth 

of the transmitted pulse. The returned signal from a target is then modelled as: 

 

where 𝑔𝑖 is the radar cross section of a reflector 𝑖, 𝜃𝑖 is the phase shift, 𝑉𝑟 is the radial 

velocity between the antenna and the target creating a Doppler frequency shift, and 𝜏𝑖 

is the time delay. Path losses, antenna gain, and other losses are included in 𝐺. 

 𝑠𝑡(𝒖, 𝒖𝟎) = ∑𝑒−
𝑗2𝜋𝑓𝒓𝒌

𝑇𝒖𝟎
𝑐⏟      

�̅�𝑘(𝒖𝟎)

𝑁

𝑘=1

. 𝑠𝒓𝒌(𝑡, 𝒖) = 𝒂 
𝑯(𝒖𝟎). 𝒔(𝑡, 𝒖) (2.3) 

 

𝑠𝑡(𝒖, 𝒖𝟎) = ∑𝑠𝑘(𝒕, 𝒖). 𝑒
−
𝑗2𝜋𝑓𝑥𝑘𝒖𝟎

𝑐

𝑁

𝑘=1

 

   

= ∑𝑏. 𝑒𝑗2𝜋𝑓𝑡. 𝑒
𝑗2𝜋
λ
.x𝑘(𝒖−𝒖𝟎)

𝑁

𝑘=1

 

 

 

 = 𝑏. 𝑒𝑗2𝜋𝑓𝑡.∑ 𝑒
𝑗2𝜋
λ
.x𝑘(𝒖−𝒖𝟎)

𝑁

𝑘=1

 (2.4) 

 𝑠𝑟(𝒖, 𝒖𝟎) =  {∑𝑏. 𝐺 𝑒𝑗2𝜋𝑓(𝑡+
2𝑉𝑟
c
𝑡)

𝑁

𝑘=1

. 𝑒
𝑗2𝜋
λ
.x𝑘(𝒖−𝒖𝟎)} {∑𝑔𝑖 . 𝑒

𝑗2𝜋𝑓(−𝜏𝑖)+𝜃𝑖

𝑖

} (2.5) 
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In equation 2.5, radar cross section (RCS) can be considered as the ratio of backscatter 

power density from the target to the power density intercepted by the target. Hence, 

as RCS gets larger, targets are detected more easily. In general, the RCS of a target 

depends on the orientation and target kinematics which is relative to the line of sight 

of the radar. The shape of the target and the line of sight of the radar cause the 

amplitude and phase of the signal to fluctuate. Therefore, RCS needs to be modeled 

in terms of a probability density function. Peter Swerling developed statistical 

representations of RCS referred to as the Swerling models. Models stated in [19] are 

as follows. 

Swerling I Target 

In Swerling I model, it is assumed that magnitude of the backscattered signal is 

relatively constant in each coherent processing interval, but it varies independently 

from scan to scan. Coherent Processing Interval fluctuations in Swerling I targets can 

be modelled by the Rayleigh-Function which is, 

𝑤ℎ𝑒𝑟𝑒 𝜎𝑎𝑣𝑒𝑟𝑎𝑔𝑒  𝑖𝑠 𝑎𝑟𝑖𝑡ℎ𝑚𝑒𝑡𝑖𝑐 𝑚𝑒𝑎𝑛 𝑜𝑓 𝑅𝐶𝑆 𝑣𝑎𝑙𝑢𝑒𝑠 

Swerling II Target 

This model is similar to Swerling I, except that the RCS changes from pulse to pulse 

in each dwell time. The Swerling cases I and II assumes that the target is built with 

many independent scatterers of roughly equal areas. 

Swerling III Target 

In Swerling III, the RCS varies according to a Chi-squared probability density function 

with four degrees of freedom (𝑚 =  2). The RCS is constant for a single scan just as 

in Swerling I type. However, the scattering scheme is different from Swerling I and 

that causes the target to be modelled with a different probability distribution. 

Probability distribution of the model can be viewed as: 

 𝑃(𝜎) =  
1

𝜎𝑎𝑣𝑒𝑟𝑎𝑔𝑒
. 𝑒𝑥𝑝 (

−𝜎

𝜎𝑎𝑣𝑒𝑟𝑎𝑔𝑒
) (2.6) 
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Swerling IV Target 

This model is similar to Swerling III, but there is one exception that the RCS changes 

from pulse to pulse in each dwell time. 

Swerling V Target 

The Swerling case V is a reference value with constant radar cross-section. In this 

case, it is assumed that magnitude and phase information of the backscattered signal 

remain the same all target scan. 

2.2. Target Detection 

After MF Radar receives the signal, it must be determined whether it is generated by 

a target or not. The received signal goes directly to analog to digital converter after 

the band pass filter. By the help of [20], down-converted IF signal can be modelled 

as: 

 

where 𝜔0 = 2𝜋𝑓0 is the carrier frequency,  𝑟(𝑡) is amplitude information of the 

𝑣(𝑡) and 𝜑(𝑡) is the phase information. At the same time, noise is added to the signal 

after passing through the receiver subsystem. Noise is assumed to be additive zero 

mean white gaussian distribution 𝑛(𝑡) with variance 𝛹2.  But IF filter output can be 

viewed as complex random variable so the noise is also composed of quadrature 

components (𝑛𝐼(𝑡), 𝑛𝑄(𝑡)). In addition to that, noise is spatially incoherent and 

 𝑃(𝜎) =  
4𝜎

(𝜎𝑎𝑣𝑒𝑟𝑎𝑔𝑒)2
. 𝑒𝑥𝑝 (

−2𝜎

𝜎𝑎𝑣𝑒𝑟𝑎𝑔𝑒
) (2.7) 

 𝑣(𝑡) =  𝑣𝐼(𝑡) 𝑐𝑜𝑠𝜔0𝑡 + 𝑣𝑄(𝑡) sin𝜔0𝑡 = 𝑟(𝑡)𝑐𝑜𝑠(𝜔0𝑡 − 𝜑(𝑡))  (2.8) 

 
 

𝑣𝐼(𝑡) =  𝑟(𝑡)𝑐𝑜𝑠(𝜑(𝑡)) 
(2.9) 

 
 

𝑣𝑄(𝑡) = 𝑟(𝑡) sin(𝜑(𝑡)) 
(2.10) 
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uncorrelated with the received signal. The joint Probability Density Function (pdf) of 

the two random variables are given as, 

 

If we assume that our target return signal is sinusoidal with amplitude A, the output 

of the IF filter can be described by the joint probability density function of noise and 

sine wave which is (detailed information can be found in [21]), 

If we want to extract the amplitude information, we need to integrate the pdf (2.12) 

over 𝜑(𝑡). Thus, 

where the integral inside Eq. (2.13) is known as the modified Bessel function of zero 

order, 

As a result, 𝑝𝑑𝑓 of r(t) is given in (2.15) which is the Rician probability density 

function. If  
𝐴

𝛹2
 is equal to zero, then the probability model turns into Rayleigh. 

However, if 
𝐴

𝛹2
 is too large, then it becomes Gaussian density. 

 𝑓(𝑛𝐼 , 𝑛𝑄) =
1

2𝜋𝛹2
𝑒𝑥𝑝 (−

𝑛𝐼
2 + 𝑛𝑄

2 

2𝛹2
) (2.11) 

 𝑓(𝑟, φ) =
1

2𝜋𝛹2
𝑒𝑥𝑝 (−

𝑟2 + A2 

2𝛹2
) 𝑒𝑥𝑝 (

𝑟𝐴𝑐𝑜𝑠 φ

𝛹2
) (2.12) 

 

𝑓(𝑟) =  ∫ 𝑓(𝑟, φ)𝑑φ
2𝜋

0

=
𝑟

𝛹2
exp (−

𝑟2 + 𝐴2

2𝛹2
)
1

2𝜋
∫ 𝑒𝑥𝑝 (

𝑟𝐴𝑐𝑜𝑠 φ

𝛹2
)

2𝜋

0

𝑑φ 

(2.13) 

 𝐼0(𝛽) =
1

2𝜋
∫ 𝑒𝛽𝑐𝑜𝑠𝜃
2𝜋

0

𝑑θ  (2.14) 

 𝑓(𝑟) =
𝑟

𝛹2
𝐼0 (

𝑟𝐴

𝛹2
) exp(−

𝑟2

2𝛹2
) (2.15) 
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Since the signal is modeled by a probabilistic distribution, we need to do a test to 

check whether the target exists. The choice is related to hypothesis testing, which is 

widely used in detection theory. In this case, the hypothesis is based on the decision 

which is evaluated according to the position of the received signal level and detection 

threshold. So, the target is detected whenever it exceeds the threshold value. 

 

𝐻1 hypothesis shows that the target is detected, and  𝐻0 shows that target is not 

detected. In addition to these, there are four possible outcomes which are based on this 

hypothesis: 

• 𝐻1 given that 𝐻1 is true, correct detection. 

• 𝐻1given that 𝐻0 is true, false alarm. 

• 𝐻0given that 𝐻0 is true, correct dismiss. 

• 𝐻0 given that 𝐻1 is true, missed detection 

 

The efficiency of the radar detection is described with the probability of these 

outcomes, most often given by probability of detection and probability of false alarm.  

If the target is present and signal r(t) will exceed the threshold 𝑉𝑇 then the probability 

of detection is found by integrating 𝑝𝑑𝑓 of r(t) over the interval {𝑉𝑇 , ∞} which is, 

In the case of the target not being present, the detection is incorrect, signal r(t) will 

exceed the threshold 𝑉𝑇  and it is called as false alarm. In this case, amplitude of the 

received signal is zero and the equation 2.15 turns into,  

 𝐻1: 𝑣(𝑡) = 𝐴𝑐𝑜𝑠(2𝜋𝑓0𝑛 + 𝜑) + 𝑤(𝑛) (2.16) 

 𝐻0: 𝑣(𝑡) = 𝑤(𝑛) (2.17) 

 
𝑃𝐷 = ∫

𝑟

𝛹2

∞

𝑉𝑇

𝐼0 (
𝑟𝐴

𝛹2
) exp (

𝑟2 + 𝐴2

2𝛹2
)𝑑𝑟 

(2.18) 

 𝑓(𝑟) =
𝑟

𝛹2
exp(−

𝑟2

2𝛹2
) (2.19) 
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 Corresponding probability of false alarm is represented by, 

 

2.3. Formation of Scans 

The main task of radar is to search targets of interest as well as providing the target 

parameters which are range and angular position. This task is accomplished by 

radiating multiple pulses called as scan. In order to investigate how radar takes 

information of scans, it would be better to start with the basic one pulse form of the 

radar range equation, which is stated in [21], 

 

 

𝐸𝑡  𝑖𝑠 𝑡ℎ𝑒 𝑒𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑒𝑑 𝑝𝑢𝑙𝑠𝑒 

𝐺𝑡 𝑖𝑠 𝑡ℎ𝑒 𝑔𝑎𝑖𝑛 𝑜𝑓 𝑡ℎ𝑒 𝑡𝑟𝑎𝑛𝑠𝑚𝑖𝑡𝑡𝑖𝑛𝑔 𝑎𝑛𝑡𝑒𝑛𝑛𝑎 

𝐴𝑟 𝑖𝑠 𝑡ℎ𝑒 𝑒𝑓𝑓𝑒𝑐𝑡𝑖𝑣𝑒 𝑎𝑝𝑒𝑟𝑡𝑢𝑟𝑒 𝑜𝑓 𝑡ℎ𝑒 𝑟𝑒𝑐𝑒𝑖𝑣𝑖𝑛𝑔 𝑎𝑛𝑡𝑒𝑛𝑛𝑎 

𝑟 𝑖𝑠 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑟𝑎𝑛𝑔𝑒 

𝑘𝑇𝑠𝐵𝑛 = 2𝜎
2 𝑖𝑠 𝑡ℎ𝑒 𝑛𝑜𝑖𝑠𝑒 𝑝𝑜𝑤𝑒𝑟, 𝑤ℎ𝑒𝑟𝑒 𝑘 𝑖𝑠 𝑡ℎ𝑒 𝐵𝑜𝑙𝑡𝑧𝑚𝑎𝑛𝑛′𝑠 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡   

𝑇𝑠 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑦𝑠𝑡𝑒𝑚 𝑛𝑜𝑖𝑠𝑒 𝑡𝑒𝑚𝑝𝑒𝑟𝑎𝑡𝑢𝑟𝑒 

𝐵𝑛 𝑖𝑠 𝑡ℎ𝑒 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑟 𝑛𝑜𝑖𝑠𝑒 𝑏𝑎𝑛𝑑𝑤𝑖𝑡ℎ 

𝐿 𝑖𝑠 𝑎 𝑔𝑒𝑛𝑒𝑟𝑖𝑐 𝑙𝑜𝑠𝑠 𝑡𝑒𝑟𝑚 

If we formulate the equation in a simpler form, the equation turns into (2.22). 

 𝑃𝑓𝑎 = ∫
𝑟

𝛹2

∞

𝑉𝑇

exp(
𝑟2

2𝛹2
)𝑑𝑟 = exp (

−𝑉𝑇
2

2𝛹2
) (2.20) 

 𝑆𝑁𝑅 = 
𝐸𝑛𝑒𝑟𝑔𝑦 𝑜𝑓 𝑠𝑖𝑔𝑛𝑎𝑙 𝑎𝑓𝑡𝑒𝑟 𝑚𝑎𝑡𝑐ℎ𝑒𝑑 𝑓𝑖𝑙𝑡𝑒𝑟

𝑛𝑜𝑖𝑠𝑒 𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒
=  

𝐸𝑡𝐺𝑡𝐴𝑟𝑅𝐶𝑆

4𝜋2𝑟4𝑘𝑇𝑠𝐵𝑛𝐿
 (2.21) 
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In dB scale, 

 

where 𝐺𝑖𝑛𝑡 is a radar system performance variable. But this is the case when the target 

is in the line of sight of the radar. Most of the time, targets do not remain in the beam 

sufficiently, so range equation is needed to update by using antenna beamwidth 

position of the target, then updated range equation is as follows. 

where 𝐵 is the double sided bandwith, 𝜑𝑏 is the azimuth direction of the beam. The 

detailed equation is given in [22] and [23]. As mentioned above, in search scan 

operations, amplitude and phase information of the receiving signal does not remain 

constant because the target does not remain sufficiently in the beam. In addition, the 

RCS fluctuations will also affect the detection performance. At this situation, SNR has 

a close relationship with the probability of detection, and this can be expressed by 

approximations and one of the very accurate approximation is described by Norton in 

[23], which is given by, 

where 𝑒𝑟𝑓𝑐(𝑧) = 1 −
2

√𝜋
∫ 𝑒−𝑣

2
𝑑𝑣

𝑧

0
  is the Gauss error function.  

Furthermore, environmental factors such as clutter, atmospheric effects or electronic 

countermeasures, have an impact on the radar operation so radar should adjust itself 

to such external effects. In order to overcome these problems and improve the 

probability of detection as well as the SNR, pulse integration must be performed. Pulse 

 𝑆𝑁𝑅 = (
𝑟0
𝑟
)
4

. 𝐺𝑖𝑛𝑡. 𝑅𝐶𝑆 (2.22) 

 𝑆𝑁𝑅𝑑𝐵 =  40𝑙𝑜𝑔 (
𝑟0
𝑟
) + 𝐺𝑖𝑛𝑡,𝑑𝐵 + 𝑅𝐶𝑆𝑑𝐵   (2.23) 

 

𝑆𝑁𝑅𝑑𝐵 =  40𝑙𝑜𝑔 (
𝑟0

𝑟
) + 𝐺𝑖𝑛𝑡,𝑑𝐵 + 𝑅𝐶𝑆𝑑𝐵 − 10𝑙𝑜𝑔10(cos

𝑛(𝜑𝑏)) −

6(
(𝜑𝑏−𝜑𝑡)

2

(
𝐵

2
)
2 )  

(2.24) 

 𝑃𝐷  ≈ 0.5𝑒𝑟𝑓𝑐 (√− ln𝑃𝑓𝑎 − √𝑆𝑁𝑅 + 0.5) (2.25) 
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integration is a technique to use multiple pulses in one horizon glance. In radar theory, 

two different pulse integration techniques are performed, coherent and non-coherent 

integration. In coherent case, pulses preserve the phase relationship in each received 

pulse and this method is also called as coherent processing integration (CPI). The other 

method called as the non-coherent integration is handled by summing all sequential 

pulses without considering the phase information. With the help of pulse integration, 

the effect of environmental factors such as clutter is reduced, and SNR is increased to 

the level where it can detect the targets. In [21], it is explained how pulse integration 

effect SNR and 𝑃𝑑 over radar equation. 

• Coherent Case 

In Coherent Case, the phase information is preserved as stated before. Then 

integrating 𝑛𝑝 pulses could improve the SNR by the same factor, which is 

described as,  

𝑠(𝑡) = 𝑟𝑒𝑐𝑒𝑖𝑣𝑒𝑑 𝑠𝑖𝑔𝑛𝑎𝑙 

𝑛𝑚(𝑡) = 𝑔𝑎𝑢𝑠𝑠𝑖𝑎𝑛 𝑤ℎ𝑖𝑡𝑒 𝑛𝑜𝑖𝑠𝑒 𝑖𝑛 𝑝𝑢𝑙𝑠𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 𝑚 

𝑚 = 𝑝𝑢𝑙𝑠𝑒 𝑛𝑢𝑚𝑏𝑒𝑟 

Adding phase stabile 𝑛𝑝 pulses will yield, 

At each pulse integration step, the noise sequence would be uncorrelated and 

independent. So total noise power is degraded by the factor 𝑛𝑝. Hence, the total 

noise power of the coherent integration will be equal to the single pulse noise 

power. As a result, SNR will be improved by the factor 𝑛𝑝. 

                                   𝑦𝑚(𝑡) = 𝑠(𝑡) + 𝑛𝑚(𝑡)   (2.26) 

                 𝑧(𝑡) =  
1

𝑛𝑝
∑ 𝑦𝑚(𝑡)

𝑛𝑝

𝑚=1

= ∑
1

𝑛𝑝

𝑛𝑝

𝑚=1

[𝑠(𝑡) + 𝑛𝑚(𝑡)] (2.27) 

                         = 𝑠(𝑡) + ∑
1

𝑛𝑝

𝑛𝑝

𝑚=1

𝑛𝑚(𝑡)  (2.28) 
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Although coherent integration gives better results, since it leads to much more 

computational complexity, most radars do not perform coherent integration 

during search scans. They utilize non-coherent integration instead, which is 

explained below. 

 

• Non-Coherent Case     

In non-coherent case, preserving the phase information is not a necessity. 

However, adding pulses in different phases may cause amplitude degradation. 

To prevent this, non-coherent integration is performed whenever signal passes 

through the envelope detector. Non-coherent integration is expressed 

conveniently by the following formula. 

𝑥𝑛 is the detector output of the received signal 𝑟(𝑡). Since 𝑥𝑛
′ 𝑠 are uncorrelated, 

the joint pdf is calculated by taking convolution of the signals. 

Without further explanation, improvement factor in non-coherent integration 

is defined as, 

Details of this formulation can be found in [21]. An empirically derived 

expression for the improvement factor involved with 𝑃𝑑 and 𝑃𝑓𝑎 is reported in 

[22] and can be seen in (2.25). 

                                         𝑆𝑁𝑅𝑛𝑝 = 𝑛𝑝. 𝑆𝑁𝑅1  (2.29) 

                                                  𝑧 = ∑𝑥𝑛

𝑛𝑝

𝑛=1

 (2.30) 

                   𝑓(𝑧) = 𝑓(𝑥1) ∙ 𝑓(𝑥2) ∙ … 𝑓 (𝑥𝑛𝑝) (2.31) 

 𝐼(𝑛𝑝) =  
𝑆𝑁𝑅1
𝑆𝑁𝑅𝑛𝑝

≤ 𝑛𝑝 (2.32) 
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As can be seen from the above equations, to resolve the range and Doppler 

ambiguities, radar uses formation of scans which utilize pulse integration.  

2.4. Formation of Tracking 

Search scan is not enough to describe the evaluation of target classification. Trajectory 

of the specific targets is also needed for the quality of detection and the target 

classification. In addition to search scans, radar use tracking techniques for 

clarification of the target identity.    

In this section, system model and tracking methods used in the thesis are discussed. 

This subject has enormous number of application fields; therefore, this section only 

aims to introduce the topics planned for future usage. 

2.4.1. Target Motion Models 

Setting up the correct target motion modeling is one of the important issues for target 

tracking. Whenever there is any lack of knowledge about the state estimation, it causes 

uncertainty to increase sharply. The knowledge of the states allows to predict the 

future target dynamics clearly. Hence, it is required to describe a proper target 

behavioral model. In [23], target motion models are classified into categories which 

are stated below. 

• Non-maneuver Models  

These types of motions are described by the state vector �̇�(𝑡) = 0,𝑤ℎ𝑒𝑟𝑒 𝑥 =

[�̇�, �̇�, 𝑧]𝑇 are the Euclidian coordinate system elements. Motions in the model 

are expressed as straight-line segments and remain at constant velocity. We 

should note that when describing the target motion, the velocity is approached 

as a vector and the speed as a magnitude. Non-maneuver models are also 

referred as uniform motion models.   

 [𝐼(𝑛𝑝)]𝑑𝐵 = 6.79
(1 + 0.235𝑃𝑑)(1 +

log (
1
𝑃𝑓𝑎
)

46.6
) log(𝑛𝑝) (2.33) 
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• Coordinate-Uncoupled Maneuver Models  

In these types of motions, maneuver input is modeled as a specific random 

process, so target maneuvers randomly in each specific direction. This model 

is divided into three groups which are White Noise Model, Markov Process 

Model and Semi-Markov Jump Process model. 

• 2D Horizontal Motion Models  

This model is proposed for tracking of a target moving in the horizontal plane. 

So, the targets maneuver with a known turn-rate in 2D plane. The maneuvering 

input modelled in are generally based on specific target kinematics, the others, 

which is stated before, are based on random processes. 

• 3D Motion Models 

The model is designed for tracking highly maneuver and agile targets. These 

models are mostly used in air defense systems.  

The specified models except the non-maneuver CV model are out of scope for our 

subject which are surveyed detail in [23]. The main idea of the model is explained 

below.  

It is well known that, in tracking scenarios, a target is treated as a point object. In order 

to describe a point target, a state vector is defined in the cartesian coordinate system 

which is  

[𝑥,  �̇�, 𝑦, �̇�, 𝑧, �̇�] 
 
(𝑥, 𝑦, 𝑧) denote the position and (�̇�, �̇�, �̇�) the velocity, respectively. In the CV model, 

it is assumed that �̇�(𝑡) = 0, 𝑤ℎ𝑒𝑟𝑒 𝑥 = [�̇�, �̇�, 𝑧]𝑇. For non-maneuvering motion, 

target maneuvers are in the x-y plane, so z direction is treated differently. Furthermore, 

in most cases, the acceleration of each direction is assumed as a random variable 

(�̇�(𝑡) = 𝑤(𝑡)  ≈ 0, where 𝑤(𝑡) is white noise) and this approach accounts for 

uncertain motion of the target trajectory. The corresponding state-space model is 

described by, 
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where 𝑤(𝑡, 𝑇) is the driving input for the target maneuvering in the interval from 𝑡 to 

𝑡 + 𝑇. 𝑤(𝑡, 𝑇) is gaussian white noise for describing uncertain motion. In addition to 

the state model, the observation can be modeled as a function of the state transition 

matrix. Let y be an observation state at time 𝑡, it is expressed by  

This model stated in 2.35 describes 2D CV motion model. States of the system are the 

target position and the velocity. Additionally, 𝑤(𝑡, 𝑇) and 𝑣(𝑡, 𝑇) used in process and 

observation steps are Gaussian white noise. 

After building up the target motion model, proper choice of tracking techniques must 

be used. Selection of tracking techniques is based on estimation theory. That is why, 

tracking methods are classified by stochastic properties of estimation variable. In the 

following chapters, tracking algorithms used in the thesis are discussed briefly.  

2.4.2. Tracking Filters   

2.4.2.1. Kalman Filter 

The Kalman filter is a type of recursive filter used to estimate the state of a linear 

dynamic system from a series of noisy measurements. The word “filter” is used, 

because if all noise in the system is Gaussian, Kalman filter minimizes the mean 

square error of the estimations, in other terms, Kalman filter filters out the noise. Main 

theory of Kalman filter is based on estimation of a joint probability distribution of the 

 

 

𝜉(𝑡 + 𝑇) = 𝐹(𝑇)𝜉(𝑡) + 𝑤(𝑡, 𝑇) 
 

= [

1 𝑇
0 1

0 0
0 0

0 0
0 0

1 𝑇
0 1

]  𝜉(𝑡) + 𝑤(𝑡, 𝑇)  

 

(2.34) 

 

 

𝑦(𝑡, 𝑇) = 𝐻(𝑇)𝜉(𝑡) + 𝑣(𝑡, 𝑇) 
 

=  [
1 0
0 0

0 0
1 0

]  𝜉(𝑡) +  𝑣(𝑡, 𝑇) 

 

(2.35) 
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states for each time frame. The joint probability distribution of the states is used to 

minimize the uncertainty of the trajectory.  

Assume that the estimation is made by the kinematic state model assumption which 

are 2.34 and 2.35 and 𝜉(𝑡)  denote the measurement data up to time 𝑡,  the prediction 

step is described as follows: 

 

 

where 𝜉 is the estimation of state, 𝑃 is state variance matrix, 𝑄 is the covariance of the 

process noise, 𝑅 is the covariance of the observation noise and 𝑆 is the innovation 

covariance.  

• After state estimation process, the measurement information is received by the 

radar and the measurement residual is given by  

• To update the state distribution and minimize the error, it should be calculated 

the joint probability density of the measurement and distribution matrices 

named as Kalman Gain Matrix which is expressed as 𝐾. 

 State estimation 

 
 

              𝜉𝑛|𝑛−1 = 𝐹(𝑇𝑛)𝜉𝑛−1|𝑛−1  (2.36) 

 

 

𝑃𝑛|𝑛−1 = 𝐹(𝑇𝑛)𝑃𝑛−1|𝑛−1𝐹(𝑇𝑛)
𝑇 + 𝑄(𝑇𝑛)  

 

(2.37) 

 Measurement Estimation  

 

 

�̂�𝑛|𝑛−1 = 𝐻𝜉𝑛|𝑛−1  

 

(2.38) 

 

 

𝑆𝑛|𝑛−1 = 𝐻𝑃𝑛|𝑛−1𝐻
𝑇 + 𝑅(𝑇𝑛)  

 

 

(2.39) 

 �̃�𝑛 = 𝑦𝑛 − �̂�𝑛|𝑛−1 (2.40) 

 𝐾𝑛 = 𝑃𝑛|𝑛−1𝐻
𝑇(𝐻𝑃𝑛|𝑛−1𝐻

𝑇 + 𝑅𝑛)
−1

 (2.41) 

https://en.wikipedia.org/wiki/Covariance
https://en.wikipedia.org/wiki/Covariance
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• Finally, the estimate of the states and Kalman Error Covariance Matrix must 

be corrected using Kalman Gain.  

2.4.2.2. PDAF Filter  

The second filter used in the thesis is the probabilistic data association filter. Basically, 

The PDA filter is based on Kalman filter theory. However, the use of Bayesian 

theorem in the model distinguishes PDAF from Kalman filter. PDAF is specifically 

used for removing measurement uncertainty rather than assignment of measurements 

to a target which is the goal of Joint PDAF. Main idea of PDAF algorithm is to 

calculate the probability that each validated measurement is attributable to the target 

of interest. 

The outline of the algorithm described in [24] is explained below: 

• State estimation stated by equations 2.36-2.39 is applied. 

• Different from Kalman approach, the measurement validation region is 

calculated by the following equations, 

 

 

𝛾 is the gate threshold corresponding the gate probability 𝑃𝐺 . 

  

= 𝑃𝑛|𝑛−1𝐻
𝑇𝑆−1𝑛|𝑛−1  

 
 

𝜉𝑛|𝑛 = 𝜉𝑛|𝑛−1 + 𝐾𝑛(𝑦𝑛 − �̂�𝑛|𝑛−1) 

 

(2.42) 

 

 

𝑃𝑛|𝑛 = (1 − 𝐾𝑛𝐻)𝑃𝑛|𝑛−1 

 

(2.43) 

 𝑣(𝑛, 𝛾) =  {𝑦: [𝑦 − �̂�(𝑛|𝑛 − 1)]−1𝑆−1(𝑛)[𝑦 − �̂�(𝑛|𝑛 − 1)] ≤ 𝛾} (2.44) 

𝑣(𝑛) = 𝑐𝑛𝑧|𝛾𝑆(𝑛)|
1

2= 𝑐𝑛𝑧𝛾
𝑛𝑧
2 |𝑆(𝑛)|

1

2 (2.45) 
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𝑐𝑛𝑧 is the volume of the 𝑛𝑧-dimensional unit hypersphere depends on the 

dimension. For example, 𝑐1 = 2 , 𝑐2 = 𝜋 and 𝑐3 =
4𝜋

3
. 

• Using validation region, data association probability for each validated 

measurement is given by the following equations, 

Where 𝑖 = 0 indicates that no measurement is correct, 𝑃𝐷 is the target 

detection probability, 𝑃𝐺  is the gate probability and ℒ𝑖(𝑘)  is the likelihood 

ratio of the measurement 𝑦𝑖(𝑘) originating from the target rather than clutter 

• After the association probabilities are calculated, the effect of measurement 

uncertainty on states and its covariances also need to be updated 

 𝛽𝑖(𝑛) =  

{
 
 

 
 

ℒ𝑖(𝑛)

1 − 𝑃𝐷𝑃𝐺 + ∑ ℒ𝑖(𝑛)
𝑚(𝑛)
𝑗=1

, 𝑖 = 1, … ,𝑚(𝑘)

1 − 𝑃𝐷𝑃𝐺

1 − 𝑃𝐷𝑃𝐺 + ∑ ℒ𝑖(𝑘)
𝑚(𝑘)
𝑗=1

, 𝑖 = 0

     (2.46) 

 

 

ℒ𝑖(𝑛) ≜
Ν[𝑦𝑖(𝑛); �̂�(𝑛|𝑛 − 1) ), 𝑆(𝑛)]𝑃𝐷

𝛾
      

 

(2.47) 

 State Update Equation  

 

 

𝜉𝑛|𝑛 = 𝜉𝑛|𝑛−1 + 𝐾𝑛𝑣(𝑛) 

 

(2.48) 

 
Combined Innovation 

 
 

 𝑣(𝑛) =  ∑ 𝛽𝑖(𝑛). 𝑣𝑖(𝑛) 

𝑚(𝑘)

𝑖=1

 

 

(2.49) 

 
Gain is the same as Kalman Filter 

 
 

 

 

𝐾𝑛 = 𝑃𝑛|𝑛−1𝐻
𝑇𝑆−1𝑛|𝑛−1 

 

 

 

 

 

(2.50) 
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In the light of the foregoing statements, it can be said that, when the measurement step 

is not progressed, the error covariance matrix 𝑃𝑛|𝑛 is increased by weighting 𝛽0(𝑛), 

and whenever new measurement step is made and the measurement is correct, the error 

covariance matrix is decreased by weighting (1 − 𝛽0(𝑛)). However, if none of the 

validated measurements 𝑚(𝑘) is correct, this case would increase the error covariance 

matrix.  

To summarize, when the clutter or other effects are dominant on the target tracking, 

PDAF is used to decrease measurement uncertainty. To do this, it calculates the 

association probability for each measurement and by the help of these weighting 

coefficients, the state information matrices are updated. 

 

 

 
Covariance Updated State 

 
 

 
𝑃𝑛|𝑛 = 𝛽0(𝑛)𝑃𝑛|𝑛−1 + (1 − 𝛽0(𝑛))𝑃𝑛|𝑛,𝐾𝑎𝑙𝑚𝑎𝑛 + 𝑃𝑛      

 

(2.51) 

 
𝑃𝑛 = 𝐾𝑛 [∑ 𝛽𝑖(𝑛). 𝑣𝑖(𝑛)𝑣𝑖(𝑛)

𝑇 − 𝑣𝑖(𝑛)𝑣𝑖(𝑛)
𝑇

𝑚(𝑘)

𝑖=1

] 𝐾𝑛
𝑇 

 

 

(2.52) 
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CHAPTER 3  

 

3. RESOURCE MANAGEMENT IMPLEMENTATION 

 

3.1. Radar Resource Management 

MF Radars must be able to operate in overload situations. For this reason, it is critical 

for MF Radar to provide updated target database which satisfies Quality of Service 

(QoS) requirements. In intensive target density conditions, MF Radar cannot preserve 

all targets in tracking state because it does not have enough radar resources to perform 

all required tasks simultaneously. In this case, efficient usage of resources becomes 

significant. The radar resource management system must evaluate the allocation of 

resources and select the tasks to provide the best performance. Therefore, radar 

resource management must assign the allocation of limited resources in an optimal 

way to satisfy the task requirements. In the light of this information, RRM has two 

different missions: task prioritization and task scheduling. 

In the previous section we tried to explain the building blocks of the radar system and 

how it works. In order to accomplish the resource management, radar performance 

model and the optimization problem must be well-defined. Among the resource 

allocation problems, it is proposed that use of adaptive methods for tracking targets is 

an efficient way to manage resource allocation in radar systems. Therefore, in [1], a 

novel method is proposed for optimization-based scheduling of the tracked targets to 

maximize the utility functions individually in the finite time horizon. The method 

assumes that there are quantified performance measures which describe the track-wise 

quality properties such as track accuracy and track continuity.  To generate the radar 

objective function, aggregation should be made over three entities: time, tracks, and 

the tracking accuracies. After defining the radar objective function, the method aims 

to maximize the overall performance measure (track-wise) over a finite time interval 
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by using dynamic programming. In some studies, dynamic programming-based 

stochastic optimization of scheduling has also been presented [25-26]. However, these 

approaches are too restrictive because of the dimensionality of the stochastic 

optimization problem and they do not include the sector scan utilities in the 

optimization problem. To overcome the high dimensionality of the state transitions, 

usage of an alternative sub-optimal model is suggested. The model which is given in 

[1] is based on following aspects. 

i) Performance Calculations  

The model calculates the radar performance by adding a set of target-wise 

individual utility functions (track continuity, track performance etc.) between 

future time intervals. To find the performance of the radar in the future, target 

performance measurements are modeled as a finite state stochastic discrete 

event system. Therefore, future measurement decisions can be made by using 

a Markov chain constructed with performance predictions.  

ii) Scheduling Approach 

In [1], radar scheduling is divided into two-time scales, slow and fast time 

scheduling. In slow time scale, radar decides the measurement operations for 

the next measurement batch interval. Decision contains specific tasks like 

sequential track update request on a target which is the output of the resource 

management. Fast time scheduler applies the tasks based on the slow time 

decisions while the radar is fetching the measurements. In other words, fast 

time scheduler prepares the output of the slow time decisions to minimize the 

ambiguity resolution. In this thesis, fast time scheduling is not included in the 

resource allocation problem. The optimization problem may involve fast time 

scheduling, but this will lead to not only computational complexity but also 

has negligible effect in the solution. For this reason, we did not perform fast 

time scheduling in resource allocation step. As a result, computational 
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complexity is reduced considerably. Scheduling approach and its operations 

can be seen in Figure 3.1. 

 

Figure 3.1: Two-Time Scale Scheduling [1] 

If we call the starting time of resource allocation 𝑡0, maximum performance, 

which is based on tracking accuracy, will be predicted by using  partially 

observable Markov decision process for each target until time reaches 𝑡0 +

𝑡𝑏𝑎𝑡𝑐ℎ 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙. This time interval is called as slow time scale scheduling. At 

the end of this time interval, the predicted best policies of targets are generated. 

The policies are applied in each fast time interval time which is also called as 

the measurement batch interval. The new predicted policies are generated at 

the slow-time iterations, namely for each total batch of measurement intervals.  

iii) Resource Constraints  

As stated above, due to the nature of radar measurements and target dynamics, 

performance measurements of the MFR are not affected dramatically in slow 

time scheduling. But there is a necessity that, the stream of radar measurement 
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operations must be performed within a certain time interval.  In [1], it is stated 

that there is only one resource constraint in the optimization model which is 

“each fast time operations that occurs within slow time scheduling shall not 

exceed a specific time interval”. Hence, we will try to comply with this 

statement in our optimization problem. 

3.1.1. Performance Calculations of the Model 

Radar resource management aims to maximize the QoS level. And QoS components 

can differ according to the radar operation. In optimization-based scheduling, QoS 

components may generally consist of track continuity, track accuracy, total target 

database and target drop rate.  In this part of the chapter, we aim to describe the overall 

objective function which is based on the approach given in [1]. 

3.1.1.1. Utility Function 

System utility function of the control system in time interval Δ𝑡 is generally defined 

as, 

 

where 𝑖 is the number of performance measurements and Δt is the measurement batch 

interval. To make a decision in resource management systems, we have to take both 

present and future performance outputs into consideration instead of calculating 

instantaneous performance. Therefore, the overall utility function is defined by 

integrating the expected instantaneous utility over a time horizon. Then, we represent 

the overall utility function as, 

 𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑈𝑡𝑖𝑙𝑖𝑡𝑦 𝐹𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = ∫ ∑𝑈𝑖(𝑡)𝑑𝑡 =  ∑ ∫ 𝑈𝑖(𝑡)𝑑𝑡

Δ𝑡𝑖𝑖Δ𝑡

 (3.1) 

 𝐽(𝑥(𝑡0 )) = 𝐸 {∑ ∫ ∑𝑈𝑖(𝑥𝑖(𝑡)) 𝑑𝑡|𝑥(𝑡0 )

𝑀

𝑖=1

𝑡0+(𝑘+1)∆𝑡

𝑡0+𝑘∆𝑡

𝑁−1

𝑘=0

} (3.2) 
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𝑥(𝑡) is the augmented state matrix which covers all performance measurement and 𝑁 

is the horizon of decision-making. 𝑈𝑖(𝑥𝑖(𝑡)) is the tracked-wise utility function of the 

radar system and defined as, 

𝑈𝑛𝑜𝑚,𝑖 is constant value and it can be modified by the user according to the priority of 

the targets. 𝑄𝑎𝑐𝑐,𝑖 is the performance function and needed to be normalized because of 

the Bellman conditions that should be satisfied. 𝑥𝑖(𝑡) is the target performance state 

and 𝑥𝑖,𝑡𝑟𝑎𝑐𝑘𝑒𝑑 is the state variable that takes value 1 when target is tracked, 0 

otherwise. 

As it can be seen in (3.2), the expected utility function is built independently for each 

target. This will provide flexibility to convert the resource allocation problem to a 

known optimization problem by reducing number of state dimensions.  

3.1.1.2. Cost Functions  

There may exist certain events in radar operations which decrease the radar 

performance. For example, track mixing, target drop in tracking, track re-initialization 

will cause radar to reorganize its operational procedure. Therefore, the cost function, 

which affects the objective function negatively, should be included in radar system, 

since the radar must ensure the identity of the target, and try to guess the intentions of 

the target. Cost functions added to overall objective function are described below. 

3.1.1.2.1. Track Re-initialization Event 

The cost function of re-initiation events is straightforward which is stated as, 

 

≈ 𝐸 {∑∑𝑈𝑖(𝑥𝑖(𝑡0 + 𝑘∆𝑡))∆𝑡|𝑥(𝑡0 )

𝑀

𝑖=1

𝑁−1

𝑘=0

}  

 

 

𝑈𝑖(𝑥𝑖(𝑡)) = 𝑈𝑛𝑜𝑚,𝑖𝑄𝑎𝑐𝑐,𝑖(𝑥𝑖(𝑡))𝑥𝑖,𝑡𝑟𝑎𝑐𝑘𝑒𝑑    

 

(3.3) 

 𝐶𝑟𝑒𝑖𝑛𝑖𝑡(𝑡𝑛) = 𝐶𝑟𝑒𝑖𝑛𝑖𝑡,𝑖𝑥𝑖,𝑡𝑟𝑎𝑐𝑘𝑒𝑑    (3.4) 
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𝐶𝑟𝑒𝑖𝑛𝑖𝑡,𝑖 is the constant value that appears in the track re-initiations event. This cost 

function is added in the objective function when the target is dropped and then 

detected again after a certain time. 

3.1.1.3. Track Mix Event 

Track mixing event occurs depending on various situations, such as target interactions.  

To find the track mixes event, multivariate Gaussian distribution covariance matrix is 

extracted for each tracking target. When the Mahalanobis distance of two targets falls 

below a certain limit, track mixes event is triggered which is described as,  

 

𝐶𝑚𝑖𝑥,𝑖 is the constant value that appears in the track mixing event. 

𝑥𝑖,𝑡𝑟𝑎𝑐𝑘𝑒𝑑 is state variable that it takes value 1 when target is tracked else 0. 

3.1.1.4. Objective Function 

In (3.2) interval from 𝑡0 to 𝑡0 + 𝑘∆𝑡 is referred as the slow time- total measurement 

batch interval. In this interval, radar will perform its own duties such as TWS or 

adaptive tracking and searching between determined sectors. According to [1], 

sensitivity of tracking performance in surveillance radar is low with respect to these 

observation time variations, and there will be many sequences of scans yielding almost 

the same performance. Therefore, the essential dynamics of tracking performance are 

assumed to be captured on the slow timescale, given as one second time intervals. 

Consequently, the time between updates of the Markov chains for QoS prediction can 

be adjusted to the slow timescale without affecting prediction performance 

considerably. This fact should be utilized to reduce computational demand. 

Optimization problems involving this type of objective functions stated in (3.2) can 

be solved by many possible ways, one of which is backwards recursion DP algorithm. 

In this case, “value to go” objective function will be used as follows. 

 𝐶𝑚𝑖𝑥,𝑖(𝑡𝑛) = 𝐶𝑚𝑖𝑥,𝑖𝑥𝑖,𝑡𝑟𝑎𝑐𝑘𝑒𝑑 (3.5) 
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The DP backwards recursion is expressed as, 

where 𝐽𝑘
∗(𝑥𝑘) is the optimal value of  𝐽𝑘(𝑥𝑘).  

If the Markov chain is not stationary, multi-armed bandit model cannot be used. As 

an example, let 𝑝𝑥𝑖,𝑘 be the state probability vector of   𝑥𝑖,𝑘 = 𝑥𝑖(𝑘∆𝑡) and let 𝑥𝑖,𝑘 as 

a Markov chain which is affected by control action 𝑑𝑘. Then, state probability 

evaluation can be modelled by, 

 

where 𝑃𝑡𝑟,𝑖 is the probability transition matrix of the Markov decision process, and 

𝜉𝑖,𝑘= 𝜉𝑖 (𝑘∆𝑡) is the kinematic state of target i. Overall state probability matrix can be 

expressed as follows. 

 

where ⊗ denotes Kronecker (tensor) product. In addition to that, the aggregated state 

variables can be expressed as,  

 

 

 

J𝑘(x𝑘) = E {∑𝑈(x𝑘)|

𝑁

𝑛=𝑘

𝑥𝑘} 
(3.6) 

 

𝐽𝑘
∗(𝑥𝑘) = 𝑚𝑎𝑥𝑑𝑘 (𝑈(𝑥𝑘)

+ ∑ 𝐽∗𝑘+1(𝑥𝑘+1)𝑃(𝑥𝑘+1|𝑥𝑘 , 𝑑𝑘,, 𝜉𝑘)

𝑥𝑘+1∈𝑋

) 

 

(3.7) 

 𝑝𝑥𝑖,𝑘+1 = 𝑃𝑡𝑟,𝑖(𝑑𝑘, 𝜉𝑖,𝑘)𝑝𝑥𝑖,𝑘 (3.8) 

 𝑝𝑥𝑘 = 𝑝𝑥1,𝑘 ⨂ 𝑝𝑥2,𝑘 ⨂ 𝑝𝑥3,𝑘  ⨂…⨂ 𝑝𝑥𝑀,𝑘   (3.9) 

 𝑋 = 𝑋1  ×  𝑋2 ×… × 𝑋𝑀  (3.10) 
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Where × denotes Cartesian product. Since tracking performance values are 

independent of each other, total state transition matrix can be composed as in the 

equation (3.11) 

 

The augmented state probability vector 𝑝𝑥𝑘 evolves according to, 

 

After defining state transitions, calculation steps for DP are as follows. Let 𝑛 be the 

time horizon that we try to maximize the expected aggregate reward. Decision process 

starts from time 𝑡 = 1 and lasts until  𝑡 = 𝑛 − 1. To find the best policies that 

maximize the reward, the transition matrix and the corresponding reward matrix are 

multiplied, and this augmented matrix should be used recursively. This method stated 

in [9] is explained as follows: 

𝑟𝑖
(𝑘)

is the instantaneous reward at 𝑡 = 1 and state i,  𝑃𝑖𝑗
(𝑘)

 is transition probability from 

state i to state j with control input 𝒌. At 𝑡 = 2   the objective function will be, 

 

The recursive expression for 𝑡 = 𝑛 is as follows.  

 

Using recursive expression in each time, DP algorithm extracts the optimal policies 𝒌 

for a final reward vector 𝑢 between the time horizon 𝒏. 

 𝑃𝑡𝑟(𝑑𝑘, 𝜉𝑖) =  𝑃𝑡𝑟,1(𝑑𝑘, 𝜉1,𝑘)⨂𝑃𝑡𝑟,2(𝑑𝑘, 𝜉2,𝑘)⨂. . .⨂𝑃𝑡𝑟,𝑀(𝑑𝑘, 𝜉𝑀,𝑘) (3.11) 

 𝑝𝑥𝑘+1 = 𝑃𝑡𝑟,𝑘(𝑑𝑘, 𝜉𝑘)𝑝𝑥𝑘 (3.12) 

 𝐽𝑖
∗(2, 𝑢) = 𝑚𝑎𝑥𝑘 {𝑟𝑖

(𝑘) + ∑𝑃𝑖𝑗
(𝑘)

𝑗

𝑢𝑗} (3.13) 

 𝐽𝑖
∗(𝑛, 𝑢) = 𝑚𝑎𝑥𝑘{𝑟𝑖

(𝑘) + ∑ 𝑃𝑖𝑗
(𝑘)

𝑗 𝐽𝑗
∗(𝑛 − 1, 𝑢)}  (3.14) 
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While solving the optimization problem stated in (3.2) using DP, if the performance 

evolution model is a nonstationary Markov Decision Process, complexity of the state 

transition might be too high due to the overwhelming state matrices. The main concern 

about this calculation is the complexity level due to the increasing number of state 

variables over time and including timing constraints in the problem.  As a result, the 

problem becomes unsolvable in a reasonable time. That is why, the problem should 

be simplified or relaxed. The following sections include the simplified approaches 

against this concern. 

The first approach to simplify the problem is to create a target-wise state performance 

matrix by separating the overall state performance matrix. In this way, global radar 

task will be decomposed into subtasks and target-wise utility functions will be used to 

make optimization problem tractable. In radar operations, target performance 

estimations are assumed independent of each other. Therefore, the system state 

transition matrix will not get larger, but instead of this, state transition matrix will be 

used for each target separately. The new target-wise state probability vector can be 

expressed as the following. 

 

where 𝑃𝑡𝑟,𝑖 is the probability transition matrix for target 𝑖 and  𝜉𝑖,𝑡0 is the target 

position. Target-wise overall utility function at time 𝑡0 will be as follows. 

 

where 𝑥𝑡0 = {𝑥𝑖(𝑡0)}𝑖=1
𝑀  , M is the number of targets. 

 Continuous objective function for single target 𝑖 is expressed by (3.17) 

 𝑝𝑥𝑖,𝑡0+𝑡ℎ
= 𝑃𝑡𝑟,𝑖(𝑑𝑖,𝑡0 , 𝜉𝑖,𝑡0)𝑝𝑥𝑖,𝑡0  (3.15) 

 𝑈(𝑥(𝑡0)) =∑𝑈𝑖(𝑥𝑖(𝑡0))

𝑀

𝑖=1

 (3.16) 
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As stated before, performance value for each target can be considered as independent, 

however, this assumption may be invalid if targets are too close to each other. This 

case requires neighboring or interacting targets to be added to the objective function 

as new costs. Therefore, in equation (3.17), track mixing and re-initiation cost 

functions are added to the objective function. Consequently, independence assumption 

becomes valid for all cases. Moreover, (3.17) is the case when the radar fetches a 

single scan measurement. For this reason, time between 𝑡0 and 𝑡0 + 𝑡ℎ is called the 

measurement batch interval. In addition, if sector scan time does not exceed one 

second, it is assumed that utility functions or performance values are not affected 

dramatically in the measurement interval, integration terms in (3.17) can be 

disregarded and the equation should converge to summation of target-wise utility 

functions. In resource allocation problem, to determine the best policy, the 

performance of the upcoming measurements should also be predicted. Since radar 

measurements are not deterministic, future performance predictions will also be 

probabilistic. Hence, radar resource allocation problem should be approached as a 

stochastic control problem. Considering the future decisions of the radar, future 

utilities must be included so that target dynamics should be modelled as Partially 

Observed Semi-Markov Decision Processes (POMDP).  However, the optimization 

problem arises when the target estimations have continuous infinite state space. Since 

states are growing after each iteration, the solution will be intractable. To overcome 

this problem, target estimation should be modelled in a form of a generalized finite-

state semi-Markov decision process (GSMP). In GMSP, a decision is made in time 𝑡, 

 

𝐽𝑖(𝑥𝑖(𝑡0 )) = 𝐸 { ∫ 𝑥𝑖,𝑡𝑟𝑎𝑐𝑘𝑒𝑑(𝑡)𝑈𝑛𝑜𝑚,𝑖(𝑥𝑖(𝑡 ))𝑄𝑎𝑐𝑐(𝑥𝑖(𝑡 ))

𝑡0+𝑡ℎ

𝑡0

𝑑𝑡

− ∑ 𝐶𝑟𝑒𝑖𝑛𝑖𝑡,𝑖𝑥𝑖,𝑡𝑟𝑎𝑐𝑘𝑒𝑑(𝑡𝑛)

𝑛|𝑡𝑛∈[𝑡0,𝑡0+𝑡ℎ]

+ 𝐶𝑚𝑖𝑥,𝑖𝑥𝑖,𝑡𝑟𝑎𝑐𝑘𝑒𝑑(𝑡𝑛) | 𝑥(𝑡0)} 

(3.17) 
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the model parameters are determined as a result of the decision, and another decision 

will be made in the next iteration. Due to Semi-Markov property, the time until the 

next decision epoch and the state at that epoch depend only on the present state and 

the subsequently chosen action and are independent of the past history of the system 

property. In the chapter [3.3], we aim to build a stochastic system based on 

performance measurements which is in a form of a generalized semi-Markov decision 

process (GSMP). 

3.1.1.5. Constraints 

Radar measurements are accomplished by sending a signal consisting of consecutive 

pulses and receiving the echoes of the pulses. This is the main task of the radar. These 

processes are repeated periodically and must be completed within the specific time 

interval. Therefore, we will refer about a single resource constraint in here that 

measurement batch interval must not exceed a specific time. 𝐼𝑏𝑎𝑡𝑐ℎ𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙,𝑗(𝑡) is a 

function which shows that target number j is scanned in the batch interval. 

 

and the constraints are expressed as the inequality of process time of the tasks. 

∆𝑡  Each batch interval time 

𝑗 Target Task Number 

We define two variables, which are the allocated time of a target at each scan attempt 

and the number of target scans, and express these as 𝑢𝑗(𝑘)  and s, respectively. Then,  

𝑙𝑠,𝑘 is described as the total load for a scan at measurement batch time interval 𝑘. 

 𝐼𝑏𝑎𝑡𝑐ℎ𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙,𝑗(𝑡) =  {
1, 𝐼𝑓 𝑡𝑎𝑟𝑔𝑒𝑡 𝑛𝑢𝑚𝑏𝑒𝑟 𝑗 𝑖𝑠 𝑝𝑟𝑜𝑐𝑒𝑠𝑠𝑒𝑑 𝑎𝑡 𝑡𝑖𝑚𝑒 𝑡

0,   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
 (3.18) 

 ∫ ∑𝐼𝑏𝑎𝑡𝑐ℎ𝐼𝑛𝑡𝑒𝑟𝑣𝑎𝑙,𝑗(𝑡)𝑑𝑡 ≤  ∆𝑡

𝑗

(𝑘+1)∆𝑡

𝑘∆𝑡

 (3.19) 

 𝑙𝑠,𝑘 = ∑
𝑢𝑗(𝑘)

∆𝑡
{𝑗| 𝑗 ∈ 𝑠𝑡𝑟𝑒𝑎𝑚 𝑜𝑓  𝑠}

 (3.20) 
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However, the time load of the task sequences is random because of environmental 

effects on target kinematics. Therefore, the total load time in a batch interval will be 

clearly random. To overcome this restriction, the constraints in (3.20) should be 

modified with constraints based on the expected processing time defined as (3.21). 

 

3.1.1.6. Lagrangian Relaxation Model 

In optimization model, which is based on (3.6), if the constraints (3.21) are added into 

the objective function like cost functions with specific weights then Lagrange 

relaxation method can be applicable. Consequently, this relaxed problem can be 

solved more easily. So, the Lagrangian is defined as, 

 

where 𝜆𝑘 is the Lagrange multiplier at time 𝑘 and 𝜆∗𝑘+1(𝑥𝑘+1) is the expected 

Lagrange multiplier that represents a penalty that satisfy the constraint at time 𝑘 + 1. 

The optimal Lagrangian at time 𝑘, 𝐿𝑘 (𝑥𝑘,𝑑
∗
𝑘(𝑥𝑘)𝜆

∗
𝑘(𝑥𝑘)) is equal to the optimal 

value-to-go function 𝐽𝑘
∗(𝑥𝑘). At the end of decision time interval 𝑁, Lagrangian is 

equal to utility which is 𝐿𝑁(𝑥𝑁) = 𝑈(𝑥𝑁). 

This equation is computationally intractable because of nested expectations. To 

simplify the equations for dynamic programming, we must get rid of the nested 

expectations and separate our utility function independently. A separation of the 

problem requires evaluating all the target utility by itself. Therefore, the Lagrangian 

is recomposed as follows,  

 𝐸𝑢𝑢𝑝𝑑,𝑖,𝑘|𝑥𝑖,𝑘,𝑑𝑢𝑝𝑑,𝑖,𝑘∀𝑖{𝑙𝑘} ≤ 𝑐𝑘 (3.21) 

 

𝐿𝑘(𝑥𝑘,𝑑𝑘,𝜆𝑘) = 𝑈(𝑥𝑘)+ 𝜆𝑘 (𝑐𝑘 − 𝐸𝑢𝑢𝑝𝑑,𝑖,𝑘|𝑥𝑖,𝑘,𝑑𝑢𝑝𝑑,𝑖,𝑘∀𝑖{𝑙𝑘, 𝑑𝑘}) +

𝐸𝑥𝑘+1|𝑥𝑘,𝑑𝑘 {𝑚𝑎𝑥𝑑𝑘+1𝐿𝑘+1 (𝑥𝑘+1,𝑑𝑘+1,𝜆
∗
𝑘+1(𝑥𝑘+1))} 

(3.22) 
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Another problem arises while separating utility functions independently.  𝜆∗𝑘(𝑥𝑘) is a 

function of global state, therefore the algorithm is getting complex to be solved. To 

overcome this problem, it is assumed that the variance of  Exk|x0{λ
∗
k(xk)} is small 

because there will be many independent subtasks. So estimated λ∗k will be available 

where the estimates are chosen such that, 

 

Finally, we rearrange equation again with respect to λ∗k, the Lagrangian function turns 

into the following. 

In the following sections, auxiliary models and simplifications that will help to solve 

this problem with dynamic programming will be discussed. 

 

𝐿𝑘(𝑥𝑘,𝑑𝑘,𝜆𝑘) =  ∑𝑈𝑠(𝑥𝑠,𝑘)

𝑠

+ 𝜆𝑘 (𝑐𝑘 −∑𝑙𝑠,𝑘(𝑥𝑠,𝑘,𝑑𝑠,𝑘)

𝑠

) 

+ 𝐸𝑥𝑘+1|𝑥𝑘,𝑑𝑘 {𝑚𝑎𝑥𝑑𝑘+1∑𝑈𝑠(𝑥𝑠,𝑘+1)

𝑠

+ 𝜆∗𝑘+1(𝑥𝑘+1) (1 −∑𝑙𝑠,𝑘+1(𝑥𝑠,𝑘+1,𝑑𝑠,𝑘+1)

𝑠

)

+ 𝐸𝑥𝑘+2|𝑥𝑘+1,𝑑𝑘+1{𝑚𝑎𝑥𝑑𝑘+2𝐿𝑘+2(𝑥𝑘+2,𝑑𝑘,+2, 𝜆𝑘+2
∗ )} } 

 

(3.23) 

 𝐸𝑥𝑘|𝑥0𝐸𝑢𝑢𝑝𝑑,𝑖,𝑘∀𝑖|𝑥𝑘,𝑑∗𝑘(𝑥𝑘) {𝑙𝑘 (𝑥𝑘,𝑑
∗
𝑘(𝑥𝑘))} =1 (3.24) 

 

𝐿𝑠,𝑘(𝑥𝑠,𝑘𝑑𝑠,𝑘𝜆𝑘)

= 𝑈𝑠(𝑥𝑠,𝑘) − 𝜆𝑘𝑙𝑠,𝑘(𝑥𝑠,𝑘, 𝑑𝑠,𝑘)

+ 𝑚𝑎𝑥𝑑𝑠,𝑘+1 𝐸𝑥𝑠,𝑘+1|𝑥𝑠,𝑘,𝑑𝑠,𝑘  {𝐿𝑠,𝑘+1(𝑥𝑠,𝑘+1𝑑𝑠,𝑘+1,�̂�
∗
𝑘+1)} 

(3.25) 

 𝐿(𝑥𝑘𝑑𝑘𝜆𝑘) =  ∑𝐿𝑠,𝑘(𝑥𝑠,𝑘𝑑𝑠,𝑘𝜆𝑘) + 𝜆𝑘 + ∑ �̂�∗𝑛

𝑁−1

𝑛=𝑘+1

 

𝑠

 (3.26) 
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3.1.1.7. Finite-State Markov Modeling 

For computational flexibility in (3.26), the optimization solution should be based on 

track-wise rewards using Partially Observed Markov Decision Processes (POMDP). 

By this way, performance state evaluation will be updated according to the generalized 

finite-state semi-Markov decision process at each future decision step. We now 

formulate a dynamic model for the radar, where the instantaneous tracking 

performance is a function of the state of this dynamic model. As stated before, in the 

system scenario, trace of the Kalman Error Covariance Matrix (P) indicates the 

accuracy of tracking. In the tracking scenario, this matrix is predicted using (2.31) and 

updated using (2.37).  If the trace of the process covariance matrix is not changing in 

time, we can calculate the prediction of steady-state covariance 𝑃𝑠𝑡𝑒𝑎𝑑𝑦𝑠𝑡𝑎𝑡𝑒 exactly, 

by solving Ricatti equations. In case of continuous track update demand by the radar 

resource allocation, Kalman error covariance matrix gets the minimum value and 

remains constant. Inverse of the trace value of this matrix can be used as the maximum 

utility value that the target can reach in the tracking process. This value can be 

changed by depending on the controlled input, which can be one of two possibilities, 

“update target tracking” or “do not update target tracking” demand by radar control 

center. If the target decision is “do not update”, error covariance matrix will not be 

updated by Kalman filter, and error covariance matrix will get larger. After many 

successive “do not update” decision, validation gate level in tracking process gets 

higher and tracking process may confront the target drop, which will be the worst state 

of the Markov chain. Successive “update” demands will lead to the best state of the 

Markov chain however will bring higher resource demand. When the target is dropped 

in tracking process, to re-initiate the target, radar must detect the target in successive 

measurements. Typical state diagram in radar system can be seen in Figure 3.2. 
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Figure 3.2: Typical State Diagram in Radar System [1] 

According to target kinematics, trace of error covariance matrix may be infinite. To 

simplify the optimization solution, Markov chain related to the performance value 

should be converted to finite-state MDP. As stated before, trace of steady state Kalman 

error covariance matrix is the maximum performance value. Besides, the minimum 

performance value must also be found because of the discretization needs. To find the 

minimum performance value, we perform the Kalman filter recursion up to the horizon 

of decision-making interval and ignoring the measurement update equations, we can 

find the minimum performance value by taking trace of error covariance at the end of 

decision-making interval. Discretized covariance step of our state diagram is stated in 

(3.28). 

 

Once it has been found the trace of error covariance matrices for each Markov states, 

the utility values will be like the following.  

 𝑃𝑑𝑖𝑠𝑐𝑟𝑒𝑡𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠𝑡𝑒𝑝 = 
𝑡𝑟𝑎𝑐𝑒(𝑃𝑚𝑎𝑥)−𝑡𝑟𝑎𝑐𝑒(𝑃𝑚𝑖𝑛)

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑆𝑡𝑎𝑡𝑒𝑠−1
  (3.28) 
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In addition to that, there is a radar target scanning time which is called as look time in 

here corresponding to each performance state to satisfy quality of tracking. If the target 

is the state 𝑛,  total target look time should be calculated as the following and stated 

in [27]. 

where 𝑚 = ⌈(n/5)⌉, 𝑛 is the target state and 𝑡𝑙𝑜𝑜𝑘 is time spent for one look. Equation 

(3.30) comes from cumulative probability of detection equation. In [6], it is stated that 

in each CPI trial, probability of detection evolves according to (3.31) 

 

Example of state topology can be seen in Figure 3.3. In the state diagram, state number 

1 indicates the minimum error case (maximum utility, steady state error) and state 26 

indicates that the maximum error case where the target drops. Five successive “don’t 

update” decisions cause state to target drop state (state 26).  

 
𝑈𝑖(𝑥𝑖(𝑡)) = 𝑈𝑛𝑜𝑚,𝑖 ∗

1

𝑇𝑟𝑎𝑐𝑒(𝑆𝑡𝑎𝑡𝑒 𝐸𝑟𝑟𝑜𝑟 𝐶𝑜𝑣𝑎𝑟𝑖𝑎𝑛𝑐𝑒 𝑀𝑎𝑡𝑟𝑖𝑥 𝑥𝑖)
∗ 𝑥𝑖,𝑡𝑟𝑎𝑐𝑘𝑒𝑑 

(3.29) 

 

𝑡𝑡𝑜𝑡𝑎𝑙𝐿𝑜𝑜𝑘 = 𝑡𝑙𝑜𝑜𝑘(1. 𝑃𝑑 + 2𝑃𝑑(1 − 𝑃𝑑 ) + 3(1 − 𝑃𝑑 )
2 +  .  .  .  + 

+𝑚𝑃𝑑(1 − 𝑃𝑑 )
𝑚−1 +⋯+𝑚(1 − 𝑃𝑑 )

𝑚) 

 

(3.30) 

 𝑃𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒,𝑑 = 1 − ∏ (1 − 𝑃𝑑,𝑖)

𝑡𝑜𝑡𝑎𝑙 # 𝑜𝑓 𝐶𝑃𝐼

𝑖=1

 (3.31) 
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Figure 3.3 Markov Chain Topology 

Each target is represented by a twenty-six state Markov chain as shown in Figure 3.3. 

Markov chain states are numbered by considering their quantized track quality. First 

state (1) is the best state that has the least trace of the error covariance matrix. Last 

state (25) corresponds to the highest uncertainty and state 26 is the drop state that the 

tracker lost the target. The uncertainty depends on the state that the last update has 

occurred and the duration between two consecutive update instances. If a target is 

updated, the Markov chain jumps to one of the leftmost states depending on the time. 

3.1.1.8. Lagrangian Duality 

After clarifying the model assumptions, we solve the optimization problem. Our 

objective function and constraints are stated in (3.25) and (3.26). This is in the form 

of known shortest path problem with transient time restrictions. The shortest path 

optimization problems are easy to solve but adding transient time restrictions to our 

problems converts the optimization problem to an NP-Hard problem. Therefore, we 

relax the complicating constraint, benefiting the theory of Lagrangian relaxation. 

Relaxing the complex constraints refers removing them and putting them into the 
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objective function with specific weights. These weights (λ) called as Lagrange 

multipliers are used to penalize non satisfied constraints by the help of the objective 

function. Getting rid of the complex constraints decreases the computational 

complexity. Our objective function is similar to the form in (3.32). 

where 𝑢𝑇 is utility function and 𝑏 ≥ 𝐴𝑥  is constraint. We extracted the dual of the 

optimization problem stated in (3.26) and then the dual problem can be written as 

(3.33) 

 

Equation 3.34 is solved with the help of dynamic programming. However, how to 

predict λ values is another important issue. The method for finding optimal value of λ 

called as Subgradient method steps is stated in [28]. 

1. At iteration t = 0, choose randomly large value for λt  
2. Compute objective function for this 𝛌𝒕 

3. Find the subgradient as  𝐠𝒕 = (𝐥𝐨𝐚𝐝𝒏,𝒕 − 𝟏) 

4. If  𝐠𝐭 =  𝟎, then stop, the optimal solution is 𝐿(𝛌𝒕), 

5. If 𝐠𝒕 ≠ 0, compute λ𝑘+1 = λ𝑘 + 𝑄𝑘
𝑇 . 𝐠𝒌 where 𝑄𝑘 = 

𝐽𝑘+1−𝐽𝑘

𝑔𝑘+1−𝑔𝑘 
 the step size 

at this iteration. 

6. Increment t and go to step 2 with λ𝑘+1. 
7. After finding the optimal 𝛌, the decision vector  𝑥2 is found from our set of 

solutions. 

 

 
𝑍(λ) ≔ max𝑢𝑇 + λ𝑇(𝑏 − 𝐴𝑥) (3.32) 

 
(3.32) 

 

𝑍𝐷 ∶= min 𝑍 (𝜆)  
 

𝑤ℎ𝑒𝑟𝑒 𝜆𝑇 ≥ 0  
(3.33) 

𝑍(𝜆∗) = min{𝑚𝑎𝑥 { ∑  ∑ (𝑼𝒕𝒊𝒍𝒊𝒕𝒚𝒏,𝒕

𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑇𝑎𝑟𝑔𝑒𝑡𝑠

𝑛=1

𝑇𝑖𝑚𝑒 𝐻𝑜𝑟𝑖𝑧𝑜𝑛

𝑡=0

+ 𝛌𝒕(𝟏 − 𝐥𝐨𝐚𝐝𝒏,𝒕))}} 

 

(3.34) 
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While solving the dual of the optimization problem which is stated at 3.20, we ignore 

the duality gap, because we only want to find optimal policy of targets. It can be left 

to future studies. 
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CHAPTER 4  

 

4. EXPERIMENTAL EVALUATION 

 

4.1. Scenario Models 

In this chapter, we present the performance evaluation of the radar resource analysis 

problem which is based on Lagrange relaxation model. To observe the accuracy of the 

model, we have run different tracking scenarios which can be considered as the 

problems that radar will encounter. Besides, we want to observe how the system works 

by adding a different tracking filter (namely, PDAF) to the model. After confirming 

Lagrangian-based tracking optimization model, we compared it to Track While Scan 

and Adaptive Tracking model, then we commented on these three tracking models.   

4.1.1. Model Validation Studies 

4.1.1.1. Effect of Constraints on the Optimization Model 

To see that the model is working correctly, we run the simulation at each time by 

changing the constraints.  In this way, when no constraint exists, optimization model 

sends continuous tracking command to maximize the objective function. In the other 

case, in order to satisfy the constraints, the model does not make tracking decisions 

for specific targets in some measurement batch time interval. 

4.1.1.2. Effect of Lagrange Coefficients on the Optimization Model 

To see the effects of the coefficient, we run the simulation at each time by changing 

Lagrange coefficients. Thus, we observe that, the selection of initial Lagrange 

coefficient has an important role in the optimization problem. When we choose the 

initial coefficients too high, the optimization model will spend extra effort to fulfill 

the constraints, the importance of the constraints will become dominant on the dual 
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function and the utility functions will be less effective on the dual. When the initial 

coefficients are chosen too low, utility function maximization will be dominant, 

however the model will ignore the constraints, so optimal solution might be infeasible 

4.1.2. Effect of Different Objective Functions on the Model 

We assign different priority, velocity preference and track mixing cost on each target 

to see the effect of different objective functions on the model. Preference of the 

velocity is dependent on the velocity values of the targets. As velocity increases, 

preference also increases. Preference is added to the utility function as a multiplier. 

4.1.3. Effect of Tracking Filter on the Model 

The simulation is reperformed with Kalman filter and PDAF to observe the tracking 

filter effect. Then different filter types are compared. 

4.1.4. Comparison of TWS, Adaptive and Lagrangian-based Tracking Model 

In the scenario, we compare the performance of LRM with two heuristic tracking 

methods: Adaptive Tracking (AT), and Track While Scan (TWS). The results of this 

comparison may be used when selecting the scheduling model. 

4.2. Model Description  

Our simulation model has the following properties.  

• Different target trajectories have been simulated. 

• Clutter and target misses have been generated in the measurement operation 

by adding random scattering and gaps to target trajectories respectively. 

• No multipath reflections are included. 

• For track initiation, 3 successive target detections are required. In case of 5 

successive unsuccessful detections (misses), target is dropped.  

• Track correlation is performed by using Mahalanobis distance. 

• After tracking starts for all the targets, the best decisions about tracking in the 

next steps will be determined using Lagrange Duality method.  
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• In the simulation, we manage to track slowly maneuvering targets by adding 

certain assumptions to the model for different scenarios. CV model cannot 

track highly maneuvering targets; however, process covariance matrix values 

are set to a suitable level for slowly maneuvering targets. Unlike highly 

maneuvering targets, track missing, which occurs when the target 

measurement position exceeds the validation gate level, is not observed for 

slowly maneuvering targets, because measurement of target positions is in the 

validation gate range. 

4.3. Simulation Results 

4.3.1. Model Validation Studies 

4.3.1.1. Effect of Constraints on the Optimization Model 

To verify the Lagrange-based optimization, firstly, the two targets are moved in 

different trajectories without any resource constraints. As a result, optimization model 

makes update decision continuously for tracking these targets. Additionally, Kalman 

covariance matrices of the targets preserve their steady state value while total loads of 

the targets are reaching 23.4 msec in the measurement batch interval. This can be seen 

in Table 4.1. In the tables, 

• t is the number of slow time intervals passed.  

• Decision information is 0 and 1 for “Do not Update” and “Update” decisions 

respectively.  

• λ Coeff is the optimal Lagrange Coefficient which maximizes the objective 

function at the specific interval.  

• Trace (Pi) is the trace of the Kalman error covariance matrix for target i, where 

i=1, 2, 3, 4  

• Time Spent is the total batch time for all targets at each slow time. Time 

Occupancy show usage of the timing resources in each slow time interval.  
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• When constraints are large (Time limit for 2 Target is 50 msec) 

Table 4.1. Effect of Constraints on the Optimization Model 1 

  t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 

Decisions (Target 1) 1 1 1 1 1 1 1 1 1 

Decisions (Target 2) 1 1 1 1 1 1 1 1 1 

λ Coeff 1000 1000 1000 1000 1000 1000 1000 1000 1000 

Trace (P1) 10.5    10.5   10.5   10.5   10.5  10.5   10.5   10.5    10.5    

Trace (P2) 10.5    10.5    10.5    10.5    10.5   10.5   10.5    10.5    10.5      

Time Spent (s) 0.023 0.023 0.023 0.02 0.023 0.023 0.023 0.023 0.023 

Time Occupancy (%) 100 100 100 100 100 100 100 100 100 

 

Secondly, the same simulation is re-performed by changing the time constraint to 

20msec. In this case, the optimization model does not make update decision 

continuously for some targets in order to satisfy the resource constraints. 

• When constraints are limited (Time limit for 2 Target is 20 msec) 

Table 4.2. Effect of Constraints on the Optimization Model 2 

  t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 

Decisions (Target 1) 1 1 1 1 0 0 1 0  1 

Decisions (Target 2) 1 1 1 0 1 0 0 1 0 

λ Coeff 1000 1000 0.171    0.137    0.088    0.070  0.07     0.05    0.045 

Trace (P1) 10.5   10.5    10.5    10.5    30.0    73.5    12.6    31.3    11.9    

Trace (P2) 10.5    10.5    10.5    30.0    11.5 30.4 73.6 12.7 31.5 

Time Spent (s) 0.019         0.020     0.020    0.012     0.008          0 0.012    0.008     0.012 

Time Occupancy (%) 95 100 100 60 40 0 60 40 60 

 

In the second case, it can be seen in Table 4.2 that some of timing loads exceed the 

constraint. This case will occur when SNR of the target’s changes drastically in time 

(velocity of the target, maneuvering case etc.). To prevent this, decision time interval 

should be decreased.  

4.3.1.2. Effect of Lagrange Coefficients on the Optimization Model 

Lagrange coefficients have an important role on the main objective function. When 

the Lagrange coefficients are too high, the constraints dominate, and optimization 

model tends to satisfy the constraints only, ignoring the main objective. On the other 
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hand, when the Lagrange coefficients are too low, optimization model tends to 

maximize the utility function and cost functions while ignoring the constraints. 

In Lagrange Duality, the first Lagrange coefficient should be given as high as possible 

for the utility function to be maximum. But this is a non-feasible situation where the 

total timing loads have exceeded the constraints and there is a desire to track each 

target. Therefore, the coefficients which exceed the time limit are reduced to the limit 

at each iteration. Since coefficient is changed, a new objective value is calculated, and 

a new time load is obtained. If the initial coefficient is small, the utilities does not 

reach the maximum value, so the optimum value will not be found. This can be seen 

in Table 4.3.  

• When the starting point of the coefficients is 10, 

In this case, trace error increases for each target (duality → minimization), so 

the optimization does not obey the constraints and only the main objective is 

to minimize the overall utility. 

Table 4.3 Effect of Lagrange Coefficients on the Optimization Model 1 

  t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 

Decisions (Target 1) 0 0 1 0 0 1 0 0 1 

Decisions (Target 2) 0 0 0 1 0 0 0 1 0 

Trace (P1) 30.00 73.50 12.67 31.37 75.93 12.79 31.64 76.59 12.80 

Trace (P2) 30.00 73.50 153.0 13.93 33.01 80.23 167.5 13.99 33.12 

Time Spent (s) 0 0 0.012 0.008 0 0.012 0 0.008 0.012 

Time Occupancy (%) 0 0 60 40 0 60 0 40 60 

 

• When the starting point of the coefficients is 200, 

In this case, trace error decreases for each target, so optimization tries to fit the 

constraints, and time load is getting high but still remaining below the limit. 

We can see the effect of duality, trace errors are getting low, and utilities are 

getting high. 

Table 4.4 Effect of Lagrange Coefficients on the Optimization Model 2 

  t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 

Decisions (Target 1) 1 0 1 0 1 0 0 1 0 

Decisions (Target 2) 0 1 0 1 0 0 1 0 0 
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Table 4.4 (cont'd) 
Trace (P1) 10.50 30.00 11.56 30.48 11.78 30.89 74.74 12.77 31.57 

Trace (P2) 30.00 11.56 30.48 11.78 30.89 74.74 12.77 31.57 76.74 

Time Spent (s) 0.012 0.008 0.012 0.008 0.012 0 0.008 0.012 0 

Time Occupancy (%) 60 40 60 40 60 0 40 60 0 

 

In our algorithm (to find the coefficient), we must set the coefficient limit above 10 

and we must decrease it to find the optimal value. 

4.3.2. Effect of Different Utility Functions on the Model 

4.3.2.1. Effect of Tracking Priorities on the Model 

In order to see the effect of priority, we create three targets with different priority, 

which follows the same trajectory. It can be seen in Table 4.5  that  there are different 

tracking update decisions of the targets according to their priorities. 

Target 1: Priority 3 

Target 2: Priority 2 

Target 3: Priority 1 

Initial Case (Three approaching targets):  T = 0 sec, Vel= 400 m/s  



 

 

 

55 

 

 

Figure 4.1: Different Target Priorities Scenario 

Table 4.5 Different Target Priorities Scenario 

  t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 

Decisions (Target 1) 1  0 0 0 0 1 0 1 0 

Decisions (Target 2) 0  0  1  0  1  0  1  0  1 

Decisions (Target 3) 1 1 1 1 1 1 1 1 1 

λ Coeff 3.35  2.14  2.14 2.14 2.68 3.35 4.19 4.19 3.35 

Trace (P1) 11.81 30.93  74.80    155.4    284.7    15.32    35.18    12.10    31.70    

Trace (P2) 31.25    75.57    156.8   13.99    33.13    80.52    12.81    31.67    11.93    

Trace (P3) 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 10.50 

Time Spent (s) 0.026  0.013 0.026 0.013 0.026 0.026 0.026 0.026 0.026 

Time Occupancy (%) 100 50 100 50 100 100 100 100 100 

 

4.3.2.2. Different Target Velocities 

In order to observe how the model responds to different targets velocities, 3 different 

trajectories have been created. Two of them are approaching the radar with velocities 

1000 m/s and 400 m/s. The other is moving away from radar with the velocity 300 

m/s. It can be seen from Table 4.6 that the model makes different tracking update 

decisions according to the velocities. 
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Figure 4.2 Different Target Velocities Scenario 

Table 4.6 Different Target Velocities Scenario 

  t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 

Decisions (Target 1) 1 1 1 1 0 1 1 1 1 

Decisions (Target 2) 1 1 1 1 1 1 1 1 1 

Decisions (Target 3) 0 0 0 0 1 0 0 0 0 

λ Coeff 1.09  0.70 0.56 0.56 0.56 6.55 6.55 6.55 6.55 

Trace (P1) 10.50    10.50    10.50    10.50    30.00    11.56    10.96    10.68    10.54    

Trace (P2) 10.50    10.50    10.50    10.50    10.50    10.50    10.50    10.50    10.50    

Trace (P3) 30.00 73.50 153.0 280.5 15.29 35.12 85.68 178.9 327.0 

Time Spent (s) 0.026  0.026 0.026 0.026 0.018 0.026 0.026 0.026 0.026 

Time Occupancy (%) 100 100 100 100 70 100 100 100 100 

4.3.2.3. Track Mixing Cost Function 

In order to observe how the model behaves in case of track mixing, two targets were 

moved in trajectories that are close to each other. 
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Figure 4.3 Track Mixing Cost Function Scenario 

Table 4.7 Track Mixing Cost Function Scenario 

  t=1 t=2 t=3 t=4 t=5 t=6 t=7 t=8 t=9 

Decisions (Target 1) 1 0 1 0 1 0 1 1 1 

Decisions (Target 2) 0 1 0 1 0 0 1 1 1 

Trace (P1)  10.50    30.00    11.56    30.48    11.78    30.89    11.79    11.04    10.69    

Trace (P2)  30.00 11.56 30.48 11.78 30.89 74.74 12.77 11.53 10.82 

Time Spent (s) 0.013 0.013 0.013 0.013 0.013 0 0.026 0.026 0.026 

Time Occupancy (%) 50 50 50 50 50 0 100 100 100 

 

The cost function has been added to the objective function of target 1. As a result, the 

model tends to make update decision more for this target to increase the target 

performance. 

4.3.3. Effect of Tracking Filter on the Model 

Our optimization model uses the inverse of the error covariance matrix trace for utility 

function in each decision time step. To make a difference on this case, we have added 

PDA filter to our model which is based on Kalman filter and we observe its 

contribution.  At first, we thought we would minimize the error using PDA filter, but 
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it is seen in the trials that the decision process is not affected as expected. Scheduling 

decisions does not change in both situations because Markov chain step does not 

reflect the effect of clutter. If the resolution of the performance state increases, the 

effect of high clutter situation can be seen on optimization model. 

Scenario: 15 Target (4 Tracked)  

Initial Lagrange: 1000 

Time Limit for 4 Target: 40 msec; in unrestricted mode time is reaching 60 msec 

Time Forward: 4 sec 

 

Figure 4.4 Filter Effect Scenario 

Table 4.8 Scenario with Kalman Filter 

  t=1 t=2 t=3 t=4 

Decisions (Target 1) 0 1 0 1 

Decisions (Target 2) 1 0 1 0 

Decisions (Target 3) 0 1 0 0 

Decisions (Target 4) 1 0 1 0 

Trace (P1)  30.00 11.56 30.48 11.78 

Trace (P2)  10.50 30.00 11.56 30.48 

Trace (P3)  30.00 11.56 30.48 73.68 
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Table 4.8 (cont'd)  
Trace (P4) 10.50 30.00 11.56 30.48 

Time Spent (s) 0.026 0.017 0.026 0.011 

Time Occupancy (%) 100 65 100 42 

 

Table 4.9 Scenario with PDAF and Low Clutter 

  t=1 t=2 t=3 t=4 

Decisions (Target 1) 0 1 0 1 

Decisions (Target 2) 1 0 1 0 

Decisions (Target 3) 0 1 0 0 

Decisions (Target 4) 1 0 1 0 

Trace (P1)  30.00 15.68 38.63 32.46 

Trace (P2)  11.73 32.75 81.68  165.68 

Trace (P3)  30.00 18.41 44.02 96.54 

Trace (P4) 19.67 43.70 25.56 55.16 

Time Spent (s) 0.026 0.017 0.026 0.011 

Time Occupancy (%) 100 65 100 42 

 

Table 4.10 Scenario with PDAF and High Clutter 

  t=1 t=2 t=3 t=4 

Decisions (Target 1) 0 1 0 1 

Decisions (Target 2) 1 0 1 0 

Decisions (Target 3) 0 1 0 0 

Decisions (Target 4) 1 0 1 0 

Trace (P1)  379.41 42.26 87.76 83.48 

Trace (P2)  26.16 64.93 88.04  168.48 

Trace (P3)  30.00 20.98 49.10 105.12 

Trace (P4) 16.56 41.33 46.57 99.67 

Time Spent (s) 0.026 0.017 0.026 0.011 

Time Occupancy (%) 100 65 100 42 

 

As can be seen from Table 4.8, Table 4.9 and Table 4.10, trace of P is higher for PDA 

Filter than Kalman under same circumstances. The reason is that, when PDA Filter is 

applied, probability 𝛽0 used to update Error Covariance Matrix extends the validation 

gate range in high clutter returns. For PDA Filter, probability 𝛽0  is evolved according 

to the difference between the current measurement error and the previous one. If the 

returned signal remains in high clutter density or is originated from false alarm, 𝛽0  

increases the Kalman error covariance matrix. In other words, at each update iteration, 

error covariance matrix is updated according to the error. However, for Kalman Filter, 
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error covariance matrix always gets the value according to the system model. Hence, 

updated β also updates validation gate range. This update process reduces the risk of 

target drop at the track correlation step. Unlike Kalman Filter, in PDA Filter gate level 

does not change linearly with respect to system dynamics.  

4.3.4. Comparison of TWS, Adaptive and Lagrangian-based Tracking Model 

Firstly, we mention about the working principle of these methods. In TWS and 

adaptive cases, performance of the tracking is only considered at the measurement 

time, so when the allocated time resource is not enough, tracking algorithm must select 

targets which have the lowest priorities to be omitted in the measurement batch 

interval. Hence, overall performance analysis of the tracking operation is performed 

in the fast time scheduling which is also called as myopic case. So, optimization of 

tracking policy is made in this interval which is different from Lagrangian case. To 

see the differences of these methods and make a comparison, we performed adaptive, 

TWS and Lagrangian tracking simulations in a specific scenario.  

In the first case, TWS allocates the specific time interval in the radar resources while 

scanning the horizon. If the allocated time is not enough to track all the targets, the 

radar resource management must negotiate in tracking targets to drop a couple of 

them. As can be seen in Table 4.11, two targets with lowest SNR are dropped because 

of limited resources and error values for these targets are getting high in each 

measurement time. In addition, at slow time 4, Target 1 is detected and tracked again 

because timing resources become enough to track one more target in measurement 

batch time. 

In adaptive case, tracking decision is based on uncertainty threshold value. If the 

tracking accuracy of any target falls below the threshold value, tracking decision is 

made for these targets, the others does not need to be updated. The tracking diagram 

of adaptive tracking can be seen in Figure 4.5. If we look at the graph of the adaptive 

tracking for future time zones, adaptive tracking behaves as if it uses greedy algorithm 

to track the targets in slow time. The adaptive tracking is useful when limited radar 
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resource is not enough to track desired number of targets. But it does not guarantee 

that the time constraints are satisfied in resource allocation strategy. Adaptive tracking 

results can be seen in Table 4.12. Trace error of the targets does not exceed the error 

threshold until measurement time 4. At measurement time 4, however, tracking 

decisions are made for all targets and total batch time is reached to 58.5 msec which 

is too high for timing constraint. 

 

Figure 4.5 An Example of an Adaptive Update Strategy [27] 

On the other hand, in Lagrangian case, tracking algorithm calculates its performance 

value by looking at the utilities in future time zones and it tries to maximize their 

profit. The strategy is useful when the resources are limited, and target density is high. 

These results can be seen in Table 4.13. Trace error for each target were kept at a 

certain safety level while satisfying the constraints. But when the optimization time 

interval is kept too long, Lagrangian-based tracking will not work properly because 

the predicted performance accuracy will decrease dramatically as the time interval 

increases.  
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Figure 4.6 Comparison of Tracking Methods Scenario 

Table 4.11 Online Trace Error Values for TWS Tracking  

 Batch Time Trace of Kalman Error Covariance Matrix 

Measurement # All Targets Target 1 Target 2 Target 3 Target 4 Target 5 

1 0.0306 42650.00 42650.00 10.53 10.53 10.53 

2 0.0306 62777.50 62777.50 10.50 10.50 10.50 

3 0.0306 86965.00 86965.00 10.50 10.50 10.50 

4 0.0306 115224.50 115224.50 10.50 10.50 10.50 

5 0.0306 147568.00 147568.00 10.50 10.50 10.50 

6 0.0306 184007.50 184007.50 10.50 10.50 10.50 

Slow Time 1 

1 0.0316 224555.00 224555.00 10.50 10.50 10.50 

2 0.0308 269222.50 269222.50 10.50 10.50 10.50 

3 0.0310 318022.00 318022.00 10.50 10.50 10.50 

4 0.0312 370965.50 370965.50 10.50 10.50 10.50 

5 0.0314 428065.00 428065.00 10.50 10.50 10.50 

Slow Time 2 

1 0.0322 489332.50 489332.50 10.50 10.50 10.50 

2 0.0317 554780.00 554780.00 10.50 10.50 10.50 

3 0.0318 624419.50 624419.50 10.50 10.50 10.50 

4 0.0320 698263.00 698263.00 10.50 10.50 10.50 
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Table 4.11 (cont'd)  

5 0.0321 776322.50 776322.50 10.50 10.50 10.50 

Slow Time 3 

1 0.0327 858610.00 858610.00 10.50 10.50 10.50 

2 0.0323 945137.50 945137.50 10.50 10.50 10.50 

3 0.0324 1035917.00 1035917.00 10.50 10.50 10.50 

4 0.0326 1130961.00 1130961.00 10.50 10.50 10.50 

5 0.0326 1230280.00 1230280.00 10.50 10.50 10.50 

Slow Time 4 

1 0.0318 1333888.00 1333888.00 10.50 10.50 10.50 

2 0.0328 1441795.00 1441795.00 10.50 10.50 10.50 

3 0.0329 1554015.00 1554015.00 10.50 10.50 10.50 

4 0.0330 62.59 1670558.00 10.50 30.00 10.50 

5 0.0317 17.36 1791438.00 10.50 73.50 10.50 

Slow Time 5 

1 0.0321 11.47 1916665.00 10.50 153.00 10.50 

2 0.0318 10.64 2046253.00 10.50 280.50 10.50 

3 0.0319 10.54 2180212.00 10.50 468.00 10.50 

4 0.0320 10.52 2318556.00 10.50 727.50 10.50 

5 0.0320 10.50 2461295.00 10.50 1071.00 10.50 

Slow Time 6 

1 0.0323 10.50 2608443.00 10.50 1510.50 10.50 

2 0.0321 10.50 2760010.00 10.50 2058.00 10.50 

3 0.0322 10.50 2916010.00 10.50 2725.50 10.50 

4 0.0322 10.50 3076453.00 10.50 3525.00 10.50 

5 0.0323 10.50 3241353.00 10.50 4468.50 10.50 

Slow Time 7 

1 0.0326 10.50 3410720.00 10.50 5568.00 10.50 

2 0.0324 10.50 3584568.00 10.50 6835.50 10.50 

3 0.0324 10.50 3762907.00 10.50 8283.00 10.50 

4 0.0325 10.50 3945751.00 10.50 9922.50 10.50 

5 0.0325 10.50 4133110.00 10.50 11766.00 10.50 

Slow Time 8 

1 0.0328 10.50 4324998.00 10.50 13825.50 10.50 

2 0.0326 10.50 4521425.00 10.50 16113.00 10.50 

3 0.0326 10.50 4722405.00 10.50 18640.50 10.50 

4 0.0327 10.50 4927948.00 10.50 21420.00 10.50 

5 0.0327 10.50 5138068.00 10.50 24463.50 10.50 
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Table 4.11 (cont'd) 

Slow Time 9 

1 0.0329 10.50 5352775.00 10.50 27783.00 10.50 

2 0.0328 10.50 5572083.00 10.50 31390.50 10.50 

3 0.0328 10.50 5796002.00 10.50 35298.00 10.50 

4 0.0329 10.50 6024546.00 10.50 39517.50 10.50 

5 0.0329 10.50 6257725.00 10.50 44061.00 10.50 

Slow Time 10 

1 0.0331 10.50 6495553.00 10.50 48940.50 10.50 

2 0.0330 10.50 6738040.00 10.50 54168.00 10.50 

3 0.0330 10.50 6985200.00 10.50 59755.50 10.50 

4 0.0330 10.50 7237043.00 10.50 65715.00 10.50 

5 0.0330 10.50 7493583.00 10.50 72058.50 10.50 

 

Table 4.12 Online Trace Error Values for Adaptive Tracking  

 Batch Time Trace of Kalman Error Covariance Matrix 

Measurement # All Targets Target 1 Target 2 Target 3 Target 4 Target 5 

1 0 153.80 153.80 153.80 153.80 153.80 

2 0 278.62 278.62 278.62 278.62 278.62 

3 0 462.11 462.11 462.11 462.11 462.11 

4 0 16.83 16.83 16.83 16.83 16.83 

5 0.0558 37.75 37.75 37.75 37.75 37.75 

6 0 92.44 92.44 92.44 92.44 92.44 

Slow Time 1 

1 0 192.89 192.89 192.89 192.89 192.89 

2 0 351.11 351.11 351.11 351.11 351.11 

3 0 15.44 15.44 15.44 15.44 15.44 

4 0.0568 35.32 35.32 35.32 35.32 35.32 

5 0 86.20 86.20 86.20 86.20 86.20 

Slow Time 2 

1 0 180.09 180.09 180.09 180.09 180.09 

2 0 328.98 328.98 328.98 328.98 328.98 

3 0 15.39 15.39 15.39 15.39 15.39 

4 0.0574 35.26 35.26 35.26 35.26 35.26 

5 0 86.04 86.04 86.04 86.04 86.04 

Slow Time 3 

1 0 179.74 179.74 179.74 179.74 179.74 
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Table 4.12 (cont'd) 

2 0 328.36 328.36 328.36 328.36 328.36 

3 0 15.39 15.39 15.39 15.39 15.39 

4 0.0578 35.25 35.25 35.25 35.25 35.25 

5 0 86.04 86.04 86.04 86.04 86.04 

Slow Time 4 

1 0 179.74 179.74 179.74 179.74 179.74 

2 0 328.35 328.35 328.35 328.35 328.35 

3 0 15.39 15.39 15.39 15.39 15.39 

4 0.0581 35.25 35.25 35.25 35.25 35.25 

5 0 86.04 86.04 86.04 86.04 86.04 

Slow Time 5 

1 0 179.74 179.74 179.74 179.74 179.74 

2 0 328.35 328.35 328.35 328.35 328.35 

3 0 15.39 15.39 15.39 15.39 15.39 

4 0.0583 35.25 35.25 35.25 35.25 35.25 

5 0 86.04 86.04 86.04 86.04 86.04 

Slow Time 6 

1 0 179.74 179.74 179.74 179.74 179.74 

2 0 328.35 328.35 328.35 328.35 328.35 

3 0 15.39 15.39 15.39 15.39 15.39 

4 0.0585 35.25 35.25 35.25 35.25 35.25 

5 0 86.04 86.04 86.04 86.04 86.04 

Slow Time 7 

1 0 179.74 179.74 179.74 179.74 179.74 

2 0 328.35 328.35 328.35 328.35 328.35 

3 0 15.39 15.39 15.39 15.39 15.39 

4 0.0586 35.25 35.25 35.25 35.25 35.25 

5 0 86.04 86.04 86.04 86.04 86.04 

Slow Time 8 

1 0 179.74 179.74 179.74 179.74 179.74 

2 0 328.35 328.35 328.35 328.35 328.35 

3 0 15.39 15.39 15.39 15.39 15.39 

4 0.0586 35.25 35.25 35.25 35.25 35.25 

5 0 86.04 86.04 86.04 86.04 86.04 

Slow Time 9 

1 0 179.74 179.74 179.74 179.74 179.74 

2 0 328.35 328.35 328.35 328.35 328.35 
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Table 4.12 (cont'd) 

3 0 15.39 15.39 15.39 15.39 15.39 

4 0.0586 35.25 35.25 35.25 35.25 35.25 

5 0 86.04 86.04 86.04 86.04 86.04 

Slow Time 10 

1 0 179.74 179.74 179.74 179.74 179.74 

2 0 328.35 328.35 328.35 328.35 328.35 

3 0 15.39 15.39 15.39 15.39 15.39 

4 0.0586 35.25 35.25 35.25 35.25 35.25 

5 0 86.04 86.04 86.04 86.04 86.04 

 

Table 4.13 Online Trace Error Values for Lagrangian-Based Tracking 

 Batch Time Trace of Kalman Error Covariance Matrix 

Measurement #   All Targets   Target 1   Target 2   Target 3   Target 4   Target 5  

1                    0.0551           10.53           10.53           10.53           10.53           10.53  

2                    0.0554           10.50           10.50           10.50           10.50           10.50  

3                    0.0557           10.50           10.50           10.50           10.50           10.50  

4                    0.0559           10.50           10.50           10.50           10.50           10.50  

5                    0.0561           10.50           10.50           10.50           10.50           10.50  

6                    0.0561           10.50           10.50           10.50           10.50           10.50  

 Slow Time 1  

1  0.027           30.00           10.50           30.00           10.50           30.00  

2                    0.0296           11.56           30.00           11.56           30.00           11.56  

3                    0.0269           30.48           11.56           30.48           11.56           30.48  

4                    0.0245           11.78           30.48           73.68           30.48           11.78  

5                    0.0268           30.89           11.78         153.18           11.78           30.89  

 Slow Time 2  

1                    0.0268           74.74           11.04         280.98           11.04           74.74  

2                    0.0304           12.77           30.91           15.31           30.91           12.77  

3                    0.0268           31.57           11.60           35.16           11.60           31.57  

4                    0.0243           11.92           30.56           85.80           30.56           11.92  

5                    0.0267           31.25           11.78         179.22           11.78           31.25  

 Slow Time 3  

1                    0.0267           75.56           11.04         327.42           11.04           75.56  

2 0           156.85           30.91         542.41           30.91         156.85  

3                    0.0311           13.99           75.79           16.83           75.79           13.99  

4                    0.0266           33.13           12.68           37.71           12.68           33.13  
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Table 4.13 (cont'd) 

5 0            80.52           31.38           92.34           31.38           80.52  

 Slow Time 4  

1 0.0265        168.18           11.92         192.73           11.92         168.18  

2 0        308.10           31.24         350.88           31.24         308.10  

3 0.0316          15.35           75.55           15.43           75.55           15.35  

4 0.0265          35.20           12.78           35.32           12.78           35.20  

5 0          85.91           31.58           86.20           31.58           85.91  

 Slow Time 5  

1                    0.0264         179.46           11.92         180.08           11.92         179.46  

2                             0           327.85           31.25         328.96           31.25         327.85  

3                    0.0319           15.39           75.57           15.39           75.57           15.39  

4                    0.0263           35.25           12.78           35.26           12.78           35.25  

5                             0             86.04           31.58           86.04           31.58           86.04  

 Slow Time 6  

1                    0.0262         179.73           11.92         179.74           11.92         179.73  

2                    0.0321           14.02           31.25           14.02           31.25           14.02  

3                    0.0262           33.14           11.80           33.14           11.80           33.14  

4                             0             80.53           30.93           80.53           30.93           80.53  

5                    0.0238           12.81           74.79         168.19           74.79           12.81  

 Slow Time 7  

1                    0.0261           31.68           12.77         308.13           12.77           31.68  

2                    0.0324           11.93           31.58           15.35           31.58           11.93  

3                    0.0260           31.25           11.92           35.21           11.92           31.25  

4                    0.0237           11.80           31.25           85.91           31.25           11.80  

5                             0             30.93           75.56         179.46           75.56           30.93  

 Slow Time 8  

1                    0.0259           74.80           12.78         327.85           12.78           74.80  

2                    0.0326           12.77           31.58           15.39           31.58           12.77  

3                    0.0259           31.58           11.92           35.25           11.92           31.58  

4                    0.0236           11.92           31.25           86.04           31.25           11.92  

5                             0             31.25           75.57         179.73           75.57           31.25  

 Slow Time 9  

1                    0.0258           75.56           12.78         328.35           12.78           75.56  

2                    0.0328           12.78           31.58           15.39           31.58           12.78  

3                    0.0257           31.58           11.92           35.25           11.92           31.58  

4                    0.0235           11.92           31.25           86.04           31.25           11.92  

5                             0             31.25           75.57         179.74           75.57           31.25  
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Table 4.13 (cont'd) 

 Slow Time 10  

1                    0.0256           75.57           12.78         328.35           12.78           75.57  

2                             0                                       156.86           31.58         543.89           31.58         156.86  

3                             0           287.14           76.45         838.33           76.45         287.14  

4                    0.0330           15.33         159.40           18.32         159.40           15.33  

5                    0.0255           35.20           13.99           40.35           13.99           35.20  
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CHAPTER 5  

 

5. CONCLUSION 

 

5.1. Conclusion and Future Works 

In this thesis, the online resource allocation problem in MF Radar systems is 

presented. A detailed research of a proposed resource management approach called 

Lagrangian-based optimization is improved. A simulation model has been constructed 

with the aim of the online operation feasibility. Besides the Kalman filter, 

implementation of Probabilistic Data Association filter is also performed. Also, track 

mixing and track re-initiation events are included in the optimization model.  In 

addition to these, TWS, adaptive tracking and Lagrange based algorithms are 

compared. TWS algorithm allocates a certain time interval for the whole tracking 

process, and this time interval may not satisfy needs for all targets. In this case, some 

of the targets with low priority are dropped. In adaptive case, targets are tracked or not 

tracked according to a certain threshold value. In Lagrange-based optimization, a 

certain level of tracking quality is guaranteed. The main difficulty about Lagrange-

based optimization is the possibility of performance variables to change dramatically 

in slow time scheduling interval. If this interval, namely resource allocation interval, 

gets higher, estimation for high-velocity targets becomes unrealistic. 

Further research could be done by improving target kinematics model. Besides, 

searching tasks can be added to the optimization problem. Another future work 

direction might be including algorithms to select the best Lagrange coefficients in 

Lagrangian Relaxation. Moreover, Joint Probabilistic Data Association Filter or Multi 

Hypothesis Tracking Filter can be added in tracking scenario and effect of these filter 

can be observed. Improving duality gap in the optimization is another valuable future 

research area. 
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