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ABSTRACT 

REAL-TIME FPGA FIRMWARE FOR VGA RESOLUTION INFRARED 

CAMERA 

Çevik, Kami 

Master of Science, Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Tayfun Akın 

September 2019, 82 pages

Infrared cameras generally require pre-processing on raw image data in order 

to improve the output image quality. Raw output of the infrared cameras 

occupies a narrow part of the available dynamic range. Contrast enhancement is one 

of the pre-processing operations and used for improving dynamic range of the 

low contrast images.

This thesis proposes an adaptive histogram equalization method for enhancing the 

contrast of long wavelength infrared camera output with 640×480 resolution 

and provides a FPGA implementation architecture of this method that 

operates in real-time. Proposed method aims to improve the contrast of the 

background and foreground details while avoiding from over-enhancement 

effects and preserving thermal characteristics of the frame. Design of the proposed

contrast enhancement algorithm based on integration of Adaptive Double

Plateaus Histogram Equalization and Weighting Mean-Separated Sub-Histogram

Equalization algorithms which are two widely used contrast enhancement 

methods for infrared and grayscale images. Threshold calculation is rearranged 

in order to prevent the excessive enhancement effects. Since the proposed 

method is a modified version of these two methods, it named as

Weighting Mean-Separated Double Plateaus Histogram Equalization. 

v 
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Various contrast enhancement algorithms are implemented and compared 

quantitatively in MATLAB for evaluating the performance of the proposed method. 

FPGA implementation output is also compared with MATLAB output for testing the 

implementation process. Real-time image processing pipeline is designed as 

compatible for integration of the implemented design with targeted infrared imaging 

system. Test results show that the developed method improves background and 

foreground gray level intensity values with reducing excessive enhancement effects. 

Keywords: Real-Time Image Processing, Contrast Enhancement, Histogram 

Equalization, Infrared Imaging, FPGA  



ÖZ 

VGA ÇÖZÜNÜRLÜKLÜ KIZILÖTESİ KAMERA İÇİN GERÇEK 

ZAMANLI FPGA YAZILIMI 

Çevik, Kami 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği 

Tez Danışmanı: Prof. Dr. Tayfun Akın 

Eylül 2019, 82 sayfa

Kızılötesi kameralar genellikle çıkış görüntüsünün kalitesini arttırmak amacıyla ham 

görüntü verisi üzerinde ön işleme gereksinimine ihtiyaç duymaktadır. Kızılötesi 

kameraların ham çıkışı mevcut dinamik aralığın dar bir kısmını kapsar. Kontrast 

iyileştirme, düşük kontrastlı görüntülerin dinamik aralıklarını geliştirmek için 

kullanılan ön işleme yöntemlerinden biridir. 

Bu tez, 640×480 çözünürlüğe sahip uzun dalga boylu kızılötesi kamera çıkışının 

kontrastını iyileştirmek için adaptif bir histogram eşitleme yöntemi ve bu yöntem 

için gerçek zamanlı çalışan bir FPGA uygulaması mimarisi önermektedir. Önerilen 

yöntem, arka plan ve ön plan ayrıntılarının kontrastını, aşırı iyileştirme etkilerinden 

kaçınarak ve karedeki termal karakteristiği koruyarak iyileştirmeyi amaçlamaktadır. 

Önerilen kontrast iyileştirme tasarımı, kızılötesi ve gri seviyeli görüntülerin 

kontrastlarını iyileştirmede yaygın olarak kullanılan yöntemler olan Adaptif Çift 

Platolu Histogram Eşitleme ve Ağırlıklı Ortalama ile Ayrılmış Alt-Histogram 

Eşitleme algoritmalarının birleştirilmesine dayanmaktadır. Eşik değeri hesaplaması 

aşırı iyileştime etkilerini önlemek amacıyla yeniden düzenlenmiştir. Önerilen 

yöntem, bu iki yöntemin değiştirilmiş bir versiyonu olduğundan, Ağırlıklı Ortalama 

ile Ayrılmış Çift Platolu Histogram Eşitleme olarak adlandırılmıştır. 

vii 



viii 

Çeşitli farklı kontrast eşitleme algoritmaları önerilen yöntemin performansını 

değerlendirmek için MATLAB üzerinde uygulanmış ve nicel olarak karşılaştırılmıştır. 

Önerilen yöntemin FPGA uygulamasının çıktıları, uygulama işleminin test edilmesi 

için MATLAB çıktıları ile ayrıca karşılaştırılmıştır. Gerçek zamanlı görüntü işleme 

hattı, uygulanan tasarımın hedeflenen kızılötesi görüntüleme sistemine entegrasyonu 

için, bu sistemle uyumlu olarak tasarlanmıştır. Test sonuçları, geliştirilen yöntemin,

aşırı iyileştirme etkilerini azaltarak arka plan ve ön plan gri seviye yoğunluk

değerlerini iyileştirdiğini göstermektedir.   

Anahtar Kelimeler: Gerçek Zamanlı Görüntü İşleme, Kontrast İyileştirme, Histogram 

Eşitleme, Kızılötesi Görüntüleme, FPGA 
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CHAPTER 1 

INTRODUCTION

Electromagnetic spectrum is distribution of electromagnetic radiation in terms of 

wavelength, frequency or energy. Electromagnetic radiation has a widely distributed 

spectrum from the radio waves to gamma rays. Within this wide range, human eyes 

can only detect wavelengths between 400 nanometers and 740 nanometers. This 

visible spectrum of light covers all the colors from the longest wavelength called red 

to shortest wavelength called violet. Visible spectrum is surrounded by ultraviolet 

(beyond violet) and infrared (below red) spectrums.  

Infrared radiation is the part containing wavelengths from 0.74 micrometers to 

approximately 1000 micrometers. Infrared spectrum can be divided into five regions 

based on atmospheric transmittance as Near Infrared (NIR), Short Wavelength 

Infrared (SWIR), Medium Wavelength Infrared (MWIR), Long Wavelength Infrared 

(LWIR) and Very Long Wavelength Infrared (VLWIR). Human eyes are unable to 

see these regions because starting from the NIR region, photons do not have enough 

energy for triggering the chemical reaction in the eye for perceiving color of the light. 

Infrared detectors that include specific sensitive materials can perceive the incoming 

infrared radiation. These detectors are commonly used in military and civilian 

applications including night vision, biomedical imaging, thermography, fire detection 

and surveillance. 

Thermal radiation is the electromagnetic wave emission made from all substances with 

temperature that above from absolute zero. At temperatures around room temperature, 

a significant portion of thermal radiation falls into the infrared spectrum. Emitted 

thermal radiation is collected, filtered and focused onto a detector array by thermal 

imaging systems. Detector array converts the incident thermal radiation into analog 
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signals. These signals are amplified, digitized and processed by sensor electronics for 

displaying the thermal image. 

Thermal imaging systems vary according to the intended use. This variety can be 

arisen from structural requirements, such as cooling system or shutter requirements, 

or it can also be caused by functional requirements, such as image enhancement and/or 

image processing. Contrast enhancement is one of the important pre-processing 

operations in the infrared imaging systems. Optimal contrast enhancement varies 

according to the characteristics of the target and the environment to be viewed. This 

thesis focuses on contrast enhancement and proposes a method and its implementation 

for the minimizing artifacts while enhancing contrast of the thermal images. 

The rest of this chapter is organized as follows: Section 1.1 provides information about 

infrared radiation. Section 1.2 explains acquisition techniques of the infrared images. 

Section 1.3 states the enhancement requirements of the infrared images. Section 1.4 

emphasizes the advantages of the FPGAs on real-time image processing. Finally, 

Section 1.5 gives the research objectives and description of organization of the thesis. 

1.1. Infrared Spectrum 

Infrared radiation is the part containing wavelengths from 0.74 micrometers to 

approximately 1000 micrometers. Infrared spectrum can be divided into five zones 

according to the atmospheric transmittance of the various wavelengths as Near 

Infrared (NIR: 0.74 µm - 1 µm), Short Wavelength Infrared (SWIR: 1 µm - 3 µm), 

Medium Wavelength Infrared (MWIR: 3 µm - 5 µm), Long Wavelength Infrared 

(LWIR: 8 µm - 14 µm) and Very Long Wavelength Infrared (VLWIR: 14 µm – 1000 

µm) as Figure 1.1 shows [1]. Note that, 5 µm - 8 µm wavelength band of the infrared 

spectrum is not permeable for infrared radiation due to very low atmospheric 

transmittance. 

The NIR wavelength band was the first part of the electromagnetic spectrum outside 

the visible region to be discovered, by astronomer Sir William Herschel in 1800. He 

used an experiment setup which includes three blackened thermometers and a prism. 
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He measured the heat transfer of different colors of sunlight refracted by the prism 

with thermometers. The thermometers indicated a heat change even when placed in 

the dark region just beyond the red part of the rainbow pattern [2]. Herschel concluded 

that the cause of the heat increase in the thermometers was invisible light rays. 

Figure 1.1. The electromagnetic spectrum [1] 

Different wavebands of the infrared spectrum can be suitable for various applications. 

For example, NIR detectors can be used for vision systems which can operate at 

low-illuminated conditions or in space surveillance telescopes. SWIR detectors are 

suitable for detecting fluids for different purposes such as production quality tests or 

security. NIR and SWIR cameras are also be used for the identification of original or 

fake paintings as shown in Figure 1.2.  
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Figure 1.2. Visible image of Natura and two details in visible and NIR bands [2] 

MWIR and LWIR detectors are mostly used for monitoring the thermal distribution 

for various purposes such as detection of thermal insulation leaks, failure detection in 

electrical and electronic systems, medical imaging, military surveillance and target 

detection and tracking systems, etc. Figure 1.3 shows the detection of unwanted high 

resistance connections in transformer substation with using LWIR camera. 

Figure 1.3. Detection of unwanted high resistance connections in transformer substation with using 

LWIR camera [3] 

1.2. Infrared Imaging Systems 

Systems that collect radiant energy and generate an image of the subject without 

visible light are called infrared imaging systems. Infrared detection methods can be 

categorized into two main parts as photon detectors and thermal detectors. Many 

sensitive materials have been investigated for the increasing the performance of both 

detection methods. Figure 1.4 gives approximate dates of main developments for these 

materials.  
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Figure 1.4. History of the development of IR detectors [4] 

Incident radiation is absorbed within the material by interaction with electrons in 

photon detectors. Electrical output signal is observed with monitoring the changes in 

electronic energy distribution. Photon detectors offer both good signal-to-noise ratio 

(SNR) and fast response. But necessity of cryogenic cooling is main impediment that 

make them heavy and expensive for the common use of these detectors. In thermal 

detectors, electrical output signal is generated from the changes in some physical 

properties with respect to temperature change in absorber material which interacts 

with incident radiation. These detectors are more attractive devices comparing with 

photon detectors due to providing wider bandgap (electrical output signal depends on 

radiant power, but not depends on its spectral content) and lack of need of cryogenic 

cooling (they can operate at room temperature). Besides these advantages of the 

uncooled thermal detectors, their small size, reduced power consumption and lower 

cost make these detectors the most appropriate option for high volume applications 

that require relatively lower performance [4] [5].  

Microelectromechanical systems (MEMS) allows the fabrication of sensitive 

bolometric infrared detectors on thermally isolated membranes. Figure 1.5 shows the 

structure of a microbolometer. Incident infrared radiation increases the temperature of 

the absorber material. Thermally sensitive material resistivity changes with the change 

of temperature related to its temperature coefficient of resistance (TCR). Resistance 

change is measured and electrical output signal is generated by readout circuitry 

(ROIC). Thermally sensitive material can also be utilized as a diode and the diode 

potential can also be monitored for achieving the thermal data. 



Figure 1.5. Structure of a microbolometer 

METU MEMS Research and Applications Center specializes on infrared 

microbolometer detectors. Resistive and diode type microbolometers are designed and 

fabricated for a variety of applications that require a variety of performance [6-12]. 

1.3. Enhancement Requirements of Infrared Images 

Image enhancement is an initial step of processing the digitally obtained image to an 

improved view of it in terms of brightness, smoothness and contrast, etc. Generally, 

raw infrared images are not meaningful to be understood by humans. Sensor defects 

(dead pixels, dead columns and dead rows), noise introduced by ROIC  

and non-uniformity of the sensors forms the requirement for image 

enhancement. Non-uniformity correction (NUC), contrast enhancement and dead 

pixel filtering can be done to get a better quality image. 

Non-uniformity correction can be used for eliminating the fixed pattern noise which 

is caused by spatial and temporal non-uniformities between pixels in infrared 

focal plane array (IRFPA). Offset and gain corrections eliminate the offset and gain 

errors between pixels with using dark and flat-field frames. Dead pixel filtering is 

basically replacing a calculated pixel value or neighboring pixel itself with the dead 

pixel. There are many methods for the dead pixel correction. Median filtering is a 

common method for replacing the dead pixel in the raw image. 

6 
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Figure 1.6. a) LWIR camera output before contrast enhancement b) Contrast enhanced image 

Raw output of the infrared cameras generally occupies a very narrow part of dynamic 

range of the available gray levels that ROIC can generate as seen in the Figure 1.6. 

These low-contrast output images generally include a highly dark background and 

brighter detailed foreground information for white-hot infrared images. In order to 

enhance the low contrast infrared images, a suitable contrast enhancement method 

must be selected to enhance the background and foreground contrast while 

suppressing the noise and other artifacts of the incorrect over-enhancement. 

1.4. Advantages of FPGAs on Real-Time Image Processing 

Field Programmable Gate Arrays (FPGAs) are specific type of integrated circuits that 

offer the possibility of developing reconfigurable, custom hardware. FPGAs allow 

designers both rapid prototyping before the manufacturing and modifying the design 

even after the end-product is deployed in the field. Basic architecture of the most 

FPGAs is shown in Figure 1.7. Logic blocks, interconnections and input/output pins 

form the basic structure of FPGA. Reconfiguration capability of the interconnect 

matrix blocks provides implementation of custom hardware with arranging logic 

blocks and input/output pins. Modern FPGAs contain large internal block memories, 

sophisticated DSP blocks and millions of logic gates. Advanced ones contain several 

Central Processing Units (CPU) and Graphical Processing Units (GPU) in System on 

a Chip (SoC) architecture.  

Raw Image WMSDPHE Histogram Equalization

a) b) 



8 

Figure 1.7. Basic structure of FPGA [13] 

Since the FPGAs implement the logic required by a process by configuring separate 

hardware for each function, they can operate in parallel by their nature. This advantage 

makes FPGAs well suited to real-time image processing applications. Large chunks 

of image data can be processed in a pipelined structure. A synchronous image 

processing pipeline is given in Figure 1.8. Frames of the real-time video processed 

one by one without any buffer between image processing modules. Note that, 

Frame 1 is displayed while Frame 2 is being filtered and Frame 3 is being buffered. If 

this system designed as asynchronous pipeline, there must be memories between the 

image processing modules. 

Figure 1.8. Image processing pipeline 
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1.5. Research Objectives and Thesis Organization 

The goals of this research are; 

1. To develop an adaptive contrast enhancement algorithm that enhances the

offset corrected video stream input with 640×480 resolution which comes from

the output of LWIR uncooled microbolometer camera in real-time.

2. To implement the developed contrast enhancement algorithm on FPGA.

LWIR uncooled microbolometer camera core and electronics are designed in 

Mikro-Tasarım Elektronik San. ve Tic. A.Ş. in Ankara, Turkey. Camera core that 

contains MT6417BA ROIC and MTAS1410X4 ASIC connected to the camera 

electronics. Camera electronics include MTPCB1725 FPGA Board that contains 

Xilinx Artix-7 XC7A100T-1CSG324C FPGA and a carrier board that includes 

GPIOs, power input and Camera Link output connectors. Camera electronics 

connected to a computer via Camera Link interface. On the computer side, there is a 

software that responsible for controlling the camera core and displaying the thermal 

video stream. Note that, developed contrast enhancement firmware will be integrated 

into the whole firmware that operates deserialization, offset correction and Camera 

Link transmission. Internal line or frame buffer is not used in the design to ensure 

minimum FPGA resource utilization in the contrast enhancement module. External 

memory is not used because of hardware limitation of the imaging system. For 

reducing the logic element utilization and for simplicity, mathematical operations such 

as multiplication and division are implemented as fixed-point operations. 

Contrast enhancement module is designed with using same video controlling ports as 

the other modules in the whole firmware for reusability and modularity. In addition to 

this, all camera and enhancement variables such as frame size and dynamic range bit 

length are designed parametrically. IPs that performs the arithmetic operations are 

used from default IP catalog of the FPGA manufacturer, so it can be updated for using 

in the other FPGA families of Xilinx. 
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This thesis is organized as follows: 

Chapter II discusses the contrast enhancement methods. This chapter investigates 

advantages and disadvantages of widely used contrast enhancement methods which 

target the infrared and grayscale images. 

Chapter III introduces the proposed contrast enhancement method for the thermal 

images. This chapter also explains architecture of the FPGA implementation in depth. 

Chapter IV presents the results of the implemented contrast enhancement firmware 

and discusses the performance of implementation by using figures of merit from 

similar researches. It gives performance comparison of the developed algorithm with 

commonly used infrared contrast enhancement methods. 

Finally, Chapter V summarizes this research and presents a road map for future 

improvements. 
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CHAPTER 2 

AN OVERVIEW OF CONTRAST ENHANCEMENT METHODS

FOR INFRARED IMAGES 

Captured raw infrared images are generally require some pre-processing operations 

such as contrast enhancement for increasing the dynamic range and improving the 

image visibility for human observers. 

Contrast enhancement plays a key-role in various applications that require high 

dynamic range imaging such as thermography and driver assistance systems. 

For example, even the smallest details in the thermography images must be visible or 

distinguishable in order to diagnose the diseases correctly [14]. Similarly, it is vital to 

detect the objects on the road or on the side of the road at similar temperatures to the 

background in driving assistance systems. Proper contrast enhancement is again 

important for achieving a visible image in fog or haze [15]. 

Contrast stretching and histogram equalization methods are well-known methods for 

contrast enhancement. There are a number of different histogram equalization 

algorithms exist in the literature, but in order to achieve the optimum contrast, 

appropriate methods to the wavelength must be investigated. In addition to 

wavelength, methods that are used for similar characteristics to the infrared image 

characteristics can also be useful for the infrared contrast enhancement. For example, 

deep underwater raw grayscale images generally have a low contrast like raw infrared 

images. Investigation of the contrast enhancement methods for these images may also 

be useful for the infrared images. 

This chapter discusses the contrast enhancement and selected contrast enhancement 

methods that can be suitable for infrared images. Section 2.1 introduces contrast 

stretching method. Section 2.2 presents histogram equalization and commonly used 
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histogram equalization methods: Plateau Histogram Equalization, Adaptive Double 

Plateaus Histogram Equalization, Weighting Mean-Separated Sub-Histogram

Equalization and Contrast Limited Adaptive Histogram Equalization. Section 2.3 

examines the advantages and disadvantages of the investigated contrast enhancement 

methods. 

2.1. Contrast Stretching 

Contrast stretching is the simplest technique that is used to stretch the gray level 

spectrum of an image between the minimum and maximum available gray levels 

(intensity values) so that the dynamic range of the image is filled completely. Gray 

level reconstruction is done by using below equation 

𝐺𝑜𝑢𝑡 =
(𝐺𝑖𝑛−𝐺𝑚𝑖𝑛)

(𝐺𝑚𝑎𝑥−𝐺min)
× 𝐺𝑑𝑚𝑎𝑥 (2.1) 

where 𝐺𝑜𝑢𝑡 is the stretched output gray level, 𝐺𝑖𝑛 is the unstretched input gray level, 

𝐺𝑚𝑎𝑥 and 𝐺𝑚𝑖𝑛 are the maximum and minimum gray levels of the input image and 

𝐺𝑑𝑚𝑎𝑥 is the maximum available gray level of the dynamic range.  

Histogram is the representation of probability distribution of the discrete valued data. 

A grayscale image histogram indicates the occurrence values of each gray level in 

available dynamic range. 

Infrared image histograms generally consist of a peak region and a few pixels which 

are far from this region. This situation limits the stretching of the histogram and 

reduces efficiency of the contrast enhancement operation. Histogram clipping can be 

done around the minimum and maximum gray levels of the original histogram for 

achieving a better enhancement. Contrast stretching results from the MATLAB 

implementation can be seen in below figures. Raw image and its original histogram 

are given in Figure 2.1. Contrast stretching on non-clipped and clipped histograms are 

given in Figure 2.2 and Figure 2.3, respectively. 
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Figure 2.1. Raw infrared image and its histogram. Gray level values of some pixels are far from the 

meaningful histogram range. 
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Figure 2.2. Contrast stretched image (from non-clipped original histogram) and its histogram. Pixels 

that far from the meaningful histogram range have limited the contrast stretching 
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Figure 2.3. Contrast stretched image (from clipped original histogram) and its histogram. Pixels with 

gray levels less than 5 were clipped 
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2.2. Histogram Equalization 

Histogram equalization is the most common method for the contrast enhancement. 

Frequency of appearance of the intensity values in the grayscale image can be 

analyzed easily with using the image histogram. Original histogram is used for 

constructing a monotonic mapping that results in a nearly flattened equalized 

histogram. 

Definition of the well-equalized histogram may vary depending on the purpose of the 

application. From the contrast enhancement perspective, a good histogram must cover 

all the possible intensity values for visible spectrum gray scale images. On the other 

hand, this can cause the over-enhancement for the thermal images. Over-enhancement 

can corrupt the temperature information and cause objects to look hotter than they 

actually are. But if the visibility has the priority over the temperature accuracy, wide 

dynamic range will be more convenient. Block diagram of the histogram equalization 

is presented in Figure 2.4. 

Figure 2.4. Block diagram of the histogram equalization 
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Probability density function (pdf) of a digital image can be calculated with 

 

𝑝𝑑𝑓(𝑖) =
𝑛𝑖

𝑛𝑇𝑂𝑇𝐴𝐿
 (2.2) 

 

where 𝑛𝑖 is the number of pixels in ith gray intensity level and 𝑛𝑇𝑂𝑇𝐴𝐿 is the total 

number of the pixels in the image. After finding pdf values for each gray intensity 

level, cumulative distribution function (cdf) of the digital image can be calculated with 

 

𝑐𝑑𝑓(𝑖) = ∑ 𝑝𝑑𝑓(𝑘)𝑖
𝑘=1  (2.3) 

 

Finally, using with the histogram equalization expression, new image can be built.  

 

𝐺𝑜𝑢𝑡 = 𝑟𝑜𝑢𝑛𝑑(
𝑐𝑑𝑓(𝐺𝑖𝑛)

𝑛𝑇𝑂𝑇𝐴𝐿
× (𝐺𝑑𝑚𝑎𝑥 − 1)) (2.4) 

 

Histogram equalization results from the MATLAB implementation are presented in 

Figure 2.5 (Raw image in Figure 2.1 was used as the input image). As discussed in the 

previous chapter, thermal images generally have two parts as background and 

foreground scenes. Raw image histograms also have this characteristic. Background 

and foreground parts can easily distinguishable from the histogram. Enhancement of 

these scenes must be done using the suitable methods to prevent the unwanted artifacts 

on images.  

 

There are various histogram equalization algorithms that separate the raw histogram 

into sub-histograms exist in the literature. This separation can be done on both 

occurrence values and gray level values. Statistical properties such as weighting mean 

of the gray level values are used for dividing the histogram into vertical parts. Plateaus 

or thresholds are used for the grouping horizontally the particular parts of the 

histogram by limiting the occurrence values.  
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Figure 2.5. Histogram equalized image and its histogram 

0 2000 4000 6000 8000 10000 12000 14000 16000 18000
0

500

1000

1500

2000

2500

3000
Equalized Histogram



19 

2.2.1. Adaptive Double Plateaus Histogram Equalization 

Plateau or threshold-based histogram equalization methods are frequently used for 

contrast enhancement of the infrared images. Virgil E. Vickers [16] proposed the 

Plateau Histogram Equalization method to suppress the over-enhancement of 

background part of the infrared images. The drawback of this algorithm is that it uses 

a fixed and empirical plateau level and this limits the usage for different scenarios. 

Wang et al. [17] and Lai et al. [18] proposed adaptive plateau level calculation-based 

algorithms and hardware implementations for both methods to overcome the fixed 

threshold drawback of Plateau Histogram Equalization method. Adaptive threshold 

level is calculated by using median of local and global maximum values of the 

non-zero valued histogram. Enhanced image is generated with implementation of this 

threshold into whole histogram, and then global histogram equalization is done in the 

method of Wang et al. Plateau level is calculated adaptively by scaling the histogram 

with using the maximum value of the histogram and an empirical value for exponent, 

in the algorithm of Lai et al. Both methods targeted for constraining the enhancement 

of background scene of the infrared images with using one adaptive plateau level that 

calculated in different properties of the histogram. However, some detailed foreground 

information with improper gray intensity values can still be combined with other gray 

levels, as a result the details of the foreground cannot be fully enhanced with these 

histogram equalization methods.   

Liang et al. [19] proposed Adaptive Double Plateaus Histogram Equalization 

(ADPHE) method as an improvement of Plateau Histogram Equalization. Figure 2.6 

shows the steps of the ADPHE algorithm. Up and down threshold levels are calculated 

with  

𝑇𝑈𝑃 =
𝑃𝑂𝐿𝐴𝑅(1)+ … +𝑃𝑂𝐿𝐴𝑅(𝑃)

P
  (2.5) 

𝑇𝐷𝑂𝑊𝑁 =
min {𝑁𝑡𝑜𝑡𝑎𝑙, 𝑇𝑈𝑃×𝐿}

M
(2.6) 



20 

where POLAR is the set of local maximum values and P is its size, Ntotal is total pixel 

number of original image, L is total number of non-zero statistic and M is total number 

of the original gray levels. 

Figure 2.6. Block diagram of the ADPHE method 

ADPHE results from the MATLAB implementation are presented in Figure 2.7. (Raw 

image in Figure 2.1 was used as the input image.) 
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Figure 2.7. Contrast enhanced image with ADPHE method and its histogram 
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2.2.2. Weighting Mean-Separated Sub-Histogram Equalization 

The main advantage of plateau-based contrast enhancement methods is that one or 

more thresholds are applied to the entire histogram before the histogram equalization. 

However, applying the threshold values to the entire histogram may prevent optimal 

enhancement of the contrast of sections with different characteristics within the image. 

In order to overcome this situation, it would be useful to examine the algorithms that 

can adaptively separate the histogram into parts with different characteristics. 

Wu et al. [20] proposed Weighting Mean-Separated Sub-Histogram Equalization 

(WMSHE) method for enhancing the contrast with keeping the original histogram 

characteristics. Instead of global-based histogram equalization method, this method 

works local-based.  

Hariprasat et al. [21] also proposed a novel WMSHE method for underwater images 

which has similar algorithm of Wu et al. Since the contrast of the underwater images 

may reduce due to behavior of the light, this case has similarities with infrared 

low-contrast images. Therefore, by examining the effects of this method on infrared 

images, a field of application for contrast enhancement for the infrared images can be 

developed. 

Both methods adaptively divide the original histogram by two with using 

first calculated weighting mean value of whole histogram. Then two more weighting

mean values are calculated for upper and lower sub-histograms. In Hariprasat 

et al.’s algorithm, each sub-histogram’s threshold values are calculated as 

𝑇1 =
1

𝐺𝑚𝑙+1
∑ 𝑛𝑖
𝐺𝑚𝑙
𝑖=0  (2.7) 

𝑇2 =
1

𝐺𝑚−1−𝐺𝑚𝑙
∑ 𝑛𝑖
𝐺𝑚
𝑖=𝐺𝑚𝑙+1

 (2.8) 

𝑇3 =
1

𝐺𝑚𝑢−1−𝐺𝑚
∑ 𝑛𝑖
𝐺𝑚𝑢
𝑖=𝐺𝑚+1

 (2.9) 

𝑇4 =
1

𝐺𝑑𝑚𝑎𝑥−1−𝐺𝑚𝑢
∑ 𝑛𝑖
𝐺𝑑𝑚𝑎𝑥−1
𝑖=𝐺𝑚𝑢+1

 (2.10) 
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where 𝑇1, 𝑇2, 𝑇3 and 𝑇4 are the threshold values of the separated histogram regions 

and 𝐺𝑚𝑙, 𝐺𝑚 and 𝐺𝑚𝑢 are the lower, middle and upper mean values, respectively. 

There is no threshold in the Wu et al.’s algorithm. Finally, a piecewise histogram 

equalization is carried out on each sub-histogram individually in both methods. Block 

diagram of the Hariprasat et al.’s method is presented in Figure 2.8. 

Figure 2.8. Block diagram of the WMSHE method for underwater images 

WMSHE algorithm for underwater images is implemented in MATLAB to investigate 

whether the method is useful for infrared images. Implementation and results are 

presented in Figure 2.9 and Figure 2.10, respectively.  
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Figure 2.9. Separation of the original histogram by calculated weighted mean values 
and implementation of the thresholds 
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Figure 2.10. Contrast enhanced image with Hariprasat et al.’s WMSHE method and its histogram 
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2.2.3. Contrast Limited Adaptive Histogram Equalization 

Pizer et al. [22] proposed another method for the contrast enhancement that provides 

equalization by limiting the contrast in the separated sub-regions of the low-contrast 

image. Schatz [23] also proposed a hardware implementation method for Contrast 

Limited Adaptive Histogram Equalization (CLAHE) on FPGA. Sub-histograms are 

calculated for each sub-regions of the image and intended enhancement is achieved 

with contrast limiting in CLAHE. Unlike the plateau-based histogram equalization 

and Hariprasat et al.’s WMSHE methods, excess pixels which are above the 

threshold limit are distributed into neighboring pixels of the sub-regions. 

The amount of excess pixel redistribution is adjusted by according to the pixel 

distribution values below the threshold value as shown in Figure 2.11. 

Figure 2.11. Histogram clipping in CLAHE method [22] 

Variations in number of separated tiles, threshold limitation and redistribution of the 

excess pixels are affecting the performance of the contrast enhancement in 

CLAHE method. Table 2.1 shows the variations of the parameters and Figure 2.12 

presents results of MATLAB prototype, obtained with different values of these 

variables on the raw image of Figure 2.1. Enhancement results are highly 

scene-depended in CLAHE and selection of proper parameter values is critical for 

achieving a successful contrast enhancement. From the Figure 2.12, both 2nd and 5th 

implementation results have better enhancement than the others. Uniform and 

exponential distributions achieved similar results for this raw image.

26 
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Number of tiles and clipping limit adjustments are selected empirically and results

show that the higher the number of columns dividing the image, the better 

enhancement is achieved for this image.

Table 2.1. Values of the CLAHE parameters in different implementations 

Image Tiles Clipping Limit Distribution 

1 4x2 0.01 Uniform 

2 2x4 0.01 Uniform 

3 2x4 0.005 Uniform 

4 2x4 0.025 Uniform 

5 2x4 0.01 Exponential 

6 2x4 0.01 Rayleigh 

Figure 2.12. Contrast enhanced images with CLAHE method by using various parameter values in 

Table 2.1

1 2 

3 4 

5 6 
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CHAPTER 3 

PROPOSED CONTRAST ENHANCEMENT METHOD FOR 

INFRARED IMAGES

Characteristics of the images taken from infrared cameras are different from the usual 

gray level images. When the methods used to improve grayscale images are used for 

improving the infrared images, background noise may be over-enhanced or detailed 

temperature information may be lost. For this reason, a more appropriate method 

should be used for enhancing the low-contrast infrared images. 

A new method has been developed with the arrangement of Hariprasat et al.’s 

Weighting Mean-Separated Sub-Histogram Equalization method which is used for 

enhancing the contrast of gray level underwater images and Adaptive Double Plateaus 

Histogram Equalization which is used for enhancing the contrast of the infrared 

images. Adaptive threshold calculation of both methods is rearranged to achieve the 

optimal performance on the enhancement of background and foreground regions. 

Since the proposed method is a modified version of WMSHE and ADPHE, this 

method is named as Weighting Mean-Separated Double Plateaus Histogram 

Equalization (WMDPHE). 

This chapter presents the algorithm of WMDPHE and its implementation on FPGA. 

Section 3.1 provides theoretical information about the proposed method, and then 

presents the implementation results of this method. Section 3.2 describes the firmware 

architecture and examines the functions of submodules in detail. 

3.1. Weighting Mean-Separated Double Plateaus Histogram Equalization 

WMDPHE is an improvement that is designed by approaching to the ADPHE method 

from the WMSHE perspective. Global background and foreground enhancement of 

the ADPHE algorithm is adaptively localized with separation of the original histogram 

into sub-histograms by using image characteristics. Since the localization of 
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enhancement is implemented by using original histogram characteristics, instead of 

portions of the image itself, infrared image integrity is protected and avoided from the 

enhancement differences between infrared image parts unlike the CLAHE method. 

Rearrangement of the adaptive threshold values based on weighted mean and local 

extremum calculations aims to better limitation on the over-enhancement than the 

WMSHE and ADPHE methods. Global histogram equalization on the locally 

threshold implemented histogram provides an extra limitation for enhancement 

between the parts of image with different characteristics and improves image 

integrity.  

Figure 3.1. Block diagram of the proposed method for histogram equalization of low-contrast infrared 

images 
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Procedure of the WMDPHE method is shown in Figure 3.1. First of all, histogram of 

the input image is calculated. The histogram will be examined as two parts in 

subsequent calculations as original and non-zero histogram. As the name implies, 

non-zero histogram is the non-zero values of the original histogram that are leaned 

against the minimum gray-level as shown in Figure 3.2. Secondly, weighting mean 

calculation is performed on the gray level values of original and non-zero histograms. 

First weighting mean values of the both histograms are used for dividing the 

histograms into two parts. Similarly, weighing mean calculation is performed again 

on these two parts, and then non-zero and original histograms are divided into four 

parts with using upper and lower weighting mean values as shown in Figure 3.3. 

Summations of occurrence values for each sub-histogram are also calculated for using 

in threshold calculation in the following steps. 

Figure 3.2. a) Original and b) non-zero histograms 

Non-zero histogram is used for local extremum calculation. Local extremum points 

represent the hot and cold details in the image. In the original histogram, there may 

be pixels that are not in the image within the narrow field representing the detailed 

information of the histogram. Omitting these zero values ensures that these values are 

not taken into account in the local extremum calculation and the details are preserved 

better. Since the meaningful part of the original histogram in Figure 3.3 does not have 

a large number of zero-valued pixels, the weighting mean values of the original and 
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non-zero histograms were calculated in similar values as expected. On the other hand, 

the effect of zero-valued pixels on the histogram can be better seen in the cumulative 

distribution. 

Figure 3.3. Separation of the a) original and b) non-zero histograms into the sub-histograms by 

weighting mean values. Firstly, the histograms divided into two parts by red lines and secondly, 

partitions divided again by green lines into four sub-histograms. Cumulative distribution of the  

c) original and d) non-zero histograms shows the effect of zero-valued elements on the histogram

In the next step, local maximum and minimum values and their summations for each 

sub-histogram are calculated in order to use in threshold calculation. For discrete 

sequences, elements that are larger or smaller than their neighbors can be taken as 

local maximum or minimum. A one-dimensional window can be used for finding the 

local extremum values of the histogram [19]. Figure 3.4 shows the steps of searching 

local extremum values. 
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Figure 3.4. Local extremum searching steps 

where 𝑛𝑖 is the number of pixels in ith gray intensity level, k is the one-dimensional

window length (must be an odd number) and L is the number of gray levels in the 

non-zero histogram. Local maximums and minimums are searched by shifting the 

(1×k) window step by step. By comparing the values other than middle value in the 

window, the minimum and maximum values between these elements are found. Then 

these values are compared with the value in middle of the window to determine 

whether the local minimum or local maximum. For example, in the second step of 

Figure 3.4, histogram value of n(k+1)/2
th gray level will be compared with maximum 

and minimum of the other elements in window. If it is bigger than the maximum of 

the others, it will be used as local maximum. If it is smaller than the minimum value 

of the other values in window, then it will be used as local minimum. 

Upper, middle and lower weighting mean values of the original and non-zero 

histograms, summation of local maximum and local minimum values of the non-zero 

sub-histograms and summation values of the original sub-histograms are used to 

generate the upper and lower threshold values for each sub-histogram. Similar with 

ADPHE, lower threshold is used for protecting the detailed information and upper 

threshold is used for preventing the background noise. If the upper threshold value is 

too large, over-enhancement of background noise may be occurred and if it is too 

small, details of the background will be lost. It is also important that the lower 

threshold value is selected correctly. Foreground details can be lost or saturated by 
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miscalculation of the lower threshold level. In order to find these thresholds, 

histogram statistics-based adaptive threshold calculations are performed in the 

proposed WMDPHE method. Upper and lower threshold values are calculated as  

𝑇𝑈𝑃[𝑛] =
𝐺𝑑𝑚𝑎𝑥 ×𝑁𝑍𝑆𝑀𝐴𝑋𝑛

WMValue𝑛×𝑆𝑈𝑀𝑛
 (3.1) 

𝑇𝐿𝑂𝑊[𝑛] =
𝐺𝑑𝑚𝑎𝑥 ×𝑁𝑍𝑆𝑀𝐼𝑁𝑛

WMValue𝑛×𝑆𝑈𝑀𝑛
 (3.2) 

where 𝑇𝑈𝑃[𝑛] and 𝑇𝐿𝑂𝑊[𝑛] are the upper and lower threshold values of nth non-zero

sub-histogram, 𝐺𝑑𝑚𝑎𝑥 is the maximum available gray level of the dynamic range, 

𝑁𝑍𝑆𝑀𝐴𝑋𝑛 is the summation of nth non-zero sub-histogram’s local maximum values,

WMValue𝑛 is the upper weighting mean boundary of the nth non-zero sub-histogram,

𝑆𝑈𝑀𝑛 is the summation of original values of the nth sub-histogram and 𝑁𝑍𝑆𝑀𝐼𝑁𝑛 is

the summation of nth non-zero sub-histogram’s local minimum values. 

Threshold implementation to original histogram is the next step of the proposed 

method. The upper and lower threshold values that calculated separately for each 

sub-histogram are applied to the respective portions of the histogram. Threshold 

implementation procedure can be illustrated as 

𝑛𝑖,𝑇𝐻 ={𝑇𝑈𝑃[𝑛], 𝑛𝑖 ≥ 𝑇𝑈𝑃[𝑛]
𝑛𝑖, 𝑇𝐿𝑂𝑊[𝑛] < 𝑛𝑖 < 𝑇𝑈𝑃[𝑛]

𝑇𝐿𝑂𝑊[𝑛], 0 < 𝑛𝑖 ≤ 𝑇𝐿𝑂𝑊[𝑛]
0, 𝑛𝑖 = 0

 (3.3) 

where 𝑛𝑖,𝑇𝐻 is the threshold applied number of pixels in ith gray intensity level.

Threshold applied histogram for the sample image is shown in Figure 3.5. 



Figure 3.5. Threshold implemented histogram 

As the final step, global histogram equalization is performed. This step requires 

recalculation of the threshold implemented histogram’s statistics, since the total 

occurrence value of the original histogram changed with applying the thresholds. 

Probability density function (pdf) and cumulative distribution function (cdf) are 

calculated for the threshold implemented histogram before the equalization. 

Then histogram equalization is performed as in equation (2.4). Outputs of the 

WMDPHE method that applied to various raw images are given in 

Figure 3.6, Figure 3.8, Figure 3.10 and Figure 3.12. Raw and equalized 

histograms of these images shown in Figure 3.7, Figure 3.9, Figure 3.11 and 

Figure 3.13. 
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Figure 3.6. a) Raw image and b) contrast enhanced image with WMDPHE method 

a) 

b)
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Figure 3.7. a) Raw histogram and b) contrast enhanced histogram with WMDPHE method 
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Figure 3.8. a) Raw image and b) contrast enhanced image with WMDPHE method 

a) 

b)
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Figure 3.9. a) Raw histogram and b) contrast enhanced histogram with WMDPHE method 
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Figure 3.10. a) Raw image and b) contrast enhanced image with WMDPHE method 

a) 

b)
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Figure 3.11. a) Raw histogram and b) contrast enhanced histogram with WMDPHE method 
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Figure 3.12. a) Raw image and b) contrast enhanced image with WMDPHE method 

a) 

b) 
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Figure 3.13. a) Raw histogram and b) contrast enhanced histogram with WMDPHE method 
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3.2. FPGA Implementation 

Figure 3.14. Block diagram of the FPGA implementation 

Structure of the WMDPHE implementation is given in Figure 3.14. Input video stream 

consists of frame valid (fval), line valid (lval), data valid (dval), pixel clock and pixel 

data. Pixel clock is 40MHz and pixel data is 14-bit for the selected infrared camera. 

Effective pixel clock is 10MHz due to the limitation of the ROIC. Structure of the 

frame valid, line valid and data valid signals are shown in Figure 3.15.  

Figure 3.15. 640×480 video stream timing structure 
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3.2.1. Image Acquisition and Histogram Calculation 

Image acquisition is the first stage of the real-time image processing pipeline. Proper 

image acquisition is critical, because any misses in the timing or pixel data will 

conclude as failure of the enhancement. Structure of the image acquisition and 

histogram calculation blocks is shown in Figure 3.16.  

Figure 3.16. Structure of the image acquisition and histogram calculation blocks 

Frame buffer is not used in the firmware and video data stream is processed by the 

pipeline in real-time. Input Pixel Buffer FIFO is used for receiving the incoming pixel 

data. This asynchronous FIFO provides both timing and data buffering and prevents 

any misalignments on input video stream. Timing controlling signals of the input 

stream are connected into FIFO enables in order to buffering the incoming data 

synchronously. Reading of the pixel data controlled by Histogram Calculator module 

with using faster internal pipeline clock. When the Pipeline Controller module enables 

the histogram calculation, Histogram Calculator module starts to read pixel data from 

the Input Pixel Buffer FIFO. Reading control is organized by counting parametrized 

image width and height values. Histogram Calculator uses the incoming pixel data for 

address of the Histogram Memory. Histogram Memory is a Dual Port Block RAM 

that stores the original histogram data. The data read from Histogram Memory is 
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incremented by one by the Histogram Calculator and increased value is saved back to 

the same address in the histogram.  

3.2.2. Histogram Separation by Image Statistics 

Division of the original histogram into four sub-histograms is performed by 

Weighting Mean Calculator module. In addition to histogram division, this module is 

responsible for generation of the non-zero and cumulative histograms. Figure 3.17 

illustrates the Weighting Mean Calculator module’s interaction with the histogram 

memories. 

Figure 3.17. Weighting mean calculation blocks 

Designed firmware consists of three main Dual Port Block Memories that are used for 

image statistics calculation as Histogram Memory, Non-Zero Histogram Memory and 

Cumulative Histogram Memory. After the histogram calculation is performed, 

Weighting Mean Calculator module scans the whole histogram and calculates 

weighting mean, non-zero histogram length and non-zero weighting mean values. 

Cumulative histogram and non-zero histograms are also calculated in this scanning 

process. Cumulative histogram is generated by consecutive addition of the read 

original histogram values. These values are written sequentially to the Cumulative 

Histogram Memory. When first scanning of the original histogram is finished, second 
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scanning from the beginning of the histogram to the original weighting mean value is 

performed. Upper and lower weighting mean values for the original and non-zero 

histograms are calculated in this scanning. Arithmetic operations are done in 

fixed-point values with using parallel multiplication and pipelined division blocks that 

are built-in IPs of the Xilinx Vivado Design Suite. Mathematical simplifications were 

also done on the paper in order to simplify the state machine structure and reduce the 

arithmetic blocks’ logic resource utilization. 

3.2.3. Threshold Calculation and Implementation 

Figure 3.18. Threshold calculation and implementation modules 

Local minimum and maximum calculation for non-zero histogram and threshold 

calculation for each original sub-histogram are done by Threshold Calculator module. 

Local extremum calculation is performed with shifting a (1×5) one dimensional 

window on the non-zero histogram. Middle value of the window is compared with the 

minimum and maximum of the other values in the same window to find out whether 

it is an extremum value. Summation of the local minimum and maximum values of 

the non-zero histogram is also calculated for the threshold calculation. The original 

histogram summation values that required for the threshold value calculation, are read 

from the Cumulative Histogram Memory. Proper weighting mean values are used as 

read address for the collecting these summation values from the memory. Upper and 
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lower threshold calculation for every sub-histogram is performed as equation (3.1) 

and equation (3.2). Fixed-point pipelined division IP from built-in Xilinx IP Catalog 

is used to calculate these thresholds.  

Threshold Implementation Module is responsible for applying the upper and lower 

threshold values into relevant original sub-histograms. After the Threshold Calculator 

module finishes its operation, Pipeline Controller enables the Threshold 

Implementation Module. Equation (3.3) is implemented into a state machine in order 

to clip the histogram values. Last modification on the Histogram Memory is made in 

this module and all the histogram processing steps are finished when this module 

completes the implementation. Threshold Calculation and Implementation modules’ 

operations on block memories are given in Figure 3.18. 

3.2.4. Histogram Equalization 

Figure 3.19. Cumulative histogram calculation and histogram equalization modules 
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Final stage of the designed firmware is histogram equalization. After the threshold 

applied histogram is ready, Pipeline Controller module enables the Threshold Sum 

Calculator and Cumulative Distribution Calculator modules, respectively. These 

modules are responsible for the generation of histogram equalization look-up table 

(LUT) with calculating the cumulative distribution function from the threshold 

implemented histogram. After the LUT is created, Histogram Equalization module 

simply matches the incoming pixel value with the equalized pixel value and generates 

output timing signals to be compatible with the pixel output values. Structure of the 

cumulative histogram calculation and histogram equalization modules are given in 

Figure 3.19. 

In order to determine the cumulative distribution function, it is necessary to update 

the cumulative histogram consisting of consecutive sums of clipped histogram values 

according to the threshold values. Threshold Sum Calculator module performs this 

calculation and transmits the calculated total number of remnant histogram 

occurrences to the Cumulative Distribution Calculator module.   

Cumulative Distribution module responsible for the calculation of histogram 

equalization as in equation (2.4) for every values of the Cumulative Histogram 

Memory and updating the relevant LUT with controlling the write enable of these two 

Block RAMs. Histogram Equalization Memory consists of two separate LUTs. The 

reason for using two different memories is to simplify the real-time pipelined 

operation. While the histogram equalization data of the new image is written to one 

of these two memories, the histogram equalization data of the current image is read 

from the other memory. This ping-pong memory organization prevents possible data 

collisions and provides a higher data transfer rate.  

Histogram Equalization Module is directly connected into the input video stream. 

Incoming raw pixel values used as read address inputs of the Histogram Equalization 

Memory and equalized pixel value is read from the appropriate LUT. Read data 
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oriented to the output ports of the WMDPHE firmware with generating proper 

Frame Valid, Line Valid and Data Valid timing signals. 

3.2.5. Real-Time Image Enhancement Pipeline Design 

Pipeline Controller module is maestro of the other modules in the firmware. This 

module is responsible for controlling the histogram equalization operation by 

adjusting enable signals of the modules in proper order. Frame valid signal is 

monitored by this module to arrange the timing between enable signals. Timing 

requirements adjusted as compatible with 30 frames per second (FPS) video stream 

timing.  

Calculation of the first histogram equalization data takes three frame time, because the 

design does not include any frame buffer memory. Therefore, first histogram 

equalized frame is generated with two frame latency. In order to prevent decreasing 

of the FPS due to lack of frame buffer memory, the histogram equalized image output 

is given from the third frame with using the statistics of the second image before itself. 

That means the actual histogram statistics are used with approximately 66 

milliseconds latency for 30FPS video input. This latency can be negligible for many 

applications in thermal domain. 

Operation of the modules are arranged with respect to transition of the frame valid 

signal as shown in Figure 3.20. In the first frame’s active data input time interval, in 

other words, when the frame valid is high in the first frame, histogram calculation is 

performed. Weighting mean calculation, threshold calculation, threshold 

implementation, threshold summation calculation and resetting of the relevant 

modules and memories are performed after falling of the frame valid signal. Operation 

of these modules are adjusted as sequential, since the processing on these modules 

require low amount of time. Total calculation and resetting processes take 1/3 of the 

blanking between two frame valid intervals as shown in Figure 3.21.  



 

 

 

51 

 

 

Figure 3.20. Pipeline organization of the firmware 

 

When rising of the frame valid is captured for the second time, cumulative distribution 

function is operated in parallel with histogram calculation process. Cumulative 

distribution calculation requires the highest processing time compared to the other 

modules. Because of this requirement, this module placed into active frame valid 

interval, which is longer than the blanking part of the frame valid signal for 30 FPS 

video input. Histogram equalization is started parallelly with the histogram calculation 

and cumulative distribution calculation with the arrival of the third frame. Histogram 

equalization process is operated as pixel by pixel like the histogram calculation and it 

takes whole active frame input time. Since the first equalization data is written on the 
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LUT#1, Histogram Equalization module is read the equalization data from this 

memory first. LUT#1 is reset on the following negative edge of the frame valid signal. 

While LUT#1 is read by Histogram Equalization module, next frame’s histogram 

equalization data is written to LUT#2 by the Cumulative Distribution Calculator 

module. Writing, reading and resetting processes of these two memories are adjusted 

as ping-pong buffer memory organization in the designed pipeline.  

Figure 3.21. Timing requirements and parallel operation of the modules 
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CHAPTER 4 

4. RESULTS

This chapter gives the results of implementation of the proposed contrast enhancement 

algorithm. Performance comparison of the implemented firmware includes 

comparison of output images of the commonly used infrared contrast enhancement 

algorithms and the proposed algorithm’s MATLAB and FPGA implementations. 

In addition, deviation of gray levels, signal-to-noise ratio and linear blur index of the 

output images are compared in order to evaluate performance quantitatively . 

This chapter organized as follows: Section 4.1 presents the output comparison of the 

Contrast Stretching, Linear Histogram Equalization, WMSHE, ADPHE, CLAHE and 

implementations of the proposed WMDPHE method. Section 4.2 discusses the 

performance of these contrast enhancement methods quantitatively. 

4.1. Performance Comparison of the Proposed Algorithm with Investigated 

Contrast Enhancement Algorithms 

Contrast enhancement performances of the Contrast Stretching, Linear Histogram 

Equalization, Weighting Mean-Separated Sub-Histogram Equalization, Adaptive 

Double Plateaus Histogram Equalization, Contrast Limited Adaptive Histogram 

Equalization and proposed Weighting Mean-Separated Double Plateaus Histogram 

Equalization implementations are compared with using output images in Figure 4.1, 

Figure 4.3, Figure 4.5 and Figure 4.7. Histograms of the output images are given in 

Figure 4.2, Figure 4.4, Figure 4.6 and Figure 4.8. MATLAB and FPGA 

implementation results of Weighting Mean-Separated Double Plateaus Histogram 

Equalization are used for evaluating the FPGA implementation performance. Outputs 

of the other investigated methods are generated from MATLAB implementations. 
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Figure 4.1. Comparison of 1) Raw image, 2) Contrast stretching, 3) Linear HE, 4) WMSHE, 

5) ADPHE, 6) CLAHE, 7) MATLAB and 8) FPGA implementation of the proposed method
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Figure 4.2. Histogram comparison of 1) Raw image (zoomed), 2) Contrast stretching, 3) Linear HE, 

4) WMSHE, 5) ADPHE, 6) CLAHE, 7) MATLAB and 8) FPGA implementation of the proposed

method 
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Figure 4.3. Comparison of 1) Raw image, 2) Contrast stretching, 3) Linear HE, 4) WMSHE, 

5) ADPHE, 6) CLAHE, 7) MATLAB and 8) FPGA implementation of the proposed method
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Figure 4.4. Histogram comparison of 1) Raw image (zoomed), 2) Contrast stretching, 3) Linear HE, 

4) WMSHE, 5) ADPHE, 6) CLAHE, 7) MATLAB and 8) FPGA implementation of the proposed 

method 
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Figure 4.5. Comparison of 1) Raw image, 2) Contrast stretching, 3) Linear HE, 4) WMSHE,  

5) ADPHE, 6) CLAHE, 7) MATLAB and 8) FPGA implementation of the proposed method 

1        2 

3        4 

5        6 

7        8 



59 

Figure 4.6. Histogram comparison of 1) Raw image (zoomed), 2) Contrast stretching, 3) Linear HE, 

4) WMSHE, 5) ADPHE, 6) CLAHE, 7) MATLAB and 8) FPGA implementation of the proposed

method 
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Figure 4.7. Comparison of 1) Raw image, 2) Contrast stretching, 3) Linear HE, 4) WMSHE, 

5) ADPHE, 6) CLAHE, 7) MATLAB and 8) FPGA implementation of the proposed method
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Figure 4.8. Histogram comparison of 1) Raw image (zoomed), 2) Contrast stretching, 3) Linear HE, 

4) WMSHE, 5) ADPHE, 6) CLAHE, 7) MATLAB and 8) FPGA implementation of the proposed

method 
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4.2. Quantitative Evaluation of the Contrast Enhancement 

Visual comparison of the output images may indicate which method is better in 

overall, but good enhancement results may also vary from person to person. 

Therefore, an appropriate quantitative evaluation is required to objectively measure 

the success of the focusing enhancement type. Standard deviation is a popular 

evaluation method for the quantifying the dynamic range of the contrast enhanced 

output images. Liang et al. [19] used a standard deviation based image contrast 

function for the evaluation of the dynamic range which is proposed by Chang.-Jiang 

et al. [24] as the following equations 

 

𝐶𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 =
1

𝑚×𝑛
∑ ∑ [𝑔(𝑖, 𝑗)]2 − |

1

𝑚×𝑛
∑ ∑ 𝑔(𝑖, 𝑗)𝑛−1

𝑗=0
𝑚−1
𝑖=0 |

2
𝑛−1
𝑗=0

𝑚−1
𝑖=0  (4.1) 

 

𝐶𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡
∗ = 10 log10 𝐶𝑐𝑜𝑛𝑡𝑟𝑎𝑠𝑡 (4.2) 

 

where m is height and n is width of the image, 𝑔(𝑖, 𝑗) is the intensity level of the pixel 

at (𝑖, 𝑗). Since the dynamic range of the output image can be improved with  

over-enhancement of the pixels, this approach alone is not enough for the correct 

evaluation. Appropriate method should measure both the dynamic range and level of 

excessive contrast enhancement. Signal-to-noise ratio (SNR) is commonly used 

method for the comparing the enhancement quality. However, this method requires a 

golden image as a reference for the calculation of the effect of the noise on output 

image. In practice, this method is inconvenient since there are no golden image for 

the comparison.  

 

Byeong Hak Kim et al. [25] proposed subtraction signal-to-noise ratio (SSNR) 

method to find out the amount of amplification of the noise after contrast 

enhancement. This method calculates mean subtraction signal error (MSSE) with 

using consecutive images instead of golden image for the calculation of the SNR. 

MSSE and SSNR values are calculated as 
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𝑀𝑆𝑆𝐸 =
1

𝑚×𝑛
∑ ∑ [𝐼𝑡(𝑖, 𝑗) − 𝐼𝑡+1(𝑖, 𝑗)]

2𝑛−1
𝑗=0

𝑚−1
𝑖=0 (4.3) 

𝑆𝑆𝑁𝑅 = 10 log10(𝐺𝑑𝑚𝑎𝑥
2/𝑀𝑆𝑆𝐸) (4.4) 

where 𝐼𝑡 and 𝐼𝑡+1 are consecutive images, and 𝐺𝑑𝑚𝑎𝑥 is the maximum gray level of 

the image. Preventing the amplification of noise may be cause blur in the output 

image. In order to measure this effect, linear blur index is used [26]. It is defined as 

𝑝𝑖𝑗 = sin [
𝜋

2
× (1 −

𝑔(𝑖,𝑗)

𝐺𝑑𝑚𝑎𝑥
)] (4.5) 

𝛾(𝑔) =
2

𝑚×𝑛
∑ ∑ 𝑚𝑖𝑛{𝑝𝑖𝑗, (1 − 𝑝𝑖𝑗)}

𝑛
𝑗=1

𝑚
𝑖=1    (4.6) 

Excessive expansion of the dynamic range is often inefficient, as it over-amplifies 

noise and detailed data as seen in the LHE output images. Therefore, dynamic range 

evaluation must be done with respect to amplification of noise level. Similarly with 

dynamic range, as the signal-to-noise ratio of the enhanced image increases, detailed 

thermal information can be disappeared due to the blur. For this reason, these two 

parameters must be evaluated with taking linear blur index into account. 

Quantitative evaluation of contrast enhancement of the proposed contrast 

enhancement method is performed in MATLAB with using image contrast function, 

SSNR and linear blur index values. Figure 4.9 shows the three sets of consecutive 

input images for the dynamic range, SSNR and linear blur index calculations. Contrast 

stretching, LHE, WMSHE, ADPHE, CLAHE methods are compared with MATLAB 

and FPGA implementations of the proposed WMDPHE method. Contrast 

enhancement outputs of the consecutive images are given in the figures from 

Figure 4.10 to Figure 4.15.  
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Figure 4.9. Consecutive low-contrast raw images for the quantitative performance evaluation. A1 and 

A2 are taken from the MT-CORE-F-B6417 LWIR Camera Core. B1, B2, C1 and C2 are taken from 

BU-TIV Benchmark Dataset [27]. 

A1  A2 

B1  B2 

C1  C2 



65 

Figure 4.10. Comparison of 1) Raw image A1, 2) Contrast stretching, 3) Linear HE, 4) WMSHE, 

5) ADPHE, 6) CLAHE, 7) MATLAB and 8) FPGA implementation of the proposed method
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Figure 4.11. Comparison of 1) Raw image A2, 2) Contrast stretching, 3) Linear HE, 4) WMSHE, 

5) ADPHE, 6) CLAHE, 7) MATLAB and 8) FPGA implementation of the proposed method
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Figure 4.12. Comparison of 1) Raw image B1, 2) Contrast stretching, 3) Linear HE, 4) WMSHE, 

5) ADPHE, 6) CLAHE, 7) MATLAB and 8) FPGA implementation of the proposed method
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Figure 4.13. Comparison of 1) Raw image B2, 2) Contrast stretching, 3) Linear HE, 4) WMSHE, 

5) ADPHE, 6) CLAHE, 7) MATLAB and 8) FPGA implementation of the proposed method
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Figure 4.14. Comparison of 1) Raw image C1, 2) Contrast stretching, 3) Linear HE, 4) WMSHE, 

5) ADPHE, 6) CLAHE, 7) MATLAB and 8) FPGA implementation of the proposed method
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Figure 4.15. Comparison of 1) Raw image C2, 2) Contrast stretching, 3) Linear HE, 4) WMSHE, 

5) ADPHE, 6) CLAHE, 7) MATLAB and 8) FPGA implementation of the proposed method
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SSNR value represents the number of meaningful pixels over the number of noisy or 

over-enhanced pixels. Since the consecutive images are used, noise that caused by the 

imaging system is substantially similar. Background and foreground enhancement 

levels of the output images can be obtainable since the noisy parts of the consecutive 

images are subtracted from each other in SSNR calculation. Maximum value of the 

SSNR results is accepted as the optimal enhancement method in comparing reduction 

of the gray level over-enhancement.  

Linear blur index gives the measurement of blur in the enhanced images. The 

performance of the enhancement method is better if the linear blur index is small.  

As the result of numerical evaluation, the method which obtains the optimum result 

from these three measurements will be considered as the optimal contrast 

improvement method among the investigated methods. 

Table 4.1. Comparison of the image contrast parameters for A1 and A2 

Contrast 

Enhancement 

Method 

Contrast 

Function of A1 

(dB) 

Contrast 

Function of A2 

(dB) 

SSNR (dB) 
Linear Blur 

Index 

Contrast 

Stretching 
152.3314 152.0260 74.0593 0.7872 

Histogram 

Equalization 
171.0278 171.0277 56.2868 0.4053 

WMSHE 163.2782 163.2736 74.0055 0.3792 

ADPHE 165.5348 166.2634 70.4052 0.3832 

CLAHE 165.7592 165.7894 56.6046 0.5106 

WMDPHE 

(MATLAB) 
161.1143 162.0807 71.5411 0.1355 

WMDPHE 

(Firmware) 
160.4952 161.7429 68.1682 0.1354 
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Table 4.2. Comparison of the image contrast parameters for B1 and B2 

Contrast 

Enhancement 

Method 

Contrast 

Function of B1 

(dB) 

Contrast 

Function of B2 

(dB) 

SSNR (dB) 
Linear Blur 

Index 

Contrast 

Stretching 
165.9163 166.5685 71.3180 0.4440 

Histogram 

Equalization 
171.0673 171.0673 76.1293 0.4016 

WMSHE 167.6757 167.6783 78.3208 0.4332 

ADPHE 168.3274 168.3569 74.7631 0.3394 

CLAHE 169.6878 169.6904 69.3335 0.4211 

WMDPHE 

(MATLAB) 
161.5676 162.0398 71.6899 0.1979 

WMDPHE 

(Firmware) 
161.7334 162.6477 71.2328 0.2041 

Table 4.3. Comparison of the image contrast parameters for C1 and C2 

Contrast 

Enhancement 

Method 

Contrast 

Function of C1 

(dB) 

Contrast 

Function of C2 

(dB) 

SSNR (dB) 
Linear Blur 

Index 

Contrast 

Stretching 
165.3939 165.3844 50.0461 0.5465 

Histogram 

Equalization 
171.0620 171.0619 58.4815 0.4008 

WMSHE 166.5603 166.5734 59.5134 0.5841 

ADPHE 167.0306 167.2829 55.4362 0.6052 

CLAHE 167.3268 167.3248 56.1139 0.3456 

WMDPHE 

(MATLAB) 
157.2843 158.5042 60.3466 0.3330 

WMDPHE 

(Firmware) 
157.2517 157.8636 62.8844 0.3364 
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Table 4.1, Table 4.2 and Table 4.3 give the results of comparison of the three sets of 

consecutive output images in terms of dynamic range, over-enhancement and blur 

levels. In first image set, linear blur index of the proposed method is better than the 

other methods while keeping SSNR and contrast levels at acceptable levels. 

Histogram equalization has the higher contrast but since it over-enhances the image, 

SSNR value of this method is insufficient. WMSHE and ADPHE methods performed 

well if less attention is paid to the blur effect. For the second image set, similar results 

are observed with the results of the first image set. This time, histogram equalization 

and CLAHE performed slightly better in SSNR evaluation. In the third image set, 

proposed contrast enhancement method has the better performance in linear blur index 

and SSNR values. On the other hand, the dynamic range enhancement of the proposed 

method is less than the other methods. CLAHE and WMSHE also exhibited good 

performance.  

According to these results, suitable methods varied among the image characteristics. 

When the linear blur index levels are compared, proposed WMDPHE method 

outperformed the other contrast enhancement methods in terms of preserving the 

detailed thermal information while adjusting the background and foreground intensity 

levels with preventing the excessive amplification of noise and intensity level 

saturation. WMSHE, CLAHE and ADPHE methods also achieved good performance 

in contrast enhancement and proper noise amplification. However, compared to the 

WMDPHE method, these methods lost more detailed thermal information while 

improving the dynamic range. 
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CHAPTER 5 

5. CONCLUSION AND FUTURE WORK

Infrared imaging is used in many applications and infrared imaging systems require 

some pre-processing operations. These image enhancement requirements may vary 

with according to area of use. Contrast enhancement is one of the most important 

pre-processing requirements of the infrared imaging systems. Proper enlargement of 

the dynamic range affects the output image characteristics. If the visibility of the scene 

is important, then the correct displaying of the background and foreground 

temperature can be compromised. On the other hand, if the correct visibility of the 

temperature is critical, dynamic range and visibility may be reduced due to limited 

enhancement of the contrast.  

In this thesis, a contrast enhancement method is proposed for achieving the proper 

balance between visibility of the image details and preserving the temperature 

characteristics of the image. Firstly, widely used contrast enhancement algorithms for 

infrared and gray scale images are searched and analyzed. Then a contrast 

enhancement method based on histogram equalization is designed. Proposed contrast 

enhancement method is derived from ADPHE and WMSHE, which are well known 

methods for infrared and grayscale histogram equalization. ADPHE algorithm is 

modified from the WMSHE perspective and threshold or plateau calculation of the 

ADPHE is rearranged. Investigated and proposed methods are implemented in 

MATLAB to compare their performance. Since the FPGA implementation will be 

used in an imaging system, coding of the MATLAB prototype is done similar to digital 

designing structure with using HDL. Secondly, firmware architecture of the proposed 

method is designed and FPGA implementation is performed with using Verilog HDL 

on Xilinx Vivado Design Suite. Functional and post-implementation timing 

simulations are performed with using various low-contrast thermal test images for 
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evaluating the contrast enhancement performance and testing the real-time image 

processing pipeline. Implementation of the proposed algorithm is integrated into a 

FPGA-based infrared imaging system and real-time contrast enhancement is achieved 

with desired performance. XC7A100T-1CSG324C FPGA from the Xilinx Artix-7 

family is used in the infrared imaging system due to its low-cost and high 

performance-per-watt advantages. FPGA resource utilization of implementation of the 

proposed algorithm is shown in Table 5.1. Note that, the selected FPGA is used for 

not only the contrast enhancement, but also for receiving and transmitting the image 

data, communicating with the ROIC and operating offset and gain corrections. 

Therefore, size of the FPGA is selected by considering these operations.  

 

 Table 5.1. Utilization of FPGA resources after the implementation 

Resource Utilization Available Utilization % 

LUT 6485 63400 10.23 

LUTRAM 17 19000 0.09 

FF 12581 126800 9.92 

BRAM 34.50 135 25.56 

DSP 7 240 2.92 

IO 40 210 19.05 

BUFG 4 32 12.50 

MMCM 1 6 16.67 

 

FPGA implementation is designed with the arithmetic modules that are using  

fixed-point operations for simplicity and reducing the logic resource utilization. 

Output images of the FPGA implementation has negligible intensity level differences 

comparing with MATLAB prototype, since the latter can perform floating point 

operations. This can be solved in the firmware with replacing fixed-point operations 

with floating point operations.  
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Calculation of the raw image statistics and histogram equalization operations are 

designed to require minimal memory usage. Memory addressing and arbitration of the 

memory usage by the modules are also adjusted for the proper real-time operation. 

Contrast enhanced output frame is transmitted with two frame latency since there is 

no frame buffer used in the design. External memory can be used for preventing this 

latency, but since it is a real-time operation, high-speed external memory is required 

and this may be a problem for low-cost imaging systems. 

Memory and data bus organizations are implemented as parametrically with according 

to the input image resolution from the infrared detector. These parameters can also be 

adjusted for resolutions except the VGA resolution and real-time contrast 

enhancement can be achieved for the other detectors with higher or lower resolutions. 

Contrast enhancement is performed by using histogram statistics in the proposed 

method. Spatial methods, tile separation and neighborhood properties can also be used 

for obtaining the thermal characteristics and enhancing the contrast of infrared images. 

Temperature accuracy of the contrast enhanced output images by the proposed method 

can be analyzed with controlled infrared radiation source like blackbody. Calibration 

mechanisms can be added to the firmware for achieving more accurate temperature 

representation in the output image with providing a higher dynamic range. 

Proposed contrast enhancement algorithm is essentially designed for enhancing the 

low-contrast raw LWIR images. On the other hand, test result of the proposed 

algorithm on SWIR image looks promising and can be also used in SWIR imaging 

systems with some modifications to the algorithm if necessary. Figure 5.1 shows the 

low-contrast raw SWIR image and contrast enhancement result of it. 

In conclusion, the FPGA implementation and test results show that the proposed 

contrast enhancement algorithm is capable and applicable to be used in FPGA-based 

real-time infrared imaging systems for adaptively improving the dynamic range of the 

low-contrast frames. 
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Figure 5.1. a) Low-contrast SWIR image b) Contrast enhanced image with the proposed method 

a) b) 
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