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ABSTRACT

A COMPARATIVE STUDY OF THE FITTING PERFORMANCE OF
HYPERELASTIC CONSTITUTIVE MODELS

Badienia, Yashar
M.S., Department of Mechanical Engineering

Supervisor: Assoc. Prof. Dr. Hüsnü Dal

September 2019, 207 pages

Hyperelastic materials are widely used over the last decades. Studies on molecular

structure and stress-stretch response of such materials goes back to 1940. Since then,

many researchers have developed various material models to represent the response of

hyperelastic materials undergoing different loading scenarios. Generally phenomeno-

logical and micromechanically based material models are the two main categories

considered during the modeling steps. Among the hyperelastic material models mi-

cromechanically based network models are known to have high performance and reli-

ability over the purely phenomenological models dealing with the analysis of unfilled

rubber. Number of available experimental data sets under different loading cases,

maximum stretch level reached by each loading case, and additives with percentage

of fillers, on the other hand, play an important role choosing the appropriate model

for further analysis of technical rubber. Therefore, a well defined hyperelastic mate-

rial model should have physically interpretable and minimum number of parameters.

During the last decades number of hyperelastic material models has been increased,

therefore, comparison among the material models and choosing an appropriate one
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turns to be crucial factor for researchers of the field. One may access to large number

of review papers comparing strength and weakness of constitutive material models,

implying the importance of making decision between different types of constitutive

models suiting the specific analysis. In this study, fitting performance of 40 hyper-

elastic material models has been presented. In order to obtain parameters for each

constitutive model a genetic algorithm is developed. Further improvement of the re-

sults are achieved using FMINCON utility of MATLAB. Four set of distinct and well

known data for uniaxial tensile, equi-biaxial, pure shear, and biaxial tension loads has

been considered during parameter optimization.

Keywords: Hyperelasticity, parameter optimization, rubber-like material, genetic al-

gorithm, multi-objective optimization
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ÖZ

HİPERELASTİK BÜNYE MODELLERİNİN EĞRİ UYDURMA
PERFORMANSLARININ KARŞILAŞTIRILMALI ANALİZİ

Badienia, Yashar
Yüksek Lisans, Makina Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Hüsnü Dal

Eylül 2019 , 207 sayfa

Son yıllarda hiperelastik malzemeler yaygın olarak kullanılmaktadır. Bu tür malze-

melerin moleküler yapısı ve gerilim-gerinim tepkisi üzerine çalışmalar 1940’lı yıl-

lara dayanmaktadır. 1940’lardan yana birçok araştırmacı farklı yükleme senaryoları

altında hiperelastik malzemelerin tepkisini temsil etmek adına çeşitli malzeme mo-

delleri geliştirmiştir. Genel olarak fenomenolojik ve mikromekanik tabanlı malzeme

modelleri, modelleme aşamalarında dikkate alınan iki ana kategoridir. Hiperelastik

malzeme modelleri arasında mikromekanik tabanlı ağ modellerinin, fenomenolojik

modellere kıyasla yüksek performans ve güvenilirliğe sahip olduğu bilinmektedir.

Farklı yükleme durumları altındaki mevcut deneysel verilerin sayısı, bu yüklemeler

esnasında malzemenin ulaştığı maksimum uzama seviyesi ve dolgu katkı maddelerin

oranı, teknik kauçuk analizi için uygun modelin seçiminde önemli bir rol oynamak-

tadır. Bu nedenle, iyi tanımlanmış bir hiperelastik malzeme modelinin fiziksel ola-

rak yorumlanabilir ve minimum parametre sayısına sahip olması gerekmektedir. Son

yıllarda, hiperlastik malzeme modellerinin sayısında artış gözlenmektedir. Bu artış

sebebiyle, malzeme modelleri arasında kıyaslama yaparak uygun modelin seçilmesi,
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bu alanda çalışan araştırmacılar için önem arz etmektedir. Literatürde bu tür malzeme

modellerinin güçlü ve zayıf yönlerini inceleyen çok sayıda değerlendirme makalesi

mevcuttur, bu da belirli bir analize uygun farklı malzeme modelleri arasında seçim

ve karar almanın önemini ortaya koymaktadır. Bu çalışmada, 40 hiperelastik mal-

zeme modelinin en iyileme ve eğri uydurma performansı sunulmuştur. Bu modellerin

değişkenlerini elde etmek amacıyla genetik algoritma kodu geliştirilmiştir. Genetik

algoritma aracılığıyla elde edilen sonuçlarının iylemesi ise MATLAB’ın FMINCON

yardımcı programı kullanılarak elde edilmiştir. Parametre optimizasyonu sırasında,

tek eksenli, eşit-çift eksenli, saf kayma ve çift eksenli çekme yükleri için dört farklı

veri seti dikkate alınmıştır.

Anahtar Kelimeler: hiperelastisite, değişken optimizasyonu, kauçuk türü malzeme,

genetik algoritma, çok-amaçlı optimizasyon
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Oğuzhan Güner, Yasemin Bilgen and Hamid Majidi Balaneji for their unbroken en-

couragement and companionship. They were always beside me in my happiness and

sadness. During these years, far from my hometown, they were my second family.

We might not be able to see each other more often in the future, but they will be

always my best friends.

My deepest thanks go to my parents and siblings for their unconditional love and

encouragement throughout my life. I would not have been able to achieve anything

in my life without them being by my side along the way. The enlightened vision

and determination of my parents helped me to pursue my goals and take strong steps

by leaning on them without a second thought. Also, I was fortunate to grow up in

x



a family with amazing siblings. Being the youngest, I had the opportunity to learn

from them all, and I am extremely thankful for that. This study would not be finished

without their patience and encouragement.

xi



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxviii

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xxxvi

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview and Background . . . . . . . . . . . . . . . . . . . . . . . 1

1.2 Elasticity of Rubber-like Materials . . . . . . . . . . . . . . . . . . . 3

1.3 Motivation and Contribution . . . . . . . . . . . . . . . . . . . . . . 4

1.4 Scope and Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 4

2 LITERATURE REVIEW . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

3 PRELIMINARIES ON CONTINUUM MECHANICS AND HYPERELAS-
TICITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

3.1 Basic concepts in Continuum Mechanics . . . . . . . . . . . . . . . 17

3.1.1 Kinematics . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

xii



3.1.2 Stress Expressions . . . . . . . . . . . . . . . . . . . . . . . . 22

3.1.3 Boundary value problems . . . . . . . . . . . . . . . . . . . . 28

3.2 Hyperelasticity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2.1 Lagrangian and Eulerian setting . . . . . . . . . . . . . . . . 29

3.2.2 Incompressible hyperelasticity . . . . . . . . . . . . . . . . . 32

3.2.3 Deformation modes . . . . . . . . . . . . . . . . . . . . . . . 33

3.2.3.1 Uniaxial tension deformation mode . . . . . . . . . . . 34

3.2.3.2 Equibiaxial tension deformation mode . . . . . . . . . 35

3.2.3.3 Pure shear deformation mode . . . . . . . . . . . . . . 36

3.2.3.4 Biaxial tension deformation mode . . . . . . . . . . . . 37

3.2.4 Invariant based incompressible hyperelastic material models . 38

3.2.5 Principle stretch based incompressible hyperelastic material
models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4 HYPERELASTIC MATERIAL MODELS . . . . . . . . . . . . . . . . . . 41

4.1 Phenomenological Material Models . . . . . . . . . . . . . . . . . . 41

4.1.1 First Invariant Base Models . . . . . . . . . . . . . . . . . . . 42

4.1.1.1 neo-Hooke model . . . . . . . . . . . . . . . . . . . . 42

4.1.1.2 Yeoh model . . . . . . . . . . . . . . . . . . . . . . . . 42

4.1.1.3 Gent model . . . . . . . . . . . . . . . . . . . . . . . . 43

4.1.1.4 Yeoh-Fleming model . . . . . . . . . . . . . . . . . . . 43

4.1.1.5 Two-Term model . . . . . . . . . . . . . . . . . . . . . 43

4.1.1.6 Exp-Ln model . . . . . . . . . . . . . . . . . . . . . . 44

4.1.2 First and Second Invariant Base Models . . . . . . . . . . . . 45

xiii



4.1.2.1 Mooney model . . . . . . . . . . . . . . . . . . . . . . 45

4.1.2.2 Isihara model . . . . . . . . . . . . . . . . . . . . . . . 45

4.1.2.3 Biderman model . . . . . . . . . . . . . . . . . . . . . 46

4.1.2.4 Gent-Thomas model . . . . . . . . . . . . . . . . . . . 46

4.1.2.5 Hart-Smith model . . . . . . . . . . . . . . . . . . . . 46

4.1.2.6 Alexander model . . . . . . . . . . . . . . . . . . . . . 47

4.1.2.7 James model . . . . . . . . . . . . . . . . . . . . . . . 48

4.1.2.8 Haines-Wilson model . . . . . . . . . . . . . . . . . . 48

4.1.2.9 Swanson model . . . . . . . . . . . . . . . . . . . . . 48

4.1.2.10 Kilian (van der Waals) model . . . . . . . . . . . . . . 49

4.1.2.11 Yamashita-Kawabata model . . . . . . . . . . . . . . . 50

4.1.2.12 Lion model . . . . . . . . . . . . . . . . . . . . . . . . 50

4.1.2.13 Diani-Rey model . . . . . . . . . . . . . . . . . . . . . 50

4.1.2.14 Haupt-Sedlan model . . . . . . . . . . . . . . . . . . . 51

4.1.2.15 Chavelier-Marco model . . . . . . . . . . . . . . . . . 52

4.1.2.16 Pucci-Saccomandi model . . . . . . . . . . . . . . . . 52

4.1.2.17 Amin model . . . . . . . . . . . . . . . . . . . . . . . 52

4.1.2.18 Beda model . . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.2.19 Carroll model . . . . . . . . . . . . . . . . . . . . . . . 53

4.1.2.20 Nunes model . . . . . . . . . . . . . . . . . . . . . . . 54

4.1.3 Principle Stretch Base Models . . . . . . . . . . . . . . . . . 54

4.1.3.1 Valanis-Landel model . . . . . . . . . . . . . . . . . . 54

4.1.3.2 Ogden model . . . . . . . . . . . . . . . . . . . . . . . 55

xiv



4.1.3.3 Slip-Link model . . . . . . . . . . . . . . . . . . . . . 55

4.1.3.4 Constrained-Junction model . . . . . . . . . . . . . . . 56

4.1.3.5 Shariff model . . . . . . . . . . . . . . . . . . . . . . . 57

4.1.3.6 Attard-Hunt model . . . . . . . . . . . . . . . . . . . . 58

4.1.3.7 Bechir model . . . . . . . . . . . . . . . . . . . . . . . 58

4.1.4 Mixed Invariant and Principle Stretch Based Models . . . . . . 59

4.1.4.1 WFB model . . . . . . . . . . . . . . . . . . . . . . . 59

4.2 Micro-mechanics based material models . . . . . . . . . . . . . . . . 60

4.2.1 Entropy, free energy, and force definitions for single chain . . . 61

4.2.2 Three-chain model . . . . . . . . . . . . . . . . . . . . . . . 63

4.2.3 Arruda-Boyce model . . . . . . . . . . . . . . . . . . . . . . 63

4.2.4 Tube model . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.2.5 Extended-Tube model . . . . . . . . . . . . . . . . . . . . . . 65

4.2.6 Micro-sphere model . . . . . . . . . . . . . . . . . . . . . . . 66

4.2.7 Khiem (network averaging tube) model . . . . . . . . . . . . . 70

5 PARAMETER OPTIMIZATION . . . . . . . . . . . . . . . . . . . . . . . 73

5.1 Parameter optimization preliminaries . . . . . . . . . . . . . . . . . 73

5.2 Genetic Algorithm Approach . . . . . . . . . . . . . . . . . . . . . . 74

6 RESULTS AND DISCUSSION . . . . . . . . . . . . . . . . . . . . . . . . 79

6.1 Ranking of hyperelastic material models . . . . . . . . . . . . . . . . 79

6.2 Results of hyperelastic material models . . . . . . . . . . . . . . . . 83

6.2.1 Micro-sphere model mesults . . . . . . . . . . . . . . . . . . 83

6.2.2 Alexander model results . . . . . . . . . . . . . . . . . . . . . 85

xv



6.2.3 Diani and Rey model results . . . . . . . . . . . . . . . . . . 87

6.2.4 Extended tube model results . . . . . . . . . . . . . . . . . . 89

6.2.5 Shariff model results . . . . . . . . . . . . . . . . . . . . . . 91

6.2.6 Carroll model results . . . . . . . . . . . . . . . . . . . . . . 93

6.2.7 Network averaging tube model results . . . . . . . . . . . . . 95

6.2.8 Chevalier and Marco model results . . . . . . . . . . . . . . . 97

6.2.9 Ogden model results . . . . . . . . . . . . . . . . . . . . . . . 99

6.2.10 Amin model results . . . . . . . . . . . . . . . . . . . . . . . 101

6.2.11 James model results . . . . . . . . . . . . . . . . . . . . . . . 103

6.2.12 Haines-Wilson model results . . . . . . . . . . . . . . . . . . 105

6.2.13 Attard and Hunt model results . . . . . . . . . . . . . . . . . 107

6.2.14 4-term Bechir model results . . . . . . . . . . . . . . . . . . . 109

6.2.15 Pucci and Saccomandi model results . . . . . . . . . . . . . . 111

6.2.16 Biderman model results . . . . . . . . . . . . . . . . . . . . . 113

6.2.17 Kilian ( van der Waals) model results . . . . . . . . . . . . . . 115

6.2.18 Yamashita and Kawabata model results . . . . . . . . . . . . . 117

6.2.19 Lion model results . . . . . . . . . . . . . . . . . . . . . . . . 119

6.2.20 Beda model results . . . . . . . . . . . . . . . . . . . . . . . 121

6.2.21 Hart-Smith model results . . . . . . . . . . . . . . . . . . . . 123

6.2.22 Haupt and Sedlan model results . . . . . . . . . . . . . . . . . 125

6.2.23 Exp-Ln model results . . . . . . . . . . . . . . . . . . . . . . 127

6.2.24 Yeoh model results . . . . . . . . . . . . . . . . . . . . . . . 129

6.2.25 Two-term model results . . . . . . . . . . . . . . . . . . . . . 131

xvi



6.2.26 Yeoh-Fleming model results . . . . . . . . . . . . . . . . . . 133

6.2.27 Arruda-Boyce model results . . . . . . . . . . . . . . . . . . 135

6.2.28 Gent model results . . . . . . . . . . . . . . . . . . . . . . . 137

6.2.29 Three-chain model results . . . . . . . . . . . . . . . . . . . . 139

6.2.30 Mooney model results . . . . . . . . . . . . . . . . . . . . . . 141

6.2.31 Isihara model results . . . . . . . . . . . . . . . . . . . . . . 143

6.2.32 Nunes model results . . . . . . . . . . . . . . . . . . . . . . . 145

6.2.33 Tube model results . . . . . . . . . . . . . . . . . . . . . . . 147

6.2.34 Slip-link model results . . . . . . . . . . . . . . . . . . . . . 149

6.2.35 Swanson model results . . . . . . . . . . . . . . . . . . . . . 151

6.2.36 Gent-Thomas model results . . . . . . . . . . . . . . . . . . . 153

6.2.37 Constrained-junction model results . . . . . . . . . . . . . . . 155

6.2.38 WFB model results . . . . . . . . . . . . . . . . . . . . . . . 157

6.2.39 neo-Hooke model results . . . . . . . . . . . . . . . . . . . . 159

6.2.40 Valanis-Landel model results . . . . . . . . . . . . . . . . . . 161

7 CONCLUDING REMARKS . . . . . . . . . . . . . . . . . . . . . . . . . 163

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 165

A EQUIBIAXIAL TENSION RESULTS FOR HYPERELASTIC MODELS . 173

B PRURE SHEAR RESULTS FOR HYPERELASTIC MODELS . . . . . . . 189

C STRAIN ENERGY FUNCTIONS FOR HYPERELASTIC MODELS . . . 205

xvii



LIST OF TABLES

TABLES

Table 6.1 First 20 models are sorted based on simultaneous quality of fit values. 81

Table 6.2 Last 20 models are sorted based on simultaneous quality of fit values. 82

Table 6.3 Simultaneous fitting results for Micro-Sphere model. . . . . . . . . 84

Table 6.4 Uniaxial tension results for Micro-Sphere model. . . . . . . . . . . 84

Table 6.5 Biaxial tension results for Micro-Sphere model. . . . . . . . . . . 84

Table 6.6 Simultaneous fitting results for Alexander model. . . . . . . . . . . 86

Table 6.7 Uniaxial tension fitting results for Alexander model. . . . . . . . . 86

Table 6.8 Biaxial tension results for Alexander model. . . . . . . . . . . . . 86

Table 6.9 Simultaneous fitting results for Diani and Ray model. . . . . . . . 88

Table 6.10 Uniaxial tension results for Diani and Ray model. . . . . . . . . . 88

Table 6.11 Biaxial tension results for Diani and Ray model. . . . . . . . . . . 88

Table 6.12 Simultaneous fitting results for Extended-Tube model. . . . . . . . 90

Table 6.13 Uniaxial tension results for Extended-Tube model. . . . . . . . . . 90

Table 6.14 Biaxial tension results for Extended-Tube model. . . . . . . . . . . 90

Table 6.15 Simultaneous fitting results for Shariff model. . . . . . . . . . . . 92

Table 6.16 Uniaxial tension results for Shariff model. . . . . . . . . . . . . . 92

Table 6.17 Biaxial tension results for Shariff model. . . . . . . . . . . . . . . 92

xviii



Table 6.18 Simultaneous fitting results for Carroll model. . . . . . . . . . . . 94

Table 6.19 Uniaxial tension results for Carroll model. . . . . . . . . . . . . . 94

Table 6.20 Biaxial tension results for Carroll model. . . . . . . . . . . . . . . 94

Table 6.21 Simultaneous fitting results network averaging tube model. . . . . 96

Table 6.22 Uniaxial tension results network averaging tube model. . . . . . . 96

Table 6.23 Biaxial tension results network averaging tube model. . . . . . . . 96

Table 6.24 Simultaneous fitting results for Chevalier and Marco model. . . . . 98

Table 6.25 Uniaxial tension results for Chevalier and Marco model. . . . . . . 98

Table 6.26 Biaxial tension results for Chevalier and Marco model. . . . . . . . 98

Table 6.27 Simultaneous fitting results for Ogden model. . . . . . . . . . . . . 100

Table 6.28 Uniaxial tension results for Ogden model. . . . . . . . . . . . . . . 100

Table 6.29 Biaxial tension results for Ogden model. . . . . . . . . . . . . . . 100

Table 6.30 Simultaneous fitting results for Amin model. . . . . . . . . . . . . 102

Table 6.31 Uniaxial tension results for Amin model. . . . . . . . . . . . . . . 102

Table 6.32 Biaxial tension results for Amin model. . . . . . . . . . . . . . . . 102

Table 6.33 Simultaneous fitting results for James model. . . . . . . . . . . . . 104

Table 6.34 Uniaxial tension results for James model. . . . . . . . . . . . . . . 104

Table 6.35 Biaxial tension results for James model. . . . . . . . . . . . . . . . 104

Table 6.36 Simultaneous fitting results for Haines and Wilson model. . . . . . 106

Table 6.37 Uniaxial tension results for Haines and Wilson model. . . . . . . . 106

Table 6.38 Biaxial tension results for Haines and Wilson model. . . . . . . . . 106

Table 6.39 Simultaneous fitting results for Attard and Hunt model. . . . . . . 108

xix



Table 6.40 Uniaxial tension results for Attard and Hunt model. . . . . . . . . 108

Table 6.41 Biaxial tension results for Attard and Hunt model. . . . . . . . . . 108

Table 6.42 Simultaneous fitting results for 4-term Bechir model. . . . . . . . . 110

Table 6.43 Uniaxial tension results for 4-term Bechir model. . . . . . . . . . . 110

Table 6.44 Biaxial tension results for 4-term Bechir model. . . . . . . . . . . 110

Table 6.45 Simultaneous fitting results for Pucci and Saccomandi model. . . . 112

Table 6.46 Uniaxial tension results for Pucci and Saccomandi model. . . . . . 112

Table 6.47 Biaxial tension results for Pucci and Saccomandi model. . . . . . . 112

Table 6.48 Simultaneous fitting results for Biderman model. . . . . . . . . . . 114

Table 6.49 Uniaxial tension results for Biderman model. . . . . . . . . . . . . 114

Table 6.50 Biaxial tension results for Biderman model. . . . . . . . . . . . . . 114

Table 6.51 Simultaneous fitting results for Kilian (van der Waals) model. . . . 116

Table 6.52 Uniaxial tension results for Kilian (van der Waals) model. . . . . . 116

Table 6.53 Biaxial tension results for Kilian (van der Waals) model. . . . . . . 116

Table 6.54 Simultaneous fitting results for Yamashita and Kawabata model. . . 118

Table 6.55 Uniaxial tension results for Yamashita and Kawabata model. . . . . 118

Table 6.56 Biaxial tension results for Yamashita and Kawabata model. . . . . 118

Table 6.57 Simultaneous fitting results for Lion model. . . . . . . . . . . . . . 120

Table 6.58 Uniaxial tension results for Lion model. . . . . . . . . . . . . . . . 120

Table 6.59 Biaxial tension results for Lion model. . . . . . . . . . . . . . . . 120

Table 6.60 Simultaneous fitting results for Beda model. . . . . . . . . . . . . 122

Table 6.61 Uniaxial tension results for Beda model. . . . . . . . . . . . . . . 122

xx



Table 6.62 Biaxial tension results for Beda model. . . . . . . . . . . . . . . . 122

Table 6.63 Simultaneous fitting results for Hart-Smith model. . . . . . . . . . 124

Table 6.64 Uniaxial tension results for Hart-Smith model. . . . . . . . . . . . 124

Table 6.65 Biaxial tension results for Hart-Smith model. . . . . . . . . . . . . 124

Table 6.66 Simultaneous fitting results for Haupt and Sedlan model. . . . . . . 126

Table 6.67 Uniaxial tension results for Haupt and Sedlan model. . . . . . . . . 126

Table 6.68 Biaxial tension results for Haupt and Sedlan model. . . . . . . . . 126

Table 6.69 Simultaneous fitting results for Exp-Ln model. . . . . . . . . . . . 128

Table 6.70 Uniaxial tension results for Exp-Ln model. . . . . . . . . . . . . . 128

Table 6.71 Biaxial tension results for Exp-Ln model. . . . . . . . . . . . . . . 128

Table 6.72 Simultaneous fitting results for Yeoh model. . . . . . . . . . . . . 130

Table 6.73 Uniaxial tension results for Yeoh model. . . . . . . . . . . . . . . 130

Table 6.74 Biaxial tension results for Yeoh model. . . . . . . . . . . . . . . . 130

Table 6.75 Simultaneous fitting results for two-term model. . . . . . . . . . . 132

Table 6.76 Uniaxial tension results for two-term model. . . . . . . . . . . . . 132

Table 6.77 Biaxial tension results for two-term model. . . . . . . . . . . . . . 132

Table 6.78 Simultaneous fitting results for Yeoh-Fleming model. . . . . . . . 134

Table 6.79 Uniaxial tension results for Yeoh-Fleming model. . . . . . . . . . 134

Table 6.80 Biaxial tension results for Yeoh-Fleming model. . . . . . . . . . . 134

Table 6.81 Simultaneous fitting results for Arruda-Boyce model. . . . . . . . 136

Table 6.82 Uniaxial tension results for Arruda-Boyce model. . . . . . . . . . 136

Table 6.83 Biaxial tension results for Arruda-Boyce model. . . . . . . . . . . 136

xxi



Table 6.84 Simultaneous fitting results for Gent model. . . . . . . . . . . . . 138

Table 6.85 Uniaxial tension results for Gent model. . . . . . . . . . . . . . . 138

Table 6.86 Biaxial tension results for Gent model. . . . . . . . . . . . . . . . 138

Table 6.87 Simultaneous fitting results for three-chain model. . . . . . . . . . 140

Table 6.88 Uniaxial tension results for three-chain model. . . . . . . . . . . . 140

Table 6.89 Biaxial tension results for three-chain model. . . . . . . . . . . . . 140

Table 6.90 Simultaneous fitting results for Mooney model. . . . . . . . . . . . 142

Table 6.91 Uniaxial tension results for Mooney model. . . . . . . . . . . . . . 142

Table 6.92 Biaxial tension results for Mooney model. . . . . . . . . . . . . . 142

Table 6.93 Simultaneous fitting results for Isihara model. . . . . . . . . . . . 144

Table 6.94 Uniaxial tension results for Isihara model. . . . . . . . . . . . . . 144

Table 6.95 Biaxial tension results for Isihara model. . . . . . . . . . . . . . . 144

Table 6.96 Simultaneous fitting results for Nunes model. . . . . . . . . . . . . 146

Table 6.97 Uniaxial tension results for Nunes model. . . . . . . . . . . . . . . 146

Table 6.98 Biaxial tension results for Nunes model. . . . . . . . . . . . . . . 146

Table 6.99 Simultaneous fitting results for tube model. . . . . . . . . . . . . . 148

Table 6.100 Uniaxial tension results for tube model. . . . . . . . . . . . . . . . 148

Table 6.101 Biaxial tension results for tube model. . . . . . . . . . . . . . . . . 148

Table 6.102 Simultaneous fitting results for slip-link model. . . . . . . . . . . . 150

Table 6.103 Uniaxial tension results for slip-link model. . . . . . . . . . . . . . 150

Table 6.104 Biaxial tension results for slip-link model. . . . . . . . . . . . . . 150

Table 6.105 Simultaneous fitting results for Swanson model. . . . . . . . . . . 152

xxii



Table 6.106 Uniaxial tension results for Swanson model. . . . . . . . . . . . . 152

Table 6.107 Biaxial tension results for Swanson model. . . . . . . . . . . . . . 152

Table 6.108 Simultaneous fitting results for Gent-Thomas model. . . . . . . . . 154

Table 6.109 Uniaxial tension results for Gent-Thomas model. . . . . . . . . . . 154

Table 6.110 Biaxial tension results for Gent-Thomas model. . . . . . . . . . . 154

Table 6.111 Simultaneous fitting results for constrained-junction model. . . . . 156

Table 6.112 Uniaxial tension results for constrained-junction model. . . . . . . 156

Table 6.113 Biaxial tension results for constrained-junction model. . . . . . . . 156

Table 6.114 Simultaneous fitting results for weight function based (WFB) model.158

Table 6.115 Uniaxial tension results for weight function based (WFB) model. . 158

Table 6.116 Biaxial tension results for weight function based (WFB) model. . . 158

Table 6.117 Simultaneous fitting results for neo-Hooke model. . . . . . . . . . 160

Table 6.118 Uniaxial tension results for neo-Hooke model. . . . . . . . . . . . 160

Table 6.119 Biaxial tension results for neo-Hooke model. . . . . . . . . . . . . 160

Table 6.120 Simultaneous fitting results for Valanis-Landel model. . . . . . . . 162

Table 6.121 Uniaxial tension results for Valanis-Landel model. . . . . . . . . . 162

Table 6.122 Biaxial tension results for Valanis-Landel model. . . . . . . . . . . 162

Table A.1 Equibiaxial tension results for Micro-Sphere model. . . . . . . . . 174

Table A.2 Equibiaxial tension fitting results for Alexander model. . . . . . . 174

Table A.3 Equibiaxial tension results for Diani and Ray model. . . . . . . . . 174

Table A.4 Equibiaxial tension results for Extended-Tube model. . . . . . . . 175

Table A.5 Equibiaxial tension results for Shariff model. . . . . . . . . . . . . 175

xxiii



Table A.6 Equibiaxial tension results for Carroll model. . . . . . . . . . . . . 175

Table A.7 Equibiaxial tension results network averaging tube model. . . . . . 176

Table A.8 Equibiaxial tension results for Chevalier and Marco model. . . . . 176

Table A.9 Equibiaxial tension results for Ogden model. . . . . . . . . . . . . 176

Table A.10 Equibiaxial tension results for Amin model. . . . . . . . . . . . . 177

Table A.11 Equibiaxial tension results for James model. . . . . . . . . . . . . 177

Table A.12 Equibiaxial tension results for Haines and Wilson model. . . . . . 177

Table A.13 Equibiaxial tension results for Attard and Hunt model. . . . . . . . 178

Table A.14 Equibiaxial tension results for 4-term Bechir model. . . . . . . . . 178

Table A.15 Equibiaxial tension results for Pucci and Saccomandi model. . . . 178

Table A.16 Equibiaxial tension results for Biderman model. . . . . . . . . . . 179

Table A.17 Equibiaxial tension results for Kilian (van der Waals) model. . . . 179

Table A.18 Equibiaxial tension results for Yamashita and Kawabata model. . . 179

Table A.19 Equibiaxial tension results for Lion model. . . . . . . . . . . . . . 180

Table A.20 Equibiaxial tension results for Beda model. . . . . . . . . . . . . . 180

Table A.21 Equibiaxial tension results for Hart-Smith model. . . . . . . . . . . 180

Table A.22 Equibiaxial tension results for Haupt and Sedlan model. . . . . . . 181

Table A.23 Equibiaxial tension results for Exp-Ln model. . . . . . . . . . . . 181

Table A.24 Equibiaxial tension results for Yeoh model. . . . . . . . . . . . . . 181

Table A.25 Equibiaxial tension results for two-term model. . . . . . . . . . . . 182

Table A.26 Equibiaxial tension results for Yeoh-Fleming model. . . . . . . . . 182

Table A.27 Equibiaxial tension results for Arruda-Boyce model. . . . . . . . . 182

xxiv



Table A.28 Equibiaxial tension results for Gent model. . . . . . . . . . . . . . 183

Table A.29 Equibiaxial tension results for three-chain model. . . . . . . . . . . 183

Table A.30 Equibiaxial tension results for Mooney model. . . . . . . . . . . . 183

Table A.31 Equibiaxial tension results for Isihara model. . . . . . . . . . . . . 184

Table A.32 Equibiaxial tension results for Nunes model. . . . . . . . . . . . . 184

Table A.33 Equibiaxial tension results for tube model. . . . . . . . . . . . . . 184

Table A.34 Equibiaxial tension results for slip-link model. . . . . . . . . . . . 185

Table A.35 Equibiaxial tension results for Swanson model. . . . . . . . . . . . 185

Table A.36 Equibiaxial tension results for Gent-Thomas model. . . . . . . . . 185

Table A.37 Equibiaxial tension results for constrained-junction model. . . . . . 186

Table A.38 Equibiaxial tension results for weight function based (WFB) model. 186

Table A.39 Equibiaxial tension results for neo-Hooke model. . . . . . . . . . . 186

Table A.40 Equibiaxial tension results for Valanis-Landel model. . . . . . . . 187

Table B.1 Pure shear results for Micro-Sphere model. . . . . . . . . . . . . . 190

Table B.2 Pure Shear results for Alexander model. . . . . . . . . . . . . . . . 190

Table B.3 Pure shear results for Diani and Ray model. . . . . . . . . . . . . . 190

Table B.4 Pure shear results for Extended-Tube model. . . . . . . . . . . . . 191

Table B.5 Pure shear results for Shariff model. . . . . . . . . . . . . . . . . . 191

Table B.6 Pure shear results for Carroll model. . . . . . . . . . . . . . . . . 191

Table B.7 Pure shear results network averaging tube model. . . . . . . . . . . 192

Table B.8 Pure shear results for Chevalier and Marco model. . . . . . . . . . 192

Table B.9 Pure shear results for Ogden model. . . . . . . . . . . . . . . . . . 192

xxv



Table B.10 Pure shear results for Amin model. . . . . . . . . . . . . . . . . . 193

Table B.11 Pure shear results for James model. . . . . . . . . . . . . . . . . . 193

Table B.12 Pure shear results for Haines and Wilson model. . . . . . . . . . . 193

Table B.13 Pure shear results for Attard and Hunt model. . . . . . . . . . . . . 194

Table B.14 Pure shear results for 4-term Bechir model. . . . . . . . . . . . . . 194

Table B.15 Pure shear results for Pucci and Saccomandi model. . . . . . . . . 194

Table B.16 Pure shear results for Biderman model. . . . . . . . . . . . . . . . 195

Table B.17 Pure shear results for Kilian (van der Waals) model. . . . . . . . . 195

Table B.18 Pure shear results for Yamashita and Kawabata model. . . . . . . . 195

Table B.19 Pure shear results for Lion model. . . . . . . . . . . . . . . . . . . 196

Table B.20 Pure shear results for Beda model. . . . . . . . . . . . . . . . . . . 196

Table B.21 Pure shear results for Hart-Smith model. . . . . . . . . . . . . . . 196

Table B.22 Pure shear results for Haupt and Sedlan model. . . . . . . . . . . . 197

Table B.23 Pure shear results for Exp-Ln model. . . . . . . . . . . . . . . . . 197

Table B.24 Pure shear results for Yeoh model. . . . . . . . . . . . . . . . . . . 197

Table B.25 Pure shear results for two-term model. . . . . . . . . . . . . . . . 198

Table B.26 Pure shear results for Yeoh-Fleming model. . . . . . . . . . . . . . 198

Table B.27 Pure shear results for Arruda-Boyce model. . . . . . . . . . . . . . 198

Table B.28 Pure shear results for Gent model. . . . . . . . . . . . . . . . . . . 199

Table B.29 Pure shear results for three-chain model. . . . . . . . . . . . . . . 199

Table B.30 Pure shear results for Mooney model. . . . . . . . . . . . . . . . . 199

Table B.31 Pure shear results for Isihara model. . . . . . . . . . . . . . . . . . 200

xxvi



Table B.32 Pure shear results for Nunes model. . . . . . . . . . . . . . . . . . 200

Table B.33 Pure shear results for tube model. . . . . . . . . . . . . . . . . . . 200

Table B.34 Pure shear results for slip-link model. . . . . . . . . . . . . . . . . 201

Table B.35 Pure shear results for Swanson model. . . . . . . . . . . . . . . . 201

Table B.36 Pure shear results for Gent-Thomas model. . . . . . . . . . . . . . 201

Table B.37 Pure shear results for constrained-junction model. . . . . . . . . . 202

Table B.38 Pure shear results for weight function based (WFB) model. . . . . 202

Table B.39 Pure shear results for neo-Hooke model. . . . . . . . . . . . . . . 202

Table B.40 Pure shear results for Valanis-Landel model. . . . . . . . . . . . . 203

Table C.1 Free energy functions of first 20 models sorted by quality of fit

metric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206

Table C.2 Free energy functions of the remaining 20 models sorted by quality

of fit metric. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 207

xxvii



LIST OF FIGURES

FIGURES

Figure 3.1 Mathematical description of the motion of a body B in R3 . . . . 18

Figure 3.2 Line, area, and volume elements on a material point P at X. . . 19

Figure 3.3 Deformation gradient mapping. . . . . . . . . . . . . . . . . . . 19

Figure 3.4 Rotation, left and right stretch tensors. . . . . . . . . . . . . . . 20

Figure 3.5 Definition of metric tensors. a) current metric in Lagrangian

configuration; b) reference metric in Eulerian configuration. . . . . . . . 21

Figure 3.6 Covariant pull-back and push-forward operations between the

material and spatial strain tensors. . . . . . . . . . . . . . . . . . . . . 22

Figure 3.7 Representation of body forces on deformed and undeformed states. 23

Figure 3.8 Representation for Cauchy’s Lemma. . . . . . . . . . . . . . . . 24

Figure 3.9 Stress components on the surfaces of unit cube. . . . . . . . . . 25

Figure 3.10 Traction components on a tetrahedron. . . . . . . . . . . . . . . 25

Figure 3.11 Definition of stress tensors. Relationship between stresses. . . . 27

Figure 3.12 Initial boundary value problem. . . . . . . . . . . . . . . . . . . 28

Figure 3.13 Uniaxial tension deformation . . . . . . . . . . . . . . . . . . . 34

Figure 3.14 Equibiaxial tension deformation . . . . . . . . . . . . . . . . . . 35

Figure 3.15 Pure shear deformation . . . . . . . . . . . . . . . . . . . . . . 36

xxviii



Figure 3.16 Biaxial tension deformation . . . . . . . . . . . . . . . . . . . . 37

Figure 4.1 Micro-state of an undeformed chain . . . . . . . . . . . . . . . . 60

Figure 4.2 Forces derived from Gaussian and non-Gaussian statistics result

in an asymptotic behavior when approaching extensibility limit λr → 1

[1]. Here, L = Nl. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 4.3 Three chain model representative network structure. . . . . . . . 63

Figure 4.4 Eight chain model representative network structure. . . . . . . . 64

Figure 4.5 Micro-sphere kinematic variables. . . . . . . . . . . . . . . . . 67

Figure 4.6 Affine transformation of a chain . . . . . . . . . . . . . . . . . . 68

Figure 5.1 Pictorial representations of types of mutations, a) standalone

mutation operator, b) multiple-mutations operator . . . . . . . . . . . . 75

Figure 5.2 Pictorial representation of cross-over operator. . . . . . . . . . . 76

Figure 5.3 Parameter identification procedure. . . . . . . . . . . . . . . . . 77

Figure 6.1 Micro-Sphere model prediction for a) uniaxial tension, b) com-

bination of uniaxial, equibiaxial, and pure shear loadings usning Treloar

data c) biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial tension

loading for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . . . . . 83

Figure 6.2 Alexander’s model prediction for a) uniaxial tension, b) combi-

nation of uniaxial, equibiaxial, and pure shear loadings usning Treloar

data c) biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial tension

loading for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . . . . . 85

Figure 6.3 Diani and Ray’s model prediction for a) uniaxial tension, b)

combination of uniaxial, equibiaxial, and pure shear loadings usning

Treloar data c) biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial

tension loading for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . 87

xxix



Figure 6.4 Extended-Tube model prediction for a) uniaxial tension, b) com-

bination of uniaxial, equibiaxial, and pure shear loadings usning Treloar

data c) biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial tension

loading for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . . . . . 89

Figure 6.5 Shariff model prediction for a) uniaxial tension, b) combination

of uniaxial, equibiaxial, and pure shear loadings usning Treloar data c)

biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial tension loading

for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . . . . . . . . . . 91

Figure 6.6 Carroll model prediction for a) uniaxial tension, b) combination

of uniaxial, equibiaxial, and pure shear loadings usning Treloar data c)

biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial tension loading

for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . . . . . . . . . . 93

Figure 6.7 Network averaging tube model prediction for a) uniaxial tension,

b) combination of uniaxial, equibiaxial, and pure shear loadings usning

Treloar data c) biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial

tension loading for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . 95

Figure 6.8 Chevalier and Marco’s model prediction for a) uniaxial tension,

b) combination of uniaxial, equibiaxial, and pure shear loadings usning

Treloar data c) biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial

tension loading for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . 97

Figure 6.9 Ogden model prediction for a) uniaxial tension, b) combination

of uniaxial, equibiaxial, and pure shear loadings usning Treloar data c)

biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial tension loading

for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . . . . . . . . . . 99

Figure 6.10 Amin model prediction for a) uniaxial tension, b) combination

of uniaxial, equibiaxial, and pure shear loadings usning Treloar data c)

biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial tension loading

for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . . . . . . . . . . 101

xxx



Figure 6.11 James model prediction for a) uniaxial tension, b) combination

of uniaxial, equibiaxial, and pure shear loadings usning Treloar data c)

biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial tension loading

for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . . . . . . . . . . 103

Figure 6.12 Haines-Wilson model prediction for a) uniaxial tension, b) com-

bination of uniaxial, equibiaxial, and pure shear loadings usning Treloar

data c) biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial tension

loading for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . . . . . 105

Figure 6.13 Attard and Hunt model prediction for a) uniaxial tension, b)

combination of uniaxial, equibiaxial, and pure shear loadings usning

Treloar data c) biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial

tension loading for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . 107

Figure 6.14 Bechir model prediction for a) uniaxial tension, b) combination

of uniaxial, equibiaxial, and pure shear loadings usning Treloar data c)

biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial tension loading

for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . . . . . . . . . . 109

Figure 6.15 Pucci and Saccomandi’s model prediction for a) uniaxial ten-

sion, b) combination of uniaxial, equibiaxial, and pure shear loadings

usning Treloar data c) biaxial tension loading for λ1 : 1.04 − 1.24, d)

biaxial tension loading for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . 111

Figure 6.16 Biderman model prediction for a) uniaxial tension, b) combi-

nation of uniaxial, equibiaxial, and pure shear loadings usning Treloar

data c) biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial tension

loading for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . . . . . 113

Figure 6.17 Kilian (van der Waals) model prediction for a) uniaxial tension,

b) combination of uniaxial, equibiaxial, and pure shear loadings usning

Treloar data c) biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial

tension loading for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . 115

xxxi



Figure 6.18 Yamashita and Kawabata’s model prediction for a) uniaxial ten-

sion, b) combination of uniaxial, equibiaxial, and pure shear loadings

usning Treloar data c) biaxial tension loading for λ1 : 1.04 − 1.24, d)

biaxial tension loading for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . 117

Figure 6.19 Lion model prediction for a) uniaxial tension, b) combination

of uniaxial, equibiaxial, and pure shear loadings usning Treloar data c)

biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial tension loading

for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . . . . . . . . . . 119

Figure 6.20 Beda’s model prediction for a) uniaxial tension, b) combination

of uniaxial, equibiaxial, and pure shear loadings usning Treloar data c)

biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial tension loading

for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . . . . . . . . . . 121

Figure 6.21 Hart-Smith model prediction for a) uniaxial tension, b) combi-

nation of uniaxial, equibiaxial, and pure shear loadings usning Treloar

data c) biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial tension

loading for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . . . . . 123

Figure 6.22 Haupt and Sedlan’s model prediction for a) uniaxial tension, b)

combination of uniaxial, equibiaxial, and pure shear loadings usning

Treloar data c) biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial

tension loading for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . 125

Figure 6.23 Exp-Ln model prediction for a) uniaxial tension, b) combination

of uniaxial, equibiaxial, and pure shear loadings usning Treloar data c)

biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial tension loading

for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . . . . . . . . . . 127

Figure 6.24 Yeoh model prediction for a) uniaxial tension, b) combination

of uniaxial, equibiaxial, and pure shear loadings usning Treloar data c)

biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial tension loading

for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . . . . . . . . . . 129

xxxii



Figure 6.25 Two-Term model prediction for a) uniaxial tension, b) combi-

nation of uniaxial, equibiaxial, and pure shear loadings usning Treloar

data c) biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial tension

loading for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . . . . . 131

Figure 6.26 Yeoh-Fleming model prediction for a) uniaxial tension, b) com-

bination of uniaxial, equibiaxial, and pure shear loadings usning Treloar

data c) biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial tension

loading for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . . . . . 133

Figure 6.27 Arruda-Boyce model prediction for a) uniaxial tension, b) com-

bination of uniaxial, equibiaxial, and pure shear loadings usning Treloar

data c) biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial tension

loading for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . . . . . 135

Figure 6.28 Gent model prediction for a) uniaxial tension, b) combination

of uniaxial, equibiaxial, and pure shear loadings usning Treloar data c)

biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial tension loading

for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . . . . . . . . . . 137

Figure 6.29 Three-Chain model prediction for a) uniaxial tension, b) combi-

nation of uniaxial, equibiaxial, and pure shear loadings usning Treloar

data c) biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial tension

loading for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . . . . . 139

Figure 6.30 Mooney model prediction for a) uniaxial tension, b) combination

of uniaxial, equibiaxial, and pure shear loadings usning Treloar data c)

biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial tension loading

for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . . . . . . . . . . 141

Figure 6.31 Isihara model prediction for a) uniaxial tension, b) combination

of uniaxial, equibiaxial, and pure shear loadings usning Treloar data c)

biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial tension loading

for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . . . . . . . . . . 143

xxxiii



Figure 6.32 Nunes model prediction for a) uniaxial tension, b) combination

of uniaxial, equibiaxial, and pure shear loadings usning Treloar data c)

biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial tension loading

for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . . . . . . . . . . 145

Figure 6.33 Tube model prediction for a) uniaxial tension, b) combination

of uniaxial, equibiaxial, and pure shear loadings usning Treloar data c)

biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial tension loading

for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . . . . . . . . . . 147

Figure 6.34 Slip-Link model prediction for a) uniaxial tension, b) combi-

nation of uniaxial, equibiaxial, and pure shear loadings usning Treloar

data c) biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial tension

loading for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . . . . . 149

Figure 6.35 Swanson model prediction for a) uniaxial tension, b) combina-

tion of uniaxial, equibiaxial, and pure shear loadings usning Treloar

data c) biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial tension

loading for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . . . . . 151

Figure 6.36 Gent-Thomas model prediction for a) uniaxial tension, b) com-

bination of uniaxial, equibiaxial, and pure shear loadings usning Treloar

data c) biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial tension

loading for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . . . . . 153

Figure 6.37 Constrained Junction model prediction for a) uniaxial tension,

b) combination of uniaxial, equibiaxial, and pure shear loadings usning

Treloar data c) biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial

tension loading for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . 155

Figure 6.38 Weight Function Based (WFB) model prediction for a) uniaxial

tension, b) combination of uniaxial, equibiaxial, and pure shear load-

ings usning Treloar data c) biaxial tension loading for λ1 : 1.04 − 1.24,

d) biaxial tension loading for λ1 : 1.3 − 3.7 using Kawabata data. . . . . 157

xxxiv



Figure 6.39 neo-Hooke model prediction for a) uniaxial tension, b) combi-

nation of uniaxial, equibiaxial, and pure shear loadings usning Treloar

data c) biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial tension

loading for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . . . . . 159

Figure 6.40 Valanis-Landel model prediction for a) uniaxial tension, b) com-

bination of uniaxial, equibiaxial, and pure shear loadings usning Treloar

data c) biaxial tension loading for λ1 : 1.04 − 1.24, d) biaxial tension

loading for λ1 : 1.3 − 3.7 using Kawabata data. . . . . . . . . . . . . . 161

xxxv



LIST OF ABBREVIATIONS

ABBREVIATIONS

UT Uniaxial Tension

ET Equibiaxial Tension

PS Pure Shear

BT Biaxial Tension

WFB Weight Function Based

PDMS Polydimethylsiloxane

TRESNEI Trust-Region Solver for non-linear Equations and Inequalities

DCI Digital Image Correlation

qofsim Quality of Fit Value for Simultaneous Fits

nop Number of Parameters

xxxvi



CHAPTER 1

INTRODUCTION

The aim of this study is to catch optimum values for parameters used in different hy-

perelastic material models. 40 hyperelastic material models of different kinds have

been considered. Well known Treloar’s data set for uniaxial tension, equi-biaxial

tension, and pure shear [2] are used for parameter setting. For biaxial tension test,

however, parameters are optimized taking Kawabata’s experimental data [3] in con-

sideration. Parameters are set roughly by genetic algorithm, and further improve-

ments are reached through FMINCON utility of MATLAB. Novelty of this work is

using multi-objective optimization multiplying error expression by weight factors.

With the mentioned weight it is aimed to reach optimum fitting capacity of models

under consideration.

1.1 Overview and Background

Natural rubber are known to be taken from Hevea Brasiliensis tree which may, in

general, called as rubber tree. Rubber tree is widely grew in south American coun-

tries. Ancient civilizations like Maya, Aztec, and Olmec are known to be the first

civilizations witch discovered rubber, and it goes back to around 1600 BCE. Early

natural rubber materials were in unvulcanized form that was not practically usable

because they affect by weather conditions. Industrial usage of rubber as vulcanized

form was introduced as the eraser of pencil marks. Afterwards, tire manufacturers

used filled rubber compounds in their manufacturing lines. Nowadays rubber-like

materials has wide range of applications. To name some of the most commonly fields

of usage for rubber-like materials, automotive and aerospace industries, motion and
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power transmission components, like conveyor belts, sealing components, tires can

be addressed.

Phenomenological and micro-mechanically based material models are the two main

groups in hyperelastic modeling paradigms. Deriving the expressions of phenomeno-

logical material models, mathematical expressions are constructed by fitting the ex-

pressions to the material response data curve. The constructed material models are

generally expressed in terms of deformation gradient invariants, principal stretches,

or combination of them. Noting that the derived expression should fulfill the require-

ments of objectivity and material frame indifference. Micro-mechanical mechanical

material models, however, are mostly defined in terms of micro-structure of chain

network of polymeric material. Statistical approach is considered while deriving the

constitutive equations of this group. Among the different types of material models,

micro-mechanically motivated models are known to possess deeper and interpretable

characteristics for unfilled rubber-like materials. Micro-structure of rubbery poly-

mers consists of long chain molecules and micro-mechanical approach deals with the

end-to-end distance through the chain length and its distribution function. The re-

search studies on micro-mechanics of physically motivated models has began around

1940s. On that days, Mooney [4] started investigating ideal rubber material mod-

eling, treating the response of material in mathematical manner by proposing the

well-known Mooney’s strain energy function. Kuhn and Grün in 1942 developed the

first Gussian distribution approach of rubbery polymers. At the same time Wall [5]

has assumed a statistical approach to relate the molecular entropy of rubber-like ma-

terial in macroscopic manner and related the findings to single chain. In 1943 Treloar

make benefit of the findings by Wall, Mooney, and Kuhn & Grün and established

the well-known neo-Hooke model [2]. The considered approaches used Gaussian

distributions which are not suitable for predicting material response at higher strain

values. Therefore, a need for non-Gaussian approach over some stretch level (limit-

ing chain extensibility) while modeling the behavior of rubber-like materials became

a crucial matter. Affinity assumption was considered by researchers of the time de-

veloping the micro-mechanically based material models. Wang & Guth’s three-chain

model [6], four-chain model of Flory and Rehner [7], full network model of Treloar

and Riding [8], and Arruda-Boyce’s eight-chain model [9] can be named as the ones
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with non-Gaussian and affinity approach aspects. Combining the previous assump-

tions and being inspired from the full-network model proposed by Treloar and Riding,

Miehe and coworkers [1] developed a non-affine approach together with topological

tube-like constraints.

Evolution of phenomenological models for rubber-like materials has begun after the

first work on free energy function proposed by Mooney [4]. The researches dealing

with purely mathematical approaches mostly take an idea from the Mooney’s work.

Rivlin and Saunders [10] made a generalization on Mooney’s model and introduced

power series form of Mooney type models. Hereafter, we will name the form pro-

posed by Rivlin and Saunders as Mooney’s generalized form. There are variety of

models expanded and derived considering different forms of Mooney’s generalized

form. Starting point for modeling of phenomenological models on the other hand can

be related to the neo-Hooke model [2].

1.2 Elasticity of Rubber-like Materials

Hyperelasticity is the term most commonly used to define the rubber-like materials.

The reason for this definition is that the elastomeric materials can bear high strain val-

ues with almost full recovery upon unloading. The elastic deformation applied to that

kind of materials can even reach the values like 700% in a fully recoverable manner.

Elastic behavior of such materials makes the constitutive relations be independent of

the deformation history curve but dependent on the current state of deformation. In

these cases, mostly rate independent strain approaches are considered. The stress-

strain curve for hyperelastic materials is generally named as S-curve. This is because

of the fact that when applying tension, the material first softens and then stiffens gen-

erating S-shape. Mostly the volume ratio for hyperelastic materials undergoing large

deformations are taken as constant, thus incompressibility assumption holds (J=1).

Objectivity condition is yet another requirement for the constitutive relations of hy-

perelastic materials, meaning that, during rigid body rotations, material’s constitutive

relations should remain unchanged [11].
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1.3 Motivation and Contribution

By the increase in number of hyperelastic material models making comparison be-

tween the models and choosing appropriate one for further analysis become a crucial

problem. The first step to compare material models is identifying material parameters

and observe the deviations from material response curve. Over the last two decades

many review papers have been published aiming to find reliable and accurate material

parameters which result in minimum deviation from actual response of the material.

The works done by Boyce and Arruda [12], Marckmann and Verron [13], Steinmann

et al. [14], Hossain and Steinmann [15], and Beda [16] [17] are some of the review

contexts in literature worth noticing. Number of experimental data-sets for distinct

loading cases and conditions, maximum stretch level applied during each loading sce-

nario, and filler percentage and additive are three main factors that critically affect the

results obtained for each constitutive relation. By the increase in number of model

parameters, stability of optimized parameters also become a challenging issue. In or-

der to overcome the stability problem one may have different search mechanisms that

ensures the reliability of set parameters. One of the best ways is to first roughly es-

timate the constant of constitutive models by methods like genetic algorithm and use

the obtained parameters as starting point for gradient decent base optimization tools.

It should be taken into the consideration that, constitutive relations are preferred to

have less amount of material parameters with physical meanings. The validity range

for each constitutive model response is yet the other issue. Validity region should be

specified for each material model to make sure that the solution for analysis are set in

the precise manner. In this study it is tried to give the suitable region valid for each

constitutive model which is rarely seen in most of the review studies.

1.4 Scope and Outline

This thesis is aimed to find parameters for 40 constitutive relations used in hyper-

elasticity. Both phenomenological and micro-mechanically based formulations will

be considered and comparison between different models will be done, weakness and

strengths of each model will be discussed. Moreover, the valid range for each mate-
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rial model will be set. The other aspect of the study is to make an objective ranking

between the 40 constitutive relations. Sorting is done according to fitting quality of

models using chi-square method.

Brief introduction is provided this chapter (Chapter 1). Literature review is presented

in Chapter 2. After referring to the previous studies on the rubber-like materials,

common concepts and definitions in hyperelasticity will be given in Chapter 3. Pre-

liminaries for incompressible isotropic hyperelastic materials will be mentioned and

two main representation of that kind of materials will be considered. Chapter 4 is de-

voted to the categorization and definitions of the mentioned 40 material models. Two

main categories for constitutive relations are presented and sub-groups are mentioned

in detail. Chapter 5 is related to the parameter optimization methods. First part of this

chapter starts with genetic algorithm and remaining part gives some useful points on

multi-start utility of Matlab. Results and observations of this study is taken into the

account in Chapter 6. Then, a brief discussion over the findings are presented. In the

last chapter (Chapter 7), concluding remarks will be shown.
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CHAPTER 2

LITERATURE REVIEW

The studies on mechanical response of hyperelastic material response goes back to

1940’s. Mooney was one of the pioneers to realize that hyperelstic materials’ reac-

tion to the applied stretch differs from the response observed on metallic samples. He

distinguished that Hooke’s law is not sufficient to estimate the stress-strain related

behavior of elastomeric compounds. Therefore, the term superelasticity was first

used by Mooney considering homogeneous and hysteresis free behavior of rubber-

like materials. In his paper for the first time it is postulated that rubber-like materials

are isotropic, incompressible, and traction in simple shear loading can be analytically

related to the shear [4]. Mooney used the experimental data of Gerke [18] to set the

observations and propose the well-known Mooney model. Developments in theoret-

ical aspects of rubber elasticity considering molecular statistical approach, however,

became attractive in 1940’s. Neo-Hooke model developed by Treloar in 1943 [2],

proposing the idea given by Wall [5], is known to be the first and simple approach us-

ing molecular chain statistics. The following assumptions were proposed by Treloar

while deriving his theory: chain network is assumed to have N number of molecules

of equal length, molecules’ end-to-end distance is approximated by Kuhn’s Gaussian

statistical mechanics formulation, deformation is affine, and material is incompress-

ible. Then Flory and Rehner [7] developed four-chain model for Gaussian network of

molecular chains. Following the previous works, especially the one proposed Flory

and Rehner, Treloar proposed a non-Gaussian four-chain network in 1946 [19]. Sta-

tistical behavior of Gaussian network is deeply studied in the paper presented by

James [20]. James stated that Gaussian network of polymeric materials are composed

of chains, with number of segments, connected to each other at junction points. One

end of chains are also considered to be fixed on a surface of cubic network. Rivlin
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and Saunders In 1951 , made a generalization on phenomenological modeling of hy-

perelastic materials. They introduced mathematical invariant based formulations and

a power series general form of Mooney’s type. Most of the phenomenological ma-

terial models in literature are alternative form of the mentioned generalized formula.

Isihara and coworkers [21] assumed a strain energy function for approximation of

the rubber-like material’s response. They expanded the theory derived by James and

solved their approximated Langevin’s type strain energy function by James’ method.

Although starting point for derivation of Isihara’s model is molecular chain statis-

tics of Gaussian (micro-mechanical approach) type, the obtained model at the end

represents an alternative form of Mooney’s generalized formula. That is why Isi-

hara’s model is mostly considered as a phenomenological model. Wang and Guth

in 1952 [6] developed a robust derivation for non-Gaussian conformation of molec-

ular chains on principle stretch directions. They introduced three-chain model of

non-Gaussian type as a result of their work. Biderman in 1958 [22] make use of

generalized Mooney’s model and introduced a phenomenological model considering

I1 and I2 invariants. Gent and Thomas (1958) also used the idea given by Mooney

and introduced an expression for strain energy function in terms of first and second

invariant of deformation [23]. The proposed model contains first power of I1 and a

simple logarithmic term containing I2. Hart-Smith in 1966 [24] extended the theo-

retical aspects of [10] and [23], aimed to find elasticity constants of a natural rubber

sample. For this reason suitable partial derivatives of free energy function with re-

spect to first and second invariants are given. Another form of strain energy function

for natural rubber is intoduced by Valanis and Landel in 1967 [25] postulating that

strain energy function of rubber-like materials can be analytic and separable function

of stretch ratios rather than invariants. Additive split which is considered by Vala-

nis and Landel have the form, ψ(λ1, λ2, λ3) = ψ(λ1) + ψ(λ2) + ψ(λ3). Apart from

being a model it is assumed to be a hypothesis introduced by Valanis and Landel.

Combining the Revlin and Saunder’s theory with the Hart-Smith’s material model,

Alexander [26] came up with a new constitutive relation of invariant type. The model

is developed in 1968 and it is aimed to catch the experimental data points over full

range of loading curve. The proposed relation contains I2 term which is set by the

approximated curve fitting on experiments conducted on inflated balloon. A power

series form of principle stretch based material model is derived by Ogden in 1972.
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The constitutive relation of Ogden [27] in known to obey the Valanis and Landel

hypothesis. Three-term expansion of the Ogden’s series is suggested by the author

which gives reasonable results in analysis of natural rubber. Again using generalized

Mooney’s expression, in 1975, James, Green and Simpson developed a phenomeno-

logical model of containing 5 material constants [28]. Their model consists of third

order for first invariant, and order one is considered for second invariant of defor-

mation. A similar approach is presented by Haines and Wilson [29] in 1979. The

suggested model has 6 material parameters with order of three for first invariant and

order of two for second invariant terms. In 1981 Ball and coworkers developed a

model called slip-link [30]. Concept of entanglements and topological constraints

are mathematically explained in their work. The obtained model is principle stretch

based with three material constants. One year later, similar approach to the slip-link

is proposed by Erman and Flory [31]. The resulted model known as constrained

junction is composed of two parts, namely phantom and constraint parts. The junc-

tions are considered to be considered to move due to existence of neighboring chains.

The phantom part is governed by neo-Hooke equation. The cross-linking part of free

energy function, on the other hand, is given as power series containing logarithmic

expressions of principle stretches. Another phenomenological model is proposed in

1985 by Swanson [32]. The constitutive relation has invariant base base summations

terms. Also incompressibility term is added to improve the curve fitting performance

of the model. Least square method is used for this aim. In 1986, Kilian and coworkers

introduced a constitutive model considering van der Waals forces due to the interac-

tions of molecular chains [33]. The proposed model is generally known as van der

Waals or Kilian model. A penalty factor is also used to related degree of swelling

during the deformation. Yeoh model [34] is another well-known phenomenological

model derived in early 1990’s. The simple structure of the constitutive equation is

taken from generalized Mooney’s formula considering first three term expansion of

series for first invariant. Regression analysis for curve fitting on experimental data is

investigated by Yeoh. Yamashita and Kawabata [35], in the beginning of 1992, also

worked on mathematical formulation of stress-strain behavior of rubber-like materi-

als. The derived expression for material response consists of three parameters that

form the S-shape curve quite resealable. As it was stated before, Gaussian distribu-

tion cannot generally generate the S-shape and predict the stress-stretch response at
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moderate to high deformation ranges. For this reason, Treloar noticed the a factor

governing the chain extensiblity limit [36]. The disadvantages of Gaussian distribu-

tion treatment made need for non-Gaussian approach based on Langevin statistics as

mandatory. Arruda and Boyce in 1993 noted drawbacks and strengths of previous

theories and developed the renowned eight-chain or Arruda-Boyce model [9]. As

name of the model implies, the network structure is composed of eight number of

chains linked to each other at the center of a cube and the other ends are considered

to be connected to edges of cube. Another hyperelastic material model emphasiz-

ing on chain extensibility limit is devoped in 1996 by Gent [37]. The constitutive

equation is first invariant based with additional term for limiting the extension of I1.

Following the work by Edwards and Vilgis [38] and Doi [39], in 1997 Heinrich and

Kaliske published an article introducing tube model [40]. The molecular network of

the chains are assumed to be constrained by neighboring chains shaping a tube. Strain

energy of the tube model composed of two parts, namely cross-link and entanglement

based parts. Topology of constraints and entanglements are the basis of forming the

free energy function of tube model. Thermodynamical properties of rubber-like ma-

terials in different temperatures are investigated by Lion [41]. The model proposed

by Lion in 1997, contains also viscoelastic representation. The general Mooney’s

form is taken into the hand and constructed the basis of the phenomenological Lion’s

model. Investigating the advantages and disadvantages of the previous studies on

phenomenological material models, in 1997, Yeoh and Fleming [42] published their

findings as a first invariant based material model. The concept which are studied are

mostly taken from Mooney-Rivlin representations [10], however an exponential term

is considered while deriving the constitutive relation. In their model it is attempted to

catch the material data curve at small and moderate stretch values. In 1999, Lambert

Diani and Rey [43], using Treloar’s data [44], fitted an expression that suits response

curve of rubber-like material quite well. They split free energy expression into two

series expansions of first and second invariants. The aim was to capture the S-shape

curve together with estimation of results at small, moderate and high strain regimes.

Kaliske and Heinrich developed the Extended tube model in 1999 [45]. The idea is

taken from the tube model with extension to the high deformation range. Constraints

due to chain entanglements are shown to have prominent cause on catching the stress-

strain behavior and improve the results in high strain values rather than limiting chain
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extensibility. For the cross-link part also formulations are extended from Gaussian

to non-Gaussian treatments. Shariff in 2000 [46], developed a purely mathemati-

cal formulation to represent the material response. The proposed phenomenological

constitutive relation is principle stretch base and given as in series expansion form.

Phenomenological modeling of viscoelastic and viscoplastic behavior of rubber-like

materials considering the Mooney-Rivlin form is proposed by Haupt and Sedlan in

2001 [47]. Following the experimental investigations on hyperelastic material be-

havior, Chevalier and Marco [48] developed a constitutive expression in 2002. The

starting point of modeling is known to be Mooney-Rivlin expression, however some

modifications are done considering second invariant term. The displacement field

is captured and tracked by digital image correlations and a phenomenological ex-

pression is fitted to the response curve. In order to improve the results of Gent’s

model [37] and make the model to capture S-turn, Pucci and Saccomandi made mod-

ifications on Gent’s constitutive relation [49]. One may note that the obtained results

demonstrate combination of Gent [37] and Gent-Thomas’s model [23]. First invariant

part is taken from Gent’s model and the second invariant part, which is responsible for

S-turn, is taken from Gent-Thomas’s model. In 2004, a new approach for constitutive

modeling of rubber-like materials is introduced by Miehe and coworkers [1]. The

proposed model is named as micro-sphere. The novelty of the approach is non-affine

micro-to-macro transition formulation of the represented network model. Basically,

non-affine stretch part, non-affine tube part, and micro-to-macro transition of state

variables on the micro-sphere are the three main steps considered developing the

micro-sphere model. Non-affine stretch part improves the fitting capacity of eight-

chain model by introducing a non-affine stretch parameter p. Extending the finding

by Doi and Edwards [50], none-affine tube part is developed defining a variable for

tube-area-contraction, ν. Closed form of the micro-sphere mode is obtained by av-

eraging the non-affine stretch and tube parts on the micro-sphere of 21 discrete set

of orientations. Taking advantage of Valanis-Landel hypothesis, in 2004, Attard and

Hunt [51] introduced a principle stretch based model. Stress formulations are pre-

sented in both Eulerian and Lagrangian settings. Compressibility term is also added

considering neo-Hookean strain energy form. Considering the model proposed by

Yamashita and Kawabata [35], Amin and coworkers [52] (2006) introduced a mod-

ified phenomenological model aiming simulation of high damping rubber behavior
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under uniaxial compression and pure shear. Fitting performance of the model and

parameter identification is done using least-square residual minimization. In 2006

another constitutive model is presented by Bechir and coworkers [53]. Obeying the

Valanis-landel hypothesis, modifications on neo-Hookean and Ogden models are con-

sidered. Choosing the first invariant of Seth-Hill strain measure higher order polyno-

mial terms are added to neo-Hooke model yielding a constitutive relation which we

name it as Bechir model. Comparing the outcomes from Gent-Thomas formulation,

Beda (2007) introduced a phenomenological invariant based model [16] competing

with the Gent-Thomas findings. One may also notice that a polynomial term, like

the one used by Yamashita and Kawabata [35], is added to improve the performance

of Gent-Thomas model. In 2010, Oscar Lopez-Pamies introduced a first invariant

based constitutive relation named as two-term model [54]. The attempt is to catch

material response in low and intermediate deformation ranges. Generalized form of

two-term model is given as an infinite polynomial series, however, as its name im-

plies, the writer choose two term expansion series to capture the material response

in the desired regions. Limitations on parameters also are given by the writer. Brief

comparison with first invariant based models, like Arruda-Boyce and Gent model,

is also supplied. In 2011, a simple yet accurate phenomenological invariant based

model is proposed by Carroll [55]. Carroll model consists of three terms, each hav-

ing certain considerations while developing the constitutive model. For the first term,

taking the Treloar data and distinguishing Gaussian material response in simple ex-

tension for stretches below 4.5, neo-Hookean type stain energy function is estimated.

Second and third terms are approximated identifying residual stress in simple and

equibiaxial extension data of Treloar [44], respectively. In 2011, Nunes [56] used

Mooney’s idea to model the hyperelastic material response at low deformation re-

gion. Thus the proposed model cannot generate S-shape curve. The experiments are

done on polydimethylsiloxane (PDMS) and material response under pure shear load-

ing is analyzed. Exp-Ln model [57] was derived in 2013. As its name implies, the

constitutive relation consists of two separate parts (exponential and logarithmic parts).

Additive decomposition of exponential and logarithmic parts are done to generate the

S-shape curve. The exponential term is a positive function and the logarithmic part

is considered as negative. Writers aim to catch the material response in full range

of deformation by adding the mentioned terms. Neo-Hookean term is considered to
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dominate the small strain response. Parameters ’a’ and ’b’ demonstrate the chain ex-

tensibility limit and dominating parameter in moderate strain regimes, respectively.

Khiem and Itskov in 2016 [58] introduced a micromechanical model based on analyt-

ical network averaging of tube model. The non-affine deformation is considered and

Rayleigh distribution function for non-Gaussian chains are applied. The netwok av-

eraging tube model can be considered as a full-network model of micro-sphere type,

however, probability density function is provided as the first order approximation of

the Rayleigh distribution function rather than inverse Langevin approximation. In

Khiem and Itskov approach polymeric chains are assumed to be composed of iden-

tical coarse-grained segments. Recently (2017) Korba and Barkey [59] proposed a

material model named as weight function based model (WFB). The constitutive re-

lation is assumed to be a function of principle stretch (λ). As the name implies, a

non-linear weighting function is introduced as a multiplicative factor to shape the

S-turn (transition point) of the material response curve. In their work, simultaneous

fitting is not applied and the results are presented for uniaxial, pure shear and biaxial

loading separately.

Having brief introduction to the 40 hyperelastic constitutive models used in this study,

and before starting the next section, some well-known review studies (since 2000) in

this context is going to be presented.

Boyce and Arruda in their paper on constitutive models of rubber elasticity, reviewed

10 hyperelastic material models [12]. Three category of statistical mechanical, invari-

ant, and principle stretch based modeling of hyperelastic material response together

with examples for each category is supplied. The considered models are fitted to the

uniaxial experimental data of Treloar [44], obtaining material constants, stress-strain

response of the material is observed on equibiaxial and pure shear curves. Gaussian

and non-Gaussian behavior of the five chain statistical based models are described and

drawbacks for Gaussian approach is deeply explained. The compressibility effects on

elastic material response of rubber-like materials also investigated and included in

their work.

Marckmann and Verron in 2006 published a paper on fitting performance of 20 hyper-

elastic material models. They used well-known Treloar experimental data sets [44]
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for uniaxial, equibiaxial, biaxial tension, and pure shear. Furthermore, Kawabata’s

data set for biaxial loading [3] is also used. To obtain model parameters, genetic al-

gorithm and gradient based approach using Levenberg-Marquardt method is applied.

Here, objective function is taken as least square error function. It is tried to make use

of genetic algorithm to set the initial guesses for model parameters, then the obtained

values are used as initial values for gradient based approach. During the fitting, it

is aimed to find unique set of parameters well suiting the Treloar and Kawabata’s

data. However, for most of the models considered, it is not possible to set unique

parameter values. Validity range for the models that cannot fully shape the material

response curve is also considered by decreasing the number of data points in uniaxial

tension gradually and searching the new parameter values. Sorting the goodness of

each model is also provide by the writers. First consideration during the ranking of

models is the valid range for each model, apparently the models that cover full range

of stress-strain curve are considered to have higher ranking. The second criteria is

the number of parameters belonging to each mode, less number of parameters cause

higher ranking. Third consideration is if the model can generate material response

curve of Treloar and Kawabata with a unique set of parameter. The ones with unique

parameter values have higher ranking. The last criteria is a priority that writers give

to the physically motivated models. Statistical and micromolecular based constitutive

approaches have higher ranking compared to the phenomenological ones.

Two important review papers are published in 2012 and 2013 by Stienmann and

coworkers [14], and Hossain and Stienmann [15], respectively. The latter one can

be considered as the extension for the first paper. In total 25 hyperelastic material

models have been discussed. An import aspect of the mentioned studies is the deriva-

tions related to fourth order tangent moduli terms for each constitutive relation which

is the main challenging factor in finite element analysis of technical rubber. To obtain

the parameter set for each model bound constrained non-linear least square method is

used. Trust-region solver for non-linear equations and inequalities, TRESNEI, utility

of Matlab software is used to solve objective functions. Note also that the related

works use Treloar’s data set [44] only.

Recent review studies of Dal and coworkers [60], and [61], which are directly related

to this thesis, can be considered as a novel approach to parameter optimization study
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on rubber-like materials. It was tried to make an objective comparison among the

hyper-elastic material models. Throughout the thesis details of the related studies

will be supplied.
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CHAPTER 3

PRELIMINARIES ON CONTINUUM MECHANICS AND

HYPERELASTICITY

In this section basic concepts and preliminaries regarding continuum mechanics and

its application for hyperelastic material modeling will be presented. In the first part

continuum mechanics notes are going to be considered. Basic rules and concepts in

hyperelasticity will be addressed in the second part of this section.

3.1 Basic concepts in Continuum Mechanics

Continuum mechanics is concerned with the mechanical behaviour of solids and flu-

ids on the macroscopic scale. This is inline with the experimental observations made

at the same scale. At continuum level we pursue with the following assumptions:

• discrete nature of particles/matter at micro-scale is ignored,

• material is uniformly distributed throughout the space,

• quantities such as density, displacement, and velocity are continuously defined

(or at least piecewise continuously) as a function of position.

Continuum mechanics deals with the interactions between forces, heat fluxes and mo-

tion, and temperature variations at material point.

Unlike rigid-body mechanics where the shape change of the body is ignored during

the motion, continuum mechanics studies relation between deformation and forces

(body forces [force/volume], traction [force/area]) as well as the translational/rota-

tional motion of the body.
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B0 B
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ϕ(X, t)∂B0t ∂Bt

Figure 3.1: Mathematical description of the motion of a body B in R3

The equations of continuum mechanics are two fold:

i) physical law of conservation for mass, momentum, moment of momentum, and

energy.

ii) mechanical behaviour of materials, e.g. relation between stress and strain.

3.1.1 Kinematics

Following the work of [62], let a three dimensional body B be consist of material

points P ∈ B. The motion of the body can be described by the mapping

χ(P , t) =


B → B(P , t) ∈ R3 × R+

P 7→ x = χt(P) = χ(P , t).
(3.1)

The current configuration of material point P at time t ∈ R+ is denoted by x =

χ(P , t). Let the configuration of P at the reference time t0 be denoted by X = χ(P ,

t0) ∈ R3 and χt(P) = χ(P , t) denote the configuration at an arbitrary time t. Then

the deformation map ϕt = χt ◦ χ
−1
t0 (X)

ϕt(X) =


B0→ B ∈ R3

X 7→ x = ϕ(X, t)
(3.2)

maps the reference configuration X ∈ B0 of P onto the Eulearian counterpart x ∈ B

(Figure 3.1). Then, the deformation gradient

F : TXB0 → TxB; F B ∇Xϕt(X) (3.3)
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Figure 3.2: Line, area, and volume elements on a material point P at X.

T t

F

Figure 3.3: Deformation gradient mapping.

maps the unit tangent of the reference or the Lagrangian configuraiton onto its coun-

terpart in the current or Eulerian configuration. Where, the gradient operators ∇X[•]

and ∇x[•] denote the spatial derivatives with respect to the reference X and current x

coordinates, respectively. Let dX, d A, and dV denote the infinitesimal line, area, and

volume elements in the undeformed configuration (Figure 3.2). Then, the deforma-

tion gradient F, its cofactor co f [F] = det[F]F−T , and the Jacobian J B det[F] > 0

characterize the deformation of infinitesimal line, area, and volume elements

dx = FdX, da = co f [F]d A, dv = JdV. (3.4)

The condition J B det[F] > 0 ensures the physcially interpretable deformations for

the deformation map ϕ.

J = det F


> 0 : shrinkage/expansion (physical)

= 0 : shrinkage on a mathematical point

< 0 : recovering on the opposite side

(3.5)

The deformation gradient maps a tangent T of Lagrangian setting onto a tangent t

in current configuration (Figure 3.3). According to the deformation map, t is push-

forward of Lagrangian tangent vector T and T can be considered as pull-back of t.
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t = FT : ’push-forward’ of T

T = F−1 t : ’pull-back’ of t (unique inversibility)
(3.6)

Deformation and Strain Measures

The deformation gradient can be decomposed into pure rotation and stretch inducing

components.

F = RU = VR (3.7)

where R, U and V are the rotation, right and left stretch tensors, respectively (Figure

3.4).

dX

U

UdX
R

RUdX = FdX

dX
R

RdX V

VRdX = FdX

Figure 3.4: Rotation, left and right stretch tensors.

In Cartesian framework, the right and left Cauchy-Green tensors (C, and b) can be

defined as:

C = FT F (3.8)

and

b = FFT . (3.9)

U, V, R, C, and b are symmetric, positive-definite, proper orthogonal tensors. Right

and left stretch tensors can be expressed in term of principle stretches in principle

directions as follows:

U =

3∑
i=1

λiNi ⊗ Ni (3.10)

and

V =

3∑
i=1

λini ⊗ ni. (3.11)

Where λi denote the principal stretches and Ni, ni are principle directions in La-

grangian and Eulerian settings, respectively.
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T ∗XB0T ∗XB0 T ∗xBT ∗xB

FF

C g c

F−TF−T

G

Figure 3.5: Definition of metric tensors. a) current metric in Lagrangian configura-

tion; b) reference metric in Eulerian configuration.

Furthermore, in generalized coordinate system, reference B0 and the spatial B man-

ifolds are locally furnished with the covariant reference G and current g metric ten-

sors in the neighborhood NX of X and Nx of x, respectively. These metric tensors

are required for the mapping between the covariant and contravariant objects in the

Lagrangian and Eulerian manifolds.

The right Cauchy Green tensor and the inverse of the left Cauchy Green tensors can

be expressed using metric tensors

C B FT gF (3.12)

and

c = F−TGF−1 (3.13)

as the pull back of the current metric g and the push forward of the Lagrangian metric

G, respectively. Here notice that, the left Cauchy Green tensor or the Finger tensor is

denoted by b = c−1. For a geometric interpretation, we refer to Figures 3.5. From

Figures 3.5 and 3.11 it can be concluded that the Kirchhoff stress in the Eulerian con-

figuration is dual to g and c and the second Piola stress in Lagrangian configuration

is dual to C and G. It is important to note that, FT(•)F is covariant pull-back and

F−T(•)F−1 covariant push-forward operators.

Green-Lagrangian and Almansian strain tensors are also other strain measures which
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F
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F−T

Figure 3.6: Covariant pull-back and push-forward operations between the material

and spatial strain tensors.

are defined as:

E = 1
2 [C − 1] : Green-Lagrangian Strain

A = 1
2 [1 − b−1] : Almansian Strain

E = FT AF : Covariant pull-back FT(•)F

A = F−T EF−1 : Covariant push-forward F−T(•)F−1.

(3.14)

Figure 3.6 describes the mapping between Green-Lagrangian and Almansian strain

tensors.

3.1.2 Stress Expressions

Consider a part P0 ⊂ B0 cut out of the reference configuration B0 and its spa-

tial counterpart Pt ⊂ Bt, with boundaries ∂P0 and ∂Pt, respectively (Figure 3.7).

Then the resultant body force can be described as:

Resultant body force:
∫
P

ρb dv =

∫
P0

ρob0 dV (3.15)

where bo = b is mass specific body force [force/unit mass] and f o = ρobo is the

volume specific body force [force/unit volume]. From the equation (3.15) it cab be

seen that: ∫
P0

f o dV =

∫
P

f dv. (3.16)
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Figure 3.7: Representation of body forces on deformed and undeformed states.

Knowing that, dv = JdV it can be shown that:

f o = J f . (3.17)

Similarly, the surface forces acting on a body B are∫
∂Bt

t da =

∫
∂B0

T dA, (3.18)

where, ∂Bt is surface bounding the body B at time t. From equations (3.16) and

(3.18) total force acting on body Bt in reference and current configurations are,

F0 =

∫
∂B0

T dA +

∫
B0

f 0 dV (3.19)

and

Ft =

∫
∂Bt

t da +

∫
Bt

f dv, (3.20)

respectively.

Cauchy’s Lemma

Consider a body under surface and body forces, and split the body into two parts

(Figure 3.8). With the help of equation (3.20), forces action bodies B1 and B2 are

F1 =

∫
∂B1

t

t da +

∫
B1

t

f dv +

∫
SL

t(x, n, t) da (3.21)
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Figure 3.8: Representation for Cauchy’s Lemma.

and

F2 =

∫
∂B2

t

t da +

∫
B2

t

f dv +

∫
SR

t(x,−n, t) da (3.22)

Total force on the body implies

F = F1 + F2 ⇒

∫
SL

t(x, n, t) da +

∫
SR

t(x,−n, t) da = 0. (3.23)

Using the localization theorem one may reach the following conclusion: As SL =

SR → 0

t(x, n, t) = −t(x,−n, t), (3.24)

which is known as Cauchy’s fundamental lemma and corresponds to the Newton’s

third law of motion of action and reaction. In another word, surfaces in contact will

exert the same magnitude of force with opposite directions to each other.

Cauchy’s Theorem

To develop the stress tensor associated with the Cartesian frame work, consider the

stress components on a unit cubical element (Figure 3.9). Let us now describe the

traction vector acting on the positive surfaces in e1, e2, and e3 directions respectively:

t1 = σ11 e1+ σ12 e2+ σ13 e3

t2 = σ21 e1+ σ22 e2+ σ23 e3

t3 = σ31 e1+ σ32 e2+ σ33 e3.

(3.25)
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1st: surface normal
2nd: direction of stress component

Figure 3.9: Stress components on the surfaces of unit cube.

Equation (3.25) yields,

ti = σi j e j (3.26)

where there is a summation over j in equation (3.26) and

σi j = ti e j (3.27)

noticing that ei · e j = δi j. Now, consider a cut out from the unit cube, which can be

considered as a tetrahedron (Figure 3.10). Equilibrium of force on the deformed

e1

e2

e3

Q1

Q2

Q3

P

n
t∆A

−e1

−t1∆A1

−e2

−t2∆A2

−e3

−t3∆A3

Figure 3.10: Traction components on a tetrahedron.

tetrahedron is written as:

t∆A − t1∆A1 − t2∆A2 − t3∆A3 = 0, (3.28)

25



with ∆Ai = ni∆A

[t − t1n1 − t2n2 − t3n3] ∆A = 0. (3.29)

Applying equation (3.26) into the above relation, the following result may be reached

t = ni ti = niσi je j. (3.30)

As a consequence, the total stress vector t acts on the surface element da ⊂ ∂Pt on

the deformed configuration and represents the force that the rest of the body Bt \Pt

exerts on Pt through ∂Pt. Cauchy’s stress theorem establishes a linear dependence

between the traction and the outward surface normal

t(x, t; n) = σ·n (3.31)

through the total Cauchy stress tensor σ. We define the Lagrangian and Eulerian unit

area elements

d A = NdA and da = nda, (3.32)

where N and n are the surface normals of the undeformed and deformed solid body.

Piola Identity

Cauchy stress vector t(x, t, n) measures force per unit deformed area. We define the

first Piola-Krichhoff stress vector T(X, t, N) which is parallel to t(x, t, n) but measures

force per unit undeformed area

t da = T dA. (3.33)

Then the Piola identity can be derived as follows.∫
∂B

n da =

∫
∂B0

JF−T N dA = 0, (3.34)

applying Gauss-divergence theorem∫
B0

Div(JF−T) dV = 0, (3.35)

and using localization theorem, Piola identity is obtained (equation (3.36))

Div(JF−T ) = 0. (3.36)
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Figure 3.11: Definition of stress tensors. Relationship between stresses.

The other important concept before starting hyperelasticity concept is related to the

stress tensors and their derivations which is presented below.

Various stress tensors

Consider the Piola identity Div(JF−T ) = 0, applied as nda = JF−T NdA which in-

duces the definition of the nominal or the first Piola-Kirchhoff stress tensor P, by

setting

Pd A = σda (3.37)

where,

P B JσF−T . (3.38)

The first and second Piola Kirchhoff stress tensor relations are obtained through trans-

formations given in Figure 3.11, which can be summarized as,

P = JσF−T = τF−T , (3.39)

S = F−1 P = F−1τF−T , (3.40)

where S is the pull-back of τ. One may also notice that the following relation is hold

between Cauchy and Kirchhoff stress tensors

τ = Jσ. (3.41)

From figures 3.5 and 3.11 it can be concluded that the Kirchhoff stress in the Eulerian

configuration is dual to g and c and the second Piola stress in Lagrangian configura-

tion is dual to C and G.
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B0 Bt

ϕ(X, t)

F(X, t)

∂Bϕ∂Bϕ

∂Bt
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T̄ = PN

Figure 3.12: Initial boundary value problem is defined by the balance equations as

well as boundary and initial conditions. Boundary of the initial and current configu-

ration subdivided into Dirichlet and Neumann part. Traction vector given in terms of

material Cauchy theorem T̄ = PN due to the first Piola-Kirchhoff stress.

3.1.3 Boundary value problems

In purely mechanical description of continuous media, the balance equations hold for

all bodies independent of the material character. In addition to these balance equa-

tions, boundary and initial conditions are imposed onto the body of interest, Figure

3.12. Types of the used conditions are given below.

ϕ(X, t) = ϕ̄(X, t) on ∂Bϕ ; Dirichlet boundary condition,

P(X, t) · N = T̄(X, t) on ∂Bt ; Neumann boundary condition.
(3.42)

Dirichlet boundary are also known as essential boundary conditions. Neumann bound-

ary conditions on the other hand are generally considered as natural boundary condi-

tions. To solve the boundary value problems there should be initial values for func-

tion, these conditions are named as initial conditions which are specified below.

ϕ(X, t0) = ϕ̄0(X) in ∂B ; displacement initial condition,

V(X, t0) = V̄0(X) in ∂B ; velocity initial condition
(3.43)

3.2 Hyperelasticity

Elasticity is considered as reversible, non-dissipative response of material (no hys-

teresis) with memory of initial configuration. The material remembers its reference

configuration and restore its original shape upon removal of external load. Rubber-

like materials possess the elastic nature under loading, however, that type of materials
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can resists to high stretch values while loading is applied. Hyperelsticity is the classi-

fication related to the highly non-linear material response of such materials. To sim-

ulate the hyperelstic material response in finite elasticity a governing relation named

as free energy function is introduced. The basic form of free energy function is given

as

ψ(F) = ψvol(J) + ψiso(F̄), (3.44)

with

F̄ = J−
1
3 F, (3.45)

which is additively decomposed into volumetric and isochoric parts. The first part

governs the energy storage associated with volume change whereas the latter one

governs the volume-preserving shape change. Rubberlike materials exhibit very stiff

response to volume change. Ratio of bulk to shear modulus is large which indicates

the incompressible feature for rubber-like materials. That is why, they are also known

as incompressible or (nearly) quasi-incompressible materials. The energy storage due

to shape change can be described in various forms

ψiso := ψ(F̄) = ψ̃(C̄) = ψ̂(b̄) (3.46)

as a function of unimodular deformation gradient, right Cauchy-Green tensor and left

Cauchy-Green tensor, respectively.

3.2.1 Lagrangian and Eulerian setting

A crucial consequence of the principle of material objectivity which postulates that

a constitutive relation should be invariant with respect to a change of frame, i.e., it

should be independent of the observer is a reduced form that always satisfies this

principle by setting

ψ = ψ̄(FT gF, X) . (3.47)

It can easily be proven that this equation is always objective ψ̄(FT QT gQF, X) =

ψ̄(FT gF, X). The reduced form of the free energy function in equation ((3.47)) then

reads

ψ = ψ̄(C, X) with C = FT gF (3.48)
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Starting with this reduced form, an alternative constitutive expressions for the second

Piola-Kirchhoff stresses S and the Kirchhoff stresses τ is obtained by reformulating

the stress power

P = P : Ḟ = S : 1
2 Ċ = τ : 1

2 £νg . (3.49)

These pairs are the dual stress-strain variables in the two-point, the Lagrangian, and

the Eulerian formulation, respectively. Alternative constitutive laws can now be ob-

tained by substitution of the above introduced formulations for the stress power into

the Clausius-Planck inequality

Dloc
0 = P : Ḟ − ψ̇ ≥ 0 (3.50)

On the other hand, an elastic material’s stress power P : Ḟ that deforms the material

is identical to the temporal evolution of the stored energy, i.e., all work done on the

material is storedDloc
0 = 0. Hence, for an elastic material, one can write

Dloc
0 = P : Ḟ − ∂Fψ̂(F, X) : Ḟ

= S : 1
2 Ċ − 2∂Cψ̄(C, X) : 1

2 Ċ

= τ : 1
2 £νg − 2∂gψ̃(g, F, X) : 1

2 £νg = 0 ,

(3.51)

that yield the Lagrangian and Eulerian constitutive representations of finite elasticity

S = 2∂Cψ̂(FT gF, X) (3.52)

and

τ = 2∂gψ̃(g, F, X). (3.53)

The latter one is also known as the Doyle-Erickson formula of hyperelasticity.

For isotropic elastic materials the constitutive equations can be simplified and ex-

pressed in terms of principle stretches or invariants. This becomes clear if a spectral

representation of the right Cauchy-Green tensor is considered that appears in the form

[C − λ2
(i)G]N(i) = 0 ⇒ C =

3∑
i=1

λ2
(i)N(i) ⊗ N(i) (3.54)

in terms of the principal stretches {λ(i)}i=1,3 which are the eigenvalues of U :=
√

C and

the Lagrangian eigenvectors {N(i)}i=1,3. With (3.54) at hand, the symmetry condition

is checked

ψ̄
( 3∑

i=1

λ2
(i)(QN(i)) ⊗ (QN(i))

)
= ψ̄

( 3∑
i=1

λ2
(i)N(i) ⊗ N(i)

)
∀ Q ∈ G ≡ SO(3) . (3.55)
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This identity can only be satisfied, if the free energy ψ̄ does not depend on the eigen-

vectors N(i). As a consequence, isotropic finite elastic materials depend solely on the

principal stretches {λ(i)}i=1,3

ψ = ψ̃(λ(1), λ(2), λ(3)) (3.56)

These principal stretches are obtained by the characteristic equation of (3.54) in terms

of the invariants of the right Cauchy-Green tensor

det[C − λ2
(i)G] = λ6

(i) − I1λ
4
(i) + I2λ

2
(i) − I3 = 0 (3.57)

with the three invariants

I1 = tr[C] = C : G−1 , (3.58)

I2 = 1
2

(
I2
1 − tr

[
C2]

)
= 1

2

(
I2
1 − (G−1CG−1) : C

)
, (3.59)

I3 = det[C]→ J =
√

I3 = det[F]. (3.60)

Principle invariants (equations (3.59)-(3.60)) can also be expressed in terms of prin-

ciple stretches as below

I1 = λ1
2 + λ2

2 + λ3
2 , (3.61)

I2 = λ1
2λ2

2 + λ2
2λ3

2 + λ3
2λ1

2 , (3.62)

I3 = λ1
2λ2

2λ3
2. (3.63)

Then (3.56) can be recast into the alternative form

ψ = ψ̌(I1, I2, J) (3.64)

Starting from (3.64), the representations of the Lagrangian and Eulerian stresses in

the case of finite isotropic elasticity follows by application of the chain rule

S = 2∂Cψ̄ = 2
[
∂ψ̌

∂I1

∂I1

∂C
+
∂ψ̌

∂I2

∂I2

∂C
+
∂ψ̌

∂J
∂J
∂C

]
(3.65)

and

τ = 2∂gψ̄ = 2
[
∂ψ̌

∂I1

∂I1

∂g
+
∂ψ̌

∂I2

∂I2

∂g
+
∂ψ̌

∂J
∂J
∂g

]
. (3.66)

The particular expressions for the isotropic stress response are obtained by computa-

tion of the derivatives of the invariants with respect to the Lagrangian representation
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of the current metric

∂CI1 = G−1 , (3.67)

∂CI2 = I1G−1
− G−1CG−1 , (3.68)

∂CJ = 1
2 JC−1 (3.69)

with G−1 = δAB = 1. The derivatives with respect to the spatial metric g = δab = 1

follows from the push-forward operation of (3.67) through (3.69), i.e.

∂gI1 = F∂CI1FT = b , (3.70)

∂gI2 = F∂CI2FT = I1b − bgb , (3.71)

∂gJ = F∂CJFT = 1
2 J g−1 . (3.72)

Substitution of (3.67) through (3.72) into (3.65) and (3.66) finally gives

S = 2ψ̌,I1G
−1 + 2ψ̌,I2(I1G−1

− G−1CG−1) + ψ̌,J JC−1 , (3.73)

and

τ = 2ψ̌,I1 b + 2ψ̌,I2(I1b − bgb) + ψ̌,J J g−1 , (3.74)

which can be rearranged in the form

S = 2(ψ̌,I1 + I1ψ̌,I2)G
−1
− 2ψ̌,I2G

−1CG−1 + Jψ̌,JC−1, (3.75)

and

τ = 2(ψ̌,I1 + I1ψ̌,I2)b − 2ψ̌,I2 bgb + Jψ̌,J g−1 (3.76)

These are the general Lagrangian and Eulerian formulations of isotropic elasticity in

invariants.

3.2.2 Incompressible hyperelasticity

In the fully incompressible limit where J = det F → 1 the free energy function can

be written as

Ψ = ψ(F) = ψ̃(C) = ψ̂(b) . (3.77)

In line with the general form for free energy function, equation (3.44), the Kirchhoff

stresses are also decomposed into volumetric and isochoric parts

τ = τvol + τiso (3.78)
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along with definitions,

τ = τ̂ − p1 . (3.79)

where

τ̂ = 2F
∂ψ

∂C
FT = 2b

∂ψ

∂b
(3.80)

Here, the isochoric stresses can be evaluated from the free energy function through

the relation for τ̂. An arbitrary scalar parameter p, which is known as hydrostatic

pressure term, is introduced in stress expressions that has to be determined from the

equilibrium condition.

Also recall that for incompressible hyperelastic materials ( j = 1), then equation (3.41)

reduces to

τ = σ. (3.81)

Now, substituting equation (3.80) in (3.79) yields Kirchhoff or Cauchy stresses in

Lagrangian setting as

τ = 2F
∂ψ

∂C
FT − p1 (3.82)

and Eulerian settings as

τ = 2b
∂ψ

∂b
− p1. (3.83)

then the first-Piola Kirchhoff stress tensor reads,

P =
∂ψ

∂F
− pF−T (3.84)

3.2.3 Deformation modes

In literature, for hyperelastic material characterization, four deformation modes are

considered more often. These are Uniaxial Tension (UT), Equibiaxial Tension (ET),

Pure Shear (PS), and Biaxial Tension (BT). In continuum mechanics stress formula-

tions for these deformation modes utilize incompressibility (J=1) consideration. In

this part all deformation modes are going to be studied. The deformation gradient,

finger tensor, and the Kirchhoff stresses corresponding to the respective deformation

modes will be mentioned.
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Figure 3.13: Uniaxial tension deformation

3.2.3.1 Uniaxial tension deformation mode

In uniaxial loading mode, the dumbbell shaped test specimen is fixed between fixtures

of test set-up. Material is stretch with low rate of applied stretched. Specimen is

elongated in e1 direction and is free to shrink in e2 and e3 directions. Therefore,

stretch in axial direction, e1, is denoted by λ1 and stretched values in second and third

directions can be observed as 1/
√
λ. As a result, components of deformation gradient

for uniaxial extension mode can be written as:

[F]i j =


λ

1
√
λ

1
√
λ


. (3.85)

Using equation (3.9), b = FFT , components of finger tensor in uniaxial tension case

become

[b]i j =


λ2

1
λ

1
λ

 . (3.86)

Applying the boundary conditions, considering that surfaces with their normal in e2

and e3 directions are stress free surfaces, the components of Kirchhoff stress tensor

for uniaxial tension loading becomes

[τ]i j =


τ

0

0

 . (3.87)
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Figure 3.14: Equibiaxial tension deformation

Figure 3.13 represents a schematic for the uniaxial tension loading. For the deforma-

tion driven process (uniaxial tension), λ is known whereas τ is unknown.

3.2.3.2 Equibiaxial tension deformation mode

Equibiaxial extension loading is applied on a square sheet of rubber specimen. Equal

stretches are applied to the specimen in first and second directions, e1 and e2, simul-

taneously by the value of λ. The third direction e3 is kept free to contract. From the

incompressibility condition, j = 1, the stretch value in third direction would be equal

to 1/λ2. Therefore, components of deformation gradient for equibiaxial extension

mode can be written as:

[F]i j =


λ

λ
1
λ2

 . (3.88)

Again, using equation (3.9), b = FFT , components of finger tensor in equibiaxial

tension case become

[b]i j =


λ2

λ2

1
λ4

 . (3.89)

Applying the boundary conditions, considering that surface with its normal in e3 di-

rection is stress free surfaces, the components of Kirchhoff stress tensor for equibiax-
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Figure 3.15: Pure shear deformation

ial tension loading becomes

[τ]i j =


τ

τ

0

 . (3.90)

Figure 3.14 represents a schematic for the equibiaxial tension loading. For the defor-

mation driven process (equibiaxial tension), λ is known whereas τ is unknown.

3.2.3.3 Pure shear deformation mode

During the pure shear deformation, stretch is applied in first direction, e1, while the

specimen is constrained to deform in second direction e2. The specimen is kept free to

deform or contract in third direction, e2. Used specimen is mostly wide strip of rubber.

Therefore, applied stretches are λ, 1, and 1/λ in first, second, and third directions,

respectively. Then, the components of deformation gradient for pure shear loading

become

[F]i j =


λ

1
1
λ

 . (3.91)
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Figure 3.16: Biaxial tension deformation

Again, using equation (3.9), b = FFT , components of finger tensor in pure shear case

become

[b]i j =


λ2

1
1
λ2

 . (3.92)

Applying the boundary conditions, considering that surface with its normal in e3 di-

rection is stress free surfaces, the components of Kirchhoff stress tensor for pure shear

loading become

[τ]i j =


τ1

τ2

0

 . (3.93)

Figure 3.15 represents a schematic for the pure shear loading. For the deformation

driven process (pure shear), λ is known whereas τ1 and τ2 are unknowns.

3.2.3.4 Biaxial tension deformation mode

Biaxial loading is, in general, like equaibiaxial loading case. However, deformation

driven stretches are different in first and second directions. The specimen is deformed

in first direction, e1, by stretch value which is equal to λ1, while the stretch is second

direction, e2, is different from the first one and denoted by λ2. The material is kept free

to contract in the third direction, e3. Then the components of deformation gradient
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tensor for biaxial extension loading become

[F]i j =


λ1

λ2

1
λ1λ2

 . (3.94)

[b]i j =


λ2

1

λ2
2

1
λ2

1λ
2
2

 . (3.95)

Applying the boundary conditions, considering that surface with its normal in e3 di-

rection is stress free surfaces, the components of Kirchhoff stress tensor for Biaxial

tension loading becomes

[τ]i j =


τ1

τ2

0

 . (3.96)

Figure 3.16 represents a schematic for the biaxial tension loading. For the deforma-

tion driven process (biaxial extension), λ1, λ2, and λ3 are known whereas τ1 and τ2

are unknowns.

3.2.4 Invariant based incompressible hyperelastic material models

The general form for stress expressions are given in Equations (3.65) and ((3.66)).

On the other hand, for isotropic hyperelasticity, constitutive form depends on the first

and second invariants, and due to incompressibility J=1. Dependency of free energy

function to the first two invariants implies the following form for Kirchhoff,

τ = 2
(
∂ψ

∂I1
+ I1

∂ψ

∂I2

)
b − 2

∂ψ

∂I2
b2
− p1 (3.97)

and nominal stress,

P = 2F
([
∂ψ

∂I1
+ I1

∂ψ

∂I2

]
1 −

∂ψ

∂I2
C
)
− pF−T . (3.98)

In principle directions last two equations can be written in terms of principle stretches,

τi = 2
(
λ2

i
∂ψ

∂I1
−

1
λ2

i

∂ψ

∂I2

)
− p where i = 1, 2, 3 (3.99)
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and nominal stress,

Pi = 2
(
λi
∂ψ

∂I1
−

1
λ3

i

∂ψ

∂I2

)
−

1
λi

p where i = 1, 2, 3. (3.100)

Corresponding to the respective deformation modes, and using Equation (3.100); the

first Piola-Kirchhoff stresses are expressed as follows:

• Uniaxial tension expressions

P22 = P33 = 0 ,

P11 = P = 2
(
λ −

1
λ2

)(
∂ψ

∂I1
+
∂ψ

∂I2

1
λ

)
.

(3.101)

• Equibiaxial tension expressions

P33 = 0 ,

P11 = P22 = P = 2
(
λ −

1
λ5

)(
∂ψ

∂I1
+
∂ψ

∂I2

1
λ2

)
.

(3.102)

• Pure shear expressions

P33 = 0 ,

P11 = P1 = 2
(
λ −

1
λ3

)(
∂ψ

∂I1
+
∂ψ

∂I2

)
,

P22 = P2 = 2
(
1 −

1
λ2

)(
∂ψ

∂I1
+ λ2 ∂ψ

∂I2

)
.

(3.103)

• Biaxial tension expressions

P33 = 0 ,

P11 = P1 = 2
(
λ1 −

1
λ3

1λ
2
2

)(
∂ψ

∂I1
+
∂ψ

∂I2
λ2

2

)
,

P22 = P2 = 2
(
λ2 −

1
λ2

1λ
3
2

)(
∂ψ

∂I1
+
∂ψ

∂I2
λ2

1

)
.

(3.104)

3.2.5 Principle stretch based incompressible hyperelastic material models

Some hyperelastic models have functional representations exclusively in terms of

principle stretches. Herein, the free energy function has the following form,

ψ = ψ̂(λ1, λ2, λ3) (3.105)
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For purely incompressible material behavior, the Kirchhoff stress tensor reads,

τ =

3∑
a=1

ψ̂λaλana ⊗ na − p1. (3.106)

The derivatives of ψ̂ with respect to principle stretches can be defined as,

α1 B ψ̂λ1 =
∂ψ̂

∂λ1
, (3.107)

α2 B ψ̂λ2 =
∂ψ̂

∂λ2
, (3.108)

α3 B ψ̂λ3 =
∂ψ̂

∂λ3
. (3.109)

Corresponding to the respective deformation modes, and using Equation (3.106); the

first Piola-Kirchhoff stresses are obtained as follows:

• Uniaxial tension expressions

P22 = P33 = 0 ,

P11 = P = α1 −
α2

λ
3
2

.
(3.110)

• Equibiaxial tension expressions

P33 = 0 ,

P11 = P22 = P = α1 −
α3

λ3 .
(3.111)

• Pure shear expressions
P33 = 0 ,

P11 = P1 = α1 −
α3

λ2 ,

P22 = P2 = α2 −
α3

λ
.

(3.112)

• Biaxial tension expressions

P33 = 0 ,

P11 = P1 = α1 −
α3

λ2
1λ2

,

P22 = P2 = α1 −
α3

λ1λ
2
2

.

(3.113)
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CHAPTER 4

HYPERELASTIC MATERIAL MODELS

Generally phenomenological and micromechanically based material models are the

two main categories considered during the modeling steps. In this section 40 hy-

perelastic material model belonging to each category with corresponding free energy

functions will be presented. Description for each model is given according to the

publication date. Giving some necessary information about each model, parameter

optimization scheme and results for the models under consideration will be provided

in next chapters.

4.1 Phenomenological Material Models

Phenomenological hyperelastic material models are also divided into different groups.

Invariant based material models, principle stretch based models, and combination of

invariants and principle stretch models are among the phenomenological formulation

for rubber-like materials. Invariant based models can further be divided into first

invariant based, I1, and combination of first and second invariant, I2, based models.

To find first Piola-Kirchhoff stresses on invariant based models, it is necessary to take

first derivative of strain energy functions with respect to I1, and I2, then substitute the

obtained results in equations (3.101) for uniaxial extension, (3.102) for equibiaxial

extension, (3.103) for pure shear, (3.104) for biaxial extension. For principle stretch

based models on the other hand, the first Piola-Kirchhoff stresses are obtained by

taking first derivative of strain energy functions with respect to λ1, λ2, and λ3, and

substituting the obtained results into the equations (3.110) for uniaxial extension,

(3.111) for equibiaxial extension, (3.112) for pure shear, (3.113) for biaxial extension.

41



For each model the mentioned derivatives are provided.

4.1.1 First Invariant Base Models

4.1.1.1 neo-Hooke model

Considering the assumptions postulated by Wall [5] that are incompressibility for

the bulk response of the material, Kuhn’s Gaussian distribution [63] for end-to-end

distances of molecular chains, and identical chain lengths for all molecules, Treloar

[2] proposed the following physically motivated free energy function,

ψ =
1
2

nkT
(
λ2

1 + λ2
2 + λ2

3 − 3
)
, (4.1)

where n is the chain density per unit volume, k is the Boltzmann constant and T is the

absolute temperature. Observe that, with µ = nkT , the model can be written as

ψ =
µ

2
(I1 − 3) . (4.2)

Hence, the model has only one parameter that corresponds to the initial slope for the

nonlinear response of rubber-like materials for all three loading cases. Therefore, it

can be concluded that the assumed distribution function for the end-to-end distances

of molecular chains is Gaussian type. First derivative of ψ with respect to the invari-

ants are
∂ψ

∂I1
=
µ

2
, and

∂ψ

∂I2
= 0 . (4.3)

4.1.1.2 Yeoh model

By omitting the terms containing second invariants, Yeoh [34] proposed a first invari-

ant based expansion of Mooney-Rivlin’s [10] form up to three term,

ψ = C10 (I1 − 3) + C20 (I1 − 3)2 + C30 (I1 − 3)3 (4.4)

where C10, C20, and C30 are the model parameters. First derivative of ψ with respect

to the invariants are

∂ψ

∂I1
= C10 + 2C20 (I1 − 3) + 3C30 (I1 − 3)2 , and

∂ψ

∂I2
= 0 . (4.5)
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4.1.1.3 Gent model

Following the works of Treloar [2], Gent [37] proposed,

ψ = −
µ

2
Jm ln

(
1 −

I1 − 3
Jm

)
(4.6)

for energy function. Here, I1 − 3 := J1 originally was used for abbreviation, and Jm is

the chain extensibility limit. It reduces to neo-Hooke for small strains. For J1 = Jm,

corresponding to the fully stretched state, stresses become infinite. First derivative of

ψ with respect to the invariants are

∂ψ

∂I1
=
µ

6

(
Jm − 3
Jm − I1

)
, and

∂ψ

∂I2
= 0 . (4.7)

4.1.1.4 Yeoh-Fleming model

Combining results of [Yeoh] and [Gent] models, [Yeoh-Fleming] proposed,

ψ =
A
B

(Im − 3)
(
1 − e−BR

)
−C10 (Im − 3) ln (1 − R) (4.8)

with

R =
(I1 − 3)
(Im − 3)

(4.9)

as the free energy function. The model’s idea is to combine two different models

for targeting both small strains and large strains. Since the finite extensibility of

network chains is suspected to be the main mechanism at large strains, Yeoh-Fleming

included chain extensibility limit with the second term analogous to Gent’s model.

The first term follows the reasoning behind the Yeoh model for small strains where the

dominating effect is believed to be caused by network flaws, such as entanglements.

First derivative of ψ with respect to the invariants are

∂ψ

∂I1
= A exp (−BR) + C10

(
Im − 3
Im − I1

)
, and

∂ψ

∂I2
= 0 . (4.10)

4.1.1.5 Two-Term model

Ogden’s form [27] where individual stretch values are raised to model parameters αi

as power, was investigated by Oscar Lopez-Pamies [54]. Instead, in two-term model,
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raised the first invariant to the material parameters αi, that is

ψ =

M∑
i=1

31−αi

2αi
µi

(
Iαi
1 − 3αi

)
. (4.11)

In this work we expanded the summation for M = 2, and utilized the following form

for the strain energy function,

ψ =
31−α1

2α1
µ1

(
Iα1
1 − 3α1

)
+

31−α2

2α2
µ2

(
Iα2
1 − 3α2

)
. (4.12)

The main reasoning of Lopez-Pamis for the two-term model was to capture full range

material response, mathematical convenience, and model to possess physically inter-

pretable parameters. First derivative of ψ with respect to the invariants are

∂ψ

∂I1
=
µ1

2

(
31−α1

) (
Iα1−1
1

)
+
µ2

2

(
31−α2

) (
Iα2−1
1

)
, and

∂ψ

∂I2
= 0 . (4.13)

4.1.1.6 Exp-Ln model

The exponential and linear terms are individually contribute to the free energy func-

tion in exp-ln model [57] as follows,

ψ = A
[
1
a

exp (a (I1 − 3)) + b (I1 − 2) (1 − ln (I1 − 2)) −
1
a
− b

]
(4.14)

where, A = nkT
2 , and the parameter a governs the chain extensibility limit. The param-

eter b governs the response around small and moderate deformations. By polynomial

expansion it can be written as,

ψ = A (I1 − 3) + A
M∑

i=2

ai−1 + (−1)i−1 (i − 2)!b
i!

(I1 − 3)i (4.15)

which is a special case of Mooney-Rivlin’s expansion formula,

ψ =

M1∑
i=0

M2∑
j=0

Ci j (I1 − 3)i (I2 − 3) j . (4.16)

First derivative of ψ with respect to the invariants are

∂ψ

∂I1
= A

[
exp (a (I1 − 3)) − b ln (I1 − 2)

]
, and

∂ψ

∂I2
= 0 . (4.17)
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4.1.2 First and Second Invariant Base Models

4.1.2.1 Mooney model

Mooney introduced a phenomenological strain energy density function based on the

properties, such as the isotropy of the material, isochoric deformations, and (linear or

nonlinear)-proportionality of traction to the shear for pure shear,

ψ =
G
4

3∑
i=1

(
λi −

1
λi

)2

+
H
4

3∑
i=1

(
λ2

i −
1
λ2

i

)
. (4.18)

This model is the baseline for further phenomenological development, and signifi-

cantly it introduced the second invariant in the free energy density function. A more

familiar form for the Mooney’s model [4] is as follows,

ψ = C10 (I1 − 3) + C01 (I2 − 3) . (4.19)

First derivative of ψ with respect to the invariants are

∂ψ

∂I1
= C10, and

∂ψ

∂I2
= C01 . (4.20)

4.1.2.2 Isihara model

Isihara [21] recognized the non-Gaussian character of the network structure which is

missing in neo-Hookean approach, and proposed the following semi-empirical free

energy density function as,

ψ = C10 (I1 − 3) + C20 (I1 − 3)2 + C01 (I2 − 3) . (4.21)

From the form of the proposed constitutive relation it can be depicted that the Isihara’s

model is an special form of Mooney-Rivlin’s generalized formula. Therefore, first

derivative of ψ with respect to the invariants are

∂ψ

∂I1
= C10 + 2C20 (I1 − 3) , and

∂ψ

∂I2
= C01 . (4.22)

45



4.1.2.3 Biderman model

Biderman [22] considered higher order terms for I1 and one term for I2, and proposed

the following form,

ψ = C10 (I1 − 3) + C01 (I2 − 3) + C20 (I1 − 3)2 + C30 (I1 − 3)3 . (4.23)

which is a special case of [Rivlin-Saunders]’s expansion formula,

ψ =

M1∑
i=0

M2∑
j=0

Ci j (I1 − 3)i (I2 − 3) j . (4.24)

Following the regular procedure, first derivative of ψ with respect to the invariants are

∂ψ

∂I1
= C10 + 2C20 (I1 − 3) + 3C30 (I1 − 3)2 , and

∂ψ

∂I2
= C01 . (4.25)

4.1.2.4 Gent-Thomas model

Investigating the forms of neo-Hooke and Mooney’s free energy density functions,

Gent and Thomas [23] proposed a strain energy function of the form,

ψ = C1 (I1 − 3) + C2 ln
( I2

3

)
. (4.26)

Modified network theory is also used to depict the dependence of ∂ψ

∂I2
on I2. Then, the

first derivative of ψ with respect to the invariants are

∂ψ

∂I1
= C1, and

∂ψ

∂I2
=

C2

I2
. (4.27)

4.1.2.5 Hart-Smith model

Aiming for the full deformation range, Hart-Smith [24] utilized derivatives of free

energy function for direct formulation, i.e.,

∂ψ

∂I1
= G exp

(
k1 (I1 − 3)2

)
and

∂ψ

∂I2
= G

k2

I2
. (4.28)

In its free energy density representation,

ψ = G
{∫

ek1(I1−3)2
dI1 + k2 ln

( I2

3

)}
(4.29)
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where, the partial derivative with respect to I1 is considered as an exponential relation

and the derivative does not contain any I2 term. Similarly, the partial derivative with

respect to I2 does not contain any I1 term. Thus, the derivatives are decoupled and I1

and I2 effects can be observed separately. Second term is equivalent to the logarithm

term in Gent-Thomas model [23] (by integration). One may notice that exponential

term makes the stress-strain behavior to tend upward, however the partial derivative

with respect to I2 forces the curve downward. Using the above equations as summa-

tions in equations (3.101), (3.102), and (3.103) helps to generate the S-shape curve

representing hyperelastic behavior of rubber.

4.1.2.6 Alexander model

Combining the models by Rivlin-Saunders [10] and Hart-Smith [24], Alexander [26]

proposed,

ψ = C1

∫
exp

(
k [I1 − 3]2

)
dI1 + C2ln

[
(I2 − 3) + γ

γ

]
+ C3 (I2 − 3) (4.30)

for the strain energy density function. It reduces to,

• Rivlin-Saunders theory for k = 0,

• Hart-Smith theory for γ = 3 and C3 = 0,

The most successful model so far for Alexander was Rivlin-Saunders, and he argued

that it is too restrictive to consider the summation of powers of invariants. Recogniz-

ing the need for a more elaborate theory, he understood that the Hart-Smith theory

captures the observed behavior where for I1 ≤ 12, it may be considered a constant but

above that value it should be function of I1. For moderate stresses, Hart-Smith theory

fails for synthetic rubber neoprene. In order to compensate for the moderate stresses

Alexander introduced also the Rivlin-Saunders additive term. Thus, the combination

of Rivlin-Saunders and Hart-Smith provide a good agreement with the experimental

results. Furthermore, first derivative of the free energy function with respect to the

invariants can be obviously obtained as

∂ψ

∂I1
= C1exp

(
k [I1 − 3]2

)
, and

∂ψ

∂I2
=

C2

(I2 − 3) + γ
+ C3 . (4.31)
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4.1.2.7 James model

Investigating the the general Mooney-Rivlin expression and linking the experimental

results conducted on natural rubber gum, James and coworkers [28] suggested the

following form for strain energy density function

ψ = C10 (I1 − 3) + C01 (I2 − 3) + C11 (I1 − 3) (I2 − 3)

+ C20 (I1 − 3)2 + C30 (I1 − 3)3 .
(4.32)

The constitutive relation may be considered as third order expansion of Mooney’s

form. Regression analysis has been conducted by the writers on Mooney’s plot and

the best choice for free energy function is selected. To obtain the first Piola-Kirchhoff

stresses, first derivative of the free energy function with respect to the invariants are

as follows
∂ψ

∂I1
= C10 + C11 (I2 − 3) + 2C20 (I1 − 3) + 3C30 (I1 − 3)2 ,

∂ψ

∂I2
= C01 + C11 (I1 − 3) .

(4.33)

4.1.2.8 Haines-Wilson model

Mooney-Rivlin generalized form and the investigations done by James and coworkers

[28] are considered by Haines and Wilson [29]. The power series term is expanded

up to six terms resulting the following equation for strain energy function

ψ = C10 (I1 − 3) + C01 (I2 − 3) + C11 (I1 − 3) (I2 − 3)

+ C02 (I2 − 3)2 + C20 (I1 − 3)2 + C30 (I1 − 3)3 .
(4.34)

Then, the first derivative of the free energy function with respect to the invariants can

be obtained as
∂ψ

∂I1
= C10 + C11 (I2 − 3) + 2C20 (I1 − 3) + 3C30 (I1 − 3)2 ,

∂ψ

∂I2
= C01 + C11 (I1 − 3) + 2C02 (I2 − 3) .

(4.35)

4.1.2.9 Swanson model

Swanson [32] suggested an I1 and I2 decomposed series expansion for free energy

function. The idea of decomposition is taken from Ogden’s work [27] to derive the
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strain energy function of the form,

ψ =
3
2

n∑
i=1

Ai

1 + αi

[ I1

3

]1+αi

+
3
2

n∑
j=1

B j

1 + β j

[ I2

3

]1+β j

(4.36)

In our case, we just take the first order expansion of the series to make parameter

identification study. Then, the reduced form of the Swanson’s model in this study is

ψ =
3
2

A1

(1 + α1)

[ I1

3

]1+α1

+
3
2

B1

(1 + β1)

[ I2

3

]1+β1

. (4.37)

The first derivative of the free energy function with respect to the invariants are

∂ψ

∂I1
=

3
2

A1

( I1

3

)α1

, and
∂ψ

∂I2
=

3
2

B1

( I2

3

)β1

. (4.38)

4.1.2.10 Kilian (van der Waals) model

Inspired from the idea of Wang and Guth [6], Kilian and coworkers [33] developed

a unique representation to approximate the Ci j constants of Mooney-Rivlin expres-

sion [10] considering van der Waals theory and relate the idea to finite chain exten-

sibility and fluctuations of cross-links. Functionality of cross-link degree is investi-

gated considering a parameter "a" named as van der Waals interaction parameter. The

general form of the proposed model is given in equation (4.39)

ψ = G

− (
λ2

m − 3
)

[ln (1 − θ) + θ] −
2
3

a
(

Ĩ − 3
2

)3/2
 (4.39)

with

θ =

√√ (
Ĩ − 3

)(
λ2

m − 3
) , (4.40)

and

Ĩ = βI1 + (1 − β) I2 . (4.41)

Here parameter "a" stands for van der Waals interaction. As the cross-link density

increased, "a" tends to decrease. λm governs the limiting chain extensibility, G is

modulus term, like 1
2nkT in neo-Hooke model, is used to describe swelling force. β is

an emprical penalty term for weighting effects of I1 and I2. Because of the complex

and long formulation of the derivations, we skip that parts.
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4.1.2.11 Yamashita-Kawabata model

The idea used by Yamashita and Kawabata [35] is raised from the theoretical work

of Rivlin and Saunders [35]. However, the term containing C3 has a polynomial form

with power of N + 1.

ψ = C5 (I1 − 3) + C2 (I2 − 3) +
C3

N + 1
(I1 − 3)N+1 (4.42)

The first derivative of the free energy function with respect to the invariants can easily

be obtained as
∂ψ

∂I1
= C5 + C3 (I1 − 3)N , and

∂ψ

∂I2
= C2 . (4.43)

4.1.2.12 Lion model

Lion [41] aimed to develop a constitutive relation that may resemble the thermal

aspects of rubber-like material models. The work consists of two part, the first pat

deals with the mechanical properties of material, yet the second part governs the

thermal part. As the structure of the mechanical part implies, the proposed model is

somehow similar to Mooney-Rivlin form. The constitutive relation has order of five

for I1, but first order of expansion is considered for second invariant term. Then the

material model is constructed as

ψ = C10 (I1 − 3) + C01 (I2 − 3) + C03 (I1 − 3)5 . (4.44)

Here, the first derivative of free energy function with respect to invariants I1 and I2

reads
∂ψ

∂I1
= C10 + 5C03 (I1 − 3)4 , and

∂ψ

∂I2
= C01 . (4.45)

4.1.2.13 Diani-Rey model

Using the Rivlin and Saunders theory [10] together with experimental data on rubber-

like materials, Diani and Rey [43] tried to estimate the functions

∂ψ

∂I1
= f (I1) , and

∂ψ

∂I2
= g (I2) . (4.46)
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The free energy function was considered to have additive decomposition of I1 and I2

term separately. To estimate f (I1) uniaxial data of Treloar [44] is used considering

g (I2) = 0 . The following assumption leads to an exponential polynomial power

series function form for I1 function. To derive the second invariant term, equibiaxial

data set of Treloar [44] is considered by the writers. Then, the second invariant term is

approximated by a exponential logarithmic function in power series expansion. The

general form of the free energy function proposed by Diani and Rey is

ψ =

∫
exp

 n∑
i=0

ai (I1 − 3)i

 dI1 +

∫
exp

 m∑
i=0

bi (ln (I2))i

 dI2 . (4.47)

In our study, we expand equation (4.47) considering n = 2 and m = 1. Then, the

constitutive relation takes the form

ψ =

∫
exp

(
a0 + a1 (I1 − 3) + a2 (I1 − 3)2

)
dI1

+

∫
exp (b0 + b1ln (I2)) dI2 .

(4.48)

From the above equation one may notice that f (I1) and g (I2) corresponds to first

derivative of strain energy function with respect to I1 and I2, respectively as follow

∂ψ

∂I1
= exp

(
a0 + a1 (I1 − 3) + a2 (I1 − 3)2

)
,

∂ψ

∂I2
= exp (b0 + b1ln (I2)) .

(4.49)

4.1.2.14 Haupt-Sedlan model

Conducting experiments on cylindrical bar of rubber specimen, Haupt and Sedlan

[47] aimed to develop a model governing viscoplastic and viscoelastic properties of

rubber-like material. The proposed constitutive relation is in the form of Mooney-

Rivlin as follow

ψ = C10 (I1 − 3) + C01 (I2 − 3) + C11 (I1 − 3) (I2 − 3)

+ C02 (I2 − 3)2 + C30 (I1 − 3)3 .
(4.50)

To obtain the first Piola-Kirchhoff stresses, first derivative of the free energy function

with respect to the invariants are

∂ψ

∂I1
= C10 + C11 (I2 − 3) + 3C30 (I1 − 3)2 ,

∂ψ

∂I2
= C01 + C11 (I1 − 3) + 2C02 (I2 − 3) .

(4.51)
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4.1.2.15 Chavelier-Marco model

The same procedure as Diani and Rey [43] is followed by Chevalier and Marco [48].

The I1 term of free energy function is like the one proposed by Diani and Rey but

exponential terms are neglected. I1 term is derived considering uniaxial tension data

of Treloar [44]. To estimate the I2 term, however, pure shear data of Treloar is taken

into account. The strain energy function is then suggested as

ψ =

∫  n∑
i=0

ai (I1 − 3)i

 dI1 +

∫  n∑
i=0

bi

Ii
2

 dI2 . (4.52)

Then, the first derivative of strain energy function with respect to invariants can obvi-

ously be written as

∂ψ

∂I1
=

n∑
i=0

ai (I1 − 3)i , and
∂ψ

∂I2
=

n∑
i=0

bi

Ii
2

. (4.53)

In our formulations, n is considered to take the value of 2.

4.1.2.16 Pucci-Saccomandi model

In order to improve the fitting performance of Gent Model [37], Pucci and Sacco-

mandi [49] applied modifications on the mentioned model. First invariant based part

is taken from Gent model, second part on the other hand is taken from Gent-Thomas

model [23].

ψ = −
µ

2
Jmlog

(
1 −

I1 − 3
Jm

)
+ C2log

( I2

3

)
(4.54)

The desired results are obtained through this modification. First derivative of the

proposed strain energy function with respect to invariants are

∂ψ

∂I1
= −

µ

2

(
I1 − 3

Jm

)
, and

∂ψ

∂I2
=

C2

I2
. (4.55)

4.1.2.17 Amin model

The model proposed by Amin and coworkers [52] was aimed to simulate the behavior

of rubber-like materials serving as vibration absorber. Therefore, they have try to de-

rive a constitutive relation that suits the uniaxial compression and pure shear loading.
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The suggested strain energy function has the following form

ψ = C5 (I1 − 3) +
C3

N + 1
(I1 − 3)N+1 +

C4

M + 1
(I1 − 3)M+1 + C2 (I2 − 3) . (4.56)

Amin’s model may be considered as modification for Yamashita and Kawabata’s

model [35]. Adding a higher order I1 term, makes the model to possess improve-

ment in its performance. The first derivative of free energy function with respect to I1

and I2 is then obtained as

∂ψ

∂I1
= C5 + C3 (I1 − 3)N + C4 (I1 − 3)M , and

∂ψ

∂I2
= C2 . (4.57)

4.1.2.18 Beda model

To improve fitting performance of Gent-Thomas model [23], a modified constitutive

relation is introduced by Beda [16]. Addition of a term consisting first invariant in-

creased fitting ability of Gent-Thomas model. The proposed model is fitted to the

experimental data of Treloar [44], Rivlin and Saunders [10], Yeoh-Fleming [42], and

Pak and Flory [64]. The parameter identification is applied on uniaxial data curve and

fitting performance of the model is observed on the other deformation modes.

ψ = C10 (I1 − 3) +
B
α

(I1 − 3)α + K ln
I2

3
(4.58)

The first derivative of Beda’s equation (4.58) with respect to invariants are as follow

∂ψ

∂I1
= C10 + B (I1 − 3)α−1 , and

∂ψ

∂I2
=

K
3I2

. (4.59)

4.1.2.19 Carroll model

A unique procedure is followed by Carroll [55] to develop a phenomenological strain

energy function of invariant based type. He considered three distinct free energy

terms and additive decomposition of the related terms yield the Carroll model. The

first part of the constitutive relation governs the Gaussian response of the material.

The second term is fitted to uniaxial data of Treloar [44] to represent the residual

stress terms that make smooth transition from low to high strain range. The third part

(I2 related part) on the other hand forces the material response to exhibit up-turn and

make a S-shape curve. The third part resembles the residual stress part related to the
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equibiaxial data of Treloar. As a result of the assumptions done by Carroll the final

form of the constitutive relation reads

ψ = AI1 + BI4
1 + C

√
I2 . (4.60)

The first derivative of Carroll model with respect to invariants are

∂ψ

∂I1
= A + 4BI3

1 , and
∂ψ

∂I2
=

C
2
√

I2
. (4.61)

4.1.2.20 Nunes model

To get an equation suitable for pure shear loading, Nunes [56] suggested a model

which can be considered as a modified Mooney [4] model. The fitting performance

of the obtained model is verified against the sample specimen of PDMS material in

pure shear loading set-up. Digital image correlation (DCI) technique is used to gather

data for the related loading. The general form of Nunes model is

ψ = C1 (I1 − 3) +
4
3

C2 (I2 − 3)3/4 . (4.62)

One can simply derive the first derivative of the free energy function with respect to

I1 and I2 as
∂ψ

∂I1
= C1, and

∂ψ

∂I2
= C2 (I2 − 3)−1/4 . (4.63)

4.1.3 Principle Stretch Base Models

4.1.3.1 Valanis-Landel model

Considering of complexity of deriving strain energy in terms of invariants, Valanis

and Landel [25] postulated that strain energy function of isotropic and incompress-

ible rubber-like materials can be analytically separable function of stretch ratios rather

than invariants. Additive split which is considered by Valanis and Landel have the

form given in equation (4.64). Apart from being a model it is assumed to be a hy-

pothesis introduced by Valanis and Landel.

ψ(λ1, λ2, λ3) = w (λ1) + w (λ2) + w (λ3) (4.64)
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To obtain the first Piola-Kirchhoff stress tensor it is necessary to take partial derivative

of function with respect to stretch ratios. The following derivatives are proposed by

Valanis and Landel to estimate the rubber-like material behavior.

dψ
dλi

= 2µ ln (λi) with i = 1, 2, 3 (4.65)

4.1.3.2 Ogden model

Ogden following the works by Hill, argued the complexity and weaknesses of in-

variants based models. The basic aim of developing Ogden’s model was to estimate

the mechanical response of rubber-like materials in moderate to high strain regions.

The free energy function obeys the Valanis-Landel hypothesis and defined as linear

combination of principle stretches. Ogden [27] proposed the following free energy

function which cannot be expressed in terms of I1 or I2 in a closed form,

ψ =

N∑
n=1

µn

αn

(
λαn

1 + λαn
2 + λαn

3 − 3
)
. (4.66)

First derivative of the free energy function withe respect to principle stretch ratios,

which is a necessary factor for obtaining first Piola-Kirchhoff stresses, takes the form

∂ψ

∂λi
=

N∑
n=1

µnλ
αn−1
i with i = 1, 2, 3 (4.67)

In general, as in our work, the upper limit for summation is taken as 3, (N = 3).

4.1.3.3 Slip-Link model

Following the work by Deam and Edwards [65], Ball et. al [30] proposed a model on

elasticity of entanglements of a network. They focused their on the sliding distance

between the entanglements during application of pure shear loading. They used affine

approach for cross-link points and used Gaussian method to approximate the sliding

freedom of chains between entanglement and cross-links. To sum up, the following

strain energy function is proposed for slip-link model

ψ =
µ1

2

3∑
i=1

λ2
i +

µ2

2

3∑
i=1

[
(1 + η) λ2

i

1 + ηλ2
i

+ ln
(
1 + ηλ2

i

)]
with i = 1, 2, 3 . (4.68)
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The first term in equation (4.68) represents the Gaussian part and the second term

stands for slipping freedom of the chains. Here, η is a measure used to approximate

the freedom of sliding between a rubber link and chain movement. The first derivative

of free energy function with respect to λi becomes

∂ψ

∂λi
= µ1

3∑
i=1

λi + µ2

3∑
i=1

 (1 + η) λi(
1 + ηλ2

i

)2 +
ηλi

1 + ηλ2
i

 with i = 1, 2, 3 . (4.69)

4.1.3.4 Constrained-Junction model

Flory and Erman in their works [66] and [31] proposed that the constitutive relations

in rubber elasticity are composed of two parts, namely phantom and constrained parts.

ψ = ψph + ψc (4.70)

The phantom part of is related to the molecular network of the rubber and the force

are assumed to be exerted directly at the junction points of the chains. They simply

choose Gaussian approximation of neo-Hooke model [2] for the phantom part of the

constitutive relation. The second part governs the constraints due to neighboring

chains. Fluctuations of phantom part of Gaussian network is assumed to be restricted

by the other chains in the network. Combination of the phantom and constrained part

of the theory yields the constrained junction model of the form

ψ = µ1 (I1 − 3) + µ2

3∑
i=1

[Bi + Di − ln (Bi + 1) − ln (Di + 1)] , (4.71)

where

Bi = κ2
(
λ2

i + κ
)−2

, (4.72)

and

Di = λ2
i κ
−1Bi (4.73)

The constitutive relation proposed above was aimed to catch the material response in

low and moderate strain regions. Now, one can derive the related derivatives of the

free energy function as

∂ψ

∂λi
= 2µ1λi + µ2

{
∂Bi

∂λi
+
∂Di

∂λi
−

1
(Bi + 1)

∂Bi

∂λi
−

1
(Di + 1)

∂Di

∂λi

}
, (4.74)
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where

∂Bi

∂λi
=

2κ2λi(
λ2

i + κ
)2

1 −
2
(
λ2

i − 1
)

λ2
i + κ

 (4.75)

and
∂Bi

∂λi
= 2λiκ

−1Bi + λ2
i κ
−1 ∂Bi

∂λi
. (4.76)

4.1.3.5 Shariff model

The proposed model by Shariff [46] is a separable function of principle stretches that

obeys the Valanis-Landel hypothesis. Free energy function is derived with purely

mathematical consideration. The simplest form of the strain energy function consists

of two material constants, however, in literature extension to model five parameter is

widely used. The compact form of Shariff model is as follow

ψ = E
3∑

i=0

αiφi , (4.77)

with the explicit form of φi as

φ0 =
2ln(λ)

3
φ1 = exp(1 − λ) + λ − 2,

φ2 = exp(λ − 1) − λ φ3 =
(λ − 1)3

λ3.6 ,

φ j = (λ − 1) j−1 for j = 4, 5, ..., n .

(4.78)

Fist derivative of free energy function with respect to principle stretches then become

∂ψ

∂λ
= E

3∑
i=0

αi
∂φi

∂λ
(4.79)

with

∂φ0

∂λ
=

2
3λ

∂φ1

∂λ
= 1 − exp (1 − λ) ,

∂φ2

∂λ
= exp(λ − 1) − 1

∂φ3

∂λ
=

3(λ − 1)2

λ3.6 −
3.6(λ − 1)3

λ4.6 ,

∂φ j

λ
= ( j − 1)(λ − 1) j−2 for j = 4, 5, ..., n .

(4.80)
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4.1.3.6 Attard-Hunt model

Attard and Hunt [51] used the idea given by Rivlin and Saunders [10] together with

neo-Hooke model [2] and proposed a principle stretch based model. With some mod-

ifications on Mooney-Rivlin model, a principle stretch based version of the model is

formulated by the writers. As it is obvious, the Valanis-Landel hypothesis is obeyed

to derive the following strain energy function

ψ =

m∑
n=1

[An

2n

(
λ2n

1 + λ2n
2 + λ2n

3 − 3
)

+
Bn

2n

(
λ−2n

1 + λ−2n
2 + λ−2n

3 − 3
)]
. (4.81)

Now, we can write the first derivative of strain energy function with respect to princi-

ple stretches as

∂ψ

∂λi
=

m∑
n=1

[
An

(
λ2n−1

i

)
− Bn

(
λ−2n−1

i

)]
with i = 1, 2, 3 . (4.82)

Note also that, in our work three term expansion of the constitutive relation (4.81),

which yields 6 material parameters, is used.

4.1.3.7 Bechir model

The starting point for formulation of strain energy function by Bechir [53] was the

neo-Hookean strain energy terms. It was tried to generalize the neo-Hookean free

energy function to well-suit the hyperelastic material response of rubber-like materi-

als. In order to make parameter identification studies with the minimum number of

experimental tests, separable form of Valanis-Landel is considered. The free energy

function of Bechir’s model is given as

ψ = C1
1

(
λ2

1 + λ2
2 + λ2

3 − 3
)

+

∞∑
n=2

∞∑
r=2

Cr
n

(
λ2n

1 + λ2n
2 + λ2n

3 − 3
)r
. (4.83)

To be consistent in the number of material parameters with other models, four term (4

material parameter) of expansion of Bechir model is taken into the account. Another

interesting fact regarding the Bechir model is the similarity of the proposed model

to that of Attard and Hunt [51], the only difference is the power term r in Bechir’s

model.
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First derivative of the strain energy function with respect to λ1, λ2, and λ3 are

∂ψ

∂λ1
= 2C1

1λ1 +

∞∑
n=2

∞∑
r=2

2n r Cr
nλ

2n−1
1

(
λ2n

1 + λ2n
2 + λ2n

3 − 3
)r−1

,

∂ψ

∂λ2
= 2C1

1λ2 +

∞∑
n=2

∞∑
r=2

2n r Cr
nλ

2n−1
2

(
λ2n

1 + λ2n
2 + λ2n

3 − 3
)r−1

,

∂ψ

∂λ3
= 2C1

1λ3 +

∞∑
n=2

∞∑
r=2

2n r Cr
nλ

2n−1
3

(
λ2n

1 + λ2n
2 + λ2n

3 − 3
)r−1

.

(4.84)

4.1.4 Mixed Invariant and Principle Stretch Based Models

4.1.4.1 WFB model

Weight function based (WFB) model is one of the interesting material models intro-

duced by Korba and Barkey [59]. The aim was to make a unique approach to fit the

model to uniaxial data. For this reason a weight function is added as a multiplicative

factor to the first invariant part of the free energy function. Free energy function for

the WFB model is given as

ψ =

∫ L f

1

{
F (λ) A

(
λe−BI1

)
+ C

(
λI−D

1

)} (
λ −

1
λ

)
dλ , (4.85)

where

F(λ) = FP1
(
λ2 + FP2

)−FP3
. (4.86)

Here F(λ) is the weight factor which is added to the strain energy function. In order to

get the constants of equation (4.86) fitting to the test data is done and related variation

of the weighting function is observed. The best suiting parameters causing minimum

error is selected as

F(λ) = 2.378e8
(
λ2 + 15.5128

)−7.0574
. (4.87)

To find the first derivative of free energy function with respect to principle stretches

simply integral term vanishes and one can obtain the following

∂ψ

∂λ
= F (λ) A

(
λe−BI1

)
+ C

(
λI−D

1

) (
λ −

1
λ

)
(4.88)

59



4.2 Micro-mechanics based material models

Micro-mechanical models utilizes the statistical mechanics techniques to explain me-

chanical behavior of rubber and rubber-like materials in macroscopic and microscopic

scales. The rubber, inherently, consists of long polymer chains which further consist

of rigid segments referred to as Kuhn segments. These segments are bonded at the

end-points to each other chemically, where they have rotation with respect to each

other. The chains form interconnections (via cross-linking or entanglement) that sep-

arates rubber from fluid, i.e., segments are constrained at certain points that poses a

restriction of motion (rotations, see [36]) of chain that manifested as shear.

A representative chain can be seen in Figure 4.1. Where, it consists of N segments

of equal length l. Thus, ideally, fully extended chain length becomes Nl. However,

since it is a representative chain, one must consider average values instead of abso-

lute quantities. Therefore, based on random walk theory [36], an undeformed chain

average end-to-end distance can be considered as the root mean square value of r,

that is r0 =
√

Nl. Two important dimensionless kinematic variables for definition of

deformation of a chain are stretch λ and relative stretch λr, and they are constructed

based on the end-to-end distance r as follows,

λ =
r
r0
, λr =

λ
√

N
(4.89)

It is obvious from the Figure 4.1 that rmax = Nl. Thus, one can obtain the range

of stretch and relative stretch from equation (4.89) as λ ∈ [0,
√

N) and λr ∈ [0, 1),

respectively for r → rmax.

FF

L = Nl

l

r

Figure 4.1: Micro-state of an undeformed chain
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Using statistical mechanics arguments, the end-to-end distance can be represented as

Probability Density Functions (PDFs). The Gaussian function (4.93) was the first

PDF that has historical importance and was simple enough to be mathematically

tractable, which led to neo-Hooke model. The so-called non-Gaussian methods are

devised for explaining a physical limitation on the extensibility of rubber chains. In

Gaussian theory chain end-to-end distance is not restricted in terms of elongation and

consequently this limits it to small strain setting. The Gaussian statistics is valid for

only r � Nl. In non-Gaussian theory, however, one can include the effect of chain ex-

tensibility limit and estimate the behavior of rubber for large strain. The well known

inverse Langevin function is the single-most important PDF for rubber community

which explains this phenomenon.

4.2.1 Entropy, free energy, and force definitions for single chain

In this part, we will briefly outline the development of the concepts of entropy, free

energy function, and force for a single chain. The entropy of a chain is defined as

the number of allowable conformations available to it. Let’s focus on the kinematic

variable λ for single chain. The probability of conformation of a chain to fall into the

geometry defined as λ and λ + dλ is,

dp(λ) = p(λ)dλ (4.90)

From the statistical mechanics, the entropy s is defined as [36],

s = k ln(p), (4.91)

where k is the Boltzmann constant. For a purely entropic response, the free energy is

described as

ψ = −T s. (4.92)

Where, T is the absolute temperature. For Gaussian statistics, p is taken as,

p(λ) = p0exp
[
−

3
2
λ2

]
, (4.93)

with p0 as a normalization constant. Insertion of it into the equation (4.91) and using

equation (4.92), the free energy for a single chain can be found as,
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Figure 4.2: Forces derived from Gaussian and non-Gaussian statistics result in an

asymptotic behavior when approaching extensibility limit λr → 1 [1]. Here, L = Nl.

ψ(λ) =
3
2

kTλ2 + ψ0 (4.94)

where ψ0 is a constant. The force on a single chain due to stretch is defined as,

f =
∂ψ

∂λ
(4.95)

Insertion of equation (4.94) into equation (4.95) results in,

f = 3kTλ (4.96)

which is linear with respect to λ, see Figure 4.2. This leads to the development of the

neo-Hooke model, ψ =
µ

2 (I1 − 3), see [36]. The Langevin model, on the other hand,

has the following PDF,

p(λ) = p0 exp
[
−N

(
λrβ + ln

(
β

sinh (β)

))]
, with β = L−1(λr) (4.97)

in terms of relative stretch λr. There,L (β) = λr = coth β−
1
β

is the Langevin function.

Using the definitions (4.91) and (4.92), free energy function can be found as,

ψL(λr) = NkT
(
λrβ + ln

β

sinh β

)
+ ψ0 (4.98)

where ψ0 is a constant. The corresponding force for the chain reads (using (4.95)),

f = kT
√

NL−1(λr). (4.99)

The force derived from the Langevin statistics results in an asymptotic behavior for

limiting chain extension (λr → 1), see Figure 4.2. This behavior allows a non-

Gaussian model to fit the rubber behavior more accurately for finite strain setting.
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4.2.2 Three-chain model

The three chain model is based on approximated network structure shown in Figure

4.3, where three perpendicular directions of the triad coincides with the three principal

directions. Utilizing Langevin statistics (equation (4.98)), one can derive the free

energy function of the three chain model as the summation of all chains contributing

in three principal directions for the representative network (Figure 4.3), that is

1

2

3

r0

r0

r0

Figure 4.3: Three chain model representative network structure.

Ψ(λ1, λ2, λ3) =
µ
√

N
3

3∑
i=1

(
λiβi +

√
N ln

(
βi

sinh βi

))
, with βi = L−1

(
λi
√

N

)
. (4.100)

Note that, λi is the stretch in the ith principal direction and µ = nkT is a material

parameter with n being the total number of chains statistically contributing to carry

the load in all three principal directions. The division by 3 in equation (4.100) is for

averaging the free energy in three principal direction. The free energy function fulfills

the Valanis-Landel hypothesis

Ψ(λ1, λ2, λ3) =
n
3

[
ψL(λ1) + ψL(λ2) + ψL(λ3)

]
(4.101)

4.2.3 Arruda-Boyce model

Also known as the 8-chain model, has the representative network structure as in Fig-

ure 4.4. The cube end points are considered as junction points and the center point

(due to symmetry) obeys an affine transformation and remains at the geometric center

of the cube during the deformation, even though it is considered statistically fluctuat-
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ing [36], [9].

1

2

3

r0

a0

a0

a0

Figure 4.4: Eight chain model representative network structure.

The stretch of the diagonal formed by the principal stretches is defined as

λch :=
r
r0

=

√
(λ2

1 + λ2
2 + λ2

3)/3 =
√

I1/3. (4.102)

Using the above made definition, the free energy function of the Arruda-Boyce model

can be written as

Ψ(λch) = n · ψL(λch) (4.103)

4.2.4 Tube model

As the name of the model implies, Heinrich and Kaliske [40] proposed that the molec-

ular chain is constrained in a tube formed by the other chains in the network. Taking

the affine coupling of network and entanglements, a non-affine assumption for defor-

mation of tube dimension in lateral direction is mode. Deformation of the molecular

chains conformed in the tube is considered to be proportional to the macroscopic de-

formation of the network. Probability of conformation of the end-to-end distance of

chain in the constraining tube is modeled by random walk distribution function

P (R(s)) = exp
− 3

2b

∫ L

0
ds

(
∂R(s)
∂s

)2 . (4.104)

Here "R(s)" is the network chain path, "b" is the Kuhn’s statistical segment length,

"s" is the variable used for counter, and "L" is the length of the polymeric chain under
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stretch.

Elastic strain energy function is considered to be composed of two parts. First part

is the strain energy function raised from the contribution of cross-links, the second

part on the other hand is related to the constraints which is due to the presence of

entanglements that cause variation of the tube diameter.

ψ = GcI∗ (2) +
2Ge

−β
I∗ (−β) . (4.105)

Here "β" can be considered as a penalty parameter used for fitting the model to ex-

perimental data curve. The possible bound for β can be considered as 0 ≤ β ≤ 1.

Then, the total shear modulus can be written as below

G = Gc + Ge (4.106)

The final form of the strain energy function for tube model is suggested as

ψ =

3∑
i=1

Gc

2

(
λ2

i − 1
)

+
2Ge

β2

(
λ
−β
i − 1

)
with i = 1, 2, 3 . (4.107)

One may have notice the similarity of the proposed model with Ogden’s model [27].

With µ1 = Ge, µ2 = −2Ge
β

, α1 = 2, and α2 = −β the 2-term Ogden model can be

retained.

Finally the first derivative of the free energy function with respect to first principle

stretches becomes

∂ψ

∂λi
=

3∑
i=1

Gcλi −
2Ge

β
λ
−β−1
i with i = 1, 2, 3 . (4.108)

4.2.5 Extended-Tube model

An improved form of tube model [40], which is named as extended-tube model, is

introduced by Kaliske ad Heinrich [45]. Unlike the previous one (tube model), the

present approach do not take the Valanis-Landel hypothesis into the account. Investi-

gating filler effect on the material response as well as molecular structure of rubber-

like materials, it was distinguished that, increasing the number of filler material (car-

bon black or silica) cause shaping short molecular chains showing almost inextensible

behavior. For moderate and large deformations, it was noted that cross-link part of

the strain energy function large effect to resemble the upturn of the stress-strain curve
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and make S-shape. The failure of Gaussian network theory of tube model is over-

came by a new non-affine and non-Gaussian term for cross-linking part. Skipping

the constraint part and replacing the cross-link part with the new function, following

extended-tube model is obtained

ψ =
Gc

2

[
(1 − δ2) (D − 3)
1 − δ2 (D − 3)

+ ln
(
1 − δ2 (D − 3)

)]
+

2Ge

β2

3∑
i=1

(
λ
−β
i − 1

)
. (4.109)

with

δ2 :=
〈
R
′2
〉

= α2
(

b
d0

)2

, (4.110)

D =

3∑
i=1

λ2
i . (4.111)

Here, α is a physical parameter that measures the inextensibility of the network

chains. Then, one can say that δ is a measure used for extensibility limit in large

deformations. The concept of limiting chain extensibility plays a crucial role in de-

veloping the extended-tube mode. At large deformations, where chains reach their

maximum elongations, cross-links has tremendous effect to generate the behavior of

rubber-like materials at high strain ranges, where constraint or entanglements do not

have contribution of significant level.

Now, first derivative of strain energy function with respect to principle stretches be-

come

∂ψ

∂λi
= Gcλi

 (1 − δ2)(
1 − δ2

(
λ2

i − 3
))2 −

δ2

1 − δ2
(
λ2

i − 3
)


−
2Ge

β
λ
−β−1
i

with i = 1, 2, 3 . (4.112)

4.2.6 Micro-sphere model

Overall Framework and Definitions of Stresses and Moduli

The macroscopic free energy of the network under isothermal conditions

Ψ = ˆΨ(g; F)

Additive split of the network free energy into volumetric and isochoric parts

Ψ̂(g; F) = U(J) + Ψ̄(g; F̄) where F̄ := J−1/3F
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Isochoric free energy formed by the contributions from free chains and topological

constraints on them

Ψ̄((g; F̄) = Ψ̄ f (g; F̄) + Ψ̄c(g; F̄)

The Doyle–Ericksen formulae give the Eulerian Kirchhoff stresses and the associated

moduli

τ = 2∂gΨ(g; F) , C = 4∂2
ggΨ(g; F)

The Kirchhoff stresses formulated through straight forward chain rule operation

τ = pg−1 + P : τ̄ where p := JU′(J) , P := I −
1
3

1 ⊗ 1

The chain rule Kirchhoff stresses

τ̄ = τ̄ f + τ̄cwith τ̄y := 2∂gΨ̄y(g; F̄) , y = f , c

Definitions of Micro–State Kinematical Variables

FFFF
d

L = Nl
l

rr

Figure 4.5: Micro-sphere kinematic variables.

Undeformed end-to-end distance of a chain,

r0 =
√

Nl (4.113)

Microscopic stretchs,

λ := r/r0 = r/
√

Nl , λr := r/L = λ/
√

N (4.114)

Constraining tube area contraction,

ν := (d0/d)2 (4.115)

Additive split of the free energy,

ψ(λ, ν) = ψ f (λ) + ψc(ν) (4.116)
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t = F̄ · r λ̄ λ

S

Figure 4.6: Affine transformation of a chain

Free energy of an unconstrained chain,

ψ f (λ) = Nkθ
[
λrL

−1(λr) + ln
L−1(λr)

sinhL−1(λr)

]
+ ψ0 (4.117)

Free energy due to the tube-like constraint,

ψc(ν) = αkθN
(

l
d0

)2
ν + ψ0 (4.118)

Non-Affine Model for the Network of Unconstrained Chains

Isochoric free energy formed by the contributions from free chains and topological

constraints on them

W = Ψ̄ f (g; F̄) + Ψ̄c(g; ḡ)

Microscopic chain stretch,

λ = 〈λ̄〉p :=
[

1
|S |

∫
S

λ̄p dS
]1/p

(4.119)

Contribution to the free energy,

Ψ̄ f (g; F̄) = nψ f (〈λ̄〉p) (4.120)

Explicit form of the free energy,

Ψ̄ f (g; F̄) = µN
[
〈λ̄r〉pL

−1(〈λ̄r〉p) + ln
L−1(〈λ̄r〉p)

sinhL−1(〈λ̄r〉p)

]
, µ := nkθ (4.121)

Network of Constrained Chains

Another new key feature of the model is inverse non–linear relation between the mi-

croscopic tube cross section area stretch ν and the macroscopic area stretch ν̄
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ν =

(
d0

d

)2
= (ν̄)q

The affine area stretch ν̄ of a material area element having normal r[ is given by

ν̄ =
∣∣∣n[∣∣∣g−1 :=

√
n[ · g−1n[ =

√
r[ · C̄−1r[ with n[ := F̄−T r[ (4.122)

Schematically, extension of the chains being perpendicular to the chain of interest

results in decrease in its admissible transverse excursions of the chain decreasing

number of available conformations

Non–Affine Model for the Network of Constrained Chains

r0

r0

d0 d<d0
a0 a>a0

Micro-tube contraction,

ν = (ν̄)q (4.123)

Contribution to the free energy,

Ψ̄c(g; F) = 〈nψc(ν̄q)〉 (4.124)

Explicit form of the free energy,

Ψ̄c(g; F) = µNU〈ν̄q〉 , U := α(l/d0)2 (4.125)

Kirchhoff stresses,

τ̄c = −n〈ψ′cqν̄
(q−2),n ⊗ n〉 (4.126)

Material parameter q describes the non–affine relation between macro- and micro-

kinematic measures.
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4.2.7 Khiem (network averaging tube) model

Network averaging approach used by Khiem and Itskov [58] was proposed as an alter-

native form of extended-tube [45] model. Polymeric chains are considered as coarse-

grained model and Rayleigh non-Gaussian distribution function is used to approxi-

mate the end-to-end distance of the chains. Applied force on the coarse-grained seg-

ment can be calculated through dumbbell model with two particle joined by finitely

extensible spring.The motion of spring in undeformed state can be approximated by

Schrödinger equation as

Peq =

{ n
πr

sin
(
πr
n

)}2
. (4.127)

Then, the probability density function for end-to-end distance of κ
2n number of iden-

tical segments are written as

Pc (r) =

κ
2 n∏

i=1

Peq = A
{ n
πr

sin
(
πr
n

)}κn
, (4.128)

with

A = Pexact
c

(
n, 10−2

)
(4.129)

is used for normalization.

The non-Gaussian strain energy function can be written as

ψc (n, r) = −kBT ln (Pc (r)) = nkBTκ ln

 πr

n sin
(
πr
n

)
 + C. (4.130)

The strain energy of the topological constraints causing lateral deformation of tube is

written as

ψt = −kBT ln Pt = kBTα
(
π2R
3D2

) (D
d

)2

, (4.131)

with
(

D
d

)2
being the tube contraction.

Averaging equations (4.130) and (4.131) yields the following strain energy function

for network averaging tube model.

ψ = µcκn ln
sin

(
π/
√

n
)

(I1/3)q/2

sin
((
π/
√

n
)

(I1/3)q/2
) + µt

[( I2

3

)1/2

− 1
]
. (4.132)

Here, µcκ is the effective shear modulus of the network and µt is the shear modulus of

topological constraint part. The writers prefer to use Rayleigh distribution function
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instead of Langevin functions because of the difficulties encountered during the inte-

gration of Langeving functions. To get rid of integration, Rayleigh exact distribution

function is used.
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CHAPTER 5

PARAMETER OPTIMIZATION

5.1 Parameter optimization preliminaries

The parameter identification process is based on the description of an objective func-

tion

EUT(ζ) =

nUT∑
i=1

(P11(ζ, λi) − Pexp
11 (λi))2 (5.1)

where, P11 is the first Piola-Kirchhoff stress and nUT is the number of data points for

uniaxial tension (UT) test. Similarly, the cost functions for the equibiaxial tension

(ET) and pure shear (PS) tests

EET(ζ) =
nET∑
i=1

(P11(ζ, λi) − Pexp
11 (λi))2

EPS(ζ) =
nPS∑
i=1

(P11(ζ, λi) − Pexp
11 (λi))2

(5.2)

can be defined for ET and PS experiments. The total cost function for multi-objective

optimization incorporation UT, ET and PS experiments reads

ETOT(ζ,w) = w1EUT(ζ) + w2EET(ζ) + w3EPS(ζ) (5.3)

with the extended parameter domain ξ := {ζ,w} which is obtained from the mini-

mization principle

ξ = Arg
{

inf
ξ∈W
ETOT(ξ)

}
. (5.4)

Therein, the optimization procedure is subjected to the following constraint domain

W = {ζ | ζ ∈ D ∧ w | wi ∈ [0, 1]} . (5.5)

with w1 + w2 + w3 = 1. The domain D is the physical admissible domain for the

material parameter vector ζ.
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The gradient type solution is achieved by Fmincon function in Matlab where the

extended cost function

L(ξ, λeq, λine) = Etot(ξ) +
∑

i

λine
i gi(ξ) +

∑
i

λ
eq
i hi(ξ) (5.6)

is subjected to equality constraints hi(ξ) and the inequality constraints gi(ξ), respec-

tively. For the optimum point of solution, the variational principle requires

∇ξL(ξ, λeq, λine) = 0 , (5.7)

along with the Karush-Kuhn-Tucker optimality conditions for the inequality con-

straints

λine
i ≥ 0 gi(ξ) ≤ 0 λine

i gi(ξ) = 0 , (5.8)

where λine
i are the Lagrange multipliers for the inequality constraint. The equality

constraint

hi(ξ) = 0 (5.9)

is enforced by the penalty parameters λeq
i . The function call in Matlab is as follows:

ξ = Fmincon(E, ξ0, A, b, Aeq, beq) (5.10)

with equality constraint Aeqξ = beq and the inequality constraint Aξ ≤ b. Interior-

point algorithm used. Furthermore, Aeq stands for coefficient matrix of equality con-

straint, beq is right-hand side vector for equality constraint, A defines the coefficient

matrix for inequality constraint, b is right-hand side vector for inequality constraint,

and ξ0 are the initial points.

5.2 Genetic Algorithm Approach

Let ai j denote a gene at location i on an ordered list A j = {a1 j, a2 j, . . . , an j} that de-

notes the jth chromosome. Here, n, is the number of genes in a chromosome. A

person consists of single or multiple chromosomes. A population consists of N per-

sons. In this work, a person has a single chromosome. Therefore, j represents a

person’s only chromosome and it is interchangeably used for a person or a person’s

only chromosome throughout the paper.

The constraints are defined over each slot in A j,

ai j ∈ {ci | ci ∈ [mini,maxi]} ∀i ∈ [1, n − 2) (5.11)

74



ai j ∈ {wi | wi ∈ [0, 1]} ∀i ∈ [n − 2, n] (5.12)

The notation |Ai j| = ai j will be used to refer to a specific gene at ith slot in jth chromo-

some,

Let’s partition A j into two important sections,

L j = {a1 j, a2 j, . . . , a(n−3) j}

R j = {a(n−2) j, a(n−1) j, an j},
(5.13)

with A j = L j ∪ R j. The genetic algorithm parameter optimization relies on the same

definition for the cost (or fitness) function as in multi-objective optimization,

EGA(L j,R j) = |R1 j| EUT(L j)+

|R2 j| EET(L j)+

|R3 j| EPS(L j)

(5.14)

The ordered lists L j and R j represent parameters and weights of a model, respectively.

Note that, weights are subjected to the constraint,

n∑
α=n−2

aα j = 1 (5.15)

The tuple, A∗t =< L∗j,R
∗
j >t

A∗t = min({EGA(< L j,R j >t),∀ j ∈ [0, n]}) (5.16)

represents the optimal (or fittest) person (or the lowest cost) at iteration t. The meta-

heuristic search for optimization requires modifications (or alterations) of the chro-

mosomes, that is, the chromosomes are subjected to probabilistic operations known

as cross-over, mutation, and selection.

Mutation operator,

...

...

...

...

A

A’

A

A’

a) b)

Figure 5.1: Pictorial representations of types of mutations, a) standalone mutation

operator, b) multiple-mutations operator
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MUT(Ak, s) := rand(0, 1)αask+

rand(0, 1)(ask + randβ)
(5.17)

where, α is a proportionality constant called mutation amplitude and β is a severe

direct mutation. In this operation, s ∈ [1, n]. Mutation operation is complete if,

ask ← MUT(Ak, s) (5.18)

Multiple mutation operator, The generalization of mutation operator is called multiple

mutations,

MMUT(Ak, r) :=


MUT(Ak, s1)

MUT(Ak, s1)

. . .

MUT(Ak, sr)


(5.19)

Then, the multiple mutations are complete if all the components are subjected to mu-

tation.



a1k

a2k
...

an


←



MUT(Ak, 1)

MUT(Ak, 2)
...

MUT(An, r)


(5.20)

Cross-over operator, For a chromosome k, a general partitioning operation is defined

...

...

...

A

B

C

Figure 5.2: Pictorial representation of cross-over operator.

as,
Ak|m− = {a1k, a2k, . . . , a(m−1)k}

Ak|m+ = {amk, a(m+1)k, . . . , ank}
(5.21)

The cross-over operator is defined as,

CO(Ak, Al,m±) := cat(MMUT(perm(Ak, Al))) (5.22)
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CreateN samples withn genes

Natural selection and sort fittest→ poorest

Choose the best offspring

Check tolerance
E < TOL

YES

NO

The best offspring

M
ultistartprocedure

Cross-over operation over top 80% offsprings

Random mutations

Reinitialize the bottom 20% offsprings

Apply natural selection

Choose the best offspring

Figure 5.3: Parameter identification procedure.

where, cat(·, ·) represents concatenation of two ordered lists. perm(Ak|m± , Al|m±) repre-

sents one of the two possible orderings, namely < Ak|m+ , Al|m− > and < Ak|m− , Al|m+ >.

Selection operator,

Selection process is defined over a set of persons on their fitness (or cost) values. The

ordered list Pt = {At
j | ∀ j ∈ [1,N]} is the list of persons at iteration t. The selection

operator is defined as follows,

SEL(Pt, o) := sort(EGA(Pt))|o− (5.23)

Validity Range Approach

The error measure E is not a valid measure to assess the performance of the consti-

tutive model, specially for the models that are not able to catch the S-shape response

of the material in full range. In order to make an objective measure and compare
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the models’ prediction a validity range approach is introduced. Note that, the men-

tioned approach is applied only for simultaneous fitting. We introduce an alternative

expression called as the quality of fit expression

χ2 =

n∑
i=1

(P11(λi) − Pexp
11 (λi))2

Pexp
11 (λi)

(5.24)

for the assessment of the performance of the model through full range of data set.

This measures the relative value of model’s error to the experimental data.

Region 1 : 1 < λ < 1
3λmax

Region 2 : 1 < λ < 2
3λmax

Region 3 : 1 < λ < λmax

where, λmax is the maximum stretch levels in each experiment.
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CHAPTER 6

RESULTS AND DISCUSSION

6.1 Ranking of hyperelastic material models

In this section the material models that their parameters are identified and sorted ac-

cording to their quality of fit measure. The ranking is done according to the simulta-

neous fitting quality considered hyperelastic constitutive relations. Unlike the other

works, like the one proposed by Marckmann and Verron [13], for the ranking, we did

not consider number of parameters of each material model. In the same study, type

of the material models are also an important factor to rank the constitutive models,

they gave priority to the physically based material models. However, in our case, only

quality of fit measure which provides an objective measure is taken into the account.

For the models that are not able to generate the S-shape curve, the results are obtained

by validity range approach. Sorted results are presented in Tables 6.1 and 6.2, where

qo fS IM is the quality of fit values for simultaneous fits. nop denotes the number of

parameters taken for each model during parameter identification. Validity range val-

ues on synthetic data for λUT , λET , and λPS are listed in the last three columns. The

range that each model is able to fit the data points are also presented.

Detailed resulting tables for each constitutive material model are presented in the next

subsections. One can also reach the quality of fit values for uniaxial and biaxial fit

from the presented results and sort the material models according to the obtained val-

ues. Further results for equibiaxial only and pure shear fittings are also provided in

Appendices A and B.
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Following observations during the parameter identification study has been concluded

• first invariant based models are not capable of reproducing UT, ET, PS test data

simultaneously,

• simple uniaxial tension experiment is enough to obtain parameters for first in-

variant based models,

• Phenomenological models based on I1 and I2 are more successful than the I1-

based models,

• the models having tube constraint or I2 expression in the free energy function

over 3 material parameters cannot be identified by simple UT-tests alone,

• UT, ET, and PS experiments are necessary to find material parameters for {I1, I2}-

based, principle stretch-based, and models incorporating tube constraints,

• principal stretch based models require more material parameters compared to

invariant based models for the same level of fit of quality,

• micromechanically based models must have a tube-like constraint and physi-

cally motivated non-affine average network stretch,

• the most successful models have either a tube constraint in terms of negative

powers of the principal stretches or a I2-based term.
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6.2 Results of hyperelastic material models

6.2.1 Micro-sphere model mesults

Due to the well-defined physically motivated theory behind the micro-sphere model,

and existence of a non-affine tube constraint, as it was expected, excellent agreement

with experimental data is reached. Fitting results are graphically given in Figure

6.1 and numerical results for simultaneous, uniaxial and biaxial fittings are given in

Tables 6.3, 6.4, and 6.5, respectively.
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Figure 6.1: Micro-Sphere model prediction for a) uniaxial tension, b) combination of

uniaxial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial tension

loading for λ1 : 1.04−1.24, d) biaxial tension loading for λ1 : 1.3−3.7 using Kawabata

data.

83



Simultaneous fitting (Treloar)

Parameters
µ=0.2902 [MPa] N=22.5298 p=1.5326

U=0.2908 q=0.2389

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.4805 0.0752 0.0072 0.0117 0.0273

ET 0.3172 0.0066 0.0241 0.0249 0.0264

PS 0.2023 0.0077 0.0131 0.0135 0.0176

Total 1.0000 0.0895 0.0444 0.0501 0.0713

Table 6.3: Simultaneous fitting results for Micro-Sphere model.

UT only fit (Treloar)

Parameters
µ=0.2678 [MPa] N=24.8289 p=1.8966

U=2.8190 q=0.0216

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.0722 0.0119 0.0168 0.0310

ET 0 0.3817 0.0366 0.0725 0.2533

PS 0 0.0071 0.0209 0.0258 0.0265

Total 1 0.4610 0.0694 0.1151 0.3108

Table 6.4: Uniaxial tension results for Micro-Sphere model.

Biaxial fit (Kawabata)

Parameters
µ=0.3774 [MPa] N=100.02 p=1.2386

U=0.0728 q=0.0941

Quality of fit: 0.3930 Biaxial error: 0.1160

Table 6.5: Biaxial tension results for Micro-Sphere model.
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6.2.2 Alexander model results

It is observed in this study that the Alexander’s model has excellent simultaneous

fitting capabilities, also for individual loading cases it catches the S-curve perfectly

using Treloar’s data. Fitting results are graphically given in Figure 6.2 and numerical

results for simultaneous, uniaxial and biaxial fittings are given in Tables 6.6, 6.7, and

6.8, respectively.
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Figure 6.2: Alexander’s model prediction for a) uniaxial tension, b) combination of

uniaxial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial tension

loading for λ1 : 1.04−1.24, d) biaxial tension loading for λ1 : 1.3−3.7 using Kawabata

data.
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Simultaneous fitting (Treloar)

Parameters
C1=0.1403 [MPa] C2=0.2542 [MPa] C3=0.0022 [MPa]

γ=5.8088 k=3.46e − 4

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.3001 0.1073 0.0072 0.0094 0.0307

ET 0.3999 0.0079 0.0226 0.0236 0.0261

PS 0.3000 0.0035 0.0119 0.0123 0.0137

Total 1.0000 0.1188 0.0417 0.0453 0.0705

Table 6.6: Simultaneous fitting results for Alexander model.

UT only fit (Treloar)

Parameters
C1=0.1389 [MPa] C2=0.0089 [MPa] C3=0.0300 [MPa]

γ=0.1390 k=3.49e − 4

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.1045 0.0026 0.0039 0.0251

ET 0 68.1298 0.0057 0.5494 33.5362

PS 0 0.0902 0.0047 0.0059 0.0670

Total 1 68.3245 0.0130 0.5592 33.6283

Table 6.7: Uniaxial tension fitting results for Alexander model.

Biaxial fit (Kawabata)

Parameters
C1=0.1570 [MPa] C2=0.2124 [MPa] C3=0.0020 [MPa]

γ=7.6605 k=7.61e − 9

Quality of fit: 0.5078 Biaxial error: 0.1626

Table 6.8: Biaxial tension results for Alexander model.
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6.2.3 Diani and Rey model results

Obtained results for Diani and Rey model are also in good agreement with experimen-

tal data. Introducing a logarithmic power term in the proposed constitutive relation,

makes the simultaneous fitting results to be in perfect agreement with experimental

data in higher stretch values. Fitting results are graphically given in Figure 6.3 and

numerical results for simultaneous, uniaxial and biaxial fittings are given in Tables

6.9, 6.10, and 6.11, respectively.
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Figure 6.3: Diani and Ray’s model prediction for a) uniaxial tension, b) combination

of uniaxial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial tension

loading for λ1 : 1.04−1.24, d) biaxial tension loading for λ1 : 1.3−3.7 using Kawabata

data.
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Simultaneous fitting (Treloar)

Parameters
exp(a0)=0.1350 [MPa] a1=0.0018 a2=3.26e − 4

exp(b0)=0.1020 [MPa] b1=−0.6250

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.1002 0.1104 0.0065 0.0074 0.0295

ET 0.7998 0.0119 0.0220 0.0275 0.0300

PS 0.1000 0.0024 0.0120 0.0122 0.0129

Total 1.0000 0.1246 0.0405 0.0472 0.0724

Table 6.9: Simultaneous fitting results for Diani and Ray model.

UT only fit (Treloar)

Parameters
exp(a0)=0.0338 [MPa] a1=0.0221 [MPa] a2=3.15e − 4 [MPa]

exp(b0)=0.0552 [MPa] b1=0.9985

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.0870 0.0087 0.0118 0.0289

ET 0 2.79e7 0.0332 4.54e3 1.25e7

PS 0 422.3282 0.0118 2.0064 269.8971

Total 1 2.79e7 0.0537 4.54e3 1.25e7

Table 6.10: Uniaxial tension results for Diani and Ray model.

Biaxial fit (Kawabata)

Parameters
exp(a0)=0.1723 [MPa] a1=−0.0358 [MPa] a2=0.0011 [MPa]

exp(b0)=0.0472 [MPa] b1=−0.4332

Quality of fit: 0.2844 Biaxial error: 0.1131

Table 6.11: Biaxial tension results for Diani and Ray model.

88



6.2.4 Extended tube model results

With four number of material parameters, extended-tube model shows a high fitting

performance in simultaneous fitting. Using the obtained values for material constants

in uniaxial tension, one can also reach reasonable results in equibiaxial and pure shear

loadings. Fitting results are graphically given in Figure 6.4 and numerical results for

simultaneous, uniaxial and biaxial fittings are given in Tables 6.12, 6.13, and 6.14,

respectively.
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Figure 6.4: Extended-Tube model prediction for a) uniaxial tension, b) combination

of uniaxial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial tension

loading for λ1 : 1.04−1.24, d) biaxial tension loading for λ1 : 1.3−3.7 using Kawabata

data.
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Simultaneous fitting (Treloar)

Parameters
Gc=0.1933 [MPa] δ=0.0956 [MPa] Ge=0.1997

β=0.1691

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.2001 0.1350 0.0025 0.0062 0.0316

ET 0.5999 0.0262 0.0156 0.0376 0.0419

PS 0.2000 0.0031 0.0079 0.0081 0.0099

Total 1.0000 0.1644 0.0260 0.0519 0.0833

Table 6.12: Simultaneous fitting results for Extended-Tube model.

UT only fit (Treloar)

Parameters
Gc=0.1813 [MPa] δ=0.0971 [MPa] Ge=0.2414

β=2.12e − 5

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.1194 0.0088 0.0132 0.0361

ET 0 0.0636 0.0108 0.0714 0.0819

PS 0 0.0094 0.0076 0.0151 0.0178

Total 1 0.1924 0.0272 0.0996 0.1358

Table 6.13: Uniaxial tension results for Extended-Tube model.

Biaxial fit (Kawabata)

Parameters
Gc=0.2145 [MPa] δ=0.0909 [MPa] Ge=0.1833

β=−0.4109

Quality of fit: 0.3362 Biaxial error: 0.0997

Table 6.14: Biaxial tension results for Extended-Tube model.
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6.2.5 Shariff model results

Shariff model with five material parameters estimates the Treloar’s data set in simulta-

neous fitting very well. For the uniaxial results, the obtained parameters can generate

S-shape curve, however the parameters cannot be used for equibiaxial and pure shear

loadings. It seems that the material model targets Treloar’s data set and with other

experimental data it should be used with care. Fitting results are graphically given

in Figure 6.5 and numerical results for simultaneous, uniaxial and biaxial fittings are

given in Tables 6.15, 6.16, and 6.17, respectively.
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Figure 6.5: Shariff model prediction for a) uniaxial tension, b) combination of uniax-

ial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial tension loading

for λ1 : 1.04− 1.24, d) biaxial tension loading for λ1 : 1.3− 3.7 using Kawabata data.
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Simultaneous fitting (Treloar)

Parameters
E=1.1225 [MPa] α1=0.9353 α2=0.0377

α3=7.93e − 5 α4=0.0223

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.2000 0.1573 0.0124 0.0193 0.0477

ET 0.2000 0.0104 0.0247 0.0291 0.0311

PS 0.6000 0.0065 0.0113 0.0121 0.0150

Total 1.0000 0.1741 0.0484 0.0604 0.0938

Table 6.15: Simultaneous fitting results for Shariff model.

UT only fit (Treloar)

Parameters
E=1.2538 [MPa] α1=−4.1208 α2=0.0545

α3=10.5991 α4=−0.3132

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.0952 0.0048 0.0087 0.0276

ET 0 2.86e6 1.3102 5.38e6 1.29e10

PS 0 4.42e5 0.5885 808.1882 2.78e5

Total 1 2.86e6 1.9034 5.28e6 1.29e10

Table 6.16: Uniaxial tension results for Shariff model.

Biaxial fit (Kawabata)

Parameters
E=1.1155 [MPa] α1=0.8591 α2=0.0879

α3=8.55e − 6 α4=1.04e − 4

Quality of fit: 0.5179 Biaxial error: 0.1480

Table 6.17: Biaxial tension results for Shariff model.
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6.2.6 Carroll model results

As stated before, Carroll’s model is one of the most interesting constitutive hyper-

elastic models. With only three material parameters, it approximates experimental

data in simultaneous fitting with excellent performance. One may also reach good

performance using unixial fitting results on the other two experimental data (namely,

equibiaxial and pure shear loadings). Fitting results are graphically given in Figure

6.6 and numerical results for simultaneous, uniaxial and biaxial fittings are given in

Tables 6.18, 6.19, and 6.20, respectively.
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Figure 6.6: Carroll model prediction for a) uniaxial tension, b) combination of uniax-

ial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial tension loading

for λ1 : 1.04− 1.24, d) biaxial tension loading for λ1 : 1.3− 3.7 using Kawabata data.
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Simultaneous fitting (Treloar)

Parameters A=0.1453 [MPa] B=3.20e − 7 [MPa] C=0.1059 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.3399 0.1660 0.0119 0.0152 0.0473

ET 0.3301 0.0130 0.0359 0.0464 0.0476

PS 0.3300 0.0068 0.0200 0.0223 0.0238

Total 1.0000 0.1858 0.0679 0.0839 0.1188

Table 6.18: Simultaneous fitting results for Carroll model.

UT only fit (Treloar)

Parameters A=0.1431 [MPa] B=3.23e − 7 [MPa] C=0.1265 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.1650 0.0099 0.0131 0.0462

ET 0 0.0491 0.0304 0.0394 0.0598

PS 0 0.0057 0.0166 0.0177 0.0169

Total 1 0.2199 0.0569 0.0703 0.1256

Table 6.19: Uniaxial tension results for Carroll model.

Biaxial fit (Kawabata)

Parameters A=0.1470 [MPa] B=7.26e − 14 [MPa] C=0.1057 [MPa]

Quality of fit: 0.7148 Biaxial error: 0.2315

Table 6.20: Biaxial tension results for Carroll model.
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6.2.7 Network averaging tube model results

With four material parameters and physically interpretable parameter sets, network

averaging tube model results are in good agreement with Treloar’s data set in simul-

taneous fitting. For the uniaxial tension also well estimations are reached. However

using the parameter values in uniaxial tension can fit the eqibiaxial and pure shear

only in low stretch values. Fitting results are graphically given in Figure 6.7 and nu-

merical results for simultaneous, uniaxial and biaxial fittings are given in Tables 6.21,

6.22, and 6.23, respectively.

0

1

2

3

5

2 3 4 5 6 7 8

0

0.35

0.7

1.05

1.4

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.3

0.4

0.9 1 1.1 1.2 1.3

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

7

6

0.1

b)a)

d)c)

1

4

P 1
1

[M
P

a]

P 1
1

[M
P

a]

P 2
2

[M
P

a]

P 2
2

[M
P

a]

λ λ

λ2λ2

UT only fit Simultaneous fit

Biaxial fit (λ1 : 1.04− 1.24) Biaxial fit (λ1 : 1.3− 3.7)

UT data points

UT model fit
ET data points

ET model fit

PS data points

PS model fit

λ1 = 1.04
λ1 = 1.06
λ1 = 1.08
λ1 = 1.10
λ1 = 1.12
λ1 = 1.14
λ1 = 1.16
λ1 = 1.20
λ1 = 1.24

BT model fit BT model fit

λ1 = 1.3
λ1 = 1.6
λ1 = 1.9
λ1 = 2.2
λ1 = 2.5
λ1 = 2.8
λ1 = 3.1
λ1 = 3.4
λ1 = 3.7

Figure 6.7: Network averaging tube model prediction for a) uniaxial tension, b) com-

bination of uniaxial, equibiaxial, and pure shear loadings usning Treloar data c) biax-

ial tension loading for λ1 : 1.04 − 1.24, d) biaxial tension loading for λ1 : 1.3 − 3.7

using Kawabata data.
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Simultaneous fitting (Treloar)

Parameters
µck=0.0894 [MPa] n=21.0753 q=0.9518

µt=0.1709 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.1000 0.1177 0.0137 0.0184 0.0455

ET 0.8000 0.0207 0.0402 0.0573 0.0606

PS 0.1000 0.0104 0.0232 0.0274 0.0305

Total 1.0000 0.1489 0.0770 0.1031 0.1366

Table 6.21: Simultaneous fitting results network averaging tube model.

UT only fit (Treloar)

Parameters
µck=0.0673 [MPa] n=29.9998 q=1.0550

µt=0.3904 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.0684 0.0097 0.0129 0.0269

ET 0 1.5464 0.0215 0.1614 0.9384

PS 0 0.0734 0.0130 0.0142 0.0635

Total 1 1.6883 0.0442 0.1885 1.0287

Table 6.22: Uniaxial tension results network averaging tube model.

Biaxial fit (Kawabata)

Parameters
µck=0.1226 [MPa] n=27.8739 q=0.8318

µt=0.1875 [MPa]

Quality of fit: 0.3918 Biaxial error: 0.1160

Table 6.23: Biaxial tension results network averaging tube model.

96



6.2.8 Chevalier and Marco model results

Chevalier and Marco’s model with six material parameter are found to have well suit-

ing results in simultaneous fitting. That is due to the existence of second invariant

term governing the moderate to high stretch ranges. In uniaxial tension fitting alone,

fitting performance is also good, but the obtained parameters cannot generate equib-

iaxial and pure shear curves. Fitting results are graphically given in Figure 6.8 and

numerical results for simultaneous, uniaxial and biaxial fittings are given in Tables

6.24, 6.25, and 6.26, respectively.
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Figure 6.8: Chevalier and Marco’s model prediction for a) uniaxial tension, b) combi-

nation of uniaxial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial

tension loading for λ1 : 1.04− 1.24, d) biaxial tension loading for λ1 : 1.3− 3.7 using

Kawabata data.
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Simultaneous fitting (Treloar)

Parameters
a0=0.1585 [MPa] a1=−0.0023 [MPa] a2=1.18e − 4 [MPa]

b0=0.0020 [MPa] b1=0.2266 [MPa] b2=−0.4902 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.3226 0.3114 0.0161 0.0255 0.0834

ET 0.5643 0.0236 0.0290 0.0324 0.0428

PS 0.1131 0.0108 0.0138 0.0174 0.0221

Total 1.0000 0.3458 0.0588 0.0753 0.1482

Table 6.24: Simultaneous fitting results for Chevalier and Marco model.

UT only fit (Treloar)

Parameters
a0=0.1850 [MPa] a1=−0.0041 [MPa] a2=1.45e − 4 [MPa]

b0=6.40e − 7 [MPa] b1=2.25e − 6 [MPa] b2=−0.4149 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.2481 0.0416 0.0592 0.1070

ET 0 1.0966 0.1295 0.3545 0.8649

PS 0 0.0917 0.0736 0.0932 0.1350

Total 1 1.4364 0.2447 0.5069 1.1069

Table 6.25: Uniaxial tension results for Chevalier and Marco model.

Biaxial fit (Kawabata)

Parameters
a0=0.1647 [MPa] a1=−0.0041 [MPa] a2=−1.65e − 7 [MPa]

b0=0.0083 [MPa] b1=0.1110 [MPa] b2=−0.1110 [MPa]

Quality of fit: 0.3777 Biaxial error: 0.1180

Table 6.26: Biaxial tension results for Chevalier and Marco model.
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6.2.9 Ogden model results

Ogden model with six material parameters demonstrates well agreement in simulta-

neous fitting using Treloar’s data set. Uniaxial fitting results also estimate the material

response in good manner. However, obtained parameters through uniaxial fitting can

be used for pure shear throughout the curve and may be used to generate equibiaxial

curve in low stretch values. Fitting results are graphically given in Figure 6.9 and

numerical results for simultaneous, uniaxial and biaxial fittings are given in Tables

6.27, 6.28, and 6.29, respectively.
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Figure 6.9: Ogden model prediction for a) uniaxial tension, b) combination of uniax-

ial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial tension loading

for λ1 : 1.04− 1.24, d) biaxial tension loading for λ1 : 1.3− 3.7 using Kawabata data.
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Simultaneous fitting (Treloar)

Parameters
µ1=0.3640 [MPa] µ2=2.71e − 6 [MPa] µ3=−0.0166 [MPa]

α1=1.8729 α2=7.9910 α3=−1.8446

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.3333 0.1720 0.0161 0.0320 0.0631

ET 0.3334 0.0423 0.0371 0.0593 0.0736

PS 0.3333 0.0106 0.0177 0.0190 0.0237

Total 1.0000 0.2249 0.0709 0.1103 0.1604

Table 6.27: Simultaneous fitting results for Ogden model.

UT only fit (Treloar)

Parameters
µ1=0.2981 [MPa] µ2=2.68e − 6 [MPa] µ3=−0.0776[MPa]

α1=1.9738 α2=7.9898 α3=−1.5005

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.1649 0.0121 0.0173 0.0500

ET 0 1.3745 0.0360 0.1064 0.8319

PS 0 0.0093 0.0194 0.0211 0.0258

Total 1 1.5487 0.0675 0.1449 0.9077

Table 6.28: Uniaxial tension results for Ogden model.

Biaxial fit (Kawabata)

Parameters
µ1=0.5805 [MPa] µ2=0.0057 [MPa] µ3=−0.0170 [MPa]

α1=1.2928 α2=4.0643 α3=−1.6429

Quality of fit: 0.3128 Biaxial error: 0.0874

Table 6.29: Biaxial tension results for Ogden model.
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6.2.10 Amin model results

Amin model with six material constants represents a good agreement during the si-

multaneous fitting. Combination of first invariant and a first order second invariant

terms force the model to make S-turn and catch the material response curve at mod-

erate stretch values. The uniaxial fitting yiels also a good estimation, however the

obtained parameters cannot be used to generate equibiaxial and pure shear results.

Fitting results are graphically given in Figure 6.10 and numerical results for simulta-

neous, uniaxial and biaxial fittings are given in Tables 6.30, 6.31, and 6.32, respec-

tively.
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Figure 6.10: Amin model prediction for a) uniaxial tension, b) combination of uniax-

ial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial tension loading

for λ1 : 1.04− 1.24, d) biaxial tension loading for λ1 : 1.3− 3.7 using Kawabata data.
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Simultaneous fitting (Treloar)

Parameters
C2=0.0027 [MPa] C3=2.80e − 6 [MPa] C4=−94.7144 [MPa]

C5=94.8875 [MPa] M=6.64e − 5 N=2.8413

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.3406 0.1940 0.0159 0.0395 0.0708

ET 0.3739 0.0664 0.0220 0.0796 0.0969

PS 0.2855 0.0060 0.0073 0.0079 0.0108

Total 1.0000 0.2663 0.0452 0.1270 0.1785

Table 6.30: Simultaneous fitting results for Amin model.

UT only fit (Treloar)

Parameters
C2=0.0558 [MPa] C3=6.24e − 6 [MPa] C4=−4.24e − 5 [MPa]

C5=0.1340 [MPa] M=1.3400 N=2.6573

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.1905 0.0075 0.0126 0.0504

ET 0 258.4332 0.0182 2.6720 127.9011

PS 0 0.4059 0.0096 0.0293 0.3047

Total 1 259.0296 0.0352 2.7139 128.2562

Table 6.31: Uniaxial tension results for Amin model.

Biaxial fit (Kawabata)

Parameters
C2=0.0187 [MPa] C3=8.78e − 7 [MPa] C4=−0.0053 [MPa]

C5=0.1827 [MPa] M=1.3915 N=4.1112

Quality of fit: 0.8870 Biaxial error: 0.4078

Table 6.32: Biaxial tension results for Amin model.
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6.2.11 James model results

James model with five material constants predicts the material response curve in si-

multaneous fitting pretty well. For uniaxial loading case, response is also good, how-

ever the obtained parameter values cannot be used for equibiaxial and pure shear

loadings. Estimation of Kawabata’s biaxial data deviates from the actual response

curve at high stretch values. Fitting results are graphically given in Figure 6.11 and

numerical results for simultaneous, uniaxial and biaxial fittings are given in Tables

6.33, 6.34, and 6.35, respectively.
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Figure 6.11: James model prediction for a) uniaxial tension, b) combination of uniax-

ial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial tension loading

for λ1 : 1.04− 1.24, d) biaxial tension loading for λ1 : 1.3− 3.7 using Kawabata data.
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Simultaneous fitting (Treloar)

Parameters
C10=0.1827 [MPa] C01=0.0069 [MPa] C11=−8.40e − 5 [MPa]

C20=−0.0018 [MPa] C30=4.55e − 5 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.4397 0.2839 0.0376 0.0723 0.1186

ET 0.3978 0.0105 0.0252 0.0358 0.0366

PS 0.1625 0.0213 0.0098 0.0142 0.0256

Total 1.0000 0.3156 0.0726 0.1224 0.1808

Table 6.33: Simultaneous fitting results for James model.

UT only fit (Treloar)

Parameters
C10=−0.0752 [MPa] C01=0.3226 [MPa] C11=0.0477 [MPa]

C20=−0.0108 [MPa] C30=7.57e − 5 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.1740 0.0027 0.0064 0.0414

ET 0 6.42e5 0.2206 1.06e3 2.99e5

PS 0 860.3650 0.0837 4.7287 549.6365

Total 1 6.43e5 0.3070 1.06e3 3.00e5

Table 6.34: Uniaxial tension results for James model.

Biaxial fit (Kawabata)

Parameters
C10=0.1827 [MPa] C01=0.0069 [MPa] C11=−8.40e − 5 [MPa]

C20=−0.0018 [MPa] C30=4.55e − 5 [MPa]

Quality of fit: 0.3900 Biaxial error: 0.1385

Table 6.35: Biaxial tension results for James model.
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6.2.12 Haines-Wilson model results

Haines-Wilson model with six material constants also has a good agreement with

experimental data in simultaneous fitting. Uniaxial fitting results can also perfectly

generate S-shape. However, obtained results for uniaxial fitting cannot be used to

estimate equibiaxial and pure shear responses. Estimation of Kawabata’s biaxial data

shows good response especially in low stretch values. Fitting results are graphically

given in Figure 6.12 and numerical results for simultaneous, uniaxial and biaxial fit-

tings are given in Tables 6.36, 6.37, and 6.38, respectively.
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Figure 6.12: Haines-Wilson model prediction for a) uniaxial tension, b) combination

of uniaxial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial tension

loading for λ1 : 1.04−1.24, d) biaxial tension loading for λ1 : 1.3−3.7 using Kawabata

data.
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Simultaneous fitting (Treloar)

Parameters
C10=0.1883 [MPa] C01=0.0070 [MPa] C11=−8.60e − 5 [MPa]

C02=0.2.30e − 7 [MPa] C20=−0.0021 [MPa] C30=4.82e − 5 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.7994 0.2809 0.0522 0.0981 0.1425

ET 0.1005 0.0061 0.0202 0.0247 0.0253

PS 0.1001 0.0332 0.0079 0.0175 0.0349

Total 1.0000 0.3202 0.0803 0.1403 0.2027

Table 6.36: Simultaneous fitting results for Haines and Wilson model.

UT only fit (Treloar)

Parameters
C10=0.8030 [MPa] C01=−0.6734 [MPa] C11=0.1719 [MPa]

C02=−0.4665 [MPa] C20=−0.0302 [MPa] C30=1.28e − 4 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.1318 0.0072 0.0141 0.0392

ET 0 7.55e9 2.3391 1.00e6 3.38e9

PS 0 5.27e4 0.7942 205.072 3.35e4

Total 1 7.55e9 3.1405 1.00e6 3.38e9

Table 6.37: Uniaxial tension results for Haines and Wilson model.

Biaxial fit (Kawabata)

Parameters
C10=0.1699 [MPa] C01=0.0324 [MPa] C11=−0.0024 [MPa]

C02=7.58e − 10 [MPa] C20=−0.0072 [MPa] C30=7.01e − 4 [MPa]

Quality of fit: 0.3902 Biaxial error: 0.1385

Table 6.38: Biaxial tension results for Haines and Wilson model.
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6.2.13 Attard and Hunt model results

Attard and Hunt model with six material constants generates the material response

curve in simultaneous fitting pretty well. The uniaxial fitting results are also in good

agreement with Treloar’s uniaxial data. However, the results obtained through uniax-

ial data fitting cannot be used to estimate equibiaxial and pure shear loadings. Esti-

mation of Kawabata’s biaxial data shows good response in low stretch values. Fitting

results are graphically given in Figure 6.13 and numerical results for simultaneous,

uniaxial and biaxial fittings are given in Tables 6.39, 6.40, and 6.41, respectively.
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Figure 6.13: Attard and Hunt model prediction for a) uniaxial tension, b) combination

of uniaxial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial tension

loading for λ1 : 1.04−1.24, d) biaxial tension loading for λ1 : 1.3−3.7 using Kawabata

data.
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Simultaneous fitting (Treloar)

Parameters
A1=0.3959 [MPa] A2=−0.0097 [MPa] A3=2.84e − 4 [MPa]

B1=0.0088 [MPa] B2=−5.62e − 11 [MPa] B3=2.04e − 8 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.8000 0.2726 0.0429 0.0794 0.1249

ET 0.1000 0.0084 0.0217 0.0271 0.0285

PS 0.1000 0.0356 0.0085 0.0155 0.0347

Total 1.0000 0.3166 0.0731 0.1220 0.1881

Table 6.39: Simultaneous fitting results for Attard and Hunt model.

UT only fit (Treloar)

Parameters
A1=0.3849 [MPa] A2=−0.1763 [MPa] A3=9.46e − 4 [MPa]

B1=6.0338 [MPa] B2=−5.2236 [MPa] B3=1.5626 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.1220 0.0093 0.0170 0.0404

ET 0 6.82e14 0.3329 1.11e9 2.95e14

PS 0 3.21e7 0.2470 4.98e3 1.94e7

Total 1 6.82e14 0.5892 1.11e9 2.95e14

Table 6.40: Uniaxial tension results for Attard and Hunt model.

Biaxial fit (Kawabata)

Parameters
A1=0.5017 [MPa] A2=−0.0564 [MPa] A3=0.0042 [MPa]

B1=0.0160 [MPa] B2=−9.46e − 5 [MPa] B3=−1.74e − 7 [MPa]

Quality of fit: 0.4162 Biaxial error: 0.1397

Table 6.41: Biaxial tension results for Attard and Hunt model.
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6.2.14 4-term Bechir model results

Four term Bechir model with four material parameters demonstrates well agreement

in simultaneous fitting using Treloar’s data set. Uniaxial fitting results also estimate

the material response in good manner. However, obtained parameters through uniax-

ial fitting can be used for pure shear throughout the curve and may be used to generate

equibiaxial curve in low stretch values. Fitting results are graphically given in Figure

6.14 and numerical results for simultaneous, uniaxial and biaxial fittings are given in

Tables 6.42, 6.43, and 6.44, respectively.
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Figure 6.14: Bechir model prediction for a) uniaxial tension, b) combination of uniax-

ial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial tension loading

for λ1 : 1.04− 1.24, d) biaxial tension loading for λ1 : 1.3− 3.7 using Kawabata data.
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Simultaneous fitting (Treloar)

Parameters
C1

1=0.1806 [MPa] C1
2=0.0024 [MPa] C2

1=−0.0027 [MPa]

C2
2=3.47e − 7 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.1000 0.1731 0.0195 0.0444 0.0729

ET 0.8000 0.0435 0.0504 0.1011 0.1061

PS 0.1000 0.0121 0.0261 0.0299 0.0341

Total 1.0000 0.2287 0.0960 0.1754 0.2130

Table 6.42: Simultaneous fitting results for 4-term Bechir model.

UT only fit (Treloar)

Parameters
C1

1=0.2200 [MPa] C1
2=0.0123 [MPa] C2

1=−0.0123 [MPa]

C2
2=3.30e − 7 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.1628 0.0154 0.0197 0.0518

ET 0 34.5427 0.0434 0.3612 17.2239

PS 0 0.0379 0.0250 0.0285 0.0523

Total 1 34.7433 0.0838 0.4093 17.3280

Table 6.43: Uniaxial tension results for 4-term Bechir model.

Biaxial fit (Kawabata)

Parameters
C1

1=0.2635 [MPa] C1
2=0.0020 [MPa] C2

1=−0.0107 [MPa]

C2
2=9.05e − 6 [MPa]

Quality of fit: 0.8961 Biaxial error: 0.4033

Table 6.44: Biaxial tension results for 4-term Bechir model.
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6.2.15 Pucci and Saccomandi model results

Pucci and Saccomandi model with three material parameters generate reasonable re-

sults for simultaneous fitting. There observed some under estimation of equibiaxial

data. Uniaxail fitting performance of the model is also good and the obtained parame-

ter values can be used to estimate the other two curves. Biaxial fitting results however,

deviate from the data points at high stretch values. Fitting results are graphically given

in Figure 6.15 and numerical results for simultaneous, uniaxial and biaxial fittings are

given in Tables 6.45, 6.46, and 6.47, respectively.
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Figure 6.15: Pucci and Saccomandi’s model prediction for a) uniaxial tension, b)

combination of uniaxial, equibiaxial, and pure shear loadings usning Treloar data c)

biaxial tension loading for λ1 : 1.04−1.24, d) biaxial tension loading for λ1 : 1.3−3.7

using Kawabata data.
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Simultaneous fitting (Treloar)

Parameters C2=0.2575 [MPa] µ=0.2466 [MPa] Jm=82.3593

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.1000 0.0977 0.0011 0.0018 0.0225

ET 0.8000 0.3235 0.0114 0.0334 0.1922

PS 0.1000 0.0028 0.0068 0.0090 0.0097

Total 1.0000 0.4240 0.0193 0.0441 0.2243

Table 6.45: Simultaneous fitting results for Pucci and Saccomandi model.

UT only fit (Treloar)

Parameters C2=0.2995 [MPa] µ=0.2374 [MPa] Jm=80.9372

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.0732 0.0014 0.0021 0.0168

ET 0 0.3878 0.0138 0.0603 0.2450

PS 0 0.0060 0.0095 0.0156 0.0166

Total 1 0.4670 0.0248 0.0780 0.2784

Table 6.46: Uniaxial tension results for Pucci and Saccomandi model.

Biaxial fit (Kawabata)

Parameters C2=0.1490 [MPa] µ=0.3186 [MPa] Jm=93.5851

Quality of fit: 0.8167 Biaxial error: 0.3922

Table 6.47: Biaxial tension results for Pucci and Saccomandi model.
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6.2.16 Biderman model results

Biderman model with four material parameters generate reasonable results for simul-

taneous fitting. There observed some under estimation of equibiaxial data in mod-

erate stretch values. Uniaxail fitting performance of the model is also good and the

obtained parameter values can be used to estimate the pure shear only. Biaxial fitting

results however, deviate from the data points at high stretch values. Fitting results are

graphically given in Figure 6.16 and numerical results for simultaneous, uniaxial and

biaxial fittings are given in Tables 6.48, 6.49, and 6.50, respectively.
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Figure 6.16: Biderman model prediction for a) uniaxial tension, b) combination of

uniaxial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial tension

loading for λ1 : 1.04−1.24, d) biaxial tension loading for λ1 : 1.3−3.7 using Kawabata

data.
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Simultaneous fitting (Treloar)

Parameters
C10=0.1846 [MPa] C01=0.0029 [MPa] C20=−0.0018 [MPa]

C30=4.50e − 5 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.2000 0.2958 0.0380 0.0764 0.1237

ET 0.6000 0.0632 0.0281 0.0592 0.0825

PS 0.2000 0.0167 0.0109 0.0139 0.0228

Total 1.0000 0.3757 0.0770 0.1496 0.2289

Table 6.48: Simultaneous fitting results for Biderman model.

UT only fit (Treloar)

Parameters
C10=0.1763 [MPa] C01=6.16e − 6 [MPa] C20=−0.0019 [MPa]

C30=4.64e − 5 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.2530 0.0191 0.0353 0.0847

ET 0 1.0601 0.0427 0.1675 0.6946

PS 0 0.0864 0.0194 0.0213 0.0738

Total 1 1.3994 0.0812 0.2241 0.8531

Table 6.49: Uniaxial tension results for Biderman model.

Biaxial fit (Kawabata)

Parameters
C10=0.2012 [MPa] C01=0.0182 [MPa] C20=−0.0073 [MPa]

C30=4.89e − 5 [MPa]

Quality of fit: 0.9973 Biaxial error: 0.4505

Table 6.50: Biaxial tension results for Biderman model.
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6.2.17 Kilian ( van der Waals) model results

Van der Waals model with four material parameters generate reasonable results for

simultaneous fitting. There observed some under estimation of equibiaxial data in

moderate stretch values. Uniaxail fitting performance of the model is also good but

the obtained parameter values cannot be used to estimate the other two curves. Biaxial

fitting results however, deviate from the data points at high stretch values. Fitting

results are graphically given in Figure 6.17 and numerical results for simultaneous,

uniaxial and biaxial fittings are given in Tables 6.51, 6.52, and 6.53, respectively.
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Figure 6.17: Kilian (van der Waals) model prediction for a) uniaxial tension, b) com-

bination of uniaxial, equibiaxial, and pure shear loadings usning Treloar data c) biax-

ial tension loading for λ1 : 1.04 − 1.24, d) biaxial tension loading for λ1 : 1.3 − 3.7

using Kawabata data.
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Simultaneous fitting (Treloar)

Parameters
G=0.4064 [MPa] λm=10.5473 β=0.0079

a=0.2871

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.1000 0.2259 0.0301 0.0568 0.0940

ET 0.8000 0.1392 0.0187 0.0783 0.1378

PS 0.1000 0.0029 0.0068 0.0074 0.0087

Total 1.0000 0.3680 0.0556 0.1425 0.2404

Table 6.51: Simultaneous fitting results for Kilian (van der Waals) model.

UT only fit (Treloar)

Parameters
G=0.5180 [MPa] λm=5.2143 β=0.8704

a=0.2000

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.1067 0.0306 0.0347 0.0540

ET 0 4.16e4 0.1644 2.91e3 2.16e4

PS 0 7.32e3 0.0981 1.5550 4.12e3

Total 1 4.89e4 0.2931 2.91e3 2.57e4

Table 6.52: Uniaxial tension results for Kilian (van der Waals) model.

Biaxial fit (Kawabata)

Parameters
G=0.4705 [MPa] λm=12.0009 β=0.1481

a=0.3864

Quality of fit: 0.5409 Biaxial error: 0.2064

Table 6.53: Biaxial tension results for Kilian (van der Waals) model.
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6.2.18 Yamashita and Kawabata model results

Yamashita and Kawabata model with four material parameters generate reasonable

results for simultaneous fitting. There observed some under estimation of equibiaxial

data in low stretch values. Uniaxail fitting performance of the model is also good and

the obtained parameter values can be used to estimate the pure shear only. Biaxial

fitting results however, deviate from the data points at high stretch values. Fitting

results are graphically given in Figure 6.18 and numerical results for simultaneous,

uniaxial and biaxial fittings are given in Tables 6.54, 6.55, and 6.56, respectively.
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Figure 6.18: Yamashita and Kawabata’s model prediction for a) uniaxial tension, b)

combination of uniaxial, equibiaxial, and pure shear loadings usning Treloar data c)

biaxial tension loading for λ1 : 1.04−1.24, d) biaxial tension loading for λ1 : 1.3−3.7

using Kawabata data.
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Simultaneous fitting (Treloar)

Parameters
C2=0.0028 [MPa] C3=05.62e − 7 [MPa] C5=0.1620 [MPa]

N=3.2327

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.1000 0.1580 0.0212 0.0499 0.0745

ET 0.8000 0.0745 0.0594 0.1453 0.1550

PS 0.1000 0.0135 0.0326 0.0397 0.0428

Total 1.0000 0.2460 0.1131 0.2350 0.2723

Table 6.54: Simultaneous fitting results for Yamashita and Kawabata model.

UT only fit (Treloar)

Parameters
C2=0.0312 [MPa] C3=1.91e − 6 [MPa] C5=0.1466 [MPa]

N=2.9372

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.1630 0.0126 0.0218 0.0525

ET 0 74.0959 0.0326 0.6845 36.5417

PS 0 0.1225 0.0175 0.0220 0.1066

Total 1 74.3814 0.0627 0.7284 36.7009

Table 6.55: Uniaxial tension results for Yamashita and Kawabata model.

Biaxial fit (Kawabata)

Parameters
C2=0.0034 [MPa] C3=7.59e − 25 [MPa] C5=0.1966 [MPa]

N=9.3826

Quality of fit: 4.7639 Biaxial error: 2.3165

Table 6.56: Biaxial tension results for Yamashita and Kawabata model.
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6.2.19 Lion model results

Lion model with three material parameters generate reasonable results for simulta-

neous fitting. There observed some over estimation of uniaxial data in low stretch

values. Uniaxail fitting performance of the model is also good and the obtained pa-

rameter values can be used to estimate the pure shear only. Biaxial fitting results

however, deviate from the data points at high stretch values. Fitting results are graphi-

cally given in Figure 6.19 and numerical results for simultaneous, uniaxial and biaxial

fittings are given in Tables 6.57, 6.58, and 6.59, respectively.
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Figure 6.19: Lion model prediction for a) uniaxial tension, b) combination of uniax-

ial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial tension loading

for λ1 : 1.04− 1.24, d) biaxial tension loading for λ1 : 1.3− 3.7 using Kawabata data.
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Simultaneous fitting (Treloar)

Parameters C10=0.1689 [MPa] C01=0.0029 [MPa] C03=5.26e − 9 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.1008 0.2453 0.0245 0.0871 0.1354

ET 0.7992 0.0448 0.0480 0.1007 0.1054

PS 0.1000 0.0245 0.0237 0.0268 0.0427

Total 1.0000 0.3146 0.0961 0.2146 0.2835

Table 6.57: Simultaneous fitting results for Lion model.

UT only fit (Treloar)

Parameters C10=0.1724 [MPa] C01=9.62e − 5 [MPa] C03=5.17e − 9 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.2348 0.0277 0.1099 0.1469

ET 0 0.8370 0.0479 0.1245 0.5140

PS 0 0.0268 0.0229 0.0261 0.0440

Total 1 1.0985 0.0985 0.2605 0.7048

Table 6.58: Uniaxial tension results for Lion model.

Biaxial fit (Kawabata)

Parameters C10=0.1966 [MPa] C01=0.0034 [MPa] C03=2.00e − 15 [MPa]

Quality of fit: 4.7639 Biaxial error: 2.3165

Table 6.59: Biaxial tension results for Lion model.
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6.2.20 Beda model results

Beda model with four material constants generate reasonable results for simultaneous

fitting. There observed some under estimation of equibiaxial data in high stretch val-

ues. Uniaxail fitting performance of the model is also good and the obtained parame-

ter values can be used to estimate the pure shear only. Biaxial fitting results however,

deviate from the data points at high stretch values. Fitting results are graphically given

in Figure 6.20 and numerical results for simultaneous, uniaxial and biaxial fittings are

given in Tables 6.60, 6.61, and 6.62, respectively.
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Figure 6.20: Beda’s model prediction for a) uniaxial tension, b) combination of uniax-

ial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial tension loading

for λ1 : 1.04− 1.24, d) biaxial tension loading for λ1 : 1.3− 3.7 using Kawabata data.
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Simultaneous fitting (Treloar)

Parameters
C10= 0.1455 [MPa] B= 1.12e − 5 [MPa] K= 0.1816 [MPa]

α= 3.4920

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.1000 0.3097 0.0108 0.0192 0.0818

ET 0.8000 0.3793 0.0114 0.0250 0.2212

PS 0.1000 0.0043 0.0067 0.0109 0.0120

Total 1.0000 0.6933 0.0289 0.0550 0.3150

Table 6.60: Simultaneous fitting results for Beda model.

UT only fit (Treloar)

Parameters
C10= 0.1554 [MPa] B= 1.04e − 6 [MPa] K= 0.0162 [MPa]

α= 4.0841

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.1532 0.0227 0.0303 0.0596

ET 0 0.9476 0.0661 0.2192 0.6595

PS 0 0.0338 0.0391 0.0540 0.0653

Total 1 1.1346 0.1279 0.3035 0.7844

Table 6.61: Uniaxial tension results for Beda model.

Biaxial fit (Kawabata)

Parameters
C10= 0.1209 [MPa] B= 0.0290 [MPa] K= 0.1503 [MPa]

α= 1.3124

Quality of fit: 0.7338 Biaxial error: 0.3370

Table 6.62: Biaxial tension results for Beda model.
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6.2.21 Hart-Smith model results

Hart-Smith model with three material constants generate reasonable results for si-

multaneous fitting. There observed some under estimation of equibiaxial data in high

stretches. Uniaxail fitting performance is also good and the obtained parameter values

can be used to estimate the pure shear and equibiaxial data in low stretches. Biaxial

fitting results however, deviate from the data points at high stretch values. Fitting

results are graphically given in Figure 6.21 and numerical results for simultaneous,

uniaxial and biaxial fittings are given in Tables 6.63, 6.64, and 6.65, respectively.
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Figure 6.21: Hart-Smith model prediction for a) uniaxial tension, b) combination of

uniaxial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial tension

loading for λ1 : 1.04−1.24, d) biaxial tension loading for λ1 : 1.3−3.7 using Kawabata

data.
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Simultaneous fitting (Treloar)

Parameters G=0.1466 [MPa] k1=3.32e − 4 k2=1.0465

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.0500 0.1376 0.0084 0.0191 0.0441

ET 0.8999 0.4679 0.0148 0.0283 0.2638

PS 0.0501 0.0025 0.0074 0.0083 0.0094

Total 1.0000 0.6080 0.0306 0.0557 0.3173

Table 6.63: Simultaneous fitting results for Hart-Smith model.

UT only fit (Treloar)

Parameters G=0.1414 [MPa] k1=3.44e − 4 k2=1.0057

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.1071 0.0056 0.0070 0.0285

ET 0 0.6335 0.0210 0.0522 0.3688

PS 0 0.0132 0.0109 0.0116 0.0190

Total 1 0.7538 0.0375 0.0708 0.4163

Table 6.64: Uniaxial tension results for Hart-Smith model.

Biaxial fit (Kawabata)

Parameters G=0.1694 [MPa] k1=5.42e − 4 k2=0.8559

Quality of fit: 0.9457 Biaxial error: 0.4570

Table 6.65: Biaxial tension results for Hart-Smith model.
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6.2.22 Haupt and Sedlan model results

Haupt and Sedlan model with five material parameters generate reasonable results for

simultaneous fitting. Uniaxail fitting performance of the model is also good but the

obtained parameter values cannot be used to estimate the other two curves. Biaxial

fitting results however, deviate from the data points at high stretch values. Fitting

results are graphically given in Figure 6.22 and numerical results for simultaneous,

uniaxial and biaxial fittings are given in Tables 6.66, 6.67, and 6.68, respectively.
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Figure 6.22: Haupt and Sedlan’s model prediction for a) uniaxial tension, b) combi-

nation of uniaxial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial

tension loading for λ1 : 1.04− 1.24, d) biaxial tension loading for λ1 : 1.3− 3.7 using

Kawabata data.
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Simultaneous fitting (Treloar)

Parameters
c1=0.1405 [MPa] c2=0.0175 [MPa] c3=−6.45e − 4 [MPa]

c4=2.58e − 5 [MPa] c5=2.75e − 5 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.3748 0.5919 0.0318 0.0326 0.1623

ET 0.4086 0.0515 0.0664 0.1209 0.1292

PS 0.2166 0.0450 0.0435 0.0638 0.0812

Total 1.0000 0.6885 01418 .02174 0.3727

Table 6.66: Simultaneous fitting results for Haupt and Sedlan model.

UT only fit (Treloar)

Parameters
c1=−1.0379 [MPa] c2=1.4591 [MPa] c3=−0.0276 [MPa]

c4=0.4103 [MPa] c5=5.06e − 5 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.2135 0.0581 0.0709 0.1121

ET 0 6.17e9 7.5754 9.30e5 2.76e9

PS 0 7.76e4 2.7533 337.6778 4.94e4

Total 1 6.17e9 10.3869 9.30e5 2.76e9

Table 6.67: Uniaxial tension results for Haupt and Sedlan model.

Biaxial fit (Kawabata)

Parameters
c1=0.1746 [MPa] c2=0.0110 [MPa] c3=2.04e − 9 [MPa]

c4=−6.71e − 5 [MPa] c5=7.82e − 6 [MPa]

Quality of fit: 1.6340 Biaxial error: 0.7082

Table 6.68: Biaxial tension results for Haupt and Sedlan model.
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6.2.23 Exp-Ln model results

Exp-Ln model with three material constants generate reasonable results for simultane-

ous fitting. Here, the lack of I2 term in the strain energy function makes the model not

suitable for simultaneous fitting. Uniaxail fitting performance of the model is reason-

able but the obtained parameter values cannot be used for the other two experiments.

Biaxial fitting results deviate from the data points at high stretch values. Fitting results

are graphically given in Figure 6.23 and numerical results for simultaneous, uniaxial

and biaxial fittings are given in Tables 6.69, 6.70, and 6.71, respectively.
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Figure 6.23: Exp-Ln model prediction for a) uniaxial tension, b) combination of uni-

axial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial tension load-

ing for λ1 : 1.04 − 1.24, d) biaxial tension loading for λ1 : 1.3 − 3.7 using Kawabata

data.
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Simultaneous fitting (Treloar)

Parameters A=0.2182 [MPa] a=0.0169 b=0.1978 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.1000 0.7728 0.0477 0.0613 0.2409

ET 0.8000 0.4299 0.0090 0.1005 0.3069

PS 0.1000 0.0081 0.0087 0.0126 0.0168

Total 1.0000 1.2108 0.0654 0.1744 0.5647

Table 6.69: Simultaneous fitting results for Exp-Ln model.

UT only fit (Treloar)

Parameters A=0.2239 [MPa] a=0.0184 b=0.2532 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.4099 0.0323 0.0856 0.1539

ET 0 1.1058 0.0076 0.1973 0.7470

PS 0 0.2528 0.0103 0.0197 0.1984

Total 1 1.7685 0.0502 0.3026 1.0993

Table 6.70: Uniaxial tension results for Exp-Ln model.

Biaxial fit (Kawabata)

Parameters A=0.2393 [MPa] a=5.63e − 9 b=0.0299 [MPa]

Quality of fit: 5.4195 Biaxial error: 2.5200

Table 6.71: Biaxial tension results for Exp-Ln model.
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6.2.24 Yeoh model results

Yeoh model captures the S-curve for individual loading cases, however, for simulta-

neous fitting it underestimates the equibiaxial and pure shear curves. This is due to

the absence of second invariant terms in the strain energy function. Uniaxail fitting

performance of the model is reasonable but the obtained parameter values cannot be

used for the other two experiments. Fitting results are graphically given in Figure

6.24 and numerical results for simultaneous, uniaxial and biaxial fittings are given in

Tables 6.72, 6.73, and 6.74, respectively.
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Figure 6.24: Yeoh model prediction for a) uniaxial tension, b) combination of uniax-

ial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial tension loading

for λ1 : 1.04− 1.24, d) biaxial tension loading for λ1 : 1.3− 3.7 using Kawabata data.
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Simultaneous fitting (Treloar)

Parameters C10=0.1816 [MPa] C20=−0.0014 [MPa] C30=3.95e − 5 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.2000 0.4467 0.0320 0.0823 0.1671

ET 0.6000 0.5579 0.0356 0.1080 0.3806

PS 0.2000 0.0065 0.0147 0.0162 0.0194

Total 1.0000 1.0110 0.0823 0.2065 0.5671

Table 6.72: Simultaneous fitting results for Yeoh model.

UT only fit (Treloar)

Parameters C10=0.1765 [MPa] C20=−0.0019 [MPa] C30=4.65e − 5 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.2530 0.0192 0.0356 0.0850

ET 0 1.0646 0.0426 0.1669 0.6965

PS 0 0.0864 0.0193 0.0212 0.0737

Total 1 1.4040 0.0810 0.2237 0.8551

Table 6.73: Uniaxial tension results for Yeoh model.

Biaxial fit (Kawabata)

Parameters C10=0.2117 [MPa] C20=0.0031 [MPa] C30=−1.48e − 4 [MPa]

Quality of fit: 4.7418 Biaxial error: 2.2867

Table 6.74: Biaxial tension results for Yeoh model.
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6.2.25 Two-term model results

Two-term model captures the S-curve for individual loading cases, however, for si-

multaneous fitting it underestimates the equibiaxial curves. This is due to the absence

of second invariant terms in the strain energy function. Uniaxail fitting performance

of the model is reasonable but the obtained parameter values cannot be used for the

equibiaxial experimental data. For biaxial tension results show pure estimations. Fit-

ting results are graphically given in Figure 6.25 and numerical results for simultane-

ous, uniaxial and biaxial fittings are given in Tables 6.75, 6.76, and 6.77, respectively.
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Figure 6.25: Two-Term model prediction for a) uniaxial tension, b) combination of

uniaxial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial tension

loading for λ1 : 1.04−1.24, d) biaxial tension loading for λ1 : 1.3−3.7 using Kawabata

data.
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Simultaneous fitting (Treloar)

Parameters
α1=0.9499 α2=3.9197 µ1=0.3509 [MPa]

µ2=8.56e − 5 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.1000 0.2770 0.0231 0.0692 0.1160

ET 0.8000 0.6362 0.0439 0.1357 0.4358

PS 0.1000 0.0081 0.0202 0.0220 0.0254

Total 1.0000 0.9213 0.0872 0.2269 0.5772

Table 6.75: Simultaneous fitting results for two-term model.

UT only fit (Treloar)

Parameters
α1=1.0887 α2=4.9286 µ1=0.2780 [MPa]

µ2=3.94e − 6 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.1296 0.0631 0.0737 0.0952

ET 0 0.9398 0.1138 0.3690 0.7638

PS 0 0.0478 0.0806 0.1297 0.1326

Total 1 1.1172 0.2576 0.5725 0.9917

Table 6.76: Uniaxial tension results for two-term model.

Biaxial fit (Kawabata)

Parameters
α1=0.9516 α2=0.9516 µ1=0.2388 [MPa]

µ2=0.2379 [MPa]

Quality of fit: 5.3886 Biaxial error: 2.5062

Table 6.77: Biaxial tension results for two-term model.
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6.2.26 Yeoh-Fleming model results

Yeoh-Fleming model captures the S-curve for individual loading cases, however, for

simultaneous fitting it underestimates the equibiaxial curves that could be improved

by introducing a second invariant term. Uniaxail fitting performance of the model

is reasonable but the obtained parameter values cannot be used for the equibiaxial

experimental data. For biaxial tension results show pure estimations. Fitting results

are graphically given in Figure 6.26 and numerical results for simultaneous, uniaxial

and biaxial fittings are given in Tables 6.78, 6.79, and 6.80, respectively.

0

1

2

3

5

2 3 4 5 6 7 8

0

0.35

0.7

1.05

1.4

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.3

0.4

0.9 1 1.1 1.2 1.3

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

7

6

0.1

b)a)

d)c)

1

4

P 1
1

[M
P

a]

P 1
1

[M
P

a]

P 2
2

[M
P

a]

P 2
2

[M
P

a]

λ λ

λ2λ2

UT only fit Simultaneous fit

Biaxial fit (λ1 : 1.04− 1.24) Biaxial fit (λ1 : 1.3− 3.7)

UT data points

UT model fit

ET data points

ET model fit

PS data points

PS model fit

λ1 = 1.04
λ1 = 1.06
λ1 = 1.08
λ1 = 1.10
λ1 = 1.12
λ1 = 1.14
λ1 = 1.16
λ1 = 1.20
λ1 = 1.24

BT model fit BT model fit

λ1 = 1.3
λ1 = 1.6
λ1 = 1.9
λ1 = 2.2
λ1 = 2.5
λ1 = 2.8
λ1 = 3.1
λ1 = 3.4
λ1 = 3.7

Figure 6.26: Yeoh-Fleming model prediction for a) uniaxial tension, b) combination

of uniaxial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial tension

loading for λ1 : 1.04−1.24, d) biaxial tension loading for λ1 : 1.3−3.7 using Kawabata

data.
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Simultaneous fitting (Treloar)

Parameters
A=0.1624 [MPa] B=1.0000 C10=0.1574 [MPa]

Im=84.8425

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.1000 0.1418 0.0224 0.0635 0.0846

ET 0.8000 0.6553 0.0647 0.1993 0.4881

PS 0.1000 0.0189 0.0362 0.0459 0.0511

Total 1.0000 0.8160 0.1232 0.3087 0.6238

Table 6.78: Simultaneous fitting results for Yeoh-Fleming model.

UT only fit (Treloar)

Parameters
A=0.1433 [MPa] B=0.3071 C10=0.1114 [MPa]

Im=78.8497

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.0844 0.0549 0.0588 0.0730

ET 0 0.8794 0.1044 0.3699 0.7344

PS 0 0.0513 0.0719 0.1207 0.1284

Total 1 1.0150 0.2312 0.5495 0.9358

Table 6.79: Uniaxial tension results for Yeoh-Fleming model.

Biaxial fit (Kawabata)

Parameters
A=0.2377 [MPa] B=1.22e4 C10=0.0066 [MPa]

Im=1.83e6

Quality of fit: 5.2781 Biaxial error: 2.4554

Table 6.80: Biaxial tension results for Yeoh-Fleming model.
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6.2.27 Arruda-Boyce model results

Arruda-Boyce (eight-chain) model captures the S-curve for individual loading cases,

however, for simultaneous fitting it underestimates the equibiaxial curves. Uniaxail

fitting performance of the model is reasonable but the obtained parameter values can-

not be used for the equibiaxial experimental data. For biaxial tension results deviate

from the material response curve at high stretch values. Fitting results are graphically

given in Figure 6.27 and numerical results for simultaneous, uniaxial and biaxial fit-

tings are given in Tables 6.81, 6.82, and 6.83, respectively.
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Figure 6.27: Arruda-Boyce model prediction for a) uniaxial tension, b) combination

of uniaxial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial tension

loading for λ1 : 1.04−1.24, d) biaxial tension loading for λ1 : 1.3−3.7 using Kawabata

data.
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Simultaneous fitting (Treloar)

Parameters µ=0.2821 [MPa] N=26.4782

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.0100 0.2010 0.0498 0.0694 0.1074

ET 0.9800 0.6420 0.1008 0.3396 0.5891

PS 0.0100 0.0462 0.0685 0.1103 0.1164

Total 1.0000 0.8892 0.2190 0.5194 0.8129

Table 6.81: Simultaneous fitting results for Arruda-Boyce model.

UT only fit (Treloar)

Parameters µ=0.0891 [MPa] N=25.5927

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.0870 0.0755 0.0794 0.0929

ET 0 0.8932 0.1191 0.4323 0.7898

PS 0 0.0723 0.0861 0.1538 0.1676

Total 1 1.0525 0.2808 0.6655 1.0503

Table 6.82: Uniaxial tension results for Arruda-Boyce model.

Biaxial fit (Kawabata)

Parameters µ=0.4339 [MPa] N=100.00

Quality of fit: 5.5347 Biaxial error: 2.6477

Table 6.83: Biaxial tension results for Arruda-Boyce model.
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6.2.28 Gent model results

Gent model with two parameters captures the S-curve for individual loading cases,

however, for simultaneous fitting it underestimates the equibiaxial curves that could

be improved by introducing a second invariant term. Uniaxail fitting performance

of the model is reasonable but the obtained parameter values cannot be used for the

equibiaxial experimental data. For biaxial tension results deviate from the material

response curve at high stretch values. Fitting results are graphically given in Figure

6.28 and numerical results for simultaneous, uniaxial and biaxial fittings are given in

Tables 6.84, 6.85, and 6.86, respectively.
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Figure 6.28: Gent model prediction for a) uniaxial tension, b) combination of uniax-

ial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial tension loading

for λ1 : 1.04− 1.24, d) biaxial tension loading for λ1 : 1.3− 3.7 using Kawabata data.
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Simultaneous fitting (Treloar)

Parameters µ=0.2579 [MPa] Jm=90.7711

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.1000 0.3855 0.0710 0.0885 0.1817

ET 0.8000 0.5508 0.1169 0.4067 0.5978

PS 0.1000 0.0687 0.0839 0.1455 0.1572

Total 1.0000 1.0050 0.2719 0.6407 0.9367

Table 6.84: Simultaneous fitting results for Gent model.

UT only fit (Treloar)

Parameters µ=0.2307 [MPa] Jm=85.4462

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.1491 0.1406 0.1634 0.1801

ET 0 1.0511 0.1551 0.6057 1.0092

PS 0 0.1708 0.1223 0.2473 0.3072

Total 1 1.3710 0.4179 1.0165 1.4965

Table 6.85: Uniaxial tension results for Gent model.

Biaxial fit (Kawabata)

Parameters µ=0.4116 [MPa] Jm=200.000

Quality of fit: 5.7851 Biaxial error: 2.7993

Table 6.86: Biaxial tension results for Gent model.
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6.2.29 Three-chain model results

Three-chain model captures the S-curve for individual loading cases, however, for

simultaneous fitting it underestimates the equibiaxial curves. Uniaxail fitting perfor-

mance of the model is reasonable but the obtained parameter values underestimate the

equibiaxial tension and pure shear experimental data. For biaxial tension, however,

results deviate from the material response curve at high stretch values. Fitting results

are graphically given in Figure 6.29 and numerical results for simultaneous, uniaxial

and biaxial fittings are given in Tables 6.87, 6.88, and 6.89, respectively.
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Figure 6.29: Three-Chain model prediction for a) uniaxial tension, b) combination of

uniaxial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial tension

loading for λ1 : 1.04−1.24, d) biaxial tension loading for λ1 : 1.3−3.7 using Kawabata

data.
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Simultaneous fitting (Treloar)

Parameters µ=0.2980 [MPa] N=80.9506

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.2000 0.3967 0.0342 0.0986 0.1929

ET 0.6000 1.9861 0.0864 0.2951 1.1850

PS 0.2000 0.0658 0.0546 0.0792 0.1060

Total 1.0000 2.4487 0.1752 0.4730 1.4840

Table 6.87: Simultaneous fitting results for three-chain model.

UT only fit (Treloar)

Parameters µ=0.2680 [MPa] N=76.5519

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.0877 0.0775 0.0814 0.0950

ET 0 2.9715 0.1220 0.4819 1.8206

PS 0 0.0816 0.0883 0.1597 0.1784

Total 1 3.1408 0.2879 0.7230 2.0940

Table 6.88: Uniaxial tension results for three-chain model.

Biaxial fit (Kawabata)

Parameters µ=0.1403 [MPa] N=0.2542

Quality of fit: 5.3982 Biaxial error: 2.5603

Table 6.89: Biaxial tension results for three-chain model.
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6.2.30 Mooney model results

Mooney model with two parameters shows poor performance for simultaneous fitting.

The results cannot generate S-shape curve even in individual uniaxial fitting. The

reason is summation of first order invariant based terms. Uniaxail fitting result is

reasonable up to moderate stretch values. For biaxial tension results deviate from the

material response curve at high stretch values. Fitting results are graphically given in

Figure 6.30 and numerical results for simultaneous, uniaxial and biaxial fittings are

given in Tables 6.90, 6.91, and 6.92, respectively.

0

1

2

3

5

2 3 4 5 6 7 8

0

0.35

0.7

1.05

1.4

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.3

0.4

0.9 1 1.1 1.2 1.3

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

7

6

0.1

b)a)

d)c)

1

4

P 1
1

[M
P

a]

P 1
1

[M
P

a]

P 2
2

[M
P

a]

P 2
2

[M
P

a]

λ λ

λ2λ2

UT only fit Simultaneous fit

Biaxial fit (λ1 : 1.04− 1.24) Biaxial fit (λ1 : 1.3− 3.7)

UT data points

UT model fit

ET data points

ET model fit

PS data points

PS model fit

λ1 = 1.04
λ1 = 1.06
λ1 = 1.08
λ1 = 1.10
λ1 = 1.12
λ1 = 1.14
λ1 = 1.16
λ1 = 1.20
λ1 = 1.24

BT model fit BT model fit

λ1 = 1.3
λ1 = 1.6
λ1 = 1.9
λ1 = 2.2
λ1 = 2.5
λ1 = 2.8
λ1 = 3.1
λ1 = 3.4
λ1 = 3.7

Figure 6.30: Mooney model prediction for a) uniaxial tension, b) combination of

uniaxial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial tension

loading for λ1 : 1.04−1.24, d) biaxial tension loading for λ1 : 1.3−3.7 using Kawabata

data.
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Simultaneous fitting (Treloar)

Parameters C10=0.1655 [MPa] C01=0.0046 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.2836 50.908 0.0219 0.0644 10.153

ET 0.5116 0.0750 0.0502 0.0999 0.1181

PS 0.2048 0.0306 0.0257 0.0294 0.0461

Total 1.0000 51.013 0.0978 0.1936 10.375

Table 6.90: Simultaneous fitting results for Mooney model.

UT only fit (Treloar)

Parameters C10=0.1577 [MPa] C01=4.06e − 6 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 56.097 0.0254 0.0400 11.277

ET 0 2.9294 0.0735 0.2485 1.5926

PS 0 0.1097 0.0437 0.0608 0.1152

Total 1 59.136 0.1427 0.3494 12.986

Table 6.91: Uniaxial tension results for Mooney model.

Biaxial fit (Kawabata)

Parameters C10=0.1966 [MPa] C01=0.0034 [MPa]

Quality of fit: 4.7639 Biaxial error: 2.3165

Table 6.92: Biaxial tension results for Mooney model.
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6.2.31 Isihara model results

Isihara model with three parameters shows poor performance for simultaneous fitting.

The results cannot generate S-shape curve even in individual uniaxial fitting. Uniaxail

fitting result is reasonable up to moderate stretch values. For biaxial tension results

deviate from the material response curve even in low stretch values and poor estima-

tion is obtained. Fitting results are graphically given in Figure 6.31 and numerical

results for simultaneous, uniaxial and biaxial fittings are given in Tables 6.93, 6.94,

and 6.95, respectively.
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Figure 6.31: Isihara model prediction for a) uniaxial tension, b) combination of uniax-

ial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial tension loading

for λ1 : 1.04− 1.24, d) biaxial tension loading for λ1 : 1.3− 3.7 using Kawabata data.
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Simultaneous fitting (Treloar)

Parameters C10=0.1572 [MPa] C20=3.06e − 4 [MPa] C01=0.0041 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.0500 38.724 0.0231 0.0522 7.6180

ET 0.9000 0.0788 0.0649 0.1480 0.1583

PS 0.0500 0.0224 0.0376 0.0476 0.0550

Total 1.0000 38.826 0.1257 0.2479 7.8313

Table 6.93: Simultaneous fitting results for Isihara model.

UT only fit (Treloar)

Parameters C10=0.1401 [MPa] C20=0.0011 [MPa] C01=0.0964 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.0015 0.0016 0.0021 0.0028

ET 0 1.38e3 0.0000 4.4167 1.09e3

PS 0 15.4862 0.0111 1.0180 11.7638

Total 1 1.39e3 0.127 5.4368 1.10e3

Table 6.94: Uniaxial tension results for Isihara model.

Biaxial fit (Kawabata)

Parameters C10=0.2393 [MPa] C20=1.16e − 9 [MPa] C01=0.0229 [MPa]

Quality of fit: 103.6728. Biaxial error: 205.4138

Table 6.95: Biaxial tension results for Isihara model.
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6.2.32 Nunes model results

Nunes model with two material parameters shows poor performance for simultaneous

fitting. The results cannot generate S-shape curve even in individual uniaxial fitting.

Uniaxail fitting result is reasonable up to moderate stretch values. For biaxial tension

fitting results are in good agreement with the material response curve. Fitting results

are graphically given in Figure 6.32 and numerical results for simultaneous, uniaxial

and biaxial fittings are given in Tables 6.96, 6.97, and 6.98, respectively.
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Figure 6.32: Nunes model prediction for a) uniaxial tension, b) combination of uniax-

ial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial tension loading

for λ1 : 1.04− 1.24, d) biaxial tension loading for λ1 : 1.3− 3.7 using Kawabata data.
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Simultaneous fitting (Treloar)

Parameters C1=0.1469 [MPa] C2=0.0235 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.8000 0.0021 0.0000 0.0051 0.0073

ET 0.1000 0.0995 0.0000 0.0024 0.1556

PS 0.1000 0.0127 0.0000 0.0099 0.0254

Total 1.0000 0.1144 0.0000 0.0174 0.1884

Table 6.96: Simultaneous fitting results for Nunes model.

UT only fit (Treloar)

Parameters C1=0.1581 [MPa] C2=0.0010 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.0846 0.0078 0.0269 0.0926

ET 0 2.4861 0.0000 0.4066 2.7124

PS 0 0.2740 0.0150 0.1406 0.2917

Total 1 2.8447 0.0228 0.5741 3.0967

Table 6.97: Uniaxial tension results for Nunes model.

Biaxial fit (Kawabata)

Parameters C1=0.1442 [MPa] C2=0.0227 [MPa]

Quality of fit: 1.7811 Biaxial error: 0.8895

Table 6.98: Biaxial tension results for Nunes model.
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6.2.33 Tube model results

Tube model with three material parameters shows poor performance for simultaneous

fitting. The results cannot generate S-shape curve even in individual uniaxial fitting.

Uniaxail fitting result is reasonable up to moderate stretch values. For biaxial tension

fitting results are in good agreement with the material response curve. Fitting results

are graphically given in Figure 6.33 and numerical results for simultaneous, uniaxial

and biaxial fittings are given in Tables 6.99, 6.100, and 6.101, respectively.
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Figure 6.33: Tube model prediction for a) uniaxial tension, b) combination of uniax-

ial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial tension loading

for λ1 : 1.04− 1.24, d) biaxial tension loading for λ1 : 1.3− 3.7 using Kawabata data.
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Simultaneous fitting (Treloar)

Parameters Gc=0.2892 [MPa] Ge=0.0816 [MPa] β=0.5832

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.1000 0.0790 0.0000 0.0259 0.0992

ET 0.8000 0.0212 0.0000 0.0081 0.0304

PS 0.1000 0.0461 0.0000 0.0038 0.0429

Total 1.0000 0.1463 0.0000 0.0378 0.1724

Table 6.99: Simultaneous fitting results for tube model.

UT only fit (Treloar)

Parameters Gc=0.3166 [MPa] Ge=3.15e − 8 [MPa] β=0.5213

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.0840 0.0091 0.0300 0.0946

ET 0 2.8168 0.0000 0.4338 3.0440

PS 0 0.2938 0.0171 0.1543 0.3164

Total 1 3.1946 0.0263 0.6181 3.4551

Table 6.100: Uniaxial tension results for tube model.

Biaxial fit (Kawabata)

Parameters Gc=0.2840 [MPa] Ge=0.1018 [MPa] β=0.3978

Quality of fit: 0.3875 Biaxial error: 0.1149

Table 6.101: Biaxial tension results for tube model.
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6.2.34 Slip-link model results

Slip-link model is not able to generate S-curve and its performance in simultaneous

and individual fittings fitting is poor. The model results can be used in moderate strain

region, however, deviation from the actual response of the material is observed in high

stretches. Using Gaussian statistics and affine deformation for cross-links cause poor

results. Good agreement is obtained in low stretch values of biaxial data. Fitting

results are graphically given in Figure 6.34 and numerical results for simultaneous,

uniaxial and biaxial fittings are given in Tables 6.102, 6.103, and 6.104, respectively.
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Figure 6.34: Slip-Link model prediction for a) uniaxial tension, b) combination of

uniaxial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial tension

loading for λ1 : 1.04−1.24, d) biaxial tension loading for λ1 : 1.3−3.7 using Kawabata

data.
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Simultaneous fitting (Treloar)

Parameters µ1=0.2938 [MPa] µ2=0.5000 [MPa] η=1.9390

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.8000 0.0109 0.0000 0.0049 0.0163

ET 0.1000 0.0855 0.0000 0.0062 0.0942

PS 0.1000 0.0125 0.0000 0.0085 0.0184

Total 1.0000 0.1089 0.0000 0.0195 0.1289

Table 6.102: Simultaneous fitting results for slip-link model.

UT only fit (Treloar)

Parameters µ1=0.3153 [MPa] µ2=0.1000 [MPa] η=3.9997

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.0857 0.0084 0.0280 0.0944

ET 0 2.1388 0.0000 0.3568 2.3007

PS 0 0.2272 0.0155 0.1253 0.2461

Total 1 2.4517 0.0239 0.5101 2.6413

Table 6.103: Uniaxial tension results for slip-link model.

Biaxial fit (Kawabata)

Parameters µ1=0.3487 [MPa] µ2=0.3930 [MPa] η=2.0000

Quality of fit: 0.5668 Biaxial error: 0.2592

Table 6.104: Biaxial tension results for slip-link model.
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6.2.35 Swanson model results

Swanson model with four material parameters is not able to generate S-curve and

its performance in simultaneous fitting is poor. For individual fittings the model has

reasonable results throughout the data points. Good agreement is obtained for biaxial

data. Fitting results are graphically given in Figure 6.35 and numerical results for

simultaneous, uniaxial and biaxial fittings are given in Tables 6.105, 6.106, and 6.107,

respectively.
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Figure 6.35: Swanson model prediction for a) uniaxial tension, b) combination of

uniaxial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial tension

loading for λ1 : 1.04−1.24, d) biaxial tension loading for λ1 : 1.3−3.7 using Kawabata

data.
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Simultaneous fitting (Treloar)

Parameters
A1=0.0693 [MPa] α1=0.2139 B1=0.0562 [MPa]

β1=−0.8748

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.1 35.486 0.0134 0.0158 6.9206

ET 0.1 0.8187 0.0177 0.0237 0.3914

PS 0.8 0.0080 0.0113 0.0120 0.0165

Total 1 36.313 0.0425 0.0515 7.3284

Table 6.105: Simultaneous fitting results for Swanson model.

UT only fit (Treloar)

Parameters
A1=8.05e − 7 [MPa] α1=4.0901 B1=0.1277 [MPa]

β1=1.2292

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.1174 0.0231 0.0317 0.0540

ET 0 3.32e8 0.0407 1.97e4 1.47e8

PS 0 1.48e3 0.0126 4.1396 934.15

Total 1 3.32e8 0.0763 1.97e4 1.47e8

Table 6.106: Uniaxial tension results for Swanson model.

Biaxial fit (Kawabata)

Parameters
A1=0.1035 [MPa] α1=3.98e − 8 B1=0.0232 [MPa]

β1=−0.6140

Quality of fit: 0.4558 Biaxial error: 0.1443

Table 6.107: Biaxial tension results for Swanson model.
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6.2.36 Gent-Thomas model results

Gent-Thomas model with two material parameters is not able to generate S-curve

and its performance in simultaneous and individual fitting is poor. Absence of a well

defined limiting chain extensibility factor results in deviation from actual material re-

sponse at high strain values. Also poor agreement is obtained for biaxial data. Fitting

results are graphically given in Figure 6.36 and numerical results for simultaneous,

uniaxial and biaxial fittings are given in Tables 6.108, 6.109, and 6.110, respectively.
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Figure 6.36: Gent-Thomas model prediction for a) uniaxial tension, b) combination

of uniaxial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial tension

loading for λ1 : 1.04−1.24, d) biaxial tension loading for λ1 : 1.3−3.7 using Kawabata

data.
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Simultaneous fitting (Treloar)

Parameters C1=0.1390 [MPa] C2=0.1932 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.6000 0.0082 0.0000 0.0061 0.0211

ET 0.2000 0.0770 0.0000 0.0000 0.1086

PS 0.2000 0.0145 0.0000 0.0096 0.0320

Total 1.0000 0.0997 0.0000 0.0157 0.1617

Table 6.108: Simultaneous fitting results for Gent-Thomas model.

UT only fit (Treloar)

Parameters C1=0.1583 [MPa] C2=1.00e − 4 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.0840 0.0091 0.0299 0.0946

ET 0 2.8151 0.0000 0.4331 3.0417

PS 0 0.2936 0.0171 0.1540 0.3160

Total 1 3.1926 0.0262 0.6170 3.4523

Table 6.109: Uniaxial tension results for Gent-Thomas model.

Biaxial fit (Kawabata)

Parameters C1=0.1845 [MPa] C2=0.1281 [MPa]

Quality of fit: 1.1469 Biaxial error: 0.5662

Table 6.110: Biaxial tension results for Gent-Thomas model.
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6.2.37 Constrained-junction model results

Constrained-junction model with three material parameters has a poor fitting per-

formance in simultaneous fitting. For individual fittings it is also observed that the

constitutive relation is not able to catch actual response curve at high stretch region.

In biaxial data fitting, solutions deviate from the expected results in high strain values.

Fitting results are graphically given in Figure 6.37 and numerical results for simul-

taneous, uniaxial and biaxial fittings are given in Tables 6.111, 6.112, and 6.113,

respectively.
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Figure 6.37: Constrained Junction model prediction for a) uniaxial tension, b) combi-

nation of uniaxial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial

tension loading for λ1 : 1.04− 1.24, d) biaxial tension loading for λ1 : 1.3− 3.7 using

Kawabata data.
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Simultaneous fitting (Treloar)

Parameters µ1=0.1308 [MPa] µ2=0.2100 [MPa] κ=1.6108

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.1000 0.0432 0.0000 0.0076 0.0768

ET 0.8000 0.0081 0.0000 0.0000 0.0227

PS 0.1000 0.0380 0.0000 0.0096 0.0608

Total 1.0000 0.0893 0.0000 0.0171 0.1604

Table 6.111: Simultaneous fitting results for constrained-junction model.

UT only fit (Treloar)

Parameters µ1=0.1461 [MPa] µ2=0.1000 [MPa] κ=1.0000

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.0967 0.0095 0.0369 0.1167

ET 0 1.1541 0.0000 0.2103 1.2859

PS 0 0.1594 0.0095 0.0799 0.1746

Total 1 1.4102 0.0190 0.3272 1.5772

Table 6.112: Uniaxial tension results for constrained-junction model.

Biaxial fit (Kawabata)

Parameters µ1=0.1686 [MPa] µ2=0.1684 [MPa] κ=1.3138

Quality of fit: 0.8680 Biaxial error: 0.5111

Table 6.113: Biaxial tension results for constrained-junction model.
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6.2.38 WFB model results

WFB model with four material parameters has a poor fitting performance in simulta-

neous fitting. For individual fittings, especially in uniaxial tension, it is observed that

the constitutive relation has an excellent fitting performance. Weighting function pro-

posed by the reader should be reconsidered covering simultaneous fitting. In biaxial

data fitting, solutions deviate from the expected results in high strain values. Fitting

results are graphically given in Figure 6.38 and numerical results for simultaneous,

uniaxial and biaxial fittings are given in Tables 6.114, 6.115, and 6.116, respectively.

0

1

2

3

5

2 3 4 5 6 7 8

0

0.35

0.7

1.05

1.4

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.3

0.4

0.9 1 1.1 1.2 1.3

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

7

6

0.1

b)a)

d)c)

1

4

P 1
1

[M
P

a]

P 1
1

[M
P

a]

P 2
2

[M
P

a]

P 2
2

[M
P

a]

λ λ

λ2λ2

UT only fit Simultaneous fit

Biaxial fit (λ1 : 1.04− 1.24) Biaxial fit (λ1 : 1.3− 3.7)

UT data points

UT model fit

ET data points

ET model fit

PS data points

PS model fit

λ1 = 1.04
λ1 = 1.06
λ1 = 1.08
λ1 = 1.10
λ1 = 1.12
λ1 = 1.14
λ1 = 1.16
λ1 = 1.20
λ1 = 1.24

BT model fit BT model fit

λ1 = 1.3
λ1 = 1.6
λ1 = 1.9
λ1 = 2.2
λ1 = 2.5
λ1 = 2.8
λ1 = 3.1
λ1 = 3.4
λ1 = 3.7

Figure 6.38: Weight Function Based (WFB) model prediction for a) uniaxial tension,

b) combination of uniaxial, equibiaxial, and pure shear loadings usning Treloar data c)

biaxial tension loading for λ1 : 1.04−1.24, d) biaxial tension loading for λ1 : 1.3−3.7

using Kawabata data.
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Simultaneous fitting (Treloar)

Parameters
A=0.4921 [MPa] B=−0.0875 C=0.0112 [MPa]

D=−0.5284

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.4000 1.2250 0.0238 0.1619 0.4031

ET 0.3000 0.0249 0.0134 0.0365 0.0402

PS 0.3000 0.3301 0.0083 0.0220 0.2789

Total 1.0000 1.5800 0.0455 0.2204 0.7222

Table 6.114: Simultaneous fitting results for weight function based (WFB) model.

UT only fit (Treloar)

Parameters
A=0.2369 [MPa] B=−0.1652 C=0.0629 [MPa]

D=0.0526

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.0730 0.0267 0.0270 0.0408

ET 0 118.3418 0.0831 0.2797 53.6698

PS 0 0.0242 0.0483 0.0590 0.0667

Total 1 118.4390 0.1581 0.3657 53.7773

Table 6.115: Uniaxial tension results for weight function based (WFB) model.

Biaxial fit (Kawabata)

Parameters
A=25.9993 [MPa] B=1.9839 C=0.6443 [MPa]

D=0.5566

Quality of fit: 1.1364 Biaxial error: 0.5035

Table 6.116: Biaxial tension results for weight function based (WFB) model.
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6.2.39 neo-Hooke model results

Neo-hooke model with only one material constant has a poor fitting result for simul-

taneous fitting. Since the assumed distribution function for the end-to-end distances

of molecular chains is Gaussian, it is not capable of generating the S-curve of rubber-

like materials even for individual fittings. Results for biaxial loading also deviates

from the actual response at higher stretch values. Fitting results are graphically given

in Figure 6.39 and numerical results for simultaneous, uniaxial and biaxial fittings are

given in Tables 6.117, 6.118, and 6.119, respectively.
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Figure 6.39: neo-Hooke model prediction for a) uniaxial tension, b) combination of

uniaxial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial tension

loading for λ1 : 1.04−1.24, d) biaxial tension loading for λ1 : 1.3−3.7 using Kawabata

data.
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Simultaneous fitting (Treloar)

Parameters µ=0.3617 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.1000 0.0161 0.0000 0.0000 0.0389

ET 0.1000 0.0469 0.0000 0.0000 0.1022

PS 0.8000 9.81e − 4 0.0000 0.0000 0.0026

Total 1.0000 0.0640 0.0000 0.0000 0.1437

Table 6.117: Simultaneous fitting results for neo-Hooke model.

UT only fit (Treloar)

Parameters µ=0.3166 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.0840 0.0091 0.0300 0.0946

ET 0 2.8168 0.0000 0.4338 3.0440

PS 0 0.2938 0.0171 0.1543 0.3164

Total 1 3.1946 0.0263 0.6181 3.4551

Table 6.118: Uniaxial tension results for neo-Hooke model.

Biaxial fit (Kawabata)

Parameters µ=0.4466 [MPa]

Quality of fit: 5.3993 Biaxial error: 2.5606

Table 6.119: Biaxial tension results for neo-Hooke model.
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6.2.40 Valanis-Landel model results

Like neo-Hooke model, Valanis-landel model has only one material constant. The

fitting performance of the model is poor in simultaneous fitting. The proposed model

is not able to generate S-curve and for individual loading cases it has low fitting abil-

ity. Taking biaxial loading into the consideration, low fitting results can be observed

even in low stretch values. Fitting results are graphically given in Figure 6.40 and

numerical results for simultaneous, uniaxial and biaxial fittings are given in Tables

6.120, 6.121, and 6.122, respectively.

0

1

2

3

5

2 3 4 5 6 7 8

0

0.35

0.7

1.05

1.4

0.5 1 1.5 2 2.5 3 3.5
0

0.2

0.3

0.4

0.9 1 1.1 1.2 1.3

0

1

2

3

4

5

6

7

1 2 3 4 5 6 7 8

7

6

0.1

b)a)

d)c)

1

4

P 1
1

[M
P

a]

P 1
1

[M
P

a]

P 2
2

[M
P

a]

P 2
2

[M
P

a]

λ λ

λ2λ2

UT only fit Simultaneous fit

Biaxial fit (λ1 : 1.04− 1.24) Biaxial fit (λ1 : 1.3− 3.7)

UT data points

UT model fit

ET data points

ET model fit

PS data points

PS model fit

λ1 = 1.04
λ1 = 1.06
λ1 = 1.08
λ1 = 1.10
λ1 = 1.12
λ1 = 1.14
λ1 = 1.16
λ1 = 1.20
λ1 = 1.24

BT model fit BT model fit

λ1 = 1.3
λ1 = 1.6
λ1 = 1.9
λ1 = 2.2
λ1 = 2.5
λ1 = 2.8
λ1 = 3.1
λ1 = 3.4
λ1 = 3.7

Figure 6.40: Valanis-Landel model prediction for a) uniaxial tension, b) combination

of uniaxial, equibiaxial, and pure shear loadings usning Treloar data c) biaxial tension

loading for λ1 : 1.04−1.24, d) biaxial tension loading for λ1 : 1.3−3.7 using Kawabata

data.
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Simultaneous fitting (Treloar)

Parameters µ=0.4073 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0.1000 0.0287 0.0000 0.0000 0.0930

ET 0.8000 0.0024 0.0000 0.0000 0.0063

PS 0.1000 0.0125 0.0000 0.0000 0.0353

Total 1.0000 0.0436 0.0000 0.0000 0.1346

Table 6.120: Simultaneous fitting results for Valanis-Landel model.

UT only fit (Treloar)

Parameters µ=0.3631 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 1 0.0897 0.0000 0.0150 0.1188

ET 0 1.3918 0.0000 0.0025 1.7007

PS 0 0.2591 0.0000 0.0036 0.2511

Total 1 1.7406 0.0000 0.0211 2.0706

Table 6.121: Uniaxial tension results for Valanis-Landel model.

Biaxial fit (Kawabata)

Parameters µ=0.5258 [MPa]

Quality of fit: 7.1835 Biaxial error: 2.8856

Table 6.122: Biaxial tension results for Valanis-Landel model.
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CHAPTER 7

CONCLUDING REMARKS

In this study 40 hyperelstic material models are considered and parameter optimiza-

tion has been conducted on the related models. A parameter identification toolbox is

developed to obtain the best fitting parameters of 40 hyperelstic material model. The

toolbox can easily be adopted to different data sets and new material models. Starting

with the introduction (chapter 1), general information about the necessity of the study

is presented. A brief literature study on the hyperelastic material models since 1940

till 2017 has been supplied in chapter 2. Chapter 3 is composed of some preliminaries

on continuum mechanics and hyperelastic material modeling. Preliminary derivations

for hyperelastic response of rubber-like materials under different loading conditions

has been considered. Definitions for 40 hyperelastic material models together with

their strain energy functions are supplied in chapter 4. Here, the constitutive equa-

tions are categorized into phenomenological and micro-mechanically based material

models as the two main categories in hyperelasticity. Models are ordered according

to the publication dates. Parameter identification preliminaries and the genetic algo-

rithm is introduced in chapter 5. A novel approach considering weight factors during

the multi-objective optimization is introduced. Genetic algorithm code to be used

in Matlab is developed. Genetic algorithm solutions are improved using MultiStart

algorithm of Matlab software, Fmincon utility as a gradient method. Valid range of

application for each model has been decided and fitting performance of each model is

checked with χ2 method. Results for the considered models are presented in chapter

6. Plots for UT only, and simultaneous fitting with Treloar data together with biaxial

tension fitting with Kawabata’s data are presented. For each model, numerical results

of parameters, weight factors and quality of fit in three distinct regions are provided

in tables. These tables include simultaneous, uniaxial and biaxial tension results.

163



Equaibiaxial tension and pure shear fitting results are also provided in appendix A

and B, respectively. An objective ranking table according to the fitting quality of the

models are presented. Weakness and strength of each model is also analyzed in chap-

ter 6.

Compressibility can also be adopted to the present work in future. The code can also

be extended to compression loading mode. Also to improve the functionality of the

toolbox it can be supported with an organized and well defined graphical user inter-

face. Improving the graphical user interface and adding automatic report generating

capabilities can make the toolbox commercially in used for various experiments and

applications on rubber-like materials. In our work mean square error function is used

as an objective function during the optimization procedure and χ2 method is used

to make comparison between the fitting performance of the constitutive relation. In

the extended version of the code, instead of mean square error function, objective

function can be considered as χ2.
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Appendix A

EQUIBIAXIAL TENSION RESULTS FOR HYPERELASTIC MODELS
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ET only fit (Treloar)

Parameters
µ=0.2919 [MPa] N=27.0855 p=3.2767

U=0.4394 q=0.0878

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 277.7764 0.2131 1.3015 54.3806

ET 1 0.0025 0.0088 0.0097 0.0104

PS 0 1.9997 0.0130 0.1017 1.4040

Total 1 279.7785 0.2350 1.4130 55.7950

Table A.1: Equibiaxial tension results for Micro-Sphere model.

ET only fit (Treloar)

Parameters
C1=0.1764 [MPa] C2=0.0655 [MPa] C3=7.95e − 4 [MPa]

γ=2.2576 k=2.78e − 4

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 1.5733 0.0640 0.3100 0.6853

ET 1 0.0028 0.0120 0.0129 0.0135

PS 0 0.3021 0.0071 0.0306 0.2329

Total 1 1.8781 0.0831 0.3534 0.9316

Table A.2: Equibiaxial tension fitting results for Alexander model.

ET only fit (Treloar)

Parameters
exp(a0)=0.2430 [MPa] a1=0.0283 [MPa] a2=−1.16e − 4 [MPa]

exp(b0)=−0.0254 [MPa] b1=−0.0801

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 338.9997 0.5239 7.8807 89.2520

ET 1 0.0022 0.0089 0.0096 0.0102

PS 0 15.5327 0.0160 0.2863 10.3068

Total 1 354.5347 0.5488 8.1766 99.5689

Table A.3: Equibiaxial tension results for Diani and Ray model.
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ET only fit (Treloar)

Parameters
Gc=0.2206 [MPa] δ=0.0941 [MPa] Ge=0.1566

β=2.11e − 6

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 1.5311 0.0061 0.0180 0.3877

ET 1 0.0051 0.0226 0.0241 0.0247

PS 0 0.0289 0.0113 0.0114 0.0287

Total 1 1.5651 0.0400 0.0535 0.4410

Table A.4: Equibiaxial tension results for Extended-Tube model.

ET only fit (Treloar)

Parameters
E=1.3542 [MPa] α1=−4.3742 α2=6.2276

α3=−0.0015 α4=−2.2508

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 1.98e6 0.4497 629.6295 4.05e5

ET 1 0.0027 0.0077 0.0089 0.0096

PS 0 2.50e3 0.0195 0.2590 1.48e3

Total 1 1.99e6 0.4770 629.8974 4.06e5

Table A.5: Equibiaxial tension results for Shariff model.

ET only fit (Treloar)

Parameters A=0.1983 [MPa] B=3.11e − 7 [MPa] C=2.04e − 5 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 5.5904 0.1175 0.6492 1.9545

ET 1 0.0063 0.0184 0.0223 0.0232

PS 0 0.6571 0.0074 0.0489 0.4946

Total 1 6.2542 0.1433 0.7204 2.4724

Table A.6: Equibiaxial tension results for Carroll model.
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ET only fit (Treloar)

Parameters
µck=0.1447 [MPa] n=15.2554 q=0.8582

µt=2.19e − 6 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 16.8384 0.1588 0.6569 4.0330

ET 1 0.0030 0.0102 0.0111 0.0118

PS 0 0.6170 0.0098 0.0658 0.4773

Total 1 17.4584 0.1788 0.7338 4.5185

Table A.7: Equibiaxial tension results network averaging tube model.

ET only fit (Treloar)

Parameters
a0=0.4845 [MPa] a1=0.1100 [MPa] a2=5.94e − 5 [MPa]

b0=−0.2185 [MPa] b1=0.1613 [MPa] b2=−0.5625 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 3.32e4 12.2765 667.0533 1.53e4

ET 1 0.0016 0.0040 0.0043 0.0050

PS 0 1.73e3 0.1451 9.9151 1.11e3

Total 1 6.49e4 12.4256 686.9728 1.64e4

Table A.8: Equibiaxial tension results for Chevalier and Marco model.

ET only fit (Treloar)

Parameters
µ1=0.4165 [MPa] µ2=0.0548 [MPa] µ3=0.0604 [MPa]

α1=1.9701 α2=4.9307 α3=−2.4208

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 1.47e5 4.5506 654.3110 3.35e4

ET 1 0.0022 0.0064 0.0076 0.0082

PS 0 1.95e3 0.0514 4.0965 1.22e3

Total 1 1.45e5 4.6084 658.4152 3.47e4

Table A.9: Equibiaxial tension results for Ogden model.
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ET only fit (Treloar)

Parameters
C2=0.0028 [MPa] C3=1.92e − 6 [MPa] C4=−94.6990 [MPa]

C5=94.8998 [MPa] M=1.06e − 4 N=2.8475

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 3.5901 0.1234 0.2945 0.9153

ET 1 0.0026 0.0040 0.0059 0.0065

PS 0 0.1058 0.0140 0.0473 0.1153

Total 1 3.6985 0.1414 0.3477 1.0371

Table A.10: Equibiaxial tension results for Amin model.

ET only fit (Treloar)

Parameters
C10=0.4037 [MPa] C01=−0.1599 [MPa] C11=−0.0526 [MPa]

C20=0.1182 [MPa] C30=0.0132 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 2.11e7 31.8252 3.12e4 4.56e6

ET 1 0.0022 0.0055 0.0066 0.0071

PS 0 1.07e5 0.1126 41.1770 6.46e4

Total 1 2.12e7 31.9432 3.13e4 4.63e6

Table A.11: Equibiaxial tension results for James model.

ET only fit (Treloar)

Parameters
C10=0.3342 [MPa] C01=−0.1003 [MPa] C11=−0.0272 [MPa]

C02=−1.55e − 6 [MPa] C20=0.0649 [MPa] C30=0.0068 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 5.73e6 11.3043 8.75e3 1.24e6

ET 1 0.0021 0.0067 0.0076 0.0081

PS 0 2.96e4 0.0581 13.4249 1.80e4

Total 1 5.75e6 11.3691 8.77e3 1.26e6

Table A.12: Equibiaxial tension results for Haines and Wilson model.
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ET only fit (Treloar)

Parameters
A1=0.4550 [MPa] A2=−0.0219 [MPa] A3=0.0022 [MPa]

B1=1.23e − 4 [MPa] B2=−5.46e − 5 [MPa] B3=2.29e − 8 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 1.03e4 0.1258 11.4912 2.22e3

ET 1 0.0025 0.0117 0.0121 0.0127

PS 0 39.2720 0.0081 0.0589 23.7168

Total 1 1.04e4 0.1456 11.5622 2.24e3

Table A.13: Equibiaxial tension results for Attard and Hunt model.

ET only fit (Treloar)

Parameters
C1

1=0.0596 [MPa] C1
2=−0.0220 [MPa] C2

1=0.0443 [MPa]

C2
2=1.19e − 6 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 1.56e4 2.9156 129.3340 3.65e3

ET 1 0.0030 0.0062 0.0080 0.0087

PS 0 324.5130 0.0487 2.1177 207.8771

Total 1 1.59e4 2.9705 131.4598 3.86e3

Table A.14: Equibiaxial tension results for 4-term Bechir model.

ET only fit (Treloar)

Parameters C2=0.1378 [MPa] µ=0.3072 [MPa] Jm=88.6946

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 3.1673 0.0237 0.2268 1.0415

ET 1 0.0031 0.0141 0.0151 0.0158

PS 0 0.3591 0.0071 0.0161 0.2521

Total 1 3.5295 0.0449 0.2581 1.3094

Table A.15: Equibiaxial tension results for Pucci and Saccomandi model.
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ET only fit (Treloar)

Parameters
C10=0.2072 [MPa] C01=7.11e − 5 [MPa] C20=−9.22e − 4 [MPa]

C30=3.34e − 5 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 3.6072 0.1527 0.6527 1.5413

ET 1 0.0031 0.0128 0.0136 0.0142

PS 0 0.5886 0.0080 0.0647 0.4570

Total 1 4.1990 0.1736 0.7309 2.0124

Table A.16: Equibiaxial tension results for Biderman model.

ET only fit (Treloar)

Parameters
G=0.4461 [MPa] λm=11.1104 β=1.57e − 4

a=0.2340

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 3.5784 0.1621 0.6343 1.5217

ET 1 0.0023 0.0082 0.0092 0.0098

PS 0 0.5844 0.0116 0.0673 0.4507

Total 1 4.1651 0.1819 0.7108 1.9823

Table A.17: Equibiaxial tension results for Kilian (van der Waals) model.

ET only fit (Treloar)

Parameters
C2=0.0011 [MPa] C3=3.03e − 7 [MPa] C5=0.1939 [MPa]

N=3.3820

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 2.1591 0.0970 0.4834 0.9224

ET 1 0.0087 0.0209 0.0268 0.0282

PS 0 0.3994 0.0079 0.0397 0.3174

Total 1 2.5672 0.1258 0.5499 1.2681

Table A.18: Equibiaxial tension results for Yamashita and Kawabata model.

179



ET only fit (Treloar)

Parameters C10=0.1952 [MPa] C01=0.0012 [MPa] C03=6.48e − 9 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 7.7762 0.1035 0.4983 2.0072

ET 1 0.0095 0.0198 0.0250 0.0269

PS 0 0.3935 0.0077 0.0430 0.3183

Total 1 8.1792 0.1310 0.5662 2.3525

Table A.19: Equibiaxial tension results for Lion model.

ET only fit (Treloar)

Parameters
C10= 0.1790 [MPa] B= 4.99e − 5 [MPa] K= 0.0747 [MPa]

α= 3.0883

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 2.6879 0.0702 0.3893 1.0991

ET 1 0.0027 0.0131 0.0136 0.0142

PS 0 0.4542 0.0071 0.0340 0.3345

Total 1 3.1448 0.0904 0.4369 1.4482

Table A.20: Equibiaxial tension results for Beda model.

ET only fit (Treloar)

Parameters G=0.1834 [MPa] k1=2.96e − 4 k2=0.3317

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 5.5854 0.0819 0.4461 1.7516

ET 1 0.0031 0.0135 0.0140 0.0147

PS 0 0.4944 0.0071 0.0387 0.3685

Total 1 6.0828 0.1025 0.4989 2.1348

Table A.21: Equibiaxial tension results for Hart-Smith model.
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ET only fit (Treloar)

Parameters
c1=0.2527 [MPa] c2=−0.0303 [MPa] c3=0.0044 [MPa]

c4=−2.53e − 6 [MPa] c5=−0.0011 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 1.08e5 0.4026 87.3263 2.30e4

ET 1 0.0022 0.0083 0.0091 0.0097

PS 0 337.4034 0.0184 0.1452 200.7400

Total 1 1.08e5 0.4293 87.4806 2.32e4

Table A.22: Equibiaxial tension results for Haupt and Sedlan model.

ET only fit (Treloar)

Parameters A=0.2278 [MPa] a=0.0137 b=0.1247 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 2.8791 0.1683 0.5998 1.3120

ET 1 0.0047 0.0077 0.0113 0.0125

PS 0 0.5833 0.0172 0.0698 0.4439

Total 1 3.4671 0.1933 0.6810 1.7684

Table A.23: Equibiaxial tension results for Exp-Ln model.

ET only fit (Treloar)

Parameters C10=0.2071 [MPa] C20=−8.94e − 4 [MPa] C30=3.33e − 5 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 3.8303 0.1527 0.6629 1.6107

ET 1 0.0031 0.0129 0.0137 0.0142

PS 0 0.6085 0.0080 0.0647 0.4701

Total 1 4.4419 0.1736 0.7413 2.0950

Table A.24: Equibiaxial tension results for Yeoh model.

181



ET only fit (Treloar)

Parameters
α1=0.9003 α2=3.0016 µ1=0.4279 [MPa]

µ2=0.0012 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 3.1431 0.1658 0.6425 1.4394

ET 1 0.0023 0.0099 0.0106 0.0112

PS 0 0.5876 0.0103 0.0692 0.4535

Total 1 3.7330 0.1861 0.7223 1.9041

Table A.25: Equibiaxial tension results for two-term model.

ET only fit (Treloar)

Parameters
A=0.2116 [MPa] B=31.6895 C10=4.2914 [MPa]

Im=714.1750

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 2.9946 0.1664 0.6466 1.3936

ET 1 0.0024 0.0109 0.0114 0.0120

PS 0 0.5820 0.0093 0.0702 0.4508

Total 1 3.5791 0.1867 0.7282 1.8565

Table A.26: Equibiaxial tension results for Yeoh-Fleming model.

ET only fit (Treloar)

Parameters µ=0.1192 [MPa] N=30.4174

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 2.5312 0.0613 0.5722 1.2156

ET 1 0.0258 0.0334 0.0561 0.0615

PS 0 0.7451 0.0134 0.0290 0.5302

Total 1 3.3020 0.1081 0.6573 1.8073

Table A.27: Equibiaxial tension results for Arruda-Boyce model.
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ET only fit (Treloar)

Parameters µ=0.3437 [MPa] Jm=118.2802

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 3.1376 0.0568 0.5749 1.2900

ET 1 0.0319 0.0357 0.0618 0.0694

PS 0 0.7758 0.0147 0.0287 0.5493

Total 1 3.9453 0.1072 0.6654 1.9087

Table A.28: Equibiaxial tension results for Gent model.

ET only fit (Treloar)

Parameters µ=0.3574 [MPa] N=45.5545

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 6.11e3 0.0853 1.9276 1.59e3

ET 1 0.0253 0.0325 0.0547 0.0600

PS 0 4.4234 0.0124 0.0410 2.8233

Total 1 6.11e3 0.1302 2.0232 1.59e3

Table A.29: Equibiaxial tension results for three-chain model.

ET only fit (Treloar)

Parameters C10=0.1847 [MPa] C01=0.0031 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 40.527 0.0616 0.2767 8.0857

ET 1 0.1153 0.0275 0.0404 0.0869

PS 0 0.1563 0.0106 0.0264 0.1425

Total 1 40.799 0.0996 0.3435 8.3152

Table A.30: Equibiaxial tension results for Mooney model.
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ET only fit (Treloar)

Parameters C10=0.3915 [MPa] C20=0.0347 [MPa] C01=−0.1371 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 5.93e3 0.7331 114.1330 4.19e3

ET 1 0.0408 0.0000 0.0541 0.0779

PS 0 4.8317 0.3146 64.3727 3.28e3

Total 1 1.07e4 1.0478 178.5598 7.47e3

Table A.31: Equibiaxial tension results for Isihara model.

ET only fit (Treloar)

Parameters C1=0.1877 [MPa] C2=0.0045 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 3.0911 0.0159 0.5669 3.1010

ET 1 0.0703 0.0000 0.0370 0.0810

PS 0 1.8016 0.0045 0.3321 1.6404

Total 1 4.9631 0.0204 1.2360 4.8224

Table A.32: Equibiaxial tension results for Nunes model.

ET only fit (Treloar)

Parameters Gc=0.4009 [MPa] Ge=1.56e − 7 [MPa] β=0.7531

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 6.1397 0.0299 1.5152 5.9214

ET 1 0.0838 0.0000 0.0130 0.0765

PS 0 3.8622 0.0104 0.6720 3.4163

Total 1 10.0857 0.0403 2.2002 9.4143

Table A.33: Equibiaxial tension results for tube model.
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ET only fit (Treloar)

Parameters µ1=0.3899 [MPa] µ2=0.1000 [MPa] η=3.9998

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 4.7611 0.0209 1.2168 4.6468

ET 1 0.1081 0.0000 0.0105 0.0959

PS 0 3.0767 0.0062 0.5511 2.7520

Total 1 7.9459 0.0271 1.7784 7.4947

Table A.34: Equibiaxial tension results for slip-link model.

ET only fit (Treloar)

Parameters
A1=0.1327 [MPa] α1=7.07e − 5 B1=1.47e − 5 [MPa]

β1=1.0603

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 34.005 0.1213 0.5584 6.9520

ET 1 0.0063 0.0178 0.0213 0.0223

PS 0 0.3883 0.0073 0.0506 0.3276

Total 1 34.400 0.1464 0.6303 7.3019

Table A.35: Equibiaxial tension results for Swanson model.

ET only fit (Treloar)

Parameters C1=0.2004 [MPa] C2=1.01e − 4 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 6.1364 0.0299 1.5150 5.9187

ET 1 0.0838 0.0000 0.0129 0.0764

PS 0 3.8605 0.0104 0.6721 3.4152

Total 1 10.0807 0.0403 2.2000 9.4103

Table A.36: Equibiaxial tension results for Gent-Thomas model.
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ET only fit (Treloar)

Parameters µ1=0.1783 [MPa] µ2=0.1000 [MPa] κ=1.0000

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 3.0956 0.0087 1.0527 3.2452

ET 1 0.2051 0.0000 0.0056 0.1799

PS 0 2.0953 0.0014 0.5644 2.0316

Total 1 5.3960 0.0102 1.6228 5.4567

Table A.37: Equibiaxial tension results for constrained-junction model.

ET only fit (Treloar)

Parameters
A=0.4832 [MPa] B=−0.0486 C=0.0372 [MPa]

D=−0.3035

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 30.0420 0.0333 0.3613 8.3432

ET 1 0.0045 0.0181 0.0188 0.0200

PS 0 0.9673 0.0080 0.0124 0.5918

Total 1 31.0138 0.0594 0.3926 8.9550

Table A.38: Equibiaxial tension results for weight function based (WFB) model.

ET only fit (Treloar)

Parameters µ=0.4009 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 6.1397 0.0299 1.5152 5.9215

ET 1 0.0838 0.0000 0.0130 0.0765

PS 0 3.8623 0.0104 0.6720 3.4164

Total 1 10.0858 0.0403 2.2002 9.4143

Table A.39: Equibiaxial tension results for neo-Hooke model.
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ET only fit (Treloar)

Parameters µ=0.4848 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 4.2051 0.1279 2.9803 5.6992

ET 1 0.3980 0.0000 0.1764 0.4721

PS 0 2.5146 0.0877 1.7969 3.2121

Total 1 7.1177 0.2156 4.9536 9.3833

Table A.40: Equibiaxial tension results for Valanis-Landel model.
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PRURE SHEAR RESULTS FOR HYPERELASTIC MODELS
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PS only fit (Treloar)

Parameters
µ=0.1285 [MPa] N=32.3906 p=6.6449

U=0.1360 q=0.9990

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 986.2659 0.0018 0.0174 163.7452

ET 0 0.0934 0.0188 0.0417 0.0855

PS 1 8.07e − 4 0.0067 0.0069 0.0070

Total 1 986.3601 0.0273 0.0660 163.8377

Table B.1: Pure shear results for Micro-Sphere model.

PS only fit (Treloar)

Parameters
C1=0.0145 [MPa] C2=0.0643 [MPa] C3=0.1381 [MPa]

γ=1.2550 k=0.0020

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 1.71e4 0.2078 2.0950 2.95e3

ET 0 1.62e3 0.0215 15.6632 796.0377

PS 1 6.83e − 4 0.0064 0.0066 0.0067

Total 1 1.87e4 0.2357 17.7648 3.75e3

Table B.2: Pure Shear results for Alexander model.

PS only fit (Treloar)

Parameters
exp(a0)=0.0656 [MPa] a1=−0.3288 [MPa] a2=0.0119 [MPa]

exp(b0)=0.1174 [MPa] b1=0.1038

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 4.20e15 0.1544 2.6320 6.69e14

ET 0 7.09e3 0.0156 23.9587 3.21e3

PS 1 8.30e − 4 0.0075 0.0078 0.0078

Total 1 4.20e15 0.1776 26.5985 6.69e14

Table B.3: Pure shear results for Diani and Ray model.
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PS only fit (Treloar)

Parameters
Gc=0.2030 [MPa] δ=0.0934 [MPa] Ge=0.1876

β=0.1244

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 0.3330 0.0034 0.0038 0.0597

ET 0 0.0299 0.0166 0.0299 0.0381

PS 1 0.0011 0.0083 0.0085 0.0087

Total 1 0.3641 0.0283 0.0422 0.1066

Table B.4: Pure shear results for Extended-Tube model.

PS only fit (Treloar)

Parameters
E=1.1963 [MPa] α1=−0.4853 α2=0.1529

α3=−0.1340 α4=0.3373

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 4.01e3 0.0281 19.4816 908.5265

ET 0 4.15e6 0.0135 744.7868 1.87e6

PS 1 7.26e − 4 0.0071 0.0073 0.0074

Total 1 4.15e6 0.0487 764.2757 1.87e6

Table B.5: Pure shear results for Shariff model.

PS only fit (Treloar)

Parameters A=0.1261 [MPa] B=5.05e − 7 [MPa] C=0.2205 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 15.0585 0.0053 0.0199 3.0564

ET 0 1.7330 0.0181 0.1125 0.9265

PS 1 0.0016 0.0100 0.0103 0.0106

Total 1 16.7930 0.0334 0.1427 3.9936

Table B.6: Pure shear results for Carroll model.
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PS only fit (Treloar)

Parameters
µck=0.0351 [MPa] n=33.0269 q=1.1768

µt=0.7588 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 8.38e3 0.0426 0.1974 1.34e3

ET 0 8.6040 0.0146 0.7853 4.9532

PS 1 9.72e − 4 0.0079 0.0081 0.0083

Total 1 8.39e3 0.0651 0.9907 1.35e3

Table B.7: Pure shear results network averaging tube model.

PS only fit (Treloar)

Parameters
a0=0.1395 [MPa] a1=−0.0032 [MPa] a2=1.34e − 4 [MPa]

b0=0.0527 [MPa] b1=−0.2217 [MPa] b2=0.7603 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 1.0860 9.28e − 4 0.1079 0.3576

ET 0 210.9443 0.0123 1.4178 103.2765

PS 1 7.330e − 4 0.0066 0.0068 0.0069

Total 1 212.0310 0.0198 1.5325 103.6409

Table B.8: Pure shear results for Chevalier and Marco model.

PS only fit (Treloar)

Parameters
µ1=1.5108 [MPa] µ2=1.39e − 5 [MPa] µ3=−0.1074 [MPa]

α1=0.3346 α2=7.0853 α3=−2.5156

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 41.7210 0.1036 1.6617 11.1918

ET 0 4.63e3 0.0154 17.6400 2.21e3

PS 1 0.0011 0.0084 0.0086 0.0088

Total 1 4.67e3 0.1274 19.3503 2.21e3

Table B.9: Pure shear results for Ogden model.
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PS only fit (Treloar)

Parameters
C2=1.1861 [MPa] C3=1.88e − 5 [MPa] C4=−2.8493 [MPa]

C5=1.8430 [MPa] M=0.0035 N=2.3978

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 2.35e4 20.2393 179.4903 739.2803

ET 0 1.17e5 1.1021 1.26e3 8.81e4

PS 1 5.40e − 4 0.0034 0.0035 0.0036

Total 1 1.20e5 21.3448 1.44e3 5.89e4

Table B.10: Pure shear results for Amin model.

PS only fit (Treloar)

Parameters
C10=0.1775 [MPa] C01=0.0044 [MPa] C11=−1.00e − 4 [MPa]

C20=−0.0017 [MPa] C30=5.37e − 5 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 8.4930 0.0242 0.0494 1.9146

ET 0 0.3295 0.0343 0.0783 0.2304

PS 1 0.0031 0.0146 0.0152 0.0160

Total 1 8.8256 0.0731 0.1430 2.1610

Table B.11: Pure shear results for James model.

PS only fit (Treloar)

Parameters
C10=0.0934 [MPa] C01=0.0886 [MPa] C11=−3.05e − 4 [MPa]

C02=−0.0012 [MPa] C20=−9.26e − 4 [MPa] C30=5.42e − 5 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 11.8164 0.0394 0.2595 2.6773

ET 0 4.11e4 0.0205 0.6189 1.83e4

PS 1 0.0031 0.0144 0.0152 0.0159

Total 1 4.11e4 0.0744 0.8936 1.83e4

Table B.12: Pure shear results for Haines and Wilson model.
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PS only fit (Treloar)

Parameters
A1=0.1905 [MPa] A2=−0.0043 [MPa] A3=1.63e − 4 [MPa]

B1=0.1899 [MPa] B2=−0.0043 [MPa] B3=1.63e − 4 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 27.1247 0.0439 0.5710 6.4834

ET 0 6.56e6 0.0203 13.8971 2.83e6

PS 1 0.0031 0.0144 0.0152 0.0159

Total 1 6.56e6 0.0787 14.4832 2.83e6

Table B.13: Pure shear results for Attard and Hunt model.

PS only fit (Treloar)

Parameters
C1

1=2.1279 [MPa] C1
2=0.4864 [MPa] C2

1=−0.4875 [MPa]

C2
2=8.80e − 7 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 1.03e3 13.6093 119.8938 376.3074

ET 0 7.85e4 0.6105 848.0354 3.89e4

PS 1 0.0047 0.0177 0.0190 0.0202

Total 1 7.95e4 14.2375 967.9482 3.93e4

Table B.14: Pure shear results for 4-term Bechir model.

PS only fit (Treloar)

Parameters C2=0.2213 [MPa] µ=0.2534 [MPa] Jm=89.0821

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 1.9229 0.0021 0.0030 0.3534

ET 0 0.4754 0.0128 0.0260 0.2585

PS 1 0.0012 0.0069 0.0072 0.0076

Total 1 2.3996 0.0217 0.0362 0.6195

Table B.15: Pure shear results for Pucci and Saccomandi model.
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PS only fit (Treloar)

Parameters
C10=0.0911 [MPa] C01=0.0909 [MPa] C20=−0.0018 [MPa]

C30=5.42e − 5 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 2.5990 0.0503 0.7343 1.3931

ET 0 669.7721 0.0203 6.2479 330.0228

PS 1 0.0031 0.0144 0.0152 0.0159

Total 1 672.3742 0.0850 6.9974 331.4317

Table B.16: Pure shear results for Biderman model.

PS only fit (Treloar)

Parameters
G=0.4024 [MPa] λm=10.2460 β=0.5003

a=0.2939

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 83.9494 0.0322 0.6459 18.5211

ET 0 1.35e5 0.0130 6.3157 7.55e4

PS 1 9.42e − 4 0.0073 0.0075 0.0077

Total 1 1.35e5 0.0525 6.9690 7.55e4

Table B.17: Pure shear results for Kilian (van der Waals) model.

PS only fit (Treloar)

Parameters
C2=0.0821 [MPa] C3=5.73e − 8 [MPa] C5=0.0821 [MPa]

N=4.0178

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 43.1106 0.0964 0.6085 8.6632

ET 0 544.5772 0.0377 4.9766 267.9724

PS 1 0.0118 0.0335 0.0413 0.0427

Total 1 587.6996 0.1676 5.6264 276.6783

Table B.18: Pure shear results for Yamashita and Kawabata model.
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PS only fit (Treloar)

Parameters C10=0.0649 [MPa] C01=0.0990 [MPa] C03=1.29e − 8 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 46.7771 0.1395 0.9458 9.7012

ET 0 799.2474 0.0347 7.4637 393.6284

PS 1 0.0117 0.0340 0.0421 0.0433

Total 1 846.0362 0.2082 8.4516 403.3730

Table B.19: Pure shear results for Lion model.

PS only fit (Treloar)

Parameters
C10= 0.1431 [MPa] B= 3.25e − 5 [MPa] K= 0.1588 [MPa]

α= 3.2084

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 0.6372 0.0057 0.0102 0.1237

ET 0 0.3669 0.0156 0.0332 0.2208

PS 1 9.60e − 4 0.0078 0.0080 0.0082

Total 1 1.0051 0.0291 0.0514 0.3527

Table B.20: Pure shear results for Beda model.

PS only fit (Treloar)

Parameters G=0.1423 [MPa] k1=4.03e − 4 k2=1.1377

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 5.7363 0.0053 0.0096 1.1572

ET 0 0.2971 0.0154 0.0325 0.1894

PS 1 9.28e − 4 0.0078 0.0079 0.0081

Total 1 6.0343 0.0285 0.0500 1.3547

Table B.21: Pure shear results for Hart-Smith model.
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PS only fit (Treloar)

Parameters
c1=0.1256 [MPa] c2=0.0564 [MPa] c3=0.4963 [MPa]

c4=−0.4982 [MPa] c5=5.42e − 5 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 1.18e5 15.7672 1.76e3 2.96e4

ET 0 7.73e9 0.0654 7.91e5 3.46e9

PS 1 0.0031 0.0144 0.0152 0.0159

Total 1 7.73e9 15.8469 7.93e5 3.46e9

Table B.22: Pure shear results for Haupt and Sedlan model.

PS only fit (Treloar)

Parameters A=0.2002 [MPa] a=0.0134 b=0.1427 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 6.8204 0.0264 0.0511 1.2829

ET 0 0.7676 0.0186 0.1072 0.4655

PS 1 0.0011 0.0069 0.0072 0.0075

Total 1 7.5891 0.0519 0.1654 1.7558

Table B.23: Pure shear results for Exp-Ln model.

PS only fit (Treloar)

Parameters C10=0.1820 [MPa] C20=−0.0018 [MPa] C30=5.39e − 5 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 7.6973 0.0288 0.0621 1.7526

ET 0 0.3315 0.0352 0.1194 0.2861

PS 1 0.0031 0.0145 0.0152 0.0159

Total 1 8.0319 0.0784 0.1967 2.0545

Table B.24: Pure shear results for Yeoh model.
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PS only fit (Treloar)

Parameters
α1=0.7602 α2=2.4004 µ1=0.3820 [MPa]

µ2=0.0066 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 6.5263 0.0290 0.0551 1.2239

ET 0 0.7188 0.0228 0.1083 0.4457

PS 1 0.0012 0.0083 0.0085 0.0088

Total 1 7.2463 0.0601 0.1720 1.6784

Table B.25: Pure shear results for two-term model.

PS only fit (Treloar)

Parameters
A=0.2062 [MPa] B=0.0169 C10=0.0763 [MPa]

Im=1.0003

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 16.7429 0.0224 0.0456 3.1888

ET 0 1.0345 0.0148 0.1102 0.5842

PS 1 0.0022 0.0063 0.0070 0.0079

Total 1 17.7795 0.0435 0.1629 3.7809

Table B.26: Pure shear results for Yeoh-Fleming model.

PS only fit (Treloar)

Parameters µ=0.1057 [MPa] N=59.5721

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 31..5855 0.0242 0.0656 6.1779

ET 0 1.5616 0.0683 0.2050 0.6033

PS 1 0.0215 0.0391 0.0504 0.0563

Total 1 33.1686 0.1316 0.3210 7.1376

Table B.27: Pure shear results for Arruda-Boyce model.
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PS only fit (Treloar)

Parameters µ=0.3137 [MPa] Jm=263.0011

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 33.3852 0.0242 0.0663 6.5342

ET 0 1.6008 0.0679 0.2034 0.9196

PS 1 0.0218 0.0389 0.0498 0.0562

Total 1 35.0078 0.1310 0.3196 7.5099

Table B.28: Pure shear results for Gent model.

PS only fit (Treloar)

Parameters µ=0.3183 [MPa] N=177.3919

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 31.1220 0.0244 0.0686 6.0839

ET 0 2.1957 0.0685 0.2158 1.2133

PS 1 0.0215 0.0391 0.0504 0.0563

Total 1 33.3392 0.1320 0.3347 7.3535

Table B.29: Pure shear results for three-chain model.

PS only fit (Treloar)

Parameters C10=0.0855 [MPa] C01=0.0854 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 0.5860 0.0000 0.0093 0.9237

ET 0 12.2850 0.0000 0.0000 15.9620

PS 1 0.0179 0.0000 0.0048 0.0400

Total 1 12.8888 0.0000 0.0141 16.9256

Table B.30: Pure shear results for Mooney model.
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PS only fit (Treloar)

Parameters C10=0.0807 [MPa] C20=3.23e − 4 [MPa] C01=0.0803 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 81.312 0.1056 0.5617 17.570

ET 0 481.83 0.0421 4.7777 239.071

PS 1 0.0224 0.0382 0.0486 0.0557

Total 1 563.17 0.1859 5.3880 256.697

Table B.31: Pure shear results for Isihara model.

PS only fit (Treloar)

Parameters C1=0.1577 [MPa] C2=0.0143 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 0.1001 0.0011 0.0209 0.1191

ET 0 0.1414 0.0000 0.0824 0.2300

PS 1 0.0297 0.0009 0.0105 0.0320

Total 1 0.2713 0.0020 0.1138 0.3811

Table B.32: Pure shear results for Nunes model.

PS only fit (Treloar)

Parameters Gc=0.3164 [MPa] Ge=0.0314 [MPa] β=0.0065

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 0.1756 0.0005 0.0251 0.2116

ET 0 0.8253 0.0000 0.0771 0.9670

PS 1 0.0216 0.0003 0.0171 0.0310

Total 1 1.0225 0.0008 0.1194 1.2097

Table B.33: Pure shear results for tube model.
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PS only fit (Treloar)

Parameters µ1=0.3237 [MPa] µ2=0.1000 [MPa] η=0.8401

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 0.2059 0.0006 0.0415 0.2415

ET 0 1.0882 0.0000 0.0958 1.1577

PS 1 0.0330 0.0010 0.0104 0.0354

Total 1 1.3271 0.0016 0.1477 1.4346

Table B.34: Pure shear results for slip-link model.

PS only fit (Treloar)

Parameters
A1=0.0022 [MPa] α1=1.4009 B1=0.1273 [MPa]

β1=−0.2397

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 35.904 0.2304 1.6113 9.1460

ET 0 295.15 0.0215 8.5802 154.67

PS 1 0.0012 0.0083 0.0085 0.0088

Total 1 331.05 0.2603 10.200 168.83

Table B.35: Pure shear results for Swanson model.

PS only fit (Treloar)

Parameters C1=0.1630 [MPa] C2=0.0353 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 0.2114 0.0009 0.0385 0.2449

ET 0 1.2386 0.0000 0.1193 1.3428

PS 1 0.0314 0.0014 0.0157 0.0376

Total 1 1.4814 0.0023 0.1735 1.6253

Table B.36: Pure shear results for Gent-Thomas model.
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PS only fit (Treloar)

Parameters µ1=0.1498 [MPa] µ2=0.1000 [MPa] κ=1.2122

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 0.0796 0.0000 0.0132 0.1168

ET 0 0.3511 0.0000 0.0126 0.4979

PS 1 0.0192 0.0000 0.0353 0.0450

Total 1 0.4498 0.0000 0.0611 0.6597

Table B.37: Pure shear results for constrained-junction model.

PS only fit (Treloar)

Parameters
A=0.3366 [MPa] B=−0.0515 C=0.1317 [MPa]

D=0.1895

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 22.3858 0.0361 0.0643 4.2765

ET 0 2.6816 0.0399 0.0730 1.3467

PS 1 0.0035 0.0151 0.0161 0.0170

Total 1 25.0709 0.0911 0.1534 5.6402

Table B.38: Pure shear results for weight function based (WFB) model.

PS only fit (Treloar)

Parameters µ=0.3377 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 0.1071 0.0000 0.0026 0.1575

ET 0 0.4457 0.0000 0.0000 0.7078

PS 1 0.0179 0.0000 0.0048 0.0400

Total 1 0.5706 0.0000 0.0074 0.9052

Table B.39: Pure shear results for neo-Hooke model.
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PS only fit (Treloar)

Parameters µ=0.3820 [MPa]

Quality of fit

Weight Error Region 1 Region 2 Region 3

UT 0 0.1687 0.0000 0.0202 0.2845

ET 0 0.5544 0.0000 0.0000 0.7310

PS 1 0.0181 0.0000 0.0015 0.0237

Total 1 0.7411 0.0000 0.0216 1.0393

Table B.40: Pure shear results for Valanis-Landel model.
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Appendix C

STRAIN ENERGY FUNCTIONS FOR HYPERELASTIC MODELS
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