

REBALANCING IN ASSEMBLY LINES

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

 UTKU

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MAST
IN

NG

AUGUST 2019

Approval of the thesis:

REBALANCING IN ASSEMBLY LINES

submitted by in partial fulfillment of the requirements for the degree
of Master of Science in Industrial Engineering Department, Middle East
Technical University by,

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Yasemin Serin
Head of Department, Industrial Engineering

Prof. Dr.
Supervisor, Industrial Engineering, METU

Examining Committee Members:

Prof. Dr.
Industrial Engineering, METU

Prof. Dr.
Industrial Engineering, METU

Assoc. Prof. Dr. Sakine Batun
Industrial Engineering, METU

Assoc. Prof. Dr. Mustafa Kemal Tural
Industrial Engineering, METU

Assoc. Prof. Dr.
Industrial Engineering, Hacettepe University

Date: 29.08.2019

iv

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname:

Signature:

 Utku Girit

v

ABSTRACT

REBALANCING IN ASSEMBLY LINES

Girit, Utku
Master of Science, Industrial Engineering

Supervisor: Prof. Dr.

August 2019, 70 pages

Assembly line balancing is an important and well recognized operations research

problem. The current balancing might not stay optimal for a long time due to the

changing conditions. The changing conditions, like disruptions in one or more

workstations, may cause some inefficiencies, even infeasibilities, for the current

balance. In this study, after the disruption, we aim to rebalance the assembly line by

considering the trade-off between workload balancing (efficiency measure) and total

displacement amount for the tasks assigned to the different workstations (stability

measure).

We try to generate all non-dominated objective function vectors for the defined

efficiency and stability measures. Two algorithms are developed: classical approach

and tabu search algorithm. Our experiments have shown that the classical approach

returns exact non-dominated objective vectors with up to 40 tasks and 7 workstations

in one hour and the tabu search algorithm returns approximate non-dominated

objective vectors that are very close to their exact counterparts and can solve large

sized instances, very quickly.

vi

Keywords: Assembly Lines, Rebalancing, Workload Balancing, Classical Approach,

Tabu Search

vii

Girit, Utku
,

: Prof. Dr.

, 70 sayfa

verimli durumda kalamayabilir. Bir ve

-

verimli domine-

viii

Anahtar Kelimeler:

ix

To my family

x

ACKNOWLEDGEMENTS

First of all, I wish to express my deepest gratitude to my thesis supervisor Prof. Dr.

so like to

thank to her for being such an understanding and supportive supervisor during our

study.

I would like to thank my mother, father and brother for their endless encouragement.

I could never complete my thesis studies without their love and support.

I would also like to thank to many other people for contributing to this study directly

Orkun and for being the best friends one can have and always being

there for me whenever I need their supports.

I would like to thank to my dear colleagues from ASELSAN and METU Industrial

 for being the most supportive

colleagues.

Last but not least, I would like to express my love and deepest gratitude to my dear

Defne Yaman for providing me with unending support and continuous encouragement

through this study. This accomplishment would not have been possible without her

invaluable support.

xi

TABLE OF CONTENTS

ABSTRACT .. v

 ... vii

ACKNOWLEDGEMENTS ... x

TABLE OF CONTENTS .. xi

LIST OF TABLES .. xiii

LIST OF FIGURES .. xiv

CHAPTERS

1. INTRODUCTION .. 1

2. LITERATURE REVIEW ... 5

2.1. Literature on Assembly Line Balancing Problems (ALBP) 5

2.1.1. Literature on Type-I & Type-II Problems .. 5

2.1.2. Literature on Type-III Problems .. 6

2.2. Literature on Assembly Line Rebalancing ... 8

2.2.1. Literature on Rebalancing with Stochastic Task Times 8

2.2.2. Literature on Rebalancing with Deterministic Task Times 9

3. PROBLEM DEFINITION AND MATHEMATICAL MODELING 11

3.1. Problem Definition .. 11

3.2. Mathematical Modeling ... 12

4. SOLUTION APPROACHES .. 17

4.1. Non-Dominated Objective Vectors .. 17

4.2. Extreme Non-Dominated Solutions ... 17

4.2.1. The Non-Dominated Objective Vector with Smallest Efficiency Value . 18

xii

4.2.2. The Non-Dominated Objective Vector with Smallest Stability Value 20

4.3. Generating All Non-Dominated Objective Vectors 26

4.3.1. Calculating Upper Bound on Cycle Time .. 26

4.3.2. Calculating Earliest and Latest Assignable Workstation Information 28

4.4. Modified Mathematical Model... 29

5. MULTI OBJECTIVE TABU SEARCH APPROACH..................................... 39

6. COMPUTATIONAL EXPERIMENT ... 47

6.1. Data Generation ... 47

6.2. Performance Measures ... 49

6.3. Preliminary Experiments ... 52

6.3.1. Effect of Task Times ... 52

6.3.2. Effect of Earliest and Latest Possible Task Assignment Information...... 53

6.4. Main Experiments ... 54

6.4.1. Experiments with Classical Approach (CA) .. 54

6.4.2. Comparison Between Classical Approach and Tabu Search Algorithm.. 59

6.4.3. Testing Limits of Tabu Search Algorithm.. 63

7. CONCLUSIONS .. 65

REFERENCES .. 67

xiii

LIST OF TABLES

TABLES

Table 4.1. Task times of the sample problem instance .. 33

Table 5.1. Tabu Tenure comparison results .. 41

Table 6.1. Configurations with KN, K and disrupted workstations 48

Table 6.2. The performance of CA for U[1,10] and U[1,50] 52

Table 6.3. The performance of the Classical Approach with and without Ei and Li . 54

Table 6.4. The average and maximum number of non-dominated objective vectors for

KN=4 & K=5 and KN=4 & K=7 .. 55

Table 6.5. The average and maximum number of non-dominated objective vectors for

KN=5 & K=6, KN=5 & K=8, KN=6 & K=7 and KN=6 & K=9 55

Table 6.6. The average and maximum CPU times for KN=4 & K=5 and KN=4 & K=7

 .. 56

Table 6.7. The average and maximum CPU times (in seconds) for KN=5 & K=6, KN=5

& K=8, KN=6 & K=7 and KN=6 & K=9 ... 56

Table 6.8. Comparison between Classical Approach and Tabu Search Algorithm for

N=25 and N=30 ... 60

Table 6.9. Comparison between Classical Approach and Tabu Search Algorithm for

N=35 and N=40 ... 61

Table 6.10. Average CPU times and number of non-dominated objective vectors

found by Tabu Search Algorithm ... 63

xiv

LIST OF FIGURES

FIGURES

Figure 4.1. An initial configuration for the example instance.................................. 21

Figure 4.2. Sample instance precedence diagram .. 33

Figure 4.3. Initial configuration before the disruption ... 34

Figure 4.4. Efficient solutions obtained for Example 4.3 .. 37

Figure 5.1. Illustration of short term, long term and weight loops 42

1

CHAPTER 1

1. INTRODUCTION

Assembly lines are manufacturing systems that reside a sequence of workstations

performing repetitive tasks. These systems are flow-oriented and used for

standardized high volume products. Assembly line balancing (ALB) problem is a

significant problem for the management of the assembly lines. It concerns the

assignment of the work elements, so called tasks, to the processing units, so called

workstations, in the most efficient way. The tasks are assigned to the workstations by

considering cycle time, precedence relationships and some line-specific constraints.

The pioneering work on ALB problem was proposed by Salveson in 1955 and

thereafter several variations of the problem are studied in the literature. The assembly

lines still attract the researchers as the advances in the technology are continuously

triggering many advanced line structures.

Several classifications for the ALB problem have been made in the literature. One

important classification is due to the problem types where the types are defined as:

Type-I Problem: Minimize the number of workstations for a specified cycle time

value

Type-II Problem: Minimize the cycle time for a specified number of workstations

Type-III Problem: Minimize the workload variation between workstations

Rebalancing of the assembly lines is a newly studied problem area and despite its

practical importance it is somewhat neglected. In this study, an assembly line

rebalancing problem is considered where the task assignments to the workstations are

already made. Most assembly lines are not balanced from scratch and but rather

rebalanced considering the changes in the environment. Thus, rebalancing the line

2

with respect to the initial configuration, but not from scratch, is more appropriate when

any parameter alters, e.g., workstation shutdowns, cycle time changes, task time

changes and new technological changes. These alterations are called disruptions and

it may affect one or more workstations or the precedence structure so that the tasks

may not be assigned to their original workstations in the new schedule.

In this study, the disruptions are assumed to occur on some specified workstations and

they make the line balance infeasible. Once the disruption occurs, the disrupted

workstations tasks should be moved to other workstations. In doing so, the tasks on

some other non-disrupted workstations may have to move to other workstations to

improve the predetermined performance measure(s). If a task is assigned to a different

workstation than its original, it is called disrupted.

After the disruption, in the rebalance, the trade-off between the stability measure and

efficiency measure should be well established.

As a stability measure, we aim to reduce the total distance traveled by the disrupted

tasks under the assumption that the workstations are equally spaced. Such a total

distance traveled can be considered as the amount of movement made by the changes

between the original schedule and reschedule. The setups are already settled for the

current workstation and any movement to other workstation incurs cost that is a

function of the travel length. The movements might be due to operators, machines,

equipment and raw materials that are located in the original workstation.

As an efficiency measure, we aim to minimize the squared workloads of the

workstations. Our aim is to achieve balanced work among all workstations by

penalizing squared workloads. Higher workloads are penalized more for better

smoothing. Uneven distribution of workloads would result unfair evaluation of the

assembly workers that need to be avoided by the operation managers.

3

Our stability measure of total distance traveled and efficiency measure of total squared

workload are conflicting as en route to keeping the total distance at reasonable level,

one has to increase the workstation loads, thereby the total squared workload.

Recognizing this fact, we find the non-dominated objective vectors for these two

measures. We assume that the preference function of the decision maker is not known

and he/she may make a preference according to the non-dominated objective function

set.

In this study, we aim to generate the non-dominated objective function set together

with an efficient solution representing each objective function value. We present two

approaches: one for generating the exact non-dominated objective vector set, the other

for the approximate set. The exact non-dominated objective vector set is generated

via classical approach using the mixed integer linear programming models. The

approximate set is generated in polynomial time by using tabu search algorithm. Our

experiments show that the classical approach is helpful for small-sized problem

instances and the tabu search algorithm finds satisfactory solutions for large-sized

problem instances in reasonable time.

The rest of thesis is organized as follows: the related literature is reviewed in Chapter

2. In Chapter 3, we define the problem and give the mixed integer linear model. The

classical approach is introduced in Chapter 4. In Chapter 5, we present our tabu search

solution procedure. Chapter 6 discusses the results of our extensive experiments.

Chapter 7 concludes the study and discusses potential related research areas.

5

CHAPTER 2

2. LITERATURE REVIEW

In this chapter, we review the assembly line balancing (ALB) studies and give related

background for rebalancing assembly line problems with stochastic and deterministic

task times.

2.1. Literature on Assembly Line Balancing Problems (ALBP)

As discussed in the introduction, there are three types of ALB problems: Type I, Type

II and Type III. We base our literature review on this classification.

2.1.1. Literature on Type-I & Type-II Problems

Salveson (1955) published the first assembly line balancing problem paper. Since

then, thanks to the ever increasing technological advances of the assembly lines, the

related problems become very popular and challenging for the researchers and are still

being studied in the literature.

Type-I problem and Type-II problem are shown as strongly NP-hard through the

reduction to the well-known bin packing problem. Classical approaches are developed

for small sized problem instances to find exact solutions and heuristic approaches are

developed for bigger sized problem instances to find approximate solutions.

Several survey papers have been published for the assembly line balancing problems,

some noteworthy of those are due to Baybars (1986), Boysen et al. (2007), Battaia and

Dolgui (2013) and Sivasankaran and Shahabudeen (2014).

6

Baybars (1986) discussed some deterministic models for the exact solutions of Type-

I problem and Type-II problem. He explained the ALB problem and its properties,

gave the mathematical formulations for general Type-I problem and Type-II problem

and reported a computational comparison.

Boysen et al. (2007) classified assembly line balancing problems for providing better

communication between the researchers and the practitioners. They classified the

assembly line literature according to the nature of the precedence graphs, workstation

and line characteristics, objective functions and approaches used, i.e., exact or

heuristic methods.

Battaia and Dolgui (2013) gave an extensive review, covering about 300 studies on

the ALB problem. They basically focused on studies between years 2007 and 2012,

and analyzed the recent research in several industrial contexts. They categorized the

studies by the manufacturing environment, model size (single-model and multi-

model), line layout (straight-type and U-type), task specifications (deterministic,

assignment dependent, etc.), workstations and their attributes, constraints, objective

functions, approaches used.

Sivasankaran and Shahabudeen (2014) also made a comprehensive review for the

ALB literature. They classified the literature into eight categories by the model size,

the line layout and the nature of task times. For each category and paper reviewed,

they gave information about approach used (mathematical model, tabu search, genetic

algorithm, etc.), problem type (Type-I or Type-II), goals (minimize cost, minimize

idle time, etc.) and computational efficiency (solution time and closeness to the exact

solutions).

2.1.2. Literature on Type-III Problems

Type-III problem literature is more recent and scarce compared to those of Type-I

problem and Type-II problem. The existing studies have mentioned the importance of

workload smoothing and proposed methods for solving the problem.

7

Rachamadugu and Talbot (1991) indicated that assigning nearly identical workloads

to each workstation and to each person in the workstations is an important concern for

many practitioners. Uneven workload assignments usually lead to a need for

compensatory management actions like different payment systems. Smunt and Perkins

(1985) showed that allocating the workload as even as possible, maximizes the

production rate for low variance task times and long assembly lines. Groover (2013)

argued that the unequal distribution of workload among the workstations increases the

ergonomic risks and he also emphasized the importance of workload smoothing to

reduce the ergonomic risks.

Esmaeilbeigi et al. (2015), Azizoglu and Imat (2018) and Finco et al. (2019) suggested

exact solution approaches for the workload smoothing problem. Esmaeilbeigi et al.

(2015) and Finco et al. (2019) used mixed integer linear programming formulations

some reduction mechanisms and bounds. They developed a simple heuristic rule to

find an initial upper bound for their search algorithm.

Rachamadugu and Talbot (1991), Kim et al. (1998), Ponnambalam et al. (2000),

Nearchou (2011) and Mozdgir et al. (2013) considered the approximate solution

approaches for the workload smoothing problem. Rachamadugu and Talbot (1991)

considered the total absolute deviation from target value as the objective function and

proposed a heuristic procedure. Kim et al. (1998) considered the mean absolute

deviation as the objective and proposed a heuristic based genetic algorithm. Nearchou

(2011) suggested particle swarm optimization heuristic to minimize the cycle time and

to maximize the workload smoothing of assembly lines. Mozdgir et al. (2013)

considered the workload smoothness index as the objective and used an evolutionary

algorithm, so called differential evolution algorithm. Ponnambalam et al. (2000)

studied a multi-objective problem with different objectives like minimizing the

number of workstations, maximizing the line efficiency and minimizing the deviation

of the maximum workstation load from any other workstations.

8

We are not aware of any tabu search algorithm proposed for workload smoothing

objectives.

2.2. Literature on Assembly Line Rebalancing

The research on the assembly line rebalancing is of recent origin and somewhat

limited. We study the assembly line rebalancing literature in two categories

considering the task time characteristics. As mentioned in Gamberini et al. (2006),

rebalancing problems have multi-objective nature that trades off between the

efficiency and stability objectives.

2.2.1. Literature on Rebalancing with Stochastic Task Times

Gamberini et al. (2006), Gamberini et al. (2009) and Celik et al. (2014) consider

stochastic task times.

Gamberini et al. (2006) considered minimizing sum of the unit labor cost and expected

incomplete unit costs and maximizing similarity between the initial and new

configuration when any input parameter changes. They considered the stochastic

version of the line balancing problems and proposed a heuristic solution approach that

provides approximate non-dominated objective vectors set. They combined the

heuristic solution approach of Kottas and Lau (1973) and a multi attribute decision

making procedure of Hwang and Yoon (1981).

Gamberini et al. (2009) considered the same objectives with Gamberini et al. (2006);

however, they proposed two different solution approaches to generate approximate

non-dominated objective vector set: a genetic algorithm and a multiple single pass

algorithm. Multiple single pass algorithm is an improved version of the one proposed

in Gamberini et al. (2006). It combines four heuristic procedures, one of which is from

the study of Gamberini et al. (2006). The computational results show that multiple

single-pass algorithm dominates both genetic algorithm in Gamberini et al. (2009) and

heuristic approach proposed in Gamberini et al. (2006).

9

Celik et al. (2014) proposed a heuristic (ant colony optimization algorithm) to

rebalance U-type assembly lines with stochastic task times. Their objective is

minimizing the total rebalancing cost that consists of task reallocation, workstation

opening and closing costs.

2.2.2. Literature on Rebalancing with Deterministic Task Times

Grangeon et al. (2011), Yang et al. (2013), Faccio et al. (2015), Sanci and Azizoglu

(2017) and Belassiria et al. (2018) studied the assembly line rebalancing problems

with deterministic task times.

Grangeon et al. (2011) considered rebalancing problem with mixed models for an

automotive firm. The line is balanced for each month and changes in production

demand or line structure arise a need for rebalancing before new month starts.

Rebalancing has three steps: obtaining a feasible solution, decreasing the number of

workstations and smoothing the workload between workstations for the minimum

number of workstations. They proposed three heuristic approaches one for each step.

They improved the procedure in Boutevin (2003) by reducing the number of task

assignment changes while smoothing the workstation loads.

Yang et al. (2013) studied a three-objective rebalancing problem with mixed-models.

Their efficiency measures are minimizing the number of workstations and maintaining

even workload distribution and the stability measure is minimizing the total

processing time of reassigning tasks. They proposed a genetic algorithm and enhanced

its efficiency by a local search.

Faccio et al. (2015) considered minimizing number of workstations as efficiency

measure and minimizing the number of displaced tasks as stability measure. They

developed an exact solution method that could solve the problem instances up to 34

tasks in less than 2 seconds. For bigger problem instances, they proposed

decomposition approaches.

10

Sanci and Azizoglu (2017) considered a rebalancing problem with workstation

breakdowns or shutdowns. Once the disruption occurs, they find all non-dominated

objective vectors with respect to minimum cycle time and minimum number of tasks

assigned to different workstations. They suggested two exact solution methods: a

branch and bound algorithm and a mathematical model based procedure. Found that

their branch and bound algorithm runs much faster than the mathematical model based

procedure.

Belassiria et al. (2018) studied a real-life rebalancing problem for an automotive cable

manufacturer. They proposed a genetic algorithm that is hybridized with a priority

rule. They assumed that the task transposition costs are negligible, thereby considering

no stability measure. However, they introduced assignment restrictions. By this way,

some tasks with heavy machine requirement are assigned to the same workstation on

the initial configuration. Their efficiency measures are maximizing the line efficiency

expressed as cycle time and workload smoothing. They gave higher importance to

minimize cycle time and they smoothed the workload for the minimum cycle time

value.

The study by Sanci and Azizoglu (2017) is the most closely related one to ours. The

similarities are due to the problem environment, like workstation breakdowns are

considered as causes of disruption and classical (mathematical model based) approach

to find the non-dominated objective set. We use different efficiency and stability

measures and we propose different solution approach from Sanci and Azizoglu (2017).

11

CHAPTER 3

3. PROBLEM DEFINITION AND MATHEMATICAL MODELING

In this chapter, we give the problem definition and provide the mixed integer

programming model.

3.1. Problem Definition

There are several assumptions that define the boundaries of our problem and these

assumptions are listed below:

 Initial workload distribution is optimal according to our efficiency measure.

 There is a single product type.

 Paced transfers are considered.

 The system is static and deterministic; i.e., all parameters are certain and do not

change.

In original configuration, N tasks are already assigned to K workstations. A disruption,

that affects some specified workstations (KD), occurs. KN is the set of non-disrupted,

i.e. non-affected, workstations. Our aim is to rebalance the line after the disruption

considering the following measures.

i. Efficiency Measure: Sum of squared workloads (WL)

ii. Stability Measure: Total replacement cost (TR)

We assume the initial line balance optimizes our efficiency measure of minimizing

the sum of squared workloads.

12

3.2. Mathematical Modeling

Using this problem structure, we defined our mathematical model with the following

parameters:

 = set of workstations in the initial balance

 = closed workstation set

 = set of non-disrupted workstations in the new balance

 = processing time of task i for

 = immediate predecessor set of task i for

IPi values together give the precedence structure.

We explain our decision variable which explain the new balance as follows:

 =

for and

The constraints are as stated below.

Each task must be assigned to one and only one workstation.

 for

The precedence relations should be satisfied. Accordingly, if j IPi, it should not be

placed later than task i.

 for

13

The binary constraint is as stated below:

 for and

We next explain our performance measures

i. Efficiency Measure Total Squared Workload

We let Wk denote the workload of workstation k.

Accordingly,

 for

The sum of squared workloads is used instead of the sum of workloads at each

workstation once we use sum of workloads at each workstation (, our

objective considers cycle time only. However, our main purpose is assigning workload

to the stations as uniform as possible. For example, between alternatives (10, 6, 4) and

(10, 7, 3) which have equal cycle time, we want to select alternative 1. Therefore, the

sum of square of workloads at workstations is used as it leads to a smooth distribution

to the workstations.

Sum of square of workloads, WL is

 is equal to since

as xik d each task should be assigned.

14

This follows

Minimizing WL is therefore equivalent to

Minimizing as is constant.

Hence our efficiency measure WL is expressed as follows:

Note that WL is non-linear and can be linearized through the use of new decision

variable and constraint sets.

Therefore, we define yijk as follows:

=

Accordingly,

WL =

 for

 0 for

 1 only when 1 will be

satisfied as strict equality due to the positive coefficient of yijk, which is (ti * tj) in the

efficiency measure WL expression.

15

ii. Stability Measure Total Displacement Cost

We define TRi as the total displacement cost of task i.

Accordingly,

 where ki is the workstation of task i, in the initial

configuration.

Total displacement cost, hereafter is defined as

TR =

For the sake of clarity, we recapitulate our model as follows:

Min WL = (O1)

Min TR = (O2)

 for (1)

 for (2)

 for (3)

 for and (4)

 0 for (5)

16

We refer the constraint sets (1) through (5) as x X, and our problem is expressed as

Min WL

Min TR

x X

17

CHAPTER 4

4. SOLUTION APPROACHES

This chapter first defines the non-dominated objective vectors and then discusses the

extreme non-dominated objective vectors.

4.1. Non-Dominated Objective Vectors

For minimizing objectives and , a solution in x X is called efficient if there

is no other solution in x X with and where strict inequality

holds at least once. In other words, objective function values of solution and should

be : and or and

. (which is the resulting vector of solution s is said to be non-

dominated. We can say that solution is dominated by solution and the objective

vector of is dominated by the objective vector of .

4.2. Extreme Non-Dominated Solutions

Once an efficient solution has the smallest objective function value for one objective,

it is called extreme efficient solution. The objective function vectors corresponding to

the extreme efficient solutions are referred to as extreme non-dominated objective

vectors. We now discuss the generation of two extreme non-dominated objective

vectors and corresponding extreme efficient solutions.

18

4.2.1. The Non-Dominated Objective Vector with Smallest Efficiency Value

Assume the following problem

(M1) Min = WL

 Subject to x X

WL*, the optimal objective function value, is a lower bound of all efficient solutions

with respect to the total squared workloads. On the other hand, any solution having a

total load of WL* may not be efficient since another optimal solution with smaller

stability value may exist.

Among the optimal assignments the one with the smallest stability value can be found

through the solution of the following problem:

(M2) Min TR

Subject to x X

WL = WL*

Therefore, two stages are needed in order to find the efficient solution with WL value

of WL*

1. Solve Minimize WL subject to x X

Let WL* be the optimal objective function value.

2. Solve Minimize TR subject to x X and WL = WL*

Let TR* be the optimal objective function value.

19

The objective function is modified as WL + TR * TR for a sufficiently small value of

TR, instead of solving the problem in two stages. In other words, the following

problem can be solved to get (WL*, TR*) solution.

Min WL + TR * TR

s.t. x X

where 0 < TR << 1

TR should be sufficiently small so that the total squared workload does not increase

even one unit for the highest reduction of the TR value. According to that,

WL* + TR * TRmax
* + 1 + TR * TRmin

where

TRmin = minimum possible value of TR

 = total number of tasks in the disrupted workstations

TRmin is the minimum movement that would occur when all tasks of the disrupted

workstations are moved to the previous or next workstation.

TRmax = maximum possible value of TR

 =

where is the original workstation of task i

 is the maximum movement due to task i either to the first

workstation or last workstation, whichever is further.

20

Therefore;

WL* + TR * TRmax
* + 1 + TR * TRmin

TR * (TRmax - TRmin

TR

In our experiments, we set

TR = .

We also use earliest and latest possible workstation information while calculating

TRmax thereby TR.

We set TRmax =

where Ei is earliest assignable workstation for task i and Li is latest assignable

workstation for task i. Ei and Li computations are discussed in Section 4.3.2.

4.2.2. The Non-Dominated Objective Vector with Smallest Stability Value

Consider the following problem

Min

 Subject to x X

 TR = TR*

where TR* is the minimum displacement amount of tasks in the efficient set.

TR* serves as a lower bound for the minimum displacement amount of tasks of the all

efficient solutions.

21

TR* can be found by considering only the disrupted workstations. The solution is

moving the tasks on the disrupted workstations to one of their closest workstations.

For each task, there are at most two closest workstations, one to the left and one to the

right.

As the minimum total disruption value is only related with the disrupted tasks, the

allocation will be among the disrupted tasks, hence the problem size will be reduced.

Moreover, we reduce the number of workstations and consider only the workstations

that are closest to the disrupted workstations.

The following example illustrates the minimum displacement of tasks.

Example 4.1: We have 21 tasks, 4 workstations and initial configuration is given as

follows:

WS 1 WS 2 WS 3 WS 4

1,3,4,21 5,6,7,8,9,11,12 10,13,14,15,16,17 2,18,19,20

Figure 4.1. An initial configuration for the example instance

Suppose workstation 3 is disrupted.

To find minimum total squared load with minimum disrupted amount, we consider

disrupted tasks 10,13,14,15,16 and 17. These tasks should be assigned to either left

(WS2) or right (WS4) workstations by considering total squared load.

Workstation assignment of tasks in WS1, WS2 and WS4 will not change after the

disruption since we want to minimize total disrupted amount.

22

Mathematical model for minimizing smallest stability value is given below:

Parameters

N = set of tasks on disrupted workstations

K = set of workstations that are closest to the disrupted workstations

Lk = Workload of the workstation k in initial configuration for

= completion time of task i for

 = immediate predecessor cluster of task i for

Kj = workstation index of non-disrupted task j, s.t. j IPi or i IPj for any disrupted

task i

 {10, 13, 14, 15, 16, 17 {WS2, WS4}.

Decision Variable

=

for and

Objective Function

Minimize

=

 is constant and can be removed from the objective function.

 is non-linear and can be linearized through the use of new

decision variable and constraint sets using the linearization method used in Chapter 3.

23

Therefore, our minimum stability value model becomes:

Minimize

subject to for

 for

 for and

 for and j

 for and j

 for and

 for

When there is a single workstation disrupted, the problem size is further reduced and

a more efficient formulation is provided. For a single disruption, two cases exist.

Case I. There is a single closest workstation, say u. (Disruption occurs in first or last

workstations)

In the single closest workstation problem, all tasks of the disrupted workstation are

moved to workstation u.

WLu* = Lu +

WLk* = Lk

24

Case II. There are two closest workstations, say u and v. (Disruption occurs in one of

-1)

The associated problem is formulated as:

Min WLu
2 + WLv

2

Subject to WLu = Lu +

 WLv = Lv +

 xiu ju for (i,j) d and i

 xiu = {0,1} for d

u<d<v where d is disrupted workstation and u is previous and v is following

workstation of d.

Note that there are |D| binary variables.

Moreover, we do not need to linearize the objective function as it reduces to the even

load distribution, Cmax, problem.

We state this result formally in theorem below.

Z1 = WLu
2 + WLv

2

Z2 = Max {WLu, WLv}

Theorem: Minimizing Z1 is equivalent to minimizing Z2.

Proof: Assume Z2* = WLu = Max {WLu,WLv}

We will show that any increase above Z2* value increases Z1* value.

Assume Z2* is increased by k units such that WLu = WLu*+k and WLv = WLv*-k.

25

Accordingly,

Z1 will be affected by

Z1 = (WLu* + k)2 + (WLv* - k)2

 = (WLu*)2 + (WLv*)2 + 2 * k2 + 2 * k * (WLu*- WLv*)

Znew = Zold* + 2 * k2 + 2 * k * (WLu*- WLv*)

k > 0 and WLu v*

Therefore, Znew > Zold.

This follows that an increase of Z1* value increases the Z2* value.

Hence, minimizing Z1 is equivalent to minimizing Z2, i.e., we can use minimizing

cycle time as objective function without using any linearization method.

Suppose workstation r is disrupted. Updated mathematical model is given below.

Parameters

r = disrupted workstation

N = set of tasks on r

Lk = load of workstation k in the initial configuration

A lower bound on Cmax is:

LB(Cmax) = (distribution minimizes the maximum load)

Decision Variables

=

26

Cmax = Cycle time

Mathematical Model

Minimize Cmax

Cmax r-1 +

Cmax r+1 +

 for i

xi = {0,1} for

Cmax max)

4.3. Generating All Non-Dominated Objective Vectors

In this chapter, we derive an upper bound on the cycle time and discuss its use for the

workstation indices of the tasks. The ranges on the workstation indices of each task

are used in our mathematical models.

4.3.1. Calculating Upper Bound on Cycle Time

Recall that the efficient solution with smallest stability value provides an upper bound

on the WL values of the efficient solutions.

We let this WL value as UB(WL) and use it to obtain an upper bound on the maximum

load of any efficient solution.

WL* = CT2 +

where kb is the index of the bottleneck workstation, i.e., the workstation that defines

CT value.

27

One lower bound on the value, LB(K-1) distributes the total workload

() among K-1 workstations, leading to the following expression:

LB(K-1) =

 =

This follows

2 + LB(K-1)

2 +

CT2 * (K-1) + ()2 - UB(WL) * (K-

K * CT2 2 * * CT + ()2 (K-

This is a second order polynomial function of CT (aX2 + bX + c) where

a = K > 0

b = -2 * < 0

c = ()2 (K-1) * UB(WL)

From calculus, we know that the upper root of polynomial function above is:

CT2 =

=

=

28

This follows CT2 is an upper bound on the CT values of the efficient solutions.

Example 4.2: Calculating an upper bound on cycle time

Let = 324, K=10 and UB(WL)=10642.

Then,

a = K =10

b = -2 * = -648

c = ()2 (K-1) * UB(WL) = 9198

CT2 = UB(CT) =

CT2 value is used in Earliest () and latest () computations. and are not only

used for finding TRmax and TR but also used in reducing the number of decision

variables and constraints of mathematical model.

4.3.2. Calculating Earliest and Latest Assignable Workstation Information

The cycle time upper bound value can be used to calculate the earliest (Ei) and latest

(Li) assignable workstation information for each task i.

= the earliest assignable workstation for task

 = where is the predecessors set of task

= the latest assignable workstation for task

 = where is the successors set of task

29

where

=

While finding and , if the cycle time of the assembly line in new situation (CTnew)

is known or decided, we can use this value as CT. Otherwise, upper bound for cycle

time () need to be calculated since cycle time of the initial configuration is not

an upper bound for new configuration.

 and values are also used for TRmax and TR by using TRmax.

Recall that, we have found TRmax using the following expression as follows:

TRmax =

We strengthen TRmax using the earliest and latest workstation information as follows.

TRmax = .

4.4. Modified Mathematical Model

Recall that our mathematical model was stated as follows:

Min WL

Min TR

Subject to x X

Constraint set (1) through (5) shown as x X.

30

In Chapter 4.2, we showed that two objective functions can be converted into a one

objective function via value.

Min WL +

Subject to x X

where

In this section, we incorporate the earliest and latest workstation information of the

tasks to the mathematical model en route to reducing the size of our mathematical

model. We also add upper bound on cycle time to our model.

Our modified mathematical model that uses Ei and Li information as bounds on the

workstation indices and upper bound on cycle time is given below.

Minimize

+

Subject to

31

After that point, we refer the constraint sets (1) through (6) as , and our problem

is expressed as

Min WL +

 and have significant roles in decreasing the number of decision variables and

constraints. For example; for assembly line dataset which have 32 tasks and 7

workstations 18% improvement in the solution time (average of 10 different run) and

35% reduction in the number of decision variables (average of 10 different run) are

provided. Therefore, we decide to use and to our model. More experiments about

 and will be shown in Chapter 6.

Haimes et al. (1971) show that the following constrained problem gives an efficient

solution.

Min WL +

Subject to

TR

where t is between and .

Using this result, Procedure 1 finds all non-dominated objective vectors by varying

the TR value systematically according to the mathematical model above.

32

Procedure 4.1. Finding the Non-Dominated Objective Vectors

Step 0:

Calculate

Use in order to calculate and

Use and in order to calculate

Use in order to calculate

Step 1: Solve the problem below:

Min +

Subject to ,

TR

Let the optimal solution be (WL*, TR*)

Step 2:

If TR* = , STOP.

If TR* , Update = TR* - 1 and

Go to Step 1.

Each iteration of Procedure 1 returns a non-dominated objective vector. When

Procedure 4.1 is completed, all non-dominated objective vectors are generated.

33

Example 4.3: Using Procedure 4.1 on an assembly line sample

Consider a precedence diagram from Rosenberg and Ziegler (1992). Precedence

diagram, task times and initial configuration are given below in Figure 4.2, Table 4.1

and Figure 4.3, respectively.

Figure 4.2. Sample instance precedence diagram

Table 4.1. Task times of the sample problem instance

Task ti Task ti Task ti Task ti Task ti

1 34 6 11 11 16 16 21 21 5

2 28 7 15 12 42 17 47 22 21

3 36 8 3 13 8 18 24 23 47

4 42 9 5 14 11 19 9 24 5

5 29 10 46 15 17 20 50 25 20

34

WS 1 WS 2 WS 3 WS 4 WS 5

1,2,3,4 5,6,7,8
9,11,12,13,

14,15,20
 16,17,21

 10,18,19,22,
23,24,25

Figure 4.3. Initial configuration before the disruption

Suppose WS3 is disrupted. Procedure 4.1 is implemented as follows:

Step 0: Initialization

Calculate TRmin and UBCT

TRmin = # of tasks in disrupted WS = 7.

UBCT = 100 (according to Section 4.3.1)

According to the formula given in Section 4.3.2, and values are calculated and

added to the decision variables and constraints.

 is calculated as 56 by using and values of all tasks according to formula

given in Section 4.3.2.

Step 1: The problem is solved as

Min +

Subject to ,

TR

Corresponding optimal solution is (WL*, TR*) = (82,746, 12)

35

Step 2: Updating and .

TR* (12 > 7).

 is updated as 12 1 = 11 and

Go to Step 1.

Step 1: The problem is solved as

Min +

Subject to ,

TR

Corresponding optimal solution is (WL*, TR*) = (82,950, 10)

Step 2: Updating and .

TR* (10 > 7).

 is updated as 10 1 = 9 and

Go to Step 1.

36

Step 1: The problem is solved as

Min +

Subject to ,

TR

Corresponding optimal solution is (WL*, TR*) = (83,444, 8)

Step 2: Updating and .

TR* (8 > 7).

 is updated as 8 1 = 7 and

Go to Step 1.

Step 1: The problem is solved as

Min +

Subject to ,

TR

Corresponding optimal solution is (WL*, TR*) = (85,634, 7).

Step 2: Updating and .

TR* . Therefore, procedure is finished.

37

In four iterations, our procedure gives all non-dominated objective vectors that are

plotted in Figure 4.4.

Figure 4.4. Efficient solutions obtained for Example 4.3

With considering the second objective: displacement amount, alternative solutions

provided to the decision maker and DM can select any solution to implement

according to importance of the objectives. For instance, if DM thinks that other

workstations will be closed or opened in the short run, transporting more machines to

the other workstation makes no sense, DM can implement the alternative 1 (TR=7,

WL=85,634). Also, DM might select alternative 2 (TR=8, WL=83,444) since

increasing displacement amount more does not provide sufficient decrease in

workload distribution. Finally, if new balance will continue for a long time, DM can

select the alternative 4 (TR=12, WL=82,746) which provides best workload

smoothing with minimum possible displacement amount of tasks.

38

39

CHAPTER 5

5. MULTI OBJECTIVE TABU SEARCH APPROACH

Our preliminary computational experiment has revealed that classical approach

handles the instances with up to 6 workstations when there are 35 tasks and 4

workstations when there are 40 tasks.

To find solutions to large sized real life instances we propose a multi-objective tabu

search (MOTS) algorithm. Our motivation to use MOTS algorithm came from the

study by Chiang (1988) who reported well performance of Tabu Search for single

objective ALB problems. As far as we know, we propose the first tabu search

algorithm to the multi-objective assembly line rebalancing problems.

As stated in Glover and Laguna (1998), both attributive and explicit memories are

used in Tabu Search. Information related with solution attributes that change while

moving from one solution to other, i.e., basic moves are recorded in attribute memory.

On the other hand, elite solutions visited which include complete solutions are kept in

explicit memory. Elite solutions will be discussed later.

Our algorithm starts with a feasible solution. This feasible solution is found by

assigning tasks in the disrupted workstations to the closest workstations considering

feasibility due to precedence relationships.

We use insertion method as a solution attribute, where one task is taken from a

workstation and is assigned to another if the resulting improvement is the best for our

objective function (aspiration criteria) and the insertion is not tabu active. Also, we do

not allow infeasible insertions throughout the search process since their repairs may

be hard and time consuming.

40

Glover and Laguna (1998) state that, in Tabu Search, short term memory is called as

recency-based memory and it keeps track of solution attributes that have changed

during the recent past. We use recency-based memory in order to track recently made

insertions, i.e., tabu active solution attributes.

In our algorithm, recently used insertions (solution attributes) are recorded as tabu

active (added to the short term memory) for tabu tenure period in order to prevent

cycling. For tabu tenure period, tabu active insertions cannot be used in order to reach

a new solution. When an insertion is no longer tabu-active, it is deleted from short

term memory and could be used in future moves. The duration is usually measured by

the number of iterations.

We set the tabu tenure to N/4, N/2, N and 2N tasks and make a small experiment with

N=25, 30, 35 and 40. We use the following two measures for evaluation and the results

are reported in Table 5.1.

M1. Number of times the exact non-dominated objective vectors are found

M2. Number of times the best objective vectors compared to other tabu tenure

values are found

41

Table 5.1. Tabu Tenure comparison results

 Tabu Tenure Alternatives

 N/4 N/2 N 2N

N=25
KN=5
K=6

M1 7 7 8 4

M2 7 7 8 4

N=30
KN=6
K=9

M1 5 5 7 1

M2 8 6 8 1

N=35
KN=6
K=7

M1 4 6 6 1

M2 4 6 9 1

N=40
KN=4
K=7

M1 4 5 5 1

M2 4 5 7 1

Note from the above table that, the performance is the best when tabu tenure is set N

(number of tasks) and worst when it is 2N. Based on those results, N is set as tabu

tenure.

The set of known and not-yet-dominated objective vectors are kept in an elite solution

set (explicit memory). In elite solution set, we record assigned workstation assignment

information for each task, total squared workload and total displacement amount for

each solution and objective function value. The new solution is added to the elite set

if that solution is not dominated by any other solution in elite solution set. Also, if this

solution dominates any other solution from the elite set, the dominated solution is

deleted. In our implementation, we set the range of elite solution set as N.

42

Our solution approach divides the solution space to smaller search areas and tries to

find non-dominated solutions there. In our algorithm, we use three steps: short term

loop, long term loop and weight loop.

The following figure illustrates our short term, long term and weight loops.

Figure 5.1. Illustration of short term, long term and weight loops

In Figure 5.1, blue arrow represents a short term iteration, green arrow represents a

long term iteration and orange arrow represents weight change.

43

Short Term Loop

Short term loop is detailed search to find best solutions in a smaller (specific) area. In

order to find best (non-dominated) solutions, we use intensification in short term

iterations. Glover and Laguna (1998) state that intensification and diversification

strategies are two very important parts of tabu search. In our algorithm, intensification

is done in the short term loop while diversification is done in the long term loop. We

use two intensification strategies in the short term loop: choosing best improving

moves in each short term iterations and restart with historically found good assignment

if an improvement in objective function value is not occur for stopping counter period.

In our problem, an insertion which provides best improvement in our objective

function is called as good attribute. In each iteration, firstly precedence relationship

feasibility check is done. We only consider insertions that are feasible according to

precedence relationships. Between feasible insertions, an insertion which provides

maximum decrease in our objective function is selected. If that insertion is tabu-active,

tabu status of second best is checked. This procedure is continued until there is a not

tabu-active insertion is found and that insertion is made in that iteration. After

insertion, if new solution is not dominated by any other solution from elite solution

set, it is added to elite solutions and if new solution dominates any other recorded

solution, that dominated solution is deleted from elite solution set. Search is continued

until it reaches to short term iteration limit or stopping counter limit.

Intensification strategies encourage historically found good basic moves. For this

purpose, frequency (long term) based memory is used which demonstrates how often

an insertion used during the search. If an improvement in objective function value

does not occur for stopping counter period, we restart detailed search in that specific

area with a new starting point includes historically found good insertions. For defining

a new start point, each task is assigned to the most frequently assigned workstation

during the previous search. If that assignment is not feasible for any task, second most

used assignment for that task is checked. This procedure is continued until a feasible

44

assignment for all tasks is found. With new starting point, the detailed search is

repeated until it reaches to short term iteration limit or stopping counter limit.

In our solution approach, we select 10*N as stopping counter limit and 30*N as short

term iteration limit according to our observations and preliminary experiments.

Long Term Loop

When a detailed search in a small area is complete, long term loop is used in order to

visit new areas to see more solution alternatives. For this purpose, frequency (long

term) based memory is used which demonstrates how often was a solution element

considered and used during the search. By using frequency based memory, we try to

escape from getting stuck in local optima solutions. We record the frequency ratios of

insertions in frequency ratio matrix (Number of tasks, Number of workstations) and

that information is used for regional differentiation i.e., exploration and for finding a

new start point.

In order to perform diversification, we use the solutions which are evaluated but not

yet visited. In each long term loop, we store the number of times an attribute is visited,

i.e., attribute used in that short loop iteration to find a new solution, the number of

times each attribute is evaluated. By using this information, we obtain frequency ratio

(the number of times each attribute visited/evaluated). Low frequency ratio indicates

that the attribute is seldom visited although it is frequently evaluated. Hence using this

attribute in our solution, we expect to diversify the search area.

For finding a new starting point, the tasks are assigned to the workstations according

to lowest frequency ratio values and precedence feasibility. After that, a detailed

search for new region is started, i.e., methods in short term loop search is repeated.

45

In our solution approach, we select 2*N as stopping counter limit and 3*N as long

term iteration limit according to our observations and preliminary experiments. If an

improvement in objective function value is not occur for stopping counter period, we

finish that long term loop and algorithm will continue with new weight loop.

Weight Loop

Our problem has two objectives: balancing workload between workstations and

minimizing number of task displacement. In the classical approach, we use weighted

sum of two objectives, where the weight of first objective is set to one and the weight

of second objective is set to very small positive number . In tabu search algorithm,

we decide to use w1 and w2 as the normalized weights of the objectives.

Objective function: w1 * WL + w2 * TR

Our objectives have different scales, i.e., WL values are significantly higher than TR

values. Therefore, to see the effect of second objective better and find more non-

dominated objective solutions, we use normalized weights. Our algorithm starts with

(w1, w2) = (1, 0). We change the weights used in objective function to reach different

areas in solution space according to the importance of the objectives. To do that, for

each weight loop, the weight of the first objective is progressively decreases while the

progressively increases.

In our solution approach, we use 5 weight loops. Therefore, we reach all solution space

from (1 * WL + 0 * TR) to (0 * WL + 1 * TR).

The pseudo code for the Modified Tabu Search algorithm is provided below.

46

Procedure 5.1 Pseudo Code of Proposed Tabu Search Algorithm

Find an initial solution x0 set xnow=xbest=x0

Initialize frequency base memories, recency based memories and elite solutions

Repeat (Weight loop)

Decrease the normalized weight of first objective, increase the normalized weight of

second objective

Repeat (Long term loop)

Find a feasible solution consisting the solution elements evaluated but not

visited in previous iteration using frequency based memory

Repeat (Short term loop)

Choose feasible xnext with minimum total aspiration value from the

neighborhood of xnow

Move from xnow to xnext, set xnow=xnext

If xnow is better than xbest, update xbest

Update recency based memory, frequency based memory and elite

solutions

If xbest does not change for a given number of iterations, update xnow

according to intensification method

Until given number of iterations is reached

Until xbest does not change for a given number of iterations or a given number

of iterations is reached

Until a given number of iterations is reached

47

CHAPTER 6

6. COMPUTATIONAL EXPERIMENT

A computational experiment is designed to evaluate the performance of our solution

approaches. First the data generation method and performance measures are

introduced and then the preliminary and main experiments results are reported.

6.1. Data Generation

Assembly line balancing literature has many data sets that are used in many studies.

We use one of those data sets, the one proposed by Scholl and Klein (1997). The data

set resides the precedence network and the task times. We take their precedence

diagrams and generate new task times using two distributions: U[1,10] and U[1,50].

The U[1,10] resembles lower processing times and lower variance compared to those

of U[1,50].

To generate the initial line balance, firstly, we solve the minimizing total squared

workload problem, i.e., our efficiency measure.

The precedence networks that we select include the following well-known networks:

1. Roszieg, N=25 tasks

2. Sawyer, N=30 tasks

3. Gunther, N=35 tasks

4. Modified Kilbrid, N=40 tasks

5. Kilbrid, N=45 tasks

6. Hahn, N=53 tasks

48

7. Warnecke, N=58 tasks

8. Tonge70, N=70 tasks

9. Wee-Mag, N=75 tasks

10. Arc83, N=83 tasks

11. Lutz2, N=89 tasks

12. Mukherje, N=94 tasks

We observe that our classical approach returns exact solutions to the instances of data

sets 1, 2, 3 and 4 within predefined termination limit. The tabu search algorithm could

handle the instances in all data sets in two hours.

To see the effect of number of workstations in the new and initial configurations, i.e.,

KN and K, we use 6 configurations that are listed in Table 6.1. The table also resides

the disrupted workstations. We select the disrupted workstations as the ones that have

the highest task assignment alternatives, thereby leading to harder instances.

Table 6.1. Configurations with KN, K and disrupted workstations

Configuration KN K Disrupted Workstations

1 4 5 WS3

2 4 7 WS2, WS4 and WS6

3 5 6 WS3 or WS4

4 5 8 (WS2, WS4 and WS6) or (WS3, WS5 and WS7)

5 6 7 WS4

6 6 9 WS3, WS5 and WS7

49

For each N and (KN, K) combination, we generate 10 problem instances.

We set a termination limit of two hours (elapsed time) to our classical approach and

tabu search algorithm.

We observe that the classical approach could solve the instances up to 35 tasks for all

6 configurations. When N=40 tasks, only the first two configurations could be solved

in two hours. Therefore, a total of (3 * 6 + 2) = 20 combinations and 20 * 10 = 200

problem instances are solved exactly by the classical approach.

To test the limit of the tabu search algorithm, we continue with the larger sized, i.e.,

data sets 4 through 12 for (KN, K) = (6, 7). We try 5 problem instance for each of these

9, N values. Hence, for tabu search algorithm, we solve additional 9 * 5 = 45 problem

instances.

All in all, we have 200 + 45 = 245 problem instances.

The classical approach is coded with C++ using Microsoft Visual Studio 2013 and

solved by IBM ILOG CPLEX 12.6.2. Moreover, MATLAB 2016a is used for coding

the tabu search algorithm. Both classical approach and tabu search algorithm are run

on a computer which has properties of Intel Core i7-6700HQ CPU with 3.5 GHz, 16

GB DDR4 Ram and Windows 10.

6.2. Performance Measures

Firstly, in order to see the effect of variability of task times and the effect of using

earliest and latest possible task assignment information, two performance measures

(Average and Maximum Central Processing Unit Time (CPU)) are used in preliminary

experiments. These performance measures are also used in experiments with classical

approach in main experiment. Average and maximum number of non-dominated

solutions are also reported for all classical approach experiments we made.

50

Then, in order to compare classical approach and tabu search algorithm, we let ES

indicate the exact set of non-dominated objective vectors and AS is the set of non-

dominated objective vectors returned by the tabu search algorithm. Note that AS

resides the objective vectors that are not proved as exact. Using sets ES and AS, we

introduce the following performance measures for the tabu search algorithm. We also

report ES values in comparison tables.

PM1: Cardinality of AS

PM2: Percentage of non-dominated objective vectors returned by the tabu search

algorithm

Recall that PM1 and PM2 consider the number of non-dominated objective vectors;

however, ignore their closeness to the exact non-dominated objective vectors.

Recognizing this fact, we use the following distance measures proposed in Czyzak

and Jaszkiewicz (1998).

First, range of our efficiency and stability objectives are calculated.

RangeWL = WLmax - WLmin

WLmax and WLmin are the maximum and minimum total squared workload values of

our exact non-dominated objective vectors.

RangeTR = TRmax - TRmin

TRmax and TRmin are the maximum and minimum total displacement amount of our

exact non-dominated objective vectors.

51

Let (WLE, TRE) is a solution from set ES and (WLA, TRA) is a solution from set AS.

In this study, we consider the maximum relative distance between (WLE, WLA) and

(TRE, TRA). To clarify,

Distance between solutions (WLE, TRE) and (WLA, TRA)

= Distance WL,TR

PM3 is introduced to show average distance between the solutions in set ES and set

AS. For all solutions in set ES, closest solution from set AS is found and then average

distance value for that problem instance is calculated.

For each solution (WLE, TRE) from set ES, closest solution (WLA, TRA) from set AS

is found. Between these pairs, pair which has maximum distance between (WLE, TRE)

and (WLA, TRA) gives the maximum distance between the solutions in set ES and set

AS, i.e., our performance measure, PM4.

The smaller values of PM3 and PM4 are preferable. PM1, PM2, PM3 and PM4 are

The average CPU times and maximum CPU times are also reported for the

performances of the classical approach and the tabu search algorithm. We give the

ratio of the CPU times (CPU time by the tabu search / CPU time by the classical

approach) as well.

After all, in testing the tabu search algorithm section, we report average CPU time (in

seconds) and average number of non-dominated solutions found.

52

6.3. Preliminary Experiments

To analyze the effect of variability of task times on the solution time and the effect of

using earliest and latest possible task assignment information on the performance of

the classical approach, a preliminary experiment is designed.

6.3.1. Effect of Task Times

For the effect of variability of task times, we try two discrete uniform distributions.

U[1,10] and U[1,50], are selected to represent low and high task time variability,

respectively. In doing so, we select two problem combinations, N=35, KN=6 & K=7

and N=40, KN=4 & K=5 and the average and maximum number of non-dominated

solutions and the average and maximum CPU times are reported in Table 6.2.

Table 6.2. The performance of CA for U[1,10] and U[1,50]

of non-dominated

objective vectors
CPU time

Configuration Variability Average Maximum Average Maximum

N=35
KN=6
K=7

U[1,10] 9.80 15 3,441 4,640

U[1,50] 14.20 19 5,678 8,304

N=40
KN=4
K=5

U[1,10] 6.00 9 2,305 4,060

U[1,50] 8.30 10 3,710 6,834

53

Table 6.2 shows that the problem instances who has high time variability (U[1,50])

are solved harder compared to problem instances who has low time variability

(U[1,10]). This situation occurs when the task times are closer and the objective

function values are similar. It leads to lower average and maximum number of non-

dominated objective vectors. Average number of non-dominated objective vectors,

maximum number of non-dominated objective vectors, average CPU times and

maximum CPU times all increase when an increase in time variability occurs. When

N=35 for KN=6 & K=7, the average number of non-dominated objective vectors

increases from 9.80 to 14.20 and the average CPU time increases from 3,441 to 5,678

with an increase in the variability of the task times. When N=40 for KN=4 & K=5, the

average number of non-dominated objective vectors increases from 6.00 to 8.30 and

the average CPU time increases from 2,305 to 3,710 with an increase in the variability

of the task times. For other configurations, this observation is monitored similarly. In

our main runs, we continue with U[1,50] discrete uniform distribution to tackle with

harder problem instances.

6.3.2. Effect of Earliest and Latest Possible Task Assignment Information

The earliest and latest workstations information that any task could be assigned is used

in the mathematical model to define limits of the decision variables and reduce the

number of constraints. Hence, these expressions hopefully would improve the

efficiency of the mathematical models.

In our preliminary experiment, we try to see the effect of earliest and latest

workstations information on the CPU times, we select two (KN, K) combinations with

35 tasks. The selected combinations are (6,7) and (6,9) and the results are reported in

Table 6.3. We remove the termination limit in this analysis.

54

Table 6.3. The performance of the Classical Approach with and without Ei and Li

Configuration Mechanism Average Maximum

N=35
KN=6
K=7

with Ei and Li 3,905.84 7,063.98

without Ei and Li 5,678.74 8,304.96

N=35
KN=6
K=9

with Ei and Li 5,164.04 13,890.80

without Ei and Li 7,258.98 29,137.54

For KN=6 & K=7, average CPU time decreases from 5,678.74 to 3,905.84 seconds

and maximum CPU time decreases from 8,304.96 to 7,063.98 once the earliest (Ei)

and latest (Li) workstations information are used. Also for KN=6 & K=9, average CPU

time decreases from 7,258.98 to 5,164.04 seconds and maximum CPU time decreases

from 29,137.54 to 13,890.80 seconds with the use of Ei and Li values. Similar

observations can be made for the other configurations.

Hence, we conclude that the time to find earliest and latest workstations information

via the cycle time upper bound is justified because of the reduction in solution time of

the mathematical models.

6.4. Main Experiments

In this chapter, we discuss the main experiment that is based on our preliminary

experiment results.

6.4.1. Experiments with Classical Approach (CA)

Preliminary experiments have revealed the power of the earliest and latest possible

workstation information in increasing the efficiency of the CA; hence we use them in

our main experiment. As mentioned before, we select four different well-known data

sets, take precedence networks of data sets and generate new task times by using

55

U[1,50] discrete uniform distribution. As stated before, we generate six different

configurations by using different number of workstations in new (KN) and initial (K)

and configurations.

First, we analyze the average and maximum number of non-dominated objective

vectors and report the results in Table 6.4 and Table 6.5. The average CPU times and

the maximum CPU times are also reported in Table 6.6 and Table 6.7.

Table 6.4. The average and maximum number of non-dominated objective vectors for KN=4

& K=5 and KN=4 & K=7

 KN=4 & K=5 KN=4 & K=7

 Average Maximum Average Maximum

N=25 6.00 9 4.10 7

N=30 7.20 11 5.00 8

N=35 8.00 10 5.10 7

N=40 8.30 10 5.80 8

Table 6.5. The average and maximum number of non-dominated objective vectors for KN=5

& K=6, KN=5 & K=8, KN=6 & K=7 and KN=6 & K=9

 K=5 & K'=6 K=5 & K'=8 K=6 & K'=7 K=6 & K'= 9

 Avg. Max Avg. Max Avg. Max Avg. Max

N=25 8.50 13 7.30 12 9.90 15 9.40 16

N=30 10.70 14 10.00 13 13.70 19 10.40 22

N=35 12.00 15 11.00 15 14.20 19 11.67 18

56

Table 6.6. The average and maximum CPU times for KN=4 & K=5 and KN=4 & K=7

 KN=4 & K=5 KN=4 & K=7

 Average Maximum Average Maximum

N=25 12.74 18.05 17.94 25.54

N=30 35.22 58.06 45.41 101.75

N=35 72.25 101.58 70.04 137.42

N=40 2,597.29 4,574.39 3,017.95 5,671.70

Table 6.7. The average and maximum CPU times (in seconds) for KN=5 & K=6, KN=5 &

K=8, KN=6 & K=7 and KN=6 & K=9

 KN=5 & K=6 KN=5 & K=8 KN=6 & K=7 KN=6 & K=9

 Avg. Max Avg. Max Avg. Max Avg. Max

N=25 43.22 114.63 49.22 149.41 126.56 259.56 137.09 230.44

N=30 197.03 578.09 245.03 492.28 763.58 1.594.19 1,252.22 4,212.89

N=35 589.96 1,292.70 665.78 1,174.34 3,905.84 7,063.98 4,494.96 7,200 (1)*

* The number in the paranthesis gives the number of unsolved instances in 2 hours

For KN=4 & K=5 and KN=4 & K=7, we can solve the problem instances up to N=40

and for KN=5 & K=6, KN=5 & K=8, KN=6 & K=7 and KN=6 & K=9, we can solve the

problem instances up to N=35.

As you can see from Table 6.4 and Table 6.5, the non-dominated objective vectors are

increasing with increases in N in all of the six configurations. The CPU times are also

increasing as displayed in Table 6.6 and 6.7. For instance, for KN=4 & K=5, the

average number of non-dominated objective vectors are 6.00, 7.20, 8.00 and 8.30 and

the average CPU times are 12.74, 35.22, 72.25, 2,597.29, for N=25, N=30, N=35 and

57

N=40, respectively. Approximate results could be observed in remaining

combinations, too. We observe that increasing the number of tasks affects CPU time

very significantly and this increase is much more significant than the increase caused

by the number of workstations. This result is expected by reason of increasing the

number of tasks increases the number of decision variables and constraints more than

increasing the number of workstations.

The effect of number of workstation in new configuration (KN) and the effect of

number of workstations in initial configuration (K) can be also observed in Tables 6.4

 6.7. For this purpose, two combinations are selected.

 Combination 1:

 for the non-dominated objective vectors: first column in Table 6.4 and first

column & fifth column in Table 6.5

 for CPU times: first column in Table 6.6 and first column & fifth column

in Table 6.7

 Combination 2:

 for the non-dominated objective vectors: third column in Table 6.4 and third

column & seventh column in Table 6.5

 for CPU times: third column in Table 6.6 and third column & seventh

column in Table 6.7

In both combinations, increasing the number of workstation in new (KN) and initial

configurations (K) lead to an increase in the non-dominated objective vectors and an

increase in CPU times. For instance, when N=35 in Combination 1, the average

number of non-dominated objective vectors are 8.00, 12.00 and 14.20 for KN=4 &

K=5, KN=5 & K=6 and KN=6 & K=7 respectively and the associated average CPU

times are 72.25, 589.96 and 3,905.84 seconds, respectively. When N=35 in

Combination 2, the average number of non-dominated objective vectors are 5.10,

11.00 and 11.67 for KN=4 & K=7, KN=5 & K=8 and KN=6 & K=9, respectively and

the associated average CPU times are 70.04, 665.78 and 4,494.96 seconds,

58

respectively. This result is expected as when the disrupted number of workstations is

fixed, increasing the number of workstations for both initial and new configuration

leads to an increase in the number of decision variables and constraints. The assembly

lines with higher number of workstations may have more optimal solution alternatives

(more non-dominated objective vectors) when disruption occurs and higher CPU time

is needed to solve the mathematical models.

The effect of the number of disrupted workstations (K-KN) for fixed number of

workstations in new configuration (KN) is also investigated from Table 6.4, Table 6.5,

Table 6.6 and Table 6.7. For this purpose, three combinations are selected.

 Combination 1:

 for the non-dominated objective vectors: first column & third column in

Table 6.4

 for CPU times: first column & third column in Table 6.6

 Combination 2:

 for the non-dominated objective vectors: first column & third column in

Table 6.5

 for CPU times: first column & third column in Table 6.7

 Combination 3:

 for the non-dominated objective vectors: fifth column & seventh column in

Table 6.5

 for CPU times: fifth column & seventh column in Table 6.7

In all selected combinations, increasing K-KN (the number of disrupted workstations)

for fixed KN (number of workstations in new configuration) leads to a reduction in the

number of non-dominated objective vectors although CPU time needed to achieve a

non-dominated vector is increased. For instance, when N=25 in Combination 1, the

average number of non-dominated objective vectors decreases from 6.00 to 4.10, 8.50

to 7.30 and 9.90 to 9.40 for KN=4 & K=5 to KN=4 & K=7, KN=5 & K=6 to KN=5 &

K=8 and KN=6 & K=7 to KN=5 & K=8, respectively and the respective average CPU

59

times increase from 12.74 to 17.94, 43.22 to 49.22 and 126.56 to 137.09. Similar

results hold for in all other number of tasks and over all combinations. Hence, we can

say that the assembly lines with higher number of disrupted workstations, and higher

number of initial workstations have less optimal solution alternatives (fewer number

of non-dominated objective vectors) although the CPU time to achieve a non-

dominated objective vector is higher.

The effect of K-KN (the number of disrupted workstations) for fixed K (number of

workstations in initial configuration) can be also observed in Tables 6.4 6.7. For this

purpose, third column in Table 6.4 & fifth column in Table 6.5 and third column in

Table 6.6 & fifth column in Table 6.7 can be used. In all combinations of the number

of tasks, increasing the number of workstations (from 1 to 3) causes a decrease in both

the number of the non-dominated objective vectors and in CPU times. Specifically,

from KN=6 & K=7 to KN=4 & K=7, the average number of non-dominated objective

vectors decreases from 9.90 to 4.10, 13.70 to 5.00 and 14.20 to 5.10 for N=25, N=30

and N=35, respectively and the respective average CPU times decreases from 126.56

to 17.94, 763.58 to 45.41 and 3,905.84 to 70.04. Therefore, we can say that higher

number of disrupted workstations for fixed number of workstations in initial

configuration causes less optimal solution alternatives (fewer number of non-

dominated objective vectors) and significantly smaller CPU time is needed to achieve

a non-dominated objective vector.

6.4.2. Comparison Between Classical Approach and Tabu Search Algorithm

Note that, our classical approach could solve the problem instances with KN=4 & K=7

and N=40. For bigger problem instances, we propose a multi-objective tabu search

(MOTS) algorithm. The performance of our MOTS algorithm according to the exact

available solutions by the classical approach are also compared. We use the

performance measures mentioned in Chapter 6.2 and report the results in Table 6.8

and Table 6.9.

60

Table 6.8. Comparison between Classical Approach and Tabu Search Algorithm for N=25

and N=30

 N=25 N=30

Performance
Measures

KN=5 &
K=6

KN=5 &
K=8

KN=6 &
K=7

KN=6 &
K=9

The average number of
exact non-dominated

objective vectors
9.40 7.40 12.60 8.00

PM1 8.60 6.00 8.20 6.40

PM2 91.49% 81.08% 65.08% 80.00%

PM3 0.46% 0.41% 0.78% 0.75%

PM4 4.35% 3.04% 5.36% 5.05%

Average CPU Time of
Tabu Search Algorithm

(in seconds)
20.21 20.28 144.27 154.77

Average CPU Time of
Classical Approach

(in seconds)
59.88 55.85 641.61 1,205.08

% Average (CPU Time
of Tabu Search

Algorithm / CPU Time
of Classical Approach)

(in seconds)

33.75% 36.31% 22.49% 12.84%

61

Table 6.9. Comparison between Classical Approach and Tabu Search Algorithm for N=35

and N=40

 N=35 N=40

Performance
Measures

KN=6 &
K=7

KN=6 &
K=9

KN=4 &
K=5

KN=4 &
K=7

The average number of
exact non-dominated

objective vectors
15.60 11.40 8.00 5.40

PM1 8.40 6.60 5.60 4.00

PM2 53.85% 57.89% 70.00% 74.07%

PM3 0.85% 0.96% 0.98% 1.06%

PM4 5.46% 5.84% 5.59% 5.20%

Average CPU Time of
Tabu Search Algorithm

(in seconds)
207.74 197.86 87.91 94.72

Average CPU Time of
Classical Approach

(in seconds)
4,261.76 3,743.06 2,952.36 3,045.80

% Average (CPU Time
of Tabu Search

Algorithm / CPU Time
of Classical Approach)

(in seconds)

4.87% 5.29% 2.98% 3.11%

62

Recall that PM2 shows the percentage of the number of exact non-dominated objective

vectors returned by the tabu search algorithm. Table 6.8 shows that average PM2 value

is higher than 80% for KN=5 & K=8 and 90% for KN=5 & K=6 when N=25. These

percentages for N=30 and KN=6 are about 65% and 80% when K=7 and K=9,

respectively. For higher N values, the PM2 values deteriorate, however still they are

about 55% and more than 70%, when N=35 and 40, respectively. Those figures

altogether show the satisfactory performance of tabu search algorithm in generating

the exact points of the efficient set. Moreover, for different values of K, we observe

the consistently well performance of the tabu search algorithm.

Performance measures PM3 and PM4 measure the average and the maximum distance

between the non-dominated point found by classical approach and corresponding

point found with tabu search algorithm. In our study, we give more importance to PM3

and PM4 performance measures more than CPU time. Therefore, we reach 0.46 and

0.41 percentages when N=25, 0.78 and 0.75 percentages when N=30, 0.85 and 0.96

percentages when N=35 and 0.98 and 1.06 percentages when N=40 for performance

measure PM3. Moreover, we reach 4.35 and 3.04 percentages when N=25, 5.36 and

5.05 percentages when N=30, 5.46 and 5.84 percentages when N=35 and 5.59 and

5.20 percentages when N=40 for performance measure PM4. Similar to performance

measure PM2, our algorithm shows stable performance for PM3 and PM4, according

to the number of disrupted workstations, too.

The low values of PM3 and PM4 over all problem instances verify that the non-

dominated objective vectors returned by the tabu search algorithm are very close to

their exact counterparts.

We observe that the CPU times of the tabu search algorithm are not significantly

affected by the number of disrupted workstations. For example, the CPU times are

144.27 and 154.77 seconds (7 percent difference occur) for KN=6 & K=7 and KN=6

& K=9, respectively, while corresponding CPU times for classical approach are

63

641.61 and 1,205.08 (88 percent difference occur) for N=30. We can say that the tabu

search algorithm CPU times are more consistent than those of the classical approach.

6.4.3. Testing Limits of Tabu Search Algorithm

By using data sets from the ALB literature, we test the limits of our multi-objective

tabu search algorithm. We use (KN, K) = (6,7) and repeat the experiment 5 times for

each value of N. The 10 N values used are 30, 35, 45, 53, 58, 70, 75, 83, 89 and 94.

Hence, we solve 10 * 5 = 50 problem instances and the average CPU times and the

average number of non-dominated objective vectors are reported in Table 6.10.

Table 6.10. Average CPU times and number of non-dominated objective vectors found by

Tabu Search Algorithm

N Name of Dataset Avg. CPU Time
Avg. # of non-dominated

objective vectors

30 Sawyer 145 8.20

35 Gunther 210 8.40

45 Kilbrid 870 9.20

53 Hahn 1,130 12.20

58 Warnecke 1,740 16.80

70 Tonge70 2,800 17.40

75 Wee-Mag 3,540 21.40

83 Arc83 4,710 24.00

89 Lutz2 5,650 26.60

94 Mukherje 6,630 30.20

64

Note that, the CPU times increase, almost linearly, with increasing in number of task

(N) values. We set a termination limit as 2 hours elapsed time and find that the instance

with more than 100 tasks could not be solved in the limit.

We also observe that the number of non-dominated objective vectors increases while

number of tasks (N) increases.

65

CHAPTER 7

7. CONCLUSIONS

In this study, an assembly line rebalancing problem is considered. It is assumed that

the disruption occurs on one or more workstations which causes the current line

balance become infeasible. We measure the performance of the disrupted line balance

in two ways: minimizing total squared workloads and minimizing the total distance

traveled due to the changes in task assignments after the disruption.

We aim to compose all non-dominated objective vectors according to total distance

traveled and total squared workload. We propose two approaches: a classical approach

that returns the exact solutions and a tabu search algorithm that returns the

approximate solutions.

Results obtained in our computational experiment reveal that the performance of the

classical approach is sensitive to the earliest and latest possible workstation

information and the approach can handle problem instances with up to 40 tasks, 7

workstations in initial configuration and 4 workstations in new (after disruption)

workstations.

We observe that the tabu search approach could handle problem instances with up to

about 100 tasks, 7 workstations in initial configuration and 6 workstations in new

(after disruption) workstations. The performance of the solutions is found to be close

to their exact counterparts.

To the best of our knowledge we propose the first rebalancing study with total squared

workload and total distance travel objectives.

66

Our study might stimulate new research directions some of which are mentioned

below:

 New efficiency and stability measures can be used.

 Implicit enumeration techniques can be developed to solve the sub-

problems of the classical approach

 Our results can be extended to more general (like U-shaped, mixed model,

parallel station, flexible) assembly lines.

 Multi-objective decision making techniques can be used to evaluate and

classify non-dominated objective solutions.

 Different task characteristics (like task displacement weights, stochastic

task times and dependent tasks) can be used.

67

REFERENCES

Azizoglu, M., & Imat, S. (2018). Workload smoothing in simple assembly line

balancing. Computers & Operations Research, 89, 51 57.

Battaia, O., & Dolgui, A. (2013). A taxonomy of line balancing problems and their

solution approaches. International Journal of Production Economics, 142(2), 259

277.

Baybars, I. (1986). A survey of exact algorithms for the simple assembly line

balancing problem. Management Science, 32(8), 909 932.

integrated model for assembly line re-balancing problem. International Journal of

Production Research, 56(16), 5324 5344.

Boysen, N., Fliedner, M., & Scholl, A. (2007). A classification of assembly line

balancing problems. European Journal of Operational Research, 183(2), 674 693.

Celik, E., Kara, Y., & Atasagun, Y. (2014). A new approach for rebalancing of U-

lines with stochastic task times using ant colony optimisation algorithm. International

Journal of Production Research, 52(24), 7262 7275.

Czyzzak, P., & Jaszkiewicz, A. (1998). Pareto simulated annealing a metaheuristic

Criteria Decision Analysis, 7(1), 34 47.

Esmaeilbeigi, R., Naderi, B., & Charkhgard, P. (2015). The type E simple assembly

line balancing problem: A mixed integer linear programming formulation. Computers

& Operations Research, 64, 168 177.

68

allowance and smoothing of the workload in assembly lines. International Journal of

Production Research, 1 16.

Gamberini, R., Gebennini, E., Grassi, A., & Regattieri, A. (2009). A multiple single-

pass heuristic algorithm solving the stochastic assembly line rebalancing

problem. International Journal of Production Research, 47(8), 2141 2164.

Gamberini, R., Grassi, A., & Rimini, B. (2006). A new multi-objective heuristic

algorithm for solving the stochastic assembly line re-balancing problem. International

Journal of Production Economics, 102(2), 226 243.

Grangeon, N., Leclaire, P., & Norre, S. (2011). Heuristics for the re-balancing of a

vehicle assembly line. International Journal of Production Research, 49(22), 6609

6628.

Groover, M. P. (2013). Principles of modern manufacturing: SI version. New Delhi:

Wiley.

Haimes, Y. V., Lasdon, L. S., & Wismer, D. A. (1971). On a bicriterion formulation

of the problems of integrated system identification and system optimization. IEEE

Transactions on Systems, Man, and Cybernetics, 3, 296 297.

Karsu, O., & Azizoglu, M. (2014). Bicriteria multiresource generalized assignment

problem. Naval Research Logistics (NRL), 61(8), 621 636.

Kim, Y. J., Kim, Y. K., & Cho, Y. (1998). A heuristic-based genetic algorithm for

workload smoothing in assembly lines. Computers & Operations Research, 25(2),

99 111.

Makssoud, F., Battaia, O., Dolgui, A., Mpofu, K., & Olabanji, O. (2015). Re-balancing

problem for assembly lines: new mathematical model and exact solution

method. Assembly Automation, 35(1), 16 21.

69

Mozdgir, A., Mahdavi, I., Badeleh, I. S., & Solimanpur, M. (2013). Using the Taguchi

method to optimize the differential evolution algorithm parameters for minimizing the

workload smoothness index in simple assembly line balancing. Mathematical and

Computer Modelling, 57(1-2), 137 151.

Nearchou, A. C. (2011). Maximizing production rate and workload smoothing in

assembly lines using particle swarm optimization. International Journal of

Production Economics, 129(2), 242 250.

Ponnambalam, S. G., Aravindan, P., & Naidu, G. M. (2000). A multi-objective genetic

algorithm for solving assembly line balancing problem. The International Journal of

Advanced Manufacturing Technology, 16(5), 341 352.

Rachamadugu, R., & Talbot, B. (1991). Improving the equality of workload

assignments in assembly lines. International Journal of Production Research, 29(3),

619 633.

Rosenberg, O., & Ziegler, H. (1992). A comparison of heuristic algorithms for cost-

oriented assembly line balancing.

Models of Operations Research, 36(6), 477 495.

Salveson, M. (1955). The assembly line balancing problem. Journal of Industrial

Engineering, 6, 18-25.

Sanci, E., & Azizoglu, M. (2017). Rebalancing the assembly lines: exact solution

approaches. International Journal of Production Research, 55(20), 5991 6010.

Scholl, A. (2007). Data sets for SALBP. Retrieved from http://www.assembly-line-

balancing.de/

Sewell, E. C., & Jacobson, S. H. (2012). A branch, bound, and remember algorithm

for the simple assembly line balancing problem. INFORMS Journal on

Computing, 24(3), 433 442.

70

Sivasankaran, P., & Shahabudeen, P. (2014). Literature review of assembly line

balancing problems. The International Journal of Advanced Manufacturing

Technology, 73(9-12), 1665 1694.

Smunt, T. L., & Perkins, W. C. (1985). Stochastic unpaced line design: Review and

further experimental results. Journal of Operations Management, 5(3), 351 373.

Yang, C., Gao, J., & Sun, L. (2013). A multi-objective genetic algorithm for mixed-

model assembly line rebalancing. Computers & Industrial Engineering, 65(1), 109

116.

