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ABSTRACT

DEVELOPMENT OF DISCONTINUOUS GALERKIN METHOD 2
DIMENSIONAL FLOW SOLVER

Güngör, Osman

M.S., Department of Aerospace Engineering

Supervisor: Prof. Dr. Serkan Özgen

September 2019, 86 pages

In this work, 2 dimensional flow solutions of Euler equations are presented from the

developed discontinuous Galerkin method finite element method (DGFEM) solver

on unstructured grids. Euler equations govern the inviscid and adiabatic flows with

a set of hyperbolic equations. The discretization of governing equations for DGFEM

is given in detail. The DGFEM discretization provides high order solutions on an

element-compact stencil hence only elements having common boundary are coupled.

The required elementwise operations and mathematical operations are revisited and

derivations are provided when necessary. Among the two major approaches, modal

and nodal, nodal DGFEM is employed. Gaussian quadrature is utilized in the eval-

uation of volume and surface integrals. The flux through the cell boundaries are

calculated through flux functions and several flux functions are implemented and

compared. Proper boundary conditions are employed on the solution space bound-

aries. Several test cases in literature are used for verification and validation purposes.

The high order accuracy is easily achieved in problems with smooth solutions. On

the other hand, problems with shocks requires stabilization techniques which may
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limit the order of accuracy or degrade solution success. The satisfactory results are

obtained with comparison of experimental results which are carefully selected con-

sidering the fidelity of governing equations. Moreover, importance of curved wall

boundary representations in high order methods are experienced. Furthermore, effect

of grid adaptation around shocks or discontinues is pointed out.

Keywords: Computational Fluid Dynamics, Discontinuous Galerkin, High Order Ac-

curacy, Finite Element, Euler Equations, Aerodynamics
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ÖZ

KESİNTİLİ GALERKİN METHODU İLE 2 BOYUTLU AKIŞ ÇÖZÜCÜ
GELİŞTİRİLMESİ

Güngör, Osman

Yüksek Lisans, Havacılık ve Uzay Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Serkan Özgen

Eylül 2019 , 86 sayfa

Bu çalışmada 2 boyutlu Euler denklemleri ile tanımlanan akışların çalışma kapsa-

mında geliştirilmiş olan yapılsal olmayan ağlar için kesintili Galerkin sonlu eleman

yöntemini kullanan çözücü ile elde edilen sonuçları sunulmuştur. Euler denklemleri

ağdasız ve ısı alışverişi olmayan akışlar için geçerli olan hiperbolik denklemlerdir.

Söz konusu denklemlerin kesintili Galerkin sonlu eleman yöntemi ile ayrıştırılması

detaylı olarak anlatılmıştır. Kesintili Galerkin sonlu eleman yöntemi eleman bazlı

olarak yüksek dereceli çözümü sağlar, dolayısıyla sadece ortak sınıra sahip eleman

birbiri ile ilişkilendirilir. Eleman bazlı ve matematiksel operasyonlar tekrar ele alın-

mış ve gerekli olduğunda türetilmiştir. Kesintili Galerkin sonlu eleman yönteminin

iki temel yaklaşımı arasından, şekilsel ve düğümsel, düğümsel yaklaşım tercih edil-

miştir. Hacim ve yüzey integrali hesaplarında Gauss tümlevi kullanılmıştır. Elemanlar

arası akı, sayısal akı fonksiyonları ile hesaplanmıştır. Literatürde yaygın olan birkaç

akı fonksiyonun çözümleri karşılaştırma amaçlı olarak kullanılmıştır. Çözüm alanının

sınırlarında uygun sınır koşulları uygulanmıştır. Literatürde yaygın olarak kullanılan

sınama problemlerinin çözümleri geçerlilik ve doğrulama çalışmalarında kullanılmış-
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tır. Kesintisiz problemlerde, yüksek dereceli hassasiyete sahip çözümlere rahatlıkla

ulaşılmıştır. Fakat, şok ya da kesinti içeren problemlerde istikrarlaştırma teknikleri

kullanılmıştır. İstikrarlaştırma teknikleri çözüm derecesini sınırlandırabilmekte ya da

çözümün başarasını düşürebilmektedir. Çözücü ile elde edilen sonuçlar ve denklem-

lerin geçerliliğine uygun şekilde seçilmiş olan deney sonuçları arasında tatmin edici

uyum yakalanmıştır. Bükülmüş duvar koşulu uygulamasının yüksek dereceli yöntem-

lerdeki önemi tecrübe edilmiştir. Dahası, şoklar etrafında çözüm ağı uyarlamasının

önemine dikkat çekilmiştir.

Anahtar Kelimeler: Hesaplamalı Akışkanlar Dinamiği, Kesintili Galerkin, Yüksek

Dereceli Çözüm, Sonlu Eleman, Euler Denklemleri, Aerodinamik
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CHAPTER 1

INTRODUCTION

Understanding and solving the flow problems have enormous importance in the aero-

space industry. Experimental and theoretical approaches are the two historically ma-

jor branches of fluid dynamics. Experimental methods help to understand and eval-

uate the physical phenomena in fluid dynamics however it is highly expensive to be

utilized in each design process. Solving the governing equations or simplified forms

is the part of the theoretical approach but analytical solutions exist for only a few sim-

ple problems. Thanks to growth in computation power over the last decades, a third

approach, numerical approach known as computational fluid dynamics (CFD) has

gained importance and become a standard tool for engineering and science applica-

tions. Mostly finite volume and finite element, rarely finite difference are the methods

employed in the CFD solvers. The finite volume and finite difference are generally

based on second order accuracy which means that as the grid spacing, h, decreases,

solution error decreases in the order of h2. The finite element method solvers can

provide high order solutions however limited to flows not involving discontinuities.

It would be beneficial to give a brief review on the classical discretization methods

before stating the motivation of the work and going into details of high order method.

The finite difference method employs the simplest approach to discretize the differen-

tial or divergence form of the integral equations of a conservation law. Replacing the

analytical derivatives with discrete ones and obtaining a numerically soluble discrete

problem is the main idea. There are numerous ways for the discrete approximations

of derivatives. For the details of methodologies, Hirsch [4] and Ferziger & Peric [5]

are great examples of textbooks to visit. The main advantages of the finite differ-

ence method are extreme efficiency of the scheme in terms of computational cost and
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ease of programming. On the other hand, finite difference applications are generally

limited to structured grids hence for complex geometries, block structured grid gen-

eration which requires tremendous effort is necessary. In theory, derivation of a finite

difference scheme on unstructured grids is potential however, a very complex prob-

lem, reconstruction of polynomial functions on unstructured grids is mandatory. High

order finite difference scheme, in other words high order approximations of deriva-

tives are easy to obtain by extending the number of points in the stencil. However,

in order to satisfy stability requirements smooth and regular grids are required hence

grid generation again needs special attention [6]. Another important subject to men-

tion is that finite difference schemes have stability issues with problems comprising

discontinuities.

Formulation of finite volume schemes are based on the integral form of the conserva-

tion laws in contrast to finite difference schemes. Fluxes through the cell boundaries

have to be computed in finite volume methods rather than evaluating discrete deriva-

tives. Because the main concern is to evaluate fluxes, there are lots of methodologies.

Among those, upwind method [7], [8], [9] is the one which is very popular for convec-

tion dominated problems where characteristics of wave propagation decide the flux

choice. The advantage of the finite volume methods is that method is highly suitable

for unstructured grids which ease the evaluation of complex geometries. Moreover,

finite volume schemes handle the discontinuities successfully. On the other hand,

major drawback of the finite volume method is that high order schemes on unstruc-

tured grids require a large computation stencil. Resulting scheme with large stencil

becomes exceptionally complex for programming and expansive in terms of compu-

tation cost. Furthermore, for parallel applications, large computation stencils reduce

the efficiency of parallelization by requiring too much information exchange between

nodes. To sum up, finite volume methods are highly suitable for evaluation of com-

plex geometries however construction of high order schemes on unstructured grids is

a fundamental problem.

The finite element discretization technique is rather different than other discretiza-

tion techniques. In finite element discretization, differential equations are multiplied

by an arbitrary test or weight function and integrated by parts. Linear combinations

of ansatz or shape functions, generally piecewise polynomials, are used to construct
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discrete solution. Type of the finite element method is identified by choice of weight

and shape function. For example; in Galerkin finite element methods, weight and

shape function is chosen from same space or in Least Square finite element methods,

each weight function is selected as the derivative of the corresponding shape function.

Basically, finite element methods can be classified as continuous and discontinuous.

Discontinuous methods do not seek for a continuous global solution. Discrete so-

lution is continuous within each element however, non-conforming at the element

boundaries. Since present work is about discontinuous Galerkin method, details are

provided in later sections. Continuous finite element methods work well for contin-

uous and smooth flow problems. For convection dominated flows, spurious oscilla-

tions occur resulting lack of stability. Numerous methodologies have been developed

to provide additional stability to continuous finite element discretization. Artificial

dissipation [10], [11]; streamline upwind Petrov-Galerkin [12], [13]; Subgrid Scale

[14], [15] are examples of the methodologies. Unlike the finite volume method, a high

order finite element scheme is easy to derive since the degree of polynomial weight

and shape function determines the accuracy of the method. Another advantage of the

finite element scheme is that method is well suited for grid as well as polynomial

accuracy adaptation known as hp-adaptation thanks to compact discretization stencil.

Drawback of the continuous finite element scheme is confronted when explicit time

integration is employed. Explicit time integration is mandatory when unsteady simu-

lations are required. Due to continuity requirement at element boundaries, a coupled

system of equations has to be solved at each time step. However, this is not valid

for discontinuous Galerkin discretization like in finite difference and finite volume

methods.

Keeping in mind the aforementioned methods, a promising numerical scheme should

provide geometric flexibility while supporting locally adapted resolution. As in the

finite element method, capturing high-order accuracy through local approximation is

highly motivating feature. However, for wave dominated problems, potential stability

problems are introduced and the global Galerkin statement causes loss of the scheme

locality. Nonetheless, there are advantageous features of finite volume method devel-

oped for the stated problem. The discontinuous Galerkin finite element method arouse

from the combination of the basis and test functions utilizing the space as in the finite
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element method and a similar approach used in the finite volume method to satisfy

equations. Hence, discontinuous Galerkin method houses the advantageous features

of the both methodologies such as supporting complex geometries while providing

high accuracy for conservation and elliptic problems.

Finally, generic properties of the most widespread numerical schemes for flow prob-

lems are compared in Table 1.1 [1] as a summary.

Table 1.1: Comparison of Generic Properties of Most Widespread Numerical

Schemes, 3 stands for success, 7 represents a short-coming and (3) means that

method is originally not capable, but with modifications it is [1]

COMPLEX

GEOMETRIES

HIGH ORDER

ACCURACY

EXPLICIT

SEMI-DISCRETE

FORM

CONSERVATION

LAWS

ELLIPTIC

PROBLEMS

FDM 7 3 3 3 3

FVM 3 7 3 3 (3)

FEM 3 3 7 (3) 3

DG-FEM 3 3 3 3 (3)

1.1 Motivation of the Study

The traditional methods in industrial applications have at most second order accura-

cies and some fundamentals problems at achieving high order accurate solutions as it

is aforementioned. Moreover, in industry, there are still problems that current meth-

ods do not provide satisfactory results. The majority of current CFD methods are not

adequate for vortex dominated and translational flows like; rotorcraft technologies,

high-lift systems and formation flights [16]. Other concerns with the low order meth-

ods are high quality grid requirement, grid generation time and time of the simulation.

Fidkowski [17] provided following equation relating the total time for a solution with

numerical method parameters as:

log T = d(−1

p
logE + w log p)− logF + constant (1.1)
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T is the total time for a solution, d is the spatial dimension of the problem, p is the

order of accuracy, E is the error in the solution, w is the complexity of the solution

algorithm, 1
F

is the time required to complete a single operation. When the desired

accuracy is considerably high, i.e. E is really small and solution algorithm is mod-

erately complex, it is expected that logE term will be more dominant than the log p

term. Hence, dependency of total time required on p and d is exponential. Moreover,

little change in p or w can be as significant as increasing computational power due to

inverse relation between total time, T and computational speed, F .

Based on the statements made up to here, this work is motivated to develop a high or-

der flow solver. Although there are various high order methods available in literature,

for example, Flux Reconstruction, Spectral Volume, etc., Discontinuous Galerkin

method is selected as the numerical scheme due to its well developed and detailed

literature allowing the development of high-order accurate stable discretization for

convection dominated problems. Moreover, having the element-wise compact stencil

eases obtaining high-order accuracy on the unstructured grids and efficient solution

strategies. Lastly, it should be noted that intention is not to develop a new numerical

scheme or improvement on the method, it is an assessment of Discontinuous Galerkin

method for future studies which should be able to overcome current second-order

schemes used in industrial applications.

1.2 Limitation of the Study

The study of this thesis is basically limited by the fidelity of the governing fluid flow

equations. The solution fidelity of the governing equations is determined by em-

ployed numerical scheme. Scope of the present work covers the two dimensional

Euler equations which govern compressible inviscid fluid flow. Hence, the applica-

tion of the work is limited to two dimensional inviscid flows at subsonic, transonic

and supersonic flow regimes. Numerical scheme is employed on unstructured trian-

gular grids. Implemented boundary conditions are non-reflecting Riemann far-field

boundary, wall boundary, inlet boundary and outlet boundary; therefore problems to

be simulated are subject to limitation of available boundary conditions.
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1.3 Outline of the Study

In Chapter 2, literature review of Discontinuous Galerkin Finite Element Methods

is given. Brief information on history of method is provided. Main problems and

breakthroughs to their solutions are addressed and finally, up-to-date situation and

applications are mentioned.

Chapter 3 provides the details of the formulation for Discontinuous Galerkin Finite

Element Method and mathematical operations required to support methodology.

Chapter 4 consists of results and discussions. Problems with analytical solutions and

test cases in the literature are simulated and compared.

Chapter 5 finalizes the thesis and provides conclusions to topics cover in the present

work. Strategies for future work are also stated in Chapter 5.
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CHAPTER 2

LITERATURE REVIEW

In 1973, Reed and Hill [18] made the first introduction of discontinuous Galerkin

method for neutron transport problem on triangular meshes. One year later, LeSaint

and Raviart [19] published their work on DG for linear hyperbolic problems, error

estimation and proof of rates of convergence. However, for equations associated with

CFD and being non-linear, developments on the high order discontinuous Galerkin

method were necessary. By using DG method, Chavent and Salzano [20] were the

first to solve non-linear hyperbolic problem employing Godunov’s flux at cell inter-

faces. The breakthrough on the solution of time dependent non-linear hyperbolic

equations was carried out by Cockburn and Shu in a series of publications [21], [22],

[23], [24]. The work is considered as a breakthrough because finding a time dis-

cretization that would result in a stable, efficient and formally high order method was

the main difficulty of development discontinuous Galerkin method at that time [25].

The Euler equations were discretized by using Time Variation Diminishing Runge-

Kutta scheme in time and, Discontinuous Galerkin scheme in space. Independently

from Cockburn and Shu, Allmaras and Giles [26] and Allmaras [27] developed a

numerical method, now would be classified as discontinuous Galerkin method, for

Euler equations of gas dynamics. Van Leer’s method of moments [28] was extended

for Euler equations and second order of accuracy was achieved in their work. Later,

Halt [29] generalized the method for high order accuracies.

Solution of Navier-Stokes equations requires the handling of elliptic operator. In

1978 by Wheeler [30] and 1982 by Arnold [31], penalty methods, a version of dis-

continuous finite element methods, are introduced for pure elliptic operators. Appli-

cation of interior penalty methods were presented for convection-diffusion problems
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in [32], [33]. Bassi and Rebay [34] developed an alternative method by rewriting

the Navier-Stokes equations as a system of first order differential equations. This

method is known as first method of Bassi-Rebay. However, this scheme results in

extended stencil on the contrary to the advantage of discontinuous Galerkin method.

A slight modification reduced the stencil to nearest neighbor and known as second

method of Bassi-Rebay [35]. Cockburn and Shu improved their method RKDG for

compressible Navier-Stokes equations with the motivation from pioneering work of

Bassi and Rebay. The new methodology was named as local discontinuous Galerkin

method. Another technique introduced by Peraire and Persson is compact discontinu-

ous Galerkin method [36] which is closely related to LDG and increases compactness

of the stencil in higher dimensions.

Solutions with discontinuities require stabilization techniques like in classical meth-

ods in order to prevent spurious oscillations. First stabilization application on dis-

continuous Galerkin method was the slope limiting in the work of Cockburn and Shu

as mentioned before. Another way of stabilizing the discontinuous Galerkin method

around shocks or discontinuities is the implementation of artificial viscosity term.

There are various strategies for application of artificial viscosity such as piece-wise

constant viscosity, PDE-based viscosity, etc. Details are presented in references [37],

[38], [39], [40], however, Burgess [41] suggests the use of the methodologies in [38],

[36] due to robustness concerns. A popular alternative is the hp-adaptation where

h stands for grid size and p represents the order of accuracy. Main strategy of the

hp-adaptation is to increase the grid density and to decrease the order of solution

accuracy near the discontinuities. The challenge of the approach is to determine the

weights between h and p adaptation however, capability of the hp-adaptation has been

shown by several studies [42], [43], [44].

The turbulent flow simulations with discontinuous Galerkin method was first accom-

plished by Bassi and Rebay [35]. They solved the RANS equations coupled with

k˘ω closure model [45]. Spalart – Allmaras turbulence model equation was studied

with compact discontinuous Galerking discretization [46] and artificial viscosity on

model working variable are utilized due to negative values of model variable causing

instability in numerical solution. Modifications to original model were proposed to

alleviate stability problems [47]. Application of discontinuous Galerkin method to

8



DNS first took step in the work presented by Collis [48]. Exploration of its advan-

tageous dissipation and dispersion properties for DNS lead to increasing interest in

studies of turbulent flow simulations [49], [50], [51]. Discontinuous Galerkin method

has also found applications in LES due to its spectral cut-off filter like dissipation

behavior, plays the role of subgrid-scale (SGS) model similar to Smagorinsky model

which is a proper use in classical LES models [52], [53], [54], [55], [56].

Reaching adequate maturity level for flow simulations and increasing interest in high

order methods lead to development of open-source flow solvers which use discon-

tinuous Galerkin discretization. Beyond any doubt, one of the most popular open-

source CFD solver package is Stanford University Unstructured (SU2) [57]. SU2

was initially based on finite volume and finite element methods however, latest ver-

sions includes nodal discontinuous Galerkin scheme. Implementation of discontinu-

ous Galerkin method in another popular package, OpenFOAM [58], is presented as

HopeFOAM [59]. FLEXI is a parallel high-order numerical framework for solving

PDEs, with a focus on Computational Fluid Dynamics and based on the Discontin-

uous Galerkin Spectral Element Method (DGSEM), which allows for high-order of

accuracy and fully unstructured hexahedral meshes [60]. Nektar++ is an open-source

software framework designed to support the development of high-performance scal-

able solvers for partial differential equations using the spectral/hp element method

and features discontinuous Galerkin projections [61]. FEniCS is a popular open-

source computing platform for solving partial differential equations using finite el-

ement discretization and supports discontinuous Galerkin method [62]. Distributed

and Unified Numerics Environment (dune-fem) is a discretization module providing

an implementation of mathematical abstractions to solve PDEs on parallel computers

including local grid adaptivity, dynamic load balancing, and higher order discretiza-

tion schemes [63].
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CHAPTER 3

METHOD

This chapter is devoted to the theories utilized in the development of 2 dimensional

discontinuous Galerkin finite element method flow solver. The formulation and nota-

tion of discretization in the present study is followed from the reference [1]. Before

going into details of mathematical representations, it would be beneficial to give ba-

sic ideas in simplified words. Discontinuous Galerkin method can be thought as a

good combination of finite element and finite volume methods. Consider the cells

with a field variable presented in Figure 3.1. It can be observed that field variable

is presented as a continuous smooth function inside the elements as in the finite ele-

ment method, however, it is discontinuous across element interfaces. The information

between the elements passed into each other using numerical flux functions well de-

veloped for the finite volume methods. But constructing a well conditioned solution

representation is not straightforward, using arbitrary functions leads to numerical in-

stabilities hence a good orthogonal basis function set has to be selected. In this work,

Legendre polynomials are utilized. Legendre polynomials are one dimensional poly-

nomials and defined in a reference element which spans [−1, 1]. Hence, one has

to consider the ways to map arbitrary elements into reference element and represent

polynomials on two dimension. To sum up procedure, calculations start with mapping

of mesh elements. Then, local solutions are constructed on reference element using

basis function set. Next step is to evaluate semi-discrete form of the governing equa-

tions containing numerical flux and turning back to physical space. Semi-discrete

form provides ordinary differential function in time, hence time marching is utilized

until convergence is obtained in the solution domain.

Finally, outline of the chapter is as follows; governing equations and non-dimensional
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forms are presented. Basics of the discontinuous Galerkin method discretization in

one dimension is given in detail. Later, selection of modes and nodes are justified

and Vandermonde matrix is introduced. After gathering all the computational tools,

discretization of governing equations are carried out. Numerical flux functions are

presented and provided with necessary references. Boundary conditions are detailed

and implementation is discussed. As last of section of the chapter, the post-processing

methodology is thought to worth be to mentioned.

X
Y

Z

X
Y

Z

Figure 3.1: Two Representative DG Elements

3.1 Governing Flow Equations of Aerodynamics

Euler equations govern the inviscid and adiabatic flows with a set of quasi-steady

hyperbolic equations. In the differential form, 3 dimensional Euler equations are

given below:
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∂U

∂t
+∇ · Fi(U) = 0 (3.1)

where U is the conservative state vector:

U =


ρ

ρu

ρv

E


(3.2)

where ρ is the fluid density, (u, v) are the Cartesian components of the velocity field,

E is the specific total energy which is composed of specific internal energy, e, and

specific kinetic energy.

E = e+
1

2
(u2 + v2) (3.3)

Fi is the inviscid flux tensor:

Fi =
{
F x
i , F

y
i

}
(3.4)

F x
i =


ρu

ρu2 + P

ρvu

ρEu+ Pu


, F y

i =


ρv

ρuv

ρv2 + P

ρEv + Pv


(3.5)

One more equation is required to close the system. Further relations under the ther-

mally and calorically perfect gas assumption are given for the total enthalpy, H , as

follows:

H = E +
P

ρ
(3.6)

and the equation of state provides:

P

ρ
=
γ − 1

γ
(H − 1

2
(u2 + v2)) (3.7)

where γ is the ratio of specific heats and assumed as constant value of 1.4.

3.1.1 Non-Dimensional Form of Governing Flow Equations of Aerodynamics

When working with dimensional variables, all variables will resolve in different order

of magnitudes. This will result in ill conditioned linear systems of implicit time

marching schemes, precision errors, etc. hence equations are normalized in order to
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catch the same order of magnitude. Non-dimensional form of the Euler equations

reads:

t̄ =
vref t

Lref
, ρ̄ =

ρ

ρref
, P̄ =

P

ρrefvref
, ē =

e

v2
ref

, H̄ =
H

v2
ref

,

ā =
a

vref
, ū =

u

vref
, v̄ =

v

vref

(3.8)

The flow related reference values are taken from free-stream values, dimension re-

lated reference values are chosen according to problem to be solved. Finally,

∂Ū

∂t̄
+ ∇̄ · Fi(Ū) = 0 (3.9)

In the solutions of the problems, non-dimensional form of the equations are used

however, after this point bar over the variables in the equations are not shown.

3.2 Basics of Discontinuous Galerkin Finite Element Method Discretization in

Space

Basic ideas of discontinous Galerkin discretization are presented in this section. An

one dimensional general, scalar, non-linear conservation law is given below with ap-

propriate initial conditions,

∂u

∂t
+
∂f(u)

∂x
= 0

x ∈ Ω = [xl, xr], u(x, 0) = u0(x)

(3.10)

The discretization begins with dividing the domain, Ω, into K non-overlapping ele-

ments,

Ω =
K⋃
k=1

Ek, x ∈ Ek = [xkl , x
k
r ] (3.11)

The local solutions are defined as piecewise polynomials on the elements.

x ∈ Ek : ukh(x, t) =

Np∑
n=1

ũkn(t)ψn(x) =

Np∑
i=1

ukh(x
k
i , t)l

k
i (x) (3.12)

where Np = N + 1 and N is the order of the polynomial. The local solution is given

as two different expressions. The first expression is known as modal form and second

expression is nodal form. Therefore, ũkn(t) are modal coefficients and ukh(x
k
i , t) are

nodal coefficients. ψkn(x) is the polynomial basis of orderN while li(x) represents the
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interpolating Lagrange polynomial on the element Ek. One can imagine the modal

expression as a polynomial fit for the solution on the element while nodal expression

as a spline representing the solution through grid points xki . Mathematically, these

two expressions are equivalent, however, there are advantageous and disadvantageous

properties of them for the practical use. The modal form provides ease of changing

approximation order hence, very practical for p-multigrid applications. However,

nodal form is favourable when dealing with surface integrals and boundary condition

implementations. Global solution u is approximated as follows:

u = u(x, t) ' uh(x, t) =
K⊕
k=1

ukh(x, t) (3.13)

where the symbol
⊕

direct sum operator hence, uh(x, t) is the approximation of

global solution which is direct sum of the approximate local solution, ukh(x, t), on

element Ek.

It is a good point to introduce the test functions. Since discontinous Galerkin is a finite

element method, local solutions are recovered by using test functions. Furthermore,

test functions are also defined in the same space with basis functions as the definition

of Galerkin approach. Define the global space of test functions,

φh ∈ Vh =
K⊕
k=1

V k
h (3.14)

φkh ∈ V k
h = spanψn(Ek)

Np
n=1 (3.15)

where φkh is locally defined test function and given as,

x ∈ Ek : φkh(x) =

Np∑
n=1

φ̃knψn(x) (3.16)

Discretization procedure is continued with forming the residual and it should vanish,

Rh(x, t) =
∂uh
∂t

+
∂fh(u)

∂x
(3.17)

All test functions defined in Vh are required to be orthogonal to residual. The resulting

local statement in all elements is as below,∫
Ek
Rh(x, t)φn(x)dx =

∫
Ek

(∂uh
∂t

+
∂fh(u)

∂x

)
φn(x)dx = 0, 1 ≤ n ≤ Np (3.18)
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On each element, there are Np unknowns and Np equations to be solved. However,

there are still a need for developments required to obtain global solution because

imposing the boundary conditions and constraints on the basis and test functions are

not addressed yet.

Let’s continue with applying integration by parts to equation 3.18 in space. The in-

tegration holds the assumption of smooth but discontinuous test function. In other

words, test function is smooth inside the elements however, constrained through ele-

ment interfaces.∫
Ek

∂uh
∂t

φn(x)dx−
∫
Ek
fh(u)

dφn(x)

dx
dx+

∮
∂Ek

~nfh(u)φn(x)dx = 0, 1 ≤ n ≤ Np

(3.19)

where ~n stands for the normal vector of the element surface. Notice that the solution

has multiple valued at the element interfaces, hence evaluation of surface integral in

equation 3.19 has to be further investigated. Rather than using flux values directly

at the interfaces, a numerical flux, which is combination of neighbour solutions, is

utilized in the element interfaces. Then, defining the numerical flux as f ∗h(u), the

equation becomes:∫
Ek

∂uh
∂t

φn(x)dx−
∫
Ek
fh(u)

dφn(x)

dx
dx = −

∮
∂Ek

~nf ∗h(u)φn(x)dx, 1 ≤ n ≤ Np

(3.20)

This form is known as the weak form of the problem. For each element, Ek, there are

Np unknowns and Np equations, hence global solution now can be achieved. Right-

hand side of the equation 3.20 is responsible for obtaining the global solution from

local elements and employing the boundary conditions. Therefore, numerical flux has

the key role and it is needed to be detailed later.

Consider the modal expansion given in equation 3.12 and select the basis and test

functions from same space, that is classical Galerkin approach, and apply to equation

3.20. Then, local semi-discrete weak form is obtained:

Mk d

dt
ũk

h − (Sk)T f̃k
h = −f ∗(uh)ψ(xkr) + f ∗(uh)ψ(xkl ) (3.21)

where

Mk
ij =

∫
Ek
ψiψjdx, Sk

ij =

∫
Ek
ψi
dψj
dx

dx (3.22)
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and
ũk

h = [ũk1, ũ
k
2, ..., ũ

k
Np ]

T ,

f̃k
h = [f̃k1 , f̃

k
2 , ..., f̃

k
Np ]

T ,

ψ = [ψ1(x), ψ2(x), ..., ψNp(x)]T

(3.23)

represent the local solution, local flux and local test function vectors.

Similarly for nodal representation of equation 3.12, local semi-discrete weak form

would be:

Mk d

dt
uk

h − (Sk)Tfk
h = −f ∗(uh)lk(xkr) + f ∗(uh)l

k(xkl ) (3.24)

where

Mk
ij =

∫
Ek
lki l

k
j dx, Sk

ij =

∫
Ek
lki
dlkj
dx
dx (3.25)

and
uk

h = [uk1, u
k
2, ..., u

k
Np ]

T ,

fk
h = [fk1 , f

k
2 , ..., f

k
Np ]

T ,

lk = [lk1(x), lk2(x), ..., lkNp(x)]T

(3.26)

represent the nodal solution, nodal flux and nodal test function vectors. Finally, the

schemes presented as equations 3.21 and 3.24 are the classical modal and nodal dis-

contious Galerkin finite element methods given in weak form.

3.3 Modes, Nodes and Vandermonde Matrix

The global solution is represented as the direct sum of local piecewise polynomial

solutions as formulated in equation 3.11 and local solution is assumed as a expansion

of polynomial functions. Therefore, selection of the polynomials plays vital role in

the success of the scheme. The accuracy of the scheme is directly affected by the

order of the polynomials.

Consider the modal expansion for a one dimensional problem on an interval I =

[−1, 1],

ukh(x, t) =

Np∑
i=1

ũki (t)ψ
k
i (x) (3.27)
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As a simple choice, monomial basis can be used as the basis function for modal

expansion,

ψn(x) = xn−1 (3.28)

In order to obtain ũki (t), for each Np basis functions, L2 projection is applied and

requires that,

(uki (x, t), ψn(x))I =

Np∑
i=1

ũki (t)(ψi(x), ψn(x))I (3.29)

The inner product on the interval I is introduced as follows:

(u, v)I =

∫ 1

−1

uvdx (3.30)

Then corresponding result would be:

Mũki (t) = (uk(x, t), ψi(x))I , i = 1, 2...Np (3.31)

whereMij = (ψi(x), ψj(x))I and provides Np unknowns with Np equations to re-

cover uki (x, t). Inner product (ψi(x), ψj(x))I gives the matrixM as follows:

Mij =
1

i+ j − 1
(1 + (−1)i+j) (3.32)

The resultant matrix resembles a Hilbert matrix. Hilbert matrix is known to be poorly

conditioned due to fact that (i+ j−1)−1 term construct linear dependency as the (ij)

increases. The accurate calculation of uki (x, t) is abortive hence, monomial basis is

not a good choice for the polynomial expansion. The problem is overcome by the use

of a suitable orthonormal basis. Utilizing an L2 based Gram-Schmidt orthogonaliza-

tion approach on the monomial basis provides[64]:

ψn(x) = P̃n−1(r) =
Pn−1(r)√
γn − 1

, γn =
2

2n+ 1
(3.33)

where Pn(r) is the classical nth order Legendre polynomial which is a special kind

of Jacobi polynomial and defined on the reference element r ∈ I = [−1, 1]. Hence,

for an one dimensional arbitrary element, Ek an affine mapping is introduced:

x ∈ Ek : x(r) = xkl +
1 + r

2
(xkr − xkl ) (3.34)

Using Legendre polynomials as basis functions, the mass matrix,M becomes identity,

therefore problem of ill conditioned matrix is solved.
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Now, it is useful to reiterate that modal and nodal bases are on the same approxima-

tion space. The difference arise from the representation. The relation between two

representation is easy to construct. Consider the modal basis coefficients, ũki (t) =

[ũk1(t), ũk2(t), ..., ũkNp(t)] and nodal values are given as follows:

uki (xi, t) =

Np∑
j=1

ũkj (t)ψj(xi) (3.35)

In matrix form,

uki (xi, t) = Vũkj (t), Vij = ψj(xi) (3.36)

The matrix V is known as Vandermonde matrix and it provides direct relation between

modal and nodal representations. For a stable conversion between modal-to-nodal and

nodal-to-modal, Vandermonde matrix should be well conditioned on the nodal points

xi. Hence, next step is to determine the points to define Vandermonde matrix. Since

Legendre polynomials are determined as optimal basis,

ukh(x(r), t) =

Np∑
i=1

ũki (t)P̃n−1(r) (3.37)

and as an interpolant at grid points ξi,

ukh(x(r), t) =

Np∑
i=1

uki (ξi, t)li(r) (3.38)

where the interpolating Lagrange polynomial is defined with the property li(rj) = δij ,

li(r) =

Np∏
j=1
j 6=i

r − ξj
ξi − ξj

(3.39)

As long as ξi’s are distinct, li(r) is unique and exists. In order to evaluate quality of

the interpolant compared to best polynomial approximation, Lebesgue constants are

utilized. Lebesgue function and constant are defined respectively,

λn(r) =

Np∑
i=1

|li(rn)| (3.40)

λ = max
r
λn(r) (3.41)

It should be noted that Lebesgue function, λn, is constructed using cardinal functions

hence it is solely dependent on the grid points, ξi and independent of polynomial

basis. Since it is determined that,

VT l(r) = P̃ (r) (3.42)
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the particular solution, l for minimum Lebesque constant, is given in the zeros of the

following form [65],

f(r) = (1− r2)P̃
′

N(r) (3.43)

The points satisfying equation 3.43 are the Legendre-Guass-Lobatto quadrature points

and in close relation with normalized Legendre polynomials.
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Figure 3.2: Determinant of Vandermonde Matrix for Equidistant Nodes and Gauss-

Lobatto Points with α Symmetric Jacobi Polynomials, Pα,α
N (r)

The effect of node selection on the determinant of Vandermonde matrix is presented

in Figure 3.3. Moreover, other than LGL nodes, which are special case of α being

zero, various Gauss-Lobatto nodes for the symmetric Jacobi polynomials are inves-

tigated. The Figure 3.3 confirms that LGL nodes provides maximum determinant

value increasing with order and other α values show similar behaviour. However,

equidistant nodes exhibit completely different pattern. After a certain polynomial
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order, equidistant nodes cannot keep the increasing profile, on the contrary start to

decay.

As a summary of section, importance of selecting proper basis functions for local

approximations are stated. Local approximations take the following form starting

from equation 3.12,

ukh(r, t) =

Np∑
n=1

ũkn(t)P̃n−1(r) =

Np∑
i=1

ukh(r
k
i , t)l

k
i (r) (3.44)

where ri are the Legendre-Gauss-Lobatto nodes which are proved to have significant

effects on success of the scheme. Vandermonde matrix is introduced and ensured to be

well-behaved by choosing orthonormal basis of Legendre functions and LGL nodes.

The connection between modal and nodal representations is established through Van-

dermonde matrix and given as follows,

Vũk = ukh, VT l(r) = P̃(r), Vij = P̃j−1(ri) (3.45)

3.4 Basis Functions

The approximate solution of discontinuous Galerkin discretization is presented as a

series of basis functions with corresponding coefficients. The importance of selecting

a proper basis functions set is provided in section 3.3. In the present work, Jacobi

polynomials, which are orthonormal and hierarchic, are selected. Orthonormal prop-

erty is crucial for constructing a numerically stable discretization. A hierarchical

polynomial family has the property such that a N th order polynomial contains all the

N − 1th polynomials. The solution of singular Sturm-Liouville eigenvalue problem

given in equation 3.46 is the classical nth order Jacobi polynomials, P (α,β)
n (x).

x ∈ [−1, 1],
d

dx
(1− x2)w(x)

d

dx
P (α,β)
n (x) + n(n+ α + β + 1)w(x)P (α,β)

n (x) = 0

(3.46)

where w(x) is weight function and defined as follows:

w(x) = (1− x)α(1 + x)β (3.47)

Jacobi polynomials has an important property given as [64]

d

dx
P (α,β)
n (x) =

√
n(n+ α + β + 1)P

(α+1,β+1)
n−1 (x) (3.48)
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The Jacobi polynomials has no noted formula, however equation 3.46 and 3.48 pro-

vides a recurrence relation to evaluate:

xP (α,β)
n (x) = anP

(α,β)
n−1 (x) + bnP

(α,β)
n (x) + an+1P

(α,β)
n+1 (x) (3.49)

where an is given by:

an =
2

2n+ α + β

√
n(n+ α + β)(n+ α)(n+ β)

(2n+ α + β − 1)(2n+ α + β + 1)
(3.50)

and bn is given by:

bn = − α2 − β2

(2n+ α + β)(2n+ α + β + 2)
(3.51)

The recurrence relation has the n and n− 1 terms for n+ 1th order polynomial hence

P
(α,β)
0 (x) and P (α,β)

1 (x) are needed to start recurrence.

P
(α,β)
0 (x) =

√
2−α−β−1

Γ(α + β + 2)

Γ(α + 1)Γ(β + 1)
(3.52)

P
(α,β)
1 (x) =

1

2
P

(α,β)
0 (x)

√
α + β + 3

(α + 1)(β + 1)
((α + β + 2)x+ (α− β)) (3.53)

where Γ(x) is the classical Gamma function. Moreover, a special case of α = 0, β =

0 gives the Legendre functions.
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Figure 3.3: Legendre Polynomials of Various Orders

3.5 Modes and Nodes In 2-Dimension

The approximate solution of discontinuous Galerkin discretization is presented as se-

ries of polynomial expansion in previous sections, however formulations are straight-

forward for one dimensional problems. Since, solution of 2-dimensional Euler equa-

tions are main objective of present work; extension to 2-dimension is required. More-

over, as it is provided in section 3.4 that basis functions span [−1, 1], a mapping from

an arbitrary elements to standard element is required.

Extra geometric variation of the domain increases the complexity for extension of

polynomials to 2-dimensional case. As in the 1-dimensional case, polynomials are

required to be orthonormal to ensure numerical stability. The hassle of the problem
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has been overcome by several studies [1, 66]. The 2-dimensional standard triangle is

defined as:

T 2 = [(r, s)|r, s ≥ −1; r + s ≤ 0] (3.54)

For a Nth order orthonormal basis, formulation is given as:

(a, b) ∈ [−1, 1]2;∀(i, j) ≥ 0; i+ j ≤ N : ψi,j(r, s) =
√

2P
(0,0)
i (a)P 2i+1,0

j (b)(1− b)i

(3.55)

(a, b) is a new coordinate system and the relation between (r, s) is given as below:

a = 2
1 + r

1− s − 1, b = s (3.56)

The equation 3.55 provides exactly 1
2
(N +1)(N +2) terms for N th order polynomial

basis.

x

y

r

s

a

b

(-1,1) (1,1)

(1,-1)(-1,-1)

(-1,1)

(1,-1)(-1,-1) 1p
2p

3p)x~= Ψ(r~

)r~(1−= Ψx~

)r~= Φ(a~

Arbitrary TriangleStandard TriangleBasis Function Space

Figure 3.4: Schematic of Mapping of an Arbitrary Cell for Basis Function Evaluation

The evaluation of basis function for standard triangle is defined however, solution

domain is triangulated using arbitrary elements, Ek. Hence, a mapping between stan-

dard triangle and an arbitrary triangle is required. The schematic of the procedure

is provided in Figure 3.4. Firstly, arbitrary triangle is transformed to standard trian-

gle, then transformed to basis function space and basis function is evaluated, finally,

transformed back to physical space.

The arbitrary triangle is defined by counter clockwise positioned three corner points

(p1,p2,p3). The mapping between arbitrary and standard triangle is constructed

using barycentric coordinates,(λ1, λ2, λ3). The barycentric coordinates has the fol-

lowing property[67]:

0 ≤ λi ≤ 1, λ1 + λ2 + λ3 = 1 (3.57)
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The barycentric coordinates allows any point in the triangle to be defined by three

corner points of the triangle: x

y

 = λ1

 p1
x

p1
y

+ λ2

 p2
x

p2
y

+ λ3

 p3
x

p3
y

 (3.58)

Similarly in standard triangle: r

s

 = λ1

 −1

−1

+ λ2

 1

−1

+ λ3

 −1

1

 (3.59)

The equation 3.57,3.58 and 3.59 provides the direct mapping between standard trian-

gle and arbitrary triangle:

Φ(r) =

 x

y

 = −r + s

2

 p1
x

p1
y

+
r + 1

2

 p2
x

p2
y

+
s+ 1

2

 p3
x

p3
y

 (3.60)

The relation between standard triangle and arbitrary triangle is constructed hence it is

now easy to obtain transformation metrics and Jacobian. It is important to note that

the mapping provided in equation 3.60 is linear in r so transformation Jacobian is

constant. The chain rule provides:

∂x

∂r

∂r

∂x
=

 xr xs

yr ys

 rx ry

sx sy

 =

 1 0

0 1

 (3.61)

The metrics are obtained differentiating the equation 3.60 with respect to r: xr

yr

 = −1

2

 p1
x

p1
y

+
1

2

 p2
x

p2
y

 ,

 xs

ys

 = −1

2

 p1
x

p1
y

+
1

2

 p3
x

p3
y

 (3.62)

Moreover, due to 3.61: rx

ry

 =
1

J

 ys

−xs

 ,

 sx

sy

 =
1

J

 −yr
xr

 (3.63)

where transformation Jacobian, J , is calculated as follows:

J = xrys − xsyr (3.64)
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The evaluation and identification of an orthonormal basis function set on an arbitrary

triangle is now complete. Behaviour of the basis function set is provided in Figure

3.5 for standard triangle up to 4th order.

Figure 3.5: Complete Set of Basis Functions for 4th Order Approximation

The another important subject for developing 2-dimensional scheme is the identifica-

tion of families of nodal points that would provide healthy interpolation. In section

3.3, it is shown that Legendre-Gauss-Lobatta points are one of the suitable families.

However, defining nodal points for 2-dimensional elements is not straightforward.

There are several approaches to obtain a suitable nodal set families such as Fekete,

LGL, Warp&Blend etc. are studied comparatively in [68] for a well-behaved interpo-

lation. In the present work, nodal points on a triangular element are studied through

Warp&Blend approach as presented in [69]. LGL nodes are mapped to edges using

warp functions and interior nodes are constructed using blend functions.

The initial attempt to obtain LGL points on triangle would be tensor product of 1-

dimensional points, however, resulting family would have (N + 1)2 points accumu-

lated at one corner point and poor interpolation quality. Hence, a smarter approach

is required. Building LGL nodes on triangle starts from the one dimensional equidis-
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tant, re, and LGL nodes, rLGL. A connection between equidistant and LGL nodes

can be constructed as follows:

w(r) =

Np∑
i=1

(rLGLi − rei )lei (r) (3.65)

lei (r) are interpolating Lagrangian polynomials defined on equidistant nodes, re. Hence,

w(r) becomes an approximation of a mapping function between equidistant and LGL

nodes. In other words, it converts the equidistant nodes to healthy LGL nodes. For a

triangle, one dimensional mapping approximation w(r) is used to blend the edge into

the triangle. The application of w on triangle uses the barycentric coordinates. The

equidistant nodes of equilateral triangle on barycentric coordinates are defined as:

(i, j) ≥ 0, i+ j ≤ N : (λ1, λ3) = (
i

N
,
i

N
), λ2 = 1− λ1 − λ3 (3.66)

The equilateral triangle is defined as:

T 2
E = [(x, y)|x ≥ −1;x−

√
3

2
y ≥ −1;x+

√
3

2
y ≤ 1] (3.67)

The equidistant nodes on the barycentric coordinates are blended along normal to the

edge. Definition of warping function for first edge is given below:

w1(λ1, λ2, λ3) = w(λ3 − λ2)

 1

0

 (3.68)

and corresponding blending function:

b1(λ1, λ2, λ3) =
2λ3

2λ3 + λ1

2λ2

2λ2 + λ1
(3.69)

In the equation 3.69, the terms in the denominators have the singularities in corner

points of the corresponding edge, λ3 = λ1 = 0 and λ2 = λ1 = 0. Hence warp

function, w(r) is revised to overcome singularity problem with following form:

w̃(r) =
w(r)

1− r2
(3.70)

Equations 3.68 and 3.69 have the new forms:

w1(λ1, λ2, λ3) = w̃(λ3 − λ2)

 1

0

 (3.71)

and

b1(λ1, λ2, λ3) = 4λ2λ3 (3.72)
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The warp and blending functions for the remaining edges are given as:

w2(λ1, λ2, λ3) = w̃(λ1 − λ3)
1

2

 −1
√

3

 (3.73)

b2(λ1, λ2, λ3) = 4λ1λ3 (3.74)

w3(λ1, λ2, λ3) = w̃(λ2 − λ1)
1

2

 −1

−
√

3

 (3.75)

b3(λ1, λ2, λ3) = 4λ1λ2 (3.76)

The w in two dimensions is written as follows:

w(λ1, λ2, λ3) = b1w1 + b2w2 + b3w3 (3.77)

A general form for the equation 3.77 is proposed

w(λ1, λ2, λ3) = (1 + (αλ1)2)b1w1 + (1 + (αλ2)2)b2w2 + (1 + (αλ3)2)b3w3 (3.78)

In section 3.3 Lebesque constant is introduced to measure the quality of interpolation.

Similarly in two dimension, distribution of the nodes can be optimized using α in

equation 3.78 minimizing Lebesque constant. The Lebesque constant for α-optimized

set is tabulated in appendix.

The nodes are obtained in the equilateral triangle however, basis functions are de-

fined on standard triangle. Hence, nodes are needed to be transformed to standard

triangles. Combining the equations 3.57, 3.58 and 3.59 for equilateral and standard

triangle mapping between the two is given as equation 3.79. The construction of the

nodal set in a triangle is now complete. The distribution of the α-optimized nodes

in the equilateral and standard triangle for various orders is presented in Figure 3.6

comparing with equidistant nodes.

 r

s

 =

 1 −
√

3
3

0 2
√

3
3

 x

y

− 1

3

 1

1

 (3.79)
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Figure 3.6: α-optimized and Equidistant Nodes for Various Orders in Equilateral and

Standard Triangle

In the present section, an orthonormal basis function set is identified for two dimen-

sional applications. Nodal sets on the triangle is constructed while acquiring a well

behaved interpolation properties. Affine mapping between arbitrary, equilateral and

standard triangles is derived to have the ability of working on unstructured meshes.

All the efforts are spent to construct a well conditioned Vandermonde matrix to have a

stable connection between modal and nodal representations in two dimensions. Sim-

ilar to one dimensional case, local approximations in two dimension would be in the

following form:

ukh(r, t) =

Np∑
n=1

ũkn(t)ψn(r) =

Np∑
i=1

ukh(r
k
i , t)l

k
i (r) (3.80)

where ri and ψn(r) are nodal set and orthonormal basis function set in two dimen-

sions. The number of terms, Np, in the local expression is related to order of the basis

functions, N . In two dimensions, Np is given below as shown before:

Np =
(N + 1)(N + 2)

2
(3.81)
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Using the well conditioned and stable Vandermonde matrix, V , direct transformation

between modal and nodal representation is established. Rewriting the equation 3.44

for two dimensional case:

Vũk = ukh, VT l(r) = ψ(r), Vij = ψj(ri) (3.82)

This relation offers a way to evaluate Lagrange polynomials in two dimensions which

do not have a known explicit formulation.

3.6 Discontinuous Galerkin Finite Element Method Discretization of Euler Equa-

tions

Discontinuous Galerkin discretization of Euler equations are given in this section.

DG method is applied on only in space discretization while temporal discretization is

obtained through classical explicit methods. Rewriting the Euler equations given in

section 3.1 in vector form for two dimensional flows provides:

∂q

∂t
+
∂F

∂x
+
∂G

∂y
= 0 (3.83)

where q is the state vector, F and G are the non-linear flux vectors and given as:

q =


ρ

ρu

ρv

ρE


, F =


ρu

ρu2 + P

ρvu

ρEu+ Pu


, G =


ρv

ρuv

ρv2 + P

ρEv + Pv


(3.84)

In discretization process firstly, solution domain is divided into K number of non-

overlapping triangular elements, E.

Ω =
K⋃
k=1

Ek (3.85)

In each element, global solution q is approximated as follows:

q = q(~x, t) ' qh(~x, t) =
K⊕
k=1

qkh(~x, t) (3.86)
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where qh(~x, t) is the approximation of global solution and qkh(~x, t) is the approximate

local solution on elementEk. The local solution is expressed as Nth order polynomial

as discussed in the previous section 3.2:

~x ∈ Ek : qkh(~x, t) =

Np∑
i=1

qki (t)ψ
k
i (~x) =

Np∑
i=1

qkh(~xi
k, t)lki (~x) (3.87)

The number of terms, Np, in the local expression is related to order of the basis

functions, N . As shown in section 3.5, for two dimensional problems, Np is given as

follows:

Np =
(N + 1)(N + 2)

2
(3.88)

Following the definition of local expression for state vector, qh, discontinuous Galerkin

statement has to be satisfied for all test functions φh ∈ Vh as below:

∫
Ek

(
∂qh

∂t
+
∂Fh

∂x
+
∂Gh

∂y

)
φhdΩ = 0 (3.89)

As in the one dimensional case, this is the weighted residual form. Performing inte-

gration by parts on the advection terms, weak form of the Euler equations, which is

the basic form of discontinuous Galerkin discretization, is obtained:

∫
Ek

∂qh

∂t
φhdΩ︸ ︷︷ ︸

Term I

−
∫
Ek

(
Fh

∂φh

∂x
+ Gh

∂φh

∂y

)
dΩ︸ ︷︷ ︸

Term II

+

∮
∂Ek/∂Ω

Hh(q
−
h ,q

+
h , ~n)φhdΓ +

∮
∂Ek∩∂Ω

Hh(q
−
h ,q

b
h, ~n)φhdΓ︸ ︷︷ ︸

Term III

= 0

(3.90)

whereHh(q
−
h ,q

+
h , ~n) andHh(q

−
h ,q

b
h, ~n) are the numerical flux functions for interior

and boundary element faces, respectively as depicted in Figure 3.7. The notation (·)−

represents the interior element, likely, (·)+ stands for exterior elements. The boundary

conditions are implemented through boundary state qb
h.
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Figure 3.7: Interior and Exterior Element Notation

At this point, decision of nodal and modal approach has to be made. In the present

work, nodal DG approach is applied. The equation 3.90 is divided into three terms

and nodal DG approach for each term is provided individually.

3.6.1 Term I and Mass Matrix

The Term I can be investigated similarly in section 3.2.

Mk d

dt
qkh =

∫
Ek

∂qh

∂t
φhdΩ (3.91)

where qkh is the nodal values of conserved variables and:

Mk
ij =

∫
Ek
lki (x)lkj (x)dx = Jk

∫
I

lki (r)l
k
j (r)dr (3.92)

The Jk is the transformation Jacobian between arbitrary and standard triangle as pre-

sented in section 3.5. The Jk is constant and positive if Ek is rectilinear triangle.
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Using the property of equation 3.82, Lanrange polynomials can be written:

lki (r) =

Np∑
n=1

(VT )−1
in ψn(ri) (3.93)

Rewriting equation 3.92 using equation 3.93:

Mk
ij = Jk

∫
I

Np∑
n=1

(VT )−1
in ψn(ri)

Np∑
m=1

(VT )−1
jmψm(rj)dr

= Jk
Np∑
n=1

Np∑
m=1

(VT )−1
in (VT )−1

jm

∫
I

ψn(ri)ψm(rj)dr

(3.94)

Since basis functions are orthonormal Legendre polynomials,

∫
I

ψn(ri)ψm(rj)dr =

 0, n 6= m

1, n = m

equation 3.21 takes the final form:

Mk = Jk
Np∑
n=1

(VT )−1
in (VT )−1

jn = Jk(VT )−1(V)−1 = Jk(VVT )−1 (3.95)

3.6.2 Term II and Stiffness Matrix

The derivation of Term II is not straightforward as Term I in two dimensions.

The similar approach defined in 3.2 for one dimensional case is followed. In order

to obtain stiffness matrix, derivative of the test functions in physical plane has to be

handled.∫
Ek

(
Fh

∂φh

∂x
+Gh

∂φh

∂y

)
dΩ =

∫
Ek

(
Fk

hl
k
i (x)

∂lkj (x)

∂x
+Gk

hl
k
i (x)

∂lkj (x)

∂y

)
dx (3.96)

Chain rule is used to get derivatives:

∂lkj (x)

∂x
=
∂r

∂x
Dr +

∂s

∂x
Ds,

∂lkj (x)

∂y
=
∂r

∂y
Dr +

∂s

∂y
Ds, (3.97)

The transformation metrics are defined in equation 3.63. The differentiation matrices,

Dr and Ds, are defined as:

Dr,ij =
∂lkj (r)

∂r

∣∣∣∣
ri

, Ds,ij =
∂lkj (r)

∂s

∣∣∣∣
ri

(3.98)
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The differentiation matrices transforms the nodal values to the derivatives of them at

nodes. They are obtained using property of equation 3.82.

VTDr =
∂ψj
∂r

∣∣∣∣
ri

, VTDs =
∂ψj
∂s

∣∣∣∣
ri

(3.99)

The orthonormal basis is defined in section 3.5 as:

n ∈ [1, ..., Np];∀(i, j) ≥ 0; i+ j ≤ n : ψn(r) =
√

2P
(0,0)
i (a)P 2i+1,0

j (b)(1− b)i

(3.100)

The relation between coordinates (a, b) and (r, s) is provided in equation 3.56. Chain

rule enables the evaluation of derivatives:

∂ψj
∂r

=
∂a

∂r

∂ψj
∂a

,
∂ψj
∂s

=
∂a

∂s

∂ψj
∂a

+
∂ψj
∂b

(3.101)

The differentiation matrix now can be calculated at nodal points. The equation 3.96

is rewritten in stiffness matrix form as in one dimensional case.

F̃k
hSx + G̃k

hSy = F̃k
h(Sr

∂r

∂x
+ Ss

∂s

∂x
) + G̃k

h(Sr
∂r

∂y
+ Ss

∂s

∂y
) (3.102)

where F̃k
h and G̃k

h are nodal flux vectors and calculated directly from nodal solution.

In order to calculate Term II , evaluation of stiffness matrices Sr and Ss is mandatory.

Consider the productMDr:

(MDr)(i,j) =

Np∑
n=1

MinDr,nj =

Np∑
n=1

∫ 1

−1

li(r)ln(r)
∂lj
∂r

∣∣
rn
dr (3.103)

Changing the order between summation and integral and using orthonormal property

of Lagrangian interpolation, the result is exactly stiffness matrix.∫ 1

−1

li(r)

Np∑
n=1

ln(r)
∂lj
∂r

∣∣
rn
dr =

∫ 1

−1

li(r)
∂lj
∂r
dr = Sr,ij (3.104)

Similarly forMDs:
(MDs)(i,j) = Ss,ij (3.105)

3.6.3 Term III and Surface Mass Matrix

The discretization of Euler equations is completed with the evaluation of surface in-

tegral in following form:∮
∂Ek
Hh(q

−
h ,q

+
h , ~n)φhdΓ =

∮
∂Ek
Hh~nl

k
i (x)dΓ (3.106)
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where Hh is defined as polynomial trace function constructed using numerical flux.

The evaluation of the surface integral is straightforward in one dimensional case. For

two dimensional case, the operation is more complex. The integral is divided into

three separate edge components.

∀Ek, e ≥ 1; e ≤ 3 :

∮
∂Eke

Hh, ~nl
k
i (x)dΓ =

N+1∑
j=1

Hj

∫
∂Eke

~nlkj (x)lkj (x)dx (3.107)

where x = (x, y) is assumed to be located along the edge where N + 1 nodal points

is present. Hence, following mass matrix is required to be computed:

Mk,e
ij =

∫
∂Eke

lkj (x)lkj (x)dx (3.108)

The important point in the equation 3.108 is that lki (x) has non-zero value only if xi

lies on the edge. Hence,Mk,e
ij has non-zero values in the rows where xi lies on the

edge. Therefore a one dimensional Vandermonde matrix, V1D, along the edge can be

used to calculate edge mass matrix:

Mk,e
ij = Je(V1D(V1D)T )−1 (3.109)

where Je is the transformation Jacobian of the edge e which is the ratio of the edge

length in physical coordinates to the one in standard triangle coordinates.

The calculation of surface integral using only nodes along the edges is distinct advan-

tage of the nodal approach. On the other hand, modal approach would require the all

information to calculate the solution pointwise.

3.7 Time Discretization

The spatial discretization of the Euler equations is completed in section 3.6. The

resulting equation is a first order ordinary differential equation in time as given in

equation 3.110. In order to advance in time, low-storage explicit fourth order Runge-

Kutta method is selected [2]. The classical fourth order Runge-Kutta method requires

memory enough to store 4 stages while low-storage method requires only 2 stages

to be stored with expense of additional stage evaluation and has improved numerical

stability.
dqh

dt
= R(qh, t) (3.110)
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where qh is the unknown vector. The low storage explicit Runge-Kutta discretization

is given as below:

dqi = aidqi−1 + δtR(qi, t
n + ciδt), i ∈ [1, 5]

qi = qi−1 + bidqi, i ∈ [1, 5]
(3.111)

where dq is the temporary stage. Coefficients, ai,bi and ci, are provided in 3.1.

Table 3.1: Low Storage Fourth Order Explicit Runge-Kutta Method Coefficients [2]

STORAGE LEVEL,i ai bi ci

1 0
1432997174477
9575080441755 0

2 − 567301805773
1357537059087

5161836677717
13612068292357

1432997174477
9575080441755

3 −2404267990393
2016746695238

1720146321549
2090206949498

2526269341429
6820363962896

4 −3550918686646
2091501179385

3134564353537
4481467310338

2006345519317
3224310063776

5 −1275806237668
842570457699

2277821191437
14882151754819

2802321613138
2924317926251

Another important subject of time discretization is choice of time step size. The

smaller time step increases the accuracy however also computation time. On the

other hand, increasing time step beyond the stability boundaries fails the computation.

Hence, establishing a balance between stability and accuracy is vital. Hesthaven[1]

studied time step choice in detail and provided a stability condition for triangular

domains.

∆t ≤ C
(2

3
min(∆ri)

)
minΩ

( rD
|v|
)

(3.112)

where ∆ri spacing between grid points. rD is the characteristic length of triangle and

computed as:

rD =
A

s
(3.113)

A is the area and s is half of perimeter of triangle.
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3.8 Numerical Flux

Numerical flux is at the heart of the discontinuous Galerkin method establishing link

between cells and boundary conditions. There are various well-developed numerical

flux schemes for finite volume methods. In the present work, local Lax-Friedrichs

Flux, Roe’s approximate Riemann solver and Harten-Lax-van Leer approximate Rie-

mann solver are utilized. In nodal discontinuous Galerkin method, numerical flux is

calculated between each face nodes as presented in Figure 3.8. The coordinate system

used in the numerical flux calculations are face normal-tangent coordinate system and

all the flow variables are written respect to normal-tangent coordinate system through

the section.

h
+q

n~

h
−q

h
−q

h
−q

h
−q

h
+q

h
+q

h
+q

)h
+q,h

−q(H

)h
+q,h

−q(H

)h
+q,h

−q(H

)h
+q,h

−q(H

t~

Com
putation Cell

Neighbor Cell

Figure 3.8: Numerical Flux Calculation

3.8.1 Local Lax-Friedrichs Flux

The Lax-Friedrichs flux is a suitable choice for subsonic and low supersonic flows.

However, for high supersonic flows, it is not a recommended method due to the fact
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that dissipative behaviour of the scheme causes shocks to diffuse which results in loss

of accuracy. The flux is defined as follows [1]

Hh(q
−
h ,q

+
h , ~n) =

1

2
(F−h + F+

h ) +
λ

2
(q−h − q+

h ) (3.114)

where λ is maximum local acoustic wave speed. The equation for λ is provided

below:

λ = max
s∈[q−h ,q

+
h ]

(
|u(s)|+

√∣∣∣∣γp(s)ρ(s)

∣∣∣∣) (3.115)

3.8.2 Roe’s Approximate Riemann Solver

Euler equations are non-linear and solutions may have discontinuities at supersonic

or high subsonic flows. Hence, the calculation of the waves, used to compute numer-

ical flux, are not straightforward as in the linear problems. The analytic solution of

waves in non-linear conservation laws is known as Riemann problem. The numerical

solution of Riemann problem increases the computational cost significantly. Roe[7]

proposed a approximate solver assuming the problem is dominated by one strong

wave. The numerical flux is given as follows:

Hh(q
−
h ,q

+
h , ~n) =

1

2
(F−h + F+

h )− 1

2

4∑
i=1

αi|λi|Ki (3.116)

where α is the wave strength. λ and K are eigenvalues and eigenvectors of flux

Jacobian matrix. The eigenvalues and eigenvectors are calculated from Roe averaged

primitive variables given in equation 3.117.

ũ =

√
ρ+u+ +

√
ρ−u−√

ρ+ +
√
ρ−

ṽ =

√
ρ+v+ +

√
ρ−v−√

ρ+ +
√
ρ−

H̃ =

√
ρ+H+ +

√
ρ−H−√

ρ+ +
√
ρ−

c̃ =

√
(γ − 1)(H̃ − 1

2
(ũ2 + ṽ2))

(3.117)

The eigenvalues and eigenvectors of flux Jacobian matrix are given as belows:

λ1 = ũ− c̃, λ2 = λ3 = ũ, λ4 = ũ+ c̃ (3.118)
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K1 =


1

ũ− c̃
ṽ

H̃ − ũc̃


, K2 =


1

ũ

ṽ

1
2
(ũ2 + ṽ2)


,

K3 =


0

0

1

ṽ


, K4 =


1

ũ+ c̃

ṽ

H̃ + ũc̃



(3.119)

Finally, α is provided in following form:

α1 =
1

2c̃
(∆q1(ũ+ c̃)−∆q2 − c̃α2)

α2 =
γ − 1

c̃2
(∆q1(H̃ − ũ2) + ∆q2ũ−∆p+ (∆q3 − ṽ∆q1)ṽ)

α3 = ∆q3 −∆q1ṽ

α4 = ∆q1 − (α1 + α2)

(3.120)

where operator ∆ is the jump between two states.

∆qi = q+
i − q−i (3.121)

3.8.3 Harten-Lax-van Leer Approximate Riemann Solver

For many problems, Roe flux is an appropriate choice however, for some cases, it

produces spurious results due to violation of its basic assumption being domination

of one strong wave. Harten-Lax-van Leer (HLL) approximate Riemann solver over-

comes the issue by accommodating two waves and assuming three Riemann states.

The HLL flux is given by following formula [70]

Hh(q
−
h ,q

+
h , ~n) =


F−, 0 ≤ S−

S+F−−S−F++S−S+(q+−q−)
S+−S− , S− ≤ 0 ≤ S+

F+, 0 ≥ S+

(3.122)

where S− and S+ are the fastest wave speeds with relation S+ > S−. The estimation

of these two speeds are given in equation 3.123.

s− = min(λ−, λ̃), s+ = max(λ+, λ̃) (3.123)
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where λ̃ are eigenvalues of the Roe averaged state.

3.9 Boundary Conditions

3.9.1 Dirichlet Boundary Condition

Dirichlet boundary condition is used in the domain boundaries where values of flow

variables are available. Hence, boundary states are directly provided.

qbh = f(x, t) (3.124)

3.9.2 Inflow Boundary Condition

The inflow boundary condition is defined using total temperature, total pressure and

flow direction for subsonic flow whereas for supersonic flow, all flow parameters are

required to be defined because all the information is transmitted outside the domain.

The inflow boundary is not the best choice for external flows, rather it is recom-

mended for channel flows.

3.9.2.1 Subsonic Inflow

The boundary state for subsonic inflow is constructed from outward propagating Rie-

mann invariant and total enthalpy. The basic assumption is that flow is adiabatic and

isentropic. The total enthalpy in the inner state is written as:

Ht =
p−

ρ−
γ

γ − 1
+

1

2
((u−)2 + (v−)2) (3.125)

Riemann invariant propagating outside is given in equation 3.126.

R− = ~u · ~n− 2c−

γ − 1
(3.126)

The boundary state is extrapolated from inner state, hence equation 3.125 and 3.126

are rewritten for boundary state:

Ht =
γ(cb)2

γ − 1
+

1

2
(~ub · ~n)2 (3.127)
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R− = ~ub · ~n− 2cb

γ − 1
(3.128)

Combining equation 3.127 and 3.128, and solving for speed of sound at boundary

state provides following equation:

(1 +
2

γ − 1
)(cb)2 + 2R−cb + (γ − 1)(

(R−)2

2
−Ht) = 0 (3.129)

The equation 3.129 is a quadratic equation which has two roots. The larger of the

roots provides the physically consistent result. The boundary velocity is calculated

using Riemann invariant and speed of sound.

~ub · ~n = R− +
2cb

γ − 1
(3.130)

The boundary velocity and speed of sound enables the evaluation of Mach number of

boundary state.

M b =
~ub · ~n
cb

(3.131)

Using the isentropic relations, static pressure and temperature are calculated.

pb = pt(1 +
γ − 1

2
M2

b )
γ
γ−1 T b = Tt

(
pb

pt

) γ−1
γ

(3.132)

The boundary density is calculated using equation of state.

ρb =
pb

T bR
(3.133)

The boundary state is constructed using the flow variables obtained at boundary. The

velocity components are determined from the boundary velocity and specified flow

direction.

qbh =


ρb

ρbub

ρbvb

pb

γ−1
+ 1

2
ρb((ub)2 + (vb)2)


(3.134)
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3.9.2.2 Supersonic Inflow

Pressure, density and velocity is defined at supersonic inflow boundary. The boundary

state is directly constructed from the boundary conditions.

qbh =


ρb

ρbub

ρbvb

pb

γ−1
+ 1

2
ρb((ub)2 + (vb)2)


(3.135)

3.9.3 Outflow Boundary Condition

The static pressure is set at the outflow boundary. Adiabatic and isentropic flow is

assumed at the boundary. Extrapolated velocity and temperature is used with static

pressure to compute density. In the case of supersonic flow at the boundary, all the

flow variables are extrapolated. The boundary pressure is computed as:

pb =

 pb, M− < 1

p−, M− ≥ 1
(3.136)

Boundary density is calculate from boundary pressure and temperature:

ρb =
γpb

T b
, T b =

γp−

ρ−
(3.137)

Then boundary state is given as:

qbh =


ρb

ρbu−

ρbv−

pb

γ−1
+ 1

2
ρb((u−)2 + (v−)2)


(3.138)

3.9.4 Wall Boundary Condition

Slip wall boundary requires that velocity normal to wall should diminish while veloc-

ity tangent to wall should be preserved.

~ub · ~n = 0, ~ub · ~t = ~u− · ~t (3.139)
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Solving for boundary velocity provides the boundary state.

qbh =


ρ−

ρ−ub

ρ−vb

p−

γ−1
+ 1

2
ρ−((ub)2 + (vb)2)


(3.140)

3.9.4.1 Curved Walls

The discontinuous Galerkin method requires curved elements when a boundary is

not straight. Bassi and Rebay [71] worked with two dimensional Euler equations to

show the importance of curved elements for achieving high order accuracy. Hence,

construction of curved elements are necessary in order to solve problems with curved

walls. Transformation of a straight sided boundary cell into curved boundary cell is

presented in Figure 3.9. The face nodes lying on the wall boundary are projected

onto the curved boundary and deformations between straight and curved nodes are

calculated. The work of Gordon and Hall [72] is used to blend deformation onto

remaining nodes. Finally, face normals and transformation Jacobian are updated.

The presented method is quick and easy to implement however it requires analytical

representation of walls.

Straight Sided Cell Curved Cell

Wall Boundary

Figure 3.9: Visual Comparison of Straight Sided Cell and Curved Cell
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3.9.5 Riemann Invariant Farfield Boundary Condition

Riemann invariant boundary condition utilizes incoming and outgoing characteristic

waves at farfield boundary to determine local normal velocity and speed of sound.

Pressure and density of boundary state is solved using entropy and speed of sound.

The Mach number and flow direction is specified. Calculation of Riemann invariants

to construct boundary state depends on the flow regime and direction at boundary as

depicted in Figure 3.10.

−R
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−R −R
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~n
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t~

t~
t~

Figure 3.10: Contribution of Riemann Invariants to Boundary State at Farfield Bound-

ary for Subsonic Inflow, Supersonic Inflow, Subsonic Outflow and Supersonic Out-

flow

For subsonic inflow and outflow Riemann invariants are as follows:

R− = ~u− · ~n+
2c−

γ − 1
R+ = ~u∞ · ~n− 2c∞

γ − 1
(3.141)

For supersonic inflow, all information used to construct boundary state is taken from

free stream:

R− = ~u∞ · ~n+
2c∞

γ − 1
R+ = ~u∞ · ~n− 2c∞

γ − 1
(3.142)

For supersonic outflow, interior state is used to construct boundary state:

R− = ~u− · ~n+
2c−

γ − 1
R+ = ~u− · ~n− 2c−

γ − 1
(3.143)

where

c− =

√
γp−

ρ−
c∞ =

√
γp∞

ρ∞
(3.144)

Velocity normal to boundary and speed of sound at boundary state is calculated from

incoming and outgoing Riemann invariants.

~ub · ~n =
1

2
(R− +R+) cb = 4(γ − 1)(R− −R+) (3.145)
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The sign of the normal velocity at boundary decides the direction of flow. If the

flow is incoming to domain then tangential velocity and entropy is constructed from

farfield conditions. Similarly, if the flow is outgoing, interior state is used.

~ub · ~t =

 ~u∞ · ~t, ~ub · ~n < 0

~u− · ~t, ~ub · ~n > 0
, sb =


(c∞)2

γ(ρ∞)γ−1 , ~ub · ~n < 0

(c−)2

γ(ρ−)γ−1 , ~ub · ~n > 0
(3.146)

Using entropy and speed of sound, density and pressure are computed as follows.

ρb =

(
(cb)2

γsb

) 1
γ−1

, pb =
ρb(cb)2

γ
(3.147)

Rotating boundary velocity to Cartesian coordinate system provides the boundary

state.

qbh =


ρb

ρbub

ρbvb

pb

γ−1
+ 1

2
ρb((ub)2 + (vb)2)


(3.148)

3.10 Stabilization

Euler equations obeying hyperbolic conservation laws contains discontinues named

shock in solution field. The shocks leads to non-physical oscillations that may even

lead to divergence of numerical method. However, basic form of numerical methods

generally are not capable of handling the shocks inherently. The stabilization tech-

niques are employed to achieve solution convergence. Among those methods, two

approaches, filtering and slope limiting, are utilized in the present work.

3.10.1 Filter

Filtering approach is a kind of artificial viscosity application. The importance is that

filtering modifies the expansion coefficients while preserving order of accuracy. Sev-

eral variations of filtering methods applied to conservation laws on triangular ele-

ments can be found in the work of Meister et. al. [73]. Exponential filter, an exten-

sively used filtering method in literature, is employed present work.
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σ(η) =

 1, 0 ≤ η ≤ ηc

e−α((η−ηc)/(1−ηc))s , ηc < η ≤ 1
(3.149)

where ηc = Nc
N

. Nc is the cutoff value of untouched modes. In other words, modes

having lower order than Nc are not filtered.

The filtering of solution coefficients is enabled through the filter matrix. The filter

matrix is given as:

F = VΛV−1 (3.150)

where Λ is a diagonal matrix.

Λii = σ
(i− 1

N

)
, i = 1, ..., Np (3.151)

The parameters α and s of filter function are arbitrary. The α is generally chosen

as negative logarithm of machine precision. Dissipation strength of filter function

increases with increasing value of parameter α and decreasing the value of parameter

s.

3.10.2 Slope Limiter

Slope limiting methodology developed for DG method by Tu and Aliabadi [74] is

utilized in the present work. The presented limiter is van Albada type and claimed to

not stall convergence and degrade the solution accuracy at smooth regions. The lim-

iting procedure works with primitive variables and contains 5 steps. Before starting

to limiting steps, a patch neighbour elements is constructed. As a first step, cell aver-

age values of primitive variables at centroids and element vertices are computed. The

gradients at element faces are computed with Taylor series approach using average

centroid and vertex values in second step. The third step is the calculation of gradi-

ents at element center using area averaging with gradients at element faces. Next step

is to limit element gradients. Final step is to construct conservative variables using

limited gradients.
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3.11 Post Processing

Post processing of CFD data requires exporting the flow variables at physical coordi-

nates. The state of the art finite volume solvers deliver flow variables at cell centroids

or nodes. However, discontinuous Galerkin method enables more resolution inside

a cell by utilizing nodal points. In the present work, nodal points are used in post

processing as provided in Figure 3.11 for a fifth order solution having 15 nodes. The

grid nodes are connected with solid lines while sub-element nodes are connected with

dashed lines. The representation of flow data at sub-element nodes is more accurate

approach however, double values show up at element boundaries. The post processors

are unable to process double valued points hence it is expected to have discontinuous

contour lines unless solution is highly smooth.

Figure 3.11: Grid Elements and Sub-Elements for a Fifth Order Solution
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CHAPTER 4

RESULTS AND DISCUSSION

Focus of this chapter is solutions and discussions of selected test cases which are

widely used in the literature. The first problem is translating isentropic vortex with

analytical solution. The aim of using isentropic vortex problem is to test high order

solution capability of present work. The second problem involves a smooth bump in

channel with subsonic flow conditions. The importance of curved walls in high order

methods is selected as the main subject of bump in a channel problem. The third and

fourth problems is a validation case for a wing section. Moreover, in the third case,

importance of stabilization in high order methods is tested since the problem involves

shock formation. Fourth case addresses the comparison with a well known open

source CFD software. Finally, last case is a supersonic flow with a oblique shock.

The effect of grid refinement around the shock in high order methods is questioned.

The all test results presented in section, except isentropic vortex, obtained with non-

dimensional flow parameters and results are also in non-dimensional form. The flow

parameters are given Table 4.1.

Table 4.1: Non-dimensional Values of Flow Parameters

p = 1.0 ρ = γ T = 1.0

R = 1
γ

c = 1.0 γ = 1.4

4.1 Isentropic Vortex

The isentropic vortex problem is widely used to validate high order methods in lit-

erature [75]. The analytical solution of the problem enables the evaluation of solver
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error directly at a given time. The another important feature of the problem is that

it gives the ability to test dissipation characteristic of the numerical method which is

crucial in vorticity dominated flow and high fidelity turbulent flow simulations.

The analytical formulation of the problem is provided in equation 4.1 [75].

u = 1− βe1−r2 y − y0

2π
,

v = βe1−r2 x− x0

2π
,

ρ =

(
1−

(
γ − 1

16γπ2

)
β2e2(1−r2)

) 1
γ−1

,

p = ργ,

r =
√

(x− t− x0)2 + (y − y0)2

(4.1)

where β = 5, γ = 1.4 and vortex center coordinates x0 = 5 and y0 = 0. The vor-

tex is formulated such that velocity perturbations do not change entropy in the flow.

Hence, numerical scheme employed to solve the problem is expected to have mini-

mum entropy production. The initial density profile of the isentropic vortex problem

is presented in Figure 4.1.
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Figure 4.1: Density Contour for Isentropic Vortex at t = 0

A square computational domain is used. The vortex is located at the center of the

computational domain. Domain boundaries have equivalent distance to the vortex

center. Computational domain extends from 0 to 10 in x-direction and from−5 to 5 in

y-direction. In literature, grid refinement methodology is used to verify the numerical

accuracy as the main purpose of problem. The series of grids are generated in the

computational domain having 16, 32 and 64 nodes on the boundaries. Initially, grids

are generated in structured grid fashion using boundary elements. The structured

domain is diagonalized to obtain unstructured triangular grid. The triangular grids

used in convergence study are shown in Figure 4.2. Simulations are conducted with

polynomial orders from 1 to 5 for each grids which results in total of 15 simulations.

Dirichlet boundary conditions are employed at the domain boundaries which means

that analytical solution is enforced at boundary elements at each time step. Local

Lax-Friedrichs flux method is utilized due to its convenient nature to low subsonic
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flows. The density error for each simulation is evaluated at time, t = 1.
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Figure 4.2: Meshes Used in the Convergence Analysis for Isentropic Vortex Problem

The L2-norm of the density error are plotted in Figure 4.3 for each polynomial order

in order to show the accuracy of the scheme. The x−axis is the grid size while y−axis

presents the density error in logarithmic scale. The convergence rate for each poly-

nomial order computed using change of error with change of grid size. Convergence

rate for polynomial order of 1, 2, 3, 4 and 5 is 1.52, 2.61, 3.17, 3.95 and 4.92 respec-

tively. Theoretically, optimal convergence rate isO(hN+1), however convergence rate

is observed to be around O(hN+ 1
2 ) which is suboptimal convergence rate.
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Figure 4.3: L2 Norm of Density Error

4.2 Bump in a Channel

Inviscid smooth bump in a channel problem is a popular test case for high order

CFD methods. Recently at 5th High Order CFD Workshop 2018, it is assigned to

participants to test their solvers. The smooth bump test case aims to test high order

CFD methods with curved boundary representation for the computation of internal

flows. The flow through channel is subsonic with a Mach number of 0.5. The bump

in the lower wall given by the equation 4.3 has smooth variation. The analytical

solution of the problem is unknown however; since the flow is subsonic and inviscid,

entropy should be constant in the channel. Hence, L2 norm of entropy error given in

equation 4.2 can be used as the indication of accuracy.
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ErrL2 =

√∫
Ω

(
p
p∞

(ρ∞
ρ

)− 1
)2
dΩ

Ω
(4.2)

y = 0.0625e−25x2 (4.3)

Figure 4.4: Inviscid Smooth Bump in a Channel Problem

The computational domain presented in Figure 4.4 is bounded between x = −1.5

and x = 1.5, and between y = 0 and y = 0.8. The inlet boundary is defined at

x = −1.5 while outlet is defined at x = 1.5. The bump geometry is placed at

the point [0, 0] which is at equivalent distance to inlet and outlet boundaries. The

subsonic inlet boundary condition is defined with total pressure, total temperature

and Mach number. The static pressure is set at outflow boundary. Upper and lower

boundaries are slip wall boundaries and bump geometry is represented with curved

wall boundary approach. The flow is started from uniform M = 0.5 flow. HLL

approximate Riemann solver is selected as numerical flux function. Time integration

is carried out by fourth order explicit Runge-Kutta method.

Three meshes different in element sizes are generated to use in accuracy analysis.

Coarse mesh has 667 elements. 1226 elements are utilized in medium mesh while fine

mesh has 2444 elements. Coarse, medium and fine meshes are presented in Figure

4.5. The series of simulations are conducted with three meshes for polynomials order

from 1 to 4 until convergence in entropy error achieved. Entropy error histories of

coarse mesh solutions are presented in Figure 4.6 where x−axis is iteration number

and y−axis is log scale of entropy error. The entropy error for all polynomial orders

settled to a certain level. The low order simulations quickly converged however, error
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Figure 4.5: Meshes Used in the Convergence Analysis for Inviscid Bump in a Channel

Problem

reduction capabilities are limited. The high order simulations took longer time to

converge with oscillatory behaviour.

The pressure contours from two different polynomial order on coarse mesh are pre-

sented in Figure 4.7. The pressure contour is ranged between 0.82 and 1.04. The

outlet boundary condition is assumed to be undisturbed flow and has the pressure

value of 1.0. Hence, pressure values lower than 1.0 represents suction regions. The

solution presented in Figure 4.7.(a) uses elements with polynomial order of 1 while

Figure 4.7.(b) presents the same solution for polynomial order of 4. The pressure

field in Figure 4.7.(a) has discontinuities at regions high pressure gradient presents.

Moreover, suction region at the bump peak is poorly captured. On the other hand,

fourth order polynomials provide smooth well developed solution. Suction and high
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pressure regions are well captured. It can be summed up that high order solution can

provide smooth solution on even coarse mesh while low order solution has disturbed

regions.
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Figure 4.6: L2 Norm of Entropy Error History for Polynomial Orders of 1, 2, 3 and 4

on Coarse Grid

The entropy error of each simulation is plotted with grid size, h = 1/
√
NDOF , in

Figure 4.8. The convergence rates are observed between O(hN+ 1
2 ) and O(hN+1).

The expected convergence rate in High Order CFD Workshop is stated as O(hN+1)

hence it can be concluded that consistent results are obtained.

4.2.1 Bump with Straight Sided Cells

In Chapter 3, the use of curved wall boundary representation is stated as mandatory to

achieve high order accurate solution. In order to experience importance of curved wall
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(a) Second Order DG Scheme, N=1

(b) Fifth Order DG Scheme, N=4

Figure 4.7: Steady State Pressure Contours of (a) Second and (b) Fifth Order Solu-

tions

boundary condition, the bump in a channel solutions are computed with polynomial

orders of 2 and 4 using straight sided cells on wall boundaries. The Figure 4.8 is

re-drawn to compare curved and straight sided cells solution on Figure 4.9. As it

is aforementioned, convergence rate is expected to be O(hN+1). For the third order

accurate solution, convergence rate drops from 3.08 to 1.69 and for the fifth order

solution, convergence rates are 4.88 and 1.80. The convergence rate of straight sided

cell simulations is around 2 regardless of polynomial order. Other than first order

solutions, geometry representation of straight sided cells is identical to second order

boundary representation of curved cells. Hence, it can be said that order of accuracy

is limited by representation of wall boundaries.

In order to further investigate the accuracy loss, entropy generation in solution do-

main is calculated for each simulation. The maximum entropy generation in each

simulation occurred around the bump however, away from the bump geometry in
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Figure 4.8: Convergence Rate for Bump in Channel Problem

solution domain, generation of entropy is vanished. The entropy contours of sim-

ulations with curved and straight sided wall are compared in Figure 4.10 zooming

at bump geometry. The maximum and minimum values of each contour plot is set

equivalent. The grid and Legendre-Gauss-Lobatto nodes are also activated. The grid

nodes are connected with solid lines while LGL nodes are connected dashed lines to

show deformation of cell edges and node blending. In each simulation, maximum

entropy generation occurs at the bump peak; however, simulations with straight sided

cells have greater entropy generation. Another important observation is that, entropy

error of curved cell simulations have smooth variation and diminish away from bump.

However, in straight sided cell simulations, entropy error generated at bump geometry

convected downstream and disturbed solution field.
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(a) N = 2, Curved Cell (b) N = 2, Straight Sided Cell

(c) N = 4, Curved Cell (d) N = 4, Straight Sided Cell

Figure 4.10: Entropy Error Contours, (a) Curved Cell with Polynomial Order of 2,

(b) Straight Sided Cell with Polynomial Order of 2, (c) Curved Cell with Polynomial

Order of 4, (d) Straight Sided Cell with Polynomial Order of 4
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4.3 RAE2822 Airfoil

The RAE2822 airfoil is a transonic airfoil which has a maximum camber of %2 po-

sitioned at %80 chord length and %22 maximum thickness to chord length ratio. The

RAE2822 airfoil has a well documented test campaign which made it popular test

case in computational fluid dynamics literature. The upper and lower surface coordi-

nates of the airfoil and experimental results are obtained from test document [3]. The

airfoil geometry is plotted in Figure 4.11.
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Figure 4.11: RAE2822 Airfoil Geometry [3]

The solution domain for RAE2822 is generated between airfoil geometry and farfield

boundary. Leading edge of the airfoil is located at [0, 0]. Curved wall boundary is

applied to airfoil geometry. Farfield is generated as circular geometry with radius

equal to 40 chord length and center at [0, 0]. The number of elements placed on the

airfoil geometry is 120 while farfield boundary is divided into 40 equal elements. The

domain between airfoil and farfield boundaries contains 1846 triangular elements.

The generated grid is presented in Figure 4.12.(a). The zoomed viewed of grid around

airfoil geometry is plotted on Figure 4.12.(b). HLL approximate Riemann solver is

employed as numerical flux function.

4.3.1 RAE2822 Airfoil at Mach 0.3

The RAE2822 test campaign [3] does not include low Mach number flows. However,

an inviscid shock-free flow around RAE2822 airfoil at zero angle of attack should
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Figure 4.12: Solution Grid Used in RAE2822 Airfoil Simulations (a) Solution Grid,

(b) Zoomed View on Airfoil Geometry

produce no drag force due to fact that pressure forces cancel in stream-wise direction.

Hence, verification study can be carried out.

Verification analyses are conducted with polynomial order of 3. Simulation is run

until convergence achieved. The density residual and drag force history is plotted in

Figure 4.13. Iteration number is used as x−axis while density residual and drag force

are plotted on y−axis. Logarithmic scale is applied to the y−axis of density residual

plot. The density residual is reduced to around order of −11. Similarly, drag force

initially oscillates and converges to value of 1.18E − 05 which is almost zero.

The pressure contour of converged solution is presented in Figure 4.14.(a). Pressure

contour is ranged between 0.97 and 1.06 and spaced equally 21 lines. Figure 4.14.(b)

shows Mach number contours which is also equally spaced 20 lines between values

of 0.0 and 0.38. The contour plots show smooth variation of flow variables in solution

domain. Moreover, drag force is obtained near zero as it is aimed. It can be concluded

that numerical approach is verified.
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Figure 4.13: Convergence History for RAE2822 Airfoil Solution at M = 0.3 (a) Den-

sity Residual Plot, (b) Drag Force Convergence History

(a) Pressure Contour (b) Mach Number Contour

Figure 4.14: RAE2822 Solution at M = 0.3, (a) Pressure Contour, (b) Mach Number

Contour

4.3.2 RAE2822 Airfoil at Mach 0.73

The 2 transonic flow test cases of RAE2822, Case9 and Case10 [3], has actually be-

come a standard test case for turbulence modelling. Case9 is run at Mach number of

0.73 and 2.8 degree angle of attack. The case9 is evaluated as subcritical flow condi-

tion where little to no separation occurs due to shock. However, Case10 is supercriti-
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cal flow condition where massive separation is observed downstream of shock. Since

the fidelity of present work is limited by governing equations, Case9 can be used as

validation case.

The same grid and numerical flux used in low Mach number verification case is uti-

lized. However, since there is a presence of shock, high gradient values in the solution

field are expected. Therefore, stabilization technique is needed to be utilized.

4.3.2.1 RAE2822 Airfoil at Mach 0.73 with Exponential Filter

The transonic test case simulations are conducted with polynomial orders of 1. Ex-

ponential filter is applied to stabilize the simulation. The density residual history is

plotted in Figure 4.15.(a). Pressure values on the airfoil geometry are extracted from

converged solution. The pressure values are converted to pressure coefficient and

compared with experimental results in Figure 4.15.(b). The simulation and experi-

mental results match quite well in the lower surface. On the upper surface, significant

deviations are observed up to shock position. Downstream of the shock, results are

satisfactory.
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Figure 4.15: RAE2822 Solution with Exponential Filter at M = 0.73 and α = 2.82,

(a) Density Residual, (b) Pressure Coefficient [3]

The pressure and Mach number contours of the converged solution around the air-
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foil geometry are presented in Figure 4.18.(a) and Figure 4.18.(b), respectively. The

pressure contour is divided into equal 20 levels between 0.6 and 1.4. Mach number

contour is consists of 25 levels with maximum value of 1.2 and minimum value of

0.0. The air accelerates on the upper surface resulting in shock formation. However,

lower surface has smooth variation in flow field. Combining solution field contour

plots and pressure coefficient plot, it is observed that exponential filter works well

with smooth regions however fails at the high gradient regions and shows severe dissi-

pative behaviour. Moreover, parameters of filter function are arbitrary, hence solution

accuracy is dependent on the user.

(a) Pressure Contour (b) Mach Number Contour

Figure 4.16: RAE2822 Solution with Exponential Filter at M = 0.73 and α = 2.82,

(a) Pressure Contour, (b) Mach Number Contour

4.3.2.2 RAE2822 Airfoil at Mach 0.73 with Slope Limiter

The simulations conducted in section 4.3.2.1 are repeated with slope limiter. The

density residual and pressure coefficient comparison are provided in Figure 4.17.(a)

and Figure 4.17.(b), respectively. The lower surface pressure coefficient results are

consistent with experimental results as in exponential filter approach. However, slope

limiter approach is significantly more successful capturing the upper surface vales.

Nonetheless, comparison results are not perfect. Leading edge region of upper sur-

face shows notable discrepancy which may appear due to low resolution of surface
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curvature.
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Figure 4.17: RAE2822 Solution with Slope Limiter at M = 0.73 and α = 2.82, (a)

Density Residual, (b) Pressure Coefficient [3]

Using the same settings of flow field contours presented in Figure 4.18, Figure 4.18 is

generated. The dissipation in filter approach is not observed in slope limiter approach.

The flow field around the airfoil changes smoothly. The resolution of shock formation

is considerably better. Hence, it is concluded that slope limiter approach is superior to

filtering approach. However, it should be noted that slope limiting procedure reduces

the maximum order of accuracy to 2 which is a contradiction to use of high order

schemes.
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(a) Pressure Contour (b) Mach Number Contour

Figure 4.18: RAE2822 Solution with Slope Limiter at M = 0.73 and α = 2.82, (a)

Pressure Contour, (b) Mach Number Contour

4.4 NACA0012 Airfoil

The NACA0012 airfoil is a symmetric airfoil which has %12 maximum thickness to

chord length ratio. The NACA0012 airfoil is probably the most popular airfoil in

aeronautics. It is used in from helicopter rotors to airplane wing sections. Hence,

it has become basic geometry for experimental studies and a standard test case for

numerical studies. The upper and lower surface coordinates of the airfoil are com-

puted with exact formulation of NACA. The Equation 4.4 used to generate airfoil

coordinates and plotted in Figure 4.19.

y = ±0.6(0.2969
√
x− 0.1260x− 0.3516x2 + 0.2843x3 + 0.1015x4) (4.4)

NACA0012 airfoil simulations are carried out at Mach number of 0.8 and angle of

attack of 1.25 degree condition, a popular transonic test case. The grid generated

for NACA0012 airfoil simulations are presented in Figure 4.20.(a) full view and in

Figure 4.20.(b) zoomed view around airfoil geometry. The airfoil geometry has 120

elements along its surface and leading edge is placed at [0, 0]. The Riemann farfield

boundary is circular and has a radius of 30 chord length. The grid consists of 1126
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elements. The Roe approximate Riemann solver is used as numerical flux. Slope

limiter is also used to stabilize numerical model. Due to slope limiter, polynomial

order of 1 is used in simulations.

The solutions obtained with discontinuous Galerkin method are compared with SU2

open source CFD software utilizing finite volume method [76]. Explicit second order

Euler solver of SU2 is employed to solve same grid provided in Figure 4.20 with

Venkatakrishnan slope limiter and Roe approximate Riemann solver.

The Mach number contour of two results are plotted in Figure 4.21. There are two

shock formations observed on the airfoil surface. The air accelerates on the upper

surface due to thickness of airfoil and angle of attack. Hence, the upper surface shock

is stronger than the lower surface shock which is only due to airfoil thickness. The

comparison shows that DG solver is able to capture shocks with similar resolution to

SU2 solver. The pressure coefficient plot provided in Figure 4.22 shows that results

are almost identical. Shock positions and strength are well correlated while overall

pressure distribution is also matching. It can be concluded that methodology of the

present work is verified.

It is also found worth to point out the effect of post processing approach mentioned

in Chapter 3. The Mach contour of SU2 solution is plotted with classical approach

of finite volume methods. Although pressure distributions are almost identical, Mach

contour of DG solver visualize a sharper shock which is more accurate presentation

as it was claimed.
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Figure 4.19: NACA0012 Airfoil Geometry
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degree

4.5 Supersonic Wedge

Supersonic wedge problem is a numerical study of inviscid supersonic flow field on

wedge with 15 degrees half angle. Freestream flows through the domain with Mach

number of 2.5. Due to presence of wedge, flow is upturned 15 degrees resulting in a

oblique shock formation.

The numerical model of supersonic wedge problem is presented in Figure 4.23. The

leading edge of wedge is located at [0, 0]. Half wedge angle of 15 degrees is measured

from the x-axis. The wedge geometry is extended up to outlet boundary located at

x = 3.5 line. The inlet boundary is placed upstream of the wedge at coordinate of

[−1.5, 0]. Upper boundary of the domain is also modelled as Euler wall and placed far
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away enough to prevent shock reflection. The polynomial order of elements is set to

1 since slope limiter has to be employed due to presence of shock. Roe’s approximate

Riemann solver is used to calculate numerical flux.

Analytical solution of the problem is well known through theta-beta-Mach relations

[77]. Analytical solution provides the change of flow properties across the shock. For

inviscid flow, flow properties are uniform upstream and downstream of the shock.

Success of simulation is dependent on accurate resolution of shock which is severely

affected by grid resolution. Hence, four different grids are generated for supersonic

wedge problem. The grids are presented in Figure 4.24. The first and second grid are

generated with structured fashion and triangulated. First grid contains 32 elements

on all boundaries. Second grid is obtained by refining first grid to 64 elements on

boundaries. Third grid is generated by triangulation of domain while keeping 32

elements on boundaries similar to first grid. The significance of third grid is that a

refinement region around the shock is applied. The last grid utilizes the refinement

exactly at the theoretical shock position.

The simulations are conducted for each grid until convergence achieved. The resid-

ual histories are presented in Figure 4.25 for all grids. The significant difference in

convergence of grid with refinement at theoretical shock position is observed. Reach-

ing convergence takes almost three times longer than the other grids. The results of

the simulations are compared with analytical solution in Figure 4.26 which shows

pressure distribution along lower wall. Moreover, Mach number contours are also

presented in Figure 4.27. The coarse uniform grid poorly captures the shock and

pressure distribution along the wedge. The fine uniform grid resolves the shock quite

well. Pressure distribution of fine grid shows small deviation and oscillation just after

the leading edge. The pressure distribution of two grids with refinement are almost

identical to analytical solution. However, Mach number contours differs around the

shock. The grid with refinement at analytical shock position provides a very sharp

shock. On the other hand, shock resolution of grid with refinement around shock is

weaker than fine uniform grid. Combining all the results, it can be concluded that

numerical method is verified for supersonic flows and grid refinement around shock

waves significantly improves the results. Moreover, other than refinement, alignment
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of elements with respect to shock is also important parameter.
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Figure 4.23: Supersonic Wedge Problem Definition
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Figure 4.24: Grids for Supersonic Wedge Problem, (a) Uniform Grid 32x32, (b) Uni-

form Grid 64x64, (c) Ramp Grid Refinement 1, (d) Ramp Grid Refinement 2
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(a) Ramp Grid 32x32 (b) Ramp Grid 64x64

(c) Ramp Grid Refinement 1 (d) Ramp Grid Refinement 2

Figure 4.27: Entropy Error Contours, (a) Curved Cell with Polynomial Order of 2,

(b) Straight Sided Cell with Polynomial Order of 2, (c) Curved Cell with Polynomial

Order of 4, (d) Straight Sided Cell with Polynomial Order of 4
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CHAPTER 5

CONCLUSION

In this thesis, solutions of Euler equations are studied using Runge-Kutta discon-

tinuous Galerkin finite element method on triangular grids in an effort to explore a

technique which can provide high order accuracy. Test cases widely used in CFD

community are used for verification and validation purposes. Moreover, comparison

study with an open-source CFD software is also conducted.

The explicit time integration strategy in discontinuous Galerkin method suffers severely

from stability concerns. Hence, very strict limitations are applied to time step choice

that resulted in enormous number of iterations to reach convergence. Therefore, fo-

cusing on implicit time integration methods should be number one topic in table for

future studies.

The high order accuracy is easily achieved in smooth problems where any disconti-

nuity or shock is not present. The density error of isentropic vortex problem having

analytical solution and entropy error of bump in a channel problem were output of

interest while monitoring order of accuracy. Moreover, drag force prediction of air-

foil at low subsonic flow is also observed to be improved with increasing order of

solution. However, stabilization techniques are noted to employed due to fluctua-

tions at high gradient regions or around shocks leads to non-physical values or even

failure of simulation. Among the two techniques studied in present work, filtering

approach is found to be resulting in too much dissipation if the filter parameters are

not correctly set up. Hence filtering approach for stabilization of solution is highly

user dependent and increases the workload while finding optimum filter parameters.

On the other hand, slope limiting approach provides more accurate solutions that can

be confirmed with validation results. However, slope limiting procedure limits the or-
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der of accuracy to two which is a contradiction with purpose of high order methods.

Thus, stabilization techniques to be worked in future studies should not result in too

much dissipation while preserving high order of accuracy.

Another important point, also related with grid generation, is representation of wall

boundaries. The solutions of bump in a channel problem with curved and stan-

dard wall boundary approach clearly shows that curved wall boundary application

is mandatory in order to go beyond second order of accuracy. Therefore, high order

grid generation or smart algorithms to capture wall curvature should be included in

future researches.

The effect of grid refinement around shock showed significant improvement in solu-

tion results of supersonic wedge problem. Grid refinement algorithms that would also

require shock detection methodologies can be another topic for future studies.
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