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ABSTRACT

QUANTUM SAFE DIGITAL SIGNATURES FROM SYMMETRIC KEY
PRIMITIVES

Erbaş, Şeyma

M.S., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Murat Cenk

September 2019, 41 pages

When powerful quantum computers are built, they will break most of the public key
cryptography schemes due to Shor’s quantum algorithm. Therefore, public key cryp-
tography algorithm schemes that is secure against classical and quantum computers
are needed. In this thesis, we study Picnic algorithm, a post-quantum digital signature
scheme. Picnic digital signature algorithm has the security of symmetric-key prim-
itives that is considered to be secure against quantum attacks. In Picnic algorithm,
zero knowledge proof systems and circuits to compute their protocol are used.

Keywords: Post quantum cryptography, multiparty computation, zero-knowledge proof,
LowMC, Picnic.
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ÖZ

SİMETRİK ANAHTAR TEMELLİ KUANTUM GÜVENLİ SAYISAL İMZALAR

Erbaş, Şeyma

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Murat Cenk

Eylül 2019, 41 sayfa

Kuantum bilgisayarlarının icadıyla birlikte Shor’un kuantum algoritması sayesinde
günümüzde kullanılan açık anahtar şifreleme yöntemlerinin güvenli olmayacaktır.
Bu yüzden hem klasik hemde kuantum saldırılarına karşı güvenli olan açık anahtar
şifreleme yöntemleri gereklidir. Bu tezde, Picnic sayısal imza algoritmasını incele-
yeceğiz. Picnic algoritması güvenliğini kuantum saldırılarına karşı güvenli olduğu
düşünülen simetrik anahtar temellerinden(özet fonksiyonları ve blok şifreleme algo-
ritmaları) alır. Picnic algoritmasında sıfır bilgi ispat yöntemi kullanılmaktadır.

Anahtar Kelimeler: Kuantum-sonrası kriptografi, LowMC, Picnic.
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CHAPTER 1

INTRODUCTION

Cryptography has been important for secure communication since ancient times. As

we know it, it started with a basic encryption scheme Caesar Cipher [30]. Later on,

mechanical cryptosystems have been used for many years. Most famous mechanical

cryptosystem was Enigma [34] used in world war II. Today, communication, shop-

ping, banking etc. can be used securely with computers thanks to cryptography.

Cryptography uses two different methods to achieve security; symmetric key cryptog-

raphy and public key cryptography. Symmetric key cryptography has fast encryption

schemes, such as AES [18]. They use the same key when encrypting the plaintext

and decrypting the ciphertext. However, we need to share this key before encryption

with the parties that will communicate each other and symmetric key cryptography

is unable to perform the key exchange [31]. Therefore, we need public key cryp-

tography. Public key cryptography has relatively slow encryption schemes, such as

RSA [24]. They mostly based on factoring large numbers and computing discrete

logarithms [23]. Public key cryptography uses different keys when encrypting the

plaintext(secret key) and decrypting the ciphertext(public key). This method includes

key exchange and digital signature algorithms.

If we look at the future, when powerful quantum computers are built, they will break

our public key cryptography schemes due to Shor’s quantum algorithm [33]. This

algorithm can compute discrete logarithms and factor large numbers in polynomial

time. We will not be able to use most of the current public key encryption schemes

in quantum computers. Thus, algorithms that is secure against attacks by both quan-

tum and classical computers are needed before quantum computers are built. In order
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not to rush the process, National Institute of Standards and Technology(NIST) has

announced a post-quantum cryptography competition in 2017 [2]. The aim of the

competition is to built new standards about post quantum cryptography. Public key

cryptography algorithm proposals that is secure against classical and quantum com-

puters were accepted for the competition.

We can study digital signature algorithms with post quantum(PQ) security in five

categories.

• Hash-based digital signature schemes

• Code-based digital signature schemes

• Lattice-based digital signature schemes

• MQ-based digital signature schemes

• Supersingular Isogeny signature schemes

Among all the signature schemes, hash-based signatures are seem to be the preferred

signatures because they don’t require hard algebraic problems to have security against

quantum computers, as well as they have minimal security requirements [13].

In this thesis, we study Picnic algorithm, a new class of PQ digital signature scheme.

Picnic digital signature algorithm has the security of symmetric-key primitives(hash

functions and block ciphers) that is considered to be secure against quantum attacks.

Picnic has small key pairs, parameterizable structure and it does not require hard

algebraic problems.

In Picnic signature algorithm, public key(y) can be derived from secret key(x) over a

secure one way function(f ) as y = f(x). Signature is the secret key’s non-interactive

zero knowledge proof. For this purpose, zero knowledge proof systems (Σ protocols

by Giacomelli at al.) are used [22]. Zero knowledge proof systems uses circuits to

compute the protocol. This technique is based on the "Multiparty computation-in-

the-head" paradigm to zero-knowledge of Ishai et al [26].

To make the proof non-interactive, Fiat-Shamir(FS) transform and Unruh’s(UR) trans-

form can be used. FS transform provides security in random oracle model(ROM) [19]
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while UR transform provides security in quantum random oracle model(QROM) [15].

In this thesis, we will study following topics:

• In Chapter 2, we introduce some background information including zero knowl-

edge proof systems.

• In Chapter 3, we mention about cryptographic components that Picnic algo-

rithm uses including hash functions and block ciphers.

• In Chapter 4, we explain the Picnic digital signature scheme.

• In Chapter 5, we compare Picnic algorithm with other post quantum schemes.

• Chapter 6 is the conlusion chapter.

3
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CHAPTER 2

BACKGROUND INFORMATION

In this section, we mention background information that Picnic algorithm uses. In

Chapter 2.1, symmetric key primitives is described. In Chapter 2.2, multiparty com-

putation(MPC) protocol and ZKBoo, a zero knowledge proof system that uses MPC

protocol as a base is explained. In Chapter 2.3, ZKB++, an improved version of

ZKBoo, is described with optimizations over ZKBoo.

2.1 Symmetric Key Primitives

Symmetric key primitives use a secret information to keep the secure interaction be-

tween parties that is communicating each other. This secret information is called

key. All parties use the same shared key. For this reason, it is called symmetric key

primitives. If someone other than authorized parties learns the key, communication

security will fail immediately.

Symmetric key primitives is used to create secure encryption schemes, signature

schemes and protocols such as TLS and IPsec.

Asymmetric key primitives use a pair of keys. A private key is only belong to the one

party and public key is open to anyone who will communicate with this party. Asym-

metric key primitives can be used even if parties don’t have any shared information.

They are much slower than symmetric key primitives. They generally used for key

exchange. Thus, when building a secure communication, both symmetric and asym-

metric key primitives are used. Asymmetric key primitives are used to share the secret
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key for the symmetric key primitives to use and maintain secure communication.

Block ciphers are the most famous symmetric key primitives. Block ciphers are

mostly used to provide confidentiality of the communication. A block cipher maps a

block of an input to the block of an output with the help of the secret key. The design

of the block cipher affects both security and efficiency of the cryptographic system.

Block ciphers are believed to be secure against attacks by both classical and quantum

computers [29].

In Picnic digital signature algorithm, LowMC, a block cipher family described in

Chapter 3.1, is used as a symmetric key primitive. However, other block ciphers can

be used such as AES. AES is well-studied cipher compared to LowMC. However,

AES leads larger signatures and computation time [20].

Picnic also uses hash functions(SHA-3 family described in Chapter 3.2) as a symmet-

ric key primitive. Hash functions are also believed to be quantum secure.

2.2 ZKBOO Protocol

Zero knowledge proof system allow the signer to convince the verifier that the signer

knows the secret key for signature generation. That is, signer only needs to prove the

knowledge of having the secret key. ZKBoo [25], a zero knowledge proof system,

is based on multiparty computation protocol(MPC protocol). It has both interactive

and non-interactive versions. We will only recall the non-interactive one because

signature scheme requires non-interactive version. Interactive version is described

in [25]. Firstly, let’s recall the MPC protocol briefly.

MPC Protocol: In multiparty computation, input is the witness. Let say y = f(x)

where f is a secure hash function. MPC can calculate y(public) and x(secret) is the

witness in this equation. Each player have a share of x. Signer models MPC "in the

head" paradigm of Ishai et al [27]. He commits to the state and transcripts of the

players. Then, signer opens a random subset of these commitments. Now, verifier

checks whether the calculation is done correctly or not. If so, he has some confidence

that signer knows the witness. If they do this calculation many rounds, then verifier
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will have higher confidence that signer knows the witness.

ZKBoo takes this idea as a base but generalizes it by using "circuit decomposition"

instead of multiparty computation. Circuit decomposition is a more efficient protocol

in practice because it does not need to have all properties of multiparty computa-

tion [16]. In circuit decomposition, number of players are three which means that

witness will be divided into three.

The signer aims to prove that he knows the witness for f(x) = y. First, he starts with

a circuit to calculate f . Then he uses a circuit decomposition. To do this, he needs

five functions.

Share function divides the witness(x) into three shares.

Three Outputi∈{1,2,3} function randomize and finalize each view(w1, w2, w3).

Reconstruct function builds the last output(y) from three shares.

In circuit decomposition, the view is updated with the output wire value for each gate.

When the view is serialized, it includes

• The input share

• Output values for binary multiplication gates

• The output share

Circuit decomposition starts with signer calculates f using decomposition. He com-

mits to the views and calculates the challenge by using random oracle that needs a

commitment and output shares as an input. After that, he needs to open two views for

each run. Remember that opening two third of the views does not weaken the proof

since it does not give any information about the witness. Now, verifier can check the

following;

• Each opened views are correct.

• Challenge is correct.

• y can be computed by using output of the views.
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Figure 2.1: Representation of a circuit decomposition of the computation y = f(x)
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– (x1, x2, x3) ← Share(x, k1, k2, k3) such that x1 + x2 + x3 = x where

k1, k2, k3 are random tapes corresponding to each player respectively.

– yi ← Outputi(wi) where 1 ≤ i ≤ 3

– y ← Reconstruct(y1, y2, y3) = y1 + y2 + y3

Figure 2.1 visualizes how circuit decomposition works. In this decomposition, even

if two shares are exposed, witness x will remain secret.

Mathematical representation of the ZKBoo is the following:

Verifier and the signer have y. The signer knows x such that y = f(x). Signer does

the following:

• Sample random tapes k1, k2, k3

• Run the protocol to obtain views w1, w2, w3 and output shares y1, y2, y3

• Commit to ci = Com(ki, wi) for 1 ≤ i ≤ 3

• Using the FS heuristic, send a = (y1, y2, y3, c1, c2, c3) to the random oracle to

compute the challenge(e) – the challenge tells the signer which two of the three

views to open.

• Send ce, ce+1 to verifier. Thus revealing z = (ke, we, ke+1, we+1)

Verifier does the following:

• If Rec(y1, y2, y3) 6= y, reject

• If yi 6= Outputi(wi) for i ∈ {e, e+ 1}, reject

• If we[j] 6= f
(j)
e (we, we+1, ke, ke+1), reject

• Output accept

Detailed information and security analysis about MPC protocol and ZKBoo is pre-

sented in [25].
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2.3 ZKB++ Protocol

ZKB++ is an improved version of ZKBoo. Therefore, we will only mention about the

ZKB++ optimizations over the ZKBoo protocol.

Optimization 1: Share function generates the pseudorandom shares as

(x1, x2, x3)← Share(x, k1, k2, k3)

x1 = R1(0...|x− 1|)

x2 = R2(0...|x− 1|)

x3 = x− x1 − x2

where Ri∈{1,2} is the PRNG with the seed ki∈{1,2} and (0..|x − 1|) is the first |x| bit

string of Ri.

Optimization 2: When optimization 1 is applied, input shares computed pseudoran-

domly. Therefore we don’t need to add the shares in the view if the challenge is 1.

When challenge is 2 or 3, we need to add an input share for the third view.

Optimization 3: The commitments belong to the three views are sent to the verifier in

the ZKBoo. However, verifier can calculate first two commitments by using opened

views. Hence, it is enough to send only the third commitment.

Optimization 4: We don’t need to add any randomization value for commitments.

Since the first input is the seed value to calculate the commitments, commitments will

be randomized.

Optimization 5: We don’t need to send the output shares to the verifier since they

can be computed from the opened views by the verifier.

Optimization 6: In ZKBoo, verifier calculates every wire in viewe and verifies if it

is correct or not. However, verifier doesn’t have to check that each wire in viewe is

calculated correctly. It is enough for verifier to calculate view and verify the commit-

ments using calculated view.

Note that all the inputs to compute challenge is given to the verifier in the ZKBoo so
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the verifier can compute the challenge. In ZKB++, the challenge itself is given to the

verifier explicitly.

Detailed information and security analysis about ZKB++ is presented in [16].
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CHAPTER 3

CRYPTOGRAPHIC COMPONENTS

In this section, the cryptographic components that Picnic algorithm uses is described.

In Chapter 3.1, LowMC, a blockcipher family is explained. In Chapter 3.2, hash

functions and their usage in Picnic is described while in Chapter 3.3, other supporting

functions and their usage in Picnic is explained with their pseudocode.

3.1 LowMC Function

LowMC is a very parameterizable block cipher family by Albrecht et al [10, 8]. The

reason LowMC is the best candidate for Picnic algorithm is that it provides low AND

depth as well as low multiplicative complexity. Many different trade-offs between

size of the signature and consumed time can be obtained by using the different pa-

rameter sets of the LowMC algorithm. Hence, LowMC is very flexible as besides

modifying the security parameter of the construction as required.

LowMC is built on an substitution-permutation network(SPN) structure. Security

expectations and the number of S-boxes per round can be chosen to decrease the

AND depth and the number of ANDs.

Let n be the block size, k be the key size, m be the number of Sboxes, d be the data

complexity and r be the number of rounds to reach the security requirements.

In the beginning of the LowMC encryption scheme, some key whitening is applied

to the key. It is basically multiplying key with a key matrix chosen randomly. After

key whitening, r rounds of encryption is performed. A single round contains 4 main

13



layers.

LowMC Round =



































Sbox Layer

Linear Layer

Constant Addition

Key Addition

In the Sbox Layer, 3-bit Sbox is applied to the first 3m bits of the state. It is rec-

ommended to minimize m, number of parallel Sboxes, in order to decrease the multi-

plicative complexity. The definition of the Sbox algorithm is given in the Chapter 3.3.

In the Linear Layer, state is multiplied with an binary and invertible n×n linear layer

matrix. Linear layer matrices Li ← F n×n
2 where 1 ≤ i ≤ r are chosen randomly and

kept unchanged during the algorithm. The multiplication algorithm is given in the

Chapter 3.3.

In the Constant Addition Layer, the state is simply added with the length n binary

vector round constants. Round constants Ci ← F n
2 where 1 ≤ i ≤ r are chosen

randomly and kept unchanged during the algorithm. The addition algorithm is given

in the Chapter 3.3.

In the Key Addition Layer, state is added with the binary round key. Round key is

generated by multiplying the master key with a binary n×k key matrix. Key matrices

Ki ← F n×k
2 where 1 ≤ i ≤ r are chosen randomly and kept unchanged during the

algorithm. The multiplication and addition algorithms are given in the Chapter 3.3.

Decryption is the inverse of these steps.

LowMC encryption algorithm is provided in Algorithm 1 for the signature generation

and verification.

LowMC has simple circuit design. However other block cipher families can also

be used in Picnic signature schemes, such as AES. AES is also believed to be secure

against attacks by quantum computers and it is suited for MPC-in-the-head paradigm.

It is well-studied cipher compared to LowMC. However, since AES has more com-

plex circuits than LowMC, results show that signature sizes and computation time are

larger with AES compared to LowMC [20].
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Algorithm 1: LowMC Encryption (Ki ∈ F n×k
2 key matrices, Li ∈ F n×n

2

linear layer matrices and Ci ∈ F n
2 round constants for 1 ≤ i ≤ r)

input: Plaintext p ∈ F n
2 and key y ∈ F k

2

s← K0 · y + p

for i from 1 to r do
s← Sbox(s)

s← Li · s

s← s+ Ci +Ki · y

end

return s

3.2 Hash Function

Hash functions are used to map arbitrary-length messages to fix-length output strings.

This output which is called hash value or message digest works like fingerprints of the

message. Since the message digests are short representation of the messages, there

will be many different messages that have the same message digest. However, for the

hash function to be cryptographically secure, it must be infeaseable to find a collision

between message digests in practice. To ensure this property, hash function must be

collision resistant, as well as preimage resistant(one way) [1, 32].

Cryptographic hash functions are used in many digital signatures. We will mainly

focus on the Secure Hash Algorithm-3 (SHA-3) family that have been selected by

the NIST on NIST Hash Function Competition in August 2015 [3]. The SHA-

3 functions are based on the Keccak sponge function, by G. Bertoni, J. Daemen,

M. Peeters, G. Van Assche. SHA-3 family includes six functions, called SHA3-

224, SHA3-256, SHA3-384, SHA3-512, SHAKE128 and SHAKE256. SHA3-224,

SHA3-256, SHA3-384 and SHA3-512 functions are hash functions and the num-

bers after the dashes indicates the output length of the related function. SHAKE128

and SHAKE256 functions are extendable-output functions (XOF). The difference be-

tween hash functions and XOF is that we can extend the output length of the XOF

to any length. Thus, SHAKE128 and SHAKE256 functions are adaptable to the re-

quirements of different algorithms [32, 3].
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The hash functions mentioned in this thesis(H) are SHAKE128 or SHAKE256. There

are many hash computations when generating signatures. To differentiate the inputs,

a fixed byte is prepended to the input of the related hash function as

Hi(x) = H(0x0i||x)

where 0 ≤ i ≤ 5 [6].

3.3 Supporting Functions

MPC protocol and LowMC functions use supporting functions for signature genera-

tion and verification operations. In this section, these functions will be explained.

First function is XOR operation(⊕). This function takes shares a[0...(m−1)][0...(L−

1)], b[0...(m− 1)][0...(L− 1)] as an input and calculates c = a⊕ b.

⊕ function algorithm is provided in Algorithm 2 for the signature generation and

verification. Note that, ⊕ operation can be performed without any necessity for inter-

action of players.

Algorithm 2: Multiparty computation - XOR(⊕) operation

input: m bit vectors a[0...(m− 1)][0...(L− 1)] and

b[0...(m− 1)][0...(L− 1)] of length L

for i from 0 to m− 1 do
c[i] = a[i]⊕ b[i]

end

return c

where m = 3 for signature generation and m = 2 for verification.

When ⊕ will be used with a constant, only one share will be XORed with this con-

stant. During signature generation, the first secret share is XORed. During verifica-

tion, the first share is XORed when et = 0, the second share is XORed when et = 2

Second function is MPC AND operation(∧). This function takes shares a[0...2],

b[0...2] as an input and calculates c = a ∧ b. To add some randomness, ∧ function

uses random tapes which are the other inputs. transcript will also be updated by ∧
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function.

∧ function algorithm is provided in Algorithm 3 for the signature generation. Notice

that, three shares for each of a and b are taken as input.

Algorithm 3: Multiparty computation - (signature generation) AND(∧) op-

eration
input: Random tapes rand, triple views and secred-shared inputs

a[0...2], b[0...2]

r[0] = rand[0].nextbit()

r[1] = rand[1].nextbit()

r[2] = rand[2].nextbit()

for i from 0 to 2 do
c[i] =

(a[i]∧b[(i+1)%3])⊕(a[(i+1)%3]∧b[i])⊕(a[i]∧b[i])⊕r[i]⊕r[(i+1)%3]

views[i].transcript.append(c[i])

end

return c and views

where .nextbit reads the tape’s next bit.

∧ function algorithm is provided in Algorithm 4 for the verification. Notice that, two

shares for each of a and b are taken as input.

Algorithm 4: Multiparty computation - (verification) AND(∧) operation
input: Random tapes rand, pair of views and secred-shared inputs

a[0...1], b[0...1]

r[0] = rand[0].nextbit()

r[1] = rand[1].nextbit()

c[0] = (a[0] ∧ b[1])⊕ (a[1] ∧ b[0])⊕ (a[0] ∧ b[0])⊕ r[0]⊕ r[1]

views[0].transcript.append(c[0])

c[1] = views[1].transcript.nextbit()

return c and views

Third function is LowMC Sbox algorithm. This function takes state as an input

and calculates S(a, b, c) = (a⊕bc, a⊕b⊕ac, a⊕b⊕c⊕ab). To add some randomness,

LowMC Sbox algorithm uses random tapes which are the other inputs. MPC protocol
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transcript will also be updated by this function.

LowMC Sbox algorithm is provided in Algorithm 5 for the signature generation and

verification. Notice that, algorithm uses zero-based and bitwise indexing.

Algorithm 5: LowMC Sbox Algorithm
input: LowMC shares state, random tapes rand and triple views

for i from 0 to 3r − 1 do

for j from 0 to 2 do
a[j] = state[j][i+ 2]

b[j] = state[j][i+ 1]

c[j] = state[j][i]

end

ab = a ∧ b ∧ rand ∧ views

bc = b ∧ c ∧ rand ∧ views

ca = c ∧ a ∧ rand ∧ views

for j from 0 to 2 do
state[j][i+ 2] = a[j]⊕ bc[j]

state[j][i+ 1] = a[j]⊕ b[j]⊕ ca[j]

state[j][i] = a[j]⊕ b[j]⊕ c[j]⊕ ab[j]

end

end

return state

The next function is vector-matrix multiplication algorithm. This function takes

three vectors x, y, z in GF (2)n and a matrix M in GF (2)n×n as an input and calcu-

lates xM, yM, zM in signature generation.

Vector-matrix multiplication algorithm is provided in Algorithm 6 for the signature

generation. Note that, all the computations are calculated in GF (2) and M [i][j] shows

the bit in the (ith row - jth column) of the matrix M .

Vector-matrix multiplication algorithm takes two vectors x, y in GF (2)n and a matrix

M in GF (2)n×n as an input and calculates xM, yM in verification. This algorithm

is provided in Algorithm 7 for the verification. Note that, all the computations are

calculated in GF(2) and M [i][j] shows the bit in the (ith row - jth column) of the
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Algorithm 6: Binary Vector-Matrix Multiplication Algorithm - (signature

generation)
input: n-bit vectors x, y, z and n× n matrix M

for i from 0 to n− 1 do

for j from 0 to n− 1 do
A[j] = x[j] ∧M [i][j]

B[j] = y[j] ∧M [i][j]

C[j] = z[j] ∧M [i][j]

end

a[n− 1− i] = A[0]⊕ A[1]⊕ ...⊕ A[n− 1]

b[n− 1− i] = B[0]⊕B[1]⊕ ...⊕B[n− 1]

c[n− 1− i] = C[0]⊕ C[1]⊕ ...⊕ C[n− 1]

end

return a, b, c

matrix M .

Algorithm 7: Binary Vector-Matrix Multiplication Algorithm - (verifica-

tion)
input: n-bit vectors x, y and n× n matrix M

for i from 0 to n− 1 do

for j from 0 to n− 1 do
A[j] = x[j] ∧M [i][j]

B[j] = y[j] ∧M [i][j]

end

a[n− 1− i] = A[0]⊕ A[1]⊕ ...⊕ A[n− 1]

b[n− 1− i] = B[0]⊕B[1]⊕ ...⊕B[n− 1]

end

return a, b

Since LowMC requires many matrix-vector multiplications, an efficient matrix-vector

multiplication algorithm is needed to speed up the LowMC encryption scheme. In-

stead of this binary vector matrix multiplication algorithm, "Method of four Russians"

algorithm seem to be the best approach for the LowMC matrix-vector multiplication

operation [9, 12].
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The fifth function is the function to compute the challenge. The function H3 takes

a bit string of arbitrary length as an input and outputs a bit string of length T which

has the elements in 0, 1, 2: H3 : {0, 1}∗ → {0, 1, 2}t

The algorithm to compute the challenge is provided in Algorithm 8 for the signature

generation and verification [6]. Remember that, H1(x) = H(0x01||x) where || de-

notes the concatenation.

Algorithm 8: Algorithm to compute the challenge
input: bit string b of arbitrary length

h = (h0, h1, ..., hS) = H1(b) where h0, h1, ..., hS ∈ {0, 1}.

flag

Create pairs (h0, h1), (h2, h3), ...

if The pair (0, 0) then
append 0 to e,

end

if The pair (0, 1) then
append 1 to e,

end

if The pair (1, 0) then
append 2 to e,

end

if The pair (1, 1) then
do nothing.

end

if e has length T then
return e

end

if All pairs are used up and e has length that less than T then
h = H1(h)

Return to flag

end
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The last function is the function G. The function G takes a seed of length S where

S is the security strength and a view v of different lengths as an input. G is computed

with SHAKE function with the input

H5(seed)||v||lG

The output length is lG where lG = (length of the seed) + (length of the view) [6].
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CHAPTER 4

THE PICNIC SIGNATURE ALGORITHM

In this section, Picnic signature algorithm is explained. In Chapter 4.1, different pa-

rameters for different security levels are given. In Chapter 4.2, private and public key

generations are explained. In Chapter 4.3, signature generation algorithm is described

in detail while Chapter 4.4 studies signature verification algorithm.

4.1 Parameters

Table 4.1 shows the parameter sets for different security levels. L1, L3 and L5 are

three security levels as described in [4, 6]. For each security level, there are three

algorithms.

• One based on zero knowledge proof system and Fiat-Shamir(FS) transform

(picnic-L1-FS, picnic-L3-FS and picnic-L5-FS)

• One based on zero knowledge proof system and Unruh’s(UR) transform (picnic-

L1-UR, picnic-L3-UR and picnic-L5-UR)

• One based on the proof system described in [28] and Fiat-Shamir transform

(picnic2-L1-FS, picnic2-L3-FS and picnic2-L5-FS)

FS transform and UN transform is used to make the proof non-interactive. FS trans-

form provides security in random oracle model(ROM) [19] while UR transform pro-

vides security in quantum random oracle model(QROM) [15]. The differences be-

tween the FS and UR variants is described in detailed in [16]. Note that S-bit security
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Table 4.1: Parameters by security level

Parameter Set S n s r Hash lH T

picnic-L1-FS
picnic-L1-UR
picnic2-L1-FS

128 128 10 20 SHAKE128 256
219
219
343

picnic-L3-FS
picnic-L3-UR
picnic2-L3-FS

192 192 10 30 SHAKE256 384
329
329
570

picnic-L5-FS
picnic-L5-UR
picnic2-L5-FS

256 256 10 38 SHAKE256 512
438
438
803

level is for classical computers. For quantum computers, parameters provide S/2-bit

security.

Notation used in the table is the following;

• S-bit is the security strength

• n-bit is LowMC key and blocksize

• s is the number of s-boxes

• r is the number of rounds in LowMC algorithm

• lH-byte is the output length of hash function H

• T is the number of parallel repetitions of the zero knowledge proof

In this thesis, we will mention about algorithms used with picnic parameter set and

the leave the picnic2 parameter sets to [6].

4.2 Key Generation

A key pair consists of a secret key (sk) and a public key (pk). It is suggested that

different key pairs should be used for multiple signature algorithms.

n-bit secret key is chosen randomly.

sk ∈R {0, 1}
n
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To compute the public key, an n-bit string p is chosen randomly.

p ∈R {0, 1}
n

Then, the encryption of p with secret key is computed.

C = E(sk, p)

where E is the LowMC encryption algorithm.

sk is the picnic algorithm secret key and pk = (C, p) is the public key.

Note that view calculated in signature generation and verification has three com-

ponents which are view.iShare(input key share), view.transcript(transcript of all

communication) and view.oShare(output share).

4.3 Signature Generation

The signature generation takes (sk, pk) and byte array M as an input where M ∈

[1, 255] is the message desired to be signed. Note that when the Unruh transform is

applied, it is shown as UR in the context.

1. Let T be the number of iterations of the signature generation algorithm and

seed[0...(T − 1)][0..2] be the list of seeds. First, seed are set 3T random seeds.

Each seed is S bits, where S is the security level(One of 128, 192 or 256).

2. Next, 256-bit salt value are chosen randomly.

salt ∈R {0, 1}
256

3. For each iteration t where 0 ≤ t ≤ T − 1, following parameters are computed

respectively.

• Random tapes rand[0..2] are computed using the hash function H .

rand[j] = H(H2(seed[t][j]) || salt || t || j || output_length )

where || denotes the concatenation and 0 ≤ j ≤ 2.
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• Let x[0..2] be the n-bit shares of secret key. These three shares are com-

puted using random tapes.

x[0] = first n-bits of rand[0]

x[1] = first n-bits of rand[1]

x[2] = sk ⊕ x[0]⊕ x[1]

where ⊕ denotes the multiparty computation binary exclusive or (XOR)

operation.

• key parameter is computed using the first key matrix.

key = x ·Kmatrix[0]

• Let state[0..2] be the n-bit vectors. These three vectors are computed

using key parameter.

state = key ⊕ p

• For each LowMC round i where 1 ≤ i ≤ r, following parameters are

computed respectively.

– First, the key shares are computed using the key matrices.

key = x ·Kmatrix[i]

– Next, Sbox layer is computed using random tapes and views.

state = sbox(state, rand, views[t])

– Affine layer is computed using linear layer matrices.

state = state · Lmatrix[i− 1]

– Round constant addition is computed using round constants chosen

randomly before the signature generation.

state = state⊕ roundconstant[i− 1]

– Round key addition is computed using key shares.

state = state⊕ key
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• After computing all LowMC rounds, the output shares are updated using

state vectors.

views[t][i].oShare = state[i]

where 0 ≤ i ≤ 2.

• Commitments are computed using seed and view.

C[t][i] = H0(H4(seed[i]), view[i])

where 0 ≤ i ≤ 2. If UR is applied,

G[t][i] = G(H4(seed[i]), view[i])

where 0 ≤ i ≤ 2.

4. After computing all T iterations, the challenge e can be written as

e =H3(view[0][0].oShare, view[0][1].oShare, view[0][2].oShare,

...

view[t− 1][0].oShare, view[t− 1][1].oShare, view[t− 1][2].oShare,

C[0][0], C[0][1], C[0][2],

...

C[t− 1][0], C[t− 1][1], C[t− 1][2],

[G[0][0], G[0][1], G[0][2],

...

G[t− 1][0], G[t− 1][1], G[t− 1][2], ]

salt, pk,M)

Note that "G[i][j]" is the commitments that is added when UR is applied and

omitted otherwise. e must be of the form

e = (e0, ..., et−1)

where 0 ≤ ek ≤ 2 and 0 ≤ k ≤ t− 1.

5. i = et + 2(mod3) is calculated for each 0 ≤ t ≤ T − 1 and 0 ≤ et ≤ 2.

bt = C[t][i], [G[t][i]] is set.

Note that "G[i][j]" is added when UR is applied and omitted otherwise.
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• When et = 0, zt is set to

view[t][1].transcript, seed[t][0], seed[t][1]

• When et = 1, zt is set to

view[t][2].transcript, seed[t][1], seed[t][2], view[t][2].iShare

• When et = 2, zt is set to

view[t][0].transcript, seed[t][2], seed[t][0], view[t][2].iShare

6. The output is formed as (e, salt, b0, ..., bt, z0, ..., zt). To minimize the signature

space, this output must be serialized.

• Let’s say B is a byte array. First, B is set to first 2T bits of the challenge

e. A minimum number of zeros is appended to B such that the length of

B reaches the nearest byte.

• salt is appended to the next 32 bytes of B.

• When it comes to appending (bt, zt) where 0 ≤ t ≤ T − 1, first zeros are

padded to the bt and zt values that don’t use even number of bytes such

that the length of bt and zt reaches the nearest byte.

• bt is appended which is the commitment that uses lH bytes where lH is

the output length of hash function. The second commitment (G[t][i]) is

appended to B if UR is applied.

• zi is appended. This operation must be in the order mentioned step 5 (first

transcript, second the two seed values and third the input share if et 6= 0)

7. Finally, B is the picnic signature.

The multiplication, addition and Sbox algorithms are given in the Chapter 3.3.

4.4 Signature Verification

The signature verification takes pk, byte array signature B and byte array M as an

input where M ∈ [1, 255] is the message signed. Note that when the Unruh transform
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is applied, it is shown as UR in the context.

1. First, let’s start with the deserialization of B.

• To do this, the first (2T + 7)/8 bytes of B are read. Remember all the bit

pairs must be in {0, 1, 2} and all padding bits must be 0. These bytes are

set to e.

• Next, set salt by writing the next 32 bytes of B.

• The commitment which is the next lH bytes of B is set to bt where 0 ≤

t ≤ T − 1 and lH is the output length of hash function. The second

commitment (G[t][i]) is read from B if UR is applied. If et = 0, the

length of this commitment is 3rs+ n bits and 3rs bits otherwise.

• Transcript (3rs bits) is set to the first component of zt.

• The first seed value (S bits) is appended to zt.

• The second seed value (S bits) is appended to zt.

• The input share (S bits) is appended to zt when et 6= 0.

• Finally, deserialization is completed and we have

(e, salt, b0, ..., bt, z0, ..., zt). If any of the above steps fail, reject the signa-

ture and return "invalid".

2. For 0 ≤ t ≤ T − 1, compute the following operations.

• First of all, if et = 0, random tapes rand[0] and rand[1] is computed

using the seed[t][0] and seed[t][1] respectively. view[0].iShare and x[0]

is assigned to the first n bits of rand[0]. Similarly, view[1].iShare and

x[1] is assigned to the first n bits of rand[1].

• If et = 1, random tapes rand[0] and rand[1] is computed using the

seed[t][1] and seed[t][2] respectively. view[0].iShare and x[0] is assigned

to the first n bits of rand[0]. Similarly, view[1].iShare and x[1] is as-

signed to the input share in zt.

• If et = 2, random tapes rand[0] and rand[1] is computed using the

seed[t][2] and seed[t][0] respectively. view[0].iShare and x[0] is assigned

to the input share in zt. Similarly, view[1].iShare and x[1] is assigned to

the first n bits of rand[1].
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• key parameter is computed using key matrix.

key = x ·Kmatrix[0]

• Next, state is computed using the key.

state = key ⊕ p⊕ et

• For each LowMC round i where 1 ≤ i ≤ r, the following parameters are

computed respectively.

– First, the key shares are computed using key matrices.

key = x ·Kmatrix[i]

– Next, sbox layer is computed using rand and views.

state = sbox(state, rand, view[t])

– Affine layer is computed using linear layer matrices.

state = state · Lmatrix[i− 1]

– Round constant addition is computed using round constants chosen

randomly before the signature generation.

state = state⊕ roundconstant[i− 1]⊕ et

– Round key addition is computed using key shares.

state = state⊕ key

• After computing all LowMC rounds, the output shares are updated using

state vectors.

views[i].oShare = state[i]

where 0 ≤ i ≤ 1.

• Commitments are computed using hash functions.

C[t][et] =H0(H4(seed[0]), view[0])

C[t][(et + 1)mod3] =H0(H4(seed[1]), view[1])

C[t][(et + 2)mod3] =c
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where c is the commitment, the first element in bt. If UR is applied,

G[t][et] =G(H4(seed[0]), view[0])

G[t][(et + 1)mod3] =G(H4(seed[1]), view[1])

G[t][(et + 2)mod3] =c
′

where c
′

is the commitment, second element in bt.

• The output shares are computed using views.

outputs[t][et] =views[0].oShare

outputs[t][et + 1] =views[1].oShare

outputs[t][et + 2] =(views[0].oShare⊕ views[1].oShare⊕ C)mod3

Note that, C is provided in public key (C, p).

3. After computing all T iterations, the challenge e
′

can be written as

e
′=H3(outputs[0][0], outputs[0][1], outputs[0][2],

...

outputs[T − 1][0], outputs[T − 1][1]., outputs[T − 1][2].,

C[0][0], C[0][1], C[0][2],

...

C[T − 1][0], C[T − 1][1], C[T − 1][2],

[G[0][0], G[0][1], G[0][2],

...

G[T − 1][0], G[T − 1][1], G[T − 1][2], ]

salt, pk,M)

Note that "G[i][j]" is the commitments that is added when UR is applied and

omitted otherwise.

4. If e = e
′

, the signature is accepted. If e 6= e
′

, the signature is rejected.

The multiplication, addition and Sbox algorithms are given in the Chapter 3.3.
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CHAPTER 5

COMPARISON WITH RELATED WORK

In this section, we give a brief information on other post-quantum digital signature

candidates and compare these candidates with Picnic digital signature scheme.

In Table 5.1, public key, private key and signature sizes of the related algorithms are

given in bytes, as well as key generation, signature generation and verification time

are given in miliseconds. These algorithms are in different categories:

• Hash-based (SPHINCS-256 [14])

• Code-based (FS-Véron [35])

• Lattice-based (TESLA [11], Ring-TESLA [7], BLISS-I [21])

• MQ-based (MQ 5pass [17])

• Supersingular Isogeny (SIDHp751 [36])

As seen in the Table 5.1, Picnic has small public and private key sizes. However,

Picnic takes longer to sign a message and verify a signature. The complete efficiency

and security analysis of the Picnic algorithm is described in [5].

Hash-Based Digital Signature Schemes: The earliest post quantum digital signature

scheme is based on hash functions which is called "Lamport-Diffie One-Time Signa-

ture Scheme" proposed in 1979 [13]. A key pair consist of secret key and public key

can be used only once for a signature with this scheme. We can use Lamport-Diffie

one-time signature scheme with Merkle trees to obtain stateful signatures [13]. State

counts the one-time signature key pairs used so that these key pairs will not be used
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Table 5.1: Comparison with related work

Scheme Public key Private key SignSize KeyGen Sign Verify

Picnic-L1-FS 32 16 34032 0.05 38.31 25.18
Picnic-L1-UR 32 16 53961 0.04 47.93 32.36
Picnic2-L1-FS 32 16 13802 0.04 851.85 515.93

Picnic-L3-FS 48 24 76772 0.12 128.30 84.70
Picnic-L3-UR 48 24 121845 0.11 152.51 102.36
Picnic2-L3-FS 48 24 29750 0.10 2830.60 1538.25

Picnic-L5-FS 64 32 132856 0.21 308.96 204.53
Picnic-L5-UR 64 32 209506 0.21 342.98 230.12
Picnic2-L5-FS 64 32 54732 0.19 7080.01 3595.40

MQ 5pass 74 32 40952 0.96 7.21 5.17
SPHINCS-256 1056 1088 41000 0.82 13.44 0.58

BLISS-I 7168 2048 5732 44.16 0.12 0.02
Ring-TESLA 8192 12288 1568 16k 0.06 0.03
TESLA-768 4128k 3216k 2336 48k 0.65 0.36

FS-Véron 160 32 129024 n/a n/a n/a
SIDHp751 768 48 141312 16.41 7.3k 5.0k

again. If we keep the tree large and choose the key pair randomly, we can obtain

stateless signature schemes such as Sphics [14]. These signature schemes are desir-

able because their security depends on the collision resistance of the hash function,

not hard algorithmic problems. However, they have increased signature sizes. As an

example, Sphincs have about 41 kB signatures and 1 kB keys. [16]

Code-Based Digital Signature Schemes: The idea in code-based signature schemes

is to convert identification scheme to signature scheme by using Fiat-Shamir trans-

form. However, we can get about 129 kB signatures for 128 bit post quantum se-

curity. There are also other code-based signature schemes which is proven to be

insecure [35]. [16]

Lattice-Based Digital Signature Schemes: Some lattice-based signature schemes

depends on the worst or average case problems in standard lattices. We can count

them as secure, however their key sizes are quite large, around 10 mB. Tesla with

34



about 1 mB public key size is seem to be the best option with respect to key sizes.

There are other lattice-based signature schemes relies on the ring analogues of clas-

sical lattice problems. Their security reductions relies on the ideal lattice hardness

assumptions such as Bliss. Their key sizes are small. On the negative side of these

schemes, ideal lattices are not well-studied enough [11, 7, 21]. [16]

MQ-Based Digital Signature Schemes: Their securities rely on the problem of

quadratic equation in multivariate system whose security relies on 5-pass identifi-

cation scheme. They also use the Fiat-Shamir transform. However, their signature

sizes are about 40 kB. There are also other multivariate system based signatures that

have shorter signatures. However their security is not provable [17]. [16]

Supersingular Isogeny Signature Schemes: The idea is to apply the identification

scheme and the Unruh transform. However, signature size is about 140 kB for the

128-bit post quantum security. There are also other supersingular isogeny signatures

based on conceptually identical constructions which is isogeny based and endomor-

phism rings. Their signature sizes are relatively small [36]. [16]
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CHAPTER 6

CONCLUSION

In this thesis, quantum safe digital signatures from symmetric key primitives is stud-

ied, mainly Picnic digital signature algorithm. Picnic has the security of symmetric-

key primitives(hash functions and block ciphers) that is considered to be secure against

quantum attacks. Picnic has small key pairs, parameterizable structure and it does not

require hard algebraic problems.

In Picnic signature algorithm, public key(y) can be derived from secret key(x) over a

secure one way function(f ) as y = f(x). Signature is the secret key’s non-interactive

zero knowledge proof. For this purpose, zero knowledge proof systems are used.

Zero knowledge proof systems uses circuits to compute the protocol. This technique

is based on the "Multiparty computation-in-the-head" paradigm to zero-knowledge.

To make the proof non-interactive, Fiat-Shamir(FS) transform and Unruh’s(UR) trans-

form can be used. FS transform provides security in random oracle model(ROM)

while UR transform provides security in quantum random oracle model(QROM).
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