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ABSTRACT 

 

A NEW APPROACH TO 3-DIMENSIONAL OPTIMIZATION OF 

ULTIMATE PIT GEOMETRY FOR OPEN PIT MINES WITH VARIABLE 

OVERALL SLOPE ANGLES 

 

Altuntov, Firdevs Kübra 

Master of Science, Mining Engineering 

Supervisor: Assist. Prof. Dr. Mustafa Erkayaoğlu 

 

 

September 2019, 105 pages 

 

The mining activities have high economic risks and the determination of the optimum 

ultimate pit limit of an ore body greatly affects the economic feasibility of an open pit 

mine. Due to necessity of determining optimum pit limit, many researchers proposed 

different algorithms and heuristic methods which maximize economic value of a mine 

while satisfying operational constraints and extraction sequence constraints. In most 

of the proposed methods, overall slope angle variation in the pit is constant. However, 

in real situations, overall slope angle varies in different parts of the mine due to 

geotechnical reasons. Since overall slope angle is an important constraint in open pit 

optimization and it is a significant factor in terms of slope stability, overall slope angle 

variation should be taken into consideration in optimization algorithms. In previous 

studies, methods that include overall slope angle variation were generally formed 

according to precedency relationships among blocks, but these methods also have 

problems in creating variable overall slope angles. To overcome this problem, in this 

study, it is aimed to apply a new approach which includes overall slope angle variation 

in optimization of ultimate pit limits. For this purpose, mixed integer programming 

and cubic spline interpolation were utilized, and the application was performed by 
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coding in Python Programming Language. The proposed method was verified by 

applying it to the four case studies. 
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ÖZ 

 

DEĞİŞKEN GENEL ŞEV AÇILI AÇIK OCAKLAR İÇİN 3 BOYUTLU 

NİHAİ OCAK GEOMETRİSİNİN OPTİMİZASYONU İÇİN YENİ BİR 

YÖNTEM 

 

Altuntov, Firdevs Kübra 

Yüksek Lisans, Maden Mühendisliği 

Tez Danışmanı: Dr. Öğr. Üyesi Mustafa Erkayaoğlu 

 

Eylül 2019, 105 sayfa 

 

Madencilik yüksek ekonomik risk taşıyan bir sektördür ve cevher yataklarının en 

uygun nihai ocak sınırlarının belirlenmesi, açık ocak madenlerinin fizibilitesini önemli 

derecede etkiler. En uygun nihai ocak sınırın belirlenmesinin gerekliliğinden dolayı, 

birçok araştırmacı operasyonel ve cevher bloklarını çıkarma sırası gibi kısıtlamaları 

ihlal etmeden ekonomik değeri maksimum seviyeye çıkaran farklı algoritmaları ve 

sezgisel yöntemleri ileri sürmüşlerdir. Öne sürülen yöntemlerin çoğunda, açık 

ocaktaki genel şev açısı değişimi sabittir; ama gerçek durumlarda maden ocağının 

farklı bölümlerinde şev açısı jeoteknik nedenlerden dolayı değişkendir. Genel şev 

açısı optimizasyonda önemli bir kısıtlama olduğundan ve şev duraylılığı için önemli 

olduğundan, genel şev açısı değişimi optimizasyon algoritmalarında dikkate 

alınmalıdır. Önceki araştırmalarda, genel şev açısı değişimini içeren yöntemler 

genellikle blokların çıkarılma önceliği dikkate alınarak oluşturulmuştur; ama bu 

yöntemler de değişken genel şev açılarını dahil etme bakımından yetersizdir. Bu 

probleme bir çözüm olarak, bu araştırmada genel şev açısı değişimini içeren yeni bir 

yöntemin uygulanması amaçlanmıştır. Bu tekniği uygulamak için, karma tamsayılı 

programlama ve kübik spline interpolasyonu kullanılmıştır. Bu teknik için Python 



 

 

 

viii 

 

programlama dili kullanılarak kod yazılmıştır. Önerilen yöntem dört açık ocak 

üzerinde uygulanarak  doğrulanmıştır.   

 

Anahtar Kelimeler: Optimum Nihai Ocak Sınırı, Açık Ocak Madenciliği, Genel Ocak 

Eğim Açısı, Spline İnterpolasyonu   
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CHAPTER 1  

 

1. INTRODUCTION 

 

1.1. Problem Statement 

It becomes crucial to find the optimum pit limits that will provide the most profitable 

outcome as the deposits are becoming rare. The selection of the method that will be 

used for the optimization is important to obtain maximum economic value. However, 

importance must be also given to geotechnical aspects to ensure that safety 

requirements are met. Thus, overall slope angles must be incorporated in the 

optimization process. In this study, previous studies are examined to see how overall 

slope angles are included in the design. In the conventional methods, there are 

problems in acquiring different overall slope angles. In addition, overall slope angles 

are included in the design after the completion of optimization procedure. It is better 

to incorporate the slope angles in the optimization process for optimum results. Thus, 

a new approach must be proposed to include geotechnical constraints in the 

optimization.   

1.2. Aim and Scope of the Study 

The aim of this thesis is to apply a new technique in which optimum ultimate pit limit 

is determined by ensuring preset overall slope angles are obtained. To achieve this 

objective, the mathematical model is formed, and the model is coded in the Python 

Programming Language. In addition, graphical user interface is coded so that 

economic block value parameters, bench slope angle, bench height, overall slope 

angles can be entered. The optimization method that is utilized is mixed integer 

programming and the technique that is used for generating various overall slope angles 

is cubic spline interpolation. The result generated by the code gives total economic 

block value, depth of the pit, maximum radius of the pit and the stripping ratio. 
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In this study, undiscounted value of money is used in the calculation of economic 

block value. It would be more realistic if time value of money was considered. 

However, to apply a new approach for various overall slope angles, first step of open 

pit optimization that is determining ultimate pit limit is chosen to be studied because 

of its simplicity compared to other stages such as push back design and production 

planning.  

1.3. Thesis Outline 

In Chapter 1, purpose and scope of the thesis are explained. In Chapter 2, literature 

review on ultimate pit limit and long-term production planning is provided. In Chapter 

3, basic terms used in surface mining are defined. In addition, block modeling, 

economic block value calculation, and geotechnical design are briefly explained. 

Detailed explanation about spline interpolation are provided to explain how open pit 

shape is created with given overall slope angles. In Chapter 4, the proposed algorithm 

is explained. Main steps of the algorithm are given as a pseudo-code. Objective 

function of mixed integer programming, incorporation of slope angles in the objective 

function, and validation of the algorithm are presented. Chapter 5, the graphical user 

interface that is created are demonstrated and how to use the interface is explained. In 

Chapter 6, 4 case studies are presented. In Chapter 7, conclusions and 

recommendations are provided. 
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CHAPTER 2  

 

2. LITERATURE REVIEW 

 

In open pit mining, optimization for production planning consist of mainly three stages 

which are determining ultimate pit limit, generating nested pits and pushbacks, and 

block sequencing. Production planning can be considered in three stages if the time 

span is considered. For long-term planning, the extraction sequence is mostly 

determined in years. For the medium-term planning, the time span is one year, and the 

sequences are grouped in monthly or quarterly periods. The short-term planning has a 

monthly time span and the sequence of operations for each week, day or shift is 

determined (Auger, 2000). In this chapter, researches on optimization techniques for 

final pit limit and long-term production planning are presented.  

2.1. Ultimate Pit Limit 

Ultimate pit limit represents the geometrical outline of the mine at the end of its 

economic life. Generally, optimum ultimate pit limit is found without considering time 

value of money, but in some techniques, ultimate pit limit and long-term production 

plan are simultaneously determined considering time value of money. If optimum 

ultimate pit limit is found before long-term production is planned, determining final 

pit outline makes it easier to organize short, medium, and long-term exploitation 

sequences by decreasing the complexity of the problem (Nogholi, 2015). Several 

researchers attempted to develop algorithms or heuristics methods to solve ultimate 

pit limit problem. Some of the proposed methods are dynamic programming, methods 

in graph theory, moving cone method, genetic algorithm, and stochastic approaches. 

Dynamic programming is an approach of solving complex problems by turning the 

problem into assembly of simpler problems. In 1965, the dynamic programming to 

solve final pit limit problem was firstly presented by Lerchs and Grossmann (Nogholi, 
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2015). Although the algorithm guarantees an optimal solution, this algorithm was 

developed for two dimensional problems. Johnson and Sharp (1971) improved this 

method so that the algorithm can be applied to 3D open pit geometry. However, these 

developed algorithms could not prevent suboptimum results (Erarslan, 1996). In 1982, 

Koenigsberg adapted the 2D algorithm to 3D open pits. The major drawback of the 

algorithm was stated to be the possibility of creating inconsistency between blocks. 

Thus, slope requirement may not be achieved (Asa, 2002). In addition, according to 

Shenggui and Starfield (1985), degeneration can happen in the Koenigsberg 

algorithm, which may lead to not achieving optimal result because it is over-

constrained. Furthermore, the model developed by Koenigsberg (1982) is not suitable 

for large-sized block models (Nogholi, 2015).  

In order to further improve dynamic programming, Wilke and Wright (1984) 

introduced a new procedure combining dynamic programming and minimum removal 

of cones. It was a successful application, but it presents a trade-off situation such that 

if 2D dynamic programming with cones is used, the algorithm becomes over-

constrained; if 2D dynamic programming without cones is used, smoothing is required 

(Milani, 2016). To sort out smoothing problem, a method was presented by Z. 

Shenggui, and A.M. Starfield (1985). However, it is a heuristic method, i.e. it does not 

guarantee optimal solution (Milani, 2016). In 1987, Koenigsberg made changes in the 

algorithm to reduce time of solution, but these modifications do not render the solution 

optimal (Auger,2000).  

The first algorithm in 3D for ultimate pit limit problem was developed by Lerchs and 

Grossmann in 1965. Lerchs and Grossmann's algorithm yields an optimum solution. 

However, the algorithm required an unpractical solution time and computer memory 

in the past. Thus, previous researches mainly focused on reducing solution time by 

limiting number of blocks included in the computation. Rychkun and Chen (1979), 

Barnes and Johnson (1982) proposed bounding methods to decrease number of blocks 

to increase solution speed (Huttagosol, 1988). In 1988, Huttagosol modified Lerchs 

and Grossmann algorithm by changing tree configuration so that requirement for 
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computer memory and solution time can be reduced. Lipkewich and Borgman (1969), 

Chen (1977), Stuart (1992), Zhao and Kim (1992) attempted to overcome certain 

limitations, such as incorporating slope angle and haulage roads, and reducing time of 

solution.  

Dowd and Onur (1993), Zhao and Kim (1992) deployed cone templates for variable 

slope angles where only a single slope angle was defined (Khalokakaie, 1999).  

 

Lipkewich and Borgman (1969) used knight move pattern. In 1999, Khalokakaie 

published a study in which variable slopes were incorporated in the algorithm of 

Lerchs and Grossmann. To develop a technique for variable overall slope angles, the 

method proposed by Dowd and Onur (1993) was adapted to the method introduced by 

Khalokakaie. In this research, the orebody is divided into four principle directions in 

which different slope angle requirements are present and changes in overall slope 

angle with respect to depth is taken into account by using equation of an ellipse 

geometry.  

 

Floating cone method is a heuristic method that is easy to apply and requires low 

amount of computing time compared to other methods. Despite of its advantages, this 

technique does not necessarily produce optimum results. Thus, various researchers 

introduced variations of this method to tackle with suboptimal results. The first 

floating cone method was proposed by Pana et al (1965). In this floating cone 

technique, procedure starts from the first level. Positive blocks are searched on every 

level. If there is a positive block on a level, a cone is formed. If the value of that cone 

is positive, then the cone is extracted. To improve this technique, in 1999, Wright 

modified this method and proposed a method called floating cone 2. In this technique, 

cone values of positive blocks are found and cone values are cumulatively added to 

the value of the cone with maximum value. The cone with the highest cumulative 

value is extracted. The procedure is repeated on each level.   
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Elahizeyni et al. (2011) introduced floating cone 3 method and claimed that their 

proposed method gives better results compared to other floating cone methods and the 

result obtained from Lerch and Grossmann algorithm is similar to the result obtained 

from floating cone 3 method.     

In 1968, Johnson demonstrated the relationship between ultimate pit limit problem 

and the maximum flow. In this study,  outlines created by Lerchs and Grossmann are 

used on a bipartite graph. The bipartite graph is formed in a such a way that an arc is 

created if there is a direct path between a positive and negative weighted node.  

According to Hochbaum and Chen (2000), Johnson (1968) depicted the problem of 

ultimate contours as a transport problem and he stated that this problem could be 

solved as a maximum flow problem. In 1976, Picard mathematically demonstrated 

that the method presented by Lerchs and Grossmann was equivalent to finding a 

maximum flow on a graph adapted to the problem of ultimate limit. The network 

constructed by Picard is adapted from Lerchs and Grossmann's graph and is obtained 

by adding a source and sink node.  Tachefine et al. (1993), and Hochbaum and Chen 

(2000) conducted efficiency tests to determine whether the maximum flow algorithm 

is the most effective way for resolving this type of problem. According to the results 

provided by Hochbaum and Chen, push-relabel algorithm was the most promising 

algorithm. Tachefine claimed that Highest Label Preflow Algorithm is the most 

efficient algorithm for solving the maximum flow problem on the graphs representing 

mineral deposits. Giannini (1990) demonstrated that Lerchs and Grossmann's 

algorithm is equivalent to Dual Simplex Linear Programming and stated that using 

network flow method is more practical than using these algorithms. Underwood and 

Tolwinski (1998) employed mathematical programming and graph theory together 

applying dual simplex method. Hochbaum and Chen (2000) proposed maximum flow 

push-relabel algorithm. In 2010, Hochbaum proposed a method called pseudoflow 

algorithm in order to solve maximum flow problem. Abbaspour (2011) claimed that 

Lerchs and Grossmann's algorithm is equivalent to pseudoflow algorithm proposed by 

Hochbaum, and found that it is faster than Lerchs and Grossmann's algorithm. 
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Some heuristic methods were introduced by many researchers to deal with the 

drawbacks of conventional methods to determine ultimate pit limit. Some of these 

methods are genetic algorithm and artificial neural network. 

Genetic algorithm is an optimization technique inspired by genetics and natural 

selection. In genetic algorithm, individuals of a population evolve to a state in which 

the fitness of the individuals are maximum (Haupt & Haupt, 2004). Concepts of 

crossover of genes, mutation, and survival of the fittest are implemented in this 

algorithm. Basically, in genetic algorithm, random solutions (individuals) are 

generated in order to maximize the objective function (fitness of the individual), and 

among these solutions, a pair of solution is selected based on their fitness value. Then, 

chromosomes of the selected pair are combined by crossover. In addition, offspring of 

the pair is mutated depending on the predetermined probability. This process is 

repeated until the preset number of generations is reached. According to Haupt and 

Haupt (2004), some of the advantages of genetic algorithm are that:  

• it can handle large number of variables.  

• it can generate a list of feasible solutions, not just one solution  

• it can provide solution of complex surfaces because it can jump out of local 

minimum or maximum.   

• parallel computing can be performed.  

To determine optimum pit limit and to cope with drawbacks of other open pit 

optimization techniques, in 2016, Milani proposed a non-standard genetic algorithm 

with zooming strategy for 2D and 3D pit layouts. Zooming is forming elite group of 

individuals which have high fitness in a population. According Milani (2016), the 

proposed genetic algorithm requires less computational effort compared with other 

conventional methods of open pit optimization and reruns should be performed in 

order to prevent suboptimal solutions. Although this genetic algorithm provides many 

advantages, desired overall slope angle may not be acquired but various slope angles 

can be formed only between the blocks.   
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Not including stochastic properties of ore grade and commodity prices in pit limit 

optimization can also lead to a suboptimal result. To handle this problem, Achireko 

(1998) proposed an algorithm in which artificial neural network is used. In the 

proposed algorithm, to model ore grade and reserve, modified conditional simulation 

is used and multilayer feedforward neural networks are used to classify blocks 

according to conditioned values. In addition, to model commodity prices, multiple 

regression model and multilayer feedforward neural network are used. In the 

algorithm, variable slope angles are incorporated. To verify their algorithm, they 

compared their algorithm with the results of Lerchs-Grossman’s algorithm and the 

results are similar if there are no blocks having zero value. They claim that their 

algorithm generates results faster than Lerchs-Grossman’s algorithm. However, 

according to Sayadi et al. (2011), the algorithm requires modifications because of 

mainly 3 reasons. Firstly, smoothing is required. To deal with smoothing problem, the 

algorithm needs to be modified to obtain 3D pit layouts. Secondly, in large scale 

orebodies, the neural network error can have considerable effect on results. Finally, 

slope constraints in the algorithm can cause undesired block selections. To sort out 

these problems, Sayadi et al. (2011) proposed a new 3D pit optimization algorithm in 

which artificial neural network is used to find the ultimate pit limit. The algorithm 

consists of 3 stages. In the first stage, economic block model is created. In the second 

stage, artificial neural network is used to classify blocks into positive and negative 

regions. Neural network input is x, y, z coordinates of blocks and economic block 

values. The neural network output is block value. Block value is assigned as 1 if 

economic value is higher than 0; otherwise it is assigned as -1. In the third stage, the 

blocks in the positive region are checked, and slope constraint and grade constraint 

are taken into account. The results obtained from the algorithm is compared with that 

from the modified Lerchs-Grossman’s algorithm. The results are similar to each other, 

but the algorithm produces higher profit if ore impurity constraint is included in the 

algorithm. 
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2.2. Long-term Production Planning 

Production planning for operations in an open pit mine is defined as planning the 

sequence of exploitation from the initial state of the deposit to its final state or the final 

contours of the pit. Many researchers proposed algorithms or heuristics method for 

long-term production planning. Some of the developed techniques are linear 

programming, mixed integer programming, integer programming, dynamic 

programming, parameterization, positional weight technique, aggregation, genetic 

algorithm, and simulated annealing. 

In 1969, linear programming was firstly used by Johnson for production planning. The 

proposed mathematical model includes time value of money, processing constraints, 

dynamic cutoff grade. This mathematical model represents a large multi-period 

problem. In this model, the main problem is turned into smaller problems. Every 

subproblem is solved as a single period problem and optimum limits are found. To 

find the ultimate pit limit, maximum network flow can be used. After solving all the 

subproblems, solving the main problem becomes relatively easy (Özkan, 2015). This 

method can give solutions for each subproblem, but it has drawbacks in solving long-

term production planning problem. It produces fractional solutions between 0 and 1. 

In addition, it creates solutions in which underlying blocks are extracted before 

overlying blocks are extracted. This leads to some parts of a block appear as an air 

block (Osanloo et al., 2008).  

To overcome the disadvantages in modeling the problem by using linear 

programming, Gershon (1983) proposed a mixed integer programming. By this using 

method, the problem that underlying blocks are extracted before overlying block is 

sorted out. However, problem size of mixed integer programming is too large to be 

solved by commercial software programs (Özkan, 2015). To solve this kind of 

problems, the problem is converted into subproblems. For example, finding ultimate 

pit limit before designing production sequence decreases number of blocks that are 

dealt with. This consequently decreases time of computation (Caccetta and Hill, 
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2003). This approach has two advantages compared to linear programming. Firstly, it 

provides more applicable extraction sequence. Second advantage is that before 

extracting one underlying block, overlying blocks must be removed. Disadvantage of 

this method is that commercial software programs cannot be used for large-sized 

problems because the model has a lot of binary variables (Özkan, 2015). In addition, 

dynamic cutoff grade is not included in the calculation due to large model size 

(Osanloo et al., 2008). Integer programming is also used for production planning, but 

large model size creates problem in finding a solution (Khan and Niemann-Delius, 

2014). 

Liu & Kozan (2016) stated that exact mixed integer programming optimizers and 

relaxation methods of mixed integer programming presents difficulties when it comes 

to solving large scale problems. In metaheuristics, unexpected randomness which is 

the characteristic attribute of metaheuristics and not using important features 

associated with production scheduling may also create problems. Because of these 

reasons, Liu & Kozan (2016) introduced two new graph-based algorithms. These 

algorithms consist of network flow graph and scheduling theory. One of the algorithms 

produces more optimal solution but it requires higher computation time. According to 

Liu & Kozan (2016), the proposed algorithms are better at performance compared to 

other methods of production scheduling because mixed integer programming 

optimizer and random neighborhood search is not required in the algorithm. 

Since long-term planning can be divided into smaller problems, dynamic 

programming can be used. Thus, many researches proposed dynamic programming 

for production planning. In production planning, dynamic programming was firstly 

used by Roman (1974). Finding ultimate pit limit and extraction sequence are 

simultaneously determined in this method. In this algorithm, the last block extracted 

must be determined at the beginning of the calculation. The overlying blocks above 

the chosen blocks are checked considering slope angles. Optimum extraction sequence 

is determined based on net present value. The sequence which gives the maximum net 

present value is selected and it is combined with the pit shape formed at the beginning. 
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Blocks contributing negative net present value are excluded from the ultimate limit 

and they are not included in the production planning. In this procedure, every block is 

checked. Advantage of this method is that ultimate pit limit is found by including time 

value of money and block extraction sequence. Disadvantage of this method is that it 

is hard to apply the method to large scale models due to complexity of the method. In 

addition, constraints for excavation capacity and processing are not guaranteed to be 

satisfied (Özkan, 2015). 

Dowd and Onur (1992), Dowd and Onur (1993) also proposed a dynamic 

programming method and they stated that computer capacities are insufficient in 

solving large-sized problems since this method produces many alternatives. However, 

they stated that due to different constraints in production planning, extremely high 

number of alternatives decreases. In the beginning of the algorithm, stages are formed 

by dividing the production operations into periods. In this algorithm, sequences in the 

given stages are found. 

Erarslan and Celebi (2001) developed a simulation and optimization model which 

determines ultimate pit limit as a function of production planning. In this method, 

economic value of the blocks is calculated based on the size of the pit. Variables such 

as excavator movements, slope stability, processing capacity and time value of money 

are included in the method. In this technique, optimum pit limit is the pit shape which 

gives the maximum net present value. The algorithm firstly determines the ultimate 

pit limit. This limit is accepted as the largest limit possible. After that, unit cost is 

calculated. After the starting point of the excavation is determined, block extraction 

sequence is simulated in the 3D coordinate system. Operational constraints such as 

excavation activities, blending, stocking and processing are simulated. It is determined 

whether surrounding blocks will be excavated or not. The blocks that can be extracted 

are also checked in terms of slope angle. Blocks that pass the test are connected to the 

branches. Due to the property inherent in dynamic programming, similar branches will 

be formed for each block. The biggest problem face with when using dynamic 

programming is that number of branches reaches to 10100 in a short time. Thus, 
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forming branches should be restricted (Osanloo et al. 2008). Advantage of the method 

is that ultimate pit limit and production sequence are determined simultaneously. This 

approach is different compared to other production planning methods because unit 

cost is estimated in each iteration, and it includes the constraints for transportation, 

stocking, blending, and processing (Osanloo et al. 2008).  

Parameterization is the mostly used method in long-term production planning. After 

the parameterization method introduced by Lerchs and Grossmann (1965), Matheron 

(1975) developed parametrical analysis in extraction sequence. The parameters in the 

optimization problem such as cost price and recovery are generally assumed to be 

constant. However, these parameters change with time. In parameterization, variables 

are not kept constant, they are systematically changed. By changing one (or two) 

parameter, a pit shape is generated. In this method, nested pits are formed. Nested pits 

are used for determining production sequence and ultimate pit limit. The purpose in 

parameterization is that variables that change with time are included in the production 

planning. The changes in pit size can be considered as sensitivity analysis (Özkan, 

2015). Francois-Bongarcon and Marechal (1976), Francois-Bongarcon and Guibal 

(1984), Caccetta and Giannini (1988), Caccetta et al. (1998), Coléou (1988), Dagdelen 

and Johnson (1986), Whittle (1993) and Whittle (1998) conducted researches to apply 

and develop this method. 

In addition to economic parameters, nested pits can be obtained by changing the grade 

of the blocks. Whittle (1993) uses economic block values to optimize production 

planning when creating nested pits. By increasing the price using a factor, nested pits 

are obtained. This factor is called as revenue adjustment factor. In general, increase in 

the size of the pits do not differ substantially. However, due to sudden changes in 

grade or irregularity in orebody results in huge differences between the nested pits, 

which is called as gap problem. In the end of the parameterization, different production 

rates are tested in determined limits. Advantages of this method are that it is easy to 

determine nested pits, only parameters are changed to find the limits, and sensitivity 

analysis can be made by changing price. Disadvantage of this method is that variables 
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such as time and production amount are indirectly included in the optimization model 

(Caccetta and Hill, 2003). It creates gap problem and it does not guarantee optimum 

solution. In addition, costs are assumed as constant. Moreover, operational constraints 

such as maximum depth and minimum width cannot be included in the model so 

extraction sequence is not compatible with operational requirements. 

Some researchers applied reserve parameterization to production planning problem. 

The purpose in reserve parameterization is to determine the nested pits which give 

maximum metal content (Francois-Bongarcon and Guibal, 1982). This method of 

reserve parameterization is a complex problem to be solved (Özkan, 2015).   

Lagrange relaxation is also used in production planning. Lagrange concept in 

mathematics is used, but it is mainly based on parameterization. In this method, 

complex problem with multiple periods is divided into single-period problems by 

using Lagrange multipliers. These single-periods can be solved with the algorithms 

used for determining ultimate pit limit. In Lagrange relaxation method, some 

constraints of the problem are multiplied with Lagrange multipliers and they are 

subtracted from the objective function (Held et al. (1974), Sandi (1979)). Then, 

Lagrange multipliers are arranged with sub-gradient method until optimum sequence 

is obtained. In every step, a problem similar to ultimate pit limit problem is solved. If 

there is no multiplier which leads to a solution for the constraints formed, this method 

does not give optimum solution. The disadvantage of this problem is that it does not 

include dynamic cutoff grade in the calculation. Akaike and Dagdelen (1999) 

proposed 4-Dimensional Lagrange relaxation approach and they included dynamic 

cutoff grade in this method. 

Gershon (1987) developed a heuristic method for production planning since 

mathematical methods are complex and not practical, and conventional methods do 

not give optimum solutions. In this method, cones similar to the ones used in moving 

cone method are utilized. Difference from the moving cone method is that the cones 

are reversed. For each block inside the ultimate pit limit, an inverse cone is formed. 
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Value of the formed cones are assigned to the block. This value is called the positional 

weight. The block which has the highest positional weight is extracted first. Then, the 

positional weight of the blocks is calculated again. Gershon (1987) stated that if two 

blocks have similar positional weight, but they are on the different level, selection can 

be incorrect. Because of that, Gershon (1987) suggested that reduction factor should 

be used to avoid erroneous selection. In this way, blocks that are close to the surface 

will have higher positional weight.  

Wang and Sevim (1992) attempted to improve positional weight method proposed by 

Gershon (1987) by determining ultimate pit limit and extraction sequence 

simultaneously and getting rid of gap problem in the parameterization methods. This 

method gives results close to the optimum solution. According to Wang and Sevim 

(1992), solution time of this method is lower than that of parameterization method. 

Although this technique has an advantage of finding ultimate pit limit and extraction 

sequence simultaneously, it is not guaranteed that the result is the optimum solution. 

Disadvantages of the moving cone method are also present in this method (Özkan, 

2015). It is difficult to include other constraints since pit shapes are formed inversely 

(Thomas, 1996). Sevim and Lei (1994) used dynamic programming to obtain optimum 

sequence of nested pits obtained from the method proposed by Wang and Sevim 

(1992).    

Aggregation is an approach in which the purpose is to decrease the size of the problem 

by converting the big data into small-sized clusters. This method is named as 

fundamental tree algorithm by Ramazan et al. (2005). In this method, linear 

programming is used, and blocks are gathered so that number of binary variables are 

decreased without deviating from the optimal solution. The blocks that are aggregated 

have a value greater than zero. They do not violate slope angle constraint, and they 

must not be divided into smaller group of blocks.        

Kumral and Dowd (2004) used simulated annealing for production planning. In the 

proposed method, blocks having grade below cutoff grade are removed. Using one of 
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the optimization methods, a feasible (or an initial) solution is found for production 

planning in a short time. Then, using simulated annealing, sub-optimum solution is 

converted to nearly optimum or optimum solution.   

Since genetic algorithm has some advantages to utilize, this metaheuristic method has 

been used in production scheduling by some researchers. Denby and Schofield (1994) 

used genetic algorithm to simultaneously determine production planning and ultimate 

pit limit. According to Osanloo et al. (2008), if variables in genetic algorithm are well 

defined, the method gives good results in a practical time period. Advantage of this 

method is that it simultaneously determines final limit and production planning. 

Disadvantage of this technique is that it can give different results for the same problem 

because it has stochastic features. 

According to Albor Consuegra and Dimitrakopoulos (2010), pushbacks planned by 

using conventional methods bring on unmet production goals and predictions of net 

present value because uncertainty in variables are not incorporated in the optimization 

procedure. In their research, they used a stochastic integer programming to include 

uncertainty in pushback design. They state that the proposed technique results in 

approximately 30% increase in the net present value when the results are compared to 

the conventional methods. This increase is the result of different scheduling, rate of 

mining waste and extended pit contour.  
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CHAPTER 3  

 

3. METHODOLOGY 

 

3.1. Basic Terminology for Surface Mining 

The fundamental component of surface mining is the bench geometry. Basic terms 

used for the bench geometry are demonstrated in Figure 3.1. The range of bench face 

angle can be from 55˚ to 80˚ depending on rock properties. The proper choice of the 

bench face angle is essential because it can influence the overall slope angle (Hustrulid 

et al., 2016). The nomenclature can be defined as the following: 

• Crest is the point where a bench face and top layer of the bench are intersected. 

• Toe is the lowest point of the bench face. 

• Overall slope angle is the angle between horizontal line and the line formed 

from the crest of the top bench to the toe of the bottom bench.  

• Bench angle is the angle between the horizontal line and the line connecting 

the toe of the bench and the crest of the bench. 

 

 

 

Figure 3.1. Bench geometry 
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where h is bench height, w is bench width, β is overall slope angle, and θ is 

bench face angle. 

 

3.2. Block Modeling and Economic Block Value 

Block modeling displays an orebody as a group of blocks to estimate grade and 

tonnage of the orebody.  The size of the blocks is often chosen depending on bench 

height. Location of the blocks might be preferred based on the contact between 

orebody and overburden or between high grade and low-grade zones (Hustrulid et al., 

2016). In block modeling, grade of the blocks is determined in the area where drill 

hole data is not available. After grade assignment, economic block values are 

calculated. 

 

3.2.1. Grade Assignment to Blocks 

There are certain techniques to estimate grades of blocks. The basic concept of these 

techniques is that grades of surrounding blocks in a certain area of a geometry have 

an effect on the grade of the block. The main difference in the grade estimation 

procedures is the means of choosing weighting coefficients which determine how 

much the grades of adjacent blocks affect the grade of the block under examination. 

 

In this chapter, three approaches of grade estimation are explained:  

• rule-of-nearest points,  

• distance weighting technique,  

• kriging. 

 

In rule-of-nearest points approach, periphery of the area around the block center is 

formed in equal distances from closest points of known grade and the grade of the 

nearest block is assigned to the block. Only the grade of the closest point is considered 

in rule-of-nearest points method whereas the distance weighting technique includes 
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the influence of each surrounding grade point. Distance weighting approach can be 

applied with Equation 3.1. This technique is defined as the inverse distance weighting 

method. 

 

  g =  
∑

 gi
 di

n
i=1

∑  
1

 di

n
i=1

                                                 (3.1) 

 

The influence of grade decreases as the distance between the sample points increases. 

To include this property, the effect of distance can be intensified by increasing the 

power of di in Equation 3.1. If the power of di is 2, the equation turns out to be Equation 

3.2. The general form is given by Equation 3.3. Equation 3.2 is the mostly used 

equation referred to as the inverse distance squared method. Equation 3.2 can be 

rewritten in a different version (Equation 3.4). The same formula as Equation 3.4 is 

used in the kriging method. The only difference is the way of finding the coefficients 

of the grades. Equation 3.4 is called linear estimator equation (Hustrulid et al., 2016).   
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g =  a1g1 + a2g2 +∙ ∙ ∙ +angn                                           (3.4) 

 

where g is the unknown grade, gi's are the known grades and ai's are weighting 

functions. 
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To apply kriging, and other distance weighting methods, it is necessary to determine 

the range of influence of a sample. Range of influence is the distance at which grade 

of sample points starts to be independent of each other. It is determined by a function 

showing the variance of grade with respect to distance between samples. The distances 

between sample pairs are called lag distances.  

 

Basic steps to find range of influence are as follows: 

• Pairs of grade points are placed in the same group if the lag distances are the 

same.              

• The variance is calculated for each group using Equation 3.6. It is referred to 

as the semi-variance.  

• Graph of variance versus lag distance is plotted. This plotted data is often 

represented by spherical (or Matheron) model to estimate the semi-variogram 

(Figure 3.2). 

 

In the spherical model, grade variance attains a constant value as lag distance 

approaches to infinity. This constant value is called the sill. The spherical model is 

given by Equation 3.7. This model is also applied in different directions in order to 

check anisotropy in the orebody (Hustrulid et al., 2016). 

 

When lag distance is zero, variance is expected to be zero. However, this is generally 

not the case because of inaccurate measurements or type of mineralization. Thus, in 

the plot, the part between the sill and the nugget effect is the correct depiction of the 

variance (Figure 3.2). 

 

𝑠2(ℎ) =
1

𝑛(ℎ)
 ∑ ( 𝑔𝑖 − 𝑔𝑗)

2𝑛
0                                              (3.5) 

𝛾(ℎ) =
1

2 𝑛(ℎ)
 ∑ ( 𝑔𝑖 − 𝑔𝑗)

2𝑛
0                                              (3.6) 

γ(h) = {
c1 (

3 h

2 a
−

h3

2a3
) + c0       when h ≤ a

c1 + c0                            when h > 𝑎
                                   (3.7) 
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Where c1+c0 is the sill, h is the lag distance, a is the range of influence, c0 is the nugget 

effect. 

 

In kriging, the semi-variogram is utilized to compute grade variance for several 

combinations of weighting coefficients. The best approximation of grade is obtained 

when minimum variance is achieved. The advantage of this approach is that both 

variance and grade is determined.  

 

 

Figure 3.2. A spherical model of semi-variogram (Hustrulid et al., 2013) 

 

3.2.2. Economic Block Value 

To explain how economic value of a block is calculated, the following definitions are 

simply given: 

• Revenue is the income obtained by selling the product. 

• Mining cost is the cost resulted from extracting the product. 

• Selling cost is the expense created to sell the product. 
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• Processing cost is the cost required to process the ore. 

• Recovery is the percentage representing amount of ore recovered in mining or 

processing stage. 

The equations to compute the value of a block are given as follows (Wiley, 2002): 

  

R = (P − S) g t                                                             (3.8) 

EBV = {
R − MC t − PC t    for ore blocks

−MC t                         for waste blocks
                                     (3.9) 

 

where R is revenue, P is price, S is selling cost, g is grade, t is tonnage of the block, 

EBV is economic block value, MC is mining cost, and PC is processing cost. 

 

3.3. Geotechnical Slope Design 

The main components considered in slope design for stability are overall slope angle 

which may change around the pit, slopes between the ramps, and the face angle and 

width of benches. Basic aspect of slope design methods is the shear force occurring 

between sliding faces. If shear force is greater than resisting force created by the shear 

strength of the rock, the slope is considered to be unstable. Some of the slope design 

methods are limit equilibrium approach, numerical analysis, and probabilistic 

approach (Wyllie & Mah, 2004). 

3.3.1. Limit Equilibrium Method  

Limit equilibrium method is a conventional approach in stability assessment. In this 

method, factor of safety that is equal to total forces resisting instability divided by the 

total forces causing instability on the sliding plane is computed. If these forces are 

equivalent to each other, limiting equilibrium occurs and factor of safety is calculated 

as 1. Thus, this approach in stability assessment is called limit equilibrium method. 

Calculation of factor of safety differs depending on the type of failure such as plane, 

wedge, circular, and toppling failures. Value of factor of safety is mostly within the 

range of 1.2-1.4 (Wyllie & Mah, 2004). 
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3.3.2. Numerical Analysis  

Unlike in limit equilibrium method, factor of safety is determined by considering 

displacements rather than forces acting on sliding planes in numerical analysis. 

Mechanical effects of in-situ stresses, water levels, boundary conditions, and 

alterations due to excavation are determined in numerical analysis. Equilibrium or 

failure is the outcome of the numerical analysis. In this method, rock mass is divided 

into zones to which material model and properties are attributed. If the zones are 

disconnected, the model is called as discontinuum model; otherwise, it is called as 

continuum model.  

In this analysis, factor of safety is calculated as the ratio of the shear strength to the 

minimum shear strength hindering collapse. Minimum shear strength is determined 

by reducing the shear strength until failure, which is called strength reduction (Wyllie 

& Mah, 2004). 

3.3.3. Probabilistic Approach 

In deterministic approach, uncertainties in some values such as rock or joint 

properties, density, groundwater condition, and orientation of discontinuities are not 

taken into consideration. These uncertainties have an important effect on slope 

stability. Thus, probabilistic approaches are developed to evaluate these effects. The 

probability distribution of uncertain variables is used to determine probability of 

failure. Then, a method of probabilistic analyses such as Monte Carlo simulation, first-

order second-moment method is applied (Khalokakaie, 1999). 

3.4. Incorporation of Slope Design in Open Pit Optimization 

Incorporation of slope design into optimization process is carried out based on 

precedence relationship between the blocks. Methods determining precedence 

relationship between blocks can be classified as follows (Khalokakaie, 1999): 

• Non-cone-based method 

• Cone-based methods 
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In non-cone-based methods, a fixed block pattern is used. Some of the fixed block 

patterns can be seen in Figure 3.3. 1-5 (or 1-9) pattern indicates that five (or nine) 

overlying blocks must be removed to extract one underlying block.  

 

 

Figure 3.3. Precedence in extraction of blocks a) 1-5 Pattern b) 1-9 Pattern 

 

According to Khalokakaie (1999), applying 1-5 block pattern produces 45° of overall 

slope angle and in some cross-sections, it produces 55° of overall slope angle. 1- 9 

block pattern yields overall slope angle ranging from 35° to 45°. The main 

disadvantages of this method are that desired overall slope angle cannot be formed, 

and overall slope angle depends on block dimensions. Thus, utilizing cone-based 

methods is a suitable choice to obtain variable overall slope angles. 

In cone-based methods, a cone is constructed in such a way that the apex of the cone 

is located on the base block and the blocks that are inside the cone are extracted. Using 

cone template, different overall slope angles can be included in the optimization 

process and slope angles can be independent of block dimensions. Generally, 

a cone smoothly tapers from a flat circular base to the apex. A cone with circular base 

can be used only for fixed overall slope angles with respect to azimuth. In order to 

implement different overall slope angles for different azimuths, cone base can be 

created by spline interpolation.  
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3.4.1. Spline Interpolation 

Spline is a collection of kth degree polynomials which are linked at given data points. 

Tangent vectors of the polynomials should be equal to each other at the given data 

points so that segments can be smoothly connected. In addition, derivatives of the 

polynomials must be equivalent to each other at the data points until their (k-1)th 

derivative (Salomon, 2006).  

According to Sattarvand & Shisvan (2012), spline interpolation is a more accurate 

method than linear interpolation for constructing cone templates (Figure 3.4). In 

addition, cubic spline interpolation creates more reasonable and smoother shapes 

compared to quadratic spline and cardinal spline interpolation (Figure 3.5). Thus, in 

the proposed method, cubic spline interpolation is chosen to be used. 

 

 

Figure 3.4. Shapes of cones formed by (a) linear and (b) spline interpolation (Sattarvand & Shisvan, 

2012) 
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Figure 3.5. Shapes constructed with a) quadratic spline b) cardinal spline c) cubic spline (Sattarvand 

& Shisvan, 2012) 

 

For cubic spline interpolation, the curve segments are represented by polynomial 

functions with parameter t (Equation 3.10). The first derivative of the function P(t) is 

denoted by Pt (t) (Equation 3.11). The coefficients (a, b, c, and d) of the function are 

determined by using four equations. They are obtained from the equalities that are 

P(0) = Pk, P(1)= Pk+1, Pt (0)= Pk
t  and Pt (1)= Pk+1

t . From those equalities, polynomial 

function with t is formed (Equation 3.12). It can be expressed in matrix form in 

Equation 3.13. In addition, the second derivatives of polynomial functions (Equation 

3.12) should be the same at the given data point, i.e., Pk
tt (1) =  Pk+1

tt (0). Applying that 

requirement, Equation 3.14 is derived, and its matrix form is given in Equation 3.15 

(Salomon, 2006).  

Equations 3.13 and 3.15 are used for the open pit optimization. These equations do 

not create closed curve. For example, for k number of points, the equations generate 

k-1 number of curve segments. This problem can be solved by adding the first and 

second points again in the matrices (Sattarvand & Shisvan, 2012). The other solution 

can be redoing the calculation after changing the order of the points for one curve 

segment. The second approach is used in the proposed method.  
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Figure 3.6. A segment of curve from point Pk to Pk+1 

 

      P(t) =  a t3 +  b t2 + c t + d                                              (3.10) 

Pt(t) =  3 a t2 +  2 b t +  c                                               (3.11) 

P(t) = Pk + Pk
t ∙ t + (3 (Pk+1 − Pk) − 2Pk

t − Pk+1
t ) ∙ t2 + (2(Pk − Pk+1) + Pk

t + Pk+1
t ) ∙ t3        (3.12) 

P (t) = (t3,  t2, t , 1) (

  2
−3
  0
  1

−2
   3
  0
  0

    

   1
−2
   1
   0

  1
−1
  0
  0

) 

(

 

Pk

Pk+1

Pk
t

Pk+1
t )

                      (3.13) 

Pk
t + 4Pk+1

t + Pk+2
t = 3 (Pk+2 − Pk)                                       (3.14) 

[
 
 
 
 
 
1    4    1    ⋯     0    ⋯     0
0    1    4    1    ⋯     ⋯     0
                   ⋱     ⋱               ⋮
0   ⋯    ⋯    ⋯     1    4    1 
1   ⋯    ⋯    ⋯     0    1    4
4     1     0     ⋯     0    0    1 ]

 
 
 
 
 

(𝑛×𝑛) [
 
 
 
 
 
 

𝑃1
𝑡

𝑃2
𝑡

𝑃3
𝑡

⋮
𝑃𝑛−1

𝑡

𝑃𝑛
𝑡 ]

 
 
 
 
 
 

 =  

[
 
 
 
 

3 (𝑃3 − 𝑃1)
3 (𝑃4 − 𝑃2)

⋮
3 (𝑃𝑛+1 − 𝑃𝑛−1)
3 (𝑃𝑛+2 − 𝑃𝑛) ]

 
 
 
 

            (3.15) 

3.4.2. Application of Cubic Spline Interpolation for Variable Overall Slope 

Angles 

Cubic spline interpolation enables any number of different overall slope angles to be 

attained at any azimuth. The steps of cubic spline interpolation for variable overall 

slope angles are as following (Sattarvand & Shisvan, 2012): 
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• Slope and azimuth angles are converted into points of x and y coordinates by 

using Equations 3.16-3.19. The equations are obtained by geometrical 

relationships demonstrated in Figure 3.7. 

• Polynomial functions of variable t are created for both x and y coordinates with 

points obtained in the previous step. By substituting x and y coordinates into 

the right-hand side of Equation 3.15, Pk
t values are found for x and y 

separately. Then, Pk
t values are substituted into Equation 3.12. For k points 

given, (k-1) number of polynomial functions for x and (k-1) number of 

polynomial functions for y are obtained. 

• Values in the range of 0 and 1 are given to parameter t for all polynomial 

functions in order to determine a set of points on the curve segment, 

• Cubic spline interpolation is performed for each level. In this way, cone 

template is constructed. 

 

 

Figure 3.7. Cone template's a) isometric, b) top, and c) side view 

 

r =  
h

tan β
                                                            (3.16)     

x2 = r2 − y2                                                        (3.17) 

y = x cot α                                                          (3.18) 
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        x = ±
h

tan β √1+cot2α
                                                   (3.19) 

where h is depth, α is azimuth, β is overall slope angle, and r is radius of the cone. 

To explain cubic spline interpolation further, an example that consists of 4 different 

overall slope angles is presented. The overall slope angles and azimuths are given in 

the Table 3.1. For h=10 m, the corresponding x and y coordinates of the points are 

determined by using Equations 3.16-3.19. The points are provided in the Table 3.2. 

Then, they are inserted in Equation 3.20 to obtain the 𝑃𝑘
𝑡 values. The 𝑃𝑘

𝑡 values and 

the points in the Table 3.2 are substituted in Equations 3.23-3.25, which results in six 

polynomial functions for x and y coordinates. Giving values from 0 to 1 to parameter 

t in the polynomial functions, the curve is formed. The curve can be seen in Figure 

3.8.  If interpolation is executed for five levels, i.e., from 10 m to 50 m of height, the 

cone shape in Figure 3.9 is obtained. 

 

Table 3.1. Different overall slope angles for different azimuths 

Angle Point 1 Point 2 Point 3 Point 4 

Azimuth 45o 120 o 210 o 330 o 

Overall 

Slope Angle 
30 o 35 o 45 o 36 o 

 

Table 3.2. Corresponding x and y coordinates of the points given in the Table 3.1 

Coordinates Point 1 Point 2 Point 3 Point 4 

x 12.25 12.37 -5 -6.88 

y 12.25 -7.14 -8.66 11.92 
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[
 
 
 
 
𝑃1

𝑡 

𝑃2
𝑡

𝑃3
𝑡

𝑃4
𝑡 ]
 
 
 
 

= [

1   4   1   0
0   1   4   1
1   0   1   4
4   1   0   1

]

−1

[

 3(𝑃3 − 𝑃1)
3(𝑃4 − 𝑃2)
3(𝑃1 − 𝑃3)
3(𝑃2 − 𝑃4)

]                                (3.20) 

[
 
 
 
 
𝑃1

𝑡 (𝑥)

𝑃2
𝑡(𝑥)

𝑃3
𝑡(𝑥)

𝑃4
𝑡(𝑥)]

 
 
 
 

= [

14.4
−12.9
−14.4
12.9

]                                            (3.21)                     

    

[
 
 
 
 
𝑃1

𝑡 (𝑦)

𝑃2
𝑡(𝑦)

𝑃3
𝑡(𝑦)

𝑃4
𝑡(𝑦)]

 
 
 
 

= [

−14.3
−12.9
14.3
12.9

]                                            (3.22) 

P1(x or y) = P1 + P1
t. t + (3(P2 − P1) − 2P1

t − P2
t). t2 + (2(P1 − P2) + P1

t + P2
t). t3    (3.23) 

P2( x or y) = P2 + P2
t. t + (3(P3 − P2) − 2P2

t − P3
t). t2 + (2(P2 − P3) + P2

t + P3
t). t3   (3.24) 

P3(x or y) = P3 + P3
t. t + (3(P4 − P3) − 2P3

t − P4
t). t2 + (2(P3 − P4) + P3

t + P4
t). t3      (3.25) 

 

 

Figure 3.8. Points created by spline interpolation in plan view 
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Figure 3.9. Five levels of points created by spline interpolation in plan view 
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CHAPTER 4  

 

4. ALGORITHM DEVELOPMENT 

 

The algorithm was created so that maximum profit can be found while attaining 

required overall slope angle. The solution obtained from the algorithm gives depth of 

pit, maximum radius of the pit, bench width, and total economic value of blocks. 

In the algorithm, firstly, maximum number of benches is determined. Then, for a 

certain number of benches, the mathematical model is generated, and integer values 

are assigned to variable nb (number of benches) and for each value, optimization is 

carried out. Then, nb which gives the maximum result is selected. A simple version of 

the algorithm is provided as a pseudo-code in Figure 4.1. The pseudocode of the spline 

interpolation in the algorithm are given in Appendix A. 

For each nb, a cone template is formed by using spline interpolation if multiple overall 

slope angles are required to be included in the problem. If the angle is constant, a 

circular cone base is used. In the optimization process, cone size changes depending 

on economic block values. If the block is inside the cone, then it is considered as 

selected or extracted.  

The algorithm was written in Python Programming Language which is an object-

oriented, general-purpose programming language. It provides many modules and 

packages. The following modules, packages, and libraries were used in the code: 

• PuLP 

• NumPy 

• Math 

• Pandas 

• Matplotlib 
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• Tkinter 

PuLP is a module written in Python Programming Language for optimization 

purposes. It creates the model of a problem and calls solvers (“PuLP 1.6.10”, n. d.). 

With PuLP module, mathematical model is formed, and optimization is performed. In 

this code, the mixed integer programming solver was used.  

NumPy is a package used for scientific calculations in Python. It includes functions 

such as n-dimensional array and linear algebra functions (“NumPy”, n. d.). In the code, 

the functions for matrix calculations were used.  

Math module contains basic mathematical functions (“Math-Mathematical functions”, 

n. d.). In the code, trigonometric, power, square root functions were utilized. 

Pandas is a library written for data analysis. It offers tools for reading and writing CSV 

and text files, Microsoft Excel, SQL databases, and the HDF5 format (“Python Data 

Analysis Library”, n. d.). It was used for reading and writing Microsoft Excel files of 

the block data in the code. 

Matplotlib is a 2D plotting library in Python Programming Language (“Matplotlib”, 

n. d.). It was used for generating 2D figures in the code. Mplot3d which is one of the 

toolkits in Matplotlib library was used for obtaining 3D figures in the code.  

Tkinter is a tool for creating graphical user interface. Tkinter includes widgets such as 

entry boxes, buttons, message boxes, check buttons for entering input data and 

displaying output data (“Graphical User Interfaces with Tk”, n. d.). 
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Figure 4.1. Pseudo-code for the main steps of the algorithm 

 

4.1. Incorporation of Overall Slope Angles in the Model 

The incorporation of required overall slope angles is based on constant or various 

values of bench width that are used in the model. Bench width is kept constant if 

overall slope angle is kept constant throughout the orebody. However, bench width is 

changed if different overall slope angles are required to be incorporated in the design. 

After determining different angles that are generated by spline interpolation, bench 

width is calculated by utilizing Equation 4.1. Then, positions of the blocks are 

converted into radii and values of bench width are inserted in Equation 4.2. Radius of 

the pit on the level where the block is located and radius of the block are calculated 
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by Equation 4.2 and Equation 4.3, respectively. Then, R and r are used to express the 

following condition:  

Condition:  If R is greater than or equal to r, the block is included in the pit, i.e. the 

block is extracted (Figure 4.2 and 4.3). 

 

The center of the blocks is considered when checking whether this condition is 

satisfied or not. 

 

                       w =
nb h (tan θ−tanβ)

(nb−1)tanθ tanβ
                                                    (4.1) 

                              R = L −
z

tan(θ)
− w (bl − 1)                               (4.2)  

                          r = √x2 + y2                                                              (4.3) 

where 

w         bench width 

nb        number of benches 

 θ         bench slope angle                                                              

β          overall slope angle     

R         the distance between the boundary of the pit and the center of pit 

r          the distance between the block and the center of the pit 

L          maximum radius of the ultimate pit          

bl         bench level on which the block is located                                             

z          depth of the block                                                            

x         perpendicular distance from the center of the block to the y-axis 
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y         perpendicular distance from the center of the block to the x-axis 

 

 

Figure 4.2. Radius of a block and other parameters in cross-sectional view  

 

 

 

Figure 4.3. Radius of a block in plan view 
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Figure 4.4. Different overall slope angles in different azimuth directions 

 

 

Figure 4.5. Plan view of the pit shape in Figure 4.4 
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Figure 4.6. Different overall slope angles in different depth ranges 

 

 

Figure 4.7. Plan view of the pit shape given in Figure 4.6 
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4.2. Mixed Integer Programming 

Mixed integer programming is applied in the algorithm since there are binary and 

continuous decision variables in the problem. The objective function consists of 

economic block values and binary values of the blocks (Equation 4.4). Constraints 

provide results in accordance with overall slope angles and ensure restriction on 

maximum and minimum magnitude of pit radius (Equation 4.5-4.9). Optimal solution 

gives values of binary blocks and maximum radius of the pit. 

In the defined set of constraints given in Equation 4.7 and 4.8, any constant number 

large enough to produce an optimum result can be used for M. These equations are 

created to implement the following condition in the model: 

Condition 1:  If block bi is included in the pit, Ri – ri must be greater than or equal to 

0 and bi is 1. 

Condition 2:  If block bi is not included in the pit, Ri – ri must be less than 0 and bi is 

0.  

 

                        Maximize     ∑ EBVi  bii∈I                                                                       (4.4) 

                        Subject to   

                                          L ≤ max(r) +
nb h

tan (β)
                                                             (4.5) 

                                         L ≥
nb h

tan (β)
                                                                 (4.6) 

Ri − ri ≥ −M (1 − bi)                                                      (4.7) 

                                          Ri − ri < M bi                                                                    (4.8) 

                                        bi  ∈ {0, 1},   ∀ i ∈ I;                                                             (4.9) 

where 
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EBVi      economic block value                                                

xn           total number of blocks in x-direction 

yn           total number of blocks in y-direction 

dx           block dimension in x-direction 

dy           block dimension in y-direction 

i              block 

I              set of all blocks                                                                                                                                                        

bi            binary decision variable that is equal to 1 if the block i is mined                                          

M           a large constant  

max(r)    maximum of radii of blocks 

The main objective function used for constant overall slope angle is given in Equations 

4.4-4.9. Ri equation depends on the location of the block and variation of overall slope 

angle. If the overall slope angle changes as the azimuth varies, L constraint and Ri 

equation turn into Equations 4.10 and 4.11. If overall slope angle changes in the 

different ranges of depth, L constraint turns into Equation 4.12 and in this case, if the 

depth range in the upper levels is equal to or less than bench height, Ri is calculated 

as in Equation 4.13. If there are different magnitudes of bench width in the depth 

ranges in one of the levels, they are also subtracted from Equation 4.2. For example, 

the equation used for the pit shape given in Figure 4.6, 4.8, and 4.9 are formed as 

Equation 4.13, 4.14, and 4.15.  If the overall slope angle changes with respect to both 

azimuth and depth, to calculate Ri, equations of Ri in the cases where overall slope 

changes with respect to depth and azimuth are combined. The constraint for L is 

expressed as in Equation 4.10. Li is added to Equation 4.14.  

0 ≤ L ≤ max (r)                                                    (4.10) 

Ri = L + Li −
z

tan(θ)
− w (bl − 1)                                     (4.11) 
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where Li is equal to (nb×h)/tan(βi) and βi is ith overall slope angle 

Lt ≤ L ≤ max (r)+Lt                                                       (4.12)        

Ri = L −
z

tanθ
− 1 × w1 − 0 × w2 − L1                                         (4.13)   

Ri = L −
z

tanθ1
− 1 × w1 − 1 × w2 − L1                                         (4.14)                   

Ri = L −
z−L1×tanβ1

tanθ2
− 1 × w1 − 0 × w2 − L1                                (4.15)                                 

where w1 and w2 are the bench widths in the depth range 1, and the depth range 2, 

respectively 

w1 =
n1 h  (tanθ−tanβ1)

(n1−1)tanθ tanβ1
                                               (4.16) 

w2 =
n2 h (tanθ−tanβ2)

(n2−1)tanθ tanβ2
                                               (4.17) 

where n1 and n2 are number of benches in a depth range 

 

Figure 4.8. A section of a pit 
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Figure 4.9. A section of a pit with different slope angle 

 

4.3. Verification of the Algorithm 

        In this part, hypothetical block models are used to verify the mathematical model 

and the algorithm. For this purpose, one example with small number of blocks, and 

four examples with larger number of blocks are given, and overall slope angles are 

checked whether required angles are obtained or not. 

The example in Figure 4.10 is given for demonstrating the case of constant overall 

slope angle. In this example, number of blocks is 4913, block dimensions are equal, 

and the overall slope angle is aimed to be 45˚. A cross-sectional view is taken from 

the result produced by the algorithm (Figure 4.10). In cross section AA, overall slope 

angle is measured as 45˚ (Figure 4.11).  

In some cases, required angle may not be acquired but an approximate value is 

obtained because a block is extracted if its center is in the cone template even if the 

whole block is not inside the cone template. Selected and unselected blocks in this 

manner and cone template are illustrated in Figure 4.12 and 4.13.  
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Figure 4.10. Extracted blocks with 45˚ overall slope 

 

 

          

Figure 4.11. Section view of the block model 
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Figure 4.12. Cross-section “A-A” 

 

 

Figure 4.13. Selected blocks 

 

To validate the algorithm, four examples with larger number of blocks are also given. 

Bench height and bench face angle are given in Table 4.1 and these values are used 

for all four examples. Number of blocks can be viewed in Table 4.3. The first example 

is provided for constant overall slope angle and the angle is 51⁰. The second example 

is presented to check the algorithm for overall slope change with respect to azimuth. 

The third example is provided for the cases in which overall slope angle varies with 

respect to depth. The forth example is given for change in overall slope angle with 

respect to depth and azimuth. The forth example is also used for demonstrating an 

example for lignite deposit. For lignite, only calculation of economic block value is 

different in the code because calorie is used instead of grade in calculations. As it can 

be seen from the results of the examples presented (Table 4.4, 4.6, 4.8 and 4.10), it 

can be stated that algorithm can produce reasonable solutions. 
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Table 4.1. Input values 

Bench face angle 60 

Bench height 10 

 

Table 4.2. Block dimensions 

 Block dimensions 

dx 10 

dy 

dz 

10 

2 

 

Table 4.3. Number of blocks 

  Number of blocks 

Example 1  86,100 

Example 2  86,100 

Example 3  107,916 

Example 4  118,096 
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Figure 4.14. Constant overall slope angle 

 

 

Figure 4.15. W-E section of the extracted blocks for the first example 

 

 

Figure 4.16. N 10 E section of the extracted blocks for the first example 
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Table 4.4. Comparison of overall slope angles for the first example 

 Overall slope angle 

Cross-sections  Input value Measured value 

N10E 50 50.912 

W-E 50 51.340 

 

 

 

Figure 4.17. Extracted blocks of the second example 
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Figure 4.18. Curve created by using spline interpolation for the second example 

 

Table 4.5. Overall slope angle inputs for the second example 

Overall slope angle Azimuth (from) Azimuth (to) 

35 0 20 

33 35 45 

37 100 120 

40 150 160 

43 160 180 

45 215 225 

40 265 285 

36 330 350 
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Table 4.6. Comparison of overall slope angles for the second example 

 Overall slope angle 

Cross 

sections 

Input 

value 

Measured 

value 

Input 

value 

Measured 

value 

N 40 E  45 44.757 33 32.553 

S 30 W  36 35.538 40 39.806 

 

 

 

Figure 4.19. N 40 E section of the extracted blocks for the second example 

 

 

Figure 4.20. S 30 W section of the extracted blocks for the second example 
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Table 4.7. Input values for the third example 

Overall slope angle Depth (from) Depth (to) 

45 0 50 

20 50 100 

 

 

Figure 4.21. Extracted blocks of the third example 

 

Table 4.8. Comparison of overall slope angles for the third example 

 Overall slope angle 

Cross-sections  Input value Measured 

value 

Input value Measured 

value 

N40E 45 44.657 20 20.751 

W-E 45 45 20 21.038 
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Figure 4.22. W-E section of the extracted blocks for the third example 

 

 

Figure 4.23. N 40 E section of the extracted blocks for the third example 

 

Table 4.9. Overall slope angles for the fourth example 

Depth 

range 

Overall 

slope angle 

Azimuth  

(from) 

Azimuth  

(to) 

0-60 

42 0 90 

40 90 180 

43 180 270 

45 270 360 

60-120 

38 0 90 

36 90 180 

39 180 270 

41 270 360 
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Figure 4.24. Curve created by using spline interpolation for the fourth example 

 

 

Figure 4.25. Extracted blocks of the fourth example (lignite deposit) 
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Table 4.10. Comparison of overall slope angles for the fourth example 

  Overall slope angle 

Cross-

sections 

Depth 

range 

Input 

value 

Measured 

value 

Input 

value 

Measured 

value 

N 45 E 
1 43 35.264 42 40.316 

2 39 40.315 38 35.264 

S 45 E 
1 45 46.686 40 40.315 

2 41 40.315 36 35.264 

 

 

Figure 4.26. N 45 E section of the extracted blocks for the fourth example 

 

 

Figure 4.27. S 45 E section of the extracted blocks for the fourth example 
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It should be noted that the generated pit shape by the code becomes more similar to 

the required pit shape as the number of blocks increases or block dimensions 

decreases. To demonstrate that, second example is compared to another example with 

the same input but larger number of blocks. The number of blocks of the large block 

model is 494,900. The difference between input and output values is smaller in large 

block models. This is demonstrated in Figure 4.28. Its output value is closer to the 

value produced by the interpolation. The overall slope angles and the differences are 

given in Appendix C. 

 

 

Figure 4.28. Comparison between input and output values of overall slope angles of the block models 

with large and small number of blocks 
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CHAPTER 5  

 

5. THE GRAPHICAL USER INTERFACE 

 

The coding was performed in the Python Programming Language and Tkinter toolkit 

was used to construct the user interface. With this interface, mainly two parts are 

developed for input data and output data. In the Graphical User Interface (GUI) 

created for input data, the parameters used for the calculation of economic block value 

and the parameters used for the pit geometry are entered to determine optimum pit 

limit. In the windows for output data, the results of optimization are provided by 

figures and the extracted and non-extracted blocks are saved in separate MS Excel 

files.  

5.1. GUI for Input Data 

The data entry windows vary based on the number of overall slope angle required. In 

the first window that appears when the code is run, the input data required to be entered 

is the economic block value parameters and bench parameters. A selection must be 

also made for overall slope change pattern (Figure 5.1). In the first pane of the window, 

required parameters are price, selling cost, mining cost, and processing cost. Costs are 

given per tonne of ore. Average density is used to find the tonnage of a block and its 

unit is tonne/m3 (or g/cm3). Mining cost increases per meter of depth and can be 0 or 

greater than 0. Recovery is given in percentage. With these parameters, Equations 3.8 

and 3.9 are used to calculate the economic block value. In the second pane, bench 

height (m) and bench face angle are entered. When entering the parameters, any unit 

can be used as long as their units are consistent with each other. In the third pane, 

cases for overall slope change pattern are provided. One of the cases must be chosen. 

In the fourth pane, if 3D figures of extracted and/or non-extracted blocks need to be 

displayed, one or two displaying choices can be selected.  



 

 

 

58 

 

 

 

Figure 5.1. Entry window for data input 

 

The four cases one of which must be selected are as follows: 

• Case 1: Constant overall slope angle. 

• Case 2: Overall slope angle change with respect to azimuth. 

• Case 3: Overall slope angle change with respect to depth. 

• Case 4: Overall slope angle change with respect to depth and azimuth. 
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Figure 5.2. Case 1: Entry window for overall slope angle 

 

In case 1, the overall slope angle is the same throughout the orebody. For this reason, 

spline interpolation is not used. If case 1 is chosen, the second window that appears is 

given in Figure 5.2. In this window, overall slope angle is entered. The angle can be 

between 0˚ and the bench slope angle entered in the first window due to geometrical 

limits.  

 

 

Figure 5.3. Case 2: Entry window for number of zones 
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Figure 5.4. Case 2: Entry window for overall slope angles in different azimuth ranges 

 

In case 2, the overall slope angle is not invariable for different azimuth ranges. Thus, 

spline interpolation is used in this case. The second window that shows up if this case 

is selected can be seen in Figure 5.3. Number of different overall slope angles are 

entered in this window. Any integer number greater than 1 can be entered in this entry 

box. In the next window, overall slope angles are entered. Figure 5.4 shows an 

example for 4 zones of slope change with respect to azimuth.   

 

 

Figure 5.5. Case 3: Entry window for number of zones 
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Figure 5.6. Case 3: Entry window for overall slope angles in different ranges of depth 

 

In case 3, the overall slope angle is not the same in different zones with respect to 

depth. Spline interpolation is not utilized in this case. If this case is chosen, number of 

depth zones are entered in the window given in Figure 5.5. Any integer number greater 

than 1 can be entered in this entry box. In the subsequent window, overall slope angles 

are entered with the ranges of depth. Unit of depth is in meters. An example of 3 zones 

of depth is provided in Figure 5.6.   

 

 

Figure 5.7. Case 4: Entry window for number of zones for azimuth and depth 
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Figure 5.8. Case 4: Entry window for overall slope angles in different azimuth ranges 
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Figure 5.9. Case 4: Entry window for ranges of depth 

 

In case 4, the overall slope angle changes with respect to both depth and azimuth. 

Spline interpolation is used for this case. The window shown in Figure 5.7 appears if 

this case is selected. In this window, number of azimuth and depth ranges are entered. 

After entering the number of zones, the third window pops up. For n number of 

azimuth range and k number of depth range, n×k number of overall slope angles must 

be entered in the third window. An example of 3×4 zones is given in Figure 5.8. In the 

fourth window, ranges of depth are entered (Figure 5.9). 

In all cases, after run command is executed, two windows pop up to select a file of 

block data and a LP file. Block data file must be a MS Excel file which contains block 

coordinates, block dimensions, and grades. LP file can be created with an empty text 

file with an extension ".lp". This file defines mathematical model of mixed integer 

programming written in the code. After selecting these two files, optimization 

calculations start in the code. 

5.2. GUI for Output Data 

At the end of the optimization process, generated output data are saved in MS Excel 

files and images, and a LP file is created. Two windows pop up after a solution is 

found so that two MS Excel files can be saved for extracted and non-extracted blocks. 

These files contain economic block values, block dimensions, and coordinates of the 
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blocks. In addition, the code creates two figures which are three dimensional images 

of extracted blocks and non-extracted blocks. Two examples of these images are 

demonstrated in Figure 5.10 and 5.11. In these figures, reference point of x, y, and z 

coordinates are not the same with that of the blocks for the convenience of 

demonstration. If spline interpolation is required in the calculations, an image of the 

points created by spline interpolation is also generated (Figure 5.12). In addition, an 

information message window pops up to show total economic block value and 

stripping ratio (t/m3 or m3/m3) (Figure 5.13). Moreover, mathematical model of mixed 

integer programming can be read from the LP file, i.e., objective function, decision 

variables, and constraints can be read from this file. 

 

 



 

 

 

65 

 

 

Figure 5.10. Ultimate pit limit of a block model consisting of 125,000 blocks 
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Figure 5.11. Extracted blocks of a block model consisting of 125,000 blocks 
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Figure 5.12. The points created by cubic spline interpolation for various overall slope angles 
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Figure 5.13. Information window for total economic block value and stripping ratio 
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CHAPTER 6  

 

6. CASE STUDY 

 

In order to validate the applicability of the proposed method, it is applied on the block 

data obtained from two mine sites. A magnetite orebody, a hematite-magnetite 

orebody and a lignite orebody are used. For the block models of magnetite and 

hematite-magnetite orebody, optimization is carried out for the cases in which overall 

slope angle is constant and overall slope angle changes with respect to azimuth. For 

the lignite orebody, optimization is performed for the cases in which overall slope 

angle varies with respect depth and overall slope angle changes with respect to both 

azimuth and depth. The results are analyzed to check if input and output overall slope 

angles are the same or similar to each other. The total economic block value ($), 

stripping ratio (t/m3 and m3/m3) are also provided in the results. 

6.1. Magnetite Orebody  

6.1.1. Block Model  

In this block model, block dimensions are 2.5 m in x, y, and z directions. Waste block 

dimensions are 2.5, 2.5, and 2.5 m and 10, 10, and 2.5 in the x, y and z directions 

respectively. The number of blocks is given in Table 6.1. Block model can be seen in 

Figure 6.1.  

 

Table 6.1. Number of blocks 

 
Ore 

blocks 

Waste blocks 

(2.5×2.5×2.5 m3) 

Waste blocks 

(10×10×2.5 m3) 
Total 

Number of 

blocks 
59,391 20,210 8,325 87,926 
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Figure 6.1. Block model of the magnetite orebody 

 

6.1.2. Economic Block Value and Input Data 

To calculate economic block value, price, selling cost, mining cost, and processing 

cost are assumed as 85, 5, 5, and 5 $/tonne respectively (Figure 6.2). Average density 

is 3.73 g/cm3 for ore blocks. Average density for waste blocks is assumed as 2.63 

g/cm3 in all cases. Bench height is 10 m and bench face angle is 80⁰. For this case, 

overall slope angle is constant, and it is equal to 30⁰. 
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Figure 6.2. Economic block value parameters for case 1 

 

6.1.3. Results 

After completion of optimization process, it was found that stripping ratio is 3.92 

m3/m3 (10.310 t/m3) and total economic block value is 61,038,764 $ (Table 6.2). 

Extracted blocks are demonstrated in Figure 6.3. In Figure 6.4, N-S section of the 

extracted blocks can be seen. The measured overall slope angles are 30.548⁰ and 

30.964⁰ which are close to the angle entered (30⁰). The figures of the other sections 

and comparison between entered and measured overall slope angles are given in 

Appendix C. The difference between measured and the angle entered are between 

0.051⁰ and 0.964⁰. 
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Figure 6.3. Extracted blocks 

 

 

Figure 6.4. N-S section of the extracted blocks 

 

Table 6.2. Output data 

Stripping ratio  3.920 m3/m3, 10.310 t/m3 

Total economic block value 61,038,764 $ 
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6.2. Magnetite-hematite Orebody  

6.2.1. Block Model 

In this block model, block dimensions are 2.5 m in x, y, and z directions. Waste block 

dimensions are 2.5, 2.5, and 2.5 m and 10, 10, and 2.5 m in the x, y and z directions, 

respectively. Bench height is 10 m and bench face angle is 80⁰. The number of blocks 

is given in Table 6.3. Block model can be seen in Figure 6.5. 

 

Figure 6.5. Block model of the magnetite-hematite orebody 

 

Table 6.3. Number of blocks 

 
Ore blocks 

Waste blocks 

(2.5×2.5×2.5 m3) 

Waste blocks 

(10×10×2.5 m3) 
Total 

Number of 

blocks 
40,600 27,033 104,190 171,823 
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6.2.2. Economic Block Values and Input Data 

For the magnetite orebody, to compute economic block value, price, selling cost, 

mining cost, and processing cost, are assumed as 85, 5, 5, and 5 $/tonne, respectively 

(Figure 6.6). Bench height is 10 m and bench face angle is 80⁰. Average density is 

entered as 4.19 g/cm3. For this case, overall slope angle changes with respect to 

azimuth. The input values for overall slope angles are given in Table 6.4. Since overall 

slope angle changes with respect to azimuth, spline interpolation is used in this case. 

The curve formed by spline interpolation is shown in Figure 6.7. 

 

 

Figure 6.6. Economic block value and bench parameters for case 2 
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Table 6.4. Overall slope angles 

Overall slope angle Azimuth (from) Azimuth (to) 

55 346 79 

41 79 166 

58 166 259 

51 259 346 

 

 

 

Figure 6.7. The curve formed by spline interpolation for case 2 

 

6.2.3. Results 

According to the result of optimization, stripping ratio is 17.530 m3/m3 (46.104 t/m3) 

and total economic block value is 22,706,767 $. Extracted blocks are shown in Figure 

6.8. N 45 E section of the extracted blocks is demonstrated in Figure 6.9. The figure 

of the other cross section and comparison of overall slope angles are given in 
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Appendix C. The difference between entered and measured overall slope angles 

changes is between 0.058⁰ and 1.479⁰. 

 

 

Figure 6.8. Extracted blocks 

 

 

Figure 6.9. N 45 E section of the extracted blocks 
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Table 6.5. Output data 

Stripping ratio  17.530 m3/m3, 46.104 t/m3 

Total economic block value 22,706,767 $ 

 

6.3.  Lignite Orebody 1 

6.3.1. Block Model 

In this block model, block dimensions are 10, 10, and 2 m in x, y, and z directions, 

respectively. Waste block dimensions are 10, 10, and 2 m and 20, 20, and 2 in the x, 

y and z directions, respectively. The number of blocks is given in Table 6.6. The block 

model can be seen in Figure 6.10. 

 

Table 6.6. Number of blocks 

 Ore blocks 
Waste blocks 

(10×10×2 m3) 

Waste blocks 

(20×20×2 m3) 
Total 

Number of 

blocks 
66,350 3,503 26,118 95,971 
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Figure 6.10. Block model of the lignite orebody 

 

6.3.2. Economic Block Values and Input Data 

To determine economic block value, price, selling cost, mining cost, processing cost 

are assumed as 30, 1, 1, and 1 $/tonne, respectively (Figure 6.11). Average density is 

2.19 g/cm3. Bench height is 10 m and bench face angle is 60⁰. For this case, overall 

slope angle changes with respect to depth and the depth ranges are given in Table 6.7. 
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Figure 6.11. Economic block value and bench parameters for case 3 

 

Table 6.7. Input data for depth ranges 

Overall slope angle Depth (from) Depth (to) 

25 0 40 

20 40 80 

 

6.3.3. Results 

From the results of the optimization, stripping ratio is found as 10.073 m3/m3 (26.492 

t/m3) and total economic block value is 35,734,525 $. Extracted blocks are shown in 

Figure 6.12. In Figure 6.13, N-S section of the extracted blocks can be seen. The 

figures of the other section and overall slope angles in the other sections are given in 

Appendix C. The difference between measured and entered overall slope angles is 

between 0.051⁰ and 0.964⁰. 



 

 

 

80 

 

 

Figure 6.12. Extracted blocks 

 

 

Figure 6.13. N-S section of the extracted blocks 

 

 

Table 6.8. Output data 

Stripping ratio 10.073 m3/m3, 26.492 t/m3 

Total economic block value 35,734,525 $ 
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6.4. Lignite Orebody 2 

6.4.1. Economic Block Values and Input Data 

In this case, economic block value parameters, bench parameters, and the block model 

are the same as those given in the part 6.3, but the overall slope angle changes with 

respect to both depth and azimuth. Overall slope angles, azimuths and depth ranges 

are given in Table 6.9. In this case, spline interpolation is also used, and the curve 

created by spline interpolation can be seen in Figure 6.14. 

 

Table 6.9. Input data for depth range, overall slope angle, and azimuth 

Depth 

Range (m) 

Overall 

slope angle 

Azimuth 

(from) 

Azimuth 

(to) 

0-40 

35 0 90 

30 90 180 

38 180 270 

31 270 360 

40-80 

25 0 90 

20 90 180 

28 180 270 

21 270 360 
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Figure 6.14. The curve formed by spline interpolation for case 4 

 

6.4.2. Results 

It was found that stripping ratio is 15.256 m3/m3 (40.833 t/m3) and total economic 

block value is 16,884,309 $. Extracted blocks are shown in Figure 6.15. In Figure 

6.16, N 45 E section of the extracted blocks is presented. The other cross section and 

overall slope angles are given Appendix C. The difference between measured and 

entered overall slope angles are between 0.265⁰ and 5.264⁰. The difference is large 

because depth is smaller than 100 m and number of the blocks is smaller in this case, 

which makes it hard to obtain the angle entered. 
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Figure 6.15. Extracted blocks 

 

 

Figure 6.16. N 45 E section of the extracted blocks 

 

Table 6.10. Output data 

Stripping ratio  15.526 m3/m3, 40.833 t/m3 

Total economic block value 16,884,309 $ 
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CHAPTER 7 

 

7. CONCLUSION AND RECOMMENDATIONS 

 

Ultimate pit limit is determined in order to find out the final outline of the open pit 

mine with undiscounted value of money. The final pit limit which gives maximum 

economic value while considering technical and safety issues is found. For this 

purpose, many optimization techniques of ultimate pit limit were developed. In these 

proposed methods, generally, constant overall slope angles are used in the 

optimization. Thus, a new approach was proposed to overcome this problem. In the 

proposed method, mixed integer programming was used for optimization. The spline 

interpolation was used to obtain different overall slope angles in the mathematical 

model. In addition, bench height and bench face angle were incorporated in the 

optimization. The method was coded in Python Programming language and graphical 

user interface was also formed for easier application.  

Firstly, the code was applied by using hypothetical block models consisting of 86100, 

107916, 118096, 494900 blocks to verify the mathematical model. Input data for 

overall slope angles are compared to overall slope angles obtained from output data. 

It was found that the angles are the same or close to each other. The difference between 

input and measured values are between 0⁰ to 8⁰ and the difference is mostly between 

0⁰ and 2⁰. However, the difference between required angles and generated angles by 

the code becomes smaller as the number of the blocks increases. When generating a 

curvilinear pit shape with flat edges of a block, the difference between input and output 

angles is expected to be large if the number of blocks is too small. The gap between 

the input and output angles are between 0 and 1 if number of blocks is much greater 

than 100,000. However, required angle can be obtained even if number of blocks is 

lower than 100,000. This is because the generated angle also depends on bench height, 

bench with and block dimensions.  
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For the example with 494,900 blocks, parameters which give high economic block 

values are entered in the GUI so that the run time is shorter. This enabled the code to 

reach a solution for this block model.  

After the mathematical model is verified, the method was applied on the data obtained 

from magnetite, hematite and lignite ore deposits. It is observed that the run time is 

higher when the model is applied for the real mine site because number of waste blocks 

are high. To deal with this problem, dimensions of some of the waste blocks are 

increased to lower the number of blocks so that computation time can be decreased.  

According to the results of the case studies, difference between input and output value 

of overall slope angles changes from 0.017 to 5.264. It is observed that this difference 

is higher in shallow depth ranges. This is because there are larger-sized waste blocks 

on upper levels.  

It can be concluded from the results that the proposed technique can be a useful option 

for incorporation of various overall slope angles into the optimization of ultimate pit 

limit. Advantage of this proposed technique is that pit shape with desired overall slope 

angles and maximum economic value are simultaneously obtained. The pit with the 

required overall slope angle is not formed after the optimization calculations finish. 

However, it has some aspects that must be improved. They can be presented as 

follows:      

• The proposed method requires high computational time. To deal with this 

problem, other methods can be utilized instead of mixed integer programming. 

• In the model, topography is not taken into consideration. For more realistic 

design, topographical data should be included in the model. 

• The case in which overall slope angle decreases as the pit deepens is not 

included in the code. However, various overall slope angles can be given in 

different depth ranges in the code. 

• Bench width is included in the model, but haulage roads can also be added in 

the geometrical equations. 
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• In this method, time value of money is not considered for ultimate pit limit 

problem. However, if the problem in computation time is resolved, it can be 

an alternative method in long-term production planning. 

• Economic calculations can be done in a more detailed way.  

• Other aspects related to rock mechanics can be included in the code. 
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APPENDICES 

 

A. PSEUDOCODE FOR SPLINE INTERPOLATION 

Convert angles to x and y points: 

   for each overal slope angle entered: 

        convert overall slope angle to radius:  

    r =  
1

tan β
 

        for each radius calculated : 

            do the following calculations: 

    x2 = r2 − y2                                                         

    y = x cot α                                                    

    x = ±
h

tan β √1+cot2α
 

      Form a list of x and y points 

Find the inverse of the following matrix: 

[
 
 
 
 
 
1    4    1    ⋯     0    ⋯     0
0    1    4    1    ⋯     ⋯     0
                   ⋱     ⋱               ⋮
0   ⋯    ⋯    ⋯     1    4    1 
1   ⋯    ⋯    ⋯     0    1    4
4     1     0     ⋯     0    0    1 ]

 
 
 
 
 

(𝑛×𝑛)

 

For each x and y points: 

Create the following matrix and substitude x and y points separately: 
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[
 
 
 
 

3 (𝑃3 − 𝑃1)
3 (𝑃4 − 𝑃2)

⋮
3 (𝑃𝑛+1 − 𝑃𝑛−1)
3 (𝑃𝑛+2 − 𝑃𝑛) ]

 
 
 
 

 

             Do the following calculation to determine Pk
t values: 

[
 
 
 
 
 
1    4    1    ⋯     0    ⋯     0
0    1    4    1    ⋯     ⋯     0
                   ⋱     ⋱               ⋮
0   ⋯    ⋯    ⋯     1    4    1 
1   ⋯    ⋯    ⋯     0    1    4
4     1     0     ⋯     0    0    1 ]

 
 
 
 
 
−1

∙    

[
 
 
 
 

3 (𝑃3 − 𝑃1)
3 (𝑃4 − 𝑃2)

⋮
3 (𝑃𝑛+1 − 𝑃𝑛−1)
3 (𝑃𝑛+2 − 𝑃𝑛) ]

 
 
 
 

 

Form the polynomial functions using Pk
t values 

Create a list of parameter whose values are between 0 and 1: 

t=[0, 0.2, 0.4, 0.6, 0.8] 

Insert the values of the parameter list in the polynomial functions 

Convert x and y points found by interpolation to azimuths and overall slope angles: 

for each x and y points found by interpolation: 

       Do the following calculations: 

    M=√𝑥2 + 𝑦2 

    overall slope angle= tan-1(1/M) 

    if x>0 and y>0: 

        azimuth=tan-1(y/x) 

    if x<0 and (y>0 or y<0): 

        azimuth =180+tan-1(y/x) 

    if x>0 and y<0: 

        azimuth =360+ tan-1(y/x) 
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B. RESULTS OF THE ITERATIONS FOR THE CASE STUDIES 

 

Table B.1. Case study 1 

Number of 

Benches 

Total Economic 

Block Values ($) 

1 135,242 

2 7,875,328 

3 25,823,166 

4 34,915,817 

5 47,498,506 

6 48,891,600 

7 51,813,019 

8 57,456,220 

9 61,038,764 

 

 

Table B.2. Case study 2 

Number of 

Benches 

Total Economic 

Block Values ($) 

1 79,074 

2 42,066 

3 -69,586 

4 -169,511 

5 -51,524 

6 -226,014 

7 -349,878 

8 942,861 

9 -1,348,130 

10 -2,131,301 

11 2,429,466 

12 -2,677,399 

13 10,015,901 

14 22,706,767 

15 21,175,463 

16 21,723,510 
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Table B.3. Case study 3 

Number of 

Benches 

Total Economic 

Block Values ($) 

1 -17,205 

2 -161,866 

3 -520,230 

4 -1,320,581 

5 -2,952,331 

6 1,062,564 

7 22,914,448 

8 35,734,525  

 

Table B.4. Case study 4 

Number of 

Benches 

Total Economic 

Block Values ($) 

1 -7,950 

2 -85,882 

3 -241,282 

4 -623,646 

5 -1,672,020 

6 -3,387,864 

7 6,032,261 

8 16,884,309  
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C. OVERALL SLOPE ANGLES AND CROSS SECTIONS 

 

Table C.1. Overall slope angles for smaller block model (number of blocks =81,600) 
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Table C.2. Overall slope angles for larger block model (number of blocks=494,900) 
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Figure C.1. N 45 E section of the extracted blocks of the magnetite orebody 

 

 

Figure C.2. W E section of the extracted blocks of the magnetite orebody 

 

Table C.3. Comparison of overall slope angles for magnetite orebody 

Cross 

sections 
Input Measured 

Absolute 

difference 
Input Measured 

Absolute 

difference 

N S 30 30.964 0.964 30 30.548 0.548 

N 45 E 

W E 

30 

30 

30.051 

30.964 

0.051 

0.964 

30 

30 

30.051 

29.358 

0.051 

0.642 
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Figure C.3. S 45 E section of the extracted blocks of magnetite-hematite orebody 

 

Table C.4. Comparison of overall slope angles for magnetite-hematite orebody 

Cross 

sections 
Input Measured 

Absolute 

difference 
Input Measured 

Absolute 

difference 

S 45 E 51 51.058 0.058 41 39.521 1.479 

N 45 E 58 58.780 0.780 55 55.221 0.221 

 

 

Figure C.4. N 45 E section of the extracted blocks of lignite orebody (lignite 1) 

 

 

Figure C.5. W E section of the extracted blocks of lignite orebody (lignite 1) 
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Table C.5. Comparison of overall slope angles for lignite orebody (lignite 1) 

Cross 

sections 

Depth 

range 
Input Output 

Absolute 

difference 
Input Output 

Absolute 

difference 

N S 
0-40 25 23.962 1.038 25 29.745 4.745 

40-80 20 19.983 0.017 20 19.983 0.017 

N 45 E 
0-40 25 25.239 0.239 25 22.004 2.996 

40-80 20 19.472 0.528 20 19.472 0.528 

W E 
0-40 25 23.962 1.038 25 26.565 1.565 

40-80 20 19.983 0.017 20 19.983 0.017 

 

 

 

Figure C.6. S 45 E section of the extracted blocks for lignite orebody (lignite 2) 

 

Table C.6. Comparison of overall slope angles for lignite orebody (lignite 2) 

Cross 

section 

Depth 

range 
Input Output 

Absolute 

difference 
Input Output 

Absolute 

difference 

N 45 E 
0-40 35 35.265 0.265 38 35.268 2.732 

40-80 25 25.240 0.240 28 29.496 1.496 

S 45 E 
0-40 30 35.264 5.264 31 35.264 4.264 

40-80 20 22.002 2.002 21 22.002 1.002 

 


