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ABSTRACT 

 

SPHERICAL NEAR FIELD ANTENNA MEASUREMENTS 

 

Kılıç, Hüsnü Doğan 

Master of Science, Electrical and Electronics Engineering 

Supervisor: Prof. Dr. Seyit Sencer Koç 

 

September 2019, 60 pages 

 

Accurate determination of the antenna characteristics is one of the key subjects where 

different methods have been developed for this purpose. When advantages and 

facilities of these methods are considered, near field measurements have come forward 

especially in recent years. In this thesis, one of these methods which is referred to as 

spherical near field measurement method, has been studied. First, wave expansion in 

the spherical coordinates is introduced. This enables expressing the field as summation 

of modes which are composed of vector wave functions and coefficients of these 

functions. It is shown that by obtaining coefficients for measurement distance, field 

can be obtained at any other distance with these coefficients. However, test setup of 

an antenna is composed of receiver and transmitter such that one of them is antenna 

under test and other is measurement antenna which is usually called the probe. Hence, 

probe effects on the measurement must also be included for accurate results. Initially, 

Lorentz’s Reciprocity Theorem had been used for this purpose. Then scattering matrix 

theory has been more commonly used. In this thesis study, scattering matrix theory is 

explained and generation of transmission formula with the probe compensation is 

presented. Different numerical integration techniques are used in order to calculate 

wave coefficients and comparisons are given. Eventually, tests with the theoretical 

data and results of measured antennas are performed and results are discussed. 
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ÖZ 

 

KÜRESEL YAKIN ALAN ANTEN ÖLÇÜMLERİ 

 

Kılıç, Hüsnü Doğan 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği 

Tez Danışmanı: Prof. Dr. Seyit Sencer Koç 

 

Eylül 2019, 60 sayfa 

 

Anten karakteristiğinin doğru bir şekilde belirlenmesi büyük öneme sahip konulardan 

biridir ki bu amaç doğrultusunda farklı metotodlar geliştirilmiştir. Bu metotların 

avantajları ve kolaylıkları düşünüldüğü zaman, özellikle son yıllarda yakın alan 

ölçümleri öne çıkmaktadır. Bu tezde, bu metotlardan biri olan küresel yakın alan 

ölçüm metodu çalışılmıştır. İlk olarak küresel koordinatlarda dalga açılımı 

gösterilmiştir. Bu, alanı vektör dalga fonksiyonlarından ve bu fonksiyonların 

katsayılarından oluşan modların toplamı olarak ifade etmeyi sağlar. Ölçüm yapılan 

mesafede katsayıları elde ederek, bu katsayılarla alanın herhangi bir mesafede 

bulunabileceği gösterilmiştir. Fakat bir antenin test kurulumu alıcı ve vericiden oluşur, 

öyle ki bunlardan biri test altındaki anten, diğeri ise genellikle ölçüm ucu olarak 

adlandırılan ölçüm antenidir. Bu nedenle, doğru sonuçlar için ölçüm ucunun ölçüme 

etkileri de dahil edilmelidir. Bu amaç için ilk olarak Lorentz Karşılıklılık Teoremi 

kullanılmıştır. Sonrasında, saçılım matris teorisi yaygın olarak kullanılmıştır. Bu tez 

çalışmasında saçılım matris teorisi açıklanmış ve ölçüm ucunun etkilerini telafi ederek 

iletim formülü türetimi gösterilmiştir. Dalga katsayılarını hesaplamak için farklı 

nümerik integral teknikleri kullanılmış ve karşılaştırmalar yapılmıştır. Son olarak, 

teorik veriler ve ölçülen antenlerin sonuçları kullanılarak testler yapılmış ve sonuçlar 

irdelenmiştir. 
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Anahtar Kelimeler: Yakın Alandan Uzak Alana Dönüşüm, Küresel Dalga Açılımı, 
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CHAPTER 1  

 

1. INTRODUCTION 

 

An antenna is a structure that receives and transmits electromagnetic signals. With the 

high pace of development in technology, wireless communication have become one 

of the most critical subjects all over the world and antennas are the key devices in this 

field. Developments in technology have required more efficient, more accurate and 

faster measurement solutions for antenna testing. Antennas are generally used to 

transmit information to far distances so most of the time performance criteria of an 

antenna is described for the far field region. Hence, first solution for the antenna 

testing was measuring the antenna at sufficiently far distances. Far field antenna 

measurement technique has been used over the years. However, with the advance and 

increasing usage of technology in the area of communication, defense and health, 

designing lots of different types of antennas and producing plenty amount of them 

have been essential. When this was the case, drawbacks of the far field antenna 

measurement became more apparent. First of all; depending on the antenna type and 

dimensions, required range for the far field may be too much so establishing the 

measurement region may be troublesome and costly. If the measurement area is 

outdoor region that was usually the case, then measurements are affected from the 

weather conditions which sometimes may not allow to make measurements. In 

addition to these, eliminating effects from the ground and surrounding objects can be 

impossible. Measurement time can be too much especially for large distances. 

Transportation and mounting may be problematic for large antennas. Because of these 

reasons, researchers sought for ways of determining far field properties from the 

measurement in the near field region. Basically three techniques have aroused which 

are pattern measurement with focused antenna, compact range and transformation of 

near field measurement data to obtain far field pattern [1]. In the first technique, 
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antenna is focused to near field region and measurement is performed. In the second 

technique, approximate uniform plane wave is created using a reflector and so 

measurement can be taken with far field conditions. In the last method, measurement 

is done in the near field and far field pattern is calculated using transformation. 

Historically, researches on the near field antenna measurements started around 1950’s 

[2]. Around 1950, Barrett and Barnes from the Air Force Cambridge Research Center 

started to investigate near field by using an antenna scanner [3]. The aim was not to 

calculate the far field since the theory was not established at that time. Then, Woonton 

[4] studied the relation between the induced voltage on the probe with electric field 

strength by making near field measurements. Richmond and Tice [5], [6] compared 

the near and far field pattern with experiments in 1955. Some researchers made 

experiments using particular line sources. Gamara [7] compared near field and far 

field patterns for particular line sources by taking measurement directly in the far field 

distance and calculating far field pattern from the measurements done in the near field 

in 1960. Brown and Jull [8] used cylindrical wave expansion in two dimensions and 

verified their work experimentally. Besides, they proposed a method for probe 

correction in 1961. However, complete probe compensation method was given by 

Kern in 1963 [9]. He used plane wave expansion method with scattering matrix theory 

of the antenna. After planar scanning solution, three dimensional cylindrical probe 

compensated method was improved by Leach and Paris in 1973 [10]. The probe 

correction with the spherical wave expansion method which enabled the spherical 

scanning was derived by Jensen in 1970 [11]. Works of Wacker’s in 1974 [12] and 

1975 [13] with work of Jensen in 1975 [14] showed implementation of the theory can 

be put into practice. Lots of studies and implementations have been performed but the 

complete algorithm for the spherical near field measurement with probe correction 

was given by Larsen in 1977 [15]. 

In this thesis, spherical near field measurement is discussed. First, spherical wave 

theory is explained and determination of the far field from the near field without probe 

compensation is given. Afterwards, transformation for the probe corrected case is 
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explained by giving the scattering matrix definition of the antenna. Discussions about 

truncation value of modes and different numerical integration techniques are also 

included. Finally, applications and results for the theoretical data and measured 

antennas using the developed algorithm is presented. 
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CHAPTER 2  

 

2. SPHERICAL WAVE EXPANSION 

 

2.1. Spherical Vector Wave Functions 

Maxwell’s equations of the electromagnetic field for linear, isotropic and homogenous 

medium with taking time dependence as 𝑒−𝑖𝜔𝑡 are 

 ∇̅ × 𝐸⃗ =  𝑖𝜔𝜇𝐻⃗⃗ − 𝑀⃗⃗  (2.1) 

   

 ∇̅ × 𝐻⃗⃗ =  −𝑖𝜔𝜀𝐸⃗ + 𝐽   (2.2) 

 

where 𝐸⃗  and 𝐻⃗⃗  are electric and magnetic field vectors, 𝐽  and 𝑀⃗⃗  are electric and 

magnetic current density vectors, 𝜀 and 𝜇 are permittivity and permeability, 

respectively. When curl of each sides of the equations are taken with assuming 

source free region, it is concluded that both electric and magnetic field vectors 

satisfy the vector differential equation 

 ∇̅ × ∇̅ × 𝐹 − 𝑘2𝐹 = 0 (2.3) 

 

where 𝑘 = 𝜔√𝜇𝜀 = 2𝜋/λ is the propagation constant and 𝐹  is an arbitrary vector. As 

a consequence, each component of the field vectors satisfies the scalar Helmholtz 

equation. Let 𝑓 be a solution of the scalar Helmholtz equation 

 (∇2 + 𝑘2)𝑓 = 0  
 

(2.4) 

 

Now the following independent vector solutions satisfy equation (2.3). 

 𝑀⃗⃗ = ∇̅𝑓 × 𝑟  (2.5) 

 

 
𝑁⃗⃗ =

1

𝑘
∇̅ × 𝑀⃗⃗  

 

(2.6) 
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As it is understood from equations (2.5) and (2.6), 𝑀⃗⃗  and 𝑁⃗⃗  are related with curl 

operator and they are solenoidal functions. Then, they can be used in order to express 

source free electromagnetic fields (𝐸⃗ ,𝐻⃗⃗ ).  

Note also that vector 𝐿⃗  appears when divergence of the field is not zero which is the 

case where sources are included.  

 𝐿⃗ = ∇𝜓  
 

(2.7) 

 

However; it is not used in this work because solutions are determined for source free 

regions. 

The function f for the spherical waves is obtained using separation of variables as 

given in [16] by Stratton, 

 

 

 

𝑓 𝑚𝑛𝑜
𝑒
(𝑐) (𝑟, 𝜃, ∅) = 𝑧𝑛

(𝑐)(𝑘𝑟)𝑃𝑛
𝑚(cos 𝜃)

cos

sin
 𝑚∅ (2.8) 

 

with 𝑛 = 1, 2, 3… and 𝑚 = 0, 1, 2, … , 𝑛. 𝑒 and 𝑜 subscripts in the equation describes 

even and odd part of the ∅ dependence of the trigonometric function. 𝑃𝑛
𝑚(cos 𝜃) 

function is the associated Legendre function and 𝑧𝑛
(𝑐)(𝑘𝑟) is one of the followings with 

specified 𝑐 index 

 

 
𝑧𝑛
(1)(𝑘𝑟) = 𝑗𝑛(𝑘𝑟) (spherical Bessel function) (2.9) 

 

 
𝑧𝑛
(2)(𝑘𝑟) = 𝑛𝑛(𝑘𝑟) (spherical Neumann function) (2.10) 

 

 
𝑧𝑛
(3)(𝑘𝑟) = ℎ𝑛

(1)(𝑘𝑟) =  𝑗𝑛(𝑘𝑟) + 𝑖𝑛𝑛(𝑘𝑟) (spherical Hankel                                                                                               

function of first kind) 
(2.11) 

 

 

 

𝑧𝑛
(4)(𝑘𝑟) = ℎ𝑛

(2)(𝑘𝑟) =  𝑗𝑛(𝑘𝑟) − 𝑖𝑛𝑛(𝑘𝑟) (spherical Hankel                                                                              

function of second kind) (2.12) 

where Bessel function and Neumann functions represent the standing waves and first 

kind of Hankel function and second kind of Hankel function represent outward and 

inward travelling waves, respectively. 
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By substituting function f in equation (2.8) into equations (2.5) and (2.6) and following 

notations and definitions in [17], spherical vector wave functions are obtained as; 

 
𝑀⃗⃗ 𝑚𝑛𝑜

𝑒
(𝑐) (𝑟, 𝜃, ∅) =  𝑧𝑛

(𝑐)(𝑘𝑟)+
−

𝑚𝑃𝑛
𝑚(cos 𝜃)

sin 𝜃

cos

sin
 𝑚∅ 𝜃

−  𝑧𝑛
(𝑐)(𝑘𝑟)

d𝑃𝑛
𝑚(cos 𝜃)

dθ

cos

sin
 𝑚∅ ∅̂ 

 

(2.13) 

 

 

 

 

 

 

 

𝑁⃗⃗ 𝑚𝑛𝑜
𝑒
(𝑐) (𝑟, 𝜃, ∅) =

𝑛(𝑛 + 1)

𝑘𝑟
 𝑧𝑛
(𝑐)(𝑘𝑟)𝑃𝑛

𝑚(cos 𝜃)
cos

sin
 𝑚∅ 𝑟̂

+
1

𝑟

𝑑

𝑑𝑟
{𝑟𝑧𝑛

(𝑐)(𝑘𝑟)}
d𝑃𝑛

𝑚(cos 𝜃)

dθ

cos

sin
 𝑚∅ 𝜃 

 
1

𝑟

𝑑

𝑑𝑟
{𝑟𝑧𝑛

(𝑐)(𝑘𝑟)}                                        +
−

𝑚𝑃𝑛
𝑚(cos 𝜃)

sin 𝜃

cos

sin
 𝑚∅ ∅̂ 

(2.14) 

 

In order to obtain more compact form and for computational convenience, instead of 

even and odd parts, only 𝑒𝑖𝑚∅ will be used as done by Jensen [11] and Jones [18]. In 

addition; computation for associated Legendre function is done with power 

normalized form. This form enables to compute vector wave functions with high 

values of 𝑛 and 𝑚. By inserting these changes and defining (−
𝑚

|𝑚|
)
𝑚

= 1 for 𝑚 = 0, 

we get the final forms of spherical vector wave functions as  

 
𝑀⃗⃗ 𝑚𝑛
(𝑐) (𝑟, 𝜃, ∅) =

1

√2𝜋𝑛(𝑛 + 1)
(−

𝑚

|𝑚|
)
𝑚

{
𝑖𝑚𝑃̅𝑛

|𝑚|(cos 𝜃)

sin 𝜃
𝜃

−
d𝑃̅𝑛

|𝑚|(cos 𝜃)

dθ
∅̂} 𝑧𝑛

(𝑐)(𝑘𝑟)𝑒𝑖𝑚∅  

 

(2.15) 

 

 

 

 

 

 

 

 

 

 

 

𝑁⃗⃗ 𝑚𝑛
(𝑐)(𝑟, 𝜃, ∅)

=
1

√2𝜋𝑛(𝑛 + 1)
(−

𝑚

|𝑚|
)
𝑚

{
𝑛(𝑛 + 1)

𝑟
 𝑧𝑛
(𝑐)(𝑘𝑟)𝑃̅𝑛

|𝑚|(cos 𝜃)𝑟̂

+
1

𝑟

𝑑

𝑑𝑟
{𝑟𝑧𝑛

(𝑐)(𝑘𝑟)}
d𝑃̅𝑛

|𝑚|(cos 𝜃)

dθ
𝜃

+
1

𝑟

𝑑

𝑑𝑟
{𝑟𝑧𝑛

(𝑐)(𝑘𝑟)}
𝑖𝑚𝑃̅𝑛

|𝑚|(cos 𝜃)

sin 𝜃
∅̂} 𝑒𝑖𝑚∅ 

(2.16) 

 



 

 

 

8 

 

where 𝑛 = 1, 2, 3… and 𝑚 = −𝑛,−𝑛 + 1, … , 𝑛 − 1, 𝑛. 𝑃̅𝑛
𝑚 is the normalized 

associated Legendre function which is defined as 

 

𝑃̅𝑛
𝑚 = √

2𝑛 + 1

2

(𝑛 − 𝑚)!

(𝑛 + 𝑚)!
 𝑃𝑛
𝑚 

 

(2.17) 

 

Now, the electric and magnetic fields for the source free region can be written as a 

weighted sum of spherical vector wave functions 

 
𝐸⃗ (𝑟, 𝜃, ∅) =

𝑘

√𝜂
∑ ∑ 𝑎𝑚𝑛𝑀⃗⃗ 𝑚𝑛

(𝑐) + 𝑏𝑚𝑛𝑁⃗⃗ 𝑚𝑛
(𝑐)

𝑛

𝑚=−𝑛

∞

𝑛=1

  

 

(2.18) 

 

 
𝐻⃗⃗ (𝑟, 𝜃, ∅) = −𝑖𝑘√𝜂∑ ∑ 𝑎𝑚𝑛𝑁⃗⃗ 𝑚𝑛

(𝑐) + 𝑏𝑚𝑛𝑀⃗⃗ 𝑚𝑛
(𝑐)

𝑛

𝑚=−𝑛

∞

𝑛=1

 (2.19) 

   

where 𝑎𝑚𝑛 and 𝑏𝑚𝑛 are called spherical wave coefficients. 

2.1.1. Determination of Far Field Distribution from the Near Field Data 

Electric or magnetic fields at any distance from the antenna can now be determined 

through equations (2.18) and (2.19). As seen from these equations, they are valid for 

any value of 𝑟 (distance). However; in the reactive near field region which is the very 

close proximity of antenna, practical measurement cannot be taken without affecting 

the radiated field from AUT. Hence, near field measurements must be carried out at 

the distance which guarantees radiating near field conditions. When wave coefficients 

are found at measurement distance, they can be used to find field distribution at any 

distance.  

First of all, it must be stated that 𝑛 in the summation can be truncated at some value 𝑁 

for computational purposes. The reasons of this are discussed in detail in section 4.1. 

Then by measuring field distributions namely 𝐸⃗ (𝑟, 𝜃, ∅) and 𝐻⃗⃗ (𝑟, 𝜃, ∅) at a value of 

𝑟0 and with desired number of 𝜃 and ∅ discrete points, a system of linear equation is 

obtained from equations (2.18) and (2.19). However, these linear equations generally 

form a very big system and solving it for each 𝑚 and 𝑛 is unpractical. More efficient 
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way of finding these coefficients can be derived by taking advantage of orthogonality 

properties of the spherical wave functions. The details of these properties can be found 

in [17] and [16]. In addition; it is uncovered that in order to find both coefficients, 

performing measurements at the two tangential field components namely 𝜃 and ∅̂, is 

the most efficient method.  Briefly; to find 𝑎𝑚𝑛, dot product both sides of equation 

(2.18) with 𝑀⃗⃗ −𝑚𝑛
(𝑐)

 and to find 𝑏𝑚𝑛 dot product both sides of equation (2.18) with 𝑁⃗⃗ −𝑚𝑛
(𝑐)

 

and take the integral on the surface of measurement sphere. By implementing 

orthogonality properties of vector wave functions, following results are obtained. 

 
∫ ∫ 𝐸⃗ (𝑟0, 𝜃, ∅)

𝜋

𝜃=0

∙
2𝜋

∅=0

𝑀⃗⃗ −𝑚𝑛
(𝑐) sin 𝜃 𝑑𝜃 𝑑∅ = 𝑎𝑚𝑛{𝑧𝑛

(𝑐)(𝑘𝑟0)}
2 

 

(2.20) 

 

 
∫ ∫ 𝐸⃗ (𝑟0, 𝜃, ∅)

𝜋

𝜃=0

∙
2𝜋

∅=0

𝑁⃗⃗ −𝑚𝑛
(𝑐) sin 𝜃 𝑑𝜃 𝑑∅

= 𝑏𝑚𝑛 {
1

𝑟0
(
𝑑

𝑑𝑟
(𝑟𝑧𝑛

(𝑐)(𝑘𝑟))|
𝑟=𝑟0

)}

2

 

 

(2.21) 

 

By solving the integrals on the left hand side of equations (2.20) and (2.21) 

numerically, wave coefficients are obtained for each 𝑚 and 𝑛. Finally, electric field 

for the required distance from the antenna (𝑟1) can be found by putting these 

coefficients and evaluating 𝑀⃗⃗ 𝑚𝑛
(𝑐)

 and 𝑁⃗⃗ 𝑚𝑛
(𝑐)

 functions at distance 𝑟1 in equation (2.18). 

In this work, 𝑒−𝑖𝜔𝑡 convention is used so in equations (2.20) and (2.21) 𝑐 = 3 

corresponds to outgoing wave and 𝑐 = 4 to incoming wave. In the practical 

measurements of this work, all sources are in the measurement sphere. Hence, 

outgoing waves will be measured and so 𝑐 = 3 will be used. Note also that radial 

functions have following asymptotic forms. 

 
𝑧𝑛
(3)(𝑘𝑟) = (−𝑖)𝑛+1

𝑒𝑖𝑘𝑟

𝑘𝑟
      𝑘𝑟 → ∞ 

 

(2.22) 

 

 1

𝑟

𝑑

𝑑𝑟
{𝑟𝑧𝑛

(3)(𝑘𝑟)} = (−𝑖)𝑛
𝑒𝑖𝑘𝑟

𝑘𝑟
      𝑘𝑟 → ∞ 

 

(2.23) 
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The asymptotic forms of radial functions are used in the evaluation of vector wave 

functions for the far field.  
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CHAPTER 3  

 

3. MEASUREMENT WITH PROBE CORRECTION 

 

In Chapter 2, electric field is obtained by calculating spherical wave coefficients. In 

these calculations, it is assumed that electric field value at some distance is known. 

Even if this can be achieved for an antenna with known electric field expression such 

as Hertz Dipole, in practice; measurements give complex amplitudes of the received 

signal. Measurement of the received signal is performed with an antenna which is 

generally called probe. Probe has own characteristics and the effects of it must be 

extracted to have accurate results. Probe effects can be measured with a calibration 

procedure and then characterized with probe receiving coefficients. By including these 

coefficients, the transmission formula can be generated. For the derivation of this 

formula, first Lorentz Reciprocity Theorem had been used in the literature. Later 

scattering matrix description of an antenna was built and used in the derivation of the 

transmission formula. In this chapter, initially scattering matrix description of an 

antenna is given and then derivation of transmission formula is shown. Note that for 

this purpose ‘Spherical Near-Field Antenna Measurements’ book which is edited by 

J.E. Hansen is followed [17]. 

3.1. Scattering Matrix Definition of the Antenna 

An antenna can be considered as multiport waveguide junction. While the port that is 

connected to generator and load can be considered as one of the ports, other ports can 

be considered as radiation ports which can be thought as they are connected to 

equivalent transmission line for every mode. We define 𝑣 and 𝑤 as incoming and 

outgoing waves complex amplitudes at the generator or load respectively. Also define 

𝑎 and 𝑏 as complex amplitudes of the incoming and outgoing spherical waves, 

respectively. Note that these spherical waves are outside the minimum sphere of the 
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antenna and 𝑎 and 𝑏 includes the modes of these waves. Then antenna with these wave 

amplitudes can be depicted as shown in Figure 3.1. 

 

Figure 3.1. Antenna with Scattering Point of View [17] 

Because, number of radiated spherical wave modes can be truncated at value 𝑁 as 

discussed in section 4.1, the following linear relationship which construct a matrix can 

be created. 

 [
𝛤 𝑅
𝑇 𝑆

] [
𝑣

𝑎
] = [

𝑤

𝑏
]  

 

(3.1) 

 

In equation (3.1); 𝛤 is the antenna reflection coefficient and it is a complex number, 

𝑅 represents the antenna receiving coefficients and it is a 1 x 𝑁 vector, 𝑇 represents 

the antenna transmitting coefficients and it is a 𝑁 x 1 vector, and 𝑆 represents the 
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antenna scattering coefficients and it is a 𝑁 x 𝑁 matrix. With expansion of the matrix 

following equations are obtained. 

 

𝛤𝑣 +∑𝑅𝑗𝑎𝑗

𝑁

𝑗=1

= 𝑤  

 

(3.2) 

 

 

𝑇𝑖𝑣 +∑𝑆𝑖𝑗𝑎𝑗

𝑁

𝑗=1

= 𝑏𝑖 , 𝑖 = 1, 2, … , 𝑁 (3.3) 

   

Consider the antenna in Figure 3.1 as receiver which is connected to a load. Let 

reflection coefficient between the antenna and load be 𝛤𝑙. Then, reflected signal from 

the antenna is defined as the reflection coefficient multiplied by received signal. 

 𝑣 = 𝛤𝑙𝑤  
 

(3.4) 

 

Putting equation (3.4) into equation (3.2) and solving for 𝑤 gives 

 

𝑤 =
1

1 − 𝛤𝑙𝛤
∑𝑅𝑗𝑎𝑗

𝑁

𝑗=1

 

 

(3.5) 

 

Expression for the receiving signal in terms of scattering matrix parameters is defined 

by equation (3.5). By the same way transmitting signal can be expressed for the 

antenna transmitting case but it is not necessary to show it in here because in the 

following section, probe is used as receiving antenna and transmission formula is 

written in terms of receiving signals. 

3.2. Derivation of the Transmission Formula 

Now, consider spherical near field measurement setup that includes an AUT and a  

probe. For derivation of the transmission formula, AUT is used as transmitting antenna 

and probe is used as receiving antenna. While AUT is put at the origin of (𝑥, 𝑦, 𝑧) 

coordinate system, probe is put at distance 𝐴 from the AUT origin which it is called 

as (𝑥’, 𝑦’, 𝑧’) coordinate system. Note also that probe is always pointing towards the 

origin of the test antenna throughout the measurement. Test antenna and probe 
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coordinate system with their minimum spheres are shown in Figure 3.2. Minimum 

sphere is defined as the smallest sphere with center at the origin of the coordinate 

system and encloses the antenna. 

 

Figure 3.2. Test Antenna and Probe Coordinate Systems [17] 

The electric field expression of the radiated field of the transmitting antenna is 

considered. Before that following notation simplifications are used to reduce the 

formulation. 𝐹 𝑠𝑚𝑛
(𝑐)

 is used instead of vector wave functions 𝑀⃗⃗ 𝑚𝑛
(𝑐)

 and 𝑁⃗⃗ 𝑚𝑛
(𝑐)

 with   

𝐹 1𝑚𝑛
(𝑐) = 𝑀⃗⃗ 𝑚𝑛

(𝑐)  and 𝐹 2𝑚𝑛
(𝑐) = 𝑁⃗⃗ 𝑚𝑛

(𝑐)
. In addition; 𝑞𝑠𝑚𝑛 will be used instead of wave 

coefficients 𝑎𝑚𝑛 and 𝑏𝑚𝑛 with 𝑞1𝑚𝑛 = 𝑎𝑚𝑛 and 𝑞2𝑚𝑛 = 𝑏𝑚𝑛. Now, the radiated 

electric field can be expressed as 

 
𝐸⃗ (𝑟, 𝜃, ∅) =

𝑘

√𝜂
∑ 𝑞𝑠𝑚𝑛𝐹 𝑠𝑚𝑛

(3) (𝑟, 𝜃, ∅)

𝑠𝑚𝑛

, 𝑟 > 𝑟0 

  

(3.6) 

 

 

where 𝑟0 is the radius of the minimum sphere surround the transmitting antenna. First 

of all, since this field is received by a probe, it will be expressed in the probe 
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coordinate system which is denoted by primed variables. For this purpose, rotations 

and translation for the coordinate system are necessary. Mode indices for the 

transmitting antenna coordinate system is denoted as 𝑠,𝑚, 𝑛 and for the coordinate 

system of the receiving antenna, 𝜎, 𝜇, 𝜈 indices will be used. 

Transmitting antenna coordinate system (𝑥, 𝑦, 𝑧) can be transformed to same 

orientation with the probe coordinate system (𝑥’, 𝑦’, 𝑧’) by successive three rotations. 

As first step, unprimed coordinate system is rotated about its z-axis by an angle ∅0 as 

shown in Figure 3.3. 

 

 

Figure 3.3. Rotation about z-axis with an angle ∅0 [17]  

Denoting the new coordinate system by (𝑥1, 𝑦1, 𝑧1), the vector wave functions in new 

coordinate system are expressed as 

 𝐹 𝑠𝑚𝑛
(3) (𝑟, 𝜃, ∅) = 𝑒𝑖𝑚∅0𝐹 𝑠𝑚𝑛

(3) (𝑟1, 𝜃1, ∅1), 𝑟1 > 𝑟0 
 

(3.7) 

 

In the second step, (𝑥1, 𝑦1, 𝑧1) coordinate system is rotated about the 𝑦1 axis by an 

angle 𝜃0 as shown in Figure 3.4. 
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Figure 3.4. Rotation about y1-axis with an angle 𝜃0 [17] 

Denoting the new coordinate system by (𝑥2, 𝑦2, 𝑧2), the vector wave functions in new 

coordinate system are expressed as 

 
𝐹 𝑠𝑚𝑛
(3) (𝑟1, 𝜃1, ∅1) = ∑ 𝑑𝜇𝑚

𝑛 (𝜃0)

𝑛

𝜇=−𝑛

𝐹 𝑠𝜇𝑛
(3)(𝑟2, 𝜃2, ∅2), 𝑟2 > 𝑟0 

 

(3.8) 

 

where 𝑑𝜇𝑚
𝑛 (𝜃0) are rotation coefficients. Note that 𝑧2 axis becomes parallel to the 𝑧’ 

axis as a result of this rotation step. 

In the final step of rotation, (𝑥2, 𝑦2, 𝑧2) coordinate system is rotated with respect to 𝑧2 

axis by an angle 𝜒0 as shown in Figure 3.5. Note that this rotation is required for 

polarization.  
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Figure 3.5. Rotation about z2-axis with an angle 𝜒0 [17] 

Denoting the new coordinate system as (𝑥3, 𝑦3, 𝑧3), the vector wave functions in new 

coordinate system are expressed as 

 𝐹 𝑠𝜇𝑛
(3)(𝑟2, 𝜃2, ∅2) = 𝑒

𝑖𝜇𝜒0𝐹 𝑠𝜇𝑛
(3)(𝑟3, 𝜃3, ∅3), 𝑟3 > 𝑟0  

 

(3.9) 

 

Rotations about all axes (𝜒, 𝜃, ∅) are completed. The coordinate axes of (𝑥3, 𝑦3, 𝑧3) 

are now same orientation with the coordinate axes of (𝑥’, 𝑦’, 𝑧’). In this situation, 

𝑥’ = 𝑥3, 𝑦’ = 𝑦3 and 𝑧’ = 𝑧3 + 𝐴 so translation about the 𝑧3 axis by distance 𝐴 is 

required to obtain the spherical harmonic expansion of the field radiated by the AUT 

in the probe coordinate system. Figure 3.6 shows this translation step.  

 

 

Figure 3.6. Translation in positive direction of z3-axis [17] 
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With translation step, (𝑥′, 𝑦′, 𝑧′) coordinate system can be expressed with (𝑥3, 𝑦3, 𝑧3) 

coordinate system as given in (3.10). 

 

𝐹 𝑠𝜇𝑛
(3)(𝑟3, 𝜃3, ∅3) = ∑∑ 𝐶𝜎𝜇𝜈

𝑠𝑛(3)(𝑘𝐴)

𝑁𝑟

𝜈=|𝜇|
𝜈≠0

𝐹 𝜎𝜇𝜈
(1) (𝑟′, 𝜃′, ∅′)

2

𝜎=1

,

                                                                      𝑟′ < 𝐴 − 𝑟0 
 

(3.10) 

 

Equation (3.10) is a finite sum since 𝑟3 > 𝑟0 means that only standing waves with 

𝑗𝑛(𝑘𝑟) functions occur. Furthermore, standing waves can be represented as sum of 

incoming and outgoing waves. 

 
𝐹 𝜎𝜇𝜈
(1) (𝑟′, 𝜃′, ∅′) =

1

2
 ( 𝐹 𝜎𝜇𝜈

(3) (𝑟′, 𝜃′, ∅′)  + 𝐹 𝜎𝜇𝜈
(4) (𝑟′, 𝜃′, ∅′)) 

 

(3.11) 

 

Keeping this and by substituting equations in the reverse direction starting from (3.10) 

going to (3.7), vector wave functions in the transmitting antenna coordinate system 

are expressed in the probe coordinate system as 

 𝐹 𝑠𝑚𝑛
(3) (𝑟, 𝜃, ∅)

=
1

2
∑𝑒𝑖𝑚∅0

𝜎𝜇ν

𝑑𝜇𝑚
𝑛 (𝜃0)𝑒

𝑖𝜇𝜒0𝐶𝜎𝜇𝜈
𝑠𝑛(3)(𝑘𝐴)( 𝐹 𝜎𝜇𝜈

(3) (𝑟′, 𝜃′, ∅′)  

+ 𝐹 𝜎𝜇𝜈
(4) (𝑟′, 𝜃′, ∅′)) 

 

(3.12) 

 

Since, vector wave functions are expressed in the primed coordinate system, by 

substituting this expression in equation (3.6), the electric field radiated by the AUT 

can be written in the primed coordinate system as 

 𝐸⃗ (𝑟, 𝜃, ∅)

=
𝑘

√𝜂
∑

1

2
𝑞𝑠𝑚𝑛𝑒

𝑖𝑚∅0𝑑𝜇𝑚
𝑛 (𝜃0)𝑒

𝑖𝜇𝜒0𝐶𝜎𝜇𝜈
𝑠𝑛(3)(𝑘𝐴) ( 𝐹 𝜎𝜇𝜈

(3) (𝑟′, 𝜃′, ∅′)  
𝑠𝑚𝑛
𝜎𝜇𝜈

+ 𝐹 𝜎𝜇𝜈
(4) (𝑟′, 𝜃′, ∅′))  

 

(3.13) 

 

As discussed at the beginning of this chapter; complex signal is received through probe 

in practical measurement. Hence, expression for the receiving signal in equation (3.5) 

that is derived in section 3.1 can be used. However, since the probe and load can be 
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assumed as perfectly matched, the reflection coefficient 𝛤𝑙 in the equation is zero.  

Then, by omitting summation received signal (𝑤) can be described as 

 𝑤 = 𝑅𝑎  
 

(3.14) 

 

where 𝑅 is the probe receiving coefficient vector 𝑅𝜎𝜇𝜈 and 𝑎 is the vector of mode 

coefficients of the incoming signal 𝑎𝜎𝜇𝜈 where 

 
𝑎𝜎𝜇𝜈 =

1

2
∑ 𝑞𝑠𝑚𝑛𝑒

𝑖𝑚∅0

𝑠𝑚𝑛

𝑑𝜇m
𝑛 (𝜃0)𝑒

𝑖𝜇𝜒0𝐶𝜎𝜇𝜈
𝑠𝑛(3)(𝑘𝐴) 

 

(3.15) 

 

Note also that incident modes are represented by the 𝐹 𝜎𝜇𝜈
(4) (𝑟′, 𝜃′, ∅′) vector wave 

functions and 𝑎𝜎𝜇𝜈 are the complex amplitudes of these vector wave functions. 

Because reflected signals between the probe and the AUT is assumed negligible, as 

second assumption 𝑎𝜎𝜇𝜈 are not changed by these reflections. 

Finally by omitting subscript 0 from (𝜒0, 𝜃0, ∅0) and substituting equation (3.15) into 

equation (3.14), the signal received by the probe can be written as 

 
𝑤(𝐴, 𝜒, 𝜃, ∅) =

1

2
∑𝑞𝑠𝑚𝑛𝑒

𝑖𝑚∅

𝑠𝑚𝑛
𝜎𝜇𝜈

𝑑𝜇𝑚
𝑛 (𝜃)𝑒𝑖𝜇𝜒𝐶𝜎𝜇𝜈

𝑠𝑛(3)(𝑘𝐴)𝑅𝜎𝜇𝜈 

 

(3.16) 

 

Equation (3.16) is the desired transmission formula. In this equation, 𝑑𝜇𝑚
𝑛 (𝜃) and 

𝐶𝜎𝜇𝜈
𝑠𝑛(3)(𝑘𝐴) are calculated for a given 𝜃 and 𝐴 by using the formulas given in 

Appendix A & B. Moreover, it can be expressed as in equation (3.18) by representing 

the probe response constant as 

 
𝑃𝑠𝜇𝑛(𝑘𝐴) =

1

2
∑𝐶𝜎𝜇𝜈

𝑠𝑛(3)(𝑘𝐴)𝑅𝜎𝜇𝜈
𝜎𝜈

  

 

(3.17) 

 

 𝑤(𝐴, 𝜒, 𝜃, ∅) =∑𝑞𝑠𝑚𝑛𝑒
𝑖𝑚∅

𝑠𝑚𝑛
𝜇

𝑑𝜇𝑚
𝑛 (𝜃)𝑒𝑖𝜇𝜒𝑃𝑠𝜇𝑛(𝑘𝐴)  

 

(3.18) 
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𝑤(𝐴, 𝜒, 𝜃, ∅) are the received signals that are obtained from the measurement. Only 

unknowns in the equation are 𝑞𝑠𝑚𝑛 wave coefficients of the AUT. An equation is 

obtained for every measurement point (𝜒𝑗 , 𝜃𝑗 , ∅𝑗). Measurement is taken at as many 

discrete points as required by the number of modes. Then, system of linear equations 

can be constituted and solved directly. However, there is another method which is 

used mostly in practical cases [17]. Briefly, using orthogonality of the functions on 

the left hand side of equation (3.15), for every discrete point (𝜒, 𝜃, ∅) transmission 

formula is brought to form in equation (4.13) and by solving these as shown in (4.15), 

transmission wave coefficients are found. This solution is described in the next 

section. After wave coefficients are found, parameters on the left hand side of equation 

are all known and can be calculated for desired points of  (𝜒, 𝜃, ∅). Then signal at the 

given distance is found only by summation.𝑞𝑠𝑚𝑛  

3.3. Solution of the Transmission Formula 

Solution of the transmission formula to find the spherical wave coefficients can be 

implemented in three steps. Orthogonality of the exponential function, which is 

defined in equation (3.19), for (𝜒) and (∅) variables is used. 

 

∫ 𝑒𝑖(𝑚−𝑚
′)∅𝑑∅

2𝜋

0

= 2𝜋𝛿𝑚𝑚′   

 

(3.19) 

 

 For (𝜃) variable, orthogonality of the rotation coefficient 𝑑𝜇𝑚
𝑛 (𝜃), which is defined 

in equation (3.20), is employed. 

 

∫𝑑𝜇𝑚
𝑛 (𝜃)𝑑𝜇𝑚

𝑛′ (𝜃) sin 𝜃 𝑑𝜃

𝜋

0

=
2

2𝑛 + 1
𝛿𝑛𝑛′   

 

(3.20) 

 

3.3.1. Solution in chi (𝝌) 

The transmission formula (3.18) can be written as 
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𝑤(𝐴, 𝜒, 𝜃, ∅) = ∑ 𝑤𝜇(𝐴, 𝜃, ∅)𝑒
𝑖𝜇𝜒

𝜈𝑚𝑎𝑥

𝜇=−𝜈𝑚𝑎𝑥

  

 

(3.21) 

 

where 𝜈𝑚𝑎𝑥 is the truncation value for the probe which can be calculated using 

equation (4.1) as 𝜈𝑚𝑎𝑥 = 𝑘𝑟𝑝 + 𝑛1 where 𝑟𝑝 is the radius of the probe minimum 

sphere. Then 𝑤𝜇(𝐴, 𝜃, ∅) in equation (3.21) is 

 

𝑤𝜇(𝐴, 𝜃, ∅) =∑∑ ∑ 𝑞𝑠𝑚𝑛𝑒
𝑖𝑚∅𝑑𝜇𝑚

𝑛 (𝜃)𝑃𝑠𝜇𝑛(𝑘𝐴)

𝑛

𝑚=−𝑛

𝑁

𝑛=1

2

𝑠=1

  

 

(3.22) 

 

In equation (3.21), 𝑤𝜇(𝐴, 𝜃, ∅) are finite Fourier series coefficients of 𝑤(𝐴, 𝜒, 𝜃, ∅) in 

chi (𝜒). Equation (3.21) can be solved by multiplying both sides with 𝑒−𝑖𝜇
′𝜒 and 

integrating from 0 to 2𝜋 with respect to (𝜒) and then using exponential orthogonality, 

which is given in (3.19), following result is obtained. 

 

∫ 𝑤(𝐴, 𝜒, 𝜃, ∅)𝑒−𝑖𝜇
′𝜒𝑑𝜒

2𝜋

0

= ∫ ∑ 𝑤𝜇(𝐴, 𝜃, ∅)𝑒
𝑖(𝜇−𝜇′)𝜒

𝜈𝑚𝑎𝑥

𝜇=−𝜈𝑚𝑎𝑥

𝑑𝜒

2𝜋

0

   

= 2𝜋𝑤𝜇′(𝐴, 𝜃, ∅) 
 

(3.23) 

 

Then substituting 𝜇 instead of 𝜇′ for convenience results 

 

𝑤𝜇(𝐴, 𝜃, ∅) =
1

2𝜋
∫ 𝑤(𝐴, 𝜒, 𝜃, ∅)𝑒−𝑖𝜇𝜒𝑑𝜒

2𝜋

0

  

 

(3.24) 

 

where 𝜇 = −𝜈𝑚𝑎𝑥 , … , 0, … , 𝜈𝑚𝑎𝑥. Note that it has the same form as in (4.13) which 

𝑤𝜇(𝐴, 𝜃, ∅) is the Fourier transform of the measured data 𝑤(𝐴, 𝜒, 𝜃, ∅). Hence, it can 

be found using Discrete Fourier Transformation. 

 𝑤𝜇(𝐴, 𝜃, ∅)|𝜇 =  0,1, … , 𝜈𝑚𝑎𝑥, −𝜈𝑚𝑎𝑥, … , −1

= 𝐼𝐷𝐹𝑇{𝑤(𝐴, 𝑗Δ𝜒, 𝜃, ∅)|𝑗 = 0,1, … , 𝐽𝜒 − 1} 
 

(3.25) 

 

where 𝐽𝜒 is the number of sample points in 𝜒. 
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3.3.2. Solution in phi (∅) 

The transmission formula in equation (3.22) can be written as 

 
𝑤𝜇(𝐴, 𝜃, ∅) = ∑ 𝑤𝜇𝑚(𝐴, 𝜃)𝑒

𝑖𝑚∅

𝑛

𝑚=−𝑛

  

 

(3.26) 

 

where 

 

𝑤𝜇𝑚(𝐴, 𝜃) =∑ ∑ 𝑞𝑠𝑚𝑛𝑑𝜇𝑚
𝑛 (𝜃)𝑃𝑠𝜇𝑛(𝑘𝐴)

𝑁

𝑛=|𝑚|
(𝑛≠0)

2

𝑠=1

  

 

(3.27) 

 

In equation (3.27), 𝑤𝜇𝑚(𝐴, 𝜃) are finite Fourier series coefficients of 𝑤𝜇(𝐴, 𝜃, ∅) in 

phi (∅). Thus, it can be solved by the same way which is employed for chi and 

following result is obtained. 

 

𝑤𝜇𝑚(𝐴, 𝜃) =
1

2𝜋
∫ 𝑤𝜇(𝐴, 𝜃, ∅)𝑒

−𝑖𝑚∅𝑑∅

2𝜋

0

  

 

(3.28) 

 

where 𝑚 = −𝑛,… , 0, … , 𝑛. Note that again it has the same form as in (4.13) which 

𝑤𝜇𝑚(𝐴, 𝜃) is the Fourier transform of the 𝑤𝜇(𝐴, 𝜃, ∅). Hence, it can be found using 

Discrete Fourier Transformation. 

 𝑤𝜇𝑚(𝐴, 𝜃)|𝑚 =  0,1, … , 𝑁,−𝑁,… ,−1

= 𝐼𝐷𝐹𝑇{𝑤𝜇(𝐴, 𝜃, 𝑗Δ∅)|𝑗 = 0,1, … , 𝐽∅ − 1}  
 

(3.29) 

 

where 𝐽∅ is the number of sample points in ∅. 

3.3.3. Solution in theta (𝜽) 

The transmission formula in equation (3.27) can be written as 

 

𝑤𝜇𝑚(𝐴, 𝜃) = ∑ 𝑤𝜇𝑚
𝑛 (𝐴)𝑑𝜇𝑚

𝑛 (𝜃)

𝑁

𝑛=|𝑚|
(𝑛≠0)

 (3.30) 

 

where 



 

 

 

23 

 

 

𝑤𝜇𝑚
𝑛 (𝐴) =∑𝑞𝑠𝑚𝑛𝑃𝑠𝜇𝑛(𝑘𝐴)

2

𝑠=1

  

 

(3.31) 

 

In equation (3.30), 𝑤𝜇𝑚
𝑛 (𝐴) are finite Fourier series coefficients of 𝑤𝜇𝑚(𝐴, 𝜃) in 

theta (𝜃). Equation (3.30) can be solved by multiplying both sides with 𝑑𝜇𝑚
𝑛′ (𝜃) sin 𝜃 

and integrating from 0 to 𝜋 with respect to (𝜃) and then using orthogonality of the 

rotation function, which is given in (3.20), following result is obtained. 

 

𝑤𝜇𝑚
𝑛 (𝐴) =

2𝑛 + 1

2
∫𝑤𝜇𝑚(𝐴, 𝜃)𝑑𝜇𝑚

𝑛 (𝜃) sin 𝜃 𝑑𝜃

𝜋

0

 
(3.32) 

 

Rotation coefficient can be expressed as the finite Fourier series (3.33). 

 
𝑑𝜇𝑚
𝑛 (𝜃) = 𝑖𝜇−𝑚 ∑ 𝛥𝑚′𝜇

𝑛 𝛥𝑚′𝑚
𝑛 𝑒−𝑖𝑚

′𝜃

𝑛

𝑚′=−𝑛

  

 

(3.33) 

 

where 𝛥𝑚′𝜇
𝑛  and 𝛥𝑚′𝑚

𝑛  are constants which are defined by (A.4). Now, 𝑤𝜇𝑚
𝑛 (𝐴) can 

be determined by evaluating the integral from samples of 𝑤𝜇𝑚(𝐴, 𝜃). However,  

interval of theta in 𝑤𝜇𝑚(𝐴, 𝜃) is defined only from 0 to 𝜋. Even if integrand is not 

periodic with these samples, 𝑤𝜇𝑚(𝐴, 𝜃) can be extended into 𝜋 < 𝜃 < 2𝜋 as 

 

𝑤̃𝜇𝑚(𝐴, 𝜃) = {

𝑤𝜇𝑚(𝐴, 𝜃), 0 ≤ 𝜃 ≤ 𝜋       

𝑤𝜇𝑚(𝐴, 2𝜋 − 𝜃), 𝜋 < 𝜃 < 2𝜋 𝜇 −𝑚 𝑒𝑣𝑒𝑛

−𝑤𝜇𝑚(𝐴, 2𝜋 − 𝜃), 𝜋 < 𝜃 < 2𝜋 𝜇 −𝑚 𝑜𝑑𝑑

 

 

(3.34) 

 

Functions 𝑤̃𝜇𝑚(𝐴, 𝜃) and 𝑑𝜇𝑚
𝑛 (𝜃) have same parity and sin 𝜃 is odd function. 

Therefore, integration value is zero if it is evaluated from 0 to 2𝜋 by using 𝑤̃𝜇𝑚(𝐴, 𝜃) 

instead of 𝑤𝜇𝑚(𝐴, 𝜃). Because of this and since 𝑤̃𝜇𝑚(𝐴, 𝜃) is periodic function of 𝜃 

with 2𝜋, it can be used in the integral by expanding into the finite Fourier series (3.35). 

 
𝑤̃𝜇𝑚(𝐴, 𝜃) = ∑ 𝑏𝑙

𝜇𝑚
𝑒𝑖𝑙𝜃

𝑁

𝑙=−𝑁

0 ≤ 𝜃 < 2𝜋  

 

(3.35) 

 

Eventually, 𝑤𝜇𝑚
𝑛 (𝐴) is evaluated by inserting (3.35) and (3.33) into (3.32) as 
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 𝑤𝜇𝑚
𝑛 (𝐴)

=
2𝑛 + 1

2
∫ ∑ 𝑏𝑙

𝜇𝑚
𝑒𝑖𝑙𝜃

𝑁

𝑙=−𝑁

𝑖𝜇−𝑚 ∑ 𝛥𝑚′𝜇
𝑛 𝛥𝑚′𝑚

𝑛 𝑒−𝑖𝑚
′𝜃

𝑛

𝑚′=−𝑛

sin 𝜃 𝑑𝜃

𝜋

0

=
2𝑛 + 1

2
𝑖𝜇−𝑚 ∑ 𝑏𝑙

𝜇𝑚

𝑁

𝑙=−𝑁

∑ 𝛥𝑚′𝜇
𝑛 𝛥𝑚′𝑚

𝑛

𝑛

𝑚′=−𝑛

∫𝑒𝑖(𝑙−𝑚
′)𝜃 sin 𝜃 𝑑𝜃

𝜋

0

 

(3.36) 

 

 

 The integral in (3.36) can be evaluated by using 

 

∫𝑒𝑖(𝑙−𝑚
′)𝜃 sin 𝜃 𝑑𝜃

𝜋

0

=

{
 
 

 
 ±𝑖

𝜋

2
, (𝑙−𝑚′) = ±1

0, |𝑙−𝑚′| = 3,5,7…
2

1 − (𝑙−𝑚′)2
|𝑙−𝑚′| = 0,2,4…

  

 

(3.37) 

 

Hence, only unknowns in (3.36) are 𝑏𝑙
𝜇𝑚

 which are the Fourier coefficients of 

𝑤̃𝜇𝑚(𝐴, 𝜃). Then it can be found using Discrete Fourier Transformation (3.38). 

 𝑏𝑙
𝜇𝑚
|𝑙 =  0,1, … ,𝑁,−𝑁,… ,−1

= 𝐼𝐷𝐹𝑇{𝑤̃𝜇𝑚(𝐴, 𝑗Δ𝜃)|𝑗 = 0,1, … , 𝐽𝜃 − 1}  
 

(3.38) 

 

where 𝐽𝜃 is the number of sample points in 𝜃.  

𝑤𝜇𝑚
𝑛 (𝐴) are found for indices 𝑛,𝑚, 𝜇. When equation (3.31) is expanded by 

remembering 𝑞1𝑚𝑛 = 𝑎𝑚𝑛 and 𝑞2𝑚𝑛 = 𝑏𝑚𝑛 

 𝑤𝜇𝑚
𝑛 (𝐴) = 𝑎𝑚𝑛𝑃1𝜇𝑛(𝑘𝐴) + 𝑏𝑚𝑛𝑃2𝜇𝑛(𝑘𝐴) 

 

(3.39) 

 

There will be equations as much unknowns as in (3.39) with respect to mode indices 

𝑛,𝑚, 𝜇. Then, wave coefficients can be determined by solving system of equations. 

Note that linearly polarized probe, which has only azimuthal mode with 𝜇 = ±1, is 

generally used in practical measurements. Therefore, equation (3.39) reduces to two 

equations with two unknowns 𝑎𝑚𝑛 and 𝑏𝑚𝑛.  

 𝑤−1𝑚
𝑛 (𝐴) = 𝑎𝑚𝑛𝑃1−1𝑛(𝑘𝐴) + 𝑏𝑚𝑛𝑃2−1𝑛(𝑘𝐴)  

 

(3.40) 

 

 𝑤1𝑚
𝑛 (𝐴) = 𝑎𝑚𝑛𝑃11𝑛(𝑘𝐴) + 𝑏𝑚𝑛𝑃21𝑛(𝑘𝐴)  (3.41) 
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Consequently, equations (3.40) and (3.41) can be solved for each 𝑚, 𝑛 pair to 

determine the wave coefficients. 
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CHAPTER 4  

 

4. NUMERICAL CONSIDERATION OF THE EXPANSION AND MEASUREMENT 

 

4.1. Truncation of Modes 

Spherical wave functions have some properties with respect to distance (𝑟). 

Dependence on the distance is due to the radial functions 𝑧𝑛
(𝑐)(𝑘𝑟) and 

1

𝑟

𝑑

𝑑𝑟
{𝑟𝑧𝑛

(𝑐)(𝑘𝑟)} 

in the spherical wave functions. These radial functions have cutoff properties, i.e., they 

decay rapidly for 𝑟 larger than cutoff distance. Cutoff distance of these functions is 

approximately 
𝑛

𝑘
. An antenna that can be enclosed by a minimum sphere of radius 𝑟0 

may in principle radiate infinitely many modes. However, modes with 𝑛 > 𝑘𝑟0 are 

rapidly attenuated because of cutoff property of the radial functions. As a result, only 

modes with 𝑛 < 𝑘𝑟0 have importance and field expressions can be truncated at a value 

𝑛 = 𝑁. In general, truncation value 𝑁 can be defined by including accuracy factor 𝑛1: 

 𝑁 = 𝑘𝑟0 + 𝑛1  
 

(4.1) 

 

For practical purposes, 𝑛1 is usually taken as 10. Nevertheless, higher values can be 

taken to increase accuracy. Note that 𝑚 takes values 0, 1, 2, … , 𝑛. Consequently, 

truncation of modes 𝑛 means also truncation of modes 𝑚. By using this formula, 

truncation of the n in the summation can be done.  

As a final remark, Ludwig [19] worked on the truncation value of N. He computed the 

radiated power from the antenna with respect to 𝑛. It is found that more than 99.9 

percent of the radiated power is contained by the modes with 𝑛 ≤ 𝑘𝑟0. Works on the 

truncation of modes are also performed in this study and results are given in Chapter 5. 
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4.2. Numerical Integration Method 

Any piecewise continuous and periodic function with 2𝜋 can be expressed by Fourier 

series expansion; 

 
𝑓(∅) = ∑ 𝑐𝑘𝑒

𝑗𝑘∅

∞

𝑘=−∞

  

 

(4.2) 

 

where coefficients 𝑐𝑘 are computed as 

 
𝑐𝑘 =

1

2𝜋
 ∫ 𝑓(∅)

2𝜋

0

𝑒−𝑗𝑘∅𝑑∅, 𝑘 =  … ,−1,0,1… 

 

(4.3) 

 

In practice, only 𝑄 samples denoted by 𝑓(𝑙Δ∅), 𝑙 = 0,1,2… , 𝑄 − 1 with Δ∅ = 2𝜋/𝑄, 

are available and the requirement is to obtain Fourier series coefficients, 𝑐𝑘, from these 

samples. If 𝑓(∅) is strictly band limited, which means 𝑐𝑘 = 0 for |𝑘| > 𝑁, Fourier 

series contains only finite number of terms, i.e.,  

 

𝑓(∅) = ∑ 𝑐𝑘𝑒
𝑗𝑘∅

𝑁

𝑘=−𝑁

  

 

(4.4) 

 

If 𝑓(∅) is not strictly band limited but terms with |𝑘| ≤ 𝑁 are dominant, truncated 

series in equation (4.4) becomes an approximation. 

 

𝑓(∅) = ∑ 𝑐𝑘𝑒
𝑗𝑘∅

∞

𝑘=−∞

≅ ∑ 𝑐𝑘𝑒
𝑗𝑘∅

𝑁

𝑘=−𝑁

 

 

(4.5) 

 

By inserting sample points instead of ∅, 

 
𝑓(𝑙Δ∅) = ∑ 𝑐𝑘𝑒

𝑗𝑘𝑙Δ∅, 𝑙 = 0,1, … , 𝑄 − 1 

∞

𝑘=−∞

 

 

(4.6) 

 

𝑘 in equation (4.6) can be written as, 

 𝑘 = 𝑛 + 𝑟𝑄, 𝑛 = 0,1, … , 𝑄 − 1, 𝑟 = ⋯ ,−1,0,1… 
 

(4.7) 
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Rearranging the infinite sum in equation (4.6) in groups of 𝑄 consecutive terms using  

indexing scheme in (4.7) yields,  

 

𝑓(𝑙Δ∅) =  ∑ ∑ 𝑐𝑛+𝑟𝑄

∞

𝑟=−∞

𝑄−1

𝑛=0

𝑒𝑗(𝑛+𝑟𝑄)𝑙Δ∅ , 𝑙 = 0,1, … , 𝑄 − 1  

 

(4.8) 

 

Since Δ∅ = 2𝜋/𝑄 ,  𝑒𝑗(𝑟𝑄)𝑙Δ∅ = 𝑒
𝑗(𝑟𝑄)𝑙

2𝜋

𝑄 = 1, equation (4.8) reduces to, 

 

𝑓(𝑙Δ∅) =  ∑ 𝑒𝑗𝑛𝑙Δ∅ ∑ 𝑐𝑛+𝑟𝑄 , 𝑙 = 0,1, … , 𝑄 − 1 

∞

𝑟=−∞

𝑄−1

𝑛=0

 

 

(4.9) 

 

Defining aliased coefficient 𝑐𝑛̅ as 

 
𝑐𝑛̅ = ∑ 𝑐𝑛+𝑟𝑄

∞

𝑟=−∞

, 𝑛 = 0,1, … , 𝑄 − 1   

 

(4.10) 

 

the samples of 𝑓(∅) can be expressed as 

 

𝑓(𝑙Δ∅) =  ∑ 𝑐𝑛̅𝑒
𝑗𝑛𝑙Δ∅, 𝑙 = 0,1, … , 𝑄 − 1

𝑄−1

𝑛=0

 

 

(4.11) 

 

Equation (4.11) is a set of 𝑄 linear equations at 𝑄 sample points for the 𝑄 

unknowns 𝑐𝑛̅. Actually, equation (4.11) is nothing but DFT and the coefficients 𝑐𝑛̅ are 

solved by using inverse DFT instead of solving the system of equations, i.e.,  

 

𝑐𝑛̅ =
1

𝑄
 ∑ 𝑓(𝑙Δ∅)𝑒−𝑗𝑛𝑙Δ∅, 𝑙 = 0,1, … , 𝑄 − 1

𝑄−1

𝑛=0

 

 

(4.12) 

 

Since 𝑐𝑘 is small for |𝑘| > 𝑁, we may assume that 𝑐𝑘 ≅ 𝑐𝑛̅ for |𝑘| ≤ 𝑁 and 𝑐𝑘 ≅ 0 

for |𝑘| > 𝑁 if  we choose a value 𝑄 > 2𝑁. 

 Now, consider the following integral; 

 
𝐼𝑚 =  

1

2𝜋
 ∫ 𝑓(∅)

2𝜋

0

𝑒−𝑗𝑚∅𝑑∅, 𝑚 =  −𝑁,… ,0, … ,𝑁 

 

(4.13) 
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For quasi-band limited 𝑓(∅), the integral has the same form as the integral in equation 

(4.3). Therefore, a very good approximation can be obtained using (4.12), that is: 

 

𝐼𝑚 ≅
1

𝑄
 ∑ 𝑓(𝑙Δ∅)𝑒−𝑗𝑚𝑙Δ∅, 𝑚 =  −𝑁,… ,0, … ,𝑁

𝑄−1

𝑙=0

  

 

(4.14) 

 

where 𝑄 = 2𝜋/Δ∅ . If trapezoidal rule with equal weights at all sample points is 

applied to the integral in (4.13), we also get equation (4.14). However, considering 

equation (4.14) as the inverse DFT operator is much more useful since the FFT 

algorithm can be applied resulting in much less computational load, [17]. 

 {𝐼0, 𝐼1, … , , 𝐼𝑁 , , 𝐼−𝑁 , … ,  𝐼−1 } = 𝐼𝐷𝐹𝑇{𝑓(𝑙Δ∅)|𝑙 = 0,1, … , 𝑄 − 1}  
 

(4.15) 
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CHAPTER 5  

 

5. APPLICATIONS AND RESULTS 

 

Computation of far field pattern from the near field data without probe correction is 

described in Chapter 2. In this chapter, we first discuss the verification of this method. 

For this purpose, known field expression of a 𝑧 directed Hertz Dipole located at the 

origin is used. In addition; different configurations have been tested by using 

coordinate rotation and translation of the Hertz Dipole. Furthermore; different 

numerical integration techniques have been used for calculation of these fields. 

Results and comparisons of them are discussed in this chapter. Finally; algorithm for 

the probe corrected case that is explained in Chapter 3 is tested. Using real antennas 

near field measurement data and probe receiving coefficients, far field patterns are 

obtained.  

5.1. Near Field to Far Field Transformation for the Hertz Dipole 

Hertz Dipole is an infinitesimal antenna excited by uniformly distributed current. Field 

distribution of Hertz dipole for any distance can be found easily. Hence; as a first step 

of verification of the transformation formula, field expression of the Hertz dipole is 

used. For the antenna shown in Figure 5.1, length l, which is much smaller than 

wavelength, carrying a current 𝐼0, oriented along the 𝑧 axis and located at the origin, 

fields expressions can be found as in equation (5.1) and equation (5.2) [20]. 
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Figure 5.1. z-oriented Hertz Dipole placed at the origin [21] 

 

 
𝐸⃗ = (1 −

1

𝑖𝑘𝑟
) (
𝜂𝐼0𝑙𝑒

𝑖𝑘𝑟

2𝜋𝑟2
cos 𝜃) 𝑟̂

+ (1 −
1

𝑖𝑘𝑟
−

1

(𝑘𝑟)2
) (
−𝑖𝜂𝑘𝐼0𝑙𝑒

𝑖𝑘𝑟

4𝜋𝑟
sin 𝜃)𝜃  

 

(5.1) 

 

 
𝐻⃗⃗ = (1 −

1

𝑖𝑘𝑟
) (
−𝑖𝑘𝐼0𝑙𝑒

𝑖𝑘𝑟

4𝜋𝑟
sin 𝜃) ∅̂ 

 

(5.2) 

 

For 𝑓 = 3 GHz, 𝐼0 = 1 A, 𝑙 = 0.001 m, which corresponds to much smaller value 

than the wavelength (0.1 m), and 𝑟 = 1 m, electric field expression can be computed 

as if it is near field measurement result for discrete 𝜃 values. Then using these data, 

spherical wave expansion coefficients are computed as explained in Chapter 2. As can 

be understood from the field expressions in equation (5.1) and equation (5.2), Hertz 

dipole radiates only TM mode waves. In addition, since it is located at the origin, it 

has ∅ symmetry. Hence, it is expected to have just values for 𝑚 = 0. Furthermore; 

Hertz dipole is infinitesimal antenna and because of this, its field expression has only 
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mode with 𝑛 = 1.  Therefore, only expected wave coefficient is 𝑏01 and others must 

be zero.  

Results are shown in Table 5.1 and Table 5.2. As expected; apart from 𝑏01, coefficients 

are almost zero. 

Table 5.1. TE Mode Wave Coefficients of the Hertz Dipole 

𝑎𝑚𝑛 𝑛 =  1 𝑛 =  2 

𝑚 =  −2 0 (−3.3 + 𝑗2.8)10−15 

𝑚 =  −1 (−13.6 + 𝑗0.54)10−15 (−0.25 + 𝑗2.9)10−16 

𝑚 =  0 (−0.4 − 𝑗10.9)10−18 (−58 + 𝑗0.05)10−18 

𝑚 =  1 (−11 − 𝑗0.73)10−15 (−0.9 − 𝑗26)10−17 

𝑚 =  2 0 (3.2 − 𝑗4.9)10−15 

 

Table 5.2. TM Mode Wave Coefficients of the Hertz Dipole 

𝑏𝑚𝑛 𝑛 =  1 𝑛 =  2 

𝑚 =  −2 0 (1.94 + 𝑗85.1)10−18 

𝑚 =  −1 (−36 − 𝑗6.1)10−17 (0.23 − 𝑗52)10−16 

𝑚 =  0 −242.396 (1.37 + 𝑗5.82)10−16 

𝑚 =  1 (−3 − 𝑗1.13)10−17 (−3.1 − 𝑗38.8)10−16 

𝑚 =  2 0 (−1.3 − 𝑗5.35)10−17 

 

After finding wave coefficients, far field pattern can be found. Far field expression of 

the electric field is given in equation (5.3). 

 
𝐸⃗ = (

𝑗𝑘𝜂𝐼0𝑙

4𝜋

𝑒−𝑗𝑘𝑟

𝑟
sin 𝜃) 𝜃 

 

(5.3) 

 

By using expression directly and using wave coefficients, far field distributions are 

obtained (Figure 5.2).  
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Figure 5.2. Far Field Pattern of Hertz Dipole  

As seen from Figure 5.2, far fields patterns are perfectly matched. 

5.2. Near Field to Far Field Transformation for the Hertz Dipole with Rotation 

and Translation 

In the previous section, wave coefficients for the 𝑧 oriented Hertz dipole located at the 

origin are found and far field has been determined from these coefficients. For this 

configuration of the antenna, it is seen that the only nonzero coefficient is 𝑏01. Hence, 

for numerical consideration and comparing the numerical integration techniques, it is 

better to have antenna which radiates more modes. In order to achieve this, some other 

type of antennas with analytically known field distribution can be used. Nevertheless; 

more flexible configuration can be established by rotation and translation of the Hertz 

Dipole. Field expressions of the Hertz Dipole can easily be modified for the rotation 

and translation. As a result, infinitely different radiation characteristics can be 
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obtained. Each of TE and TM or both with desired number of modes can be radiated. 

Therefore, transformation algorithm can be tested for lots of different cases.  (𝑟̂ 𝜃 ∅)̂ 

Beside testing transformation algorithm, truncation number given by equation (4.1) is 

verified. Integrals, in equations (2.20) and (2.21), are solved using different numerical 

integration techniques. Results are examined and comparisons are made. 

5.2.1. Tests for the Truncation Value 

Transformation algorithm is tested by locating the Hertz Dipole described in 

section 5.1 along the 𝑧 axis by distances (𝑑𝑒𝑙𝑡𝑎𝑧) 0.05 m, 0.1 m and 0.2 m. For these 

cases, it is expected that only TM modes exist and ∅ symmetry of the radiation are 

protected. Therefore, only values for 𝑚 = 0 are expected. However, since the antenna 

is moved along the 𝑧 axis, more 𝑛 modes are radiated. Radius of the smallest sphere 

enclosing all the sources can be taken as translation value (𝑟0 = 𝑑𝑒𝑙𝑡𝑎𝑧). Then, 

truncation value can be obtained using equation (4.1).  

For the frequency 𝑓 = 3 GHz, 𝑘 = 62.8 and setting 𝑛1 in equation (4.1) for the desired 

accuracy, following truncation values (𝑁) are obtained. 

Table 5.3. Truncation Values Obtained for the Translations 

Translation Distance 

(𝑑𝑒𝑙𝑡𝑎𝑧) 

Accuracy Factor 

(𝑛1) 

Truncation Value 

(𝑁) 

0.05 2 6 

0.1 3 10 

0.2 3 16 

0.3 4 23 

 

Percentages of the total radiated power of modes are shown in Figure 5.3. 
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Figure 5.3. Percentage of Total Radiated Power with respect to n 

As translation value is increased, radius of minimum sphere, that encloses all the 

sources, also increases. As a result, more modes are radiated and it can be seen clearly 

in Figure 5.3. It is also apparent that radiated powers are almost zero for the modes 

higher than the truncation values given in Table 5.3. Consequently, transformation 

algorithm and truncation value calculation in equation (4.1) are verified for these test 

cases.  

5.2.2. Test for Numerical Integration Methods 

In chapter 2, determination of the far field pattern from near field data is described. 

The most important calculation step in this method is finding the spherical wave 

coefficients which are given by equations (2.20) and (2.21). All functions in these 

equations are well defined. The only question arises in the calculation of the double 

integration. The first thing that comes to mind is to evaluate the integrals analytically. 

To do this, the electric field must be defined analytically. However, this does not apply 

to most practical cases. Measurements are taken at discrete points. Therefore, the 

solutions of these integrals can only be made numerically. There are lots of numerical 
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integration methods. However, there are advantages and disadvantages to each of them 

so deciding which method is the most efficient for our equation is important. First 

requirement from the method is being accurate and if possible exact. Other 

requirement is providing maximum accuracy with minimum number of data which is 

𝜃 and ∅ sample points for our case. In addition; number of function evaluations, which 

will correspond to the calculation time, should be kept at minimum. One of the most 

well-known numerical integration methods is Gauss Quadrature rule, for which by 

using 𝑁 sample points, can compute integrals of polynomial of degrees 2𝑁 − 1 or 

lower exactly [22]. However, sample points in Gauss Quadrature are fixed. They are 

irrational numbers and not equally spaced. Thus; adjusting probe accurately to these 

sample points is not possible. Nevertheless, this method can be used for the near field 

data obtained theoretically and efficiency can be compared with other methods. 

Newton Cotes Rules are also well-known and commonly used integration techniques. 

In these rules, integrand is approximated as Lagrange polynomial and evaluation of 

this polynomial is performed. As the degree of polynomial increases, integration 

methods take different names as Trapezoidal Rule, Simpson’s 1/3 Rule, Simpson’s 

3/8 rule, Boole’s Rule, etc. Normally one can expect that as higher order polynomial 

is used, accuracy is increased. However, it is not always the case. As polynomial 

degree increases, oscillations at the edges of intervals arise and it may lead to very 

high degradation in the accuracy. Instead, using low order approximation rules with 

dividing intervals into subintervals is very efficient method and it is known as 

composite rule. In composite rules, integrand in the given interval is divided into small 

pieces and approximation is applied for every subinterval. By this way, accuracy can 

be increased by using more sample points. Finally, adaptive quadrature techniques or 

methods such as Romberg integration violate the last expectation. When they are used, 

accuracy can be increased but in turn more function evaluations for the calculations 

are added and extra sample points may be required in the measurement. Therefore; to 

increase accuracy by keeping calculation steps and time at minimum, Composite 

Newton Cotes Rules with more sample points can be used instead of using these 

methods. In addition; Gaussian Quadrature, namely Gaussian Legendre Rule can be 
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used for theoretical works. These rules are implemented and results and comparisons 

are discussed in this part. Also note that 𝜃 and ∅ integrations are not evaluated 

separately, instead double integration has been used.   

As application, the configuration of the Hertz dipole given in section 5.2.1 with 

translation 0.1 m along 𝑧 axis is used. It was explained and observed that all the 

coefficients are zero except 𝑏0𝑛. Furthermore, for 0.1 m translation, truncation value 

of 𝑁 = 10 is obtained and verified experimentally. When equations (2.20) and (2.21) 

are considered, the functions 𝑀⃗⃗ −𝜇𝜈
(𝑐)

 and 𝑁⃗⃗ −𝜇𝜈
(𝑐)

 are defined for 𝜈 = 1,2…𝑁 and 𝜇 =

 −𝑁…− 1,0,1…𝑁. Hence; in the functions 𝑀⃗⃗ −𝜇𝜈
(𝑐)

 and 𝑁⃗⃗ −𝜇𝜈
(𝑐)

, there are 2𝑁 harmonics. 

Then, 𝐸⃗ (𝑟0, 𝜃, ∅) electric field in equations (2.20) and (2.21) also includes 2𝑁 

harmonics. Overall integrands in these equations are multiplication of the electric field 

and vector wave functions so it includes 4𝑁 harmonics. Although these integrands are 

not purely polynomial, if they are thought as 4𝑁 degree polynomials, then using Gauss 

Quadrature with 2𝑁 + 1 degree, exact result can be obtained. Since truncation value 

𝑁 is calculated as 10, sample points (quadrature points) with 2𝑁 + 1 = 21 can be 

starting value for tests. Firstly, 𝑏0𝑛 coefficients are found using Gauss Quadrature with 

sample points of 500 which result of coefficients converge with this sample point. 

Hence, they are called as 𝑏0𝑛_𝑒𝑥𝑎𝑐𝑡. Then, 𝑏0𝑛 coefficients are found using Gauss 

Quadrature and first four Newton Cotes Rules with 21 sample points. Percentage of 

relative errors, which are defined as 
|𝑏0𝑛−𝑏0𝑛_𝑒𝑥𝑎𝑐𝑡|

|𝑏0𝑛_𝑒𝑥𝑎𝑐𝑡|
x100, are calculated with respect to 

𝑛 and results are plotted in Figure 5.4 and Figure 5.5 separately because the differences 

between errors are too much. 
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Figure 5.4 Comparison of Gauss Quadrature and Trapezoidal Rule for 21 Sample Points 

 

Figure 5.5 Comparison of Simpson’s 1/3, 3/8 and Boole’s Rule for 21 Sample Points 



 

 

 

40 

 

Figure 5.4 and Figure 5.5 show that Gauss Quadrature gives the least error. Although, 

accuracy of the Trapezoidal rule is smaller than Gauss Quadrature, they are very close. 

However, errors are quite high at this number of sample points for Simpson’s 1/3, 

Simpson’s 3/8 and Boole’s rules. 

Secondly, sample points (quadrature points) are increased and reductions in errors are 

observed. While doing this, convergence rate of the integration methods can also be 

examined. By increasing sample points sufficiently for every integration rule, errors 

are decreased approximately to 10−3. Hence, required sample points for this error can 

be compared in Figure 5.6. Result of Boole’s Rule is given in Figure 5.7 because this 

error cannot be reached even increasing sample points to 500. 

 

Figure 5.6 Comparison of Gauss, Trapezoidal and Simpson’s 1/3 and Simpson’s 3/8 
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Figure 5.7 Boole’s Rule with Sample Point of 500 

First of all, results of Gauss Quadrature can be examined in Figure 5.4 and Figure 5.6. 

Percentage relative error is decreased approximately from 10−1 to 10−3 by just 

increasing sample point from 21 to 25. Required sample points to reach same error 

margin increases to 70 for Trapezoidal rule, 97 for Simpson’s 1/3 rule and 121 for 

Simpson’s 3/8 rule. As stated before increasing degree of approximating polynomial 

in the quadrature rule does not always provide more accuracy. Furthermore, it can be 

observed in Figure 5.7 that error is relatively high for Boole’s rule. As a result, the 

integral expressions in transformation equations cannot be computed effectively with 

Boole’s rule or the rule with higher order approximation polynomial. As mentioned 

previously, since sample points in Gauss Quadrature are irrational numbers and not 

equally spaced, it is not suitable for practical applications. Consequently; Trapezoidal 

rule provides the maximum accuracy with the minimum number of sample points. 

This is not surprising actually since it is found in section 4.2 that Trapezoidal rule 

gives exact result for the integral with periodic and band limited integrand. In addition; 
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considering inverse DFT operator same result is obtained with the Trapezoidal rule 

but using FFT algorithm results in much less computational load. Hence; FFT is used 

in the probe corrected algorithm. Results of them are given in the following section. 

5.3. Near Field to Far Field Transformation from Measured Data 

In this section, transformed far field patterns of the two antenna are investigated by 

using measured data of the antenna in the near field. The measurements of these 

antennas are performed in the spherical near field measurement set-up in the 

Department of Electrical and Electronics Engineering – Middle East Technical 

University (METU). The anechoic chamber was designed by ASYSOL which uses 

SNIFT algorithm by TICRA for the transformation. The far field patterns that are 

obtained from the developed algorithm with probe compensation in this work are 

compared to the patterns obtained TICRA’s SNIFT transformation algorithm.  

5.3.1. Results of the First AUT 

Radius of the first AUT is 0.5 m and it is measured at frequency of 7.5 GHz. Probe 

distance is set to 3.12 m from the antenna origin. Wave number at this frequency is 

𝑘 =
2𝜋

𝜆
≅ 157.1. If the radius of the minimum sphere surrounding the antenna is taken 

as radius of the antenna and omitting the accuracy factor, truncation value from 

equation (4.1) is found as 79. Sampling interval for this measurement was chosen as 

2.5°. Then, truncation value 𝑁 is equal to 72. After the near field data is obtained for 

these test parameters, far field transformation with TICRA (SNIFT) and algorithm 

developed in this study have been performed. For the ease of comparison, instead of 

3D plot, far field patterns for ∅ = 0° are given in Figure 5.8.  
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Figure 5.8. Far Field Pattern of First AUT 

As can be seen from Figure 5.8, far field patterns are in a good agreement with 

each other. Furthermore, total radiated power (𝑃) in watts can be found using wave 

coefficients as given in (5.4). 

 

𝑃 =
1

2
 ∑∑ ∑ |𝑞𝑠𝑚𝑛|

2 =
1

2
∑ ∑ |𝑎𝑚𝑛|

2 + |𝑏𝑚𝑛|
2

𝑛

𝑚=−𝑛

𝑁

𝑛=1

𝑛

𝑚=−𝑛

𝑁

𝑛=1

2

𝑠=1

 

 

(5.4) 

 

Then, radiated power for each mode of 𝑛 can be defined as 

 
𝑃𝑛 =

1

2
∑ |𝑎𝑚𝑛|

2 + |𝑏𝑚𝑛|
2

𝑛

𝑚=−𝑛

 

 

(5.5) 

 

𝑃𝑛 for the AUT is given with respect to 𝑛 in Figure 5.9.  



 

 

 

44 

 

 

Figure 5.9. Radiated Power of First AUT with respect to 𝑛 

Radiated power on the modes approaches to zero for 𝑛 higher than 58. Truncation 

value for the AUT was calculated as 79 and by choosing sampling interval of 2.5°, 

value of 𝑛 is truncated at 72. Therefore; as expected, almost all the radiated power is 

included using the truncation value formula. Studies have been done in the 

literature [19] and in this thesis show that the truncation formula works well. 

Nevertheless; it is recommended for each measurement to verify calculated value by 

observing the graph of radiated power with respect to 𝑛. 

5.3.2. Results of Second AUT 

Measured second AUT is smaller in size and operates at a higher frequency. The 

measurement frequency of the antenna is 12.7 GHz, radius is 0.315 m and 

measurement distance is taken as 2.5 m. Wave number at that frequency is k ≅ 266. 

By taking the radius of the minimum sphere surrounding the antenna as radius of the 
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antenna and accuracy factor as 𝑛1 = 10, truncation value from equation (4.1) is found 

as 94. When truncation number is selected as 100, sampling interval is set as 
180°

100
=

1.8°. Note that if 94 is selected directly, numerical accuracy of the sampling interval 

is impaired (
180°

94
= 1.91489… °). However; sampling interval for this measurement 

is halved (0.9°) in order to increase accuracy. Therefore, transformation is performed 

up to 𝑛 = 200. Far field patterns for ∅ = 0° can be seen in Figure 5.10. 

 

Figure 5.10. Far Field Pattern of Second AUT 

It can be observed from Figure 5.10 that patterns are in a good agreement with each 

other except for some differences in the back lobes. Radiated power of the AUT for 

each mode of 𝑛 is given in Figure 5.11. 
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Figure 5.11. Radiated Power of Second AUT with respect to 𝑛 

Results, which are given in Figure 5.11, are actually unexpected for 𝑛 larger than 

approximately 150. It is also increasing sharply as approaching the truncation value. 

It is explained in section 4.1 that radiated power of an antenna must decay after some 

value of 𝑛. Hence; after the radiated power is decayed to zero nearly, increasing of it 

is not an expected situation. First, it comes to mind that numerical errors for high 

values of 𝑛 may lead to this error. Remember that sampling interval is taken as 0.9° 

instead of 1.8° to increase accuracy. Transformation can be done by using same near 

field data with 1.8° sampling interval. Then, truncation value is set to 100 so 

calculation of higher values of 𝑛 is discarded. Performing the transformation with 

these parameters results radiated power for each 𝑛 as in Figure 5.12. 
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Figure 5.12 Radiated Power of Second AUT with respect to 𝑛 

Again, there is same unexpected result. Hence, it is understood that high values of 𝑛 

does not lead to this error. Since error appeared for both cases, it may be originated 

from the measurement set-up or devices. Nevertheless, error analysis is performed to 

completely validate the algorithm in the following section. 

5.4. Error Analysis 

In order to investigate unexpected result of the second AUT and the limits of the 

algorithm, error analysis is done. Values of the rotation and translation coefficients in 

the transmission formula are calculated up to truncated value of 𝑛. In addition; 

recursion relations are used for the calculation of the rotation and translation 

coefficients as explained in Appendix A and Appendix B. Hence; analysis should be 

performed to observe whether an error arises when these are calculated for high values 

of 𝑛. 
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For the purpose of accurately analyzing this situation, near field data can theoretically 

be formed using equation (2.18). 𝑀⃗⃗ 𝑚𝑛
(𝑐)

 and 𝑁⃗⃗ 𝑚𝑛
(𝑐)

 are calculated for the specified 𝑚 and 

𝑛 values. In addition, arbitrary values for the wave coefficients 𝑎𝑚𝑛 and 𝑏𝑚𝑛 can be 

taken. Thus near field data is established for any desired 𝑛 modes and transformation 

of this fields to the far field is performed using the developed algorithm. Then, this far 

field data is the output of the algorithm and theoretical far field data is required to 

make comparison. It can be found by putting asymptotic form of the Hankel function 

in the vector wave functions of the equation (2.18). Radiated powers are also found 

from the wave coefficients. Then error in the radiated power with respect to 𝑛 can be 

investigated. Tests has been done by increasing 𝑛 from 1 to 500 and almost no error 

is observed. Order of the error for the radiated powers is nearly 10−13. Some of them 

are given in Table 5.4. 

Table 5.4. Error in Radiation Power 

n Error 

100 10−14 

200 

300 

400 

500 

10−14 

10−13 

10−13 

10−13 
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Theoretically calculated far field pattern and obtained far field pattern from the 

transformation algorithm for 𝑛 = 200 are shown in Figure 5.13. 

 

Figure 5.13. Theoretical and Transformed Far Field Patterns 

It is observed that they are in full agreement. Note also that this analysis has been 

performed with lots of values of 𝑚 and results are same. To sum up, algorithm is tested 

up to 𝑛 = 500 and there is no error originated from the algorithm for the high values 

of 𝑛 and 𝑚. 

Remember that radiated power of the second AUT increased as closer to the truncation 

number. When the wave coefficients are examined, it is noticed that the powers of 

these high modes of 𝑛 appears only at 𝑚 = 1−
+ . Then it comes mind that noises such 

as white noise can lead to these error terms. Therefore, error analysis is performed by 

adding white noise to the near field data. Error in the radiated power with respect to 𝑛 

and 𝑚 is observed. In addition; theoretical and transformed far field patterns are 
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investigated. Percentage error of radiation power with respect to 𝑛 for a specified 𝑚 

is shown in Figure 5.14. Percentage error of radiation power with respect to 𝑚 for a 

specified 𝑛 is also shown in Figure 5.15. 

 

Figure 5.14. Percentage Error of Radiation Power with White Noise  

 

Figure 5.15. Percentage Error of Radiation Power with White Noise for n=200 
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Finally, theoretically calculated and transformed far field pattern for 𝑛 = 200 and 

𝑚 = 55 can be seen in Figure 5.16. 

 

Figure 5.16. Theoretical and Transformed Far Field Patterns with White Noise 

All the results with white noise are actually expected. It causes errors on each of 𝑛 

and 𝑚 values on almost equal level. As a consequence of these errors, differences on 

the far field patterns are observed.  

In conclusion, algorithm leads to no error for the high values of 𝑛 and 𝑚. White noise 

have same grade of effect on all 𝑚 and 𝑛 values. Error in the radiated power of the 

second AUT appeared for both truncation values 100 (sampling interval 1.8°) and 

200 (sampling interval 0.9°). However; same near field data is used for 

transformations. Hence, some mistake in the measurement setup or devices may have 

led to this error. 
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CHAPTER 6  

 

6. CONCLUSIONS 

 

In this thesis, spherical near field antenna measurement method is investigated. Vector 

solutions of the Maxwell’s equations, which are called vector wave functions, are 

defined for the spherical coordinates. It is shown that any field can be expressed as the 

weighted sum of these vector wave functions. Finding weights or wave coefficients at 

the measurement distance allows us to obtain field at any other distance. Wave 

coefficients are found by taking advantage of orthogonality properties of the spherical 

wave functions. Then using these wave coefficients, electric or magnetic fields are 

found by summation. Even if this formulation is theoretically complete, in the 

practical antenna measurements, probe compensation should be done to obtain 

accurate results. Scattering matrix definition of the antenna is used to implement the 

probe compensation. The radiated field from the AUT is defined in the probe 

coordinate system by rotation and translation steps and including probe receiving 

coefficients, transmission formula with probe compensation is derived. 

The field radiated from an antenna can only be defined by finite number of modes for 

the practical calculations. It is shown that there is a cut off value for spherical wave 

functions and modes higher than this are decayed exponentially. The value is 

dependent on order 𝑛. Formulation of the truncation value of 𝑛 is given with respect 

to measurement frequency and radius of the antenna. The calculated values with this 

formulation are tested and results show that almost all the power radiated from the 

antenna is included. 

Different numerical integration techniques are used in the calculations. As expected 

Gaussian Quadrature rule is the fastest converged technique but utilization of it in the 

antenna measurements is impractical because of irrational values of sample points 
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with unequal intervals. Among other techniques, trapezoidal rule gives the maximum 

accuracy with the minimum number of sample points. This is proved both theoretically 

and practically. In addition, it is shown that inverse DFT operator is much more useful 

than Trapezoidal rule since using the FFT algorithm results in much less 

computational load.  

Eventually, measurement with two antennas are implemented and results are 

compared with TICRA’s transformation algorithm (SNIFT). Good agreement in the 

results are obtained. Error analysis with respect to 𝑛 and 𝑚 are performed. It is 

observed that even very high values of 𝑛 and 𝑚, which is tested up to 500, no error 

originated from the algorithm has been detected. 
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APPENDICES 

 

A. The Rotation Coefficient 

The rotation coefficient 𝑑𝜇𝑚
𝑛 (𝜃) is given by Edmonds [23] as 

 

𝑑𝜇𝑚
𝑛 (𝜃) = {

(𝑛 + 𝜇)! (𝑛 − 𝜇)!

(𝑛 + 𝑚)! (𝑛 − 𝑚)!
}

1
2

 ∑(
𝑛 +𝑚

𝑛 − 𝜇 − 𝜎) (
𝑛 − 𝑚
𝜎

)

𝜎

 

(−1)𝑛−𝜇−𝜎 (cos
𝜃

2
)
2𝜎+𝜇+𝑚

(sin
𝜃

2
)
2𝑛−2𝜎−𝜇−𝑚

  

 

(A.1) 

 

where the symbol 

 
(
𝑖
𝑗
) =

𝑖!

(𝑖 − 𝑗)! 𝑗!
  

 

(A.2) 

 

is the binomial coefficient. 𝜎 includes the terms that binomial coefficients do not lead 

to negative values for the factorials. 

The finite Fourier series expansion of the rotation coefficient is given in 

equation (A.3). 

 
𝑑𝜇𝑚
𝑛 (𝜃) = 𝑖𝜇−𝑚 ∑ 𝛥𝑚′𝜇

𝑛 𝛥𝑚′𝑚
𝑛 𝑒−𝑖𝑚

′𝜃

𝑛

𝑚′=−𝑛

  

 

(A.3) 

 

where delta function 𝛥𝑚′𝑚
𝑛  is defined as 

 𝛥𝑚′𝑚
𝑛 = 𝑑𝑚′𝑚

𝑛 (
𝜋

2
)  

 

(A.4) 

 

Delta functions can be found from two recurrence relations given in equations (A.5) 

and (A.6). 

 √(𝑛 +𝑚′ + 1)(𝑛 −𝑚′)𝛥𝑚′+1,𝑚
𝑛  

+ √(𝑛 − 𝑚′ + 1)(𝑛 + 𝑚′)𝛥𝑚′−1,𝑚
𝑛 + 2𝑚𝛥𝑚′𝑚

𝑛 = 0 

 

(A.5) 
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 √(𝑛 +𝑚 + 1)(𝑛 − 𝑚)𝛥𝑚′,𝑚+1
𝑛  

+ √(𝑛 − 𝑚 + 1)(𝑛 + 𝑚)𝛥𝑚′,𝑚−1
𝑛  −  2𝑚′𝛥𝑚′𝑚

𝑛 = 0 

 

(A.6) 

 

B. The Translation Coefficient 

Translation coefficients for 𝑘𝐴 > 0 can be computed as: 

 

𝐶𝜎𝜇𝜈
𝑠𝑛(𝑐)(𝑘𝐴) = √

(2𝑛 + 1)(2𝜈 + 1)

𝑛(𝑛 + 1)(𝜈 + 1)
√
(𝜈 + 𝜇)! (𝑛 − 𝜇)!

(𝜈 − 𝜇)! (𝑛 + 𝜇)!
 (−1)𝜇 

1

2
𝑖(𝑛−𝜈) ∑ [𝑖−𝑝(𝛿𝑠𝜎{𝑛(𝑛 + 1) + 𝜈(𝜈 + 1) − 𝑝(𝑝 + 1)}

𝑛+𝜈

𝑝=|𝑛−𝜈|

 

                              +𝛿3−𝑠,𝜎{2𝑖𝜇𝑘𝐴})𝑎(𝜇, 𝑛, −𝜇, 𝜈, 𝑝)𝑧𝑝
(𝑐)(𝑘𝐴)] 

 

(B.1) 

 

where 𝑎(𝜇, 𝑛, −𝜇, 𝜈, 𝑝) is a so called linearization coefficient and can be written in 

terms of the Wigner 3 − 𝑗 symbols 

 

𝑎(𝜇, 𝑛, −𝜇, 𝜈, 𝑝) = (2𝑝 + 1) {
(𝑛 + 𝜇)! (𝜈 − 𝜇)!

(𝑛 − 𝜇)! (𝜈 + 𝜇)!
}

1
2

  

                                                (
𝑛 𝜈 𝑝
0 0 0

) (
𝑛 𝜈 𝑝
𝜇 −𝜇 0). 

 

(B.2) 

 

Instead of solving Wigner 3 – 𝑗, translation coefficients with 𝜇 = 1−
+  are sufficient for 

most of the practical cases. 
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Then, translation coefficient with 𝜇 = +1, 𝜈 ≥ 1 

 
𝐶𝜎1𝜈
𝑠𝑛(𝑐)(𝑘𝐴) =

1

4
𝑖𝑛
√2𝑛 + 1

𝑛(𝑛 + 1)
𝑖−𝜈

√2𝜈 + 1

𝜈(𝜈 + 1)
 

                   ∑

[
 
 
 
 

{𝛿𝑠𝜎
(𝑛(𝑛 + 1) + 𝜈(𝜈 + 1) − 𝑝(𝑝 + 1))

2

𝑛 + 𝜈 + 𝑝 + 1

𝑛+𝜈

𝑝=|𝑛−𝜈|,2

+ 𝛿3−𝑠,𝜎2𝑖𝑘𝐴
(𝑛 + 1) + 𝜈(𝜈 + 1) − 𝑝(𝑝 + 1)

𝑛 + 𝜈 + 𝑝 + 1
}

∗

(
−𝑛 + 𝜈 + 𝑝
−𝑛 + 𝜈 + 𝑝

2
)(
𝑛 − 𝜈 + 𝑝
𝑛 − 𝜈 + 𝑝

2
)(
𝑛 + 𝜈 − 𝑝
𝑛 + 𝜈 − 𝑝

2
)

(
𝑛 + 𝜈 + 𝑝
𝑛 + 𝜈 + 𝑝

2
)

∗ 𝑖−𝑝(2𝑝 + 1)ℎ𝑝
(𝑐)(𝑘𝐴)

]
 
 
 
 

 

(B.3) 

 

 

where 𝑝 = |𝑛 − 𝜈|, |𝑛 − 𝜈| + 2,… , 𝑛 + 𝜈 − 2, 𝑛 + 𝜈. 

Translation coefficient with 𝜇 = −1, 𝜈 ≥ 1 can be found easily. 

 𝐶𝜎,−1,𝜈
𝑠𝑛(𝑐) (𝑘𝐴) = (−1)𝑠+𝜎𝐶𝜎1𝜈

𝑠𝑛(𝑐)(𝑘𝐴)  
 

(B.4) 

 

In equation (B.3) the binomial coefficients are of the form 

 
𝐵(𝐽) = (

𝐽
𝐽/2

)  

 

(B.5) 

 

where 𝐽 is an even integer. When these binomial coefficients are replaced by 

 
𝐵′(𝐽) = (

𝐽
𝐽/2

) 2−𝐽  

 

(B.6) 

 

Overall result of the four binomial coefficient in equation (B.3) does not change but 

numerically more convenient form is obtained and it can be solved by using recurrence 
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formula in equation (B.7). 

 
𝐵′(𝐽 + 2) =

𝐽 + 1

𝐽 + 2
𝐵′(𝐽)  

 

(B.7) 

 

with the initial value 𝐵′(0) = 1. 

 

 

 


