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ABSTRACT 

 

DERIVATION AND ANALYSIS OF NEAR FIELD TO FAR FIELD 

TRANSFORMATION ALGORITHM FOR SPHERICAL SCANNING 

 

Korkmaz, Hülya 

Master of Science, Electrical and Electronics Engineering 

Supervisor: Prof. Dr. S. Sencer Koç 

 

 

September 2019, 88 pages 

 

This thesis focuses on the improvement of a far field transformation algorithm of 

spherical near field scanning by using different quadrature techniques for numerical 

integration process. In this thesis, spherical vector wave expansion of E field is studied 

and numerical calculation for expansion coefficients of E field is performed. In the 

scope of this study quadrature techniques like Gauss, Trapezoid and Simpsons are 

investigated and advantages and disadvantages of these techniques are discussed. A 

decision criteria of quadrature technique for a particular function is also discussed and 

efficiency of these techniques is compared. 

Spherical far field transformation algorithm considered in this study is applied to 

electric and magnetic Hertzian dipoles (directed on 𝑧 axis and located at (0,0,0)) and 

expansion coefficients are calculated with Gauss, Trapezoid and Simpsons quadrature. 

Also, expansion coefficients of Hertzian dipoles directed along the 𝑥 axis and shifted 

along the 𝑧 axis are calculated by using coordinate transformation and rotation. After 

the calculations of expansion coefficients, far field transformation is performed by 

using derived algorithm and far field radiations are plotted.  
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This study is mainly devoted on the far field transformation of a spherically scanned 

near field data and transformation of this data is performed by applying near field to 

far field transformation algorithm with Trapezoid and Simpsons quadrature 

techniques and effectiveness of these two techniques is discussed.  

This study also includes the derivation of probe compensation algorithm to eliminate 

the probe effects from transformed data. In chapter 5, probe compensated coefficients 

are calculated by considering the coefficients of the probe and using the coordinate 

transformation and rotation. (See Appendix A and Appendix B). Far field pattern by 

using compensated coefficients is also analyzed to visualize the probe compensation 

effect. 

 

 

Keywords: Vector Wave Expansion, Expansion Coefficients, Spherical Harmonics, 

Quadrature Techniques, Coordinate Transformation, Bessel Functions, Hankel 

Functions, Probe Compensation  
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ÖZ 

 

KÜRESEL YAKIN ALAN ÖLÇÜMÜNÜ UZAK ALANA ÇEVİREN BİR 

ALGORİTMA GELİŞTİRİLMESİ VE ANALİZİ 

 

Korkmaz, Hülya 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği 

Tez Danışmanı: Prof. Dr. S. Sencer Koç 

 

 

Eylül 2019, 88 sayfa 

 

Bu tez, küresel yakın alan ölçümünün değişik nümerik integral (quadrature) 

yöntemleri kullanılarak uzak alan çevirimini yapan bir algoritmanın incelenmesi 

üzerine yoğunlaşmaktadır. Bu çalışmada elektik alanın küresel vektör dalga açılımı 

(spherical vector wave expansion) incelenmekte ve bu açılım katsayıları için nümerik 

hesaplamalar gerçekleştirilmektedir. Çalışma kapsamında, Gauss, Trapezoid ve 

Simpson gibi nümerik integral yöntemleri araştırılmış ve bu yöntemlerin avantaj ve 

dezavantajları tartışılmıştır. Belirli bir fonksiyon için uygun nümerik integral tekniği 

belirleme kriterleri de tartışılmış ve bu tekniklerin etkinliği karşılaştırılmıştır. 

Bu çalışmada dikkate alınan uzak alan çevirim algoritması elektrik ve manyetik dipol 

antenlere (𝑥, 𝑦, 𝑧 = 0,0,0) noktasına yerleştirilmiş 𝑧 yönlü) uygulanmış ve Gauss, 

Trapezoid ve Simpson teknikleri kullanılarak açılım katsayıları hesaplanmıştır.  

Ayrıca, 𝑥 yönlü Hertzian dipol ile ve 𝑧 ekseninde kaydırılmış Hertzian dipolün açılım 

katsayıları koordinat dönüşümleri kullanılarak hesaplanmıştır. Açılım katsayılarının 

hesaplanmasının ardından geliştirilen algoritma kullanılarak Hertzian dipolün uzak 

alan dönüşümü gerçekleştirmiş ve uzak alan yayılım örüntüleri çizdirilmiştir. 
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Bu tez temel olarak küresel yakın alanda alınan anten ölçüm verisinin uzak alan 

çevrimine adanmıştır ve bu ölçüm verisinin uzak alan çevrimi Trapezoid ve Simpson 

teknikleri kullanılarak yapılmış ve bu iki tekniğin etkinliği tartışılmıştır. 

Bu tez ayrıca, uzak alan çevrimi yapılan veriden prob etkisini gidermek için bir 

algoritma geliştirme çalışmasını da içermektedir. Prob açılım katsayıları ve koordinat 

dönüşümleri (Bknz: Ek A ve Ek B) kullanılarak, prob etkisi giderilmiş açılım 

katsayıları Bölüm 5’te hesaplanmış ve prob etkisini görebilmek için her iki durum için 

de uzak alan yaylım örüntüleri çizdirilmiştir. 

 

Anahtar Kelimeler: Küresel Vektör Dalga Açılımı, Açılım Katsayıları, Vektörel 

Harmonikler, Nümerik İntegral Yöntemleri, Koordinat Dönüşümü, Bessel 

Fonksiyonları, Hankel Fonksiyonları, Prob Kompansasyonu 
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CHAPTER 1  

 

1. INTRODUCTION 

 

1.1 Scope of Thesis 

Accurate measurement of the radiation pattern is an important task for both in design 

and implementation steps of an antenna. Antenna measurement necessitates the plane 

wave illumination of AUT (Antenna Under Test) which means that the distance 

between AUT and the probe antenna should be larger than 2𝐷2 𝜆⁄ , where 𝐷 is the 

maximum dimension of AUT and 𝜆 is the wavelength. This distance (2𝐷2 𝜆⁄ ) is called 

as Rayleigh distance and generally accepted to define the far field of aperture type 

antennas [9]. Rayleigh distance (2𝐷2 𝜆⁄ ) does not satisfy the far field conditions for 

all type of antennas, it is generally preferred for the antennas with a maximum 

dimension of 𝐷 ≫  𝜆.  

Although Rayleigh distance is a basic requirement for an antenna measurement, 

constructing the far field conditions can be infeasible both in indoor and outdoor 

conditions for the antennas whose Rayleigh distance is in the order of meters. This 

restriction leads to indoor near field measurements where precision test range can be 

constructed in an anechoic chamber. This near field measurement needs a far field 

transformation due to the fact that antenna radiation pattern is defined in the far field. 

The primary objective of this thesis is to construct a near field to far field 

transformation algorithm for spherical scanning which will be used as a 

transformation tool for an experimental spherical near field data. After the verification 

steps, updating the algorithm with the probe compensation ability is the second 

concentration of this thesis.  In addition, different quadrature rules are studied in the 

development process of transformation algorithm and efficiencies of these techniques 

are compared. 
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This study starts with literature search to understand the theoretical basis, 

improvement of near field antenna measurement and far field transformation of this 

near field measurement. Near field to far field transformation for spherical scanning 

is studied by several authors. Frank Jensen [4] developed the theoretical background 

of near field measurement and far field transformation. Flemming Holm Larsen 

improved and extended these studies. A detailed exposition of the mathematical 

foundations of the far field transformation may be found in the book of Hansen [1] 

which is the main reference guide of this thesis. In literature, there are lots of articles 

about the near field antenna measurement and its far field transformation [4], [11], 

[16], [17], [19], [24]. In [11], J.E. Hansen and F. Jensen present their theoretical and 

experimental studies. Also study of Paris, Leach and Joy [28] summarizes the basic 

theory of probe compensated near field measurements. Wittmann and Stubenrauch [2] 

and Wacker [12] study on both theoretical and experimental issues of near field 

scanning.  

1.2 Organization of Thesis 

Chapter 1 summarizes the scope and organization of the thesis. In Chapter 2, basic 

concept of antenna radiation field regions is introduced, near field measurement 

techniques and their scanning types are examined. Planar, cylindrical and spherical 

near field measurements are detailed with their advantages and disadvantages. Also, 

brief history of the near field measurement is mentioned. And finally, comparison of 

scanning types is added to help choosing the best near field measurement technique 

for a particular antenna. 

Chapter 3 focuses on the far field transformation algorithm of spherical near field 

measurement which is the main concern of this study. Mathematical background of 

solution of Helmholtz equation in spherical coordinates which is called “spherical 

vector wave function” is summarized and derivation of explicit expression of 

expansion coefficients is presented. For the numerical solution of expansion 

coefficients, quadrature techniques which can be applied to the derived integral are 
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studied. Quadrature techniques are examined and applied to plane wave and Hertzian 

dipole to determine their expansion coefficients and far field radiation patterns. 

Quadrature results are compared with the analytical values to decide which quadrature 

technique fits best for a given problem. Also, derived algorithm is applied to Hertzian 

dipole antennas which are directed on 𝑥 axis and shifted along the 𝑧 axis to ensure in 

the validity of the simulation code. 

Chapter 4 is devoted on the far field transformation of spherically scanned near field 

data which is obtained by measurements in METU anechoic chamber. An 

experimental data is processed with derived algorithm by applying different 

quadrature techniques and efficiency of these techniques is compared. Far field 

radiation pattern of this experimental data is analyzed with Trapezoid and Simpson 

quadrature rules for different truncation order of 𝑁. 

Chapter 5 includes the mathematical derivations and simulations for probe 

compensation. Far field transformation algorithm used in Chapter 4 is updated to 

eliminate the probe effect by implementing the mathematical derivations stated in 

Chapter 5. This new algorithm is applied to same experimental data in Chapter 4 and 

far field results with and without probe compensation are reported to compare the 

probe compensation effect.  

Finally, Chapter 6 is a conclusion part which summaries the basic achievement 

acquired during this thesis. 
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CHAPTER 2  

 

2. BASICS OF NEAR FIELD ANTENNA MEASUREMENT  

 

An antenna is an essential component of radar, EW and telecommunication systems 

which receives and transmits the electromagnetic energy. Due to its important 

mission, designing an antenna is a challenging task for the designers from different 

branches and measurement of some antenna parameters such as gain, polarization and 

pattern is needed during antenna design cycle to characterize the antenna and compare 

the simulation results with experimental ones. 

This measurement can be done both in the near field and the far field of an antenna 

which are shown in Figure 2-1 with the separation of reactive near field, radiating near 

field and far field. 

 

Figure 2-1: Propagating regions of an antenna [19] 
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Distance starting from 2𝐷2/𝜆 to infinity is called the far field of an antenna where 𝐷 

is the maximum physical dimension of antenna and 𝜆 is the wavelength. In the far 

field region of antenna electric and magnetic fields decrease with a rate of 1/𝑟 where 

𝑟 is the distance from the antenna, but angular variation of a field does not depend on 

the distance 𝑟. [20] 

The distance from antenna to far field distance is called as near field of an antenna and 

in this region radial and angular variation of electric and magnetic field depends on 

the distance. [20] 

For the large antennas whose far field range extends the laboratory scales, making 

measurements in the near field and then obtaining the far field transformation is 

necessary and scientists have performed some studies on these topics. 

2.1 Brief History 

Following part is based on the study presented in [20] 

“First near field antenna scanner “automatic antenna wave front plotter” was built 

by Barret and Barnes around 1950. They have performed all amplitude and phase 

measurements to fully characterize the pattern, but didn’t perform far field 

transformation of near field measurement data. Five years later Richmond and Tice 

transformed the near field data to far field pattern and compared the results with the 

direct far field measurement and they obtained good agreement over the main beam 

and first few sidelobes. First probe corrected theories were studied between 1961-

1975 and these theories were put into practice between 1965-1975. The first full three-

dimensional plane wave solution with probe correction was performed by Kern in 

1963. In 1965 first probe corrected near field measurement was performed at National 

Bureau of Standards using a plane scanning. Since near field antenna techniques 

requires numerical processing, it requires a high qualified computer, so with the 

improvement of computer processing capacity numerical calculations of near field 

techniques have improved in recent years. Higher frequency measurements, larger 
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scanners and spherical near field measurement theory is mostly studied subjects as a 

result of these improvements”. 

2.2 Near Field Scanning Types 

Near field measurement is generally performed by using a network analyzer, 

computer, necessary RF components (such as amplifier) and the probe antenna which 

moves around the test antenna over a planar, cylindrical or spherical surface. A typical 

near field measurement setup is given in Figure 2-2. 

 

Figure 2-2: Typical near field antenna measurement 

Near field measurement can be performed in three different scanning types as 

planar, cylindrical and spherical. For planar near field measurement, probe 

antenna is moved over a planar surface around a stationary test antenna both in 𝑋 

and 𝑌 directions as shown Figure 2-3. 
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Figure 2-3: Planar near field antenna measurement setup [18] 

Planar scanning is the simplest technique from the perspective of implementation 

and data processing algorithm compared with other scanning techniques. Planar is 

a convenient scanning technique for the large scale antennas such as an aircraft 

and high directive antennas. 

For cylindrical near field measurement, probe antenna is moved over a cylindrical 

surface around a stationary test antenna as shown in Figure 2-4. 
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Figure 2-4: Cylindrical near field antenna measurement setup [18] 

Cylindrical scanning is generally preferred for antennas which have 

omnidirectional radiation pattern in one plane.  

In spherical near field measurement, test antenna is located at the center of a sphere 

and near field probe is moved along the sphere surface as shown in Figure 2-5.   

Spherical scanning; 

➢ Applicable to most type of antennas and all types of beams such as 

narrow, broad and omni, 

➢ Compatible with an implementation of stationary probe and rotating test 

antenna, 

➢ Requires more complicated data processing algorithm. 
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Figure 2-5: Spherical near field antenna measurement setup [18] 

Table 2-1 compares the three scanning types based on some typical antenna 

characteristics. 

Table 2-1: Comparison of near field antenna measurement types  

Antenna Type / Parameter Planar Cylindrical Spherical 

High gain antennas Excellent Good Good 

Low gain antennas Poor Good Excellent 

Stationary AUT Yes Possible Possible 

Zero gravity simulation Excellent Poor Variable 

Alignment ease Simple Difficult Difficult 

Speed Fast Medium Slow 
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CHAPTER 3  

 

3.  DERIVATIONS OF NEAR FIELD TO FAR FIELD TRANSFORMATION 

 

 

3.1 Spherical Vector Wave Expansion 

In a source free, linear, homogenous and isotropic region Maxwell equations state that 

both 𝑬 and 𝑯 fields satisfy the equation which is called as vector wave equation, or 

the Helmholtz equation [5] given in equation (3.1).  

 ∇2𝑬 + 𝑘2𝑬 = 0 (3.1) 

 𝑘 = 𝜔 √𝜇𝜖  (3.2) 

where 𝑘 is propagation constant, 𝜔 is angular frequency, 𝜖 is the permittivity and 𝜇 is 

the permeability of the medium. The solutions of vector wave equation are called 

vector wave functions and they can be obtained by applying separation of variables in 

rectangular, cylindrical or spherical coordinate systems. 

Since the spherical near field measurement analysis is the main concern of this thesis, 

spherical vector wave function solution will be detailed in this chapter. 

In electromagnetic theory most of the problems are modeled and solved by using the 

spherical coordinate system shown in Figure 3-1. 
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Figure 3-1: Spherical coordinate system and unit vectors [1] 

An electric field can be represented in the spherical coordinate system as: 

 
𝑬(𝑟, 𝜃, 𝜙) = 𝐸𝑟(𝑟, 𝜃, 𝜙)𝒂𝑟 + 𝐸𝜃(𝑟, 𝜃, 𝜙)𝒂𝜃 + 𝐸𝜙(𝑟, 𝜃, 𝜙)𝒂𝜙 (3.3) 

Let 𝜓(𝑟, 𝜃, 𝜙) be a scalar function that can represent a field or vector protentional 

component and satisfies the scalar wave equation, ∇2𝜓 + 𝑘2𝜓 = 0. Solution of this 

equation by using separation of variables in spherical coordinates as in the form; 

 𝜓(𝑟, 𝜃, 𝜙) = 𝑧𝑛
(𝑎)

(𝑘𝑟)𝑃𝑛
𝑚(cos 𝜃)𝑒𝑗𝑚𝜙 (3.4) 

where 𝑒𝑗𝑚𝜙 states the 𝜙 dependency, 𝑃𝑛
𝑚(cos 𝜃) is the associated Legendre function 

states the 𝜃 dependency and 𝑧𝑛
(𝑎)

 states one of the following functions according to 

the upper index 𝑎 with a time convention of 𝑒𝑗𝜔𝑡. 
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 𝑧𝑛
(1)

= 𝑗𝑛(𝑘𝑟)   Spherical Bessel Function (3.5) 

 𝑧𝑛
(2)

= 𝑦𝑛(𝑘𝑟)    Spherical Neumann Function (3.6) 

 𝑧𝑛
(3)

= ℎ𝑛
(1)(𝑘𝑟)   Spherical Hankel Function Type 1 (3.7) 

 𝑧𝑛
(4)

= ℎ𝑛
(2)(𝑘𝑟)   Spherical Hankel Function Type 2 (3.8) 

𝑎 = 1 and 𝑎 = 2 are used for standing waves, 𝑎 = 3 is used for inward travelling 

wave and 𝑎 = 4 is used for outward travelling wave, as summarized in Table 3-1.  

Table 3-1: 𝑧𝑛
(𝑎)

 Function types based on wave characteristics [5] 

Wave 

Type 

Wave 

Functions 

Zeros of 

Wave 

Functions 

Infinities of 

Wave Functions 

Traveling 

waves 

ℎ𝑛
(1)(𝑘𝑟) = 𝑗𝑛(𝑘𝑟) + 𝑗𝑦𝑛(𝑘𝑟) 

for −𝑟 travel 
𝑘𝑟 → +𝑗∞ 

𝑘𝑟 = 0 

𝑘𝑟 →  −  𝑗∞ 

ℎ𝑛
(2)(𝑘𝑟) = 𝑗𝑛(𝑘𝑟) − 𝑗𝑦𝑛(𝑘𝑟) 

for +𝑟 travel 
𝑘𝑟 → −𝑗∞ 

𝑘𝑟 = 0 

𝑘𝑟 →  +  𝑗∞ 

Standing 

waves 

𝑗𝑛(𝑘𝑟)     for ± 𝑟 
Infinite 

number 
𝑘𝑟 →   ± 𝑗∞ 

𝑦𝑛(𝑘𝑟)    for ± 𝑟 
Infinite 

number 

𝑘𝑟 = 0 

𝑘𝑟 →  ±  𝑗∞ 

 

Spherical form of Bessel and Hankel functions stated in equations 3.9, 3.10 and 3.11 

are considered throughout this study.  
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For spherical standing wave, 

 𝑗𝑛(𝑧) = √
𝜋

2𝑧
 𝐽

𝑛+
1

2

(𝑧) , (3.9) 

For inward spherical travelling wave, 

 ℎ𝑛
(1)(𝑧) = √

𝜋

2𝑧
 𝐻

𝑛+
1 
2

(1)
(𝑧) , (3.10) 

For outward spherical travelling wave, 

 ℎ𝑛
(2)(𝑧) = √

𝜋

2𝑧
 𝐻

𝑛+
1 

2

(2)
(𝑧) . (3.11) 

In addition to the spherical form of Bessel and Hankel functions, asymptotic form of 

spherical Bessel and Hankel functions (3.12, 3.13, 3.14 and 3.15) must be taken into 

consideration for the far field calculations. 

 lim
𝑥→∞

𝑗𝑛
(1)

= 
1

𝑥
cos (𝑥 − (𝑛 + 1)

𝜋

2
) (3.12) 

 lim
𝑥→∞

𝑦𝑛
(1)

= 
1

𝑥
 sin(𝑥 − (𝑛 + 1)

𝜋

2
) (3.13) 

 lim
𝑥→∞

ℎ𝑛
(1)

= (−𝑖)𝑛+1
𝑒𝑖𝑥

𝑥
 (3.14) 

 

 

lim
𝑥→∞

ℎ𝑛
(2)

= (𝑖)𝑛+1
𝑒−𝑖𝑥

𝑥
 (3.15) 
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3.1.1 Products of Spherical Harmonics 

Spherical harmonic, 𝑌𝑛𝑚 notation stated by Jackson [29] is, 

 𝑌𝑛𝑚(𝜃, 𝜙) = 𝐷𝑛𝑚𝑃𝑛
𝑚(cos 𝜃)𝑒𝑗𝑚𝜙 (3.16) 

where 𝑃𝑛
𝑚 is a Legendre function defined by, 

 𝑃𝑛
𝑚(𝑥) =

(−1)𝑚

2𝑛𝑛!
(1 − 𝑥2)

𝑚
2⁄
𝑑𝑛+𝑚(𝑥2 − 1)𝑛

𝑑𝑥𝑛+𝑚
 (3.17) 

 𝑃𝑛
−𝑚(𝑥) = (−1)𝑚

(𝑛 − 𝑚)!

(𝑛 + 𝑚)!
𝑃𝑛

𝑚(𝑥) (3.18) 

and 𝐷𝑛𝑚 is defined as, 

 𝐷𝑛𝑚 = √
2𝑛 + 1

4𝜋

(𝑛 − 𝑚)!

(𝑛 + 𝑚)!
 (3.19) 

From equations (3.17), (3.18) and (3.19) it can be derived as, 

 𝑌𝑛,−𝑚(𝜃, 𝜙) = (−1)𝑚 𝑌𝑛,𝑚
∗  (3.20) 

Spherical harmonics, 𝑌𝑛𝑚(𝜃, 𝜙) are orthogonal over a spherical surface. 

 ∫ ∫ 𝑌𝑛𝑚(𝜃, 𝜙) 𝑌𝜈𝜇
∗ sin 𝜃 𝑑𝜙 𝑑𝜃 = 𝛿𝑛𝜈𝛿𝑚𝜇

2𝜋

0

𝜋

0

 (3.21) 

 𝛿𝑛𝜈 = {
1, 𝑛 = 𝜈
0, 𝑛 ≠ 𝜈

 (3.22) 

 𝛿𝑚𝜇 = {
1, 𝑚 = 𝜇
0, 𝑚 ≠ 𝜇

 (3.23) 
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 𝜑𝑛𝑚
(𝑎)

(𝑘, 𝒓) can be defined as, 

 𝜑𝑛𝑚
(𝑎)(𝑘, 𝒓) = 𝑧𝑛

(𝑎)(𝑘𝑟)𝑌𝑛𝑚(𝒓̂) (3.24) 

where 𝑧𝑛
(𝑎)(𝑘𝑟) can be chosen from the functions given in the equations (3.9), (3.10) 

and (3.11) according to the upper index 𝑎, and 𝒓̂ is used as a shorthand notation for 

the two angular variables (𝜃, 𝜙). 

3.1.2 Explicit Formulas of Expansion Coefficients 

In a source free region, the multipole expansion of an electric field can be written as 

[23]; 

 𝑬(𝒓) = ∑ ∑ 𝑎𝑛𝑚𝑴𝑛𝑚
(𝑎)(𝑘, 𝒓) +

𝑛

𝑚=−𝑛

∞

𝑛=0

𝑏𝑛𝑚𝑵𝑛𝑚
(𝑎)

 (𝑘, 𝒓) (3.25) 

and the multipole expansion of the corresponding magnetic field can be written as 

[23]; 

 𝑯(𝒓) = 𝑗𝑌 ∑ ∑ 𝑏𝑛𝑚𝑴𝑛𝑚
(𝑎)

𝑛

𝑚=−𝑛

∞

𝑛=0

 (𝑘, 𝒓) + 𝑎𝑛𝑚𝑵𝑛𝑚
(𝑎)

(𝑘, 𝒓) (3.26) 

where 𝑌 = √𝜖
𝜇⁄   is the medium admittance 

 𝑴𝑛𝑚
(𝑎) (𝑘, 𝒓) and 𝑵𝑛𝑚

(𝑎) (𝑘, 𝒓) can be derived as follows [23];      

 𝑴𝑛𝑚
(𝑎) (𝑘, 𝒓) = ∇ × 𝒓𝜑𝑛𝑚

(𝑎)
(𝑘, 𝒓) (3.27) 

 𝑴𝑛𝑚
(𝑎) (𝑘, 𝒓) = 𝑧𝑛

(𝑎)(𝑘𝑟) [
𝑗𝑚

sin 𝜃
𝑌𝑛𝑚(𝜃, 𝜙)𝒂𝜃 −

𝜕𝑌𝑛𝑚(𝜃, 𝜙)

𝜕𝜃
𝒂𝜙] 

(3.28) 
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 (𝑴𝑛𝑚
(𝑎)

)
∗

= 𝑴𝑛,−𝑚
(𝑎)

 (3.29) 

 𝑵𝑛𝑚
(𝑎) (𝑘, 𝒓) =

1

𝑘
∇ × 𝑴𝑛𝑚

(𝑎)
(𝑘, 𝒓) (3.30) 

𝑵𝑛𝑚
(𝑎) (𝑘, 𝒓) =

𝑧𝑛
(𝑎)(𝑘𝑟)

𝑘𝑟
𝑛(𝑛 + 1)𝑌𝑛𝑚(𝜃, 𝜙)𝒂𝑟

+
1

𝑘𝑟

𝑑 (𝑟𝑧𝑛
(𝑎)(𝑘𝑟))

𝑑𝑟
[
𝜕𝑌𝑛𝑚(𝜃, 𝜙)

𝜕𝜃
𝒂𝜃 +

𝑗𝑚

sin 𝜃
𝑌𝑛𝑚(𝜃, 𝜙)𝒂𝜙] 

(3.31) 

(𝑵𝑛𝑚
(𝑎)

)
∗

= 𝑵𝑛,−𝑚
(𝑎)

 (3.32) 

Far field transformation algorithm is based on calculating the multipole expansion 

coefficients, 𝑎𝑛𝑚 and 𝑏𝑛𝑚 in the equations (3.25) and (3.26). Explicit expressions for 

these coefficients are needed for numerical calculations and steps specified below can 

be followed to get the explicit expressions. 

1. Multiply both side of equation (3.25) with (𝑴𝜈𝜇
(𝑎)

 (𝑘, 𝒓))
∗

and integrate 

over a sphere, it must be pointed out that conjugation is not applied on the 

radial functions. 

∫ ∫ 𝑬(𝒓). (𝑴𝜈𝜇
(𝑎)(𝑘, 𝒓))

∗
𝜋

0

2𝜋

0

 sin 𝜃 𝑑𝜃 𝑑𝜙 = 

∫ ∫ (∑ ∑ 𝑎𝑛𝑚𝑴𝑛𝑚
(𝑎)(𝑘, 𝒓) + 𝑏𝑛𝑚𝑵𝑛𝑚

(𝑎)(𝑘, 𝒓)

𝑛

𝑚=−𝑛 

 

∞

𝑛=0

 )

𝜋

0

2𝜋

0

. (𝑴𝜈𝜇
(𝑎)(𝑘, 𝒓))

∗

sin 𝜃 𝑑𝜃 𝑑𝜙 

(3.33) 
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2. Use the orthogonality properties of the vector wave functions given in 

equation (3.34) which eliminates the term with 𝑏𝑛𝑚. After some 

manipulation, explicit expression for 𝑎𝑛𝑚 is obtained as in equation (3.37).  

 
∫ ∫ 𝑵𝑛𝑚

(𝑎) (𝑘, 𝒓). (𝑴𝜈𝜇
(𝑏)(𝑘, 𝒓)) sin 𝜃 𝑑𝜃 𝑑𝜙 = 0

𝜋

0

2𝜋

0

 (3.34) 

 
∫ 𝑃𝜈

𝑚𝑃𝑛
𝑚 sin 𝜃 𝑑𝜃 =

𝜋

0

2

2𝑛 + 1

(𝑛 − 𝑚)!

(𝑛 + 𝑚)!
𝛿𝜈𝑛 (3.35) 

 
∫ [

𝑑𝑃𝜈
𝑚

𝑑𝜃

𝑑𝑃𝑛
𝑚

𝑑𝜃
+

𝑚2𝑃𝜈
𝑚𝑃𝑛

𝑚

(sin 𝜃)2
 sin 𝜃 𝑑𝜃] =

𝜋

0

2

2𝑛 + 1

(𝑛 − 𝑚)!

(𝑛 + 𝑚)!
𝑛(𝑛 + 1)𝛿𝜈𝑛 (3.36) 

 
𝑎𝑛𝑚 =

1

𝜈(𝜈 + 1)(𝑧𝜈
𝑎)2(𝑘𝑟)𝛿𝑛𝜈𝛿𝑚𝜇

 ∫ ∫ 𝑬(𝒓). (𝑴𝜈𝜇
(𝑎)(𝑘, 𝒓))

∗

sin 𝜃 𝑑𝜃 𝑑𝜙

𝜋

0

2𝜋

0

 (3.37) 

3. Same mathematical procedure can be applied for explicit expression of 𝑏𝑛𝑚. 

Multiply both side of equation (3.25) by (𝑵𝜈𝜇
(𝑎)

 (𝑘, 𝒓))
∗

 and integrate over a unit 

sphere as in equation (3.38). Again, it must be remembered that conjugation is not 

applied on the radial functions. 

∫ ∫ 𝑬(𝒓) ⋅ (𝑵𝜈𝜇
(𝑎)(𝑘, 𝒓))

∗

sin 𝜃 𝑑𝜃𝑑𝜙

𝜋

0

2𝜋

0

=∫ ∫ (∑ ∑ 𝑎𝑛𝑚𝑴𝑛𝑚
(𝑎) (𝑘, 𝒓) + 𝑏𝑛𝑚𝑵𝑛𝑚

(𝑎) (𝑘, 𝒓)

𝑛

𝑚=−𝑛 

 

∞

𝑛=0

)

𝜋

0

2𝜋

0

. (𝑵𝜈𝜇
(𝑎)(𝑘, 𝒓))

∗

sin 𝜃 𝑑𝜃𝑑𝜙 

(3.38) 
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4. Equation (3.34) directly eliminates the term with 𝑎𝑛𝑚 and by using 

equation (3.39) explicit expression for 𝑏𝑛𝑚 can be easily derived as,  

Equation 3.25 states that in a source free region 𝑬 field can be written as a summation 

of multipole coefficients multiplied by vector wave functions 𝑴 and 𝑵 at any point of 

space both in near field and far field. Multipole coefficients given in the equations 

3.37 and 3.40 can be used for the calculations of far field 𝑬 with the asymptotic form 

of vector wave functions 𝑴 and 𝑵. The asymptotic form of vector wave functions can 

be calculated by using asymptotic form of appropriate spherical Bessel and Hankel 

functions given in equations 3.12, 3.13, 3.14 and 3.15. Far field 𝑯 can also be 

calculated with same procedure. It can be concluded that near field to far field 

transformation algorithm is based on determining the multipole coefficients from near 

field 𝑬 or 𝑯 and evaluating the far field 𝑬 or 𝑯 by using these calculated coefficients 

and asymptotic form of vector wave functions. 

3.2 Numerical Solution for Expansion Coefficients 

Explicit formulas for 𝑎𝑛𝑚 and 𝑏𝑛𝑚 are derived as given in the equations (3.37) and 

(3.40) which include double integrals with the requirement of numerical calculations. 

Next step is to examine quadrature techniques for the numerical calculations of these 

double integrals. 

 

∫ ∫ 𝑵𝑛𝑚
(𝑎)

(𝑘, 𝒓) (𝑵𝜈𝜇
(𝑎)(𝑘, 𝒓))

∗

sin 𝜃𝑑𝜃 𝑑𝜙 =  

[
 
 
 
 
 

(𝜈(𝜈 + 1)
𝑧𝜈

(𝑎)(𝑘𝑟)

𝑘𝑟
)

2

+

𝜈(𝜈 + 1)(
1

𝑘𝑟

𝑑(𝑟𝑧𝜈
(𝑎)(𝑘𝑟))

𝑑𝑟
)

2

]
 
 
 
 
 

𝛿𝑛𝜈𝛿𝑚𝜇

𝜋

0

2𝜋

0

  

 

(3.39) 

𝑏𝑛𝑚 =
∫ ∫ 𝑬(𝒓). (𝑵𝜈𝜇

(𝑎)(𝑘, 𝒓))
∗

sin 𝜃 𝑑𝜃 𝑑𝜙
𝜋

0

2𝜋

0

[(𝜈(𝜈 + 1)
𝑧𝜈

(𝑎)(𝑘𝑟)
𝑘𝑟

)

2

+ 𝜈(𝜈 + 1) (
1
𝑘𝑟

𝑑 (𝑟𝑧𝜈
(𝑎)(𝑘𝑟))

𝑑𝑟
)

2

 ] 𝛿𝑛𝜈𝛿𝑚𝜇

 
(3.40) 
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3.2.1 Numerical Integration Theory 

Definite integral of a function 𝑓(𝑥) can be evaluated by the area under 𝑓(𝑥) curve 

between the points [𝑎, 𝑏] as shown in Figure 3-2.  

 

Figure 3-2: Definite integral of a function 

Calculating the value of a definite integral with analytical methods is not feasible for 

the following cases: 

➢ For an integrand without an antiderivative, 

➢ Integration of an experimental data rather than known function, 

➢ For a function requiring high analytical calculation load than numerical 

integration. 

An alternative solution for the above cases is to use the numerical integration which 

is an approximate computation of an integral by using numerical integration 

technique, quadrature. 

Basic approach of quadrature is to estimate the value of an integral by using weights 

𝐴𝑖  and values of function at 𝑥𝑖 where choice of 𝐴𝑖 and 𝑥𝑖 depends on the quadrature 

technique to be used. 
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 ∫𝑓(𝑥)

𝑏

𝑎

→ ∑𝐴𝑖  𝑓(𝑥𝑖)

𝑛

İ=1

 (3.41) 

3.2.2 Quadrature Techniques 

Numerical integration techniques which are also called as quadrature can be classified 

into two main groups as Newton Cotes and Gauss quadrature techniques. 

Newton Cotes formulas use equally spaced points for the evaluation of the numerical 

integration and they are based on the approach of replacing the function to be 

integrated by an approximate one which best fits with original and is easier to 

integrate. These formulas work best if the approximate function is smooth such as 

polynomial given in (3.42)  

 

𝐼 = ∫𝑓(𝑥) 𝑑𝑥   where 𝑓(𝑥) ≈ 𝑓𝑛 (𝑥)

𝑏

𝑎

 

𝑓𝑛 (𝑥) = 𝑎0 + 𝑎1𝑥 + ⋯+ 𝑎𝑛−1𝑥
𝑛−1 + 𝑎𝑛𝑥𝑛 

(3.42) 

Trapezoid rule, Midpoint rule and Simpson rule are common types of Newton Cotes 

formulas and details of these techniques are given in the following part. 

Trapezoid rule converges the integral of 𝑓(𝑥) by evaluating the area of the trapezoid 

under the function 𝑓(𝑥) given in Figure 3-3 with the formula of (3.43). 

 𝑆 =   
𝑓(𝑏) + 𝑓(𝑎)

2
(𝑏 − 𝑎) (3.43) 

where 𝑆 is the are of trapezoid under the curve of 𝑓(𝑥). 
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Figure 3-3: Trapezoid quadrature 

The integration interval can be divided into smaller sub intervals and Trapezoid rule 

is applied to each sub interval separately as given in the equations (3.44) and (3.45) 

for better approximation of the integral and this is called as composite Trapezoid rule. 

 

Figure 3-4: Composite Trapezoid quadrature 

∫𝑓(𝑥) 𝑑𝑥 = ∫ 𝑓(𝑥) 𝑑𝑥 + ∫ 𝑓(𝑥) 𝑑𝑥 + ⋯ ∫ 𝑓(𝑥) 𝑑𝑥  

𝑏

𝑎+(𝑛−1)ℎ

  

𝑎+2ℎ

𝑎+ℎ

  

𝑎+ℎ

𝑎

 

𝑏

𝑎

 (3.44) 

∫𝑓(𝑥) 𝑑𝑥 =  
(𝑏 − 𝑎)

2𝑛
 

𝑏

𝑎

 [𝑓(𝑎) + 2(∑ 𝑓(𝑎 + 𝑖ℎ)

𝑛−1

𝑖=1

) + 𝑓(𝑏)] (3.45) 
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Since quadrature is an approximation technique, error between quadrature and definite 

value is inevitable, and this error for composite Trapezoid rule can be defined as: 

 𝐸 ≤
5(𝑏 − 𝑎)3

12𝑛2
 max (|𝑓′′(𝑥)|) (3.46) 

where 𝐸 is the error caused by composite Trapezoid quadrature, 𝑓′′(𝑥) is the second 

derivative of function 𝑓at some point 𝑥 inside the interval 𝑎 ≤ 𝑥 ≤ 𝑏 and 𝑛 is the 

number of sub intervals.  

Other type of Newton Cotes formula is called as Midpoint rule which is based on 

calculation of a rectangular area created by the points (𝑎, 0), (𝑏, 0), (𝑎, 𝑓 (
𝑎+𝑏

2
)) and 

(𝑏, 𝑓 (
𝑎+𝑏

2
)) and the formula for this approximation is given in equation (3.47)  

 

Figure 3-5: Midpoint quadrature 

 ∫𝑓(𝑥) 𝑑𝑥 = (𝑏 − 𝑎)𝑓 (
𝑎 + 𝑏

2
) 

𝑏

𝑎

 (3.47) 
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The integration interval can be divided into smaller sub intervals and Midpoint rule is 

applied to each sub interval as given in the equations (3.48), (3.49), (3.50), and (3.51) 

and this is called as composite Midpoint rule. 

 

Figure 3-6: Composite Midpoint quadrature 

𝑥𝑖 = 𝑎 + (𝑖 −
1

2
) ℎ with 𝑖 = 1,2, … 𝑛 

 ∫𝑓(𝑥) 𝑑𝑥 = ℎ ∑ 𝑓(𝑥𝑖)

𝑛

𝑖=1

= ℎ ∑𝑓 (𝑎 + (𝑖 −
1

2
) ℎ)

𝑛

𝑖=1

 

𝑏

𝑎

 (3.48) 

 ℎ =
(𝑏 − 𝑎)

𝑛
 (3.49) 

 

∫𝑓(𝑥) 𝑑𝑥

𝑏

𝑎

= ∫ 𝑓(𝑥) 𝑑𝑥

𝑥2

𝑥0

+ ∫ 𝑓(𝑥) 𝑑𝑥 + ⋯+

𝑥4

𝑥2

 

∫ 𝑓(𝑥) 𝑑𝑥

𝑥𝑛−2

𝑥𝑛−4

+ ∫ 𝑓(𝑥) 𝑑𝑥

𝑥𝑛

𝑥𝑛−2

 

(3.50) 
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 ∫𝑓(𝑥) 𝑑𝑥

𝑏

𝑎

= 
(𝑏 − 𝑎)

3𝑛
[𝑓(𝑥0) + 4 ∑ 𝑓(𝑥𝑖)

𝑛−1

𝑖=1

+ 2 ∑ 𝑓(𝑥𝑖) +

𝑛−2

𝑖=2

𝑓(𝑥𝑛)] (3.51) 

The error of Midpoint quadrature technique is given in equation (3.52)  

 𝐸 ≤
5(𝑏 − 𝑎)3

24𝑛2
 max (|𝑓′′(𝑥)|) (3.52) 

where 𝐸 is the error caused by composite Midpoint quadrature, 𝑓′′(𝑥) is the second 

derivative of function 𝑓at some point 𝑥 inside the interval 𝑎 ≤ 𝑥 ≤ 𝑏 and 𝑛 is the 

number of sub intervals. 

Simpson quadrature is another type of Newton Cotes formula which is based on the 

approximation of an integrand 𝑓(𝑥) with a second order polynomial 𝑓2(𝑥) as given in 

equation (3.53)  

 

∫𝑓(𝑥) 𝑑𝑥 ≈ ∫𝑓2(𝑥) 𝑑𝑥 = ∫𝑎0 +𝑎1𝑥 + 𝑎2𝑥
2𝑑𝑥

𝑏

𝑎

𝑏

𝑎

 

𝑏

𝑎

 

𝑓2(𝑥)  =  𝑎0 + 𝑎1𝑥 + 𝑎2𝑥
2 

(3.53) 
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Figure 3-7: Simpson quadrature  

One may use (𝑎, 𝑓(𝑎)), (𝑎 + 𝑏)/2, 𝑓 ((𝑎 + 𝑏)/2), (𝑏, 𝑓(𝑏)) to evaluate 𝑎0, 𝑎1, 𝑎2 

and ℎ =  (𝑏 − 𝑎)/𝑛 

 ∫𝑓2(𝑥) 𝑑𝑥

𝑏

𝑎

=
ℎ

3
[𝑓(𝑎) + 4𝑓 (

𝑎 + 𝑏

2
) + 𝑓(𝑏)] (3.54) 

The integration interval can be divided into smaller sub intervals and Simpson rule is 

applied to each sub interval and this is called as composite Simpson rule. The error of 

Simpson quadrature technique is given as in equation (3.55)  

 𝐸 ≤
5(𝑏 − 𝑎)5

180𝑛4
 max (|𝑓′′(𝑥)|) (3.55) 

where 𝐸 is the error caused by composite Simpson quadrature, 𝑓′′(𝑥) is the second 

derivative of function 𝑓 at some point 𝑥 inside the interval 𝑎 ≤ 𝑥 ≤ 𝑏 and 𝑛 is the 

number of sub intervals.  
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Quadrature techniques have been divided into two main groups as Newton Cotes and 

Gauss Quadrature rules. Newton Cotes formulas are detailed as Trapezoid, Midpoint 

and Simpson rules so far. Gauss quadrature determines the best fit integration points 

to achieve the most accurate result, rather than equally spaced points as in Newton-

Cotes quadrature. Gauss quadrature is generally preferred in case of expensive 

evaluation of a function since it requires fewer calculations. 

Gauss quadrature uses orthogonal polynomials over the interval 𝑤(𝑥), instead of using 

polynomial as in Newton Cotes formulas and this technique is based on representing 

the integrand as a product of 𝑤(𝑥) and polynomial 𝑃(𝑥) as in equation (3.56). 

 𝑓(𝑥) = 𝑤(𝑥)𝑃(𝑥) (3.56) 

Then, numerical integration by Gauss quadrature is calculated with the multiplication 

of weighting factor and evaluated values of a function at the zeros of polynomial 𝑃(𝑥) 

as in (3.57). 

 ∫𝑓(𝑥) 𝑑𝑥 ≈ ∑𝑤𝑖

𝑛

𝑖=1

𝑏

𝑎

𝑓(𝑥𝑖) (3.57) 

List of the applicable Gauss quadrature techniques for a particular type of a function 

is presented in Table 3-2. 

Table 3-2: Integral types and applied Gauss quadrature techniques  

Integral Type Applied Gauss Quadrature Type 

∫𝑓(𝑥) 𝑑𝑥

𝑏

𝑎

 Gauss Legendre 

∫ 𝑒−𝑥2
𝑓(𝑥) 𝑑𝑥    

∞

−∞

 Gauss Hermite 

∫ 𝑒−𝑥2
𝑓(𝑥) 𝑑𝑥   

∞

0

 Gauss Laguerre 
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(Table 3-2 continued) 

∫
1

√1 − 𝑥2
𝑓(𝑥) 𝑑𝑥   

1

−1

 Gauss Chebyshev I 

∫√1 − 𝑥2𝑓(𝑥) 𝑑𝑥 

1

−1

 Gauss Chebyshev II 

 

3.2.3 Comparison of Quadrature Techniques 

Quadrature is inevitable method for a scientific problem with an integral which cannot 

be evaluated analytically. Choosing the proper quadrature technique is an important 

step to result with a minimum error, time and calculation load. There is no best 

quadrature technique which works best for all type of functions, it depends on the 

properties of a function to be evaluated. The points specified below must be 

considered to achieve best result with minimum error: 

➢ Newton Cotes methods should be applied for uniform data points and 

Gauss quadrature should be applied for nonuniform data points,  

➢ Smoothness, singularities and their locations of an integrand should be 

determined and most appropriate quadrature technique must be chosen, 

➢ Classical quadrature techniques such as Newton Cotes and Gauss don’t 

work well with highly oscillatory integrands and some special techniques 

like the Filon method and Levin method studied by Krishna Thapa in [27] 

should be chosen for these integrands, 

➢ Effectiveness is the ability of quadrature technique to be successful to 

achieve intended numerical results, so required accuracy and acceptable 

error should be determined before the calculation and the most effective 

quadrature technique must be chosen to fit predefined values, 

➢ Redundant calculations (like increasing composite grid points) don’t 

increase the accuracy and may result with a high computation load. 

Adjusting the calculation load to an optimal level can decrease the time 
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and budget requirements especially for the huge data whose processing 

requires high capacity computer and long time.  

3.3 Numerical Results for Expansion Coefficients of Plane Wave and Hertzian 

Dipole 

Explicit formulas for the multipole coefficients are derived and the quadrature 

techniques are studied for the numerical calculations of these coefficients so far. Next 

step covers application of studied quadrature techniques to multipole coefficients of 

plane wave and Hertzian dipole to verify the first part of an algorithm. In the scope of 

this section, different quadrature techniques will be used and results of these 

techniques will be compared with both each other and analytical values.  

3.3.1 Expansion Coefficients for Plane Wave 

Electric field expression for an 𝑥-polarized plane wave propagating in +𝑧 direction is 

given as in equation (3.58). 

 𝑬(r) = 𝐸0𝒂𝒙𝑒
−𝑗𝑘𝑧 (3.58) 

The spherical harmonic expansion of this wave can be written as, 

 𝑬(𝒓) = ∑𝑎𝑛𝑚𝑴𝑛𝑚
(1)

+ 𝑏𝑛𝑚𝑵𝑛𝑚
(1)

𝑛,𝑚

 (3.59) 

where we have dropped the arguments of the vector wave functions for notational 

simplicity. Since the plane wave does not have a singularity, only first type of 

spherical functions can be used in this expansion. Since an analytic expression for the 

field is available, the spherical harmonic coefficients can be obtained analytically as 

in [23],  

 𝑎𝑛𝑚 = (−𝑗)𝑛−1𝐸0√
𝜋(2𝑛 + 1)

𝑛(𝑛 + 1)
𝛿𝑚,±1 (3.60) 
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 𝑏𝑛𝑚 = −𝑚(−𝑗)𝑛−1𝐸0√
𝜋(2𝑛 + 1)

𝑛(𝑛 + 1)
𝛿𝑚,±1 (3.61) 

Note that only the coefficients with 𝑚 = ±1 exist because of the 𝜙 symmetry. For the 

evaluation of the spherical harmonic coefficients 𝑎𝑛𝑚 and 𝑏𝑛𝑚, the expressions stated 

in equations (3.37) and (3.40) are used. The integrals in these equations are evaluated 

by using Gaussian, Trapezoid, Simpson quadrature rules and MATLAB® integral2 

function which evaluates a double integral numerically with an adaptive quadrature 

technique. The coefficients thus obtained are also used to obtain the far field value of 

the field which should again be an 𝑥 polarized plane wave propagating in +𝑧 direction. 

Table 3-3 summarizes the results of the developed code with different quadrature 

techniques and for all quadrature techniques software gives zero output for the inputs 

where 𝑚 is different from ±1 as expected from analytical calculations. If the results 

of four different quadrature rules are compared, MATLAB® integral2 and Gaussian 

give similar results which are also same with the analytical values, but the results for 

Trapezoid and Simpson quadrature are a little bit different from other quadrature 

techniques although they have more grid points than Gaussian. Since Trapezoid and 

Simpson quadrature calculate the coefficients of given plane wave with more error 

compared the other techniques, it is recommended to apply integral2 and Gaussian 

quadrature for multipole coefficient calculations of a plane wave. 

Next step after the calculation of multipole coefficients is to evaluate far field 𝑬 and 

𝑯 given in equations (3.25) and (3.26) which state the range of 𝑛 is zero to infinity, 

but in practice it is not possible to take infinitely many terms into account which 

obliges us to truncate the infinite series at some finite value 𝑁.  

“The number of terms that must be kept in the summation, 𝑁 depends on the value of 

𝑘𝑟 as well as the desired accuracy. As r is increased, more terms are required to keep 

the accuracy at the desired level. On the other hand, if too many terms are used so 

that 𝑁 is large, the spherical Hankel functions oscillate wildly with exponentially 
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large values, causing numerical inaccuracies. This occurs when the order exceeds the 

argument, hence the condition”. [13] 

Multipole coefficients of plane wave from software output for 𝐸0 = 1 , 𝑘𝑟 = 10, 20 

𝜃, 25 𝜙 grid points for Gauss rule, 315 𝜃, 629 𝜙 grid points for Trapezoid and Simpson 

rules are listed in Table 3-3 which shows that error increases after 𝑛 is bigger than 

2𝑘𝑟, 20. This result shows that truncation point for 𝑛 should be in the order of 2𝑘𝑟 for 

a minimum error factor and to avoid unnecessary calculation load. 

Table 3-3: Coefficients for plane wave with different quadrature techniques 

 

3.3.2 Expansion Coefficients for 𝒛 Directed Hertzian Dipole 

Hertzian dipole application is an important part to test success of the derived algorithm 

and to determine the most effective quadrature technique by comparing the results. 

Basic geometry of 𝑧 directed Hertzian dipole is presented in Figure 3-8. 
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Figure 3-8: 𝑧 directed Hertzian dipole geometry 

𝑬 and 𝑯 field expressions for an electric dipole excerpt from [9] are presented in 

equations (3.62), (3.63), (3.64) and (3.65) where ℓ is the length and 𝐼0 is the current 

of the electric dipole. 

 
𝐻𝑟 = 𝐻𝜃 = 𝐸𝜙 = 0 (3.62) 

 𝐻𝜙 =
𝑗𝑘𝐼0ℓ sin 𝜃

4𝜋𝑟
[1 +

1

𝑗𝑘𝑟
] 𝑒−𝑗𝑘𝑟 (3.63) 

 𝐸𝑟 =
𝑌𝐼0ℓ cos 𝜃

2𝜋𝑟2
[1 +

1

𝑗𝑘𝑟
] 𝑒−𝑗𝑘𝑟 (3.64) 

 𝐸𝜃 = 𝑗𝑌
𝑘𝐼0ℓ sin 𝜃

4𝜋𝑟
[1 +

1

𝑗𝑘𝑟
−

1

(𝑘𝑟)2
] 𝑒−𝑗𝑘𝑟 (3.65) 

The multipole coefficients of arbitrarily oriented Hertzian dipole (electric) in the 

matrix form can be written as given in equation (3.66)  
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 [

𝑏1,−1

𝑏1,0

𝑏1,1

] = 𝑗𝑘𝑍 √
2𝜋

3
 [

1 𝑗 0

0 0 √2
1 −1 0

] [

𝑝𝑥

𝑝𝑦

𝑝𝑧

] (3.66) 

where 𝒑 = 𝑝𝑥𝒂𝒙 + 𝑝𝑦𝒂𝒚 + 𝑝𝑧𝒂𝒛  is the dipole moment.  

Equation (3.66) states that, for a 𝑧 directed Hertzian dipole (electric) presented in 

Figure 3-8, only 𝑏10 will exist and all other coefficients will be zero. For a Hertzian 

dipole directed in 𝒑 direction with a current 𝐼0 and length ℓ vector potential can be 

written as in equation (3.67) 

 
𝑨 =  

𝑗𝑘𝜇

4𝜋
 𝒑𝐼0 ℓ 

𝑒−𝑗𝑘𝑟

𝑘𝑟
=  

−𝑗𝑘𝜇

4𝜋
 𝒑𝐼0 ℓ h0

(2)(𝑘𝑟) (3.67) 

𝑝𝑧 can be defined as in equation (3.68) 

 
   𝑝𝑧   =  

−𝑗𝑘𝐼0 ℓ

4𝜋
   (3.68) 

Multipole expansion coefficients of 𝑧 directed Hertzian dipole (electric) with four 

different quadrature techniques including MATLAB® integral2 function are listed in 

Table 3-4. Results of the quadrature techniques are compatible with theoretical one    

(𝑏10 = 61.3996 which is calculated by using equations (3.66) and (3.68)) from the 

point of existence of only 𝑏10 and it can be observed that Gaussian and integral2 

quadrature techniques give more precise result than Trapezoid and Simpson. Also, 

note that during the calculations; 315 𝜃, 629 𝜙 grid points are chosen for Trapezoid 

and Simpson rule and 25 𝜃, 20 𝜙 grid points are chosen for Gauss rule. 
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Table 3-4: Multipole coefficients for Hertzian dipole (electric) 

(𝒏,𝒎) 

Analytical  

Value 

integral2 Gauss Trapezoid Simpson 

𝑎𝑛𝑚 𝑏𝑛𝑚 𝑎𝑛𝑚 𝑏𝑛𝑚 𝑎𝑛𝑚 𝑏𝑛𝑚 𝑎𝑛𝑚 𝑏𝑛𝑚 𝑎𝑛𝑚 𝑏𝑛𝑚 

(1,0) 0 61.3996 0 61.3996 0 61.3996 0 61.3924 0 61.3897 

(
𝑚 ≠ 1,
 𝑛 ≠ 0 

) 0 0 0 0 0 0 0 0 0 0 

𝑘𝑟 = 10, 𝐼0 =1, ℓ =1 

Far field radiation pattern of Hertzian dipole by applying Gauss quadrature is 

presented in Figure 3-9 with three-dimensional radiation pattern and polar form of 

normalized E plane at 𝜙 = 0. Truncation order is chosen as 𝑁 = 1 with grid points of 

𝜋/30 for both 𝜃 and 𝜙. 

 

Figure 3-9: Far field radiation of 𝑧 directed Hertzian (electric) dipole located at 

(0,0,0) with Gauss quadrature 
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𝑬 and 𝑯 field expressions for a magnetic dipole are based on [9] presented in equations 

(3.69), (3.70), (3.71), (3.72) and (3.73) where ℓ is the length and 𝐼𝑚 is the current of 

magnetic dipole. Multipole expansion of magnetic dipole is listed in Table 3-5 and far 

field result is presented in Figure 3-10 with three dimensional radiation pattern and 

polar form of normalized E plane at 𝜙 = 0. 

 
𝐸𝑟 = 𝐸𝜃 = 𝐻𝜙 = 0 (3.69) 

 𝐻𝑟 =
𝐼𝑚ℓ cos 𝜃

2𝜋𝑟𝑌
[1 +

1

𝑗𝑘𝑟
] 𝑒−𝑗𝑘𝑟 (3.70) 

 𝐻𝜃 = 𝑗
𝑘𝐼𝑚ℓ sin 𝜃

4𝜋𝑟𝑌
[1 +

1

𝑗𝑘𝑟
−

1

(𝑘𝑟)2
] 𝑒−𝑗𝑘𝑟 (3.71) 

 𝐸𝜙 = −𝑗
𝑘𝐼𝑚ℓ sin 𝜃

4𝜋𝑟
[1 +

1

𝑗𝑘𝑟
] 𝑒−𝑗𝑘𝑟 (3.72) 

 [

𝑎1,−1

𝑎1,0

𝑎1,1

] = −𝑘√
2𝜋

3
 [

1 𝑗 0

0 0 √2
1 −𝑗 0

] [

𝑚𝑥

𝑚𝑦

𝑚𝑧

] (3.73) 

where 𝒎 = 𝑚𝑥𝒂𝒙 + 𝑚𝑦𝒂𝒚 + 𝑚𝑧𝒂𝒛  is the dipole moment and 𝑚𝑧 is defined as: 

 
𝑚𝑧 = 

−𝑗𝑘𝐼𝑚 ℓ

4𝜋
  (3.74) 

Equation (3.73) states that for a magnetic dipole only the coefficients 𝑎1,0 exits with a 

theoretical value of 𝑎10 = 0.1629𝑖 (calculated by equations (3.73) and (3.74)) and 

others are zero, as in the software output listed in Table 3-5. 
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Table 3-5: Multipole coefficients for Hertzian dipole (magnetic) 

(𝒏,𝒎) 

Analytical  

Value 

integral2 Gauss Trapezoid Simpson 

𝑎𝑛𝑚 𝑏𝑛𝑚 𝑎𝑛𝑚 𝑏𝑛𝑚 𝑎𝑛𝑚 𝑏𝑛𝑚 𝑎𝑛𝑚 𝑏𝑛𝑚 𝑎𝑛𝑚 𝑏𝑛𝑚 

(1,0) 0.1629i 0 0.1629i 0 0.1629i 0 0.1628i 0 0.1624i 0 

(
𝑚 ≠ 1,
 𝑛 ≠ 0

) 0 0 0 0 0 0 0 0 0 0 

𝑘𝑟 = 10, 𝐼𝑚=1, ℓ = 1 

 

Figure 3-10: Far field radiation of 𝑧 directed Hertzian (magnetic) dipole located at 

(0,0,0) with intagral2 quadrature 

3.3.3 Expansion Coefficients for 𝒛 Directed 𝒛 Shifted Hertzian Dipole 

For a Hertzian dipole located on the 𝑧 axis at a distance 𝑑 from the origin, the multipole 

coefficients are nonzero for any 𝑛 and 𝑚 = 0. The coefficients are zero for 𝑚 ≠ 0 

since the 𝜙 symmetry is retained in the translation. It is possible to debug the 

developed code for different values of 𝑛 for this case. Analytical expressions of the 
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coefficients are not available for this case. However, since the far field pattern will be 

same as for a dipole located at the origin, it is still possible to verify the numerical 

results. 

 

Figure 3-11: Hertzian dipole geometry shifted along the 𝑧 axis 

Numerical results of expansion coefficient for a Hertzian dipole located at (0, 0, 𝑑) 

are listed in Table 3-6 and Table 3-7 for electric and magnetic dipole, respectively 

with four different quadrature techniques.  

Table 3-6: Multipole coefficients for Hertzian dipole (electric) shifted on z axis 

(𝒏,𝒎) 

integral2 Gauss Trapezoid Simpson 

𝑎𝑛𝑚 𝑏𝑛𝑚 𝑎𝑛𝑚 𝑏𝑛𝑚 𝑎𝑛𝑚 𝑏𝑛𝑚 𝑎𝑛𝑚 𝑏𝑛𝑚 

(1,0) 0 
−0.0296 

+  0.0037i 
0 −0.0299 

+  0.0037𝑖 
0 −0.0296 

+  0.0037𝑖 
0 −0.0295 

+  0.0037𝑖 
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 (Table 3-6 continued) 

(2,0) 0 
−0.0140 

+  0.0157i 
0 −0.0148 

+  0.0165𝑖 
0 −0.0140 

+  0.0156𝑖 
0 −0.0139 

+  0.0156𝑖 

(3,0) 0 
−0.0020 

+  0.0165i 
0 −0.0023 

+  0.0188𝑖 
0 −0.0020 

+  0.0164𝑖 
0 −0.0020 

+  0.0164𝑖 

(4,0) 0 0.0024 
+  0.0136𝑖 

0 0.0030 
+  0.0179𝑖 

0 0.0024 
+  0.0136𝑖 

0 0.0024 
+  0.0136𝑖 

(5,0) 0  0.0015 
+  0.0117𝑖 

0 0.0019 
+  0.0200𝑖 

0 0.0015 
+  0.0116𝑖 

0 0.0015 
+  0.0116𝑖 

(10,0) 0 

−6.1034𝑒
− 04 
−  8.0824𝑒
− 04𝑖 

0 

−6.5034𝑒
− 04 
−  8.1324𝑒
− 04𝑖 

0 

−6.0034𝑒
− 04 
−  8.0924𝑒
− 04𝑖 

0 

−6.0034𝑒
− 04 
−  8.0924𝑒
− 04𝑖 

(15,0) 0 < 1𝑒 − 7 0 < 1𝑒 − 7 0 < 1𝑒 − 7 0 < 1𝑒 − 7 

(20,0) 0 < 1𝑒 − 10 0 < 1𝑒 − 10 0 < 1𝑒 − 10 0 < 1𝑒 − 10 

(
𝑛,

𝑚 ≠ 0
) 0 0 0 0 0 0 0 0 

𝑘𝑟 = 10, 𝐼0 = 1, ℓ = 1  𝑎 = 1.5, 𝑑 = 1 

 

 

Figure 3-12: Far field radiation of 𝑧 directed and 𝑧 shifted Hertzian (electric) dipole 

located at (0,0, 𝑑) with Trapezoid quadrature 
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Table 3-7: Multipole coefficients for Hertzian dipole (magnetic) shifted on 𝑧 axis 

(𝒏,𝒎) 

integral2 Gauss Trapezoid Simpson 

𝑎𝑛𝑚 𝑏𝑛𝑚 𝑎𝑛𝑚 𝑏𝑛𝑚 𝑎𝑛𝑚 𝑏𝑛𝑚 𝑎𝑛𝑚 𝑏𝑛𝑚 

(1,0) 
−0.1834 

−  1.1229𝑖 
0 

−0.1834 

−  1.1229i 
0 

−0.1835 

−  1.1229i 
0 

−0.1838 

−  1.1223i 
0 

(2,0) 
−0.1288 

−  0.2924𝑖 
0 

−0.1288 

−  0.2924𝑖 
0 

−0.1207 

−  0.2915𝑖 
0 

−0.1207

−  0.2913𝑖 
0 

(3,0) 
−0.0843 

−  0.0522𝑖 
0 

−0.0843 

−  0.0522𝑖 
0 

−0.0862 

−  0.0522𝑖 
0 

−0.0866 

−  0.0522𝑖 
0 

(4,0) 
−0.0440 

−  0.0053𝑖 
0 

−0.0440 

−  0.0053𝑖 
0 

−0.0443 

−  0.0053𝑖 
0 

−0.0440 

−  0.0053𝑖 
0 

(5,0) 
−0.0225 

−  0.0016𝑖 
0 

−0.0225 

−  0.0016𝑖 
0 

−0.0227 

−  0.0016𝑖 
0 

−0.0226 

−  0.0016𝑖 
0 

(15,0) < 1𝑒 − 7 0 < 1𝑒 − 7 0 < 1e − 7 0 < 1e − 7 0 

(20,0) < 1𝑒 − 10 0 < 1𝑒 − 10 0 < 1𝑒 − 10 0 < 1𝑒 − 10 0 

(
𝑛,

𝑚 ≠ 0
) 0 0 0 0 0 0 0 0 

𝑘𝑟 = 10, 𝐼𝑚  = 1, ℓ = 1, 𝑎 = 1.5, 𝑑 = 1 
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3.3.4 Expansion Coefficients for 𝒙 Directed Hertzian Dipole 

 

Figure 3-13: Hertzian dipole geometry directed on 𝑥 axis 

In sections 3.3.2 and 3.3.3, 𝑧 directed Hertzian dipole located at (0,0,0) and (0,0, 𝑑) 

were analyzed to verify the developed code by computing the multipole coefficients 

from a known field. In this section 𝑥 directed Hertzian dipole located at the origin is 

analyzed. As shown in Figure 3-13, 𝑧 directed dipole can be translated to an 𝑥 directed 

dipole by applying 90ᵒ rotation around the 𝑦 axis in clockwise direction and 

coordinate rotation matrix for this rotation is given in equation (3.75)                             

(See Appendix A) 

 [
𝑥′

𝑦′

𝑧′

] = [
cos 𝜃 0 − sin 𝜃

0 1 0
sin 𝜃 0 cos 𝜃

] [
𝑥
𝑦
𝑧
] (3.75) 
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for 𝜃 = 90ᵒ rotation matrix reduces to 

 [
𝑥′

𝑦′

𝑧′

] = [
0 0 −1
0 1 0
1 0 0

] [
𝑥
𝑦
𝑧
] (3.76) 

Expansion coefficients of the 𝑥 directed Hertzian dipole are calculated by developed 

code with four different quadrature techniques as in Table 3-8 and far field radiation 

is presented in Figure 3-14.  

Table 3-8: Multipole coefficients for 𝑥 directed Hertzian (electric) dipole 

(𝒏,𝒎) 

integral2 Gauss Trapezoid Simpson 

𝑎𝑛𝑚 𝑏𝑛𝑚 𝑎𝑛𝑚 𝑏𝑛𝑚 𝑎𝑛𝑚 𝑏𝑛𝑚 𝑎𝑛𝑚 𝑏𝑛𝑚 

(1,1) 0 
-0.0014 −
 0.0116𝑖 

0 
−0.0014 
−  0.0117𝑖 

0 
−0.0014 
−  0.0116𝑖 

0 
−0.0014 
−  0.0116𝑖 

(1, −1) 0 
0.0014 
+  0.0116𝑖 

0 
0.0014 
+  0.0117𝑖 

0 
0.0014 
+  0.0116𝑖 

0 
0.0014 
+  0.0116𝑖 

(
𝑛 ≠ 1,

𝑚 ≠ ±1
) 0 0 0 0 0 0 0 0 

𝑘𝑟 = 10, 𝐼0 = 1, ℓ = 1 
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Figure 3-14: Far field radiation of 𝑥 directed Hertzian (electric) dipole located at 

(0,0,0) with Simpson quadrature 
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CHAPTER 4  

 

4. NEAR FIELD TO FAR FIELD TRANSFORMATION OF SPHERICALLY 

SCANNED DATA  

 

4.1 Far Field Transformation of Experimental Data Using Trapezoid and 

Simpson Quadrature Techniques 

Near field data that will be transformed to far field is acquired in anechoic chamber of 

METU which is capable of spherical scanning. Measurement setup of METU is based 

on Figure 4-1 with the stationary probe and necessary rotations are implemented by 

test antenna both in  𝜃 and 𝜙 axis and 𝜒 is the probe rotation angle corresponds to two 

orthogonal components of electric field 𝐸𝜃 and 𝐸𝜙. 

 

Figure 4-1: Test antenna and probe geometry [1] 
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Developed code for calculation of multipole coefficients and far field radiations has 

been verified by applying to plane wave and Hertzian dipole antennas in Chapter 3. 

This chapter includes the application of far field transformation algorithm to a 

spherical scanned near field data which is acquired in METU anechoic chamber with 

a uniform spacing in both azimuth (𝜙 = 0: 360ᵒ) and elevation (θ= 0: 180ᵒ) axis with 

a resolution of 1.5ᵒ . 

The measurements are taken at a distance of 2.4 m from the test antenna with the probe 

antenna 𝐴𝑆𝑌 − 𝐶𝑊𝐺 − 𝑆 − 058 shown in Figure 4-2 which is a linearly polarized 

antenna. The test antenna has a radius of 0.525 m, thus the measurement distance 

corresponds to radiating near field of the antenna. The radius of the test antenna 

implies that multipole expansion of its field can be truncated at 𝑁 = 2𝑘𝑟 = 160. 

 

Figure 4-2: Near field probe antenna 𝐴𝑆𝑌 − 𝐶𝑊𝐺 − 𝑆 − 058  

Near field measurement of a reflector type antenna has been performed in the spherical 

near field measurement setup of METU and the two orthogonal components of this 

measurement are considered to be the 𝐸𝜃 and 𝐸𝜙 components of the field which are 

presented in Figures (4.3), (4.4), ( 4.5) ,(4.6) at ϕ = 0ᵒ and ϕ = 90ᵒ. 
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Figure 4-3: Near field 𝐸𝜃versus 𝜃 at 𝜙 = 0ᵒ and 𝑓 = 7.25 𝐺𝐻𝑧 

 

Figure 4-4: Near field 𝐸𝜃versus 𝜃 at 𝜙 = 90ᵒ and 𝑓 = 7.25 𝐺𝐻𝑧 
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Figure 4-5: Near field 𝐸𝜙 versus 𝜃 at 𝜙 = 0ᵒ and 𝑓 = 7.25 𝐺𝐻𝑧 

 

Figure 4-6: Near field 𝐸𝜙 versus 𝜃 at 𝜙 = 90ᵒ and 𝑓 = 7.25 𝐺𝐻𝑧 
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In this section, aperture of the probe is ignored and it is assumed that the probe 

measures radiation field of test antenna directly. The multipole coefficients can thus 

be calculated by using equations (3.37), (3.40) and the measurement data. Note that 

only the tangential components of the electric field are needed and the two measured 

components, namely 𝐸𝜃 and 𝐸𝜙. 

Once the multipole coefficients are determined, far field of the test antenna is obtained 

easily by using the asymptotic forms of the radial functions in the multipole expansion. 

This is basically the spherical near field to far field transformation algorithm. 

First step of transformation algorithm is to calculate the multipole coefficients given 

in equations (3.37) and (3.40) by applying the quadrature techniques which have been 

explained in Chapter 3 for numerical integration. Uniformly spaced characteristic of 

near field data leads to usage of Newton Cotes techniques instead of Gauss quadrature 

technique which determines the proper integration points instead of uniform spacing. 

In this thesis, Trapezoid and Simpson from Newton Cotes techniques are chosen to 

calculate the numerical integration part of multipole expansion coefficients. 

Second step of transformation algorithm is to determine the far field 𝑬 given in the 

equation (3.25) by using the multipole expansion coefficients calculated in the first 

part and asymptotic form of vector wave functions 𝑴 and 𝑵. Spherical wave 

expansion presentation of an 𝑬 field given in equation (3.25) requires the infinite 

summation over n which is not feasible for numerical calculations. This computational 

constraint necessitates to truncate n at a value of 𝑁 which is generally in the order of 

2𝑘𝑟 where 𝑘 is wave number and 𝑟 is the radius of minimum sphere that encloses the 

test antenna. 

In practice, the measuring probe has an aperture and therefore the quantity measured 

by the probe is a weighted integral of the electric field radiated by the test antenna 

over the probe aperture. Taking this fact into account is probe compensation and this 

is considered in Chapter 5. In fact, presence of the probe also affects the field radiated 

by the test antenna, but this effect is ignored in near field to far field transformation 
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algorithms. Near field measurements are always done in the radiating near field to 

ensure that this effect is negligible. 

If the measuring probe was a Hertzian dipole, the measured field would exactly be the 

electric field at the location of the probe, again assuming that the probe does not 

change the radiated field. For a Hertzian dipole, this assumption would be quite 

accurate since a Hertzian dipole is a point antenna. However, Hertzian dipole is a 

hypothetical antenna and we can only use electrically small dipoles as an 

approximation to such an antenna. In practice, electrically small dipoles are not used 

since 

a) the electrically small dipole is an inefficient antenna and therefore the received 

signal would be very small and measurement accuracy would be degraded by 

noise, 

b) the electrically small dipole antenna is an open structure and, if not impossible, 

it is quite difficult to have low cross polarization values. 

However, Hertzian dipole probe assumption can hypothetically be used with the 

measured data and the near field to far field transformation can be applied under this 

assumption. 

The results obtained in this section are compared to those obtained by the SNIFT code 

[26] available in the METU spherical near field measurement range. This code is 

developed by TICRA and is a part of the METU antenna range. In the TICRA SNIFT 

code, if the measurement probe is chosen as Hertzian dipole, probe compensation is 

not included and comparison becomes possible. 

Following section of this chapter includes the far field radiation output of the 

developed code based on Trapezoid and Simpson quadrature rules. Before starting the 

near field data processing, truncation order 𝑁 must be determined for the infinite sum 

given in equation (3.25). This order should be 𝑁 = 2𝑘𝑟 = 160 with wave number 𝑘 

and the test antenna radius 𝑟 for the given measurement setup. Figure 4-7 shows the 

software output by processing the near field data given in Figure 4-3 with Trapezoid 
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rule and truncation order of 𝑁 = 160. Also, this figure includes the near field to far 

filed transformation result of SNIFT code and it can be observed that SNIFT code and 

developed code are in good agreement with the truncation order of 𝑁 = 160 

 

Figure 4-7: Far field 𝐸𝜃 obtained from near field to far field transformation algorithm 

with Trapezoid quadrature and truncation order 𝑁 = 160 at 𝜙 = 0ᵒ and               

𝑓 = 7.25 𝐺𝐻𝑧 

Determining the number of terms that must be kept in the summation properly has a 

high importance for the near field to far field transformation algorithm’s success. 

Including fewer terms than required can result in numerical inaccuracies, on the other 

hand including too many terms than required can also cause numerical inaccuracies 

because of the oscillation of spherical Hankel functions for exponentially large values. 
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Far field outputs of the derived algorithm with 𝑁 = 50 and 𝑁 = 200 are presented in 

Figure 4-8 and Figure 4-9, respectively for near field data given in Figure 4-3. Output 

of SNIFT code for same near field data is also given in same figure. 

The discrepancy between two results in Figure 4-8 can be attributed to have less 𝑁 

than required and in Figure 4-9 can be attributed to include too many terms than 

required. Both figures verify the numerical inaccuracies caused by improper 

truncation order. 

 

Figure 4-8: Far field 𝐸𝜃 obtained from near field to far field transformation 

algorithm with Trapezoid quadrature and truncation order 𝑁 = 50 at 𝜙 = 0ᵒ and 

𝑓 = 7.25 𝐺𝐻𝑧 
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Figure 4-9: Far field 𝐸𝜃 obtained from near field to far field transformation algorithm 

with Trapezoid quadrature and truncation order 𝑁 = 200 for 𝜙 = 0ᵒ and              

𝑓 = 7.25 𝐺𝐻𝑧 

Result of the analysis for truncation order specified above shows that 𝑁 = 160 is the 

most appropriate truncation order which fits with SNIFT code outputs. So, near field 

to far field transformation will be performed with the truncation order of 160 in the 

following part. 

Far field transformation of near field data shown in Figures (4.2), (4.3), (4.4) and (4.5) 

is also performed by using developed transformation algorithm with Trapezoid and 

Simpson quadrature rules. Figure 4-10 shows the far field 𝐸𝜃 at 𝜙 = 0 obtained using 

near field to far field transformation algorithm with Trapezoid and Simpson 

quadrature and also output of SNIFT code is given on the same figure. It can be 

observed that, although Trapezoid rule and SNIFT code are in good agreement, 

Simpson differs from these two results. Also, Simpson method do es not give a smooth 
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result as in Trapezoid and SNIFT code which can be the result of improper integrand 

for approximating with second order polynomial which is the basic idea of Simpson 

rule. Namely, high oscillations of spherical Hankel functions cannot be approximated 

with a simple polynomial properly. 

 

Figure 4-10: Comparison of far field 𝐸𝜃 obtained from near field to far field 

transformation algorithm with Trapezoid and Simpson quadrature at 𝜙 = 0ᵒ and  

𝑓 = 7.25 𝐺𝐻𝑧 

The transformed far field Eθ in ϕ = 90 plane of the near field data given in             

Figure 4-3 is shown in Figure 4-11 for two quadrature rules and it can be observed 

that Trapezoid and SNIFT are in good agreement but Simpson has some error as in 

Figure 4-10.  
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Figure 4-11: Comparison of far field 𝐸𝜃 obtained from near field to far field 

transformation algorithm with Trapezoid and Simpson quadrature at 𝜙 = 90ᵒ and 

𝑓 = 7.25 𝐺𝐻𝑧 

The transformed far field 𝐸𝜙 at 𝜙 = 0ᵒ is presented in Figure 4-12 for three quadrature 

methods. SNIFT and Trapezoid rules are in good agreement. Smoothness problem of 

Simpson is seen again for 𝐸𝜙 and this leads to conclusion that, it does not depend on 

the processed field component 𝐸𝜃 or 𝐸𝜙, it is related to the unsuitable quadrature 

technique for the numerical evaluation of integrands given in (3.37) and (3.40). 
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Figure 4-12: Comparison of far field 𝐸𝜙 obtained from near field to far field 

transformation algorithm with Trapezoid and Simpson quadrature 𝐸𝜙 at 𝜙 = 0ᵒ and 

𝑓 = 7.25 𝐺𝐻𝑧 

The transformed far field 𝐸𝜙 at 𝜙 = 90ᵒ is presented in Figure 4-13 for three 

quadrature methods and Simpson is again not successful as Trapezoid. SNIFT and 

Trapezoid rules are in good agreement. 
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Figure 4-13: Comparison of far field 𝐸𝜙 obtained from near field to far field 

transformation algorithm with Trapezoid and Simpson quadrature at 𝜙 = 90ᵒ and 

𝑓 = 7.25 𝐺𝐻𝑧 

Far field transformation of experimental near field data is presented through           

Figure 4-7 to Figure 4-13 at 𝜙 = 0ᵒ and ϕ = 90ᵒ. Figure 4-14, Figure 4-15 and Figure 

4-16 show the three dimensional radiation including all 𝜃 and 𝜙 angles for SNIFT, 

Trapezoid and Simpson, respectively. From the comparison of these three figures, it 

can be concluded that Trapezoid quadrature rule is more compatible than Simpson for 

the experimental data processed in this study. 
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Figure 4-14: Total 𝐸 field obtained from near field to far field transformation 

algorithm with SNIFT at 𝑓 = 7.25 𝐺𝐻𝑧 

 

 

Figure 4-15: Total 𝐸 field obtained from near field to far field transformation 

algorithm with Trapezoid quadrature at 𝑓 = 7.25 𝐺𝐻𝑧 
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Figure 4-16: Total 𝐸 field obtained from near field to far field transformation 

algorithm with Simpson quadrature at 𝑓 = 7.25 𝐺𝐻𝑧 

4.2 Analysis of Near Field to Far Field Transformation Algorithm 

Far field transformation with Trapezoid and Simpson techniques is applied to near 

field 𝐸𝜃 and 𝐸𝜙 data acquired in METU anechoic chamber and these transformations 

are also compared with the result of SNIFT code in the foregoing parts of this chapter. 

All these studies can be concluded as; 

➢ Two orthogonal components of 𝐸𝜃 and 𝐸𝜙 fields are processed using the far 

field transformation by applying the quadrature methods to calculate multipole 

coefficients numerically, 

➢ Determining the truncation order for infinite sum given in (3.25) is a critical 

step of the transformation to get a more accurate far field 𝐸𝜃, 𝐸𝜙. This study 

shows that this order must be in the order of 2𝑘𝑟 which equals to 

approximately 160 for above calculations, 
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Far field transformation results presented in above figures show that Trapezoid 

rule is more convenient and accurate than Simpson rule for the integrands 

given in (3.37) and (3.40). And this leads to conclusion that approximating 

integrals given in (3.37) and (3.40) with the summation of trapezoids under the 

curve of function gives more precise result than approximating these 

integrands with a second order polynomial. High oscillating characteristic of 

spherical Hankel functions cannot be approximated with a simple polynomial 

properly, 

➢ SNIFT code was a reliable tool to verify the result of this study and comparison 

results given in above figures show that output of this study is mostly 

compatible with SNIFT transformation, 

➢ Error is inevitable result for this study because of the truncation of the infinite 

sum over 𝑛 in equations (3.25) and the numerical calculation of integrals in 

equations (3.37) and (3.40) instead of analytical calculations. 

Also note that, all studies have been performed without considering the probe 

effect in this chapter and compensation of this effect will be analyzed in the 

following chapter. 
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CHAPTER 5  

 

5. PROBE COMPANSATION IN NEAR FIELD TO FOR FIELD 

TRANSFORMATION 

 

5.1 Basic Theory of Spherical Probe Compensation 

Following derivations for probe compensation is based on [21] and [28]. When the 

probe antenna is introduced to measure field generated by test antenna, primary field 

is affected by the probe antenna and there is no method proposed in the literature to 

take this effect into account. However, this effect is negligible if the probe antenna is 

outside the reactive near field of the antenna under test. The probe antenna responds 

to a weighted sum of the field on its aperture and therefore it cannot measure the field 

at a point in space. This effect can be compensated if the properties of the probe 

antenna are known. It is the purpose of this section to derive a transformation 

algorithm that includes probe compensation, by means of well known Lorentz 

reciprocity theorem. 

Basic spherical probe compensation geometry is presented in Figure 5-1. Fields 

generated by test antenna A is to be measured by probe antenna B over a spherical 

surface. O is the origin of test antenna coordinate system, O’ is the origin of probe 

antenna coordinate system and O’’ is the origin of double primed coordinate system 

whose axes are parallel to the probe antenna coordinate system. In Figure 5-1, let Σ𝑎 

be a sphere that encloses the test antenna with a current source 𝑱𝑎(𝒓) and the fields 

radiated by the test antenna are denoted by 𝑬𝑎(𝒓), 𝑯𝑎(𝒓). These fields are incident 

on the probe antenna and the radiated fields of the probe antenna are denoted as 𝑬𝑏(𝒓
′) 

and 𝑯𝑏(𝒓
′) when the current source of 𝑱𝑏(𝒓

′) is enabled, 𝒓′ is measured with respect 

to O’. 
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Figure 5-1: Spherical probe compensations geometry [21] 

The probe antenna can be represented as Thevenin equivalent source to define the 

open circuit voltage, 𝑉𝑜𝑐 induced at its terminals by the incident wave, 𝑬𝑎(𝒓). The 

open circuit voltage, 𝑉𝑜𝑐 depends on the amplitude of incident field. The reciprocity 

theorem will be used to develop formulas for the probe antenna open circuit voltage, 

𝑉𝑜𝑐 in terms of transmit equivalent current model. Because, the receiving 

characteristics of an antenna can be related with its transmitting characteristics by 

reciprocity theorem. The current source of probe antenna, 𝑱𝑏(𝒓
′) will be used to 

measure the strength of the fields radiated by test antenna, 𝑬𝑎(𝒓) and this is called as 

reaction. The reaction between the probe antenna current source, 𝑱𝑏(𝒓
′) and the fields 

radiated by test antenna, 𝑬𝑎(𝒓) is defined as in equation (5.1). For reaction analysis it 

is assumed that, both the source of the probe and test antennas are not impressed at 

the same time.  
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〈 𝑱𝑏(𝒓

′) , 𝑬𝑎(𝒓) 〉 = ∫ 𝑱𝑏(𝒓
′)

𝑉

. 𝑬𝑎(𝒓) 𝑑𝑉 (5.1) 

The test and probe antennas can be called as reciprocal if they satisfy the equation 5.2, 

in case of no magnetic sources are available. 

 
〈 𝑱𝑎(𝒓) , 𝑬𝑏(𝒓

′)〉 = 〈 𝑱𝑏(𝒓
′) , 𝑬𝑎(𝒓) 〉 (5.2) 

The reciprocity theorem can be derived as in equation (5.4) by using reciprocity 

property given in equation (5.2) and inserting Maxwell equations to replace the current 

sources and then applying vector calculus. 

 
〈𝑱𝑎(𝒓) , 𝑬𝑏(𝒓

′)〉 − 〈𝑱𝑏(𝒓
′) , 𝑬𝑎(𝒓)〉 = ∫[𝑱𝑎(𝒓). 𝑬𝑏(𝒓

′) − 𝑱𝑏(𝒓
′). 𝑬𝑎(𝒓)]𝑑𝑉

𝑉

 (5.3) 

 

〈𝑱𝑎(𝒓) , 𝑬𝑏(𝒓
′)〉 − 〈𝑱𝑏(𝒓

′) , 𝑬𝑎(𝒓)〉 = ∫[𝑬𝑎(𝒓) × 𝑯𝑏(𝒓
′) − 𝑬𝑏(𝒓

′) × 𝑯𝑎(𝒓)] 𝑑𝑆

∑

 (5.4) 

The open circuit voltage of probe antenna for a 𝑧′ aligned infinitesimal current source, 

𝑱𝑏(𝒓
′) can be derived by using the reaction of  𝑱𝑏(𝒓

′) and 𝑬𝑎(𝒓). 

 
〈 𝑱𝑏(𝒓

′) , 𝑬𝑎(𝒓) 〉 = ∫𝑱𝑏(𝒓
′)

𝑉

. 𝑬𝑎(𝒓) 𝑑𝑉 (5.5) 

 
〈 𝑱𝑏(𝒓

′) , 𝑬𝑎(𝒓) 〉 = ∫[−𝐼𝑏𝒛𝛿(𝑥′)𝛿(𝑦′)]

𝑉

. 𝑬𝑎(𝒓) 𝑑𝑉 (5.6) 

 
〈 𝑱𝑏(𝒓

′) , 𝑬𝑎(𝒓) 〉 = −𝐼𝑏 ∫ 𝑬𝑎(𝒓) 𝑑𝑙
𝑧2

𝑧1

 (5.7) 

 
〈 𝑱𝑏(𝒓

′) , 𝑬𝑎(𝒓) 〉 = 𝐼𝑏 𝑉𝑜𝑐(𝑏) (5.8) 
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Similarly, it can be shown that 

 
〈 𝑱𝑎(𝒓′) , 𝑬𝑏(𝒓) 〉 = 𝐼𝑎 𝑉𝑜𝑐(𝑎) 

(5.9) 

By reciprocity theorem, the two reaction integrals are equal as stated in equation (5.10) 

 
𝐼𝑎 𝑉𝑜𝑐(𝑎) = 𝐼𝑏 𝑉𝑜𝑐(𝑏) (5.10) 

𝑉𝑜𝑐(𝑏) is the open circuit voltage induced across the terminals of probe antenna.  

𝑉𝑜𝑐(𝑏) represents the energy received by probe antenna from an incident wave, 𝑬𝑎(𝒓) 

and its level depends on the amplitude, polarization and direction of arrival of incident 

wave. The radiation pattern of the test antenna can be calculated from the 

measurement of the power at the terminals of the probe antenna which is proportional 

with |𝑉𝑜𝑐(𝑏)|2. 

Let 𝑃𝐵(𝑟0) represents the measured signal by the probe antenna which is proportional 

to the open circuit received voltage when the test antenna is radiating. Lorentz 

reciprocity theorem states that, 

 
∮  (𝑬𝑎 × 𝑯𝑏 − 𝑬𝑏 × 𝑯𝑎) ⋅ 𝑛 ̂𝑑𝑆 =  𝑃𝐵(𝒓𝟎)

∑

 (5.11) 

To evaluate the integral in equation (5.11), spherical wave expansions of the test 

antenna and the probe antenna can be written as outgoing wave expressions in their 

respective coordinate systems as in equations (5,12), (5.13), (5.14) and (5.15). 

 
𝑬𝑎(𝒓) = ∑𝑎𝑛𝑚,𝑎

(4)
𝑴𝑛𝑚

(4)
 (𝒓) + 𝑏𝑛𝑚,𝑎

(4)

𝑛,𝑚

𝑵𝑛𝑚
(4)

 (𝒓) (5.12) 

 
𝑯𝑎(𝒓) = 𝑗𝑌 ∑𝑏𝑛𝑚,𝑎

(4)
𝑴𝑛𝑚

(4)
 (𝒓) +

𝑛,𝑚

𝑎𝑛𝑚,𝑎
(4)

𝑵𝑛𝑚
(4)

 (𝒓) (5.13) 
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𝑬𝑏(𝒓

′) = ∑𝑎𝑛𝑚,𝑏
(4)

𝑴𝑛𝑚
(4)

 (𝒓′) + 𝑏𝑛𝑚,𝑏
(4)

𝑛,𝑚

𝑵𝑛𝑚
(4)

 (𝒓′) (5.14) 

 
𝑯𝑏(𝒓

′) = 𝑗𝑌 ∑𝑏𝑛𝑚,𝑏
(4)

𝑴𝑛𝑚
(4)

 (𝒓′) +

𝑛,𝑚

𝑎𝑛𝑚,𝑏
(4)

𝑵𝑛𝑚
(4)

 (𝒓′) (5.15) 

All the fields given in equation (5.11) can be written in same coordinate system and 

spherical vector wave addition theorems are used in order to express 𝑬𝑏(𝒓
′) and 

𝑯𝑏(𝒓
′) in terms of the wave function with the origin of O, which means changing the 

origin of 𝑬𝑏(𝒓
′) and 𝑯𝑏(𝒓

′) from O’ to O. Coordinate translation followed by rotation 

is necessary for this purpose. (See Appendix A and Appendix B). 

Translational additional theorem can be written as in equations (5.16) and (5.17) to 

perform translation between the coordinate systems with the origins of O’ and O’’. 

𝑴𝑛𝑚
(4) (𝒓′) = ∑  

∞

𝜈 =0

𝐴𝜈𝑚 
𝑛𝑚  𝑴𝜈𝑚 

(1)
 (𝒓′′) + 𝐵𝜈𝑚 

𝑛𝑚 𝑵𝜈𝑚
(1)

 (𝒓′′ ) (5.16) 

𝑵𝑛𝑚
(4) (𝒓′) = ∑  

∞

𝜈 =0

𝐴𝜈𝑚 
𝑛𝑚  𝑵𝜈𝑚 

(1)
 (𝒓′′) + 𝐵𝜈𝑚 

𝑛𝑚 𝑴𝜈𝑚 
(1)

 (𝒓′′) (5.17) 

Explicit form of translation coefficients, 𝐴𝜈𝑚 
𝑛𝑚  and 𝐵𝜈𝑚 

𝑛𝑚 are presented in Appendix A. 

After the translation is performed, unprimed coordinate system can be obtained by 

rotating the double primed coordinate system by using Euler angles 𝛼, 𝛽 and 𝛾  (See 

Appendix B) and rotational addition theorems stated in equations (5.18) and (5.19). 

𝑵𝜈𝑚
(1)

(𝒓 ′′) = ∑ 𝐷𝜇𝑚
(𝜈)

 (𝛼𝛽𝛾) 

𝜈

𝜇=−𝜈

𝑵𝜈𝜇
(1)

 (𝒓) 
(5.18) 
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𝑴𝜈𝑚
(1)

(𝒓 ′′) = ∑ 𝐷𝜇𝑚
(𝜈)

 (𝛼𝛽𝛾) 

𝜈

𝜇=−𝜈

𝑴𝜈𝜇
(1)

 (𝒓) 
(5.19) 

where 

𝐷𝜇𝑚
(𝜈)

 (𝛼𝛽𝛾) =  𝑒𝑗𝑚𝑎𝑑𝜇𝑚
(𝜈)

 (𝛽)𝑒𝑗𝜇𝛾 (5.20) 

where rotational coefficient 𝑑𝜇𝑚
(𝜈)

 (𝛽) is given in Appendix B 

By using translational and rotational addition theorems, fields of the probe antenna 

can be written in terms of coordinate system of the test antenna as: 

𝑬𝑏(𝒓) = ∑𝑎𝜈𝜇,𝑏
(1)

𝑴𝜈𝜇
(1)

 (𝒓) + 𝑏𝜈𝜇,𝑏
(1)

𝜈,𝜇

𝑵𝜈𝜇
(1)

 (𝒓) 
(5.21) 

𝑯𝑏(𝒓) = 𝑗𝑌 ∑𝑏𝜈𝜇,𝑏
(1)

𝑴𝜈𝜇
(1)

 (𝒓) +

𝜈,𝜇

𝑎𝜈𝜇,𝑏
(1)

𝑵𝜈𝜇
(1)

 (𝒓) 
(5.22) 

where  

𝑎𝜈𝜇,𝑏
(1)

= ∑  𝐷𝜇𝑚
(𝑣)

 (𝛼𝛽𝛾) [ 𝑎𝑛𝑚,𝑏
(4)

𝐴𝜈𝑚
𝑛𝑚 + 𝑏𝑛𝑚,𝑏

(4)
𝐵𝜈𝑚

𝑛𝑚]

𝑛,𝑚

 
(5.23) 

𝑏𝜈𝜇,𝑏
(1)

= ∑ 𝐷𝜇𝑚
(𝑣)

 (𝛼𝛽𝛾) [ 𝑎𝑛𝑚,𝑏
(4)

𝐵𝜈𝑚
𝑛𝑚 + 𝑏𝑛𝑚,𝑏

(4)
𝐴𝜈𝑚

𝑛𝑚]

𝑛,𝑚

 
(5.24) 

Equation (5.11) reduces to equation (5.25) by inserting the fields of the test 

antenna stated in equations (5.12), (5.13) and fields of the probe antenna stated in 

equations (5.21) and (5.22). 
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𝑛

𝑘3
(−1)𝑚 ∑ [ 𝑎𝑛𝑚,𝑎

(4)
 𝑎𝑛,−𝑚,𝑎

(1)
+ 𝑏𝑛,−𝑚,𝑎

(1)
 𝑎𝑛𝑚,𝑎

(4)
] =  𝑃𝐵(𝑟0) 

𝑛,𝑚

 (5.25) 

Multiply both side of equation (5.25) with (𝐷
𝜇′𝑚′
(𝑛′)

 (𝛼𝛽𝛾))
∗

and integrate over the 

ranges 0≪ 𝛼 ≪ 2𝜋, 0≪ 𝑦 ≪ 2𝜋, 0≪ 𝑏 ≪ 2𝜋, then equation 5.27 is obtained by 

orthogonality. 

 ∫ ∫ ∫ 𝐷𝜇𝑚
(𝑛)

𝜋

𝛽=0

2𝜋

𝑎=0

2𝜋

𝛾=0

(𝛼𝛽𝛾) (𝐷
𝜇′𝑚′
(𝑛′)

 (𝛼𝛽𝛾))
∗

sin 𝛽 𝑑𝛽𝑑𝛼𝑑𝛾 =  
8𝜋2

2𝑛 + 1
𝛿𝑛𝑛′𝛿𝑚𝑚′𝛿𝜇𝜇′ (5.26) 

 

(−1)𝑚
8𝜋2𝑛

𝑘2(2𝑛 + 1)
 [𝑎𝑛𝑚,𝑎

(4)
𝐴𝑛𝜇,𝑏 + 𝑏𝑛𝑚,𝑎

(4)
𝐵𝑛𝜇,𝑏]

=  ∫ ∫ ∫ 𝑒−𝑗𝜇𝑎𝑑−𝑚,𝜇
(𝑛)

 (𝛽)𝑒𝑗𝑚𝛾

𝜋

𝛽=0

2𝜋

𝑎=0

2𝜋

𝛾=0

 𝑃𝐵(𝑟0) sin 𝛽  𝑑𝛽𝑑𝛼𝑑𝛾 

(5.27) 

In equation (5.27), the coefficients 𝐴𝑛𝜇,𝑏 and 𝐵𝑛𝜇,𝑏 can be calculated by using (5.28) 

and (5.29) where 𝑎𝜈𝜇,𝑏
(4)

 and 𝑏𝜈𝜇,𝑏
(4)

 are the known receiving coefficients of the probe 

antenna and see Appendix A for  𝐴𝑛𝜇
𝜈𝜇

 and 𝐵𝑛𝜇
𝜈𝜇

.  

  
𝐴𝑛𝜇,𝑏 = ∑𝑎𝜈𝜇,𝑏

(4)
 𝐴𝑛𝜇

𝜈𝜇
+ 𝑏𝜈𝜇,𝑏

(4)

𝑣

 𝐵𝑛𝜇
𝜈𝜇

 
(5.28) 

 
𝐵𝑛𝜇,𝑏 = ∑𝑎𝜈𝜇,𝑏

(4)
 𝐵𝑛𝜇

𝜈𝜇
+ 𝑏𝜈𝜇,𝑏

(4)

𝑣

 𝐴𝑛𝜇
𝜈𝜇

 
(5.29) 

Equation (5.27) is valid for any integer value of 𝜇 from –𝑛 to 𝑛, for a given value of 

𝑛 and 𝑚, resulting in 2𝑛 + 1 linear equations. However, for a typical probe antenna 

only multipole coefficients with 𝜇 = ±1 exist and equation (5.27) gives only two 

linear equations that can be used to solve the unknown test antenna coefficients 𝑎𝑛𝑚 

and 𝑏𝑛𝑚. 
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After the calculation of probe compensated multipole coefficients 𝑎𝑛𝑚,𝑎
(3)

 and 𝑏𝑛𝑚,𝑎
(3)

, 

far field E with probe compensation can be evaluated by inserting the compensated 

coefficients into equation (3.25) with the asymptotic form of vector wave functions 𝑴 

and 𝑵.   

5.2 Experimental Results for Spherical Probe Compensation 

Mathematical derivation of the probe compensation is discussed in section 5.1 and the 

developed code is updated by adding this derivation for the probe compensation 

ability. This section focuses on the experimental validation of updated software by 

processing the near field data presented through Figure 5-2 to Figure 5-11. Also, 

output of updated software is compared with the SNIFT code. The probe antenna of 

“Antenna System Solutions” with the part number of 𝐴𝑆𝑌 − 𝐶𝑊𝐺 − 𝑆 − 058 is used 

for the near filed measurements. The probe receiving coefficients provided by the 

manufacturer are used for the following probe compensation results. 

Probe compensated output of the updated software with Trapezoid rule is presented in 

Figure 5-2 and Figure 5-4 for 𝐸𝜃 at 𝜙 = 0ᵒ and 𝐸𝜃 at 𝜙 = 90ᵒ, respectively. These 

two figures show the compensation effect by comparing the far field 𝐸𝜃 with and 

without probe compensation. It is observed that, not negligible error on the main lobe 

and side lobes is obtained if no probe compensation is applied. 
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Figure 5-2: Comparison of far field 𝐸𝜃 calculated with and without probe 

compensation by using near field to far field transformation algorithm with 

Trapezoid quadrature at 𝜙 = 0ᵒ and 𝑓 = 7.25 𝐺𝐻𝑧 

Probe compensation results of SNIFT code and developed software are presented in 

Figure 5-3 and Figure 5-5 for 𝐸𝜃 for 𝜙 = 0ᵒ and 𝐸𝜃 for 𝜙 = 90ᵒ, respectively. It can 

be concluded that both results are in good agreement.   
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Figure 5-3: Comparison of the probe compensated far field 𝐸𝜃 with near field to far 

field transformation algorithm and SNIFT code at 𝜙 = 0ᵒ and 𝑓 = 7.25 𝐺𝐻𝑧 
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Figure 5-4: Comparison of far field 𝐸𝜃 calculated with and without probe 

compensation by using near field to far field transformation algorithm with 

Trapezoid quadrature at 𝜙 = 90ᵒ and 𝑓 = 7.25 𝐺𝐻𝑧 
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Figure 5-5: Comparison of the probe compensated far field 𝐸𝜃 with near field to far 

field transformation algorithm and SNIFT code at 𝜙 = 90ᵒ and 𝑓 = 7.25 𝐺𝐻𝑧 

Probe compensation output of developed software with Trapezoid rule is presented in 

Figure 5-6 and Figure 5-8 for 𝐸𝜙 for 𝜙 = 0ᵒ and 𝐸𝜙 for 𝜙 = 90ᵒ, respectively. 

Comparisons with SNIFT are presented in Figure 5-7 and Figure 5-9 which show that 

SNIFT and Trapezoid rule are in good agreement. 
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Figure 5-6: Comparison of far field 𝐸𝜙 calculated with and without probe 

compensation by using near field to far field transformation algorithm with 

Trapezoid quadrature at 𝜙 = 0ᵒ and 𝑓 = 7.25 𝐺𝐻𝑧  
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Figure 5-7: Comparison of the probe compensated far field 𝐸𝜙 with near field to far 

field transformation algorithm and SNIFT code at 𝜙 = 0ᵒ and 𝑓 = 7.25 𝐺𝐻𝑧 
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Figure 5-8: Comparison of far field 𝐸𝜙 calculated with and without probe 

compensation by using near field to far field transformation algorithm with 

Trapezoid quadrature at 𝜙 = 90ᵒ and 𝑓 = 7.25 𝐺𝐻𝑧 
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Figure 5-9: Comparison of probe compensated far field 𝐸𝜙 with near field to far field 

transformation algorithm and SNIFT code at 𝜙 = 90ᵒ and 𝑓 = 7.25 𝐺𝐻𝑧 

Probe compensated far field 𝐸𝜃 pattern in ϕ = 0ᵒ plane obtained by Simpson 

quadrature is given in Figure 5-10 which shows that error on sidelobes is observed 

without probe correction as in Trapezoid technique. Comparison of three output for 

probe compensation is presented in Figure 5-11 in which the agreement of SNIFT 

code and Trapezoid technique is revealed. The fast oscillations observed especially in 

the sidelobe region obtained by using the Simpson quadrature in the algorithm can be 

attributed to the inaccuracies of numerical calculations of Simpson quadrature. 
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Figure 5-10: Comparison of far field 𝐸𝜃 calculated with and without probe 

compensation by using near field to far field transformation algorithm with Simpson 

quadrature at 𝜙 = 0ᵒ and 𝑓 = 7.25 𝐺𝐻𝑧 
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Figure 5-11: Comparison of probe compensated far field 𝐸𝜃 with near field to far 

field transformation algorithm, SNIFT code and Simpson at 𝜙 = 0ᵒ and 𝑓 =

7.25 𝐺𝐻𝑧 
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CHAPTER 6  

 

6. CONCLUSION 

 

In this thesis, the derivation and analysis of near field to far field transformation 

algorithm for spherical scanning is investigated. The main motivation is to use this 

algorithm for determining the far filed radiation of the antennas whose Rayleigh 

distances extends the laboratory scales. 

Mathematical formulations for near field to far field transformation algorithm are 

studied and coded by using MATLAB® for different quadrature techniques and 

success of derived algorithm is tested by calculating the multipole coefficients of 

Hertzian dipole and plane wave with a known coefficient. 

Spherical near field data acquired in METU anechoic chamber is processed with 

developed code and far field transformation of this data is performed with Trapezoid 

and Simpson rules to see which one fits better for this application. Also, MATLAB® 

code is run for different 𝑁 to determine the most appropriate truncation order for the 

infinite sum of 𝑬 field vector wave expansion and it is determined as 𝑁 = 2𝑘𝑟. 

Finally, probe compensation is studied to obtain the pure field of test antenna by 

eliminating the probe effect. Far field transform data with and without probe 

compensation is plotted to reveal the compensation effect.  

Also, near field to far field transformation result of this study is compared with the 

SNIFT which is already being used by METU for far filed transformation of spherical 

scanning. This comparison is performed both the cases with and without probe 

compensation and it is observed that, SNIFT and this study are mostly in good 

agreement for Trapezoid rule. It is also observed that, Simpson is not a proper 

technique to approximate oscillating spherical Hankel functions.  
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For the future work, detail error analysis of quadrature methods can be studied and 

numerical optimization techniques could also be developed to decrease the calculation 

load for a huge data. 
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APPENDIX 

A. COORDINATE TRANSFORMATION 

This section is based on [21] 

 

Figure A- 1: Coordinate transformation geometry 

 
[

𝒂𝑥′

𝒂𝑦′

𝒂𝑧′

] =  [

𝑞11 𝑞12 𝑞13

𝑞21 𝑞22 𝑞23

𝑞31 𝑞32 𝑞33

] [

𝒂𝑥

𝒂𝑦

𝒂𝑧

] (A.1) 

(A.1) is coordinate rotation matrix. 
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Rotation about 𝑧-axis 

 
P’ =[

cos𝛷0 sin𝛷0 0
− sin𝛷0 cos𝛷0 0

0 0 1
] (A.2) 

Rotation about 𝑥-axis 

 
𝑃′′ = [

1 0 0
0 cos 𝜃0 sin 𝜃0

0 − sin 𝜃0 cos 𝜃0

] (A.3) 

Rotation about 𝑦-axis 

 
P’’’ = [

cos 𝑥0 0 − sin 𝑥0

0 1 0
sin 𝑥0 0 cos 𝑥0

] (A.4) 

If only translation is involved, the coefficients 𝐴𝑚𝜈
𝑚𝑛 and 𝐵𝑚𝜈

𝑚𝑛 are given by; 

 

 

 

 

𝐴𝜈𝜇
𝑛𝑚 = (−1)𝜇  

∑𝑎(𝑚, 𝑛|𝜇, 𝜈|𝑝) 𝑎(𝑛, 𝜈, 𝑝) 𝑃𝑝
𝑚−𝜇

 (cos𝜃0) 𝑒
𝑗(𝑚−𝜇)𝜙0

𝑝

{
𝑧𝑝

(𝑎)(𝑘𝑟0) , 𝑟′ ≤  𝑟0
 

𝑗𝑝(𝑘𝑟0) , 𝑟′ ≥  𝑟0

} 

 

(A.5) 

𝐵𝜈𝜇
𝑛𝑚 = (−1)𝜇+1  

∑𝑎(𝑚, 𝑛|𝜇, 𝜈|𝑝, 𝑝 − 1) 𝑏(𝑛, 𝜈, 𝑝) 𝑃𝑝
𝑚−𝜇

 (cos𝜃0) 𝑒
𝑗(𝑚−𝜇)𝜙0

𝑝

{
𝑧𝑝

(𝑎)(𝑘𝑟0) , 𝑟′ ≤  𝑟0
 

𝑗𝑝(𝑘𝑟0) , 𝑟′ ≥  𝑟0

} 

 

 

(A.6) 
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𝑎(𝑛, 𝜈 , 𝑝) = 𝑗𝜈+𝑝−𝑛  

[
2𝜈 (𝜈 + 1)(2𝜈 + 1) + (𝜈 + 1)(𝑛 − 𝜈 + 𝑝 + 1)(𝑛 + 𝜈 − 𝑝)

2𝜈 (𝜈 + 1)

−
𝜈 (𝜈 − 𝑛 + 𝑝 + 1)(𝑛 + 𝜈 + 𝑝 + 2)

2𝜈 (𝜈 + 1)
] 

 

(A.7) 

𝑏(𝑛, 𝜈 , 𝑝) = 𝑗𝜈+𝑝−𝑛  

[[(𝑛 + 𝜈 + 𝑝 + 1)(𝑛 − 𝜈 + 𝑝)(𝑛 − 𝜈 + 𝑝)(𝑛 + 𝜈 − 𝑝 + 1)]
1

2⁄  ]
2𝜈 + 1

2𝜈 (𝜈 + 1)
 

 

(A.8) 

Summation over 𝑝 is finite covering the range |𝑛 − 𝑣|, |𝑛 − 𝑣| + 2,… , 𝑛 + 𝑣 and 

includes 1 + 𝑚𝑖𝑛{𝑛, 𝑣} terms. The coefficients 𝑎(𝑚, 𝑛|𝜇, 𝜈 |𝑝) are defined by the 

linearization expansion; 

 

𝑃𝑛
𝑚(𝑥) 𝑃𝜈 

𝜇(𝑥) =  ∑𝑎(𝑚, 𝑛|𝜇, 𝜈 |𝑝)

𝑝

 𝑃𝑝
𝑚+𝜇(𝑥) (A.9) 

When a translation along the 𝑧-axis by a distance 𝑟0 is required the addition, problem 

takes the following simpler form; 

𝑴𝑛𝑚
(𝑎) (𝒓) = ∑  

∞

𝜈 =min (1,𝑚)

𝐴𝑚𝜈 
𝑚𝑛  𝑴𝑚𝜈 

(1)
 (𝒓) + 𝐵𝑚𝜈 

𝑚𝑛 𝑵𝑚𝜈 
(1)

 (𝒓 ) (A.10) 

𝑵𝑛𝑚
(𝑎)(𝒓) = ∑  

∞

𝜈 =min (1,𝑚)

𝐴𝑚𝜈 
𝑚𝑛  𝑵𝑚𝜈 

(1)
 (𝒓) + 𝐵𝑚𝜈 

𝑚𝑛 𝑴𝑚𝜈 
(1)

 (𝒓) (A.11) 
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Which applies translation from 𝑂 to 𝑂’. When translation from 𝑂 to 𝑂’, 𝐴𝑚𝜈 
𝑚𝑛  and 𝐵𝑚𝜈 

𝑚𝑛  

are predicted by the factors (−1)𝑚+𝜈  and (−1)𝑚+𝜈+1 respectively. The translation 

coefficients, which can be obtained from more general formulas above are given by; 

𝐴𝑚𝜈
𝑚𝑛 = (−1)𝑚𝑗𝜈−𝑛  

2𝜈 + 1

2𝜈(𝜈 + 1)
∑𝑗𝑝

𝑝

[𝑛(𝑛 + 1) + 𝜈(𝜈 + 1) − 𝑝(𝑝 + 1)] (A.12) 

 
𝑎(𝑚, 𝑛|−𝑚, 𝜈|𝑝) {

𝑍𝑝
(𝑎)(𝑘𝑟0) , 𝑟 ≤  𝑟0

 
𝑗𝑝(𝑘𝑟0) , 𝑟 ≥  𝑟0

} (A.13) 

 

𝐵𝑚𝜈
𝑚𝑛 = (−1)𝑚𝑗𝜈−𝑛  

2𝜈 + 1

2𝜈(𝜈 + 1)
 ∑𝑗−𝑝

𝑝

 (−2𝑗𝑚𝑘𝑟0) (A.14) 

As stated, above recursion relation for the 𝑎(. ) exists and is given by; 

 where (2𝑡 − 1)!!  =  (2𝑡 − 1) (2𝑡 − 3) … 3.1; (−1)!!  =  1 

 

𝛼𝑝−3 𝑎𝑝−4 − (𝛼𝑝−2 + 𝛼𝑝−1 + 4𝑚2) 𝑎𝑝−2 + 𝛼𝑝 𝑎𝑝 = 0 (A.15) 

𝛼𝑝 =
[(𝑛 + 𝜈 + 1)2 − 𝑝2][𝑝2 − (𝑛 − 𝜈)2]

4𝑝2 − 1
 (A.16) 

𝑎𝑛+𝜈 = 
(2𝑛 − 1)‼ (2𝜈 − 1)‼

(2𝑛 + 2𝜈 − 1)‼
 

(𝑛 + 𝜈)!

(𝑛 − 𝑚)! (𝜈 + 𝑚)!
 (A.17) 

𝑎𝑛+𝜈−2 = 
(2𝑛 + 2𝜈 − 3)

(2𝑛 − 1)(2𝜈 − 1)(𝑛 + 𝜈)
 [𝑛𝜈 − 𝑚2(2𝑛 + 2𝜈 − 1)]𝑎𝑛+𝜈 (A.18) 
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B. COORDINATE ROTATIONS 

This section is based on [21] 

 

Figure B- 1: Coordinate rotation geometry 

It is extremely simple to describe the addition theorems for 𝑴𝑛𝑚and 𝑵𝑛𝑚under 

coordinate rotations. 

 
𝑌𝑛𝑚(𝜃, 𝜙) = ∑ 𝑌𝑛𝑚

𝑛

𝜇=−𝑛

(𝜃∗𝜙∗) 𝐷𝜇𝑚
(𝑛)

(𝛼𝛽𝛾) (B.1) 

 
𝑌𝑛𝑚 = [

2𝑛 + 1

4𝜋
 
(𝑛 − 𝑚)!

(𝑛 + 𝑚)!
]

1
2

𝑃𝑛
𝑚(cos 𝜃)𝑒𝑗𝑚𝜙 (B.2) 

The conversion used is that the Euler angles 𝛼, 𝛽, 𝛾 correspond to 𝑅𝑧, 𝑅𝑌,𝑅𝑧
′  rotation 

angles, respectively. 
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𝐷𝜇𝑚

(𝑛)
= 𝑒𝑗𝑚𝑎 𝑑𝜇𝑚

(𝑛)
 (𝛽) 𝑒𝑗𝜇𝛾 (B.3) 

where  

 
𝑑𝜇𝑚

(𝑛)
 (𝛽) =  [

(𝑛 + 𝜇)!

(𝑛 + 𝑚)!

(𝑛 − 𝜇)!

(𝑛 − 𝑚)!
]

1
2⁄

  

∑(
𝑛 + 𝑚

𝑛 − 𝜇 − 𝜎
) (

𝑛 − 𝑚
𝜎

) (−1)𝑛−𝜇−𝜎  (cos
𝛽

2
)
2𝜎+𝜇+𝑚

(sin
𝛽

2
)
2𝑛−2𝜎−𝜇−𝑚

𝜎

 

 

(B.4) 

 
𝑢𝑛𝜇

𝑎 (𝑟, 𝜃, 𝜙) = ∑ 𝐷𝜇𝑚
(𝑛)

(𝛼𝛽𝛾)

𝑛

𝜇=−𝑛

 (𝑟′, 𝜃′, 𝜙′) (B.5) 

 
𝑴𝑛𝑚

𝑎 (𝑟, 𝜃, 𝜙) = ∇𝑢𝑛𝜇
𝑎 (𝑟, 𝜃, 𝜙)  × 𝒓 =  ∑ 𝐷𝜇𝑚

(𝑛)(𝛼𝛽𝛾) 𝑴𝑛𝑚
𝑎

𝑛

𝜇=−𝑛

 (𝑟′, 𝜃′, 𝜙′) (B.6) 

𝑵𝑛𝑚
(4)

(𝒓′) = ∑  

∞

𝑣=0

𝐴𝜈𝑚
𝑛𝑚 𝑵𝜈𝑚

(1)
 (𝒓 ′′) + 𝐵𝜈𝑚

𝑛𝑚 𝑴𝜈𝑚
(1)

 (𝒓 ′′) (B.7) 

𝑴𝑛𝑚
(4) (𝒓′) = ∑  

∞

𝑣=0

𝐴𝜈𝑚
𝑛𝑚 𝑴𝜈𝑚

(1)
 (𝒓 ′′) + 𝐵𝜈𝑚

𝑛𝑚 𝑴𝜈𝑚
(1)

 (𝒓 ′′) (B.8) 

𝑬𝑏(𝒓) = ∑𝑎𝜈𝜇,𝑏
(1)

𝑴𝜈𝜇
(1)

 (𝑟) + 𝑏𝜈𝜇,𝑏
(1)

𝜈,𝜇

𝑵𝜈𝜇
(1)

 (𝒓) (B.9) 

𝑯𝑏(𝒓) = 𝑗𝑌 ∑𝑏𝜈𝜇,𝑏
(1)

𝑴𝜈𝜇
(1)

 (𝒓) +

𝜈,𝜇

𝑎𝜈𝜇,𝑏
(1)

𝑵𝜈𝜇
(1)

 (𝒓) (B.10) 

 


