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ABSTRACT

ANALYSIS OF RING FOCUS REFLECTORS

Ozdemir, Halil
Master of Science, Electrical and Electronic Engineering
Supervisor: Prof. Dr. Sencer Kog

September 2019, 110 pages

Ring focus dual reflectors are the most modern forms of dual reflectors. They have
distinctive geometries which eliminate the aperture blocking that results from the
mechanical structure of sub-reflector. This characteristic of ring focus dual reflectors
provides a more controllable reflector pattern as compared with classical dual
reflectors. Also, the shape of the reflector pattern is different from the classical dual
reflectors because of the fact that ring focus dual reflector geometries are different
from the geometries of classical dual reflectors. The main aim of this thesis is
investigation of the advantages and disadvantages which are coming with the usage of
ring focus dual reflectors. In accordance with this aim, the analytical methods which
provide the calculation of reflector patterns are examined and they are applied to
classical and ring focus dual reflectors. The novelties that ring focus dual reflectors
bring about are presented in the thesis and compatibility of the obtained results with

the real world are discussed.

Keywords: Ring Focus (Displaced-Axis) Reflector, Current-Distribution Method,
Aperture-Field Method
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HALKA ODAKLI YANSITICILARIN ANALIZi

Ozdemir, Halil
Yiiksek Lisans, Elektrik ve Elektronik Miihendisligi
Tez Danismani: Prof. Dr. Sencer Kog

Eyliil 2019, 110 sayfa

Halka odakl ¢ift yansiticilar ¢ift yansiticilarin en modern seklidirler. Kendilerine 6zgii
geometrileri, alt yansiticinin mekanik yapisindan kaynaklanan agiklik engellemesini
ortadan kaldirmaktadir. Halka odakli ¢ift yansiticilarin bu 6zelligi klasik cift
yansiticilara gére daha kontrol edilebilir bir yansitici Oriintiisiiniin ortaya ¢ikmasina
sebep olmaktadir. Ayrica, halka odakli ¢ift yansiticilarin geometrileri klasik ¢ift
yansiticilardan farkli oldugu i¢in yansitic1 oriintiileri de klasik ¢ift yansiticilardan
farkli olmaktadir. Bu tezin temel amaci halka odakli ¢ift yansiticilarin ortaya
cikarttiklar1 avantaj ve dezavantajlarin arastirilmasidir. Bu amag¢ dogrultusunda
yansitici Oriintiilerinin hesaplanmasini saglayan yontemler incelenecek ve klasik ve
halka odakli ¢ift yansiticilara uygulanacaktir. Halka odakli ¢ift yansiticilarin getirdigi
yenilikler tez igerisinde sunulacak ve ortaya c¢ikan sonuclarin ger¢ek diinya ile

uyumlulugu incelenecektir.

Anahtar Kelimeler: Halka Odakli (Yer Degistirmis Eksenli) Yansitici, Akim Dagilim1
Yontemi, Agiklik Alan1 Yontemi
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CHAPTER 1

INTRODUCTION

Reflector antennas are widely used in microwave applications that require high gain
and narrow beamwidth. They have always been a popular subject in the microwave
frequencies; therefore, there are many types of reflector antennas in the literature. The
most common types of reflector antennas today are the antennas which have a
parabolic reflector as the main reflector. The main reason of this choice is that
parabolic reflectors are more efficient than other types of reflectors (plane reflector,
corner reflector etc.). The primary goal of a parabolic reflector as the main reflector
of a reflector antenna is that it converts the incoming rays to parallel rays leaving the
reflector antenna. In addition to main reflector, modern reflector antennas usually have
a minor reflector which is called as sub-reflector. These sub-reflectors provide good
advantages to reflector antennas in terms of feed location. While parabolic reflectors
are generated by rotating a parabolic curve about an axis by 360°, sub-reflectors arise
from elliptic, hyperbolic or flat curve rotated 360° around the same axis depending on

the type of the application.

Classical front-fed reflector geometry is the first and mostly known kind of parabolic
reflector geometry. It has only main reflector; and thus, its geometry is quite simple.
The history of parabolic reflectors is based on the defense of Syracuse in 287-212 B.C.
In these years, a parabolic mirror was used by the famous Greek scientist Archimedes
to burn the Roman ships during Punic War (Baars, 2007). The first realized front-fed
reflector in radio frequencies is the dipole-fed parabolic reflector which was practiced
by German physicist Heinrich Hertz in 1888 in order to show that radio waves behave
as light rays for large wavelengths (Cichon & Wiesbeck, 1995). The feed antenna in
a front-fed reflector is directed toward the main reflector. Therefore, aperture of feed

antenna compulsorily causes the aperture blocking, that is some of the rays reflected



by the main reflector returns back to the feed aperture, which is the main problem of
many reflector geometries. Aperture blocking may change the antenna pattern by
increasing side lobe levels and antenna beamwidth (Rudge & Adatia, 1978). To
overcome this problem, offset geometry of front-fed reflector was presented (Sandler,
1960). Feed antenna is placed below the main reflector in offset reflectors. By this
way, the offset geometries of reflectors do not have aperture blocking, but the radiation
pattern of the reflectors is not symmetrical in this case. All offset reflectors have this
disadvantage as well as the advantage of removing aperture blocking effect. Thus,
importance of the symmetrical radiation pattern determines whether using an offset

reflector instead of a classical reflector is reasonable or not.

Classical dual reflector geometries consist of two famous reflectors: Cassegrain and
Gregorian reflectors. Laurent Cassegrain (Hannan, 1961) and James Gregory (Bucci,
Pelosi, & Selleri, 1999) have designed reflecting telescope geometries both of which
have aperture blocking like the classical front-fed reflector geometry. However, they
have a nice advantage that the feed structures and low noise microwave blocks can be
located at the back of the main reflector. This advantage is crucial to reduce the losses
of the feed network and the noise temperature of receiving reflector antenna. In most
applications, it is desired to remove (or minimize) the adverse effect of aperture
blocking in reflector antennas. For this purpose, offset types of these reflectors are
used. In these geometries, the main beam is not exposed to aperture blocking
(Mizusawa, Urasaki, & Tanaka, 1977) , (Bergmann & Palma Pereira, 1998). The
radiation patterns of these reflectors are not symmetrical as in the case of offset front-

fed antennas.

In addition to mentioned reflector systems above, ring focus dual reflectors (displaced-
axis dual reflectors) brought a new approach to dual reflector systems (Morgan, 1964).
Unlike other reflectors, their foci create a ring as it is understood from their names.
The most important feature of the ring focus dual reflectors is that ring focus dual
reflectors have a feed offset which their design provides. Therefore, there is no

aperture blocking which occurs from the physical structures of sub-reflectors in these



reflectors. It is the main advantage of ring focus dual reflectors. By this advantage,
ring focus dual reflectors were especially used to control the amplitude distribution on
the aperture (Milligan & Popov, 1997). To improve the design of ring focus dual
reflectors, Christophe Granet introduced his own procedure (Granet, 1999). In
addition to control of the amplitude distribution on the aperture, ring focus dual
reflectors were also used for forming the elliptic beam (Zhi-yong, 2010) and obtaining

omnidirectional coverage (Bergmann & Moreira, 2005).

The ring focus reflectors are obtained by rotating a truncated parabolic main reflector
and a displaced-axis hyperbolic or elliptic sub-reflector about a rotation axis by 360°,
and this rotation axis has a vertical offset from the common foci of the main and sub-
reflectors. Therefore, the coordinate of the focus in ring focus dual reflectors changes
for each value of the rotation angle, and this rotated coordinate provides ring focus
property for the reflector system. A sample geometry for a ring focus reflector is given

in Figure 1.1 and Figure 1.2 as before rotation and after rotation, respectively.

Truncated Parabolic
Main Reflector
P2 R1
Q1
ymys
\41 / XM 2 Rotation Axis
Feed Displaced-Axis “%zzsm
Subreflector o

Figure 1.1. Before Rotation of the Truncated Parabolic Main Reflector and a

Displaced-axis Hyperbolic or Elliptic Sub-reflector

In Figure 1.1, the curve between Q; and Q, represents the truncated parabolic main
reflector and the curve between P; and P, represents the displaced-axis sub-reflector.

The coordinate axes of the truncated parabolic main reflector and the displaced-axis



sub-reflector are also given in the figure as y,,-z,, and y;-z,, respectively. O point
represents the common focus of the truncated parabolic main reflector and displaced-
axis sub-reflector. As shown in this figure, there is an offset between the rotation
axis,z, and O point. Thus, the focus takes the shape of ring after rotation. Also, sample

propagations of two different rays are shown in this figure by blue and red lines.

Sub-reflector

2

2

g

Ring focus

Main Reflector

Figure 1.2. After Rotation of the Truncated Parabolic Main Reflector and a

Displaced-axis Hyperbolic or Elliptic Sub-reflector

After rotation, blue, pink and black lines in Figure 1.2 show the truncated parabolic
main reflector, displaced-axis sub-reflector and ring focus, respectively. As shown in

this figure, the focus is annular and there is a hole in the main reflector.

Removing the effect of aperture blocking provides that ring focus dual reflectors have
different antenna patterns from conventional dual reflectors. These differences may

reveal good advantages in many types of microwave applications.
1.1. Motivation

As already mentioned, ring focus dual reflectors have distinctive physical geometries

and so they produce different antenna patterns as compared to their classical forms.



The main purpose of this thesis is investigating the differences in antenna patterns for
single and double offset ring focus geometries. After this examination, the benefits
and disadvantages of ring focus dual reflectors are investigated. Therefore, the
necessity of using ring focus systems is presented in accordance with the aim of the

required application.
1.2. Outline

To realize the aim of the thesis, firstly, available techniques which can be applied in
order to obtain the radiation patterns of reflector antennas are examined in Chapter 2.
And then, the chosen analysis method in Chapter 2 are performed to the most basic
form of reflector antennas (front-fed parabolic reflector) by using different feed
structures in Section 3.2 and 3.3 to show the effect of feed structure on the reflector
radiation pattern. This implementation creates a fundamental construction for the
analysis of reflector antennas; and thus, the necessary changes could be easily carried
out onto other type of reflector systems with the purpose of getting radiation patterns
of them. Besides, the required feed pattern which provides uniform field distribution
on the aperture plane of front-fed parabolic reflector is calculated in Chapter 3 and it
is applied to written analysis code which is made for debugging purposes. After that,
the fundamental construction is used in other type of reflectors in Chapters 4, 5 and 6
by only reflecting the incident field from the sub-reflector. Then, the advantages and
disadvantages of ring focus dual reflectors are studied in Chapter 7 by comparison of
the analyzed patterns of ring focus dual reflectors and classical dual reflectors. So, this
chapter realizes the main goal of this thesis and shows the changes in the antenna
patterns that arise when a ring focus reflector is used. Lastly, designs of ring focus

reflectors are made in Chapter 8 and a conclusion chapter exists in Chapter 9.






CHAPTER 2

TECHNIQUES USED FOR ANALYSIS OF REFLECTOR ANTENNAS

Analysis of reflector antennas is an important subject for antenna designers. As
mentioned in Chapter 1, reflector antennas are commonly used in microwave
applications from commercial satellite communication to military radar systems.
Nowadays, commercial electromagnetic simulation tools which can calculate the
radiation characteristics of reflector antennas by using numerical methods are present.
They give quite accurate simulation results, but the simulation time of them is very
long especially if electrical size of the antenna is large. Besides, they require very
expensive hardware cost if simulation time is wanted to shorten or huge mesh size is
desired to solve. Due to these disadvantages of electromagnetic simulation tools,
analysis tools which are based on some electromagnetic principles and use
approximate methods are usually preferred to quickly obtain the radiation
characteristics of reflector antennas. For this reason, analysis tools are important in
terms of time saving for the design of reflector antennas. Moreover, analysis tools
have a significant ability about the getting of the most suitable feed pattern which
gives the required reflector pattern of the interested reflector. The reason of this ability
is that analysis tools can use countless unreal feed patterns as feed of the reflector; and
thus, they can obtain the most suitable feed pattern that provides the required reflector
pattern. After obtaining the most suitable feed pattern, designers can focus only on its

realization.

The most common methods used to calculate the radiation characteristics of reflector
antennas are the Current-Distribution method and the Aperture-Field method. These

methods are discussed in Section 2.1 and 2.2, respectively.



2.1. Current-Distribution Method

Current-Distribution method integrates the induced electric and magnetic current
densities (J and J,,5 respectively) over the reflector surface; and thus, this method is
called the Current-Distribution method. To better understand this method, consider

the generalized form of Maxwell’s equations:

VX E = ~joufl -
VXH=jweE +]
V-E‘=%p (2.1)
VH=—pp

U

The solution of equation (2.1) can be obtained in terms of the scalar and vector
potentials of the electric and magnetic type:
_ _ Y
E = —V(p—]a)A—ZVXAm
_ B B 1. (2.2)
H = _V(pm_ijm+;_1VXA

The scalar and vector potentials satisfy the Lorentz conditions and Helmholtz wave

equations:
V-A+ joeup =0
V2 + k2 = —g 2.3)
V2A + k2 A = —y]

and;

VA, + joeup, =0
Vi + k2@ = —%m (2.4)

V2Ap + k*Ap = —€]n

The solutions of the Helmholtz equations are given in terms of Green’s function:



o) = [ L ™G = av’
€ (2.5)

A = f WG —7)dv’

and;
1 _
om(T) = f—pm(r')a(f—r')dv'
# (2.6)
A, (F) = fe]_m(r_’)G(f—r_’)dV’

By Lorentz conditions, the scalar potentials may be written in terms of the vector

potentials, and an alternative expression for equation (2.2) is obtained:

_ . R
E=——[V(V-A) + k?A] -~V x 4
JOrH v € " (2.7)

_ _ 1_
[V(V-Ap) + k2A,] +;v X A

T

" jwen
Replacing A and 4,, in terms of equations (2.5) and (2.6), the solutions in equation

(2.7) may be expressed in terms of the current densities (Orfanidis, 1999):

[VV-sG) + k?[sG — jwe Js X VG] dS'

F=—
- J“if o ) o (2.8)
! :jw_ﬂf[VV' UmsG) + k2 JonsG + jouJy x VG dS’

The parameters in equation (2.8) are described in Table 2.1.

Table 2.1. Parameter Description of Current-Distribution Method

Symbol Description
E Electric field vector
H Magnetic field vector
G(T—1") Scalar Green’s function
v Del operator




Equation (2.8) shows that the radiation characteristics of reflectors can be calculated
easily if J; and J,,s over the reflector surface are known. These current densities are
induced by the incident field, and they can be approximated by using Physical Optics

(PO) approximation as given in equation (2.9).
LzﬁX(ﬁi+Hr)EZﬁXHi=2ﬁXHr (29)

Here, H; and H, are the incident and reflected magnetic field vectors measured at the
surface of the perfectly conducting reflector. If the value of either of them is known,
J¢ can be calculated by using equation (2.9). Besides, fi represents the unit normal to

the reflector surface.

The magnetic current density J,,s equals to zero on the reflector surface, because
tangential electric fields are zero on perfect electric conductor. Thus, calculation of J
is enough to obtain the radiation characteristics of reflectors in Current-Distribution
method. Consequently, if incident magnetic field H; is known, electric and magnetic
field vectors in far-field can be found by using equations (2.8) and (2.9). And thus,

radiation characteristics of reflectors are obtained.

Since PO is used in the Current-Distribution method, the basic assumptions used in
PO approximation must also be true for the Current-Distribution method. These

assumptions are summarized as below ( (Kishk, 2011) and (Balanis, Antenna Theory,

2005)).

- Radius of the reflector and size of the objects are large compared to the
wavelength.

- The primary field from the feed can be treated as a plane wave.

- Reflector has a perfectly conducting surface.

- J, is zero on the shadow side of the reflector.

- Direct radiation from the feed, edge effect of the reflector and aperture

blockages resulted from the feed are neglected.
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Also, since J; and J,,s are the induced current densities, the assumptions made in
surface equivalence theorem are also valid for Current-Distribution method. Besides,

the tangential electric fields are zero on perfect electric conductor (Gibson, 2008).
2.2. Aperture-Field Method

Aperture-Field method is based on determining the aperture fields, E, and H,, over
the aperture plane, the plane on which the phase of the waves is constant, and using
these fields to obtain the radiation pattern of the antennas. For this purpose, radiation
vector of the feed antenna must be found. Radiation vector of an antenna is the Fourier
transform of the electric field on the aperture plane of the antenna (Lo & Lee, 1993).

A sample aperture is given in Figure 2.1.

y

Aperture

,
/
r o/
’
’

’
/
’
/
/

" Observation Point
E.H

Figure 2.1. Radiation Fields from an Aperture

In Figure 2.1, E, and E, represent the tangential electric field on the aperture and the
tangential electric field outside the aperture, respectively. It is assumed that the fields
outside the aperture are zero. The radiation vector of the aperture, f(6, ), can be

calculated by equation (2.10).
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7(6,9) = f E,(x',y") effex"+ikyy gt gy’ (2.10)

After finding the radiation vector of the aperture, electric field components in far-field

can be obtained by using equations (2.11) and (2.12) (Orfanidis, 1999).

e ¥ 1 + cos(6)
— - 2.11
Eg = jk - > [fx cos ¢ + f, sin @] (2.11)

e k1 + cos(0)

Eo =Jk— 2

[fy cos @ — fy sin ] (2.12)

Descriptions of the parameters in equations (2.11) and (2.12) are listed in Table 2.2.

Table 2.2. Parameter Description of Aperture-Field Method

Symbol Description

Eg 6 component of the electric field in far-field
E, ¢ component of the electric field in far-field
k Wavenumber

1 + cos(6

T() Obliquity factor
fx x component of radiation vector
fy y component of radiation vector

Differently from Current-Distribution method, Aperture-Field method involves
Geometrical Optics (GO) approximation instead of PO approximation. Thus; the
assumptions made in GO approximation are also required for Aperture-Field method.
These assumptions can be summarized as below ( (Kishk, 2011) and (Balanis,

Antenna Theory, 2005)).

- Radius of the reflector and size of the objects are large compared to the

wavelength.

12



- Reflector surface is smooth enough so that it can be approximated by a plane
about any reflection point on the surface.

- The wave radiated from the feed can be treated as a plane wave.

- Reflector has a perfectly conducting surface.

- Direct radiation from the feed, edge effect of the reflector and aperture

blockages resulted from the feed are neglected.

When contrasting with Current-Distribution method, equivalent sources which are
used to determine the radiation characteristics of reflectors are the fields on the
aperture plane in Aperture-Field method instead of the induced current densities on
the reflector surface. Both methods can be used to develop an analysis tool that can be
used to investigate the radiation characteristics of reflectors. Due to construction of
the equivalence theorem, both methods give accurate results only in the region of
interest (front side of the reflector). Also, edge diffraction of reflector is not taken into
account in either method; therefore, errors will occur in antenna pattern especially as
we move away from the boresight of the antenna. A brief explanation about GTD can

be found in Appendix C.

The main advantage of Aperture-Field method is that integration over the aperture
plane has similar ease for any feed pattern or feed position. But, integration over
reflector surface, which is required in Current-Distribution method, is different for
each reflector type and this integration must be recalculated for each reflector type.
This necessity causes additional process burden for the computation. Thus, Aperture-

Field method is chosen to analyze the reflector antennas in this thesis.
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CHAPTER 3

FRONT-FED PARABOLIC REFLECTOR

As mentioned in Chapter 2, Aperture-Field method is preferred in this thesis to analyze
the radiation characteristics of reflector antennas. Aperture-Field method requires
determination of aperture fields and replacing them in equation (2.11) and (2.12) to
calculate the radiation characteristics of reflector antennas. Equation (2.11) and (2.12)
indicate that radiated fields from an aperture can be obtained if its radiation vector is

known. Therefore, finding f, and f,, is enough to calculate the radiation characteristics

of reflector antennas.

Front-Fed Parabolic Reflector is the first type of the reflectors investigated in this
thesis. The reason of this is that Front-Fed Parabolic Reflector includes a fundamental
structure for the analysis of reflector antennas. After verifying this fundamental
structure, the necessary changes can be easily carried out for other reflector types. The

geometry of front-fed parabolic reflector is shown in Figure 3.1.
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Reflector

Aperture Plane

Figure 3.1. Geometry of Front-Fed Parabolic Reflector

In Figure 3.1, O point shows the focus of the reflector and the feed is placed at this
point. D,, and F, represent the diameter and the focal length of the reflector,
respectively. The rays leaving the feed are reflected from the parabolic reflector; and
then, they propagate in +z direction parallel to the z axis. R represents the path
between the feed and the reflection point on the reflector, and h represents the path
between the reflection point on the reflector and the aperture plane of the reflector.
The plane on which the phases of all the rays are constant is called an aperture plane.
We will take the aperture plane as the plane that passes through the focus, 0. On the
aperture plane, all possible values of R and all corresponding values of h must give
the same total length for each possible angle of y. p is the distance of the ray in the
aperture plane to 0. Also, y is the subtended angle of the reflector and f,,is the

surface normal of the reflector.
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To obtain the field reflected from the reflector, the field incident from the feed antenna
must be known firstly. If the reflector geometry does not have a sub-reflector as in
Figure 3.2, the field incident from the feed antenna are applied to main reflector

directly by using equation (3.1) (Mahajan, 2014).

Reflector

Aperture Plane

Figure 3.2. Obtaining Field Reflected from the Reflector in a Single Reflector
System

In Figure 3.2, f; is the field incident from the feed and f;,, is the field reflected from

the reflector. The relation between f; and f;,, is given in equation (3.1).
fm = _fi + 270 (A, - fl) (3.1)

The derivation of equation (3.1) is given in Appendix E and descriptions of the

parameters in equation (3.1) are listed in Table 3.1.
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Table 3.1. List of Symbols (Field Reflected from the Main Reflector)

Symbol Description
fi Field incident from the feed antenna
fm Field reflected from the main reflector
i Normal vector of main reflector surface

If the reflector geometry has a sub-reflector as in Figure 3.3, the field reflected from

the sub-reflector must be found by using equation (3.2).

Main Reflector

Sub-reflector

Aperture Plane

Figure 3.3. Obtaining Field Reflected from the Main Reflector in a Dual Reflector
System

fs = _fi + 275 ( - fl) (3.2)

Descriptions of the parameters in equation (3.2) are listed in Table 3.2.
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Table 3.2. List of Symbols (Field Reflected from the Sub-reflector)

Symbol Description
fi Field incident from the feed antenna
fs Field reflected from the sub-reflector
g Normal vector of sub-reflector surface

After finding f; from equation (3.2), f, must be placed in equation (3.3) to calculate

the field reflected from the main reflector.

fon = —fs + 20 (A f2) (3.3)
As mentioned above, equation (3.1) is enough to obtain f,, in front-fed parabolic
reflector. Otherwise, if the reflector geometry has a sub-reflector, the field reflected
from the sub-reflector, which is found in equation (3.2), is applied to main reflector as
in equation (3.3). With the calculation of f,,, the final process is completed to obtain
the radiation characteristics of front-fed parabolic reflector. After obtaining f,,, the

electric field on the aperture plane of the reflector can be calculated by equation (3.4).
_ e JkR

3 3.4
E,= = fin (3.4)

where E,, is the electric field on the aperture plane of the reflector and it must be put

into equation (2.10) to calculate the radiation vector of the reflector.

The reflector in Figure 3.1 is a parabolic reflector and the feed structure is placed at
the focus of it. The equation of parabolic reflector is given in equation (3.5) (Sharma,

Rao, & Shafai, 2013).
p? = 4E,z (3.5)

In equation (3.5), p and z represent the two axes of cylindrical coordinate
system. F,, is the focal length of the parabolic reflector as indicated in Figure 3.1.
Normal vector of parabolic reflector (72,,,) can be obtained by taking the gradient of

equation (3.5).
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By rewriting equation (3.5):
p?—4F,z=0 (3.6)

By taking the gradient of equation (3.6):

—V(p? — 4E,,z
A = (’; m?) 3.7)
IV(p? — 4B 2)||
By using p = xX + yJ and p? = x? + y?2:
-1 x y
i = (52 + 59— 2)
2K 2F
(x2 + y?) +1 " m (3.8)
e

Only f; remains as an unknown in equation (3.1) after finding #,, . The value of f;
depends on the feed itself and its expressions for different feed structures are given in

Section 3.1 to 3.3.

R and h parameters in Figure 3.1 represent the path lengths of the rays OP and PA,
respectively. Any ray that emanates from the focal point O is reflected in a direction
parallel to the z axis by the parabolic reflector and arrive at a point A on the surface.
The total path length traversed by any such ray is a constant that is independent of the

departure angle and equals to 2F,, for all values of y .

R+ h =2E, (3.9)
By using the geometric relations in Figure 3.1;

h =R cosvy (3.10)

and then;

R+ Rcosy = 2F, (3.11)

Thus, the expression of R is obtained in terms of F,, and .
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oo 2 En
1+cosy  cos2 (%) (3.12)

Also, by using the geometric relations in Figure 3.1 again:
p =Rsiny (3.13)
Finally, we get the expression of p in terms of F,, and .

_op MY o Y 3.14
p= ™14 cosy m a5 .19

Put p = Dy, /2 and y =y into equation (3.14);

Dp,
= — A
Y, = 2atan <4‘Fm) (3.15)

V,, is called the ‘subtended angle” of the parabolic reflector.

3.1. Debugging of Analysis Tool

In this section, a special feed that creates a uniform field over the aperture of the front-
fed parabolic reflector is calculated and it is used to debug the coded analysis tool in
this thesis. This analysis tool calculates the radiation pattern of the reflectors by using
Aperture-Field method in Matlab environment. The input of this tool is the field
incident from the feed and the tool gives radiation pattern of the chosen reflector as
output. The required feed pattern for uniform aperture field of front-fed parabolic
reflector can be calculated by using equations (3.1) and (3.2). The calculated feed
pattern is then used as the feed of the front-fed parabolic reflector, and amplitude and
phase distributions of the fields over the aperture plane are investigated. If the field
over aperture plane is uniform as expected, it shows that the ray tracing step of the
analysis tool is correctly implemented. This verification of the tool is important since
front-fed parabolic reflector makes up a basis for all the geometries which have dual
reflectors. The only difference between front-fed parabolic reflector and the structures

with dual reflectors is that structures with dual reflectors use the field reflected from
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the sub-reflector instead of the field resulted from the feed directly. All remaining
computation steps for the front-fed parabolic reflector and for the structures with dual

reflectors are the same.

As discussed previously in this chapter, incident field can be used in equation (3.1)

directly for the front-fed parabolic reflectors. Thus;
fm = _fi + 27l (i, - fl) (3.16)

Let, K(y, %) be defined as the scalar in equation (3.17). ¢ and y are shown in Figure
3.1

Ky, %) = (A - f7) (3.17)

The x,y and z components of f,, must be equal to values in equation (3.18) in order

to get a y-polarized uniform field over the aperture plane.

fm = frxX + fmyy + fmz2

fmx = ZK(\V' X)nmx - fix =0
R (3.18)
fmy = ZK(\V' X)nmy - fiy = m

fmz = ZK(Wi X)nmz - ]CiZ - O

Solving equation (3.18) for the components of f; yields;

. ~ kR sin(2y) —COS(\;) !
];iy = —e_Rﬁ ((cos(y) — 1) sin?(y) + 1) (3.19)

R : :
|~ TR 2 sin(y) sin(y/2) cos(y/2)]
The steps from equation (3.18) to equation (3.19) are given in Appendix D.

where Ny, Ny, and n,,, are the x,y and z components of fi,,. Their values in terms
of y and y are given in equation (3.20).
Ny = — cos(y) sin(y/2)

Ny = — sin(y) sin(y/2) (3.20)
Nz = cos(y/2)
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For a front-fed parabolic reflector that is fed with a primary feed pattern whose
components f;y, f;,, and f;, are as given in equation (3.19), the field on the aperture
plane of the reflector becomes uniform. To debug the analysis tool developed in this
thesis, the field components found in equation (3.19) are used as the feed of the front-
fed parabolic reflector and the amplitude and phase distributions on the aperture plane

are investigated.
The amplitude distribution of the field on the aperture plane is shown in Figure 3.4.

Amplitude Distribution over the Aperture Plane

y-axis

-06 -04 -02 0 02 04 06
x-axis

Figure 3.4. |Ey| over the Aperture Plane

The phase distribution of the field on the aperture plane is given in Figure 3.5.
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Phase Distribution over the Aperture Plane

y-axis

-06 -04 -0.2 0 0.2 04 06
X-axis

Figure 3.5. Phase of E), over the Aperture Plane

When Figure 3.4 and Figure 3.5 are examined, it can be seen that the amplitude and
phase of the field on aperture plane is constant. In other words, it is a uniform field.
This result validates the implementation of the analysis tool, at least for the main

reflector.
3.2. Open Ended Waveguide Feed

In this section, the field incident from an open ended waveguide is found; and thus,
the radiation characteristic of the front-fed parabolic reflector whose feed is an open
ended waveguide is calculated by using equations from (3.2) to (3.15) as well as

equation (2.11) and (2.12).

Firstly, consider an open ended waveguide geometry like in Figure 3.6.
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Figure 3.6. Geometry of an Open Ended Waveguide

The electric field in the open ended waveguide operating in TE;p mode can be

expressed as:
X
E,(x) = E, cos (7) (3.21)

Besides, the field incident from the open ended waveguide, f,,, (6, ¢), can be
calculated by obtaining the Fourier transform of the electric field over the aperture

plane (Lo & Lee, 1993).

a/2 b/2

fyw(0,9) = f f E,(x)e/kx+ikyy g d, (3.22)
—-a/2 —b/2

By putting the value of E), (x) in equation (3.21) into equation (3.22):

|

NIQ\; N Q
|

Nl |

XN .,
fw®.9) = Ey | | cos(—) e/ /Y d, d,
(3.23)
a2 s b/2
= E, ] cos (—) elkxxd j el vvd,
a
—-a/2 -b/2

Equation (3.23) can be solved analytically:
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2ab cos(mv,) sin(mvy)
fyw(e, @) =E, - - ?

a
A

1—dv; vy (3.24)
b
sin(6@) cos(p), v, = zsin(e) sin(¢)

Uy =

Lastly, putting the result of £, (6, ¢) into equations (3.1) and (3.2) provides us to
know the field reflected from the front-fed parabolic reflector whose feed is the open
ended waveguide. The reflected field calculated in there is placed into equations (2.11)

and (2.12) to get the radiation characteristics of the overall system.

The calculated radiation pattern of the front-fed parabolic reflector which has the open
ended waveguide as the feed is shown in Figure 3.7, Figure 3.8 and Figure 3.9, and
the chosen parameter values of the front-fed parabolic reflector and the open ended

waveguide are listed in Table 3.3.

Table 3.3. Chosen Parameters of Front-Fed Parabolic Reflector and Open Ended

Waveguide
Parameter Name Parameter Value
Main reflector diameter (D,;,) 4m
Main reflector focal length (F,;,) 2.5m
Long length of the waveguide (a) 0.072 m
Short length of the waveguide (b) 0.034 m
Operating Frequency (f) 3.8 GHz

The calculated E-plane (¢ = 0°) radiation pattern of the front-fed parabolic reflector

which has the open ended waveguide as the feed is shown in Figure 3.7.
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Figure 3.7. Open Ended Waveguide-Fed Front-Fed Reflector Pattern (¢ = 0°)

The calculated radiation pattern of the front-fed parabolic reflector which has the open

ended waveguide as the feed is shown in Figure 3.8 for (¢ = 45°).

Waveguide- Fed Front Feed Reflector Pattern(Phl 45)

Co-Pol Power (dB)

700 -pol-phi45
—— Cross-pol-phi45

Angle (deg)

Figure 3.8. Open Ended Waveguide-Fed Front-Fed Reflector Pattern (¢ = 45°)

Cross-Pol Power (dB)

The calculated H-plane (¢ = 90°) radiation pattern of the front-fed parabolic reflector

which has the open ended waveguide as the feed is shown in Figure 3.9.
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Waveguide-Fed Front Feed Reflector Pattern(Phi=90)
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Figure 3.9. Open Ended Waveguide-Fed Front-Fed Reflector Pattern (¢ = 90°)

Also, the calculated radiation pattern of the front-fed parabolic reflector which has the
open ended waveguide as the feed is compared with the result of Orfanidis (Orfanidis,

1999). The comparison result is given in Figure 3.10.

Comparison Result
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Figure 3.10. Comparison Result of Open Ended Waveguide-Fed Patterns

As shown in Figure 3.10, the calculated radiation pattern of the open ended

waveguide-fed reflector is exactly the same with the result of Orfanidis.
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The calculated radiation patterns of the open ended waveguide-fed and horn-fed
reflectors are compared with each other in section 3.4 in order to show the effect of

the used feed on the reflector pattern.
3.3. Horn Feed

In this section, the field incident from the horn antenna is derived; and thus, the
radiation characteristic of the front-fed parabolic reflector whose feed is a horn
antenna is calculated by using equations from (3.1) to (3.15) as well as equation (2.11)

and (2.12).

Consider a horn geometry and its cross sections like in Figure 3.11 and Figure 3.12.

A

Figure 3.11. Geometry of Horn Aperture
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Figure 3.12. Cross Sections of Horn Structure
The electric field in the horn structure can be expressed as:
X . .
E,(x,y) = E, cos (7> e~ JkBa=JkAD (3.25)

In equation (3.25), A, and A, represent the delays of electric field resulted from the

extra path lengths in the horn structure unlike open ended waveguide.

Besides, the field incident from the horn antenna, f,, (6, @), can be calculated by
obtaining the Fourier transform of the electric field over the aperture plane as mention

in Section 3.2.

AJ2 BJ2
X . . . .
fyn(6,9) = Eq cos (;) e kbamjkpgllxtilyy, d,

—A/2 —B/2

(3.26)

For calculation of the integrals in equation (3.26) and for other integrals in this thesis,
various numerical integration methods such as Trapezoidal rule and Gauss-Legendre
Quadrature method (Davis & Rabinowitz, 1984) can be used. The detailed expressions

about these methods are given in Appendix A and Appendix B, respectively.

Putting the result of £}, (6, @) into equations (3.1) and (3.2) gives the field incident
from the front-fed parabolic reflector whose feed is the horn antenna. The reflected
field calculated in there is placed in equations (2.11) and (2.12) to get the radiation

characteristics of the overall system.
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The calculated radiation fields of the front-fed parabolic reflector which has the horn
antenna as the feed are given in Figure 3.13, Figure 3.14 and Figure 3.15, and the

chosen parameter values are listed in Table 3.4.

Table 3.4. Chosen Parameters of Front-Fed Parabolic Reflector and Horn Antenna

Parameter Name Parameter Value
Main reflector diameter (D,y,) 4 m
Main reflector focal length (£,,) 2.5m

Long length of the horn aperture (A4) 0.144 m
Short length of the horn aperture (B) 0.068 m
Operating Frequency (f) 3.8 GHz

A, 0.03 m

Ap 0.02 m

The calculated E-plane (¢ = 0°) radiation pattern of the front-fed parabolic reflector

which has the horn antenna as the feed is shown in Figure 3.13.
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Figure 3.13. Horn-Fed Front-Fed Reflector Pattern (¢ = 0°)
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The calculated radiation pattern of the front-fed parabolic reflector which has the horn

antenna as the feed is shown in Figure 3.14 for (¢ = 45°).
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Figure 3.14. Horn-Fed Front-Fed Reflector Pattern (¢ = 45°)

The calculated H-plane (¢ = 90°) radiation pattern of the front-fed parabolic reflector

which has the horn antenna as the feed is shown in Figure 3.15.
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Figure 3.15. Horn-Fed Front-Fed Reflector Pattern (¢ = 90°)
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Also, the calculated radiation pattern of the front-fed parabolic reflector which has the
horn as the feed is compared with the result of Orfanidis (Orfanidis, 1999). The

comparison result is given in Figure 3.16.

Comparison Result
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Figure 3.16. Comparison Result of Horn-Fed Patterns

As shown in Figure 3.16, the calculated radiation pattern of the horn-fed reflector is

exactly the same with the result of Orfanidis.

The calculated radiation pattern of the open ended waveguide-fed and horn-fed
reflectors are compared with each other in section 3.4 in order to show the effect of

the used feed on the reflector pattern.
3.4. Comparison of Open Ended Waveguide and Horn Feed

In this section, the patterns of the same front-fed parabolic reflector which is fed with
different feed structures are compared with each other. To achieve it, the results found

in Sections 3.2 and 3.3 are used. The compared result is given in Figure 3.17.
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Figure 3.17. Waveguide-Fed and Horn-Fed Front-Fed Reflector Patterns

From the result in Figure 3.17, it can be seen that different feeds used in reflector
systems may cause different radiation patterns. Using different feeds which have
different incident fields may give rise to larger or narrower beamwidth in the reflector
antennas. Also as a trade-off between beamwidth and side lobe level, larger or
narrower beamwidth may cause decreasing or increasing side lobe levels, respectively,

in the reflector antennas.

To better understand the effect of the feed, some concepts are mentioned in this
section. The first concept is spillover efficiency. Let Ureeq (W, %) be the feed antenna’s

radiation intensity. The directivity of an aperture is given in equation (3.27).
Gyg =——— (3.27)

where P, is the total power through the aperture and U,,,,, 1s the maximum value of
Ureea(W,%). Also the directivity of a reflector antenna is given in equation (3.28)

relative to the total power Pyq of the feed antenna.
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dnUmax _ AmUmax Py
Pfeed Pa Pfeed

= Ggespi (3.28)

Gant =

The factor esp; = Py /Preeq 1s referred to as spillover efficiency. It represents the
fraction of the power Py, that actually is reflected by the reflector antenna. Spill over
efficiency can also be expressed in equation (3.29) relative to Urgeq (W, %) (Orfanidis,

1999).

2 -
- Pa _ fO\V0 fo i Ufeed(\lf, X) siny d\v dx
= — 0 .
Pfeed fOT[ fo " Ufeed (\V! X) Sin \|] d\l] dx

Espl (3.29)
The second concept is aperture-taper efficiency. Aperture-taper efficiency is the
measure of how uniform the electric field across the antenna’s aperture is. Aperture-

taper efficiency can be expressed in equation (3.30) relative to Useeq (W, %) (Orfanidis,
1999).

. _ |[1E,4| dAl?
U A [)E,|? dA

= lcotz (b) |J'(;Vo foznmtan (%) dy dX|2 (3.30)
s

2 .
2 fowo fonUfeed(\ll; x) siny dy dy

There is a tradeoff between the spillover efficiency and aperture-taper efficiency. If
one of them increases, the other decreases. The last concept, illumination efficiency,
is related to this tradeoff. It is the product of spillover efficiency and aperture-taper

efficiency. It can be expressed in equation (3.31).

1 (&) |f0\Vo fozn\/ Ufeed(\lf; %) tan (%) dy dX|2 (3.31)

ey = — cot? 5 .
& 2 fon fo i Ureea (w,y) siny dy dy

[Mlumination efficiency of the feed is the main factor that affects the radiated fields of
the reflector antennas. The efficiency values of the feeds in Section 3.2 and 3.3 are

listed in Table 3.5.
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Table 3.5. Efficiency Values of Waveguide and Horn Feed

Spillover Aperture-taper IHlumination
Feed Type Efficiency Efficiency Efficiency
Open Ended Waveguide 0.33 0.46 0.15
Horn 0.85 0.44 0.38

From the results in Table 3.5, it can be seen that the illumination efficiency of the horn
is higher than the illumination efficiency of the open ended waveguide. Thus, the
beamwidth of the horn-fed reflector is narrower than the beamwidth of the open ended
waveguide-fed reflector. On the other hand, the aperture fields of the open-ended
waveguide fed-reflector and the horn-fed reflector are compared with each other. To
make a correct comparison, the aperture fields are normalized with the total powers of
the feed antennas. The total power of the open ended waveguide is given in equation

(3.32).

a/2 rb/2 E % H*
Wavegulde f f dy dx (3.32)
a/2/-b/2

where E,, and H,, are the electric and magnetic fields on the aperture of the open ended
waveguide, respectively. E,, is given in equation (3.25) for TE1o mode and H,, can be

calculated by the relation in equation (3.33) for TE1o mode (Cheng, 1983).

E, =—Zrg(Z2 X H,)

. 3.33
Zrg = jop/y -39
The total power of the horn is given in equation (3.34).
A/2 (~B/2 E X Hh
Phorn = f f dy dx (3.34)

Aj27-B)2

where Ej, and H) are the electric and magnetic fields on the aperture of the horn,
respectively. Ej, is obtained in equation (3.26) and Hj, can be calculated by the relation

in equation (3.35).
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H, = H, e /kta=Jklp (3.35)

The aperture field strength of the open ended waveguide-fed reflector is given in

Figure 3.18.
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Figure 3.18. Aperture Field Strength of Open Ended Waveguide-Fed Reflector

The aperture field strength of the horn-fed reflector is given in Figure 3.19.
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Figure 3.19. Aperture Field Strength of Horn-Fed Reflector
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The aperture field in the horn-fed reflector is between -42dB and -44dB while it is
between -41.5dB and -44.5dB in the open ended waveguide-fed reflector. Thus, the
field at the edge of the reflector is stronger in the horn-fed reflector as compared with
the open ended waveguide-fed reflector. Therefore, the field at the side lobe is stronger
in the horn-fed reflector; and thus, the side lobe level of the horn-fed reflector is higher
than the side lobe level of the open ended waveguide-fed reflector. The importance of
narrow beamwidth or low side lobe level for proposed reflector system determines
which feed is required for the reflector system. The results obtained in this section are
significant for the next sections of this thesis especially when comparing the
differences which result from two different feed scenarios of reflectors with each

other.
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CHAPTER 4

CLASSICAL DUAL REFLECTORS

In this chapter, the radiation patterns of classical dual reflectors are obtained and these
radiation patterns are compared with the radiation patterns of ring focus reflectors in
Chapter 7. By this way, the advantages and disadvantages of the ring focus reflectors

are understood.

Classical dual reflectors can be separated into two subcategories. One of them is
Cassegrain reflector and the other is Gregorian reflector. Usage of classical dual
reflectors is quite widespread in today’s world. Detailed information about them is

given in Section 4.1 and 4.2.
4.1. Cassegrain Reflector

Cassegrain reflector consists of a paraboloidal main reflector and a hyperboloidal sub-
reflector. Having a sub-reflector provides an important advantage for Cassegrain
reflector. This advantage is that feed structure whose orientation is toward sub-
reflector can be placed near the main reflector; thus, the feed line losses are reduced

in Cassegrain reflector.

The geometry of Cassegrain reflector is shown in Figure 4.1.
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Figure 4.1. Geometry of Cassegrain Reflector

In Figure 4.1, O point shows the focus of the main reflector and F; and F, show the
foci of the hyperboloidal sub-reflector. The feed is placed on the left focus of the sub-
reflector. D,,, and F,, represent the diameter of the reflector and focal length of the
reflector, respectively. The right focus of the sub-reflector is common with the focus
of the main reflector. The rays leaving from the feed are firstly reflected from the sub-
reflector and then, they are reflected from the paraboloidal main reflector. And lastly;
they proceed to +z direction parallel to z axis. The plane perpendicular to the z axis
that passes through the point O is taken as the aperture plane. The phases of all the
rays are same on this plane. Thus, all possible ray lengths must be equal for each

possible angle of y, . A1, and i represent the surface normals of the paraboloidal main

reflector and hyperboloidal sub-reflector, respectively. Also, f; is the field incident
from the feed, f; is the field reflected from the sub-reflector and f;, is the field

reflected from the main reflector.
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Equations from (3.1) to (3.8) are valid for Cassegrain reflector. The missing part to
calculate the radiated fields unlike front-fed reflector is finding of 71;. The equation of

the hyperboloidal sub-reflector is given in equation (4.1).

ZZ 2
;_%= 1 (4.1)

In equation (4.1), p and z represent the two axes of cylindrical coordinate system.

Also, a and b are the sub-reflector parameters, which are shown in Figure 4.2.

i)

Sy

Figure 4.2. Geometry of Hyperbolic Sub-reflector

Normal vector of hyperboloidal sub-reflector can be obtained by taking gradient of

equation (4.1).

(4.2)

By using p = xX + vy and p? = x% + y%:



A ! [~ 52 -259+51]

= —T 5 X T T —Z

A p2Y T g2 43)
b* a*

Once 5 is obtained, the field reflected from the main reflector can be found by using
equation (3.1) and (3.2). Then, the radiated fields are obtained by putting these into
equation (2.11) and (2.12).

The analyzed radiation pattern of the Cassegrain reflector, which is obtained by using
Aperture-Field Method, and the simulated radiation pattern of the Cassegrain
reflector, which is obtained by using electromagnetic simulation tool CST Microwave
Studio, are compared with each other in order to show how analyzed result is close to
real reflector pattern. In this comparison, WR90 open ended waveguide feed (which
operates in 8.2-12.4 GHz) is used as the feed antenna. The field incident from the feed
antenna must be known in order to achieve the radiation fields of reflectors in
Aperture-Field Method. For this aim, equation (3.24) is used to get the field incident
from WR90. The chosen parameters of the Cassegrain reflector used in this

comparison are listed in Table 4.1.

Table 4.1. Chosen Parameters of Cassegrain Reflector

Parameter Name Parameter Value
Main reflector diameter (D,,,) 600 mm
Main reflector focal length (F,;;) 300 mm
Distance between foci 42 mm
Sub-reflector eccentricity 2.1
Operating frequency (f) 10 GHz

The comparison result is given in Figure 4.3.

42



0 Cassegrain Reflector Pattern
T

—— Aperture-Field Method
—CST

Co-Pol Pattern (dB)

4 -2 0 2 4 6
Angle (deg)
Figure 4.3. Results of Aperture-Field Method and CST Microwave Studio for

Cassegrain Reflector

From Figure 4.3, it can be seen that the result obtained by Aperture-Field Method and
the result obtained by CST Microwave Studio are quite similar in the main beam of
Cassegrain reflector. The differences between these two radiation patterns result from
that CST Microwave Studio is a full-wave simulator and it includes many effects
which are not taken into account in Aperture-Field Method such as diffraction, multi-
reflection etc. Thus, these radiation patterns usually do not become exactly the same
with each other. When investigating these two radiation patterns in detail, it can also
be seen that Aperture-Field Method cannot calculate the null filling on the pattern
correct enough since it does not take into account the diffraction. Due to the same
reason, the result obtained by Aperture-Field Method becomes inaccurate as we move
away from the boresight of the antenna and the side lobe level obtained by Aperture-
Field Method may become different from the side lobe level obtained by CST
Microwave Studio. On the other hand, Aperture-Field Method calculates the main
lobe very accurately. For example, the 3dB beamwidth obtained by Aperture-Field
Method is 3.24° while the 3dB beamwidth obtained by CST Microwave Studio is
3.30°. Also, Aperture-Field Method is successful in predicting the positon of nulls.
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4.2. Gregorian Reflector

Gregorian reflector consists of a paraboloidal main reflector and an ellipsoidal sub-

reflector. The feed structure can be placed near the main reflector like in Cassegrain

reflector. However, due to natural geometries of Cassegrain and Gregorian reflectors,

the total reflector length in Gregorian reflector is longer than the total reflector length

in Cassegrain reflector for the same reflector diameter and focal length. Thus,

Cassegrain reflectors are preferred in the applications that total reflector length is

critical.

The geometry of Gregorian reflector is given in Figure 4.4.
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Figure 4.4. Geometry of Gregorian Reflector



In Figure 4.4, O point shows the focus of the main reflector and F; and F, show the
foci of the sub-reflector. The feed is placed on the left focus of the sub-reflector. D,,
and F,, represent the diameter of the reflector and focal length of the reflector,
respectively. The right focus of the sub-reflector is common with the focus of the main
reflector. The rays leaving the feed are reflected from the sub-reflector and then, they
are reflected from the paraboloidal main reflector. And lastly; they proceed to +z
direction parallel to z axis. The plane perpendicular to the z axis that passes through
the point O is taken as the aperture plane. The phases of all the rays are same on this
plane. Thus, all possible ray lengths must be equal for each possible angle of v, . 71,
and 7 represent the surface normal of the paraboloidal main reflector and ellipsoidal
sub-reflector, respectively. Also, fl is the field incident from the feed, fs is the field

reflected from the sub-reflector and f;,, is the field reflected from the main reflector.

Equations from (3.1) to (3.8) are valid for Gregorian reflector. The expression for 7
for a Gregorian reflector is different from that of a Cassegrain reflector, since
Gregorian reflector has an ellipsoidal sub-reflector instead of a hyperboloidal sub-

reflector. The equation of ellipsoidal sub-reflector is given in equation (4.4).

z2 p

@2 T

2
1 (4.4)

In equation (4.4), p and z represent the two axes of cylindrical coordinate system, and

a and b represent sub-reflector parameters as in Cassegrain reflector.
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Figure 4.5. Geometry of Ellipsoidal Sub-reflector

Normal vector of ellipsoidal sub-reflector can be obtained by taking gradient of

equation (4.4).
ZZ 2
Vv (? * ?)
g = > > 4.5)
z2  p
|7(+ 5
a* b
By using p = xX + yJ and p? = x? + y?2:
~ -1 XY oz,
T Teaye 2 7ttt ] (4.6)

b* a*

Once 7l is obtained, the field reflected from the main reflector can be found by using
equation (3.1) and (3.2). Then, the radiated fields are obtained by putting these into
equation (2.11) and (2.12).

The analyzed radiation pattern of the Gregorian reflector, which is obtained by using

Aperture-Field Method, and the simulated radiation pattern of the Gregorian reflector,
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which is obtained by using electromagnetic simulation tool CST Microwave Studio,
are compared with each other in order to show how analyzed result is close to real
reflector pattern. In this comparison, WR90 open ended waveguide feed (which
operates in 8.2-12.4 GHz) is used as the feed antenna. The field incident from the feed
antenna must be known in order to achieve the radiation fields of reflectors in
Aperture-Field Method. For this aim, equation (3.24) is used to get field incident from
WRI90. The chosen parameters of the Gregorian reflector used in this comparison are

listed in Table 4.2.

Table 4.2. Chosen Parameters of Gregorian Reflector

Parameter Name Parameter Value
Main reflector diameter (D,y,) 600 mm
Main reflector focal length (F,;,) 300 mm
Distance between foci 363 mm
Sub-reflector eccentricity 0.48
Operating frequency (f) 10 GHz

The comparison result is shown in Figure 4.6.
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Figure 4.6. Results of Aperture-Field Method and CST Microwave Studio for

Gregorian Reflector

As can be seen from the comparison of the results given in Figure 4.6, the radiation
pattern of Gregorian reflector obtained by Aperture-Field Method is very close to that
obtained by full wave analysis using CST Microwave Studio in the main beam. The
3dB beamwidth obtained by these methods are 3.30° and 3.25°, respectively. Outside
the main beam, these results are different. As mentioned previously in section 4.1,
Aperture-Field Method is a very rough approximation which excludes diffraction
effects, spill-over etc. In the side lobe region, side lobe levels and null depths are not
calculated accurately, but the position of the nulls and side-lobe peaks are more

accurate.
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CHAPTER 5

SINGLE OFFSET RING FOCUS DUAL REFLECTORS

Single Offset Ring Focus Dual Reflectors have two types as Cassegrain and
Gregorian. The name of Single Offset means that the distance between bottom edge
of half main reflector and bottom edge of half sub-reflector equals half of the sub-

reflector diameter (Ds/2 ).
5.1. Single Offset Ring Focus Cassegrain Reflector
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Figure 5.1. Geometry of Single Offset Ring Focus Cassegrain Reflector

The geometry of Single Offset Ring Focus Cassegrain antenna is shown in Figure 5.1,
which shows a cross-section of the antenna. The 3D figure can be obtained by rotating
the structure about the z axis (Rotation axis) indicated in the figure. The black solid

curve between Q4 and Q- is the truncated parabolic main reflector with its focus at O,
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and the black solid curve between Pjand P, is the displaced-axis hyperbolic sub-
reflector with one focus at O and the other at B,. The feed is located at this focus B,
of the sub-reflector. We use cylindrical coordinates to describe the main and sub-
reflectors, denoted, respectively, by p,,, Z, and ps, zg, both having their origins at 0.
Note that the sub-reflector coordinate system is rotated with respect to main reflector
system by an angle ¢. O is the common focus of the two reflectors and is displaced
by a distance “d” from the rotation axis. When the curves Q;Q, and P, P, are rotated
about the z axis, we obtain the figure of revolution shown in Figure 5.2. Since O is
displaced from the rotation axis, the common focal point traces a circle under this
rotation and hence the name ring focus. Propagation paths of two rays that go through
the edges of the reflectors are also shown in Figure 5.1 by the blue and red solid lines.

All other ray paths lie between these two paths.

Figure 5.2. Three Dimensional Appearance of SORF Cassegrain Reflector
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In Figure 5.2, purple, red and blue shapes represent the three dimensional appearance

of the truncated parabolic main reflector, displaced-axis hyperbolic sub-reflector and

ring focus, respectively. As shown in this figure, the focus is annular and there is a

hole in the main reflector.

There are many parameters which take part in the geometry of Single Offset Ring

Focus Cassegrain, but only four parameters (D,,, Fy,, Dg, 05) are enough to describe

the full geometry. Other parameters can be expressed in terms of these four

parameters. The descriptions of all parameters are listed in Table 5.1.

Table 5.1. Parameter Description of SORF Cassegrain Reflector

Symbol Description
D,, Main reflector diameter
E, Main reflector focal length
Dy Sub-reflector diameter
Or Angle between the z axis and the ray emanating from the
focus of the sub- reflector in the direction of sub-reflector
edge
B, Feed position
® Offset angle between main reflector and sub-reflector
coordinate systems (counter clockwise)
7% Angle between the z axis of the main reflector and the ray
emanating from the origin in the direction of main reflector
top edge
é Angle between the z axis of the main reflector and the ray
emanating from the origin in the direction of main reflector
bottom edge
s Distance between the focus and apex of sub-reflector
m Distance between the focus and the projection of bottom
edge of main reflector onto z axis
2f Focal length of sub-reflector
d Offset parameter
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The coordinates of the parameters given in Figure 5.1 are presented in Table 5.2

(Granet, 1999).

Table 5.2. Coordinates of SORF Cassegrain Parameters

Point Pm Zm
0, Dy +d (Ds +2d)*
2 16F,, m
2 16F,, m
P d (Ds +2d)* )
] 2d ( rer — Fn
D, + 2d
P. Dy (D, + Zd)z
2 — +d (DS+2d)<W—Fm
D,, + 2d
R Dy 0
> +d
RZ D_m +d 0
2
B d (D + 2d)*
0 (DS+2d)( o) b,
D, +2d 2tan(6g)

Equations from (3.1) to (3.8) are valid for Single Offset Ring Focus Cassegrain
reflector. However, we need to find the expression of 7i;. A complication is that the
sub-reflector surface is defined in the sub-reflector coordinate system but we need the
expression of g in the main reflector coordinate system. Thus, we need to relate the

two coordinate systems.

The relations of main reflector and sub-reflector coordinate systems are given in

equation (5.1).

Zm = cos(@) zs — sin(@)ps (5.1)
pm = sin(@) z; + cos(@)ps

where ¢ is defined in Table 5.1, and note that its direction is counter clockwise, i.e.

its numerical value is negative in Figure 5.1.
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By using equation (4.2) and (5.1), the normal vector of the sub-reflector of Single

Offset Ring Focus Cassegrain reflector can be obtained.

Ng = Ngp + Ny

R 1 zsin(p) xcos(p) ycos(p)) .
Msp = = 2 2 a? + b2 + b? P
x“+y L2
b at (5.2)
. 1 zcos(p) «xsin(p) ysin(e)) .
Ng, = 2+ yz 2 a2 b2 b2 VA
b* a*

The parameters a and b in equation (5.2) can be expressed in terms of four parameters

(D, By, Ds, O5) for Single Offset Ring Focus Cassegrain reflector.

(IBOP1| - \/(Plpm)z + (Plzm)z)
2 (5:3)

. J(30pm)2+(302m>2_a2

a =

4

Once 71, is obtained, the field reflected from the main reflector can be found by using
equation (3.1) and (3.2). Then, the radiated fields are obtained by putting these into

equations (2.11) and (2.12) as in previous sections.

The analyzed radiation pattern of the Single Offset Ring Focus Cassegrain reflector,
which is obtained by using Aperture-Field Method, and the simulated radiation pattern
of the Single Offset Ring Focus Cassegrain reflector, which is obtained by using
electromagnetic simulation tool CST Microwave Studio, are compared with each
other in order to show how analyzed result is close to real reflector pattern. In this
comparison, WR90 open ended waveguide feed (which operates in 8.2-12.4 GHz) is
used as the feed antenna. The field incident from the feed antenna must be known in
order to achieve the radiation fields of reflectors in Aperture-Field Method. For this
aim, equation (3.24) is used to get field incident from WR90. The chosen parameters
of the Single Offset Ring Focus Cassegrain reflector used in this comparison are listed

in Table 5.3.

53



Table 5.3. Chosen Parameters of SORF Cassegrain Reflector

Parameter Name Parameter Value
Main reflector diameter (D,;,) 600 mm
Main reflector focal length (F;,) 300 mm
Sub-reflector diameter (D) 100 mm
Sub-reflector subtended angle (6) 20°
Operating frequency (f) 10 GHz

The comparison result is shown in Figure 5.3.
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Figure 5.3. Results of Aperture-Field Method and CST Microwave Studio for SORF

Cassegrain Reflector

From the result in Figure 5.3, it can be seen that the result of Aperture-Field Method
and the result of CST Microwave Studio are almost the same in the main beam of
SORF Cassegrain reflector, although there are significant differences between them
outside the main beam. The reason of these differences is related to diffraction as

referred in Chapter 4. The comments on the miscalculation of the null filling in
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Chapter 4 are also valid for SORF Cassegrain reflector. Also, the 3dB beamwidths
obtained by Aperture-Field Method and CST Microwave Studio are 3.18° and 3.24°,

respectively.

5.2. Single Offset Ring Focus Gregorian Reflector
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Figure 5.4. Geometry of Single Offset Ring Focus Gregorian Reflector

The geometry of Single Offset Ring Focus Gregorian antenna is shown in Figure 5.4,
which shows a cross-section of the antenna. The 3D figure can be obtained by rotating
the structure about the z axis (Rotation axis) indicated in the figure. The black solid
curve between Q4 and Q- is the truncated parabolic main reflector with its focus at O,
and the black solid curve between P;and P, is the displaced-axis elliptic sub-reflector
with one focus at O and the other at B,. The feed is located at this focus B, of the sub-
reflector. We use cylindrical coordinates to describe the main and sub-reflectors,
denoted, respectively, by p,,, z, and ps, z,, both having their origins at 0. Note that
the sub-reflector coordinate system is rotated with respect to main reflector system by
an angle ¢. O is the common focus of the two reflectors and is displaced by a distance

“d” from the rotation axis. When the curves Q;Q, and P; P, are rotated about the z
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axis, we obtain the figure of revolution shown in Figure 5.5. Since O is displaced from
the rotation axis, the common focal point traces a circle under this rotation and hence
the name ring focus. Propagation paths of two rays that go through the edges of the
reflectors are also shown in Figure 5.4 by the blue and red solid lines. All other ray

paths lie between these two paths.

Figure 5.5. Three Dimensional Appearance of SORF Gregorian Reflector

In Figure 5.5, purple, red and blue shapes represent the three dimensional appearance
of the truncated parabolic main reflector, displaced-axis elliptic sub-reflector and ring
focus, respectively. As shown in this figure, the focus is annular and there is a hole in

the main reflector.
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As in all ring focus dual reflectors, only four parameters (D,,, B, Ds, 0g) are enough
to describe the full geometry of Single Offset Ring Focus Gregorian reflector and the
other parameters can be expressed in terms of these four parameters. The descriptions

of all parameters are listed in Table 5.1.

The coordinates of the parameters given in Figure 5.4 are presented in Table 5.4

(Granet, 1999).

Table 5.4. Coordinates of SORF Gregorian Parameters

Point Vm Zm
Ql 0 _Fm
D, —D D,, — D
Q2 m2 s —( m2 S)cot(l//)
P, _ Dy Ly+L,—E,
2
P, 0 (—5 cot(8y) — Ls) + Lo+ Ly, — Fyy
R, 0 0
RZ DTT'L - DS 0
2
By _Ds Lin = Fn,
2

Except main four parameters, other required parameters in Table 5.4 are expressed in

equations (5.4) to (5.8) in terms of main four parameters.

E,.D D |cos(0g) +1
L,=—"" _2= L (5.4)
D,,— D, 4| sin(6g)
2
@ = atan (5.5)

cos(fg) +1  4E,
sin(6g) D,, — Dq
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Dy

f= 4 sin(¢@) (5-6)
= atan 8Fn (D — D) (5.7)
v (Dm — D5) — 16 '
Ds
Ls = Zf COS((p) + m (58)

Besides, d and § are zero for Single Offset Ring Focus Gregorian reflector. Equations
from (3.1) to (3.8) are valid for Single Offset Ring Focus Gregorian reflector.
However, we need to find the expression of 7. A complication is that the sub-
reflector surface is defined in the sub-reflector coordinate system but we need the
expression of g in the main reflector coordinate system. Thus, we need to relate the

two coordinate systems.

The relations of main reflector and sub-reflector coordinate systems are given in
equation (5.1). By using equation (4.5) and (5.1), the normal vector of the sub-reflector

of Single Offset Ring Focus Gregorian reflector can be obtained.

g = figp + A,

. 1 zsin(gp) xcos(p) ycos(p)) _
Msp = X2 +y? 72 a? b2 b? P
bt taE (5.9)
) 1 zcos(p) | xsin(p)  ysin(p)) ,
Ngz = > + > + > Z
xZ+yZ 72 a b b

The parameters a and b in equation (5.9) can be expressed in terms of four parameters

(Dy, By, Ds, O5) for Single Offset Ring Focus Gregorian reflector.
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_ Dy [cos(6g) + 1 E,Dg
~ 8| sin(6g) 2(D,, — Dy)

2
b=j($(@) ra

Once 71 is obtained, the field reflected from the main reflector can be found by using

(5.10)

equation (3.1) and (3.2). Then, the radiated fields are obtained by putting these into

equations (2.11) and (2.12) as in previous sections.

The analyzed radiation pattern of the Single Offset Ring Focus Gregorian reflector,
which is obtained by using Aperture-Field Method, and the simulated radiation pattern
of the Single Offset Ring Focus Gregorian reflector, which is obtained by using
electromagnetic simulation tool CST Microwave Studio, are compared with each
other in order to show how analyzed result is close to real reflector pattern. In this
comparison, WR90 open ended waveguide feed (which operates in 8.2-12.4 GHz) is
used as the feed antenna. The field incident from the feed antenna must be known in
order to achieve the radiation fields of reflectors in Aperture-Field Method. For this
aim, equation (3.24) is used to get the field incident from WR90. The chosen
parameters of the Single Offset Ring Focus Gregorian reflector used in this

comparison are listed in Table 5.5.

Table 5.5. Chosen Parameters of SORF Gregorian Reflector

Parameter Name Parameter Value
Main reflector diameter (D,;,) 600 mm
Main reflector focal length (F,,) 300 mm
Sub-reflector diameter (D) 100 mm
Sub-reflector subtended angle () 20°
Operating frequency (f) 10 GHz

The comparison result is shown in Figure 5.6.
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Figure 5.6. Results of Aperture-Field Method and CST Microwave Studio for SORF

Gregorian Reflector

The result in Figure 5.6 shows the parallelism of the results of Aperture-Field Method
and CST Microwave Studio in the main beam of SORF Gregorian reflector. The 3dB
beamwidths are calculated as 2.92° with Aperture-Field Method, it is found to be 3.04°
from CST Microwave Studio. The results of Aperture-Field Method and CST
Microwave Studio agree well in the main beam, but the results of Aperture-Field
Method are not accurate outside the main beam due to the reason explained previously

in Chapter 4.
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CHAPTER 6

DOUBLE OFFSET RING FOCUS DUAL REFLECTORS

Double Offset Ring Focus Dual Reflectors have two types as Cassegrain and
Gregorian like in Single Offset Ring Focus Dual Reflectors. The name of Double
Offset means that the distance between bottom edge of half main reflector and bottom

edge of half sub-reflector equals the sub-reflector diameter (D).

6.1. Double Offset Ring Focus Cassegrain Reflector

P, Pm
Q-
P R,
D Reflector
2
z "
i P. -
v ik Y 2 » 7 Rotation Axis

A

I P
P ) "5 W /0

A

Fm
Figure 6.1. Geometry of Double Offset Ring Focus Cassegrain Reflector

The geometry of Double Offset Ring Focus Cassegrain antenna is shown in Figure
6.1, which shows a cross-section of the antenna. The 3D figure can be obtained by

rotating the structure about the z axis (Rotation axis) indicated in the figure. The black
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solid curve between @, and Q, is the truncated parabolic main reflector with its focus
at 0, and the black solid curve between P;and P, is the displaced-axis hyperbolic sub-
reflector with one focus at O and the other at B,. The feed is located at this focus B,
of the sub-reflector. We use cylindrical coordinates to describe the main and sub-
reflectors, denoted, respectively, by p,,, Z, and ps, z,, both having their origins at 0.
Note that the sub-reflector coordinate system is rotated with respect to main reflector
system by an angle ¢. O is the common focus of the two reflectors and is displaced
by a distance “d” from the rotation axis. When the curves Q;Q, and P, P, are rotated
about the z axis, we obtain the figure of revolution shown in Figure 6.2. Since O is
displaced from the rotation axis, the common focal point traces a circle under this
rotation and hence the name ring focus. Propagation paths of two rays that go through
the edges of the reflectors are also shown in Figure 6.1 by the blue and red solid lines.

All other ray paths lie between these two paths.

Figure 6.2. Three Dimensional Appearance of DORF Cassegrain Reflector
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In Figure 6.2, purple, red and blue shapes represent the three dimensional appearance

of the truncated parabolic main reflector, displaced-axis hyperbolic sub-reflector and

ring focus, respectively. As shown in this figure, the focus is annular and there is a

hole in the main reflector.

As in all ring focus dual reflectors, only four parameters (D,,, F;,, Ds, 0g) are enough

to describe the full geometry of Double Offset Ring Focus Cassegrain reflector and

the other parameters can be expressed in terms of these four parameters. The

descriptions of all parameters are listed in Table 5.1.

The coordinates of the parameters given in Figure 6.1 are presented in Table 6.1

(Granet, 1999).

Table 6.1. Coordinates of DORF Cassegrain Parameters

Point Ym Zm
Ql Ds+d (D5+d)2_
4AF, m
Q, Dy + Ds + 2d (D + Ds +2d)*
2 16F,,
1_)1 d (D + d)z - FE ]
DS +d
Dg + 2d 2
P, — 0, + 2d) [Lm +1l6);: 2d)” _ Fm]
D,, + Dy + 2d
R, D, +d 0
R, D,, + Dg + 2d 0
2
B, Dg + 2d g[@Ps+d)? o
2 L
Ds+d 2 tan(6g)

Equations from (3.1) to (3.8) and from (5.1) to (5.2) are valid for Double Offset Ring

Focus Cassegrain reflector. However, we need to find the expression of 5. fiy can be

calculated by using equation (5.1) to (5.2). The parameters of a and b in equation (5.2)
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can be expressed in terms of four parameters (D,,, ,, Ds, 0g) for Double Offset Ring

Focus Cassegrain reflector.

<|BOP1I - \/ (Pip,,)” + (Plsz)
2 (6.1)

. J(30pm)2+<302m>2_a2

a =

4

The expression of 71 is the same with the expression in Single Double Offset Ring
Focus Cassegrain reflector, but the parameter values of these two expressions are
different from each other. The new parameter values can be obtained by Table 6.1 and
equation (6.1). Once 75 is obtained, the field reflected from the main reflector can be
found by using equation (3.1) and (3.2). Then, the radiated fields are obtained by

putting these into equations (2.11) and (2.12) as in previous sections.

The analyzed radiation pattern of the Double Offset Ring Focus Cassegrain reflector,
which is obtained by using Aperture-Field Method, and the simulated radiation pattern
of the Double Offset Ring Focus Cassegrain reflector, which is obtained by using
electromagnetic simulation tool CST Microwave Studio, are compared with each
other in order to show how analyzed result is close to real reflector pattern. In this
comparison, WR90 open ended waveguide feed (which operates in 8.2-12.4 GHz) is
used as the feed antenna. The field incident from the feed antenna must be known in
order to achieve the radiation fields of reflectors in Aperture-Field Method. For this
aim, equation (3.24) is used to get the field incident from WR90. The chosen
parameters of the Double Offset Ring Focus Cassegrain reflector used in this

comparison are listed in Table 6.2.
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Table 6.2. Chosen Parameters of DORF Cassegrain Reflector

Parameter Name Parameter Value
Main reflector diameter (D,;,) 600 mm
Main reflector focal length (F;,) 300 mm
Sub-reflector diameter (D) 100 mm
Sub-reflector subtended angle (6r) 20°
Operating frequency (f) 10 GHz

The comparison result is shown in Figure 6.3.
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Figure 6.3. Results of Aperture-Field Method and CST Microwave Studio for DORF

Cassegrain Reflector

The result given in Figure 6.3 indicate that the results of Aperture-Field Method and
CST Microwave Studio are quite similar in the main beam of DORF Cassegrain
reflector like in previous chapters, but they are different from each other outside the
main beam. As mentioned in previous chapters, diffraction is the main cause of this
discrepancy. Due to the diffraction, the null filling and side lobe level cannot be
calculated accurately. On the other hand, Aperture-Field Method is very successful to

calculate the 3dB beamwidth and position of nulls. For instance, the 3dB beamwidth
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obtained by Aperture-Field Method is 2.98° and the 3dB beamwidth obtained by CST

Microwave Studio is 3.08°.

6.2. Double Offset Ring Focus Gregorian Reflector

Main
Reflector

P, éub—reflector

Figure 6.4. Geometry of Double Offset Ring Focus Gregorian Reflector

The geometry of Double Offset Ring Focus Gregorian antenna is shown in Figure 6.4,
which shows a cross-section of the antenna. The 3D figure can be obtained by rotating
the structure about the z axis (Rotation axis) indicated in the figure. The black solid
curve between @, and Q, is the truncated parabolic main reflector with its focus at O,
and the black solid curve between P;and P, is the displaced-axis elliptic sub-reflector
with one focus at O and the other at B,,. The feed is located at this focus B, of the sub-
reflector. We use cylindrical coordinates to describe the main and sub-reflectors,
denoted, respectively, by p,,, z,, and ps, z;, both having their origins at 0. Note that
the sub-reflector coordinate system is rotated with respect to main reflector system by
an angle ¢. O is the common focus of the two reflectors and is displaced by a distance
“d” from the rotation axis. When the curves Q;Q, and P; P, are rotated about the z

axis, we obtain the figure of revolution shown in Figure 6.5. Since O is displaced from
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the rotation axis, the common focal point traces a circle under this rotation and hence
the name ring focus. Propagation paths of two rays that go through the edges of the
reflectors are also shown in Figure 6.4 by the blue and red solid lines. All other ray

paths lie between these two paths.

Figure 6.5. Three Dimensional Appearance of DORF Gregorian Reflector

In Figure 6.5, purple, red and blue shapes represent the three dimensional appearance
of the truncated parabolic main reflector, displaced-axis elliptic sub-reflector and ring
focus, respectively. As shown in this figure, the focus is annular and there is a hole in

the main reflector.

As in all ring focus dual reflectors, only four parameters (D,,, F,, Ds, 65) are enough
to describe the full geometry of Double Offset Ring Focus Gregorian reflector and the
other parameters can be expressed in terms of these four parameters. The descriptions

of all parameters are listed in Table 5.1.
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The coordinates of the parameters in Figure 6.4 are presented in Table 6.3 (Granet,

1999).

Table 6.3. Coordinates of DORF Gregorian Parameters

Point Vi Zm
0 D, — 2d (0, —2d)°
2 16F, m
0, D,, — 2d (D — 2d)* "
2 16F, mn
2 —Dg — 2d (D,, — 2d)?
1 —7— o[-k
(Dm - Zd)
P. —d (Ds — Zd)z _
2 2d [ 16F, E,
(Ds - Zd)
R, D; —2d 0
2
2

Equations from (3.1) to (3.8), and (5.1) and (5.9) are valid for Double Offset Ring
Focus Gregorian reflector. However, we need to find the expression of fi. fiy can be
calculated by using equation (5.1) and (5.9). The parameters of a and b in equation
(5.9) can be expressed in terms of four parameters (D,,, F;,, Ds, 05) for Double Offset

Ring Focus Gregorian reflector.

<|BOP1| + \/(Plpm)z + (Plzm)2>
2 (6.2)

2 2
. jwwm) + (o) |,

a =

4
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The expression of 715 is the same with the expression in Single Double Offset Ring
Focus Cassegrain reflector, but the parameter values of these two expressions are
different from each other. The new parameter values can be obtained by Table 6.3 and
equation (6.2). Once fi; is obtained, the field reflected from the main reflector can be
found by using equation (3.1) and (3.2). Then, the radiated fields are obtained by

putting these into equations (2.11) and (2.12) as in previous sections.

The analyzed radiation pattern of the Double Offset Ring Focus Gregorian reflector,
which is obtained by using Aperture-Field Method, and the simulated radiation pattern
of the Double Offset Ring Focus Gregorian reflector, which is obtained by using
electromagnetic simulation tool CST Microwave Studio, are compared with each
other in order to show how analyzed result is close to real reflector pattern. In this
comparison, WR90 open ended waveguide feed (which operates in 8.2-12.4 GHz) is
used as the feed antenna. The field incident from the feed antenna must be known in
order to achieve the radiation fields of reflectors in Aperture-Field Method. For this
aim, equation (3.24) is used to get the field incident from WRO90. The chosen
parameters of the Double Offset Ring Focus Gregorian reflector used in this

comparison are listed in Table 6.4.

Table 6.4. Chosen Parameters of DORF Gregorian Reflector

Parameter Name Parameter Value
Main reflector diameter (D,,,) 600 mm
Main reflector focal length (F,;;) 300 mm
Sub-reflector diameter (D) 100 mm
Sub-reflector subtended angle (6g) 20°
Operating frequency (f) 10 GHz

The comparison result is shown in Figure 6.6.
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Figure 6.6. Results of Aperture-Field Method and CST Microwave Studio for DORF

Gregorian Reflector

From the comparison of the patterns given in Figure 6.6, it might be seen that the result
of Aperture-Field Method is similar to the result of CST Microwave Studio in the main
beam of DORF Gregorian reflector. The 3dB beamwidth obtained by Aperture-Field
Method is 3.20° while the 3dB beamwidth obtained by CST Microwave Studio is
3.24°. The differences between these two radiation patterns result from the diffraction
as mentioned in previous chapters. Aperture-Field Method is quite successful in the
main beam and the positions of the nulls, and also peaks of the side lobes can be
obtained with some accuracy. However, Aperture-Field Method is not very successful

in predicting the null and side lobe levels.
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CHAPTER 7

COMPARISON OF SAME KIND DUAL REFLECTORS

Classical, SORF and DORF types of the Cassegrain and Gregorian reflectors are
compared with each other in this chapter to demonstrate the advantages and

disadvantages of ring focus dual reflectors.

The first comparison is made for Cassegrain type reflectors. For this aim, classical,
SORF and DORF Cassegrain reflectors which are fed with the same feed antenna
(WR90 waveguide) are compared with each other. The chosen parameters of

Cassegrain type reflectors are presented in Table 7.1.

Table 7.1. Chosen Parameters of Cassegrain Type Reflectors

Main Reflector =~ Main Reflector ~ Sub-reflector Og
Reflector Type = Diameter (D,,) Focal Length (F,) Diameter (D)

Cassegrain 600 mm 300 mm 100 mm -
SORF Cassegrain 600 mm 300 mm 100 mm 50°
DOREF Cassegrain 600 mm 300 mm 100 mm 50°

The radiation patterns of Cassegrain type reflectors are shown in Figure 7.1.
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Figure 7.1. Comparison of Cassegrain Type Reflectors

From Figure 7.1, it can be seen that SORF and DORF Cassegrain reflectors provide
narrower beamwidth than classical Cassegrain reflector. Narrower beamwidth means
that efficiency and directivity of the reflector is high. Therefore, it can be understood
that efficiency and directivity of SORF and DORF Cassegrain reflectors are higher
than classical Cassegrain reflector. This advantage is also mentioned by Ivashina et
al. (Ivashina, et al., 2011). The reason of this advantage is that the aperture field
strengths of the SORF and DORF Cassegrain reflectors is closer to uniform field as
compared to the aperture field strength of the classical Cassegrain reflector for the
same reflector sizes. Uniform field strength on the aperture provides more directive
beam and also cause the higher field strength at the edge of the reflector. Due to the
higher field strength at the edge of the reflector, the side lobe level of the reflector
becomes higher. The aperture field strengths of the Cassegrain type reflectors in Table
7.1 are given in Figure 7.2, Figure 7.3 and Figure 7.4.
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Figure 7.2. Aperture Field Strength of Cassegrain Reflector

The aperture field strength of the classical Cassegrain reflector in Table 7.1 changes
between -30dB and -39 dB.
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Figure 7.3. Aperture Field Strength of SORF Cassegrain Reflector

The aperture field strength of the SORF Cassegrain reflector in Table 7.1 changes
between -30dB and -38 dB.
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Figure 7.4. Aperture Field Strength of DORF Cassegrain Reflector

The aperture field strength of the DORF Cassegrain reflector in Table 7.1 changes
between -30dB and -35 dB.

From Figure 7.2, Figure 7.3 and Figure 7.4, it can be seen that the aperture field
strength distribution of the DORF Cassegrain reflector is closer to uniform as
compared to that of the SORF Cassegrain reflector and the classical Cassegrain
reflector. Thus, the beamwidth of the DORF Cassegrain reflector is the narrowest
among them. Also, the field strength at the edge of the reflector is highest in the DORF
Cassegrain reflector. This increases the side lobe level of the DORF Cassegrain
reflector. Besides, the field strength of the SORF Cassegrain reflector is closer to
uniform as compared the field strength of the classical Cassegrain reflector. Thus, the
beamwidth of the SORF Cassegrain reflector is narrower than the beamwidth of the
classical Cassegrain reflector. As a trade-off, the field strength at the edge of the SORF
Cassegrain reflector is higher than the field strength at the edge of the classical
Cassegrain reflector; thus, the side lobe level of the SORF Cassegrain reflector is

higher than the side lobe level of the classical Cassegrain reflector.

The second comparison is made for Gregorian type reflectors. For this purpose,

classical, SORF and DORF Gregorian reflectors which are fed with the same feed
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antenna (WR90 waveguide) are compared with each other. The chosen parameters of

different type Gregorian reflectors are presented in Table 7.2.

Table 7.2. Chosen Parameters of Gregorian Type Reflectors

Main Reflector =~ Main Reflector ~ Sub-reflector Og
Reflector Type  Diameter (D,,) Focal Length (F,,) Diameter (D)
Gregorian 600 mm 300 mm 100 mm -
SORF Gregorian 600 mm 300 mm 100 mm 50°
DOREF Gregorian 600 mm 300 mm 100 mm 50°

The radiation patterns of Gregorian type reflectors are shown in Figure 7.5.
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Figure 7.5. Comparison of Gregorian Type Reflectors

From Figure 7.5, it can be seen that SORF and DORF Gregorian reflectors provide
narrower beamwidth than classical Gregorian reflector. Narrower beamwidth means
that aperture efficiency and directivity of the reflector is high. Therefore, it can be
understood that efficiency and directivity of SORF and DORF Gregorian reflectors
are higher than classical Gregorian reflector. The reason of this advantage is that the
aperture field strengths of the SORF and DORF Gregorian reflectors are closer to

uniform field as compared to the aperture field strength of the classical Gregorian
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reflector for the same reflector sizes. Uniform field strength on the aperture provides
more directive beam and also cause higher field strength at the edge of the reflector.
Due to the increased field strength at the edge of the reflector, the side lobe level of
the reflector becomes higher. The field strengths of the Gregorian type reflectors in
Table 7.2 are given in Figure 7.6, Figure 7.7 and Figure 7.8.
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Figure 7.6. Aperture Field Strength of Classical Gregorian Reflector

The aperture field strength of the classical Gregorian reflector in Table 7.2 changes
between -30dB and -39 dB.
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Figure 7.7. Aperture Field Strength of SORF Gregorian Reflector

76



The aperture field strength of the SORF Gregorian reflector in Table 7.2 changes
between -31dB and -34 dB.
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Figure 7.8. Aperture Field Strength of DORF Gregorian Reflector

The aperture field strength of the DORF Gregorian reflector in Table 7.2 changes
between -30dB and -38 dB.

From the results in Figure 7.6, Figure 7.7 and Figure 7.8, it can be seen that the field
strength of the SORF Gregorian reflector is closer to uniform field as compared to the
field strengths of the DORF Gregorian reflector and the classical Gregorian reflector.
Thus, the beamwidth of the SORF Gregorian reflector is the narrowest among them.
Also, the field strength at the edge of the reflector is highest in the SORF Gregorian
reflector. This is the reason that the side lobe level of the SORF Gregorian reflector is
the highest. Besides, the field strength of the DORF Gregorian reflector is closer to
uniform as compared to the field strength of the classical Gregorian reflector. Thus,
the beamwidth of the DORF Gregorian reflector is narrower than the beamwidth of
the classical Gregorian reflector. As a trade-off, the field strength at the edge of the
DOREF Gregorian reflector is higher than the field strength at the edge of the classical
Gregorian reflector; thus, the side lobe level of the DORF Gregorian reflector is higher

than the side lobe level of the classical Gregorian reflector.

77



From the results in Figure 7.4 and Figure 7.7, the field strength of the SORF Gregorian
reflector is closer to uniform as compared to the field strength of the DORF Cassegrain
reflector. Thus, the beamwidth of the SORF Gregorian reflector is narrower than the
beamwidth of the DORF Cassegrain reflector. Thus, the beamwidth of the SORF

Gregorian reflector is the narrowest among all ring focus reflectors.

As a result of these advantages of SORF and DOREF reflectors, they may be used to
obtain a smaller reflector size for a specified beamwidth. This feature of ring focus
reflectors are very useful in the applications which have limited volume for antenna.
In addition to advantages of SORF and DOREF reflectors, they cause higher side lobe
levels than classical types as a disadvantage. This disadvantage may become important

in the applications which require low side lobe level such as direction finding etc.
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CHAPTER 8

DESINGS OF RING FOCUS REFLECTORS

In this chapter, designs of the ring focus reflectors are carried out. As a design limit,
maximum reflector diameter and f/D ratio of the main reflector are assumed to be
2.4m and 0.5 respectively. Also, operation frequency is chosen as 10 GHz and an
aperture efficiency above 70% are aimed for the ring focus reflectors as the design

requirement.

A horn antenna, with parameters given in Table 8.1 in accordance with Figure 3.11
and Figure 3.12, is preferred as the feed of the reflectors since its E-plane and H-plane
patterns are almost equal with each other for the angles smaller than the subtended

angle of the sub-reflector (8¢) and its design is simple.

Table 8.1. Chosen Parameters of Horn Antenna

Parameter Name Parameter Value
Long length of the horn aperture (A4) 50 mm
Short length of the horn aperture (B) 35 mm
Operating Frequency (f) 10 GHz
A, 10.0 mm
Ap 4.5 mm

The E-plane and H-plane patterns of the horn antenna is given in Figure 8.1.
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Figure 8.1. Radiation Pattern of Horn Antenna

Feed taper is the ratio of the power at the subtended angle of the radiation pattern and
the power at the boresight angle of the radiation pattern. Prata et al. indicate that
optimum efficiency for the reflector is achieved when feed taper equals to
approximately -11 dB (Prata, Moreira, & Amaro, 2003). Thus, this value of the feed
taper is considered in the designs of the ring focus reflectors in this chapter. The feed
taper of -11dB for this horn antenna means that 8 approximately equals to 42.5°.

Thus, 6 is taken as 42.5° for all simulations in this chapter.
8.1. Single Offset Ring Focus Dual Reflector Design

In this section, designs of single offset ring focus dual reflectors are carried out. In
order to take into account all lossy effects such as multi-reflection, diffraction etc., the
designs are made in CST Microwave Studio which is a full-wave simulator. In
addition to the result of CST Microwave Studio, the result of Aperture-Field method

is also given.
8.1.1. Single Offset Ring Focus Cassegrain Reflector Design

To find an optimum Dg/D,, ratio for Single Offset Ring Focus Cassegrain reflector,
which is the ratio of the diameters of the hyperboloidal sub-reflector and the
paraboloidal main reflector, a parameter sweep is performed in CST Microwave

Studio. This sweep is performed in CST Microwave Studio, since it takes into account
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all lossy effects, for example the aperture blockage resulted from the feed, and these
effects may decrease the aperture efficiency of the reflector. The result of the

parameter sweep is given in Figure 8.2.

468 Parameter Sweep for SORF Cassegrain Reflector
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Figure 8.2. Parameter Sweep for SORF Cassegrain Reflector

From the result in Figure 8.2, it can be seen that the efficiency of the SORF Cassegrain
reflector is best when Dy = D,,, /8. Thus, this D¢ /D, ratio is used for the design. The

simulated result is given in Figure 8.3 together with the result of Aperture-Field
method.
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Figure 8.3. Designed Patterns of SORF Cassegrain Reflector

From the results given in Figure 8.3, the designed SORF Cassegrain reflector has a
gain 0f 46.68 dB and an aperture efficiency of 74%. Thus, the design goal is achieved.
Also, the result obtained by Aperture-Field Method in this section is closer to the result
obtained by CST Microwave Studio when compared to the results in section 5.1. The
reason of this situation is that electrically larger reflector size increases the accuracy
of Aperture-Field Method and chosen reflector size in this section is electrically larger

than the chosen reflector size in section 5.1.

The process time required for Aperture-Field Method takes about 5 minutes while the
process time required for CST Microwave Studio takes approximately 1 day. This is

the main advantage of the analysis tool considered in this thesis.
8.1.2. Single Offset Ring Focus Gregorian Reflector Design

To find an optimum Dg/D,, ratio for Single Offset Ring Focus Gregorian reflector,
which is the ratio of the diameters of the ellipsoidal sub-reflector and the paraboloidal
main reflector, a parameter sweep are performed in CST Microwave Studio. This
sweep is performed in CST Microwave Studio, since it takes into account all lossy

effects, for example the aperture blockage resulted from the feed, and these effects
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may decrease the aperture efficiency of the reflector. The result of the parameter

sweep is given in Figure 8.4.
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Figure 8.4. Parameter Sweep for SORF Gregorian Reflector

From the result in Figure 8.4, it can be seen that the efficiency of the SORF Gregorian

reflector

is best when D; = D,,, /20. Thus, this Dg/D,, ratio is used for the design. The

simulated result is given in Figure 8.5 together with the result of Aperture-Field

method.
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Figure 8.5. Designed Patterns of SORF Gregorian Reflector
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From the results given in Figure 8.5, the designed SORF Gregorian reflector has a
gain 0f 46.92 dB and an aperture efficiency of 78%. Thus, the design goal is achieved.
Besides, the result obtained by Aperture-Field Method in this section is more similar
to the result obtained by CST Microwave Studio as compared with the results in

section 5.2 due to the chosen reflector sizes.

The process time required for Aperture-Field Method takes much less time than the

process time required for CST Microwave Studio as remarked in section 8.1.1.
8.2. Double Offset Ring Focus Reflector Design

In this section, designs of single offset ring focus dual reflectors are carried out. In
order to take into account all lossy effects such as multi-reflection, diffraction etc., the
designs are made in CST Microwave Studio which is a full-wave simulator. In
addition to the result of CST Microwave Studio, the result of Aperture-Field method

is also given.
8.2.1. Double Offset Ring Focus Cassegrain Reflector Design

To find an optimum D, /D,, ratio for Double Offset Ring Focus Cassegrain reflector,
which is the ratio of the diameters of the hyperboloidal sub-reflector and the
paraboloidal main reflector, a parameter sweep are performed in CST Microwave
Studio. This sweep is performed in CST Microwave Studio, since it takes into account
all lossy effects, for example the aperture blockage resulted from the feed, and these
effects may decrease the aperture efficiency of the reflector. The result of the

parameter sweep 1s given in Figure 8.6.
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From the result in Figure 8.6, it can be seen that the efficiency of the DORF Cassegrain
reflector is best when Dg = D,,, /8. Thus, this Dg/D,, ratio is used for the design. The

simulated result is given in Figure 8.7 together with the result of Aperture-Field

method.

Co-Pol Pattern (dB)

From the results in Figure 8.7, the designed DORF Cassegrain reflector has a gain of
46.55 dB and an aperture efficiency of 72%. Thus, the design goal is achieved.
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Figure 8.7. Designed Patterns of DORF Cassegrain Reflector
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Furthermore, the similarity between the results obtained by Aperture-Field Method
and CST Microwave Studio in this section are more than the similarity between the
results obtained by Aperture-Field Method and CST Microwave Studio in section 6.1

because of the chosen reflector sizes.

The process time required for Aperture-Field Method takes much less time than the

process time required for CST Microwave Studio as specified in previous sections.
8.2.2. Double Offset Ring Focus Gregorian Reflector Design

To find an optimum Dy /D,, ratio for Double Offset Ring Focus Gregorian reflector,
which is the ratio of the diameters of the ellipsoidal sub-reflector and the paraboloidal
main reflector, a parameter sweep are performed in CST Microwave Studio. This
sweep is performed in CST Microwave Studio, since it takes into account all lossy
effects, for example the aperture blockage resulted from the feed, and these effects
may decrease the aperture efficiency of the reflector. The result of the parameter

sweep is given in Figure 8.8.

47 Parameter Sweep for DORF Gregorian Reflector
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Figure 8.8. Parameter Sweep for DORF Gregorian Reflector

From the result in Figure 8.6, it can be seen that the efficiency of the DORF Gregorian
reflector is best when Dy = D,,, /20. Thus, this D/D,, ratio is used for the design. The
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simulated result is given in Figure 8.9 together with the result of Aperture-Field

method.
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Figure 8.9. Designed Patterns of DORF Gregorian Reflector

From the results in Figure 8.9, the designed DORF Gregorian reflector has a gain of
46.52 dB and an aperture efficiency of 71%. Thus, the design goal is achieved. Also,
the chosen reflector size in this section provides the result obtained by Aperture-Field
Method to be closer to the result obtained by CST Microwave Studio when compared

with the results in section 6.2.

The process time required for Aperture-Field Method is much less than the process

time required for CST Microwave Studio as indicated in previous sections.
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CHAPTER 9

CONCLUSION

Ring focus reflectors are the main subject of this thesis. In this thesis, radiation
characteristics of the ring focus reflectors have been aimed to calculate and the
differences which are resulted from the usage of the ring focus architecture are desired
to learn. In terms of these purposes, firstly the methods used for the calculation of the
reflector patterns are investigated. And then, a proper method, Aperture-Field method,
is chosen to obtain the radiation patterns of the reflectors and the radiation patterns of
the reflectors are analyzed for each type of reflectors by using Aperture-Field method.
To learn the suitability of the analyzed results to real world, the analyzed patterns
which are obtained by Aperture-Field method and the simulated patterns which are
obtained by CST Microwave Studio that uses the numerical electromagnetic methods
to calculate the radiation patterns of the antennas is investigated. Besides, radiation
patterns of classical dual and ring focus dual reflectors are compared with each other.
As a result of these comparisons, it is seen that ring focus dual reflectors have some
advantages and disadvantages according to classical dual reflectors. The first and main
advantage of ring focus reflectors is that the beamwidth of ring focus reflectors is
narrower than classical dual reflectors for a specified main reflector diameter.
Narrower beamwidth for a specified main reflector diameter means that efficiency and
directivity is higher; therefore, the directivities of ring focus dual reflectors are higher
than the directivities of classical dual reflectors. Another advantage of ring focus
reflectors is that the total size in ring focus dual reflectors is smaller than classical dual
reflectors. Geometrical properties of ring focus dual reflectors allow to place the feed
closer enough to the sub-reflector without any aperture blockage. Therefore, total size
of the reflector system is smaller in ring focus dual reflectors as compared to classical
dual reflectors. This feature of the ring focus dual reflectors makes them a good option

in compact antenna applications. On the other hand, the disadvantage of ring focus
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dual reflectors is that ring focus dual reflectors cause increased side lobe level as a
trade-off between narrow beamwidth and increased side lobe level. Thus, usage of
ring focus architecture may not be reasonable in the applications in which side lobe

level is crucial.

In the direction of above information about the ring focus dual reflectors, the main
differences in the radiation pattern which exist as a result of usage of ring focus dual
reflectors are expressed, and the advantages and disadvantages of ring focus dual
reflectors are indicated. Consequently, the purposes of this thesis mentioned in
Chapter 1 are carried out. Also, the following future works may contribute this thesis

and they may make the methods applied in this thesis more accurate.
9.1. Future Works

In this thesis, some assumptions are made when choosing analysis method (Aperture-
Field Method) to calculate the radiation patterns of reflectors. The main assumption
made in thesis is related to that the reflectors which are analyzed in this thesis are
electrically large, and it means that this method may give inaccurate results in
electrically small reflectors. Also, diffraction effects are not taken into account in this
thesis. This situation may cause wrong results at the far angles of reflector pattern.

Therefore, following works may be purposed to make a more convenient analysis tool.

e A supporting method may be applied to analysis tool in order to analyze the
electrically small reflectors.

e The methods which are used to calculate diffraction may be added to analysis

tool.
Besides, following works may be done in order to develop the analysis tool.

e A program which can calculate the optimum feed for the desired reflector
pattern may be improved.

e Other types of reflectors may be added to analysis tool.
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APPENDICES

A. Trapezoidal Rule

Trapezoidal rule is one of the simplest techniques for numerical integration. To

understand this rule, firstly consider an integral shown in Figure 0.1.

b

1
1
1
1
1
1
1
1
1
1
1
1
a

Figure 0.1. Sample Integral for Trapezoidal Rule

Trapezoidal rule states that the area under curve is approximately equals to the area of
trapezoid which occurs from the corner points of this curve. Therefore, equation (0.1)

1s obtained.

ﬂ@;ﬂﬂ o

b
fﬂanw—@[

The required integral is divided to small enough intervals, and the integrals are
calculated by using equation (0.1) on each interval. Superposition of these integrals

on each interval gives the result of required integral.
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B. Gauss-Legendre Quadrature Method

Consider the integral of f(x) in equation (0.1). To integrate this identity by using
Gauss-Legendre Quadrature method, firstly approximate f (x) over interval of [—1,1].

After that, f(x) is written in terms of nodes (x;) and weights (w;).

j_llf(x)dx ~ Z wif (x) 02)

The n computation points x; are the roots of n-th order Legendre Polynomials P, (x).
Legendre Polynomials are defined in equation (0.3).
Py(x) =1

Pi(x)=x (0.3)
nh(x) = (2n — DxPy_1(x) — (n — 1) Py, (x)

Derivative of Legendre Polynomials is given in equation (0.4).

n

P,Tl(x) =x2_1

(2P (x) = Ppoy (%)) (0.4)

The roots of those polynomials are not analytically solvable. By using Newton-

Raphson iteration (Press, Teukolsky, Vetterling, & Flannery, 1997);

f(xn)

le+1 = x?’l _f,(x )
n

(0.5)

The initial value of x, for i-th root of B,(x) can be calculated in equation (0.6).

Xo =cos| 1 (0.6)
Tl+7

After finding x,, all values of x; can be found. Suitable weights can be calculated by

using equation (0.7).

_ 2
(L= xP[Pn(x)]?
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After we get all nodes and weights by using equations (0.2) to (0.7), the integral of

f (x) can be approximated in equation (0.8).

J:f(x)dxz (b_a)zwif(b;—axi+a+b) (0.8)

2 2
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C. Geometrical Theory of Diffraction

GO depends on some assumptions which are mentioned in Section 2.2 and does not
take the account that objects in the medium may include edge, corner or vertex which
are the main factors of diffraction. However, this assumption usually does not occur
in the real world. Many shapes in the real world has discontinuity points result from
the edges, corners or vertices in their geometries, and these discontinuity points cause
the diffraction of the incident ray. Diffraction cannot be calculated by using classical
techniques of GO. When comparing with classical GO, the only difficulty in the
calculation of diffraction is obtaining of the initial field values on each diffracted ray.
To determine the initial value of the field on a diffracted ray, firstly the incident field
must be known. After that, the incident field is multiplied by a suitable diffraction
coefficient which is obtained by the solving of the canonical problem of the related
field. The canonical problem is a simple local problem and it includes only the
immediate neighborhood of the diffraction point. Geometrical and physical properties
of the local area around the diffraction point and the wavelength are used to obtain the
solution of the canonical problem. Differently from the discontinuity points, another
type of the diffraction is the diffraction that occurs at the caustic or focus of the
ordinary or the diffracted rays. This type of the diffraction results from the intersection
of the neighboring rays. Intersection of the neighboring rays causes that the cross-
sectional area of a tube of rays becomes zero; and thus, the amplitude of the field
cannot be calculated correctly at these points. To determine the amplitude of the field
at these points correctly, the field on a ray which are passing through a caustic must
be multiplied by a caustic correction factor. Caustic correction factor can be obtained

by the solution of the canonical problems.

Since the solution of the canonical problems are not the same in the different local
areas, diffraction coefficients are varied for edges, corners and vertices. Keller
developed the Geometrical Theory of Diffraction in order to calculate the diffraction
coefficients of various problems (Keller, February 1962). He modelled various
diffraction mechanisms to defeat the some restrictions of GO. The first modelled
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diffraction mechanism is edge-diffracted rays. Edge-diffracted rays includes two
different diffraction cases. The first case of it is that the incident wave propagates in a
direction which is normal to the edge. In this scenario, the diffracted rays are
cylindrical and the diffraction point is the center of this cylinder. This case is

illustrated in Figure 0.2.

Diffracted Rays
Incident Ray

Screen

A3pH

Figure 0.2. Cylindrical Diffracted Rays

In Figure 0.2, let i, becomes the field on a diffracted ray from the edge and u;
becomes the incident field to the edge. The incident field %; can be expressed in
equation (0.9).

u; = AjelVi (0.9)

In equation (0.9), A4; represents the amplitude of the incident field and y; represents

the phase of the incident field.

Let, the wavelength is denoted by A and the distance from the edge is denoted by 7. In
this case, the wavenumber k equals to 2 /A. Since the diffracted rays are cylindrical

in the first case of edge-diffracted rays and the flux through this cylinder (rA%) must
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be constant, the cross-sectional are of the unit cylinder is proportional to r. Thus, the

-1/2

amplitude of diffracted ray A, is proportional to r . If the diffraction coefficient is

denoted by D, 1i; can be expressed in equation (0.10).
iy = Du;r=1/2elkr (0.10)

Sommerfeld express the diffraction coefficient value in equation (0.10) as in equation

(0.11) (Sommerfeld, 1954).

ein/4

~ 2(2mk)Y/2 sin B

1 1
D= secE(H—a)icsc§(9+a) (0.11)

In equation (0.11), S is the angle between the incident ray and the edge. This angle is
equals to /2 in this scenario because incident ray is in a direction normal to edge.
a and 6 are the angles between the incident and diffracted ray and the normal to edge
respectively. They are illustrated in Figure 0.3. The upper sign in equation (0.11) is
valid when boundary condition on the half-plane is u = 0 and the lower sign in

equation (0.11) is valid when boundary condition on the half-plane is du/dn = 0.

Figure 0.3. a and 0 definitions
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The second case of edge-diffracted rays is that incident wave propagates in a direction
which is oblique to the edge. In this scenario, the diffracted rays are conical and the

diffraction point is the top of this cone. This case is illustrated in Figure 0.4.

Figure 0.4. Conical Diffracted Rays

Equations from (0.9) to (0.11) are valid for the second case of edge-diffracted rays.
The only distinctness of this case is that § does not equal to r /2. It can take any value

according to obliquity of the incident ray.

The second modelled diffraction mechanism is the fields diffracted by curved edges.

The diffracted rays from a curved edge are illustrated in Figure 0.5.
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Edge

Dif fracted Rays

Incident Rays

Figure 0.5. Diffracted Rays from Curved Edge

In Figure 0.5, p; represents the distance from the edge to caustic and 8 represents the
angle between the incident ray and the tangent to the edge. To obtain the cross-
sectional area of a tube of rays, let p; and p, denote the radii of curvature of the wave
front. At a distance r further along tube, (p; + r) and (p, + r) are the corresponding
radii. Thus, the cross-sectional area of a tube of rays is proportional to (p; + r)(p, +

r)A,. This proportion must be constant since the flux in the cross-sectional area must
1

be constant. So, A, must be proportional to ((p1 +1)(p, + r)) 2,

The diffracted rays form a caustic at the edge in Figure 0.5; thus, p, becomes zero. In

1
this case, A, is proportional to ((1 +p1 1r)r) 2. The expression of &1 can be written

in equation (0.12).
1
g = Du;((1 4 pytr)r) 2elk (0.12)
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The expressions of diffraction coefficient and incident field in equation (0.9) and

(0.10) are also valid for the diffraction coefficient and incident field in equation (0.12).

The third modelled diffraction mechanism, which is the last diffraction mechanism
mentioned in this thesis, is corner or tip diffraction. The incident wave which hits a
corner of an edge of a boundary surface or a tip of a conical boundary surface causes
the infinitely many diffracted rays. In homogeneous medium, these diffracted rays are
straight lines and the wave fronts of them are spheres whose center is the corner or the
tip. Since the wave fronts are spheres, the cross sectional are of a tube of rays is
proportional to radius of the sphere. Thus, the amplitude of diffracted field is
proportional to the root of the radius of the sphere. Thus, the diffracted field in this

type of diffraction mechanism is given in equation (0.13).
1.
g = Cu;r 2elkr (0.13)

In equation (0.13), r is the distance of the diffracted-ray to diffraction point, u; is the
incident field and C is the appropriate corner or tip diffraction coefficient. C depends
on the local geometry of diffraction point, the directions of incident and diffracted rays
and the local properties of the media. Since C is proportional to a length, it is

proportional to k1.

After calculation of the initial fields on each diffracted ray, the amplitude and phase
of total field must be found. The amplitude of total field at a point is determined by
the addition of the fields on each ray passing through this point and the phase of total
field at a point is obtained from the optical length of the ray whose starting point a
reference point and whose endpoint is this point. More detailed information about

diffraction can be found in (Balanis, Advanced Enginering Electromagnetics, 1989).
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D. Calculations

As discussed in chapter 3, incident field can be used in equation (3.1) directly for the

front-fed parabolic reflectors. Thus;
fm = _/Ei + 27l (i, - fl) (0.14)

Let, K(wy, ) be defined as the scalar in equation (0.15). The definitions of y and y

present in Figure 3.1.

KO, 0) = (A ) (0.15)

The x,y and z components of f,, must be equal to values in equation (0.16) in order

to get a y-polarized uniform field over the aperture plane.

fm = fmxX + fmyj} + fnzZ

fmx = ZK(\V) X)nmx - ﬁx = 0
R (0.16)
fny = 2K(y, )Ny — fiy = o JkR
0

fmz = ZK(\V: X)nmz — fiz =

Solving equation (0.16) for the components of f; yields;

fix = ZK(\V» X)nmx
fiz = ZK(\V' X)nmz

where Ny, Ny, and n,,, are the x,y and z components of fi,,,. Their values in terms
of y and y are given in equation (0.18).
Nk = — cos(y) sin(y/2)

Ny = — sin(y) sin(y/2) (0.18)
Nz = cos(y/2)

Inserting equation (0.18) into equation (0.17);

fix = —2K(y, ) cos(y) sin(y/2)
R
fiy = —2K(y, ) sin() sin(y/2) — ——zz (0.19)

fiz = 2K (y, ) cos(y/2)
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Using equations from (0.15) to (0.19);

K(W} X) = fixNmx + fiynmy + fizNmz
KQy, %) = —fix cos(y) sin(y/2) — fiy sin(y) sin(y/2) (0.20)
+ fizcos(y/2)

Rewriting equation (0.19);

fix = [2fix cos() sin(y/2) + 2f;y sin(y) sin(y/2)
— 2f,,c0s(y/2)] cos(z) sin(y/2)
fiy = [2fix cos() sin(y/2) + 2f;, sin(y) sin(y/2)
R
— 2fi,c05(y/2)] sin(O) sin(w/2) ~ —z

fiz = [=2fix cos(x) sin(y/2) — 2, sin(y) sin(y/2)
+ 2f;c08(y/2)]|cos(y/2)

0.21)

An expanded form of equation (0.21);

fix = [2fix cos?(x) sin?(y/2) + 2f;,, sin(y) cos(y) sin?(y/2)
— 2f;, cos(y) sin(y/2) cos(y/2)]
fiy = [2fix sin(y) cos(y) sin®(y/2) + 2, sin®(y) sin?(y/2)
R
— 2fiz sin(y) sin(y/2) cos(y/2)] - SRR

fiz = [=2fix cos(x) sin(y/2)cos(y/2)
— 2fiy sin(y) sin(y/2)cos(y/2) + 2f;, cos? (y/2)]

(0.22)

Simplifying (0.22);

0 = fix[2 cos®(x) sin®(y/2) — 1]
+ fiy[2sin(y) cos(y) sin®(y/2)]
. + fiz[=2 cos(y) sin(y/2) cos(y/2)]
—rr = fix[2sin() cos() sin® (y/2)]
+ fiy[25in2() sin?(y/2) — 1]
+ fiz[=2sin(y) sin(y/2) cos(y/2)]
0 = fix[—2 cos(y) sin(y/2)cos(y/2)]
+ fiy[=2sin(y) sin(y/2)cos(y/2)]
+ fiz[2 cos®(y/2) — 1]

(0.23)

The matrix form of (0.23);
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myy Mi; M) |fix g
Ma1 Map Myz||fiy| = e (0.24)
M3y Mzz Mzzl|f, € 0

The elements of matrix M defined in equation (0.24) can be listed as:

my, = 2 cos?(y)sin?(y/2) — 1
my, = 2sin(y) cos(y) sin®(y/2)
my3 = —2 cos(y) sin(y/2) cos(y/2)
myy = 2sin(y) cos(y) sin®(y/2)
my, = 2sin?(y) sin?(y/2) — 1 (0.25)
my3 = —2sin(y) sin(y/2) cos(y/2)
m3y = —2 cos(y) sin(y/2)cos(y/2)
M3, = —2sin(y) sin(y/2)cos(y/2)
mss = 2cos?(y/2) — 1

By taking inverse of M, the components of incident field required for uniform aperture

field can be expressed as:

. - e—lij sin(2y) —COS(\? !
];iy |7 e_}ij ((Cos(\p) — 1) sin?(y) + 1) (0.26)

R
|~ 2 sin(y) sin(y/2) cos(y/2)|

107






E. Reflection from Surface

Consider the surface in Figure 0.6.

Figure 0.6. Reflection from Surface

In Figure 0.6, f; and f, represent the incident and reflected fields, respectively. From

the law of reflection, 8; = 6,. By using the vectors in Figure 0.6:
fr A = fi " Aim (0.27)
The symmetry in the figure provides equation (0.28).
u' =-u" (0.28)
By using the vectors in Figure 0.6 again:

u,:ﬁ‘_ﬁm:ﬁ_(ﬁ"ﬁm)ﬁm
u' =fi_ﬁm =fl_(flﬁm) ﬁm (029)

By utilizing from equation (0.28) and equation (0.29):
fr = (e )i = = (fi = (fi i) i) (0.30)
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By equation (0.27):
fo = (i un)fim = =(fi = (i * i) o)

]ir = (f_L_ ﬁm)ﬁm - fl + (f_l ) ﬁm)ﬁm (0.31)
ﬁ’ = _fi + Zﬁm(fi : ﬁm)
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