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ABSTRACT

STOCHASTIC MODELING OF BIOCHEMICAL SYSTEMS WITH FILTERING
AND SMOOTHING

Haksever, Merve
M.S., Department of Scientific Computing

Supervisor : Prof. Dr. Ömür Uğur

Co-Supervisor : Assoc. Prof. Dr. Derya Altıntan

September 2019, 80 pages

Deterministic modeling approach is the traditional way of analyzing the dynami-
cal behavior of a reaction network. However, this approach ignores the discrete
and stochastic nature of biochemical processes. In this study, modeling approaches,
stochastic simulation algorithms and their relationships to each other are investigated.
Then, stochastic and deterministic modeling approaches are applied to biological sys-
tems, Lotka-Volterra prey-predator model, Michaelis-Menten enzyme kinetics and
JACK-STAT signaling pathway. Also, numerical solutions for ODE system and real-
izations obtained through stochastic simulation algorithms are compared.

In general, it is not possible to assess all elements of the state vector of biochemical
systems. Hence, some statistical models are used to obtain the best estimation. Fil-
tering and smoothing distributions can be obtained via Bayes’ rule. However, as an
alternative to approximate these distributions Monte Carlo methods might be used.
In the second part, bootstrap particle filter algorithm is derived and applied to birth-
death process. Estimated probability distribution functions are compared according
to number of particles used.

Keywords: mathematical modeling, simulation algorithms, filtering, smoothing
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ÖZ

BİYOKİMYASAL SİSTEMLERİN STOKASTİK MODELLEMESİ İLE
FİLTRELEME VE YUMUŞATMA ALGORİTMALARI

Haksever, Merve
Yüksek Lisans, Bilimsel Hesaplama Bölümü

Tez Yöneticisi : Prof. Dr. Ömür Uğur

Ortak Tez Yöneticisi : Doç. Dr. Derya Altıntan

Eylül 2019, 80 sayfa

Deterministik modelleme yaklaşımı reaksiyon ağlarının dinamiklerini analiz etmede
geleneksel yöntemidir. Buna rağmen bu yaklaşım biyokimyasal süreçlerin ayrık ve
stokastik doğasını görmezden gelir. Bu çalışmada modelleme yaklaşımları, stokas-
tik modelleme algoritmaları ve bunların birbirleri ile olan ilişkisi incelendi. Stokastik
ve deterministik modelleme yaklaşımları Lotka-Volterra av-avcı modeli, Michaelis-
Menten enzim kinetiği ve JAK-STAT sinyal yoluna uygulandı. Ayrıca ODE sistemin
numerik çözümleri ve stokastik simulasyon algoritması ile elde edilen gerçekleştir-
meler karşılaştırıldı.

Biyokimyasal süreçlerin durum vektörünün bütün elemanlarının belirlenmesi genel-
likle mümkün değildir. Bu yüzden bazı istatiksel modeller en iyi tahmini elde et-
mek için kullanılır. Filtreleme ve yumuşatma dağılımları Bayes’ kuralı ile buluna-
bilir. Buna rağmen alternatif olarak Monte Carlo yöntemleri bu dağılımları yaklaşık
olarak bulmakta kullanılabilir. İkinci kısımda önyüklemeli parçacık filtreleme algo-
ritması türetildi ve doğum-ölüm süreçleri modeline uygulandı. Tahmin edilen olasılık
dağılım fonksiyonları kullanılan parçacık sayısına göre karşılaştırıldı.

Anahtar Kelimeler: matematiksel modelleme, stokastik simulasyon algoritmaları, filt-
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CHAPTER 1

MODELING OF BIOCHEMICAL SYSTEMS

Modeling can be defined basically as a simplified representation of a real problem.

Experimental techniques are usually insufficient or time consuming to analyze com-

plex systems such as analyzing time evolution of a population of organisms. Hence,

modeling might be used to predict future behavior of these complex dynamic sys-

tems. Nowadays, modeling approaches are a crucial part of scientific fields since they

clarify the knowledge of a particular system. Another benefit of modeling is that it

allows researchers to validate whether their understanding of a system is correct or

not.

There are three types of models which are analogue models, scale models and math-

ematical models. The analogue models represents the system by another, more com-

prehensible system. Flow of water in pipes to simulate flow of electricity in wires is

an example for the analogue models [32]. The scale models depict a system with an-

other system which is larger or smaller than the real system. For instance, using real

cars to understand effect of car accidents might be expensive. Instead, small cars that

are minimized according to some rules can be an alternative [18]. The mathematical

models describe a real system in terms of mathematical concepts. It establishes rela-

tionships between variables and parameters through a set of equations. For example,

Lotka-Volterra equations which describe dynamics of a biological system involving a

prey and a predator [46].

Mathematical models can be classified based on the solution obtained: (i) Analytical

models, (ii) Numerical models. The former reach the exact solution but some sim-

plifications on the model are required. The latter reach an approximate solution by

1



imposing numerical algorithms on computers. Mathematical models can also be ana-

lyzed in two different classes which are deterministic and stochastic. In deterministic

models the state variables are determined by non-random parameters and previous

states. Therefore, for deterministic model the same initial state gives the same solu-

tion. However, deterministic models are usually unstable. Indeed, any small changes

in the initial state may lead to large perturbations in the solution. On the other hand, in

stochastic models, parameters and states are described by random variables or proba-

bility distributions instead of constant values. Hence, at the end many equally likely

solutions may be obtained. By this way, it is possible to include uncertainty due to

the lack of knowledge of the process or an inaccuracy in measurement [36, 41, 46].

Biochemical processes can also be modeled by one of the ways described above.

However, in this thesis main focus will be mathematical models. Biochemical pro-

cesses are usually represented in terms of chemical reactions. Thus, this chapter

starts with the general description of the chemical reaction channels. Then, different

mathematical models depending on the representation of the abundance of species to

analyze the time evolution of the state vector in a reaction network will be introduced.

1.1 Chemical Reactions

A biochemical reaction network is a composition of different types of species interact-

ing with each other via distinct reaction channels. These networks can place within a

container or a cell. Molecules of species move in the container or the cell and collide

with each other due to their gained energy. These collisions may end with a chemical

reaction depending on the orientation and the kinetic energy of each molecules of

species. Chemical reactions may change the amount of molecules of the species or

transform species into other species [24, 39].

For a formal description of a chemical reaction system, we will consider a system

consisting of ns different types of chemical species, {S1, S2, . . . , Sns}, and nr distinct

chemical reactions, {R1, R2, . . . , Rnr}. Each chemical reaction is associated with a

parameter called the deterministic reaction rate constant, kj ∈ R+, j = 1, 2, . . . , nr.

The reaction rate constant is specific for each reaction and depends on the tempera-
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ture of the environment that the reaction takes place and presence of catalyst [39].

Moreover, it will be assumed that the chemical reaction system satisfies two special

conditions: (i) The system is well-stirred in a container with constant volume V . (ii)

The system is thermally equilibrated with a constant temperature T . The first condi-

tion guarantees that the position of a randomly selected molecule of each species is

uniformly distributed through the container. The second condition guarantees that the

molecules of each species have a Maxwell-Boltzman velocity distribution [24]. To

sum up, a reaction channel Rj , j = 1, 2, . . . , nr, with reaction rate constant kj of a

chemical reaction network has the following form:

Rj : αj
1S1 + αj

2S2 + . . .+ αj
ns
Sns

kj−→ ᾱj
1S1 + ᾱj

2S2 + . . .+ ᾱj
ns
Sns , (1.1)

where αj
i ∈ Z+

0 , ᾱj
i ∈ Z+

0 are reactant, product coefficients of ith species Si, i =

1, 2, . . . , ns, respectively. The reactant coefficient denotes the number of reactant

molecules consumed with a single occurrence of the reaction channel Rj . The prod-

uct coefficient denotes the number of molecules of species produced at a single occur-

rence of the reaction channel Rj . In biochemical reaction network, the stoichiometric

element vij:

vij ≡ ᾱj
i − α

j
i , (1.2)

represents the net change in the number of molecules of Si species with a single oc-

currence of reaction channel Rj . Also, the state vector of the system at time t ≥ 0

will be shown as X(t) = (X1(t), X2(t), . . . , Xns(t)), where Xi(t) represents the

number of molecules of Si species, i = 1, 2, . . . , ns, at time t ≥ 0. If we are inter-

ested in concentration of species instead of the number of molecules of species, then

Zi(t) = Xi(t)/V represents the concentration of each species Si, i = 1, . . . , ns.

The four reactions given below are known as elementary reactions. These chemi-

cal reactions provide representations of complex biochemical processes in a simple

way [37].

1. A reaction channel which transforms a molecule of S1 species into a molecule

of S2 species is represented as follows:

R1 : S1
k1−→ S2.

3



This reaction channel is called an unimolecular reaction channel with reaction

rate constant k1.

2. A special kind of unimolecular reactions is synthesis reaction which has the

form:

R2 : ∗ k2−→ S1,

with reaction rate constant k2.

3. A reaction channel which produces a molecule of S3 species by using a molecule

of S1 species and a molecule of S2 species is represented as follows :

R3 : S1 + S2
k3−→ S3.

This reaction channel is called a bimolecular reaction cahnnel with reaction

rate constant k3.

4. A special kind of bimolecular reactions is dimerization reaction which has the

form:

R4 : 2 S1
k4−→ S2,

with reaction rate constant k4.

A chemical reaction which can proceed in both forward and backward direction is

called a reversible reaction. Reversible reactions can be represented shortly in a single

line, i.e.

R5 : S1 + S2

k3


k5
S3.

Reactions involving more than two species can be written as a combination of these

elementary reactions. For instance, trimerisation reaction of species A which has the

form:

4



3A→ A3,

where A3 is a new species whose each molecule involve three A molecules. This

trimerization reaction can be written as a pair of bimolecular reactions as follows:

2A→ A2, A2 + A→ A3.

The above chemical reactions are mostly used to represent chemical reaction channels

of chemical reaction network under study.

Until now, reactions are categorized depending on the number of reactant species and

elements of a chemical reaction are explained. Another characteristic of a chemical

reaction is the rate of reaction. The measure of change in concentration of the reac-

tant/product species in a unit time interval is called the rate of reaction. The rate law

is an equation which relates the rate of reaction and concentration of reactants. Un-

derstanding the rate of reaction is the subject of chemical kinetics which is the branch

of physical chemistry [39].

Chemical kinetics also deals with construction of a mathematical model for a reaction

network [46]. It is based on mass-action law which states that the rate of reaction is

proportional to the concentrations of reactants [36]. The mathematical model, called

reaction rate equation (RRE), is of concern of the deterministic approach. RREs are

the set of ordinary differential equations (ODE) in which each equation is set through

the rate laws of reactions.

1.2 Deterministic Approach

Traditionally, dynamical behavior of a reaction network is analyzed by deterministic

modeling approach. In this approach, the abundance of each species Si, for some

i = 1, 2, . . . , ns, at time t ≥ 0 is represented by real-valued concentrations Zi(t).

Time evolution of concentration of all species in the system of interest is described

5



by a set of ODE in the following form:

d

dt
Z1(t) = f1(Z1, . . . , Zns),

d

dt
Z2(t) = f2(Z1, . . . , Zns),

...

d

dt
Zns(t) = fns(Z1, . . . , Zns),

(1.3)

subject to the initial conditions

Z1(0) = z1, Z2(0) = z2, . . . , Zns(0) = zns ,

where the functions fi, i = 1, 2, . . . , ns, depend on the concentrations of reactants

and reaction rate constants of reaction channels involving species Si. The ODE sys-

tem given in (1.3) is RRE [28]. If the system of interest involves many species and/or

the fi are nonlinear, then it can be difficult to obtain analytical solutions. Therefore,

numerical solution methods, such as Euler method, Runge-Kutta methods, that it-

eratively compute the approximate solution, starting from the initial value, may be

used [30].

Despite the extensive usage of deterministic models to analyze dynamical behavior of

a reaction network, it has some drawbacks. For example, the abundance of molecules

of species in this approach is represented by real-valued concentrations, however, us-

ing this kind of representation can be inappropriate when the number of molecules

of species are so low. Also, in this approach, it is not possible to trace exact time

of occurrence of one reaction. Moreover, biochemical reactions cannot be mechan-

ically isolated which means that some external noise may affect the environment of

the chemical reaction network. Deterministic modeling approach ignores aforemen-

tioned discrete and stochastic nature of a chemical reaction network. Therefore, the

deterministic models need to be extended to stochastic models [28].

1.3 Stochastic Approach

A stochastic process is a system such that the state of the system evolves with time

randomly. It can be simply represented as a set of random variables [36]. A Markov
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process is a stochastic process with the property that the future state of the system

only depends on the current state of it [46]. In this section, it will be shown that

how we can model the dynamical behavior of a reaction channel by using Markov

processes.

There are two necessary quantities to characterize a reaction channelRj , j = 1, 2, . . . , nr,

in stochastic approach.

The first quantity is the stoichiometric vector vj = (v1j, . . . , vnsj), each component

of which is stoichiometric element, vij , defined in (1.2). Accordingly, if X(t) = x is

the current state of the system at time t, then x + vj is the updated state immediately

after a single occurrence of the reaction Rj .

The second quantity is the propensity function aj(x). Propensity function is a quantity

to express the probability of occurrence of a specific reaction for the given state of

the system. According to the mass-action kinetics, the propensity function for jth

reaction channel Rj is proportional to the reaction rate constant and the number of

the number of distinct combination of reactants [37]. It can be written as as follows:

aj(x) = cjhj(x), (1.4)

where cj is the stochastic reaction rate constant for the reaction Rj . Stochastic reac-

tion rate constant cj is not the same as the reaction rate constant kj which is defined

in the deterministic approach. The reason for this is that in deterministic approach,

the amount of species are represented in terms of concentration, mole per liter. On

the other hand, in stochastic approach it is an integer which represents the number

of molecules of each species. Table 1.1 summarizes the relationship between the de-

terministic reaction rate constant and the stochastic reaction rate constant for some

elementary reactions. Here, nA is the Avagadro’s constant. (Details of conversion

from deterministic reaction rate constant to stochastic reaction rate constant we refer

to [37, 46].)

By using stochastic reaction rate constant the following probability is defined [24, 28]:

cjdt ≡ the probability that a randomly selected pair of reactant molecules

of species will react in accordance with Rj reaction during an

infinitesimal time interval [t, t+ dt).
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Table 1.1: Rate Constant Conversion
Reaction Stochastic Rate Constant

R1 : S1
k1−→ S2 c1 = k1

R2 : ∗ k2−→ S1 c2 = nAV k2

R3 : S1 + S2
k3−→ S3 c3 = k3/nAV

R4 : 2S1
k4−→ S2 c4 = 2k4/nAV

Further, in (1.4), hj(x) gives the current number of the distinct combination of molecules

of reactant species which can be found as

hj(x) =
ns∏
i=1

(
xi
αj
i

)
,

where αj
i is the reactant coefficient of species Si as in (1.1). As a result, the following

definition for aj(x)dt can be inferred:

aj(x)dt ≡ the probability that for given X(t) = x, one Rj reaction will occur

in the container with volume V during an infinitesimal time

interval [t, t+ dt).

This is also known as the fundamental premise of the stochastic formulation of chem-

ical kinetics [22].

Table 1.2 shows the propensity functions based on mass-action kinetics and stoichio-

metric vectors for elementary reactions.

Table 1.2: Propensity functions and stoichiometric vectors for given reactions
Reaction Propensity Stoichiometric Vector

R1 : S1
c1−→ S2 a1(x) = c1x1 v1 = (−1, 1)T

R2 : ∗ c2−→ S1 a2(x) = c2 v2 = (1, 0)T

R3 : S1 + S2
c3−→ S3 a3(x) = c3x1x2 v3 = (−1,−1, 1)T

R4 : 2S1
c4−→ S2 a4(x) = c4

1
2
x1(x1 − 1) v4 = (−2, 1)T

Apart form mass-action kinetics, there are complex reaction kinetics approaches to

express the propensity function of a reaction channel. For example, methods based

on Michaelis-Menten kinetics [42] and Hill kinetics [44] can be used to approxi-

mate propensity functions in stochastic modeling. However, in these representations,

propensity function aj(x), j = 1, 2, . . . , nr, has nonlinear dependency on the number
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of molecules of chemical species and it contains more than one reaction rate con-

stants. Hence, these methods are not efficient as mass-action kinetics.

In conclusion, let the probability of occurrence of Rj reaction in the time interval

[t, t+ dt) for given initial state be denoted by p(X(t+ dt) = x+ vj, t+ dt|X(t) = x, t).

Then, definition of aj(x)dt will lead

p(x+ vj, t+ dt|x, t) = aj(x)dt+ o(dt),

where o(dt) satisfies the condition that lim
dt→0

o(dt)

dt
= 0 [22]. In other words, proba-

bility of occurrence of more than one reaction in the time interval [t, t + dt) can be

ignored when dt→ 0.

It can be observed that the propensity function is defined only by the current state x.

This means that the propensity function satisfies the condition for being Markov pro-

cess. Besides, chemical and biochemical processes cannot be considered as discrete

processes. Hence, it can be inferred that biochemical reaction networks evolves con-

tinuous in time and discrete in space. As a result, the continuous time Markov chains

(CTMC) can be used to analyze the dynamics of biochemical system of interest [1].

In this approach the state vector of the stochastic process X satisfies random time

change model (RTCM).

1.3.1 Random Time Change Model

In [2], Anderson and Kurtz state that the state of the system can simply be represented

as

X(t) = X(0) +
nr∑
j=1

Cj(t)vj, (1.5)

where Cj(t), j = 1, 2, . . . , nr is the number of occurrence of reaction Rj up to time t

and X(0) is the initial state of the system.

In this study, it is also shown that counting process Cj(t), j = 1, 2, . . . , nr, is a

Poisson process with the rate aj(X(t)). Therefore, Cj(t) can be written as

Cj(t) = ξj

(∫ t

0

aj(X(s))ds

)
, (1.6)
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where ξj(λ) represents the Poisson process with parameter λ. So, the state vector

given in (1.5) can be rewritten in the following form:

X(t) = X(0) +
nr∑
j=1

ξj

(∫ t

0

aj(X(s))ds

)
vj. (1.7)

This representation of the state vector is known as RTCM [47].

In addition to the state vector representation, it is also possible to obtain the time

derivative of the probability mass function of the reaction system in stochastic mod-

eling. In the following section details of this derivation will be given.

1.3.2 Chemical Master Equation

Based on the stochasticity of biochemical reaction network, the probability mass

function p(x, t|x0, t0) for the stochastic process X is defined as follows:

p(x, t|x0, t0) ≡ the probability that the state of the system at given time t

is X(t) = x for the given initial state X(t0) = x0
(1.8)

This conditional probability mass function (1.8) is called as the grand probability

function [24]. To represent the time evolution of this grand probability function, we

will find an expression for p(x, t+ dt|x0, t0) as follows:

p(x, t+ dt|x0, t0) = p(x, t|x0, t0)
[
1−

nr∑
j=1

aj(x)dt+ o(dt)

]

+
nr∑
j=1

p(x− vj, t|x0, t0)
[
aj(x− vj)dt+ o(dt)

]
+ o(dt).

(1.9)

In [24], it is proved that the first term in the right handside of (1.9) corresponds to the

probability of no reaction will occur in the time interval [t, t + dt), while the second

term corresponds to the probability of occurrence of exactly one reaction in the time

interval [t, t + dt). The last term represents the probability of occurrence of more

than one reactions in the time interval [t, t+ dt). Since these three cases are mutually

exclusive events, they can be all summed up by the addition law of probability. If
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p(x, t|x0, t0) is subtracted from both side of (1.9), and limit is taken for dt → 0, the

following Chemical Master Equation (CME) is obtained:

∂

∂t
p(x, t|x0, t0) =

nr∑
j=1

[
aj(x− vj)p(x− vj, t|x0, t0)− aj(x)p(x, t|x0, t0)

]
, (1.10)

with the initial conditions

p(x, t = t0|x0, t0) =

1 if x = x0,

0 if x 6= x0.

Theoretically, analytical solution of CME given in (1.10) gives exact description of

Markov process X . However, it is difficult to solve the CME even with the numerical

methods except for some particular cases. The reason of this difficulty is called “the

curse of dimensionality”. It means that the computational cost grows exponentially

with the number of reacting species or the number of molecules of each species in

the chemical reaction network [48]. So, stochastic simulation algorithms (SSA), in

which the realizations of the biochemical system satisfying the CME of interest are

obtained, as an alternative [1, 26, 28].

Although deterministic and stochastic approaches are based on different foundation,

there is relationship between them [46]. In fact, they are exactly the same in case of

unimolecular reactions. The rate of change of the expected value of state vectors at

time t ≥ 0 can be written as follows:

d

dt
E[X(t)] =

∂

∂t

∑
x

xp(x, t|x0, t0) =
∑
x

x
∂

∂t
p(x, t|x0, t0), (1.11)

where E[·] denotes mean of X at time t. Also, x represents the realization, support

of the random variable X .

Inserting (1.10 ) into (1.11) leads

d

dt
E[X(t)] =

∑
x

x
nr∑
j=1

[
aj(x− vj)p(x− vj, t|x0, t0)− aj(x)p(x, t|x0, t0)

]
. (1.12)

Since changing the order of summation does not affect the final result, (1.12) can be

written as:

d

dt
E[X(t)] =

nr∑
j=1

[∑
x

xaj(x− vj)p(x− vj, t|x0, t0)−
∑
x

xaj(x)p(x, t|x0, t0)
]
.

(1.13)
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By shifting x to x+ vj we obtain∑
x

xaj(x− vj)p(x− vj, t|x0, t0) =
∑
x

(x+ vj)aj(x)p(x, t|x0, t0).

Here, it must be noted that x + vj ∈ X . As a result, (1.13) can be written in the

following form:

d

dt
E[X(t)] =

nr∑
j=1

[∑
x

(x+ vj)aj(x)p(x, t|x0, t0)−
∑
x

xaj(x)p(x, t|x0, t0)
]

=
nr∑
j=1

[
E[(X(t) + vj)aj(X(t))]− E[X(t)aj(X(t))]

]

=
nr∑
j=1

E[vjaj(X(t))]

=
nr∑
j=1

vjE[aj(X(t))].

(1.14)

If all the reactions of the system under consideration are unimolecular then, corre-

sponding propensity functions will be linear which in turn will give usE[aj(X(t))] =

aj(E[X(t)]). This will give us the possibility to write the last line of (1.14) as follows:

d

dt
E[X(t)] =

nr∑
j=1

vjaj(E[X(t)]). (1.15)

Let Y (t) = E[X(t)]. Then, (1.15) will take the form [28]:

d

dt
Y (t) =

nr∑
j=1

vjaj(Y (t)), (1.16)

which is the same as the ODE system for deterministic model. However, it should

be noted that in (1.16), RRE uses the number of molecules of species and stochastic

rate constant instead of concentrations and deterministic rate constant, respectively.

To be brief, rate constant will remain the same if all chemical reaction channels have

similar form with R1 given in Table 1.1. Hence, the deterministic formulation and

the expected value of stochastic formulation will be exactly the same. Otherwise, rate

constant conversions are required according to Table 1.1.

Up to now, dynamics of biochemical reaction networks analyzed through RTCM and

CME provided that the abundance of species is low and represented by integer values.
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On the other hand, in case of tremendous amount of species, RRE in terms of concen-

trations used to analyze dynamics of biochemical reaction systems. Yet, stochastic

approach is not restricted to low copy number of species. In case of stochasticity,

Langevin equation provides an alternative model to biochemical reaction networks

with large amount of species.

1.3.3 Chemical Langevin Equation

Diffusion process is a Markov process which evolves continuously in time with con-

tinuous states. Langevin equation is a particular type of stochastic differential equa-

tions which is used to express dynamics of diffusion processes [46]. If the number

of molecules of species in a biochemical system is excessively high, then represen-

tation of the amount of species in terms of integer-valued molecule numbers will be

inappropriate. Hence, the amount of molecules of species is represented by real val-

ued concentration. Accordingly, the process X can be defined by diffusion process.

Let Zi(t) = Xi(t)/V denote the concentration of species Si, i = 1, 2, . . . , ns at time

t ≥ 0. Dividing both sides of (1.7) by the volume V yields

Z(t) = Z(0) +
1

V

nr∑
j=1

ξj

(∫ t

0

aj(X(s))ds

)
vj. (1.17)

For unimolecular and bimolecular reactions involving species with high number of

molecules, the propensity functions can be written as aj(X(t)) = V ãj(Z(t)). Here,

ãj(Z(t)) represents the propensity function computed by using the corresponding

deterministic rate constant kj and the concentration of species [1, 2]. Hence,(1.17)

can be written as

Z(t) = Z(0) +
1

V

nr∑
j=1

ξj

(
V

∫ t

0

ãj(Z(s))ds

)
vj. (1.18)

Adding and subtracting the term
(
V

∫ t

0

ãj(Z(s))ds

)
vj to the right hand side of

(1.18) yields

Z(t) = Z(0) +
1

V

nr∑
j=1

[
ξj

(
V

∫ t

0

ãj(Z(s))ds

)
− V

∫ t

0

ãj(Z(s))ds

]
vj

+
nr∑
j=1

(∫ t

0

ãj(Z(s))ds

)
vj.

(1.19)
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By central limit theorem [33], which states that
ξj(V λ)− V λ√

V
converges to Wj(λ)

for for large V , (1.19) can be rewritten as follows:

Z(t) = Z(0) +
1√
V

nr∑
j=1

Wj

(∫ t

0

ãj(Z(s))ds

)
vj +

nr∑
j=1

(∫ t

0

ãj(Z(s))ds

)
vj,

(1.20)

where Wj(·) represents the standard Brownian motion.

In fact, (1.20) is the solution of the following stochastic differential equation [5]:

dZi(t) =
1√
V

nr∑
j=1

vji

√
ãj(Z(t))dWj(t) +

nr∑
j=1

vjiãj(Z(t))dt, (1.21)

which is called the Chemical Langevin Equation (CLE) [27, 28]. The first term on

the right handside of the equation (1.21) is the stochastic component or the system

noise, and the second term is the deterministic component of the stochastic differential

equation [14].

It can be seen that the only difference between RRE given in (1.3) and CLE given

in (1.21) is the stochastic component. If the number of molecules of species and the

volume of the container approach to infinity while the concentration of species remain

constant, in other words, when thermodynamic limit condition [28] is satisfied, then

the stochastic term approaches to zero. As a result, CLE can be transformed to the

following RRE:

d

dt
Z(t) =

nr∑
j=1

vjiãj(Z(t)). (1.22)

In summary, if the reaction system is modeled by using the stochastic approach which

assumes that the dynamics of the reaction system is modeled by discrete state and

continuous time, then the state vector of the system satisfies RTCM given in (1.5).

Further, time evolution of corresponding probability mass function is represented by

CME given in (1.10). If the dynamics of the reaction system is modeled by diffusion

process, then the state vector of the reaction system satisfies CLE given in (1.21).

Besides, the time evolution of corresponding probability density function satisfies

chemical Fokker-Planck equation (FPE) which will be examined in the next section.
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1.3.4 Chemical Fokker-Planck Equation

It is possible to obtain chemical Fokker-Planck equation (CFPE) from CME given in

(1.10). However, the following two conditions must be satisfied [27]: (i) The abun-

dance of molecules of each species is defined as real-valued concentrations instead

of integer valued molecule numbers. (ii) The functions gj(x) ≡ aj(x)p(x, t|x,t0) for

j = 1, 2 . . . , nr, are smooth functions of x. Then, Taylor’s theorem for multivariate

functions gives the following:

gj(x− vj) = gj(x) +
∞∑
n=1

n∑
m1,m2,...,mns=0

1

m1!m2! . . .mns !

× (−vj1)m1 . . . (−vjns)
mns

∂ngj(x)

∂xm1
1 . . . ∂x

mns
ns

,

(1.23)

where m1 +m2 + . . .+mns = n.

If (1.23) is substituted into the CME given in (1.10), then we obtain

∂

∂t
p(x, t|x0, t0) =

nr∑
j=1

∞∑
n=1

n∑
m1,m2,...,mns=0

1

m1!m2! . . .mns

× (−vj1)m1 . . . (−vjns)
mns

∂gj(x)

∂xm1
1 . . . ∂x

mns
ns

=
∞∑
n=1

(−1)n
n∑

m1,m2,...,mns=0

1

m1!m2! . . .mns !

∂n

∂xm1
1 . . . ∂x

mns
ns

×
([ M∑

j=1

(vm1
j1 , . . . , v

mns
jns

aj(x))

]
p(x, t|x0, t0)

)
,

(1.24)

This is the chemical Kramer-Moyal equation. If the right hand side of (1.24) is trun-

cated at n = 2, then the following FPE is obtained [27]:

∂

∂t
P (x, t|x0, t0) =−

ns∑
i=1

∂

∂xi

[( nr∑
j=1

vjiaj(x)

)
P (x, t|x0, t0)

]

+
1

2

ns∑
i=1

∂2

∂x2i

[( nr∑
j=1

v2jiaj(x)

)
P (x, t|x0, t0)

]

+
ns∑

i,i′=1
i<i′

∂2

∂xi∂x′i

[( nr∑
j=1

vjivji′aj(x)

)
P (x, t|x0, t0)

]
.

So far, mathematical equations modeling biochemical reaction systems are intro-

duced. Since obtaining analytical solutions of these equations are usually not possi-
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ble, simulation methods are used to chase the time evolution of the stochastic process

under consideration.

1.3.5 Stochastic Simulation Algorithms

SSA can be roughly classified as exact, approximate and hybrid algorithms based

on whether being approximation or not to the exact solution, or the combination of

different pure approaches.

1.3.5.1 Exact Simulation Methods

Exact simulation algorithms simulate every reaction event and generate independent

realizations of the biochemical system. However, this exactness increases the compu-

tation time, which is the most crucial disadvantage of the exact methods. The SSAs

are based on the reaction probability function p(τ, j|x, t), where τ , j are the random

numbers for the time to next firing reaction, the index of corresponding fired reaction,

respectively [22, 28]. It is defined as follows:

p(τ, j|x, t)dτ ≡ given X(t) = x, the probability of having next fired reaction Rj

in the time interval [t+ τ, t+ τ + dτ).

The reaction probability function is a joint probability distribution function of the

discrete random variable j ∈ {1, 2, . . . , nr} and continuous random variable 0 ≤ τ ≤
∞ . Derivation of a formula for p(τ, j|x, t) follows probability laws (for details of

derivation we refer to [22]):

p(τ, j|x, t) = aj(x) exp
(
− a0(x)τ

)
, a0(x) =

nr∑
j′=1

aj′(x). (1.25)

Based on (1.25) two simple stochastic simulation algorithms are proposed by Gille-

spie [22, 23]. These algorithms are the direct method and the first reaction method.

They differ from each other by Monte Carlo step that generates random numbers τ

and j .
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Direct Method

The direct method is based on the idea that any joint probability density functions

can be written as the product of one marginal and one conditional probability density

function [22]. The algorithm proceeds as follows:

0. Specify the initial time t = t0 and the initial state of the system X(t0) = x.

Also, specify the final time tfinal > t of the simulation.

1. Calculate the propensity functions aj(x), j = 1, 2, . . . , nr for each reaction

channels and the total propensity a0(x) of the system.

2. Generate the random numbers (τ, j) according to P (τ, j|x, t) as follows:

Draw two random numbers r1 and r2 from uniform distribution in the unit

interval such that

τ = − 1

a0
ln(r1),

j = the smallest integer satisfying
nr∑

j′=1

aj′(x) > r2a0(x).

3. Update the time as t→ t+ τ and state as x→ x+ vj .

4. Keep (x, t). If t < tfinal and the number of molecules of species higher than

zero, then return to the step 1.

In direct method, time to the next firing reaction is decided through a uniform random

variable. The other approach, the first-reaction method, is theoretically equivalent

to the direct method. Yet, in this method, tentative reaction time for each reaction

is obtained through uniform random variables. Then, the shortest time, that is, the

reaction which occurs first, is chosen.

First-Reaction Method

First-reaction method differs from direct method in Monte Carlo step that generates

random variables for τ and j. In the Monte Carlo step of the first-reaction method, nr

random numbers are generated for each reaction channel to compute tentative times to

the next reaction. Then, reaction channel which has the earliest firing time is chosen

as the next reaction [22]. The algorithm proceeds as follows:
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0. Specify the initial time t = t0 and the initial state of the system X(t0) = x.

Also, specify the final time tfinal > t of the simulation.

1. Calculate the propensity functions aj(x) for each reaction, j = 1, 2, . . . , nr,

and the total propensity a0(x) of the system.

2. Generate (τ, j) according to P (τ, j|x, t) as follows:

Draw nr random numbers r1, r2, . . . , rnr from the uniform distribution in

the unit interval and

τv = − 1

a0
ln(rv), v = 1, 2, . . . , nr,

τ = the smallest τv,

j = v for the smallest τv.

3. Update the time as t→ t+ τ and state as x→ x+ vj .

4. Keep (x, t). If t < tfinal the number of molecules of species higher than zero

then return to the step 1.

The first-reaction method generates random variables as many as the number of reac-

tion channels. Hence, it will be less efficient than the direct method when the number

of reaction channels in the reaction network is higher than three [22].

Apart from these two methods, there are several improvements to the exact simu-

lation methods. In [21], Gibbson & Bruck proposed the next reaction method to

reduce computational complexity of the first reaction method. In [10], Cao et al.

proposed modified direct method to reduce computational time of direct method by

using dependency graph and sorting propensity functions of chemical reaction.

1.3.5.2 Approximate Simulation Methods

The computational cost of exact methods is very high. Therefore, approximate meth-

ods which sacrifice some accuracy to decrease computational cost of exact methods

are proposed as an alternative [46]. Approximate methods are based on the idea that
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time of the process is divided into small subintervals such that in each time interval

all propensity functions of reaction channels are constant. At the end, if the subin-

tervals are short, then more accurate realizations will be obtained. On the contrary,

if subintervals are long, then the simulation will proceed faster. In this section, some

approximate simulation methods will be explained.

Poisson Timestep Method

In Poisson timestep method, it is assumed that the number of occurrence of reactions

in the short time interval has Poisson distribution. The time step ∆t is fixed such that

propensity functions of each reaction channels are constant during the time interval

with length ∆t . The algorithm proceeds as follows [46]:

0. Specify the initial time t = t0 and the initial state of the system X(t0) = x

and stoichiometric matrix Sns×nr . Here, columns of the stoichiometric matrix

are stoichiometric vectors vj , j = 1, 2, . . . , nr. Also, specify the final time

tfinal > t of the simulation.

1. Calculate the propensity functions aj(x), j = 1, 2, . . . , nr. Generate nr dimen-

sional reaction vector r such that j-th entry is the Poisson random variable with

the parameter aj(x)∆t, denoted by Po(aj(x)∆t).

2. Update the time as t→ t+ ∆t and state as x→ Sns×nr × rnr×1

3. Keep (x, t). If t < tfinal the number of molecules of species higher than zero

then return to the step 1.

In Poisson timestep method selecting time increment is not specified. Conditions for

the time increment is proposed in Gillespie’s tau-leaping method.

Tau-leaping Method

Tau-leaping method is introduced by Gillespie [25].This method is an improvement

of the Poisson timestep method. In tau-leaping method, selecting a time increment τ

provides a balance between speed and accuracy as follows [36]:

• To increase speed, τ is chosen large enough so that more than one reactions
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occurs in time interval

[t+ τ, t+ τ + dτ).

• To increase accuracy, τ is chosen small enough that changes in the propensity

functions of each reaction channels in time interval [t + τ, t + τ + dτ) is not

noticeable.

The second assumption is known as leap condition [25]. Leap condition ensures that

the probability of occurrence of Rj reaction during the time interval dt somewhere

inside [t, t+τ), which is aj(x)dt as in Definition (1.3), is not affected by other reaction

channels. Besides, the number of occurrence of events during specific time interval

is defined by Poisson random variable. Based on leap condition and the definition of

Poisson random variable, number of firing of reaction channel Rj is Poisson random

variable with parameter aj(x)τ .

There are two controversial problems on selecting τ properly: (i) How we can be sure

that τ is large enough. (ii)How we can know the selected τ will not cause negative

population. For the first problem two refinements are made by Gillespie [9, 29].

Also, to avoid negative populations several strategies have been proposed. For in-

stance, Poisson random numbers are replaced by binomial ones in [7] or reactions

are separated as critical and non-critical reactions in [12].

1.3.5.3 Hybrid Methods

Hybrid simulation methods combine exact and approximate simulation methods to

decrease computational cost of exact algorithms while including probabilistic nature

of biochemical reaction systems [34]. To achieve this goal, chemical species are

partitioned into different classes depending on their abundance. As a result, reactions

are also partitioned depending on species involved. Different simulation methods

are used to generate realizations of the state vector for each group simultaneously.

In general, fast reactions involve chemical species with high copy number. These

reactions are simulated by approximate or deterministic methods. On the other hand,

slow reactions involve species with low copy number of molecules. These reactions

are simulated by exact methods [46]. In this section fundamentals of some hybrid
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models will be explained.

Discrete/ODE Methods

In discrete/ODE methods, fast reactions are simulated by ODE system as in Section

1.2. At the same time, slow reactions are simulated by one of the exact methods

given above. Moreover, these methods are based on the assumption that step size

for the ODE solver is chosen such that any slow reactions do not occur in this time

interval [46]. As a result, a generalized algorithm proceeds as follows:

0. Specify the initial time t = t0 and the initial state of the system X(t0) = x.

Also, specify the final time tfinal > t of the simulation.

1. Calculate propensity functions of the slow reactions.

2. Decide an appropriate time step dt to solve ODE system.

3. Solve the ODE system in the time interval [t, t + dt) to find state vector of

species with high copy numbers of molecules.

4. Calculate again propensity functions of slow reactions at time t+ dt. Compare

these propensity functions with ones calculated at step 1. Check whether any

slow reaction is occurred or not.

5. If there is no slow reaction, then update states of species with high copy number

of molecules according to the solution of ODE at time step t+ dt.

6. If any slow reaction is occurred, then find the time ts of the earliest one. Update

the time as t→ t+ ts. Solve the ODE system over the time interval [t, t+ ts).

Update the state vector of both group of species to time t+ ts.

7. If t < tfinal then return to step 1. If not, finalize the algorithm.

In [34], Kiehl et al. proposed a hybrid simulation method that uses Gillespie’s direct

method to update slow reactions and Runge-Kutta method to numerical integration

of ODE system that corresponds to fast reactions. As another example, in [38], next-

reaction method and 4th- order Runge-Kutta method are combined for slow and fast

reactions, respectively.
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Maximal Timestep Method

The maximal timestep method is the combination of exact simulation methods men-

tioned above for slow reactions and the tau-leaping method for the fast reactions. The

general algorithm is as follows:

0. Initialize the system time as t = t0 and decide tfinal.

1. Calculate propensity functions of fast reactions and decide a convenient time

step τ .

2. Propensity function need to be constant during the firing of a slow reaction. If

τ is an appropriate time step for tau-leaping method, then there should not be

any slow reaction during the time interval [t, t+ τ ].

3. If no slow reaction occurred then update the system according to decided time

step τ .

4. If any slow reaction is occurred, then find the time ts of the earliest one. Update

the time as t → t + ts. Update the state of both group of species according to

their respective methods.

5. t < tfinal then return to step 1. If not, finalize the algorithm.

In [40], Puchalka and Kierzek proposed a simulation method that combines tau-

leaping and next reaction method. Also, in [8], reaction system is partitioned into

three groups and direct method, tau-leaping method and a numerical solution method

(Euler Murayama) for stochastic differential equation are used as simulation methods.

1.4 Application

In this section mathematical models that described in previous sections will be applied

to Lotka-Volterra prey-predator model, Michaelis-Menten enzyme kinetics and JAK-

STAT Pathway.
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1.4.1 Lotka-Volterra Prey-Predator Model

Deterministic Model

Lotka-Volterra (LV) model represents interaction between prey and predator in a

given environment [46]. The reaction system consists two species, prey and predator

represented by X1 and X2, respectively. These species interact through the following

reaction channels:

X1
k1−→ 2X1,

X1 +X2
k2−→ 2X2,

X2
k3−→ ∅.

The first reaction channel represents prey reproduction with deterministic reaction

rate constant k1. The second one shows hunted preys by predator with (deterministic)

reaction rate constant k2. The last one is the extinction of predator due to natural

causes with deterministic reaction rate constant k3.

In deterministic modeling of biochemical reaction systems, the abundance of species

is usually represented in terms of concentrations. However, in this section molecular

approach and stochastic reaction rate constants will be used to see better comparison

between deterministic and stochastic approaches for the modeling of biochemical

reaction systems.

Let, state vector of LV system at time t is X(t) = (X1(t), X2(t)) = (x1, x2) = x.

Initial state vector is chosen as X(0) = (100, 250)T and stochastic reaction rate con-

stants are chosen as a vector c = (2, 0.01, 1.2). Based on the mass-action kinetics,

rate law of the first, third unimolecular reaction channels at time t ≥ 0 are c1X1(t)

and c3X2(t), respectively. On the other hand, rate law of the second bimolecular reac-

tion t ≥ 0 channel is c2X1(t)X2(t). According to rate laws, the abundance of species

X1 will increase with rate c1X1(t) and decrease with rate c2X1(t)X2(t). Similarly,

the abundance of species X2 will increase with rate c2X1(t)X2(t) and decrease with

rate c3X2(t). These results will give the following ODE system, namely RRE, which
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shows time evolution of state of LV system:

d

dt
X1(t) = c1X1(t)− c2X1(t)X2(t)

d

dt
X2(t) = c2X1(t)X2(t)− c3X2(t).

(1.26)

For given initial state of species and rate constants of reaction channels the solution

of RRE describes entire dynamics of the system. Figure 1.1a shows the dynamics of

Lotka-Volterra model (1.26) with MATLAB function ode45.
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(a) Deterministic solution of Lotka-Volterra model
by MATLAB function ode45
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(b) Single realization of SSA with direct method
for Lotka-Volterra model.

Figure 1.1: Dynamics of Lotka Volterra Prey-Predator Model.

Stochastic Model

To characterize LV system in stochastic approach, propensity functions and stoichio-

metric vectors of each reaction is given in Table 1.3.

Table 1.3: Propensity functions and stoichiometric vectors of Lotka-Volterra system
Reaction Propensity Stoichiometric Vector

X1
c1−→ 2X1 a1(x) = c1x1 v1 = (1, 0)T

X1 +X2
c2−→ 2X2 a2(x) = c2x1x2 v2 = (−1, 1)T

X2
c3−→ ∅ a3(x) = c3x2 v3 = (0,−1)T
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The RTCM representation of LV model is given as follows:

X1(t) = X1(0) +
3∑

j=1

ξj

(∫ t

0

aj(X(s))ds

)
vji

= 100 + ξ1

(∫ t

0

c1X1(s)ds

)
− ξ2

(∫ t

0

c2X1(s)X2(s)ds

)
,

X2(t) = X2(0) +
3∑

j=1

ξj

(∫ t

0

aj(X(s))ds

)
vji

= 250 + ξ2

(∫ t

0

c2X1(s)X2(s)ds

)
− ξ3

(∫ t

0

c3X2(s)ds

)
.

Then, CME of the LV system can be written as follows:

∂

∂t
p(x1, x2; t|x0; t0) = c1(x1 − 1)p(x1 − 1, x2; t|x0; t0)− c1x1p(x1, x2; t|x0; t0)

+ c2p(x1 + 1, x2 − 1; t|x0; t0)− c2x1x2p(x1, x2; t|x0; t0)

+ c3x1(x2 + 1)p(x1, x2 + 1; t|x0; t0)− c3x3p(x1, x2; t|x0; t0).

To obtain realizations of the LV system for stochastic modeling, we will use SSA

algorithms. In Figure 1.1b, one iteration of Gillespie’s stochastic simulation algo-

rithm with direct method can be seen. Further, Figure 1.2 indicates the relationship

between expected value of stochastic model and deterministic model. It can be seen

that they are not coincide with each other because of existence of bimolecular reaction

in Lotka-Volterra system.

Using (1.21), we can obtain CLE for LV system as follows:

dZ1(t) =
1√
V

(
√
k1X1(t)dW1(t)−

√
k2X1(t)X2(t)dW2(t)) +

√
k1X1(t)dt−

√
k2X1(t)X2(t)dt

dZ2(t) =
1√
V

(
√
k2X1(t)X2(t)dW2(t)−

√
k3X2(t)dW3(t)) +

√
k2X1(t)X2(t)dt−

√
k3X2(t)dt

Finally, CFPE representation of Lotka Volterra system becomes

∂

∂t
p(x1, x2; t|x0; t0) = − ∂

∂x1
[(c1x1 − c2x1x2)p(x1, x2; t|x0; t0)]

− ∂

∂x2
[(c2x1x2 − c3x2)p(x1, x2; t|x0; t0)] +

1

2

∂

∂x21
[(c1x1 + c2x1x2)p(x1, x2; t|x0; t0)]

− ∂

∂x22
[(c2x1x2 + c3x2)p(x1, x2; t|x0; t0)] +

∂2

∂x1∂x2
[(−c2x1x2)p(x1, x2; t|x0; t0)]
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Figure 1.2: (a) Red line indicates ODE solution of prey (X1). Black dots are mean of
state vectors for X1 after 500 iterations of SSA (b) Blue line indicates ODE solution
of predator (X2). Black dots are mean of state vectors for X2 after 500 iterations of
SSA

1.4.2 Michaelis-Menten Enzyme Kinetics

Deterministic Model

Michaelis-Menten enzyme kinetic system consists four chemical species substrate

(S), product (P ), enzyme (E) and enzyme-substrate (ES) complex. An enzyme is

a biological catalyst which speeds up the chemical reaction [36]. These chemical

species interact through the following three chemical reaction channels:

S + E
k1−→ ES

ES
k2−→ S + E

ES
k3−→ P + E

The first reaction represents that substrate S and enzymeE constitute enzyme-substrate

complex with deterministic reaction rate constant k1. In the second reaction ES dis-

sociates to S and E with deterministic reaction rate constant k2 . In the third reaction

ES dissociates to S and P with deterministic reaction rate constant k3.

As the same reason stated LV model, molecular approach will be used to examine

dynamics of MM enzyme kinetics. Let the state vector of MM enzyme kinetic at time

t is X(t) = (S(t), E(t), ES(t), P (t)) = (x1, x2, x3, x4) = x. Initial state vector is

chosen asX(0) = (450, 75, 0, 0)T and stochastic reaction rate constants are chosen as
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c = (0.020.51.6). According to mass-action kinetics, rate law of the first reaction is

c1S(t)E(t). Similarly, for unimolecular second and third reactions we get rate laws

as c2ES(t) and c3ES(t), respectively. As a result, for describing the dynamics of

Michaelis-Menten enzyme kinetic, we write:

d

dt
S(t) = c1S(t)E(t)− c2ES(t)

d

dt
E(t) = −c1S(t)E(t) + (c2 + c3)ES(t)

d

dt
ES(t) = c1S(t)E(t)− (c2 + c3)ES(t)

d

dt
P (t) = c3ES(t)

(1.27)

Figure 1.3a depicts the solution of RREs (1.27) of Michaelis Menten enzyme kinetic

with MATLAB function ode45.
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(a) Deterministic solution of Michaelis-Menten
model by MATLAB function ode45
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(b) Single realization of SSA with direct method
for Michaelis-Menten model.

Figure 1.3: Dynamics of Michaelis-Menten enzyme kinetics.

Stochastic Model

In Table 1.4, propensity functions and stoichiometric vectors of Michaelis-Menten

model can be seen.

Table 1.4: Propensity functions and stoichiometric vectors of Michaelis Menten en-
zyme kinetics

Reaction Propensity Stoichiometric Vector

S + E
k1−→ ES a1(x) = c1x1x2 v1 = (−1,−1, 1, 0)T

ES
k2−→ S + E a2(x) = c2x3 v2 = (1, 1,−1, 0)T

ES
k3−→ P + E a3(x) = c3x3 v3 = (0, 1,−1, 1)T
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RTCM representation of Michaelis-Menten enzyme kinetics is

S(t) = 450− ξ1
(∫ t

0

c1S(s)E(s)ds

)
+ ξ2

(∫ t

0

c2ES(s)ds

)
E(t) = 75− ξ1

(∫ t

0

c1S(s)E(s)ds

)
+ ξ2

(∫ t

0

c2ES(s)ds

)
+ ξ3

(∫ t

0

c2ES(s)ds

)
ES(t) = ξ1

(∫ t

0

c1S(s)E(s)ds

)
− ξ2

(∫ t

0

c2ES(s)ds

)
− ξ3

(∫ t

0

c2ES(s)ds

)
P (t) = ξ3

(∫ t

0

c2ES(s)ds

)

Then, CME of Michaelis-Menten enzyme kinetics is

∂

∂t
p(x; t|x0; t0) =c1(x1 + 1)(x2 + 1)p(x1 + 1, x2 + 1, x3, x4; t|x0; t0)

− c1x1x2p(x1, x2, x3, x4; t|x0; t0) + c2(x3 + 1)p(x1, x2, x3 + 1, x4; t|x0; t0)

− c2x3p(x1, x2, x3, x4; t|x0; t0) + c3(x3 + 1)p(x1, x2, x3 + 1, x4; t|x0; t0)

− (c3x3)p(x1, x2, x3, x4; t|x0; t0)

Figure 1.3b depicts one iteration of Gillespie’s stochastic simulation with direct method.

Further, Figure 1.4 shows the relationship between expected value of stochastic model

and deterministic model. It can be seen that both solutions are not the same because

of existence of bimolecular reaction in Michaelis-Menten enzyme kinetics. In Figure

1.5 density histogram of the trajectories of the SSA can be seen at different time steps.

CLE representation of Michaelis-Menten system is as follows:

dZ1(t) =
1√
V

(
−
√
k1X1(t)X2(t)dW1(t) +

√
k2X3(t)dW2(t)

)
−
√
k1X1(t)X2(t)dt+

√
k2X3(t)dt

dZ2(t) =
1√
V

(
−
√
k1X1(t)X2(t)dW1(t) +

√
k2X3(t)dW2(t) +

√
k3X3(t)dW3(t)

)
+−

√
k1X1(t)X2(t)dt+

√
k2X3(t)dt+

√
k3X3(t)dt

dZ3(t) =
1√
V

(√
k1X1(t)X2(t)dW1(t)−

√
k2X3(t)dW2(t)−

√
k3X3(t)dW3(t)

)
+
√
k1X1(t)X2(t)dt−

√
k2X3(t)dt−

√
k3X3(t)dt

dZ4(t) =
1√
V

(√
k3X3(t)dW3(t)

)
+
√
k3X3(t)dt
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Figure 1.4: (a) Red curve indicates ODE solution of substrate (S). Black dots are
mean of state vectors for S after 1000 iterations of SSA (b) Blue curve indicates
ODE solution of enzyme (E). Black dots are mean of state vectors for E after 1000
iterations of SSA (c) Green curve indicates ODE solution of enzyme-substrate com-
plex (ES). Black dots are mean of state vectors for ES after 1000 iterations of SSA
(d) Pink curve indicates ODE solution of product (P ). Black dots are mean of state
vectors for P after 1000 iterations of SSA

On the other hand, FPE representation of Michaelis-Menten system becomes:
∂

∂t
p(x; t|x0; t0) =

∂

∂x1

[
(−c1x1x2 + c2x3)p(x; t|x0; t0)

]
+

∂

∂x2

[
(−c1x1x2 + c2x3 + c3x3)p(x; t|x0; t0)

]
+

∂

∂x3

[
(c1x1x2 − c2x3 − c3x3p(x; t|x0; t0)

]
+

∂

∂x4

[
(c3x3)P (x; t|x0; t0)

]
+

1

2

∂2

∂x21

[
(c1x1x2 + c2x3)p(x; t|x0; t0)

]
+

1

2

∂2

∂x22

[
(c1x1x2 + c2x3 + c3x3)p(x; t|x0; t0)

]
+

1

2

∂2

∂x23

[
(c1x1x2 + c2x3 + c3x3)p(x; t|x0; t0)

]
+

1

2

∂2

∂x24

[
(c3x3)p(x; t|x0; t0)

]
+

∂2

∂x1x2

[
(c1x1x2 + c2x3)p(x; t|x0; t0)

]
+

∂2

∂x1x3

[
(−c1x1x2 − c2x3 + c3x3)P (x; t|x0; t0)

]
+

∂

∂x3

[
(c1x1x2 − c2x3)p(x; t|x0; t0)

]
+

∂2

∂x2x3

[
(−c− 1x1x2 − c2x3 − c3x3)p(x; t|x0; t0)

]
+

∂2

∂x2x4

[
(c3x3)p(x; t|x0; t0)

]
+

∂2

∂x3x4

[
(−c3x3)p(x; t|x0; t0)

]
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Figure 1.5: Estimated probability mass functions of species S and for time steps t = 5,
t = 15, t = 30, t = 40, based on 10,000 runs

1.4.3 The Janus Kinase Signal Transducer and Activator of Transcription

(JAK-STAT) Pathway

In general, signaling pathways deal with transformation or processing of informa-

tion. JAK-STAT signaling pathway transforms information from outside of cell to

cell nucleus. The biological system consists of 41 reactions with 38 species. List of

reactions are given in Table A.2 and reaction constants are given in Table A.3. Also,

initial molecule numbers are chosen arbitrarily as 100 for each species of JAK-STAT

signaling pathway. Figure 1.6 depicts one realization of all species in JAK-STAT

signaling pathway obtained through Gillespie’s SSA.
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Figure 1.6: One iteration of SSA for JAK-STAT Pathway
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(a) 10 iterations with Gillespie’s SSA for the
species STAT-2C
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(b) 10 iterations with Gillespie’s SSA for the
species ISGF-3C
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(c) 10 iterations with Gillespie’s SSA for the
species CP
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(d) 10 iterations with Gillespie’s SSA for the
species STAT-1n

Figure 1.7: 10 realizations of Gillespie’s SSA for different species

In Figure 1.7, it can be seen that 10 realizations of the Gillespie’s SSA. If the number

of realizations is increased, it is possible to obtain more accurate estimate for the state

of species.
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CHAPTER 2

PROBABILISTIC INFERENCE FOR STATE-SPACE MODELS

Estimation theory is a branch of statistics and it is widely used in many scientific areas

such as target tracking, signal processing, econometric systems and so on. In a few

words, it is the study of inferring the value or the probability distribution of a quan-

tity based on indirect, uncertain measurements [4, 43]. Estimators can be classified

into two categories based on the quantity of the estimation: (i) Parameter estimators

(ii) State estimators. A parameter is a time-invariant quantity which characterizes a

population or a probability distribution. On the other hand, the state of a dynamic

system is usually a time-evolving vector which describes the system under study. The

state vector may contain dynamic variables such as velocity, position and orienta-

tion [43]. Traditionally, to define methods for estimating the state of a time-varying

system according to indirect measurements, the term filtering is used [43]. Smooth-

ing also defines estimation methods for the state of a time-varying system. Yet, there

is a single difference between filtering and smoothing. In filtering, current state is

estimated by using measurements up to that time. On the other hand, smoothing is

used to estimate former state of the system based on all measurements up to given

time [17].

This chapter begins with general description of the state-space model for represen-

tation of a dynamic system. Then, Bayesian framework for the state estimation is

explained. After that, some state estimation methods based on specific assumptions

are introduced.
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2.1 State Estimation

A dynamic system is usually represented in state-space form to develop estimation

algorithms. A state-space model represents probabilistic relationship between hidden

states and observed measurements as well as evolution of hidden states of the system

under consideration [3, 43].

Let xt and yt represent state of dynamic system at time t and measurement obtained

at time t, respectively. A general state-space model contains two equations for the

hidden state and the measurement at time t as follows [3, 11]:

Transition Model: xt = α(xt−1, ut), t ∈ N∗, xt ∈ Rnx , (2.1)

Measurement Model: yt = β(xt, wt), t ∈ N∗, yt ∈ Rny , (2.2)

where nx and ny are dimensions of state and measurement vectors, respectively. Here,

ut ∈ Rnu and wt ∈ Rnw represent process noise and measurement noise, respectively.

The former one is a way of modeling uncertainties in the system under consideration

while the latter one is due to the assumption that measurements are uncertain [43].

For (2.1) and (2.2), it is assumed that ut and wt are independent and identically dis-

tributed (i.i.d) random variables. Also, functional form of α : Rnx × Rnu → Rnx ,

β : Rnx × Rnw → Rny are known but not need to be linear. Further, probability

distribution function of the initial state vector x0 is given as p(x0) [3]. According to

given model, it can be understood that initial state x0 is used to generate the next state

x1 at the first place. Then, the first measurement y1 is generated by using this state.

Sequential form of hidden states and measurements generated according to (2.1) and

(2.2) from time 0 to the current time t will be shown through the chapter as follows:

Hidden states : x0:t = {x0, x1, . . . , xt}, (2.3)

Measurements : y1:t = {y1, y2, . . . , yt}. (2.4)

In general, state-space models are based on the following two assumptions [11]: (i)

Hidden states, x0:t, are Markovian. (ii) Measurements yt, t ∈ N∗, given states x0:t,

and previous measurements y1:t−1, depend only on the current hidden state xt. Indeed,

p(yt|x0:t, y1:t−1) = p(yt|xt). The first assumption assures that the current state xt,
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t ∈ N, only depends on the previous state xt−1, i.e p(xt|x0:t−1) = p(xt|xt−1). The

second assumption means that although measurements are independent from each

other, they are dependent on hidden states of the system under study.

In some cases, it is convenient to represent state-space model based on conditional

distributions [11, 43] as follows:

Initial Distribution: x0 ∼ p(x0) (2.5)

Transition Model: xt ∼ p(xt|xt−1) (2.6)

Measurement Model: yt ∼ p(yt|xt). (2.7)

Based on given definitions and assumptions, relationships between states and mea-

surements of a state space model can be seen in Figure 2.1.

xt−1 xt xt+1

yt−1 yt yt+1

Figure 2.1: Graphical representation of a state-space model [11]

As stated before, state vector of a dynamic system contains all information to describe

the system under consideration. In the following sections, main purpose will be ob-

taining an estimate for the state xt for given observations y1:t provided that transition

and measurement equations are known. The process can be considered as an inverse

problem [47]. The solution for the inverse problem can be obtained through Bayesian

methods which are based on Bayes’ rule defined on probabilities as follows [20]:

p(x0:t|y1:t) =
p(x0:t, y1:t)

p(y1:t)
=
p(y1:t|x0:t)p(x0:t)

p(y1:t)
, (2.8)

where

• p(x0:t) is the prior distribution. It gives marginal information about hidden

states before having any measurement.
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• p(y1:t|x0:t) is the likelihood distribution. It describes inaccurate relationship be-

tween hidden states and measurements. In other words, it describes the changes

in p(x0:t|y1:t) as a new observation is obtained.

• p(x0:t|y1:t) is the posterior distribution. It is conditional distribution of hidden

states for given measurements.

• p(y1:t) is normalizing constant, p(y1:t) =

∫
p(y1:t|x0:t)p(x0:t)dx0:t. p(y1:t) can

be considered as constant since it does not depend on x0:t with fixed y1:t. Equiv-

alent form of (2.8) omits the normalizing constant and yields unnormalized

posterior distribution as:

p(x0:t|y1:t) ∝ p(y1:t|x0:t)p(x0:t) (2.9)

Apart from posterior distribution, it is possible to obtain other statistical properties

of hidden states by means of Bayes’ rule. For instance, marginal distribution of a

state can be found as follows: for given joint posterior distribution of hidden states

p(x0:t|y1:t)
p(xt|y1:t) =

∫
p(x0:t|y1:t)dx0:t−1.

Also, expectation of a function of xt can be obtained as:

E[f(xt)] =

∫
f(xt)p(x0:t|y1:t)dx.

Based on Bayes’ rule it can be seen that existence of posterior distribution allows us

to reach quality of estimate, such as measure of uncertainty and expectation of a state.

Therefore, in state-space model all of uncertain quantities, states and measurements,

are treated as random variables and described by probability distribution functions.

Besides, to reduce computational complexity it is possible to derive recursive way

of obtaining probability distributions related to states through Bayes’ rule. Bayesian

way of formulating filtering is called Bayesian filtering [43].

2.1.1 Recursive Bayesian Estimation

If the state space model is considered as a Bayesian model, (2.5) and (2.6) define

prior distribution and (2.7) defines the likelihood function [17]. Based on Marko-

vian and independence assumptions explained in the previous section, the following
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factorizations are possible:

p(x0:t) = p(x0)
t∏

m=1

p(xm|xm−1) (2.10)

p(y1:t|x0:t) =
t∏

m=1

p(ym|xm). (2.11)

Proportionality for the posterior distribution of states can be written through Bayes’

theorem as follows:

p(x0:t|y1:t) ∝ p(x0)
t∏

m=1

p(xm|xm−1)
t∏

m=1

p(ym|xm) (2.12)

It is possible to derive recursive formula for the joint posterior distribution of states

p(x0:t|y1:t). By this way, we can reduce computational cost because we do not need to

recompute joint prior and likelihood functions at every time. Instead, transition and

measurement equations of the next time step are used. To obtain recursive formula,

assume that joint posterior distribution at time t−1 is obtained. Conditional indepen-

dence of measurements, p(yt|x1:t, y1:t−1) = p(yt|xt), and Markov property of states,

p(xt|x1:t−1, y1:t−1) = p(xt|xt−1) allow us to write the following factorizations for the

elements of (2.8):

p(x0:t, y1:t) = p(x0:t, y1:t−1, yt) = p(yt|x0:t, y1:t−1)p(x0:t, y1:t−1)

= p(yt|xt)p(xt, x0:t−1, y1:t−1)

= p(yt|xt)p(xt|x0:t−1, y1:t−1)p(x0:t−1, y1:t−1)

= p(yt|xt)p(xt|xt−1)p(x0:t−1, y1:t−1)

= p(yt|xt)p(xt|xt−1)p(x0:t−1|y1:t−1)p(y1:t−1)

(2.13)

p(y1:t) = p(yt, y1:t−1) = p(yt|y1:t−1)p(y1:t−1) (2.14)

If (2.13) and (2.14) are inserted into (2.8), the following recursive formula for the

joint probability function of states up to time t will be obtained as:

p(x0:t|y1:t) = p(x0:t−1|y1:t−1)
p(xt|xt−1)p(yt|xt)

p(yt|y1:t−1)
. (2.15)
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It seems simple to obtain joint posterior distribution recursively through Bayes’ rule.

However, dimensionality of the posterior distribution increases when a new measure-

ment is given. As a result, computational complexity of a single time step increases.

In this case, finding specific marginal distribution p(xt|y1:t) may be more reasonable

than finding joint posterior distribution of all states. There are three types of marginal

distributions which can be obtain by filtering or smoothing methods [43] (See Figure

2.2):

• Prediction Distribution, p(xt|y1:t−1), is marginal distribution of the current

state, xt, given all previous measurements, y1:t−1. It is computed at prediction

step of a Bayesian filter.

• Filtering Distribution, p(xt|y1:t), is marginal distribution of current state, xt,

all measurements up to current time, y1:t. It is obtained at update step of a

Bayesian filter.

• Smoothing Distribution, p(xt|y1:T ), is marginal distribution of former state, xt,

given all measurements, y1:T where T > t. It is computed through a Bayesian

smoother.

Figure 2.2: Marginal Distributions of States [43]

Theoretically, the simplest way of obtaining filtering distribution is marginalization of

(2.12) over x0:t−1. However, recursive way, which is algorithmically more convenient

than marginalizing, can be derived. Let us assume that estimation for the probability
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distribution p(xt−1|y1:t−1) of the state at time step t − 1 is known. Then, the joint

distribution p(xt, xt−1|y1:t−1) is obtained as follows:

p(xt, xt−1|y1:t−1) =
p(xt, xt−1, y1:t−1)

p(y1:t−1)
=
p(xt|xt−1, y1:t−1)p(xt−1, y1:t−1)

p(y1:t−1)

= p(xt|xt−1, y1:t−1)p(xt−1|y1:t−1)

= p(xt|xt−1)p(xt−1|y1:t−1).

The last equality is written by Markovian assumption on states. Prediction equation

is simply marginalization of the above equality

p(xt|y1:t−1) =

∫
p(xt|xt−1)p(xt−1|y1:t−1)dxt−1. (2.16)

Then, filtering equation can be obtained according to Bayes’ rule:

p(xt|y1:t) = p(xt|y1:t−1, yt) =
p(xt, y1:t−1, yt)

p(y1:t)
=
p(yt|y1:t−1, xt)p(y1:t−1, xt)

p(y1:t−1, yt)

=
p(yt|y1:t−1, xt)p(xt|y1:t−1)p(y1:t−1)

p(yt|y1:t−1)p(y1:t−1)

=
p(yt|xt)p(xt|y1:t−1)

p(yt|y1:t−1)
. (2.17)

Here, the last equality holds by conditional independence of the measurements.

The process of obtaining (2.16) and (2.17) are called prediction step and update step

of filtering, respectively [16, 17]. In prediction step, system model is used to predict

probability distribution function of the state at the next measurement time step, t, for

given measurements up to current time step t−1, y1:t−1. Then, updating step modifies

the prediction based on the new observation, yt. To sum up, filtering starts from prior

distribution given in (2.5). Then, turn into a cycle as shown in Figure 2.3 in which a

prediction step is followed by an update step.

As it is explained above, Bayesian inference provides recursive model for the state

estimation problem. However, this recursive estimation of posterior density provides

theoretical solution in general. The reason for this is that given equations have closed

form analytical solutions only for a few cases. If state and measurement equations

are linear and noises are Gaussian, Kalman filter (KF) gives analytical solution. Also,

if there are finite numbers of hidden sates and measurements, grid based methods
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Updating Step
p(xt|y1:t)

Prediction Step
p(xt|y1:t−1)

Initialization
p(x0)

New Measurement
yt

Figure 2.3: Filtering Cycle

provides analytical solution. However, for non-linear and non-Gaussian state space

models, analytical expression for the state cannot be obtained because of the dimen-

sion of integrals. Hence, extended Kalman filter (EKF) and approximate grid based

methods are proposed. These methods are approximations to the KF and grid-based

filter. Another idea is that using statistical sampling techniques to represent proba-

bility distributions. Sequential Monte Carlo (SMC) methods or particle filters (PF),

which combine Monte Carlo techniques and Bayesian inference, are used to achieve

this.

2.1.2 Accurate State Estimation Methods

Under specific assumptions of KF and grid-based methods provides accurate filtering

distributions. Below we investigate these methods.

2.1.2.1 Kalman Filter

KF provides filtering distribution parameterized by mean and covariance. It is based

on the fact that if filtering distribution at time t− 1, p(xt−1|y1:t−1), is Gaussian, then

p(xt|y1:t) is also Gaussian with the following assumptions [3]:

• Process noise ut, measurement noisewt in (2.1) and (2.2) are drawn from Gaus-
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sian distribution with zero mean and covariance matrices Qt and Rt, respec-

tively, i.e, ut ∼ N (0, Qt) and wt ∼ N (0, Rk).

• α(xt−1, ut), defined in (2.1) and β(xt, wt), defined in (2.2) are linear functions.

• Initial state x0 has a Gaussian distribution.

Then, transition model and measurement model can be rewritten as follows:

State Model: xt = Atxt−1 + ut,

Measurement Model: yt = Btxt + wt,

where At and Bt are transition matrix of the dynamic system under study and mea-

surement model matrix, respectively [3, 43].

Recursive formulations given in (2.16) and (2.17) form foundation of KF, derived in

the original paper through mean square estimator [19, 43, 45]. It is called optimal

algorithm for linear state space models since it minimizes the mean square error. Yet,

it is possible to derive based on the fact that product of two Gaussian distribution is

again a Gaussian distribution [19, 43]. As a result, KF has the following recursive

relations:

Current Filtering Distribution: p(xt−1|y1:t−1) = N (xt−1;mt−1|t−1, Pt−1|t−1),

Prediction Step: p(xt|y1:t−1) = N (xt;mt|t−1, Pt|t−1),

Updating Step: p(xt|y1:t) = N (xt;mt|t, Pt|t),

where N (x;m, c) is the normal distribution with mean m and covariance c. Also,

mt|t−1 = Atmt−1|t−1,

Pt|t−1 = Qt−1 + AtPt−1|t−1A
T
t

mt|t = mt|t−1 +Kt(yt −Btmt|t−1)

Pt|t = Pt|t−1KtBtPt|t−1,

where

Kt =
Pt|t−1B

T
t

BtPt|t−1B
T
t +Rt

. (2.18)

Here, Kt in (2.18) is known as the Kalman gain. It measures the correction of esti-

mation of the state according to the given measurement.
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2.1.2.2 Grid Based Filter

If the state space consists of finite number of discrete spaces, then grid-based fil-

ter, which is also known as point-mass filter, provides an optimal solution for fil-

tering distribution p(xt|y1:t) [3, 31]. In KF, state space was described by a linear

equation. Here, assume that state space at time t − 1 consists of discrete states

xit−1, i = 1, 2, . . . , N . Then, conditional distribution of each state xit−1 for given

measurements turns to be [3]:

p(xt−1|y1:t−1) =
N∑
i=1

p(xt−1 = x
(i)
t−1|y1:t−1)δ(xt−1 − x

(i)
t−1)

where δ(·) is the Dirac-delta function.

Based on this fact, prediction and update states can be rewritten as follows:

Prediction Step : p(xt|y1:t−1) =
N∑
i=1

( N∑
j=1

p(xt−1 = x
(i)
t−1|y1:t−1)p(x

(i)
t |x

(j)
t−1)

)
δ(xt − x(i)t )

Updating Step : p(xt|y1:t) =
N∑
i=1

N∑
j=1

p(xt−1 = x
(i)
t−1|y1:t−1)p(x

(i)
t |x

(i)
t−1)p(yt|x

(i)
t )

N∑
i=1

N∑
j=1

p(xt−1 = x
(i)
t−1|y1:t−1)p(x

(i)
t |x

(i)
t−1)p(yt|x

(i)
t )

.

Grid based method provides optimal solution in case p(x(i)t+1|x
(j)
t ) and p(yt+1|x(i)t+1)

are known [3].

2.1.3 Approximation Methods

In most of the state estimation problems, assumptions on the linearity of state space

model or having finite number of discrete states in state space do not hold. Hence,

approximate methods are proposed to extend application areas of optimal algorithms.

2.1.3.1 Extended Kalman Filter

EKF is applicable to non-linear filtering problems. It begins with linearization of the

non-linear state-space model. Then, KF is applied to system for which assumptions

42



are satisfied.

Assume that state and measurement equations defined in (2.1) and (2.2) has the fol-

lowing forms:

State Model: xt = α(xt−1) + ut, (2.19)

Measurement model: yt = β(xt) + wt, (2.20)

where α(xt) and β(xt) are nonlinear functions of xt. The EKF is based on the idea

that filtering distribution p(xt|y1:t) is approximated by Gaussian distribution. Lin-

earizations of functions α(xt) and β(xt) are obtained through their Taylor series ex-

pansions. For details of derivation we refer to [43]. Prediction and update steps of

EKF are as follows:

Current Estimate: p(xt−1|y1:t−1) ≈ N (xt−1;mt−1|t−1, Pt−1|t−1), (2.21)

Prediction Step: p(xt|y1:t−1) ≈ N (xt;mt|t−1, Pt|t−1), (2.22)

Updating Step: p(xt|y1:t) ≈ N (xt;mt|t, Pt|t). (2.23)

Also,

mt|t−1 = α(mt−1|t−1),

Pt|t−1 = Qt−1 + F̂tPt−1|t−1F̂
T
t

mt|t = mt|t−1 +Kt(yt − β(mt|t−1))

Pt|t = Pt|t−1 −KtĤtPt|t−1,

(2.24)

where F̂t and Ĥt are linearization of functions α(xt) and β(xnt), respectively. In

other words, F̂ and Ĥ are the first terms of Taylor expansion of α(xt) and β(xt),

respectively. Also, Kt in (2.24)

Kt =
Pt|t−1Ĥ

T

ĤPt|t−1ĤT +Rt

represents Kalman gain as standard KF.

The EKF described above is called first order EKF with additive noise since noises are

added to nonlinear functions in the state and the measurements models and first order

Taylor series expansion is used. In the case of second order Taylor series expansion,

the filter is called second order EKF with additive noise. Besides, the filter is named
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EKF with non-additive noise if the state and the measurement models are given as

follows [43]:

State Model: xt = α(xt−1, ut), (2.25)

Measurement Model: yt = β(xt, wt). (2.26)

Although higher order Taylor series expansions might be used to increase accuracy,

these methods are not practical due to dimensional complexity.

An advantage of EKF is its simplicity by linearization. Linearization is a widely used

approximation technique to non-linear systems. However, disadvantage of it is that

filtering distribution is always approximated by a Gaussian distribution. Hence, EKF

usually gives better approximations if the true posterior distribution is symmetric and

unimodal [31].

2.1.3.2 Approximate Grid-Based Filter

In Section 2.1.2.2, it is stated that grid based filter gives optimal filtering distribution

for finite and discrete state space models. The same idea can be used for nonlinear

and non-Gaussian state space models which can also be decomposed as follows:

p(xt|y1:t) ≈
N∑
i=1

w
(i)
t|t δ(xk−1|x

(i)
k−1), (2.27)

where δ(·) is again the Dirac-delta function.

Consequently, the prediction and the update steps take the form [3]:

Prediction Step: p(xt+1|y1:t) ≈
N∑
i=1

w
(i)
t+1|tδ(xt+1 − x(i)t+1),

Updating Step: p(xt+1|y1:t+1) ≈
N∑
i=1

w
(i)
t+1|t+1δ(xt+1 − x(i)t+1),
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where

w
(i)
t+1|t =

N∑
j=1

w
(j)
t|t

∫
x∈x(i)

t+1

p(x
(i)
t+1|x̄

(j)
t )dx

w
(i)
t+1|t+1 =

w
(i)
t+1|t

∫
x∈x(i)

t+1

p(yt+1|x)dx

N∑
j=1

wj
t+1|t

∫
x∈x(i)

t+1

p(yt+1|x)dx

.

Here, x̄(j)t denotes the center of cell at time t.

Apart from EKF and approximate grid based filter, MC techniques can be consid-

ered to obtain numerical approximation to the posterior distribution and the filtering

distributions.

2.2 Filtering for Non-linear State-Space Models: Sequential Monte Carlo Meth-

ods

Direct application of Bayes’ rule provides an exact solution for the posterior distri-

bution of the state of process of interest. However, it is not appropriate for most of

the cases because of existence of high dimensional integrals in normalizing constant

and marginalization of the posterior distribution. Hence, methods based on several

assumptions are proposed. As mentioned in previous section, if dynamical system

is modeled by linear-Gaussian state space model, then the Kalman filter is an opti-

mal estimation method. It solves these integrals analytically and solutions are based

on parameters mean and variance of process and measurement noises. Moreover, if

the state space model consists of finite number of states, then grid based filter is the

optimal method. However, in real life underlying assumptions usually do not hold.

Therefore, some approximate methods such as extended Kalman filter and approxi-

mate grid based filter are proposed. These methods are still inefficient because they

are not easy to implement. Also, these methods require strict assumptions too.

Monte Carlo integration is a statistical technique for numerical integration using ran-

dom samples from a probability distribution [13]. It is an alternative approach to

handle high dimensional integrals appearing in (2.16) and (2.17). There are different
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ways to apply Monte Carlo integration such as importance sampling, sequential im-

portance sampling and sequential Monte Carlo which is also sometimes referred to as

particle filtering.

SMC method is a combination of Monte Carlo sampling methods with Bayesian in-

ference [13]. The derivation of particle filter (PF) is done in the following sections.

First, Monte Carlo sampling methods are described. Then, the idea is applied to

recursive Bayesian estimation to obtain the particle filter algorithm.

2.2.1 Monte Carlo Sampling

The reason for using Monte Carlo method in state estimation is to approximate poste-

rior distribution p(x0:t|y1:t). Let us assume that there areN random samples {x(i)0:t, i =

1, 2, . . . , N} from this posterior distribution. These random samples are also known

as particles. Then, approximate probability density function, p̂(x0:t|y1:t), can be ob-

tained through Monte Carlo method as follows [16, 17]:

p̂(x0:t|y1:t) =
1

N

N∑
i=1

δ(x0:t − x(i)0:t). (2.28)

Based on this fact, marginal of the posterior distribution can be written as:

p̂(xt|y1:t) =
1

N

N∑
i=1

δ(xt − x(i)t ). (2.29)

In some cases, estimation problem requires the expectation of an arbitrary function

h(x0:t) over the posterior distribution instead of probability value for marginal of the

posterior distribution:

I(h(x0:t)) =

∫
h(x0:t)p(x0:t|y1:t)dx0:t. (2.30)

Based on (2.28) and (2.30), the following estimation for the expectation of the func-

tion h(x0:t) can be obtained:

Î(h(x0:t)) =

∫
h(x0:t)p̂(x0:t|y1:t)dx0:t =

1

N

N∑
i=1

h(x
(i)
0:t). (2.31)
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As stated above, in Monte Carlo sampling, random samples are drawn directly from

the posterior distribution. Therefore, estimation given in (2.31) is an unbiased estima-

tion [16, 17]. Also, variance of the estimation decreases when the number of random

samples N increases. However, these advantages yields the following two disadvan-

tages: (i) direct samples from a probability distribution function is possible for a few

cases, i.e. standard probability density functions, such as normal or uniform distribu-

tions; (ii) computational complexity increases as t increases since sampling directly

from probability density p(x0:t|y1:t) requires a longer time period. To overcome the

first disadvantage, importance sampling (IS) method is proposed.

2.2.2 Importance Sampling

In this method, importance density or proposal density q(x0:t|y1:t) is introduced [17].

It has similar features with the posterior distribution and easy to sample from. In case

direct sampling from the posterior distribution p(x0:t|y1:t) is not possible, indirect

samples through importance density q(x0:t|y1:t) can be used as an alternative [3, 17].

Expectation of function h(x0:t) over the posterior distribution given in (2.31) can also

be rewritten as:

I(h(x0:t)) =

∫
h(x0:t)

p(x0:t|y1:t)
q(x0:t|y1:t)

q(x0:t|y1:t)dx0:t.

As a result, we consider the expectation of h(x0:t)
p(x0:t|y1:t)
q(x0:t|y1:t)

over importance den-

sity. Therefore, if N particles {x(i)0:t, i = 1, 2, . . . , N} are available from importance

density, Monte Carlo approximation allows us to write:

Î(h(x0:t)) =
1

N

N∑
i=1

p(x
(i)
0:t|y1:t)

q(x
(i)
0:t|y1:t)

h(x
(i)
0:t) =

1

N

N∑
i=1

w(x
(i)
0:t)h(x

(i)
0:t),

where

w(x
(i)
0:t) =

p(x
(i)
0:t|y1:t)

q(x
(i)
0:t|y1:t)

(2.32)

is called importance weight. However, it can be seen that values of p(x(i)0:t|y1:t) for

i = 1, 2, . . . , N need to be known to apply IS. Therefore, the posterior distribution
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can be written by means of Bayes’ theorem as:

p(x
(i)
0:t|y1:t) =

p(y1:t|x(i)0:t)p(x
(i)
0:t)∫

p(y1:t|x0:t)p(x0:t)dx
,

where the prior p(x(i)0:t) and the likelihood p(y1:t|x(i)0:t) functions can be obtained (2.10)

and (2.11), respectively. Yet, integral in denominator usually cannot be computed

easily because of high dimensionality. To handle this problem, IS can be applied to

the normalizing constant to get an approximation for it. So, (2.31) can be rewritten

as [17]:

I(h(x0:t)) =

∫
h(x0:t)p(y1:t|x0:t)p(x0:t)dx0:t∫

p(y1:t|x0:t)p(x0:t)dx0:t

=

∫
h(x0:t)p(y1:t|x0:t)p(x0:t)

q(x0:t|y1:t)
q(x0:t|y1:t)dx0:t∫

p(y1:t|x0:t)p(x0:t)
q(x0:t|y1:t)

q(x0:t|y1:t)dx0:t
.

Hence,

Î(h(x0:t)) =

1

N

N∑
i=1

h(x0:t)w(x
(i)
0:t)

1

N

N∑
j=1

w(x
(j)
0:t)

=
N∑
i=1

w(x
(i)
0:t)

N∑
j=1

w(x
(j)
0:t)

h(x
(i)
0:t) =

N∑
i=1

w̃(x
(i)
0:t)h(x

(i)
0:t),

where

w̃(x
(i)
0:t) =

w(x
(i)
0:t)

N∑
j=1

w(x
(j)
0:t)

, (2.33)

is called normalized importance weight. Also, Monte Carlo approximation for the

posterior distribution can be written as

p̂(x0:t|y1:t) =
N∑
i=1

w̃(x
(i)
0:t)δ(x0:t − x

(i)
0:t). (2.34)

A pseudo-algorithm for IS may be as follows [43]:

0. Prior distribution p(x0:t) defined in (2.10), likelihood distribution p(y1:t|x0:t)
defined in (2.11) and importance density q(x0:t|y1:t) are given.
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1. Sample N particles x(i)0:t, i = 1, 2, . . . , N from importance density q(x0:t|y1:t).

2. Compute importance weights of each particles: w(x
(i)
0:t) =

p(y1:t|x(i)0:t)p(x
(i)
0:t)

q(x
(i)
0:t|y1:t)

.

3. Normalize the importance weights and assign to w̃(x
(i)
0:t).

4. Find approximation for the expectation of function h(x0:t) as

I(h(x0:t)) ≈
N∑
i=1

w̃(x
(i)
0:t)h(x

(i)
0:t)

Having efficient estimate by IS depends on the choice of importance density and the

number of random samples [17]. Despite this, calculating importance weight at every

time step becomes time consuming when the number of time steps increases. Hence,

a recursive method Sequential importance sampling (SIS) is also proposed.

2.2.3 Sequential Importance Sampling

This method is proposed to overcome second disadvantage of the general Monte Carlo

sampling. Basically, SIS fixes computational cost at every time step to approximate

posterior distribution. If the general state space model is given by (2.5) - (2.7), then

SIS can be used. In SIS, importance density is chosen as [17]

q(x0:t|y1:t) = q(x0:t−1|y1:t−1)q(xt|x0:t−1, yt). (2.35)

Also, the posterior distribution will have the following recursion through Markov

properties of the state space model:

p(x0:t|y1:t) = p(x0:t−1|y1:t−1)p(xt|xt−1)p(yt|xt).

As a result, importance weight becomes

w(x
(i)
0:t) =

p(x
(i)
0:t|y1:t)

q(x
(i)
0:t|y1:t)

=
p(x

(i)
0:t−1|y1:t−1)p(x

(i)
t |x

(i)
t−1)p(yt|x

(i)
t )

q(x
(i)
0:t−1|y1:t−1)q(x

(i)
t |x

(i)
t−1, yt)

(2.36)

∝ w(x
(i)
0:t−1)γ(x

(i)
t ), (2.37)
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where

γ(x
(i)
t ) =

p(x
(i)
t |x

(i)
t−1)p(yt|x

(i)
t )

q(x
(i)
t |x

(i)
t−1, yt)

(2.38)

called as incremental importance weight [17].

It can be inferred that to obtain random sample x(i)0:t ∼ q(x0:t|y1:t), the particle x(i)k ∼
q(xt|x(i)0:t−1, yt) can be added to set x(i)0:t−1. This is the reason for the following algo-

rithm is called sequential. A pseudo-algorithm for SIS may be given as follows [43]:

0. Initial distribution, transition and measurement equations as in (2.5) - (2.7) and

importance density are given.

1. Sample N particles x(i)0 , i = 1, 2, . . . , N from prior distribution p(x0). Also,

set initial importance weights w(x
(i)
0 ) to

1

N
.

2. For each time step k = 1, 2, . . . , t:

• Draw samples x(i)k ∼ q(xt|x0:t−1, yt).

• Calculate weights w(x
(i)
0:t) according to (2.36).

• Normalize the importance weights and assign to w̃(x
(i)
0:t).

• Find approximation for the expectation of function h(x0:t) as

I(h(x0:t)) ≈
N∑
i=1

w̃(x
(i)
0:t)h(x

(i)
0:t)

We realize that, if importance distribution is chosen Markovian, namely, q(xt|x0:t−1, yt) =

q(xt|xt−1, yt), then storage cost will be reduced [43]. Storing the current state x(i)k is

sufficient instead of keeping the whole history of the state x(i)0:t.

SIS is efficient in terms of computational cost. However, if the number of time steps

increases, the method experiences the of dimensionality.

2.2.4 Sequential Importance Resampling: Particle Filtering

In SIS, importance weights can be updated when a new measurement is available.

However, importance weights become zero or nearly zero after a few time steps. The
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reason for this is that sample size N is kept constant while dimensionality of the

state space is increasing at each additional time step. So, variance of importance

weights increases over time. The defined problem is called degeneracy phenomenon.

Disadvantage of degeneracy is that computational power is used to update particles

which has almost zero contribution for estimation of the posterior distribution. A

measure for degeneracy of an algorithm is effective sample size which is defined as [3]

Neff =
N

1 + V [ŵ(x
(i)
0:t)]

, (2.39)

whereN is number of random sample drawn from importance density, V [·] represents

the variance and ŵ(x
(i)
0:t) =

p(x
(i)
t |y1:t)

q(xt|xt−1, y1:t)
is called the true weight. Although the

exact value of effective sample size cannot be evaluated, an approximation can be

obtained via [3]

N̂eff =
1

N∑
i=1

w̃(x
(i)
0:t)

. (2.40)

To avoid the degeneracy, N should be chosen so that N > Neff. Obviously, N can

be chosen very large but in general this is not easy. Instead, variance of the true

weight ŵ(x
(i)
0:t) is reduced by following two ways: (i) good choice of importance den-

sity, (ii) using resampling in sequential importance sampling (sequential importance

resampling).

Good Choice Importance Density

“Good choice” means that importance density is chosen as close as possible to the

posterior distribution. By this way, random samples describing importance density

will be close to the posterior distribution. So, the possibility of having samples with

small weights will be reduced [3].

A possible choice for the importance density is the prior distribution of state, which

leads to [43]

w(x
(i)
0:t) =

p(x
(i)
0:t|y1:t)
p(x

(i)
0:t)

=
p(x

(i)
0:t−1|y1:t−1)p(xt|x

(i)
t−1)p(yt|x

(i)
t )

p(x
(i)
0:t−1)p(xt|x

(i)
t−1)
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so that

q(xt|x(i)0:t−1, yt) = p(xt|x(i)t−1).

Hence, we have

w(x
(i)
0:t) ∝ w(x

(i)
0:t−1)p(yt|x

(i)
t ).

The prior distribution is the most popular choice on importance density. The reason

for this is that the prior distribution is easy to sample and incremental weight depends

only on the likelihood of the observations. However, it provides a poor estimation

especially in case that prior is non-informative or very informative.

If the likelihood distribution is more informative than the prior distribution and it is

integrable over xt, then likelihood distribution can be chosen as importance density

as follows [31]:

q(xt|x(i)t−1, yt) ∝ p(yt|xt),

which yields

w(x
(i)
0:t) ∝ w(x

(i)
0:t−1)p(xt|x

(i)
t−1).

Another choice for the importance density is the posterior distribution itself which

is called optimal importance density [17]. Optimal importance density leads second

term of the right hand side of (2.35) to be written as:

qoptimal(xt|x(i)t−1, yt) = p(xt|x(i)t−1, yt) =
p(yt|xt)p(xt|x(i)t−1)

p(yt|x(i)t−1)
. (2.41)

Therefore, the recursive importance weight becomes

w(x
(i)
0:t) ∝ w(x

(i)
0:t−1)p(yt|x

(i)
t−1) = w(x

(i)
0:t−1)

∫
p(yt|xt)p(xt|x(i)t−1)dxt. (2.42)

The equality holds due to the Chapman-Kolmogorov equation. Despite optimal im-

portance density minimizes V [ŵ(x
(i)
0:nt

)] and maximizes Neff given in (2.39), it has

two major drawbacks. First, direct samples from posterior distribution is usually not

possible and second, the integral in (2.42) cannot be evaluated easily.
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Resampling

As a second method, resampling can be used to reduce degeneracy of the particles.

The idea of resampling is eliminating particles with low weight while duplicating

particles with high weights [17]. Recall that in IS, approximate posterior distribution

p̂(x0:t|y1:t) defined in (2.34) is based on random samples from importance density

and can be considered as a discrete distribution. If we are interested in approxi-

mate random samples from the posterior distribution, we can basically sample from

p̂(x0:t|y1:t) according to the weights of particles. This process is called resampling. In

short, resampling is sampling from an approximation which consists of samples. At

the end, number of offspring {N (i) : i = 1, 2, . . . , N} are associated to each particle

{x(i)0:t : i = 1, 2, . . . , N}. Then, particles with N (i) = 0 are eliminated and remaining

particles are approximately distributed according to p(x0:t|y1:t). Resampling proce-

dure can be summarized in the following algorithm:

1. Consider weights w(i)
k as the probability of obtaining ith particle from the set

{x(i)k : i = 1, 2, . . . , N}.

2. Draw N samples from Multinomial distribution with parameters (N,w
(i)
k ) and

set as new sample set.

3. Assign
1

N
to all weights.

The described algorithm is the simplest, unbiased resampling method and it is called

Multinomial resampling. Other improved unbiased resampling methods with smaller

variance and their comparisons can be found in [15].

Resampling need not be performed at every time step. If k is a predefined constant,

resampling can be performed at every kth step. The advantage of this method is

that it is unbiased. Moreover, resampling can be performed only when it is needed.

Necessity of resampling can be measured by approximate effective sample size given

by (2.40). If N̂eff << N , then resampling is performed. The method is called adaptive

resampling.

Sequential importance resampling or particle filter is a combination of sequential
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importance sampling and resampling. The general algorithm can be stated as fol-

lows [16, 43]:

0. Initial distribution, transition and measurement equations as in (2.5) - (2.7) and

importance density are given.

1. Sample N particles x(i)0 , i = 1, 2, . . . , N from prior distribution p(x0). Also,

set initial importance weights w(x
(i)
0 ) to

1

N
.

2. Draw N random samples from importance distribution q(x0:t|y1:t).

3. Calculate importance weights by (2.32) and normalized importance weights by

(2.33).

4. Generate a new random sample set by using one of the resampling methods

explained above, for instance, adaptive resampling.

5. Approximate filtering distribution:

p(xt|y1:t) ≈
N∑
i=1

w
(i)
t δ(xt − x

(i)
t ) (2.43)

If importance density is chosen as p(xt|xt−1), then particle filter is called bootstrap

particle filter.

Up to now, filtering algorithms are considered. These algorithms provide filtering

distribution, approximate posterior distribution for the state of a dynamic system and

estimate for state itself according to measurements given before and current time step.

Another approach for the state estimation is based on smoothing algorithms. These

algorithms provide smoothing distribution based on measurements observed for some

later time. Indeed, p(xt|y1:T ) should be obtained when T > t [43].

2.3 Smoothing for Non-linear State-Space Models

Historically, smoothing algorithms have not get enough attention because of the fol-

lowing two reasons [35]: (i) Computational cost is high when it is compared to par-

ticle filters, (ii) They require strong assumptions that are not usually satisfied in real
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systems. However, smoothing algorithms provide more accurate estimations because

of the usage of future measurements to estimate the current state [11].

The simplest way of calculating the smoothing distribution p(xt|y1:T ) is very similar

to the case in the filtering distribution. First, calculate the joint posterior distribu-

tion p(x0:T |y1:T ) according to (2.12). Then, marginalize over x1:t−1 and xt+1:T . Be-

sides, recursive formulation which is called "forward filtering - backward smoothing

(FFBS)" also exists [43].

2.3.1 Forward Filtering - Backward Smoothing

The method is given that name since firstly all the prediction p(xt|y1:t−1) and the

filtering distributions p(xt|y1:t) over the time steps t = 1, 2, . . . , T are computed.

Then, smoothing distributions are obtained recursively backward in time starting from

time step T [6, 17, 35]. To derive this, the smoothing distribution can be factorized

as follows:

p(xt|y1:T ) =

∫
p(xt, xt+1|y1:T )dxt+1 (2.44)

=

∫
p(xt|xt+1, y1:T )p(xt+1|y1:T )dxt+1, (2.45)

where

p(xt|xt+1, y1:T ) = p(xt|xt+1, y1:t)

=
p(xt, xt+1, y1:t)

p(xt+1, y1:t)
=
p(xt, y1:t)p(xt+1|xt, y1:t)

p(xt+1|y1:t)p(y1:t)

=
p(xt|y1:t)p(xt+1|xt, y1:t)

p(xt+1|y1:t)

=
p(xt|y1:t)p(xt+1|xt)

p(xt+1|y1:t)
. (2.46)

The first and the line of equations are the result of Markov property of measurements

and states. When (2.46) is inserted into (2.44), then the following FFBS recursion

will be obtained:

p(xt|y1:T ) = p(xt|y1:t)
∫
p(xt+1|xt)p(xt+1|y1:T )

p(xt+1|y1:T )
dxt+1, (2.47)
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where p(xt+1|y1:T ) =

∫
p(xt+1|xt)p(xt+1|y1:T )dxt by Chapman-Kolmogorov equa-

tion.

Note that in (2.47) the term p(xt+1|y1:T ) in the numerator is the smoothing distribution

obtained just in the previous time step. Another method to obtain the smoothing

distribution is based on two filtering distributions. The method is called Two-Filter

Smoothing (TFS), which we describe next.

2.3.2 Two-Filter Smoothing

In this approach, smoothing distribution is obtained by combination of two filters [6,

35, 43]. The first one is the standard Bayesian filter. The second one is the backward

information filter which will be defined below.

To derive TFS, the following factorization of smoothing distribution is used:

p(xt|y1:T ) = p(xt|y1:t−1, yt:T ) =
p(xt, y1:t−1, yt:T )

p(y1:t−1, yt:T )

=
p(yt:T |xt, y1:t−1)p(xt|y1:t−1)

p(yt:T |y1:t−1)

=
p(yt:T |xt)p(xt|y1:t−1)

p(yt:T |y1:t−1)
.

(2.48)

The last line of (2.48) is due to conditional independence of measurements. As a

result (2.48) implies that,

p(xt|y1:T ) ∝ p(yt:T |xt)p(xt|y1:t−1). (2.49)

It can be seen that the second term of proportionality is the prediction step of Bayesian

filter. The first term is the backward information filter and it is computed as:

p(yt:T |xt) = p(yt, yt+1:T |xt) = p(yt|xt)p(yt+1:T |xt)

= p(yt|xt)
∫
p(yt+1:T , xt+1|xt)dxt+1

= p(yt|xt)
∫
p(yt+1:T , xt+1, xt)

p(xt)
dxt+1

= p(yt|xt)
∫
p(yt+1:T |xt+1, xt)p(xt+1|xt)dxt+1.
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Hence,

p(yt:T |xt) =

∫
p(yt+1:T |xt+1, xt)p(xt+1|xt)p(yt|xt)dxt+1.

Closed form solution for the integral defined above is not possible except for linear

cases. Another drawback of the two filter smoothing formula is that SMC methods

are not applicable to approximate the information filter. The reason is that p(yt:T |xt)
is not probability distribution of xt. Therefore, it cannot be normalized with respect

to xt. Indeed, there is a possibility of having
∫
p(yt:T |xt)dxt = ∞. To overcome

this problem, artificial probability distribution, denoted by γ(xt), with the following

properties is proposed in the following [6, 35, 43].

1. γt(xt) > 0 whenever p(yt:T |xt) > 0.

2. Define p̃(xT |yT ) =
γt(xt)p(yT |xT )

p(yT )
where p(yT ) =

∫
γt(xt)p(yT |xT )dxT

3. Based on the previous property and property of joint distributions define also

p̃(xt:T |yt:T ) =

γt(xt)
T∏

n=t+1

p(xn+1|xn)
T∏

n=t

p(yn|xn)

p̃(yt:T )
,

where

p̃(yt:T ) =

∫
. . .

∫
γt(xt)

T∏
n=t+1

p(xn+1|xn)
T∏

n=t

p(yn|xn)dxt:T+1.

Then, backward information filter can be rewritten as follows:

p(yt:T |xt) =

∫
. . .

∫
p(yt:T , xt+1:T |xt)dxt+1:T =

∫
. . .

∫
p(yt:T , xt:T )

p(xt)
dxt+1:T

=

∫
. . .

∫
p(yt:T |xt:T )p(xt+1:T |xt)dxt+1:T

Joint probability distribution can be written as the product of the marginal distribu-

tions:

p(yt:T |xt) =

∫
. . .

∫ T∏
n=t

p(yn|xn)
T∏

n=t+1

p(xn|xn−1)dxt+1:T

Multiplying and dividing by artificial distribution γt(xt)
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p(yt:T |xt) =

∫
. . .

∫
γt(xt)

γt(xt)

T∏
n=t

p(yn|xn)
T∏

n=t+1

p(xn|xn−1)dxt+1:T

According to property 3 above, we have

p(yt:T |xt) =

∫
. . .

∫
p̃(xt:T |yt:T )p̃(yt:T )

γt(xt)
dxt+1:T =

p̃(xt|yt:T )p̃(yt:T )

γt(xt)
.

or equivalently,

p(yt:T |xt) ∝
p̃(xt|yt:T )

γt(xt)
.

Two-step recursive formula for p̃(xt|yt:T ) can be obtained. Detail of the derivation is

found in [6]. The recursion begins with probability density which is defined in the

second property of artificial distribution.Below is the two step recursive formula for

p̃(xt|yt:T )

Prediction step: p̃(xt|yt+1:T ) =

∫
p̃(xt+1|yt+1:T )

p(xt+1|xt)γt(xt)
γt+1(xt+1)

dxt+1

Update step :p̃(xt|yt:T ) =
p(yt|xt)p̃(xt|yt+1:T )∫
p(yt|xt)p̃(xt|yt+1:T )dxt

7

This form of information filter enables us to derive two-filter smoothing algorithms

for non-linear state space models as well as particle smoothing algorithms.

In Section 2.2, it is stated that SMC methods provide approximation to the filtering

distribution. The same idea can be applied to the smoothing distribution as well.

2.3.3 Particle Smoothing

If Monte Carlo methods are used to approximate smoothing methods, then such a

smoothing algorithm is called particle smoother [43].

2.3.3.1 Sequential Importance Resampling Smoother

SIR can also be considered to approximate smoothing distribution p(xt|y1:T ) for

t = 1, 2, . . . , T . The solution is obtained by keeping whole state history x0:T . The

58



algorithm below will be similar to the SIR except for the approximation by Monte

Carlo method [17].

0. Initial distribution, transition and measurement equations as in (2.5) - (2.7) and

importance density are given.

1. Sample N particles x(i)0 , i = 1, 2, . . . , N from prior distribution p(x0). Also,

set initial importance weights w(x
(i)
0 ) to

1

N
.

2. For each time step k = 1, 2, . . . , t:

• Draw samples x(i)k ∼ q(xt|x0:t−1, yt).

• Calculate weights w(x
(i)
0:t) according to (2.36).

• Normalize the importance weights and assign them to w̃(x
(i)
0:t).

• Set x(i)0:t = {x0:t−1, xt}.

• Resample particles if it is necessary

3. Find approximation for the smoothing distribution as:

p(xt|y1:T ) ≈
N∑
i=1

w
(i)
T δ(xt − x

(i)
t )

The disadvantage of SIR smoother is that if T is much bigger than t, then it gener-

ates poor approximations to smoothing distributions. Better approximations can be

obtained if filtering distributions are used instead of past states.

2.3.3.2 Backward Simulation Particle Smoothing(BSPS)

Assume that particle filtering is processed and approximations to the filtering distri-

butions are obtained for each time step from 1 up to T . Constitute weighted set of

particles as {(w(i)
t , x

(i)
t ) : i = 1, 2, . . . , N, t = 1, 2, . . . , T}. BSPS can be derived

based on the following fact: according to (2.46)

p(xt|xt+1, y1:T ) =
p(xt+1|xt)p(xt|y1:t)

p(xt+1|y1:t)
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Also, approximation to filtering distribution is given by (2.43). Hence, if this approx-

imation is substituted into the above equation we get:

p(xt|xt+1, y1:T ) ∝
N∑
i=1

w
(i)
t p(xt+1|xt)δ(xt − x(i)t ). (2.50)

As a result, pseudo-algorithm may be stated as follows:

0. Obtain set of particles and associated weights {(x(i)t , w
(i)
t ) : i = 1, 2, . . . , N, t =

1, 2, . . . , T} through particle filter algorithm.

1. Choose xT = x
(i)
T with probability w(i)

T

2. For each time step t = T − 1, T − 2, . . . , 1:

Calculate ŵ(i)
t = w

(i)
t p(xt+1|x(i)t )

Choose xt = x
(i)
t according to the weights ŵ(i)

t .

Obtain the following approximation:

p(x0:T |y1:t) =
N∑
i=1

1

N
δ(x0:T |y1:t)

2.4 Application

In this section bootstrap particle filtering is applied to the following model:

∅ c1−→ 10 S,

S
c2−→ ∅,

where reaction constants of the first and the second reactions are c1 = 1 and c2 = 2,

respectively.

Recall that if the importance density is chosen as p(xt|xt−1), then particle filter is

called bootstrap particle filter. So, importance weights become

w
(i)
t =

p(x0:t|y1:t)
q(x0:t|y1:t)

=
p(x0:t−1|y1:t−1)p(yt|xt)p(xt|xt−1)

p(xt|xt−1)
∝ p(yt|xt). (2.51)

In the model given above, output of Gillespie’s direct method is used as sample from

the importance density. The bootstrap algorithm, based on [16] proceeds as follows:
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0. Initialization: Determine the number of particles N . Set time steps

t = t0, t1, . . . , tM . Specify the measurements.

1. For t = 0, draw N random samples from initial distribution, which is chosen

as Normal distribution. At the end, we have {x(i)0 , i = 1, 2, . . . , N}

2. Importance Sampling Step: At time step t = tj , j = 1, 2, . . . ,M , run the Gille-

spie’s algorithm for each particle to obtainN random samples from importance

density. At the end, we have {x(i)0:t : i = 1, 2, . . . , N}

3. Calculate the importance weights according to (2.51) and normalize them. At

the end, we have {w(i)
t , i = 1, 2, . . . , N}.

4. Resampling:Apply multinomial resampling according to [15]. At the end, N

particles will be obtained according to their normalized importance weights. In

other words, particles with low importance weights will be eliminated while

particles with high importance weights will be sampled more than once.

5. Set j = j + 1 and return to the step 2.
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Figure 2.4: Elimination and replication of particles in bootstrap algorithm

In Figure 2.4, particle filter algorithm begins with 5 particles, and time steps are

taken to be {0, 0.2, . . . , 1.00}. At the end of time interval [0, 0.2], the first and the

third particles are duplicated because of high importance weight while the second

and the last particles are eliminated because of low importance weights. At each time

intervals, weights are calculated and resampling is applied to the particles.
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Filtering distribution estimates obtained with 500,1000 and 2000 particles are de-

picted in Figures 2.5-2.7:
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Figure 2.5: Estimated probability distributions for p(xt|y1:t) with 500 particles
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Figure 2.6: Estimated probability distributions for p(xt|y1:t) with 1000 particles

When number of the particles is increased, variance of the filtering distribution be-

come smaller which means that more accurate estimation is obtained. Changing the

number of particles allows us trade off the accuracy of estimation for rapid results. In-

deed, if the number of particles is reduced, there will be less work to do but estimation

will be further from the exact result.
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Figure 2.7: Estimated probability distributions for p(xt|y1:t) with 2000 particles
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CHAPTER 3

CONCLUSION

In the first chapter of this thesis, different mathematical models and simulation al-

gorithms to describe the time evolution of a biochemical reaction network and their

relationships to each other are investigated. Mathematical models are categorized

based on whether uncertainty is included into the model through random variables

and probability distributions. After the introduction of a general chemical reaction

channel, deterministic model, based on numerical integration of set of first-order ODE

system, is considered. There, the system’s state is taken to be concentrations. Also,

randomness in molecule abundances and external noises are ignored. Finally, unique

solution for given initial state is obtained.

Then, stochastic approaches are examined beginning from CTMC. If molecular popu-

lations of species in a biochemical reaction system is low so that it can be represented

as integer values, i.e., discrete state space, then the state of the system satisfies RTCM.

Further, time evolution of the corresponding probability mass distribution is given by

CME. If the species in the reaction network have high copy number, then the time

evolution of the state can be approximated by a diffusion process. The state of the

system in terms of concentrations can be represented as stochastic integral equation

which satisfies stochastic differential equation, namely CLE. Further, in case ther-

modynamic limit condition is satisfied, CLE approaches to a system of ODEs. The

time evolution of the corresponding probability density distribution is given as CFPE.

Moreover, if all the reactions in the network is unimolecular, expected value of the

realizations of the state, which satisfies CME or CFPE, satisfies ODE system, as well.

In summary, relationships between different mathematical models can be seen in Fig-
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ure 3.1.

Figure 3.1: Relationships between different mathematical models. [1]

Another method to analyze the dynamics of biochemical reaction network is finding

realizations of the state of the system under consideration. SSAs can be categorized

according to the methodology of finding the solution. Exact SSAs provide the exact

solution but these algorithms require high computational time. To reduce this com-

putational time, approximate SSAs which scarify the exactness of the solution, are

proposed. Also, as an alternative hybrid SSAs, combining both exact and approxi-

mate algorithms, are derived.

In the application section, deterministic and stochastic modeling approaches are ap-

plied to biological systems, LV model, MM enzyme kinetics and JACK-STAT sig-

naling pathway. Also, numerical solution of ODE system and realizations obtained

through Gillespie’s SSA with direct method are compared.

In the second chapter, state estimation techniques for the general state-space mod-

els are reviewed. The aim is making inference on the state of a dynamic system

through measurements. It is usually accomplished by obtaining filtering distribu-

tion p(xt|y1:t). The simplest method is a direct application of Bayes’ rule and re-

cursive version of it to reduce computational cost. However, these methods do not

provide analytical solutions because of the difficulty of high dimensional integration

in normalizing constant and marginal of joint posterior distribution. To overcome

these problem, different filtering algorithms are proposed. For example Kalman filter

for linear Gaussian state space models and grid-based filter for the finite state-space

model provide more accurate estimation for the probability distribution. Also, to ex-

tend feasibility, the methods such as extended Kalman filter and approximate grid
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based filter are proposed. As an alternative to approximation of filtering distribution,

Monte Carlo methods might be used. In addition to Monte Carlo sampling, IS to

overcome sampling from the posterior distribution and SIS to reduce computational

cost are addressed. Also, different choice of resampling methods and importance

densities exist to overcome degeneracy problem due to increase in dimension of the

state space.

Another way of obtaining estimation for the state of a dynamic system is attaining its

smoothing distribution p(xt|y1:T ), for T > t. Smoothing algorithms require filtering

distributions at each time step; this increases the computational cost of the smoothing

algorithms. However, smoothing algorithms provide more accurate information about

the state of the dynamic system by means of the measurements available for later time.

Two recursive smoothing algorithms reviewed in this thesis are FFBS and TFS. Monte

Carlo methods can also be used to approximate smoothing distribution. SIR smoother

includes direct usage of Monte Carlo sampling. Yet, increase in time step T yields

decrease in efficiency of the algorithm. Moreover, BSPS provides approximation to

smoothing distribution through approximated filtering distributions.

In the application section of this chapter, bootstrap particle filter is applied to the

birth-death process. Posterior distribution is obtained by using different number of

particles. It can be seen that variances is getting smaller for each time steps, i.e.,

accurate approximations are obtained, when the number of particles is increased.

Statistical inference based algorithms do not provide exact results and it is always

possible to obtain better estimations. For example, theoretically we know that us-

ing optimal importance density instead of prior distribution leads to more accurate

filtering distribution in bootstrap particle filter. This study may be a starting point

to develop enhanced filtering algorithms as a future work. Besides, it is also pos-

sible to apply particle filtering algorithms to complex models differ from biological

processes.
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APPENDIX A

JACK-STAT SIGNALING PATHWAY

Reactions

R1 : ReceptorIFNAR1 + TY K � ReceptorTY KComplex

R2 : ReceptorIFNAR2 + JAK � ReceptorJAKComplex

R3 : ReceptorJakComplex+ReceptorTykComplex+ IFN_free � IFNARdimer

R4 : IFNARdimer −→ ActiveReceptorComplex

R5 : STAT2c_IRF9 +ActiveReceptorComplex −→ ActiveReceptorComplex_STAT2c+ IRF9c

R6 : STAT2c+ActiveReceptorComplex � ActiveReceptorComplex_STAT2c
R7 : STAT1c+ActiveReceptorComplex_STAT2c � ActiveReceptorComplex_STAT2c_STAT1c
R8 : ActiveReceptorComplex_STAT2c_STAT1c −→ ActiveReceptorComplex+ STAT1c∗_STAT2c∗

R9 : IRF9c+ STAT1c∗_STAT2c∗ � ISGF − 3c

R10 : ISGF − 3c � ISGF − 3n

R11 : STAT1c∗_STAT2c∗ � STAT1n∗_STAT2n∗

R12 : STAT1n∗_STAT2n∗ + IRF9n � ISGF − 3n

R13 : ISGF − 3n+ FreeTranscriptionFactorBindingSite(TFBS) � OccupiedTFBS

R14 : ∅ −→ mRNAn

R15 : mRNAn � mRNAc

R16 : ∅� IRF9c

R17 : ∅� SOCS

R18 : ActiveReceptorComplex � ReceptorIFNAR1 +ReceptorIFNAR2 + JAK + TY K

R19 : ActiveReceptorComplex −→ IFNARdimer

R20 : IRF9n −→ ∅
R21 : STAT2c_IRF9 −→ STAT2c

R22 : STAT2n_IRF9 −→ STAT2n

R23 : ISGF − 3c+ Cytoplasmicphosphatase(CP ) � ISGF − 3c_CP

R24 : ISGF − 3c_CP −→ STAT1c+ STAT2c+ CP + IRF9c

R25 : STAT1c∗_STAT2c∗ + CP � STAT1c∗_STAT2c∗_CP

R26 : STAT1c∗_STAT2c∗_CP −→ STAT1c+ STAT2c+ CP

R27 : STAT1n∗_STAT2n∗ +Nuclearphosphatase(NP ) � STAT1n∗_STAT2n∗_NP

R28 : STAT1n∗STAT2n∗_NP −→ STAT1n+ STAT2n+NP

R29 : ISGF − 3n+NP � ISGF − 3n_NP

R30 : ISGF − 3n_NP −→ STAT1n+ STAT2n+NP + IRF9n

R31 : OccupiedTFBS +NP � OccupiedTFBSNP

Table A.1: List of reactions for JAK-STAT signaling pathway
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Reactions

R32 : OccupiedTFBS_NP −→ STAT1n+ STAT2n+ IRF9n+ FreeTFBS + IRF9n

R33 : PIAS + ISGF − 3n � PIAS_ISGF − 3n

R34 : mRNAc −→ ∅
R35 : STAT1c � STAT1n

R36 : STAT2c � STAT2n

R37 : STAT2c+ IRF9c � STAT2c_IRF9

R38 : STAT2n+ IRF9n � STAT2n_IRF9

R39 : STAT2c_IRF9 � STAT2n_IRF9

R40 : IRF9c � IRF9n

R41 : IFN_influx −→ IFN_free

Table A.2: List of reactions for JAK-STAT signaling pathway, (ctd’)

Reaction Rate Constants

R1 : k1 = 0.1 k1− = 0.05

R2 : k2 = 0.1 k2− = 0.05

R3 : k3 = 0.01 k3− = 0.01

R4 : k4 = 0.005

R5 : k5 = 0.002

R6 : k6 = 0.002 k6− = 4

R7 : k7 = 0.002 k7− = 4

R8 : k8 = 8

R9 : k9 = 0.1 k9− = 0.1

R10 : k10 = 0.015 k10− = 0.015

R11 : k11 = 0.01 k11− = 0.01

R12 : k12 = 0.1 k12− = 0.1

R13 : k13 = 0.00025 k13− = 0.01

R14 : k14 = 0.05

R15 : k15 = 0.045 k15− = 0.045

R16 : k16 = 0.0005 k16− = 0.0003

R17 : k17 = 0.000012 k17− = 0.01

R18 : k18 = 0.0001 k18− = 0.0001

R19 : k19 = 0.0001

R20 : k20 = 0.001

Reaction Rate Constants

R21 : k21 = 0.2

R22 : k22 = 0.003

R23 : k23 = 0.001 k23− = 0.2

R24 : k24 = 0.003

R25 : k25 = 0.01 k25− = 0.1

R26 : k26 = 0.01

R27 : k27 = 0.01 k27− = 0.1

R28 : k28 = 0.1

R29 : k29 = 0.01 k29− = 0.1

R30 : k30 = 0.002

R31 : k31 = 0.0001 k31− = 0.1

R32 : k32 = 0.1

R33 : k33 = 0.1 k33− = 0.1

R34 : k34 = 0.0005

R35 : k35 = 0.00125 k35− = 0.01

R36 : k36 = 0.0000817 k36− = 0.0014

R37 : k37 = 0.01 k37− = 0.01

R38 : k38 = 0.01 k38− = 0.01

R39 : k39 = 0.00125 k39− = 0.0014

R40 : k40 = 0.02 k40− = 0.005

R41 : k41 = 0.00069

Table A.3: Reaction rate constants of JACK-STAT signaling pathway
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Reaction Rate Equations

d
dt

[TY K] = k1− [ReceptorTY KComplex] + k18[ActiveReceptorComplex]− k1[ReceptorIFNAR1][TY K]

d
dt

[JAK] = k2− [ReceptorJAKComplex] + k18[ActiveReceptorComplex]− k2[ReceptorIFNAR2][JAK]

d
dt

[ReceptorJAKComplex] = k2[receptorIFNAR2][JAK]− k2− [ReceptorJAKComplex] + k3− [IFNARdimer]

−k3[ReceptorJAKComplex][ReceptorTY KComplex][IFN_free]

d
dt

[IFNARdimer] = k3[ReceptorJAKComplex][ReceptorTY KComplex][IFN_free]− k3− [IFNARdimer]

−k4[IFNARdimer]

d
dt

[IFN_free] = k3− [IFNARdimer]− k41[IFN_influx]− k3[ReceptorJAKComplex][ReceptorTY KComplex][IFN_free]

d
dt

[ReceptorTY KComplex] = k1[ReceptorIFNAR1][TY K]− k1− [ReceptorTY KComplex] + k3− [IFNARdimer]

−k3[ReceptorJAKComplex][ReceptorTY KComplex][IFN_free]

d
dt

[ActiveReceptorComplex] = k4[IFNARdimer] + k6− [ActiveReceptorComplexSTAT2c]

+k8[ActiveReceptorComplex_STAT2c_STAT1c]− k5[STAT2c_IRF9][ActiveReceptorComplex]

−k6[STAT2c][ActiveReceptorComplex]− k18[ActiveReceptorComplex]− k19[ActiveReceptorComplex]

d
dt

[IRF9c] = k5[STAT2c_IRF9][ActiveReceptorComplex] + k9− [ISGF − 3c] + k16 + k37− [STAT2c_IRF9]

+k40− [IRF9n]− k9[IRF9c][STAT1c∗_STAT2c∗]− k16− [IRF9c]− k37[STAT2c][IRF9c]− k40[IRF9c]

d
dt

[STAT2c_IRF9] = k39− [STAT2n_IRF9] + k37[STAT2c][IRF9]− k5[STAT2c_IRF9][ActiveReceptorComplex]

−k37− [STAT2c_IRF9]− k39[STAT2c_IRF9]

d
dt

[ActiveReceptorComplex_STAT2c] = k5[STAT2c_IRF9][ActiveReceptorComplex]

+k6[STAT2c][ActiveReceptorComplex] + k7− [ActiveReceptorComplex_STAT2c_STAT1c]

−k6− [ActiveReceptorComplex_STAT2c]− k7[STAT1c][ActiveReceptorComplex_STAT2c]

d
dt

[STAT2c] = k6− [ActiveReceptorComplex_STAT2c] + k21[STAT2cIRF9] + k24[ISGF − 3cCP ]

+k26[STAT1c∗STAT2c∗CP ]k36− [STAT2n] + k37− [STAT2c_IRF9]− k6[STAT2c][ActiveReceptorComplex]

−k36[STAT2c]− k37[STAT2c][IRF9c]

d
dt

[ActiveReceptorComplex_STAT2c_STAT1c] = k7[STAT1c][ActiveReceptorComplec_STAT2c]

k7− [ActiveReceptorComplex_STAT2c_STAT1c]− k8[ActiveReceptorComplex_STAT2c_STAT1c]

d
dt

[STAT1c] = k7− [ActiveReceptorComplex_STAT2c_STAT1c] + k24[ISGF − 3c_CP ]

+k26[STAT1c∗STAT2c∗_CP ] + k35− [STAT1n]− k7[STAT1c][ActiveReceptorComplex_STAT2c]

−k35[STAT1c]

d
dt

[STAT1c∗STAT2c∗] = k8[ActiveReceptorComplex_STAT2c_STAT1c] + k11− [STAT1n∗STAT2n∗]

+k25− [STAT1c∗STAT2c∗_CP ]− k11[STAT1c∗STAT2c∗]− k25[STAT1c∗STAT2c∗][CP ]

d
dt

[ISGF − 3c] = k9[IRF9c][STAT1c∗_STAT2c∗] + k10− [ISGF − 3n] + k23− [ISGF − 3c_CP ]

−k9− [ISGF − 3c]− k10[ISGF − 3c]− k23[ISGF − 3c][CP ]

Table A.4: Reaction Rate Equations(ctd’)

75



Reaction Rate Equations(ctd’)

d
dt

[ISGF − 3n] = k10[ISGF − 3c] + k12[STAT1n∗_STAT2n∗][IRF9n] + k13− [OccupiedTFBS]

+k33− [PIAS_ISGF − 3n]− k10− [ISGF − 3n]− k12− [ISGF − 3n]− k13[ISGF − 3n][TFBS]

−k29[ISGF − 3n][NP ]− k33[PIAS][ISGF − 3n]

d
dt

[STAT1n∗_STAT2n∗] = k11[STAT1c∗_STAT2c∗] + k12− [ISGF − 3n] + k27− [STAT1n∗_STAT2n∗_NP ]

−k11− [STAT1n∗STAT2n∗]− k12[STAT1n∗_STAT2n∗][IRF9n]− k27[STAT1n∗_STAT2n∗][NP ]

−k28[STAT1n∗_STAT2n∗_NP ]

d
dt

[IRF9n] = k12− [ISGF − 3n] + k38− [STAT2nIRF9] + k40[IRF9c]− k12[STAT1n∗_STAT2n∗][IRF9n]

−k38[STAT2n][IRF9n]− k40− [IRF9c]

d
dt

[OccupiedTFBS] = k13[ISGF − 3n][FreeTFBS] + k31− [OccupiedTFBS_NP ]− k13− [OccupiedTFBS]

−k31[OccupiedTFBS][NP ]

d
dt

[mRNAn] = k15− [mRNAc]− k15[mRNAn]

d
dt

[mRNAc] = k14 + k15[mRNAn]− k15− [mRNAc]− k34[mRNAc]

d
dt

[SOCS] = k17 − k17− [SOCS]

d
dt

[STAT2n] = k22[STAT2nIRF9] + k28[STAT1n∗STAT2n∗_NP ] + k30[ISGF − 3n_NP ] + k32[OccupiedTFBS_NP ]

+k36[STAT2c]− k36− [STAT2n]

d
dt

[STAT2n_IRF9] = k38[STAT2n][IRF9] + k39[STAT2c_IRF9]− k22[STAT2n_IRF9]− k38− [STAT2n_IRF9]

−k39− [STAT2n_IRF9]

d
dt

[CP ] = k23− [ISGF − 3c_CP ] + k24[ISGF − 3c_CP ] + k25− [STAT1c∗STAT2c∗_CP ] + k26[STAT1c∗STAT2c∗_CP ]

−k23[ISGF − 3c][CP ]− k25[STAT1c∗_STAT2c∗][CP ]

d
dt

[ISGF − 3c_CP ] = k23[ISGF − 3c][CP ]− k24[ISGF − 3c_CP ]

d
dt

[STAT1c∗STAT2c∗_CP ] = k25[STAT1c∗STAT2c∗][CP ]− k25− [STAT1c∗STAT2c∗_CP ]− k26[STAT1c∗STAT2c∗_CP ]

d
dt

[NP ] = k27− [STAT1n ∗ STAT2n∗_NP ] + k28[STAT1n ∗ STAT2n∗_NP ] + k30[ISGF − 3n_NP ] + k31− [OccupiedTFBS_NP ]

−k27[STAT1n∗STAT2n∗][NP ]− k29[ISGF − 3n][NP ]− k31[OccupiesdTFBS][NP ]

d
dt

[STAT1n∗STAT2n∗_NP ] = k27[STAT1n∗STAT2n∗][NP ]− k27− [STAT1n ∗ STAT2n∗_NP ]− k28[STAT1n ∗ STAT2n∗_NP ]

d
dt

[STAT1n] = k28[STAT1n ∗ STAT2n∗_NP ] + k30[ISGF − 3n_NP ] + k32[OccupiedTFBS_NP ] + k35[STAT1c]− k35− [STAT1n]

d
dt

[ISGF − 3n_NP ] = k29[ISGF − 3n][NP ]− k30[ISGF − 3n_NP ]

d
dt

[OccupiedTFBS_NP ] = k13[ISGF − 3n][FreeTFBS] + k31[OccupiedTFBS][NP ]− k13− [OccupiedTFBS_NP ]

−k31− [OccupiedTFBS_NP ]− k32− [OccupiedTFBS_NP ]

d
dt

[FreeTFBS] = k13− [OccupiedTFBS_NP ] + k32− [OccupiedTFBS_NP ]− k13[ISGF − 3n][FreeTFBS]

d
dt

[PIAS] = k33− [PIASISGF − 3n]− k33[PIAS][ISGF ]

d
dt

[PIASISGF − 3n] = k33[PIAS][ISGF ]− k33− [PIASISGF − 3n]

d
dt

[IFNinflux] = −k41[IFN_influx]

d
dt

[ReceptorIFNAR1] = k1− [ReceptorTY KComplex] + k18[ActiveReceptorComplex]− k1[ReceptorIFNAR1][TY K]

d
dt

[ReceptorIFNAR2] = k2− [ReceptorJAKComplex] + k18[ActiveReceptorComplex]− k2[ReceptorIFNAR2][JAK]

Table A.5: Reaction Rate Equations(ctd’)
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APPENDIX B

MATLAB CODES

B.1 MATLAB Source Code for Gillespie’s SSA with Direct Method

1 function[ state,time,x_step,t_points,s,X_Step] = gillespie_merve(x0, c, pre,...

2 post, t_initial, t_final, iteration, h)

3 for i = 1:iteration

4 n_r = length(c); %number of chemical reactions

5 n_s = length(x0); %number of chemical species

6 k = 1; j = 2;

7 t_points = t_initial:h:t_final; %time points for given step size

8 s = length(t_points);

9 x_step = zeros(n_s,s); %states for time time points

10 % 0.Initialize the time and the state

11 x_step(:,1) = x0;

12 x(:,k) = x0;

13 t(k) = t_initial;

14 % 1. Compute the propensity functions and total propensity for the given

15 % state and time

16 [ a,a_0 ] = propensity_merve ( x0, pre, c );

17 while (t(k) <= t_final) && (a_0 > 0)

18 % 2. Generate tau and mu according to the Direct Method

19 r = rand(1,2);

20 tau(k) = (1/a_0)*log(1/r(1));

21 mu(k) = find(cumsum(a)> r(2)*a_0, 1);
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22 % Update the time and the state according to tau and mu

23 t(k+1) = t(k) + tau(k);

24 x(:,k+1) = x(:,k) + post(:,mu(k)) - pre(:,mu(k));

25 k = k+1;

26 [ a,a_0 ] = propensity_merve ( x(:,k), pre, c );

27 end

28 for j = 2:length(t_points)

29 [M,I] = min(abs(t_points(j)-t));

30 x_step(:,j) = x(:,I);

31 j = j+1;

32 end

33 state{i} = x;

34 time{i} = t;

35 X_Step{i} = x_step;

36 end

B.2 MATLAB Source Code for Bootstrap Particle Filter

1 function [ time_steps,x_int,Y,state_history_all,time_history_all,...

2 post, state_at_time_pts,W,normal_W,N_of_rxns] = particlefilter( t_initial,... \\

2 post, t_final, h, mu, sigma,N,c,pre,post)

2 % Particle filter

3 % Given : time steps

4 time_steps = t_initial:h:t_final;

5 % Given : Measurements

6 Y = measurments( c, pre, post, t_initial, t_final, h,sigma);

7 %% Initialization

8 % Prelocation

9 state_history_all = cell(N,length(time_steps)-1);

10 time_history_all = cell(N,length(time_steps)-1);

11 state_at_time_pts = zeros(N,length(time_steps));
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12 N_of_rxns = zeros(N,length(time_steps));

13 color = hsv(N);

14 % Draw N random samples from initial distribution which is chosen as

15 % Gaussian distribution with mean mu and variance sigma

16 x_int = normrnd(mu,sigma,1,N);

17 state_at_time_pts(:,1) = x_int;

18 N_of_rxns(:,1) = ones(N,1);

19 for j = 1:length(time_steps)-1

20 %% Importance Sampling

21 % Sample from importance density which is chosen as p(x_t|x_{t-1}) and

22 % obtained by Gillespie algorithm

23 counter = 0;

24 for i = 1:N

25 if N_of_rxns(i,j) == 0

26 i = i+1;

27 else

28 for ii = 1:N_of_rxns(i,j)

29 [ state,time,x_step,t_points] = ...

2 gillespie_merve(state_at_time_pts(i,j), c, pre, post, time_steps(j),...

2 post, time_steps(j+1),1, h);

30 counter = counter+1;

31 state_history_all(counter,j) = state;

32 time_history_all (counter,j) = time;

33 state_at_time_pts (counter,j+1) = x_step(end);

34 figure(1)

35 hold on

36 set(gca, ’Fontsize’ ,20)

37 plot(t_points,x_step, ’color’ ,color(j,:), ’LineWidth’ ,2)

38 plot(t_points,x_step, ’*’ , ’color’ ,color(j,:))

39 xlabel( ’Time’ , ’Fontsize’ ,30)

40 ylabel( ’Realization’ , ’Fontsize’ ,30)

41 end

42 end
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43 end

44 % Calculate the importance weights w_t^(i) ~ p(y_t|x_t^(i))

45 [ W,normal_W ] = importance_weight(Y,state_at_time_pts (:,j+1),N,time_steps,sigma);

46 %% Resampling Step(Multinomial Resampling)

47 % Determine the particles which have large importance weights

48 Q = cumsum(normal_W(:,j));

49 index = zeros(1, N);

50 m = 0;

51 while m < N

52 m = m + 1;

53 sampl = rand; % ~(0,1]

54 a = 1;

55 while Q(a) < sampl

56 a = a + 1;

57 end;

58 index(m)= a;

59 end

60 index;

61 n_of_rxn = zeros(1,N);

62 for p = 1:N

63 n_of_rxn(index(p)) = n_of_rxn(index(p))+1;

64 end

65 N_of_rxns(:,j+1) = n_of_rxn;

66 end

67 yLimits = get(gca, ’YLim’ );

68 for jj=1:length(time_steps-1)

69 line([time_steps(jj) time_steps(jj)],[yLimits(1) yLimits(2)], ’color’ , ’k’

);

70 end

71 end
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