
FEASIBILITY STUDY FOR DYNAMIC CONTEXT SWITCHING IN
PARTIALLY RECONFIGURABLE FPGAS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

ESAT YILMAZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

ELECTRICAL AND ELECTRONICS ENGINEERING

SEPTEMBER 2019

Approval of the thesis:

FEASIBILITY STUDY FOR DYNAMIC CONTEXT SWITCHING IN
PARTIALLY RECONFIGURABLE FPGAS

submitted by ESAT YILMAZ in partial fulfillment of the requirements for the degree
of Master of Science in Electrical and Electronics Engineering Department,
Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. İlkay Ulusoy
Head of Department, Electrical and Electronics Engineering

Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı
Supervisor, Electrical and Electronics Engineering, METU

Examining Committee Members:

Prof. Dr. İlkay Ulusoy
Electrical and Electronics Engineering, METU

Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı
Electrical and Electronics Engineering, METU

Prof. Dr. Gözde B. Akar
Electrical and Electronics Engineering, METU

Prof. Dr. Ece G. Schmidt
Electrical and Electronics Engineering, METU

Prof. Dr. Ali Ziya Alkar
Electrical and Electronics Engineering, Hacettepe University

Date:

I hereby declare that all information in this document has been obtained and
presented in accordance with academic rules and ethical conduct. I also declare
that, as required by these rules and conduct, I have fully cited and referenced all
material and results that are not original to this work.

Name, Surname: Esat Yılmaz

Signature :

iv

ABSTRACT

FEASIBILITY STUDY FOR DYNAMIC CONTEXT SWITCHING IN
PARTIALLY RECONFIGURABLE FPGAS

Yılmaz, Esat
M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Cüneyt F. Bazlamaçcı

September 2019, 74 pages

Reconfiguration of computing and control circuits according to dynamically chang-

ing needs is a supportive concept which saves design-time and the space needed for

floorplanning in comparison to application specific integrated circuits (ASIC). FPGAs

which are commonly used reconfigurable devices have both full and partial reconfig-

uration features. Dynamic partial reconfiguration is a technique which enables some

part of the circuit to be reconfigured while other parts are running. This feature al-

lows the user to switch between different and successive tasks working in a particular

block of an FPGA device. Preemption of a task might also be needed in dynamically

running circuits for real-time/time-critical application requirements. Preemption re-

quires that all current state information of the circuit is saved somewhere else before

running another circuit and to run the previously saved circuit where it was stopped

from.

This thesis study investigates the feasibility of dynamic context switching in modern-

day FPGAs. For this, a reconfigurable System-on-Chip (SoC) architecture is exam-

ined. Xilinx Zynq SoC is used and AXI4-based partially reconfigurable block struc-

v

ture is implemented. By using DMA, readback and reconfiguration structures are

implemented. DDR memory is used to store bitstream files when a partial bitstream

file is downloaded to the FPGA. The resulting system designed helps to reduce re-

quired resources for big size circuits by providing and enabling a context-save and

context-restore mechanism for time-critical tasks with considerably low overhead.

Keywords: Partial Reconfiguration, Context-Switch, Zynq SoC, AXI protocol

vi

ÖZ

KISMİ YENİDEN YAPILANDIRILABİLİR FPGA ÜZERİNDE DİNAMİK
İÇERİK DEĞİŞTİRMENİN YAPILABİLİRLİK ÇALIŞMASI

Yılmaz, Esat
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Cüneyt F. Bazlamaçcı

Eylül 2019 , 74 sayfa

Hesaplama ve kontrol devrelerinin dinamik olan isteklere göre yeniden yapılandırıl-

ması işlemi Uygulamaya Dönük Entegre Devreleri’ne (ASIC) göre tasarım süresini

kısaltan ve yeniden yapılandırılabilir alanın daha etkin kullanılmasını sağlayan tasa-

rımcıya yardımcı bir kavramdır. Sıklıkla kullanılan Alan Programlanabilir Kapı Di-

zinleri (FPGA) hem tam hem de parçalı yeniden programlanma özelliğine sahiptir.

Dinamik olarak kısmi programlama tekniği diğer kısımlar çalışırken sadece belli bir

kısmı programlamak için kullanılan tekniktir. Bu teknik FPGA üzerinde farklı ve art

arda çalışan devreler arasında geçiş yapmaya izin verir. Bir çalışan devrenin durduru-

larak çalıştığı bölgeden çıkarılması ve daha sonra tekrar çalıştırılması zaman-kritik ve

gerçek zamanlı uygulamalarda gereklidir. Devrenin bulunduğu kısımdan çıkarılması

bütün durum bilgilerinin başka bir yere kaydedilmesini ve daha sonra kaydedildiği

yerden okunup çalışmasına kaldığı yerden devam ettirilmesini gerektirir.

Bu tez çalışmasında, günümüz FPGA entegrelerinde dinamik olarak içerik değiştir-

menin uygulanabilirliği araştırılmıştır. Bunun için, Yonga üzeri Sistem (SoC) mima-

risinde yeniden programlanabilir bir sistem incelenmiştir. Xilinx firmasına ait Zynq

vii

SoC devresi kullanılmıştır ve AXI4 tabanlı kısmi programlanabilir blok mimarisi uy-

gulanmıştır. DMA mimarisi kullanılarak, çalışan devreyi geri okuma ve yeniden prog-

ramlama yapısı uygulanmıştır. DDR hafıza programlama dosyalarının saklanması için

kullanılmıştır. Programlama dosyaları FPGA’yı programlamak için kullanılmaktadır.

Tasarlanan sistem büyük bir mimari gerektiren devreler için gerekli kaynağı azaltıp,

zaman kritik uygulamalarda yapılandırma hafızasını okuma ve hafızaya yazma me-

kanizmalarını az bir zaman kaybıyla mümkün kılmaktadır.

Anahtar Kelimeler: Kısmi Yeniden Yapılandırma, İçerik Değiştirme, Zynq SoC, AXI

protokolü

viii

To my wife and my son

ix

ACKNOWLEDGMENTS

Firstly, I must thank my wife Merve Yılmaz, my parents Sadık and Ayşegül Yılmaz

and my sister Şerife E. Duman for their support and patience.

I must thank my advisor, Assoc. Prof. Dr. Cüneyt Fehmi Bazlamaçcı for his encour-

agement, support and guidance during my MSc study.

I would like to thank my employer ASELSAN for MSc support during my study.

x

TABLE OF CONTENTS

ABSTRACT . v

ÖZ . vii

ACKNOWLEDGMENTS . x

TABLE OF CONTENTS . xi

LIST OF TABLES . xiv

LIST OF FIGURES . xv

LIST OF ABBREVIATIONS . xviii

CHAPTERS

1 INTRODUCTION . 1

1.1 Scope of the Thesis . 4

1.2 Motivation . 4

1.3 Contributions . 5

1.4 Thesis Organization . 6

2 BACKGROUND AND RELATED WORK 7

2.1 Concepts of Reconfigurable Computing 8

2.1.1 Static and Dynamic Configuration 8

2.1.2 Partial Reconfiguration . 8

2.1.3 Coarse-Grained and Fine-Grained Architectures 9

xi

2.1.4 Single and Multi-Context Configuration 9

2.1.5 Off-chip and Context Configuration 10

2.1.6 Readback and Readback Capture 10

2.2 Design Considerations For Floorplanning 11

2.3 Architecture of Xilinx 7-Series FPGAs and SoCs 14

2.4 Bitstream Structure . 17

2.5 Concepts in Software Tool . 22

2.6 Context Switching . 26

2.6.1 Context Restoring Time . 26

2.6.2 Context Saving Time . 27

2.6.3 Bitstream Manipulation Time 29

3 BEHAVIORAL MODEL OF THE CONTEXT SWITCHING SYSTEM . . 31

3.1 Operating System Model . 32

3.2 Task Model . 33

3.3 Reconfigurable Block Model . 36

3.4 ICAP Controller Model . 41

3.5 Context Saving and Restoring Model 42

4 IMPLEMENTATION . 47

4.1 Base System Architecture . 47

4.2 Complete Context-Switchable System Architecture 51

4.3 Example Application for Context Saving and Restoring 54

4.3.1 Reconfigurable Modules . 54

4.3.2 Context-Saving and Restoring 56

xii

4.4 Partitioning Properties . 59

5 EVALUATION AND TEST RESULTS . 61

5.1 Measurement Environment and Tools 61

5.2 Throughput Measurements and Evaluations 61

5.2.1 Context-Saving Time Evaluation 62

5.2.2 Bitstream Manipulation Time Evaluation 63

5.2.3 Context-Restoring Time Evaluation 64

5.3 Complete System Evaluation . 65

6 CONCLUSION AND FUTURE WORKS 67

6.1 Contributions . 67

6.2 Future Works . 68

REFERENCES . 69

xiii

LIST OF TABLES

TABLES

Table 3.1 AXI4 and AXI4-Lite Pin Names 39

Table 3.2 I/O pins of AXI4-Stream Interface 41

Table 3.3 Bit Ordering Types of Configuration Data 42

Table 4.1 AXI DMA IP Block Specifications 50

Table 4.2 FFT Configurations in FFT IP Core 55

Table 4.3 Utilization for Reconfigurable Modules 60

Table 4.4 Bitstream Sizes for Full and Partial Designs 60

Table 5.1 Throughput Comparison for Context Saving Applications 63

Table 5.2 Throughput Comparison for Bitstream Manipulation 64

Table 5.3 Context-Restoring/Partial Reconfiguration Throughput Comparison 64

xiv

LIST OF FIGURES

FIGURES

Figure 1.1 GPP, ASIC and Reconfigurable Hardware Comparison in terms

of Performance, Cost, Development Time and Programmability [1, 2]. . 2

Figure 1.2 General Partially Reconfigurable SoC Hardware Architecture . . 3

Figure 2.1 General FPGA and SoC architecture [29] 7

Figure 2.2 Floorplanning . 12

Figure 2.3 XC2064 Logic Architecture . 14

Figure 2.4 A Small Representation of Xilinx 7-Series Architecture 15

Figure 2.5 SLICEM in CLB Logic . 16

Figure 2.6 Packet Header for Type 1 Packet 17

Figure 2.7 Packet Header for Type 2 Packet 18

Figure 2.8 Addressable FPGA Surface . 19

Figure 2.9 FAR Register Content . 20

Figure 2.10 A Full and Partial Bitstream Structure of Xilinx 7-Series FPGAs

[24] . 21

Figure 2.11 Unsuitable RP for GSR Feature [17] 24

Figure 2.12 Adjustments of RP to the Suitable Column [17] 25

Figure 2.13 MiCAP-Pro Readback and Reconfiguration Model [32] 29

xv

Figure 3.1 System Architecture for Dynamic CS 32

Figure 3.2 Embedded OS Running on SoC 33

Figure 3.3 Task Model for Context Switching 35

Figure 3.4 Software Flow for SW/HW Combined Task 36

Figure 3.5 AXI4-based Reconfigurable Block Model 36

Figure 3.6 AXI Protocol R/W Data Transactions 38

Figure 3.7 General Structure of AXI4 Interconnect 38

Figure 3.8 AXI DMA I/O structure . 40

Figure 3.9 ICAP Controller and ICAPE2 Primitive 42

Figure 3.10 PCAP and ICAP Configuration Paths 43

Figure 3.11 CAPTUREE2 Hard Macro . 44

Figure 3.12 A general partial bitstream structure and manipulation intervals . 45

Figure 4.1 Zynq Architecture . 48

Figure 4.2 Base System for HW Tasks Without ICAP Controller 49

Figure 4.3 Complete Architecture for Context-Switchable PR System on

Zynq SoC . 51

Figure 4.4 Clock Distribution for Overall Design 53

Figure 4.5 FFT IP Core I/O Structure . 54

Figure 4.6 Reconfigurable Module Connections 55

Figure 4.7 Example Application Context Switching Flow 56

Figure 4.8 FFT Results for Example Application and Non-CS Project . . . 57

Figure 4.9 Decoupling Procedure for Clock and Reset of FFT RM 58

xvi

Figure 4.10 Floorplanning For The Example Application 59

xvii

LIST OF ABBREVIATIONS

1D 1 Dimensional

2D 2 Dimensional

BLE Basic Logic Element

BRAM Block Random Access Memory

CLB Configurable Logic Block

CS Context-Switch

DMA Direct Memory Access

DPR Dynamic Partial Reconfiguration

DRC Design Rule Check

FF Flip Flop

FFT Fast Fourier Transform

FPGA Field Programmable Gate Array

GPIO General Purpose Input Output

GSR Global Set Reset

IC Integrated Circuit

ICAP Internal Configuration Access Port

MB Megabyte

OOC Out Of Context

PCAP Processor Configuration Access Port

PL Programmable Logic

PR Partial Reconfiguration

PS Processor System

SoC System-On-Chip

xviii

CHAPTER 1

INTRODUCTION

Embedded systems can contain different processing units that are manufactured with

different purposes. The requirements of target system determine the type of processor

at design stage. There are three commonly used integrated circuits as a processor in

embedded systems. These are general purpose processor (GPP), field programmable

gate array (FPGA) and application specific integrated circuit (ASIC). Each comes

with different performance and cost options. Also, there are other important require-

ments such as development time, power usage and reconfigurability.

GPPs are designed to respond to its own instruction set which a user may send to

processor unit. This model is commonly used in personal computers or workstations.

Its architecture is usually based on Von-Neumann model in which the instruction and

data are located at system memory and only a small set of read/write operations or

computations are done at each clock cycle. There are three advantages of GPPs.

These are availability of high-level programming which eases the development for

most of the programmers, compatibility of instructions which decreases development

time, and design flexibility which enables any computation to run. Although it has

several advantages, these features are limited with constant clock cycle. Running the

same serial and long set of instructions for different applications takes long time in

every turn. This is not desired in computing intensive applications.

ASIC design process aims to decrease power consumption and increase the perfor-

mance. The clock frequency can be much higher than other solutions. However,

development and fabrication of an ASIC chip takes more time compared to other so-

lutions since it has a fixed circuit running a specific task which needs to be verified

under difficult conditions. When the application requirements change, it requires new

1

development and fabrication processes which needs time and money. Therefore, time

to market is affected negatively. Additionally, it does not support full programmabil-

ity so that no return is available after production.

Field programmable gate array (FPGA) chips are manufactured to meet the needs for

programmability, performance, development cost & time [1, 2]. ASIC chips have

generally better performance than FPGAs, but FPGAs have better performance than

GPPs. Development time and programmability are also other factors where FPGA

is in the middle. Reconfigurability feature of FPGAs is used to prototype a solution

before the development of ASICs in order to decrease development cost. As depicted

in Figure 1.1, reconfigurable hardware provides both features of GPPs and ASICs

with allowable amount of penalty for embedded systems.

(a) (b)

Figure 1.1: GPP, ASIC and Reconfigurable Hardware Comparison in terms of Per-

formance, Cost, Development Time and Programmability [1, 2].

The first generation of FPGAs requires to configure whole FPGA which causes long

configuration time. They are not appropriate to use in dynamically changing com-

putation platforms due to long reconfiguration time. Therefore, these devices were

used as co-processor for acceleration because it supports massive parallelism. Perfor-

mance improvement can be achieved with parallelism because smaller tasks can run

concurrently rather than sequentially. Modern CPUs have multiple processing cores

to decrease execution time of a task. FPGAs can also have multiple processing cores

running in parallel due to its fine grained architecture.

2

Another architecture which takes advantages of both FPGA and GPP is System-On-

Chip (SoC) chips. It includes both GPP and FPGA which are connected together

with data buses inside. While an operating system runs on the GPP part with classical

method of instruction fetching, a custom circuit can run coherently in the FPGA part

to accelerate the computations.

New generation FPGAs can respond to dynamic changes during execution cycle. Par-

tially reconfigurable FPGAs enable dynamic reconfiguration of pre-selected areas of

FPGA while other areas are still in operation. It gives also flexibility to configure dif-

ferent circuits changeably on the reconfigurable part with a limited FPGA resource.

Most importantly, configuration time significantly decreases due to smaller partial

bitstream sizes. Considering computing applications in FPGA, reconfiguration time

is critical since configuration overhead between different configurations should be

minimized in comparison to computation time.

By combining the dynamic partial reconfiguration with SoCs, we can obtain a hard-

ware platform running operating system in GPP side and a reconfigurable area which

can be used to accelerate execution of time-consuming tasks. General SoC hardware

architecture which supports partial reconfiguration is shown in Figure 1.2.

Figure 1.2: General Partially Reconfigurable SoC Hardware Architecture

While running a software in GPP side, some functions can be time consuming which

makes the processor unable to respond other requests. Therefore, the processor may

not be able to respond to some time-critical tasks until its deadline. However, if

the time-consuming task is executed in partially reconfigured area, the processor can

respond to other requests while also accelerating the execution of the task in FPGA

3

part. There might be also other tasks which need specifically FPGA implementation

for acceleration. All of these can be reconfigured in partially reconfigurable area in

case a request is triggered. Running both GPP and FPGA part at the same time could

increase the overall performance, considerably in some applications.

1.1 Scope of the Thesis

This thesis work is conducted to implement context switching (CS) on a partially re-

configurable SoC. The SoC chip Xilinx Zynq-7020 is selected for this purpose. The

board that runs the complete system is Avnet Zedboard which is commercially avail-

able in the market. Due to hybrid architecture of this SoC, both software flow and

hardware implementation can run at the same time. Requirements for the implemen-

tation of dynamic partial reconfiguration (DPR) are established in FPGA part of the

SoC. A Direct-Memory-Access (DMA) scheme is implemented to ease partial recon-

figuration process. Preemption of a circuit is implemented with readback feature of

FPGA configuration data. Addressable hardware task allocation is done with AXI

bus.

Context switching (CS) in an FPGA implementation is relatively more complex with

respect to GPP based system. When a personal computer manages the tasks with

its CPU, several context switchings may occur due to preemptive scheduling scheme

of the operating system. Time overhead for a context switch in reconfigurable hard-

ware includes the readback of FPGA configuration data, bitstream manipulation and

reconfiguration while it is just memory read/write operations in CPU based system.

To sum up, CS is examined by employing partial reconfiguration on Xilinx SoC and

some performance evaluation results are obtained.

1.2 Motivation

FPGAs are designed to get close to performance of ASIC designs while preserving

a considerable level of flexibility/programmability like GPPs. On the other hand,

SoCs are designed to get advantage of GPP while having the advantages of FPGA.

4

Since our implementation is based on a SoC architecture, VHDL and C languages

are used to establish a system which runs both software and hardware tasks. This

hybrid architecture makes the user to benefit both flexibility of GPP and performance

of FPGA.

If a parallelized hardware task was run in GPP in a sequential manner, it could be

inefficient in terms of power consumption. Another motivation is to decrease power

requirement. By using partial reconfiguration, partially reconfigurable areas can be

loaded with empty design to lower the power consumption.

Implementation and demonstration of the feasibility of context switching on reconfig-

urable hardware is the main motivation of the thesis. To be able to save the last state

of the hardware to a memory and manipulate the bitstream which will be downloaded

in the future is not as easy as in GPP. In addition, if the context switching is not fast

enough, some time-critical tasks cannot be handled until its deadline which creates a

problem for system requirements.

1.3 Contributions

The contributions of this work can be listed as follows:

• An AXI based addressable partially reconfigurable system is established. AXI4,

AXI4-Lite and AXI4-Stream interfaces are used to control partially reconfig-

urable blocks which are connected to addressable AXI bus. Even if the partial

block is reconfigured, it is always accessible from the processor system (PS)

side with its 32-bit AXI address.

• An internal configuration access port (ICAP) controller is implemented to re-

configure the partially reconfigurable area. It is also used for the readback of

configuration data to save the last state of registers and block RAM (BRAM)

values. ICAPE2 hard macro is added to the controller as a submodule.

• Non-DMA based partial reconfiguration systems do not generally have high

throughput. An AXI DMA is implemented to have a high partial reconfigura-

5

tion throughput. It has 380.1 MB/s throughput and it is supported by AXI4-

Stream interface which is appropriate for fast data transaction.

• Bitstream manipulation is done to create a new bitstream from the last state

information where the circuit is preempted. Frame based addressable structure

of bitstream is resolved to create a new bitstream.

• Processor side has an infrastructure which controls the configuration data line.

Processor configuration access port (PCAP) is used for full reconfiguration.

Preemptible and address-based reconfigurable blocks are designed to support paral-

lelism on computing intensive embedded systems. Results show that dynamic context

switching runs successfully on a reconfigurable FPGA. An FFT application example

is presented to perform the hardware context switching.

1.4 Thesis Organization

This thesis work contains background and related works for dynamic context switch-

ing in reconfigurable devices in Chapter 2. Concepts of reconfigurable computing

is given and architectural background for FPGAs and SoCs is explained. For bit-

stream manipulation, its structure is given to understand how partial reconfiguration

is performed. Context saving and restoring is explained in terms of timing and speed.

Chapter 3 establishes some important system components and presents a task model

corresponding to reconfigurable block model. It gives how context saving and restor-

ing must be performed on the established system. Implementation phase is presented

with an example application in Chapter 4. Firstly, a base system with reconfigurable

blocks is designed and secondly, ICAP controller and other related designs are added

to have a complete system for dynamic context switching. An FFT computation is

performed on the established system with context saving, bitstream manipulation and

context restoring successively. Floorplanning for this platform is given to visualize

how static and partial areas of the Zynq SoC are used. Some throughput measure-

ments are given in Chapter 5. The evaluation of these results is explained by compar-

ing with other works. Chapter 6 finalizes this thesis with contributions, observations

and future works.

6

CHAPTER 2

BACKGROUND AND RELATED WORK

Reconfigurable devices like FPGAs and SoCs are used in many sectors such as au-

tomotive, multimedia, military, scientific computing and enterprise computing. It is

preferred because it can increase the performance while taking advantage of flexi-

bility or programmability. When an embedded system is designed, the requirements

usually contain high performance, low power consumption, flexibility, and low unit

cost. Reconfigurable devices can be used to meet the requirements if the number

of logic resources are enough. Otherwise, small number of logic cells in the selected

hardware pushes the designer to select another bigger/expensive device since all tasks

that will be executed cannot fit into the selected device. However, even if the device

has limited logic resources, partial reconfiguration technique can be applied to run

the tasks interchangeably.

(a) FPGA Architecture (b) SoC Architecture

Figure 2.1: General FPGA and SoC architecture [29]

7

FPGA architecture consists of configurable logic blocks (CLBs) which creates an

array in which each CLB is connected to each other via interconnects. Block RAMs

and DSP blocks are located between CLBs. I/O pins are located at the boundary of

the reconfigurable logic. General FPGA architecture is shown in Figure 2.1a

On the other hand, reconfigurable SoC architecture consists of both FPGA fabric and

a GPP. These two are connected to each other via data buses and discrete lines. A pro-

cessor, DMA, DRAM controller, flash memory controller etc. are already available

in GPP side. General reconfigurable SoC architecture is shown in Figure 2.1b.

2.1 Concepts of Reconfigurable Computing

2.1.1 Static and Dynamic Configuration

There are some configuration concepts in reconfigurable hardware. A reconfigurable

device like FPGA can be configured in two ways; static and dynamic configurations.

When the device is configured just after power-up, it is called static configuration [3].

To reconfigure a running device statically, the user must stop the execution cycle and

reconfigure it again. Dynamic configuration means changing the configuration while

the device is running [4]. It does make sense when reconfiguration occurs partially in

a selected area of reconfigurable device. It is called partial reconfiguration. Partial re-

configuration needs to be done carefully since FPGA has currently running circuit in

specified area. The tools which are used to synthesize the partially reconfigurable sys-

tem have stable synthesizer to protect the device from staying at intermediate state.

Partial reconfiguration can also be done statically as shutting down the rest of the

circuit and turning on again after configuration. Full reconfiguration is another con-

figuration option to configure the whole device both statically and dynamically.

2.1.2 Partial Reconfiguration

Partial reconfiguration can be performed with either difference-based or module-

based option [5].

8

• Difference-based partial reconfiguration enables minor logic changes in the cir-

cuit by picking only differences to create a partial bitstream. Switching from

one implementation to another is very rapid due to small size of partial bit-

stream [6]. This method is used for old-fashion FPGAs but it is no longer sup-

ported on new generation FPGAs [5]. It is also not appropriate for the mecha-

nism where hardware task block is loaded and unloaded.

• Module-based partial reconfiguration requires the design to be hierarchical [5].

Each partially loadable hardware module needs to be synthesized first to fit

into the pre-selected area of FPGA’s floorplan. The floorplan area is divided

as static and dynamic. Static area is locked for all implementation phases and

other reconfigurable circuits cannot change the overall design except for the

reconfigurable area. This design option is used in this thesis work.

2.1.3 Coarse-Grained and Fine-Grained Architectures

Programmable logic can be in coarse-grained or fine-grained architecture or both

[7, 8]. Coarse-grained architecture has specific blocks which do a specific compu-

tation or logic operation. The blocks have an internal circuit which cannot be recon-

figured with a bitstream. For example, digital signal processing (DSP), floating point

unit (FPU) or arithmetic logic unit (ALU) can be used in coarse-grained architecture.

Reconfiguration is performed only in I/O level so that input and output of a block

are connected to other blocks. Therefore, the bitstream contains only small routing

information due to limited reconfigurable logic. On the other hand, fine-grained ar-

chitecture contains bit level circuits. The routing information calculation lasts long

compared to other architecture because of larger number of reconfigurable logics and

interconnections. Recent FPGAs can be an example which contains both resources.

2.1.4 Single and Multi-Context Configuration

As the context of reconfigurable devices, there are two options; single and multi-

context configuration. In single-context configuration, a reconfigurable device has

only one configuration memory so that when a bitstream is downloaded to the device,

9

each bit is copied to specific and addressable configuration memory cell. When global

reset signal is de-asserted, the flip-flops (FFs), LUTs and block RAM values are ini-

tialized from single on-chip memory. In multi-context configuration, configuration

can be loaded with a single switch from one of multiple on-chip configuration mem-

ories [9]. The required memory area for multi-context configuration can be larger so

that physical size of device may increase. Reconfiguration overhead is very low in

this option since another configuration can be loaded just after a single clock cycle.

This may reduce the overhead to nanoseconds.

2.1.5 Off-chip and Context Configuration

Downloading a bitstream using the serial or parallel interface to which an external

flash memory is connected is called off-chip configuration. If the configuration is

performed using internal or on-chip memory, it is called context configuration [4].

2.1.6 Readback and Readback Capture

Configuration memory can also be read from the same interface which is used for

programming. This is called readback. The data can be copied to another memory

to be used especially in space applications to fix single bit errors which are caused

by high energy charged particles [10, 11, 12]. Readback data represents currently

running configuration and can be compared with the original bitstream to detect any

error.

Configuration memory can also be used to store states of logic elements (FF, BRAM,

etc.) to perform context saving. Each state information can be read back to external

memory through a configuration port. This is called readback capture [13]. The latter

word ‘capture’ is added to readback because state information of a running circuit is

captured from each logic element. Later, the captured data is used to create a new

bitstream for context restoring.

10

2.2 Design Considerations For Floorplanning

Multitasking in single-core GPP is accomplished by time-sharing for each task. A

user cannot observe switching between tasks because the switching occurs in a very

short time. However, time-sharing for each task creates a delay to execute the given

tasks. Multi-core processors can overcome this issue if the tasks are divisible to all

processing cores. This is called true multitasking on GPP [14]. Similarly, running

multiple parallel tasks on processing elements in a reconfigurable hardware is prefer-

able since the performance would be increased. True multitasking can be accom-

plished in this way in a reconfigurable system.

Partitioning of logic elements in a reconfigurable system enables designers to load

multiple tasks to the selected partitions to run them concurrently. Utilization of the

device can be increased by good partitioning. Considering a real time system running

multiple tasks and scheduling the arrival of new tasks, if all tasks are executed without

exceeding their deadlines and no task rejection occurs, it can be said that reconfig-

urable logic is capable to utilize all tasks. However, if a bad partitioning technique

was applied, then the designer would choose a bigger device which costs much higher.

As a result, partitioning is one of the key factors for high utilization [15].

In partially reconfigurable systems, floorplan of an FPGA can be designed to have

several partitions which have different shapes and constraints. The shape of the par-

tially reconfigurable area affects the overall utilization and fragmentation since the

routing depends on the boundary of these areas. There are four different partitioning

techniques to be considered;

• Arbitrary shaped partitioning

• Rectangular shaped partitioning

• 1D partitioning

• 2D partitioning

Arbitrary shaped partitioning enables multiple tasks to run together by getting all

partitions closer to each other. This can be done by filling big spaces with smaller

11

tasks. Thus, maximum allowable frequency can be increased by this way. However,

due to arbitrary shape of the partitions, utilization and fragmentation can be problem

if running tasks for each partition cannot be placed and routed in an appropriate way

compared to regular placement [16, 17]. An arbitrary shaped partitioning example is

depicted in Figure 2.2a.

(a) Arbitrary [16] (b) Rectangular [18]

(c) 1D [19] (d) 2D [1]

Figure 2.2: Floorplanning

Rectangular shaped partitioning limits the circuit with a rectangular shape which has

enough size to place and route the assigned circuit. In this methodology, reconfig-

urable partitions have higher utilization and lower fragmentation due to completely

fitting circuit. However, this architecture is not appropriate for running multiple tasks

together in any partition due to heterogeneity when task size is larger than the avail-

able empty partitions [18]. A rectangular shaped partitioning is shown in Figure 2.2b.

12

Both rectangular and arbitrary shaped partitioning is not suitable to have a commu-

nication data path among tasks and between reconfigurable logic to external system

memory. The communication requirement is an application specific issue. If there

is data transaction in system requirements, we need a partitioning where all partially

reconfigurable tasks are ordered to communicate with each other and other system

memory elements. This gives the design flexibility so that each partial block can load

input data from system memory or output interface of another partial block.

One-dimensional (1D) partitioning method is applicable to reconfigurable devices to

meet the need for communication. The architecture with 1D placement is to locate

partitions repeatedly on the horizontal direction having all height of FPGA. A recon-

figurable architecture with communication media is designed by Kalte and Porrmann

[19]. In order to have communication infrastructure between dynamically change-

able tasks, they implemented a horizontal bus to be connected to whole partitions.

The bus is homogenous everywhere so that relocation of the tasks from one slot to

another does not affect the behavior of relocated task. Design of reconfigurable 1D

hardware task placement is shown in Figure 2.2c.

To have communication among all tasks in 1D placement comes with two disadvan-

tages; fragmentation and maximum allowable frequency. Due to vertical placement of

tasks in one slot, resources are not placed efficiently to get a reasonable routing. This

results in fragmentation and long routing delays. On the other hand, the communica-

tion media is affected with long routing delays because all reconfigurable blocks have

connections to other blocks. Therefore, communication line bandwidth is limited by

long wiring delays.

Considering all issues with partitioning techniques, two-dimensional (2D) partition-

ing brings more flexibility to reconfigurable hardware floorplan design [1]. Reconfig-

urable logic is divided both vertically and horizontally and each partition has a border

with static logic which contain communication structure and other necessary logic.

2D placement is shown in Figure 2.2d. A task which is implemented to run on one

of the partial blocks can be implemented to run on other blocks as well. The partition

size can be selected as the biggest circuit that will be executed. This depends on the

user’s application.

13

The partitioning methods mentioned above should be supported by both hardware

and the software tools to realize them on hardware.

2.3 Architecture of Xilinx 7-Series FPGAs and SoCs

History of FPGA device starts with programmable logic devices (PLDs) around early

of 1970s. Xilinx introduced the first product called XC2064 at 1984 which contains

only 64 logic blocks [20]. Each block contains two 3-input LUTs and one register.

It was manufactured with 2.5micron technology. General architecture of XC2064 is

shown in Figure 2.3.

Figure 2.3: XC2064 Logic Architecture

Today, number of logic sources in an FPGA like Virtex-7 device can be up to 136,900

slices which contain 547,600 6-input LUT and 1,095,200 FFs [21]. The fabrication

of Xilinx 7-Series FPGAs and SoCs is 28nm technology [22] and based on Static

RAM (SRAM) configuration memory. The architecture of Xilinx 7-Series FPGAs

are different from the previously released architectures as depicted in Figure 2.4.

A CLB contains two slices and each slice is composed of four 6-input LUTs and eight

14

Figure 2.4: A Small Representation of Xilinx 7-Series Architecture

storage elements in Xilinx 7-Series FPGAs [21]. Block RAMs (BRAM) and Digital

Signal Processing (DSP) slices are located between CLBs to make a connection eas-

ily. These three configurable elements CLB, BRAM and DSP can be inside partial

blocks. It means that they can be reconfigured with a partial bitstream dynamically.

Other logic elements can only be configured by full reconfiguration. Architecture of

a slice in the CLB is shown in Figure 2.5.

Xilinx has also released a Zynq-7000 System-On-Chip (SoC) IC which is composed

of FPGA and ARM processor running together on one die. The advantage of the

hard processor in comparison to soft processor like Microblaze is to run at higher

frequency and it contains DDR controller, DMA and have more peripherals available

to use. When hard processor is used, no logic is required to be configured so that

it does not consume configurable logic. ARM side of the SoC has the full control

over the FPGA part. AXI based data lines can be used to have communication path

between processor system (PS) and programmable logic (PL) side.

Configuration bitstream of SRAM-based FPGA can be downloaded with JTAG or

SelectMAP configuration ports. It is called off-chip configuration as already men-

tioned in Chapter 2.1.5. There are also two options to configure an FPGA; Processor

15

Figure 2.5: SLICEM in CLB Logic

16

Configuration Access Port (PCAP) and Internal Configuration Access Port (ICAP).

If one of these two ports is used it is called context configuration. PCAP is only

used in Zynq-7000 SoCs. It is capable of full and partial reconfiguration. ICAP can

only be used for partial reconfiguration because it disrupts its own data line while full

reconfiguration.

2.4 Bitstream Structure

The relation between the bitstream and the configuration memory of an FPGA is very

structural. The content of the bitstream is composed of configuration packets and

raw circuit configuration bits. Xilinx 7-Series FPGA architecture has addressable

configuration frames. Each frame needs 101x32 bits data to be configured. The

content of the frame depends on the frame address so that each bit can corresponds

to one FF, BRAM and LUT, etc. Each bit value in the bitstream is directed to the

configuration memory of the related logic by this way.

Bitstream structure is very important for designers to establish a context-switchable

partially reconfigurable FPGA system because bitstream manipulation is required to

restore the previous circuit on an FPGA. For this reason, the configuration packets

mentioned above is worth examining. There are two types of configuration packets in

the bitstream of 7-Series Xilinx FPGAs [23].

• Type 1 Packet: It is used for register reads and writes. It contains a 32-bit

header and payload. The bit-ordering for its header is shown in Figure 2.6.

Figure 2.6: Packet Header for Type 1 Packet

Header type represents the type of packet so that "001" corresponds to Type 1.

Opcode represents whether it is read or write operation, "01":Read, "10":Write.

No operation (NOP) is also used for synchronization of the configuration cycle,

"00":NOP. Register address space is limited only with 5 out of 14-bits config-

17

uration register address. Configuration registers will be discussed later. The

number of 32-bit payload data coming after the Type-1 header is specified by

the payload length section of the header.

• Type 2 Packet: It follows the Type 1 packet header and no address is specified

as shown in Figure 2.7.

Figure 2.7: Packet Header for Type 2 Packet

Its header has 32-bit word. Header type equals to "010" which corresponds to

Type 2 packet. Opcode is the same with the one in Type 1. The payload length

portion points the number of 32-bit payload word coming after this header. It

is used for long writes.

Xilinx 7-Series FPGAs have internal 32-bit configuration registers which is addressed

by Type 1 packet. These registers are low-level registers to control the configuration

sequences or to obtain information about the device. Some important registers are as

follows;

• CRC: This register is used to compare two CRC values. One of them is calcu-

lated on the chip from each 32-bit word during configuration and the other one

is written in bitstream while creating bitstream. This register is used in CRC

check for the integrity of bitstream when a write operation occurs on it. This

check can be disabled when bitstream manipulation is required.

• FAR: Frame address register uses bitstream as input so that configuration is

loaded on the specified frame. It is automatically incremented by the device to

fill all specified areas.

• FDRI: Frame data register input. Both commands and payload data are written

to this register to fulfill the configuration. 32-bit data is registered in each clock

cycle.

18

• FDRO: If the configuration memory is read back, it outputs the configuration

data corresponding to the frame address written in FAR.

• CMD: Command register takes the basic configuration commands such as write

configuration data (WCFG), read configuration data (RDFG), begin the startup

sequence (START), shutdown the device (SHUTDOWN) and capture the last

state of registers (GCAPTURE), etc.

• MFWR: Multi-frame write register is used when the bitstream is compressed.

Bitstream generation tool adds a write operation to this register to write the

same data to multiple frame addresses. Normal bitstream does not include

MFWR register write command.

• IDCODE: Each device has its own ID code. For verification of the bitstream,

internal register is compared with the value inside the bitstream. If they are not

the same, configuration sequence stops in order not to configure with wrong

data.

Figure 2.8: Addressable FPGA Surface

Partially reconfigurable area of an FPGA is addressable by its frame address. When a

partial reconfiguration process begins, only the pre-selected portion of the surface is

programmed. FAR register is used to give a start address to the configuration mecha-

nism. The address can be described with FPGA’s configuration memory architecture.

The 7-Series devices are divided into two halves, the top and the bottom. 32-bit FAR

register has one field for block type and four address types: top/bottom bit, row ad-

19

dress, column address and minor address. Figure 2.8 and Figure 2.9 show addressable

FPGA surface and bit indexes of the FAR register content successively.

Figure 2.9: FAR Register Content

Block type is the type of logic elements such as CLB, IO, CLK, BRAM and CFG_CLB.

Top/Bottom bit represents which half of the FPGA is configured. It is either top-half

(0) or bottom-half (1). Both top and bottom of the FPGA surface is divided with rows

and each row is divided with columns. Each column location contains many frames

which are also addressable with their minor address. The frame address written in

the bitstream should be valid for the selected FPGA or SoC package. Otherwise, the

configuration fails. Vivado and other software tools creates the bitstream with respect

to project options which has package information of the FPGA used.

Xilinx provides different file formats for bitstream creation. Each file format is used

for different programming interfaces. Most common file formats are as follows:

• BIT: This file format is used to program FPGA through a software tool via

JTAG programming interface. It contains a textual information header about

the bitstream. The following data is binary configuration data.

• RBT: This file format is the same with BIT format except that data is not in

binary, it is in ASCII representation where each 32-bit is given with textual 0s

and 1s. It can only be used to program FPGA with a parser since it is a text file.

• BIN: This file format is used to program FPGA through SD Card via ICAP,

PCAP and optionally SelectMAP interfaces. It contains only raw 32-bit binary

configuration data so that there is no need for software tool to parse it.

• MCS: This file format is used to program FPGA through a FLASH memory

or PROM via SPI or BPI programming interfaces. The bit ordering in the file

is dependent on the architecture of memory device. Software tools provide an

interface to choose an option for each type of commercially available memories.

20

Most suitable file format is the BIN format for a partially reconfigurable system since

it is coded in binary and contains only commands and payload. It is easily readable

from an external memory such as SD Card. The size of the bitstream file is propor-

tional to the number of logic units in an FPGA. A full bitstream contains all frame

data while a partial bitstream contains only related frame data. A general structure of

a full and partial bitstream is shown in Figure 2.10.

(a) Full Bitstream Structure (b) Partial Bitstream Structure

Figure 2.10: A Full and Partial Bitstream Structure of Xilinx 7-Series FPGAs [24]

The payload size can be calculated with the given number of 32-bit configuration

lines in a full bitstream. The command 0x500F6C78 given in Figure 2.10a is in Type

2 packet format so that only 0xF6C78 is meaningful to the user as word count. The

number is equal to 1010808 in decimal format. The number of lines after that com-

mand is 1010808x32-bit payload data which is equal to 4043232 bytes. Additionally,

the number of configuration frames can be calculated using this number. Since all

7-Series Xilinx FPGA’s have 101x32-bit configuration bits for each frame address,

21

1010808/101 = 10008 gives the number of frame addresses belonging to the FPGA

package used in the design.

Partial bitstream includes CLB and BRAM frames as separate. FAR register cannot

jump from one frame address to another, but it increments one by one. It should be

manually set by bitstream commands so that it can jump from one CLB frame address

to another BRAM frame address. Internal commands are used to do that. In addition,

number of frame data given in Type-2 packet format is as described in full bitstream.

The command 0x5000F36D given as an example in Figure 2.10b represents that there

are 62317 word payload data. Number of frames in that frame data interval is equal to

62317/101 = 617. Each interval includes different number of frames and starts with a

different frame address depending on the design.

2.5 Concepts in Software Tool

The overall system design is based on both statically and partially reconfigurable

areas. The full bitstream structure mentioned before involves whole surface of the

FPGA. Partially reconfigurable areas can only be programmed with the corresponding

partial bitstream file. During a design phase, surface partitioning needs to be done to

determine the details of the partial bitstream such as frame addresses and number of

logical sources.

Some concepts in the software tool for a partially reconfigurable system is given as

follows: [17]

• Bottom-Up Synthesis: The design starts with the synthesis of each module in-

dependently. It is called out-of-context (OOC) synthesis in Xilinx Vivado tool.

Overall design uses these modules as black boxes ensuring that no optimiza-

tion is performed across inputs and outputs of the related module. In this way,

synthesized module can be used in multiple projects.

• Configuration Frame: FPGA configuration memory consists of many frames.

A frame is the smallest addressable segments of the FPGA. A frame can contain

one of these elements, CLB, Block RAM and DSP.

22

• Partition Definition: It defines the reconfigurable modules which run on the

reconfigurable partition. Each module has the same I/O ports.

• Partition Pin: It is the logical and physical connection point between static

and reconfigurable logic.

• Reconfigurable Frame: Each logic cannot be reconfigured independently. It

defines the smallest reconfigurable region on the surface of FPGA.

• Reconfigurable Logic: It is a simple logical element in a reconfigurable mod-

ule. Partial bitstream may change the state of this logic.

• Static Logic: It is a simple logical element running outside reconfigurable par-

tition. Partial bitstream cannot change the state of this type of logic and it is

active during partial reconfiguration.

• Reconfigurable Partition: A logical section of the device and it is selected by

the designer. It defines all dedicated modules as reconfigurable. The expression

HD.RECONFIGURABLE = TRUE inserted into the design file indicates that

the partition is reconfigurable. Otherwise, it cannot be used for partial recon-

figuration.

• Reconfigurable Module: It is a circuit or HDL description that can be imple-

mented in reconfigurable partition. Each module must have the same partition

pins.

Some architectural partitioning methods are already discussed. In fact, all of the

FPGA surface consist of basic logic elements (BLE). Surface partitioning is affected

by heterogeneity of the surface and other architectural reasons. Therefore choosing

an option from discussed partitioning methods is not directly applicable for Xilinx

7-Series FPGAs.

Some of the restrictions and permissions for floorplanning is given as follows:

• Xilinx restricts the content of a reconfigurable partition such that clock circuits

(MMCM and PLL), I/Os, mult-gigabit transceivers (MGTs) and hard blocks

like ICAPE2, CAPTUREE2, etc. must be inside static region, hence they can-

not be reconfigured.

23

• Partition pins are placed by Vivado with default option. If the number of pins

is higher than that a partition can contain due to its small size, this can cause

some routing and timing problems and eventually not a routable design.

• Upper and lower boundaries of reconfigurable partition must align vertically to

the clock region boundaries. Although the rectangle can be drawn in anywhere

on the surface, the global reset signal is not applicable to randomly drawn par-

tition. Applying global set reset (GSR) signal is highly recommended because

it resets the reconfigured circuit to the initial state after configuration completes

and keeps all logical elements in reset until configuration is done. If not used,

additional decoupling circuit is required for clocks and other inputs to prevent

internal logic from changing unintentionally. RESET_AFTER_RECONFIG

property must be checked so that GSR feature is embedded in partial bitstream

to shut down only related area during configuration. Reconfigurable partition

drawn not suitably for the GSR feature is shown in Figure 2.11. Pink rectan-

gle shows selection of surface without RESET_AFTER_RECONFIG property.

Yellow grids show the area affected by the GSR reset if it is applied. Upper

and lower boundaries of the yellow rectangle are attached to a clock region

boundary.

Figure 2.11: Unsuitable RP for GSR Feature [17]

24

• Partition size cannot be increased in the vertical direction which passes to the

other clock region. However, the size can be increased in horizontal direction

both in the same clock region and the other neighbor clock region. When the

size increases, number of available logical sources increases. The need for

logical sources depends on the application. The size and location may also be

changed with routing and timing problems.

• Two partially reconfigurable regions cannot be overlapped. If it was possible,

a configuration frame would be in two different partitions so that the circuit

behavior would be unstable.

• Left and right boundary of the partition must be between two CLBs or between

CLB and BRAM or between CLB and DSP as depicted with yellow arrows

in Figure 2.12. This constraint is required to route signals between static and

reconfigurable region. If the SNAPPING_MODE property is checked, surface

partitioning tool does not give DRC error since it automatically adjusts bound-

aries. In Figure 2.11, it adjusts left and right boundaries and reduce the size

of the RP. SNAPPING_MODE is also used to remove the non-reconfigurable

hard blocks from the reconfigurable part.

Figure 2.12: Adjustments of RP to the Suitable Column [17]

25

2.6 Context Switching

In [24], context switching time needed for partially reconfigurable system is given by

the sum of context saving, restoring and bitstream manipulation time. Context saving

and restoring is a time-consuming operation on reconfigurable devices in comparison

to GPP devices. To configure all logical elements to a pre-determined state differs

from an operation like loading some values to a couple of registers. The time over-

head changes with respect to configuration speed and bitstream size. It cannot be

eliminated fully by just increasing the configuration clock frequency and decreasing

bitstream size with some compression techniques, but it can be reduced to some level

[25]. A method to fully eliminate the reconfiguration overhead is proposed by Say and

Bazlamaçcı [1]. They state that the next reconfiguration can be done on an available

reconfigurable partition, while the previous configuration executes on another parti-

tion. By this way, switching from one execution to another is performed with no time

overhead. However, performance of this method depends on surface partitioning, task

scheduling and total number of tasks in the system.

In multi-context FPGAs, the time overhead for reconfiguration can be reduced to

nanoseconds due to their architecture. However, it is applicable if all configurations

are loaded into the on-chip memory. If a new reconfiguration is required rather than

one of ready configurations, there must be some time overhead. To reduce time over-

head in multi-context FPGAs, virtualization of partial reconfiguration can be per-

formed as stated in [25].

2.6.1 Context Restoring Time

ICAP primitive is used for partial reconfiguration in Xilinx FPGAs. Recommended

clock frequency for ICAP is 100MHz and configuration data bus width is 32-bits.

Theoretical configuration speed is 381.46 MB/s. Xilinx offers a configuration con-

troller IP called HWICAP which utilizes ICAP as a submodule. The speed of the

configuration with HWICAP is 14.6 MB/s which is much slower than the theoretical

speed [26]. Readback operation with HWICAP is limited with configuration registers

due to small FIFO.

26

PCAP can also be used in partial reconfiguration. Reconfiguration speed of PCAP is

measured as 126.8 MB/s in Xilinx’s official application note [27]. Liu et al. [26] re-

duced timing overhead with a different ICAP controller IP called BRAM_HWICAP.

The ICAP hard macro is fed with the output of BRAM so that the controller avoids

the time-consuming data transactions. It provides 371.4 MB/s as throughput. It gets

close to the theoretical value. However, it consumes many BRAM sources to hold the

configuration bitstream.

Vipin et al. [28] designed a DMA-based partial reconfiguration mechanism called

ZyCAP on Xilinx Zynq SoC employing ICAP hard macro. Partial bitstreams are

stored at DDR memory. ARM side of the Zynq SoC is connected to a DDR memory

through a DDR controller. A DMA engine is implemented in FPGA side of the SoC

and it is set to read a partial bitstream to transfer it to the ICAP controller. Clock

frequency is selected 100MHz as default ICAP frequency and ZyCAP transfers a

partial bitstream with the theoretical speed of 381.47 MB/s assuming that no software

and hardware overhead exist. DMA-based ICAP controller IPs are also used in other

configurable FPGAs for different circuit architectures [29, 30, 31, 32]. They provide

the best throughput among many others by staying at the safe side in terms of ICAP

clock frequency. Overclocking the ICAP clock is not supported in Xilinx 7-Series

FPGAs because 100MHz is the maximum allowable frequency [17]. There are some

overclocking experiments conducted on older Virtex-5 FPGAs so that ICAP can run

at up to 550 MHz [33]. However, this is not a case for 7-Series FPGAs.

2.6.2 Context Saving Time

Context saving on reconfigurable devices is required for preemptable multitask execu-

tion environments. Instantaneous states of logic elements in a reconfigurable partition

running on an FPGA is saved to restore and run any time after saving. To discuss time

overhead for context saving, some readback methods should be considered. There are

two methods to capture the states of a running task:

• Configuration Port Access (CPA): Each state can be accessed through a con-

figuration port like ICAP. There can be a configuration port controller structure

27

for readback procedure. Bitstream structure should be known in detail to copy

state bits to the new bitstream.

• Task Specific Access Structures (TSAS): Each task has its own state saving

mechanism in it. Task state is accessed through a pin implemented on the task.

It captures only the state-related data so that no redundant data is read. How-

ever, it needs extra logic and reduces the utilization of the device. Timing and

routing errors can appear on the design [34, 35]. The circuit can be restored

after assigning state information to the state-related logic.

In both methods, reading a BRAM content results in the same time overhead [29].

Eliminating reading time overhead for the BRAM content, TSAS-based method is

more data efficient since only the related logic is saved instead of all logic in the

module. However, one drawback of TSAS-based readback mechanism is to insert

state saving logic for all registers which reduces hardware task utilization. In addi-

tion, some commercial IPs can be locked by the provider in order not to give HDL

design to the user. In that case, state saving logic cannot be inserted into the design. In

CPA method, the number of readback data is very large compared to TSAS method.

However, Jozwik et al. [29] states that a high throughput ICAP controller can over-

come the issue of reading large number of redundant data by reading only the related

frames so that it can have better performance compared to TSAS method. In addition,

BRAM contents should be read back by disabling the main clock source, otherwise,

BRAM contents may be changed unintentionally when configuration clock is driven

into BRAMs [36].

Partial bitstream created by the software tool configures all configurable frames in

the reconfigurable partition even if no circuit is available in some frames. If those

frames are configured to do nothing through bitstream, then there is no need to read-

back those frames. The address information of filled frames can be extracted from the

bitstream or logic location file (.ll) [37] and only related frames are used for readback.

Time overhead of readback can be reduced by this way. As a result, CPA method is

also preferable for context saving procedure in terms of time overhead and hardware

utilization.

28

PCAP has a functionality of reading back configuration data to DDR memory. Stod-

dard et al.[12] observed that readback data throughput is 145 MB/s when PCAP clock

is 100MHz which is the default frequency. Duhem et al. proposed an ICAP controller

called FaRM which has 95 MB/s readback throughput [38]. For low time overhead

readback mechanism, MiCAP-Pro system is proposed by Kulkarni et al. [32]. It is a

DMA-based system mentioned before which resembles the ZyCAP model with extra

readback feature as depicted in Figure 2.13. It is implemented in Xilinx Zynq SoC.

The data throughput is 272 MB/s for readback running at 100MHz. MiCAP-Pro is

not efficient for throughput in comparison to ZyCAP since it has I/O buffers which

delays the configuration data streaming. A FIFO is placed before the ICAP primitive

so that it slows down the throughput. It can be enhanced to reach the rate of ZyCAP

for readback option.

Figure 2.13: MiCAP-Pro Readback and Reconfiguration Model [32]

2.6.3 Bitstream Manipulation Time

To make a bitstream manipulation, state information of FFs and content of BRAMs

should be written into the correct location of the bitstream. While writing, there can

be some modifications on captured data. Morales et al. [39] state that manipulation

29

should be done with a mask file provided by Xilinx ISE tool. New state of a bit

is determined by the formula Snew = captured bit ∗ mask + initial ∗ (notmask).
However, in 7-Series configuration user guide [23], Xilinx states that a ’1’ in the

mask file indicates "don’t care" while a ’0’ indicates "important" to capture. Using

the formula, if a captured bit is important, it is multiplied by zero and initial value is

loaded as a new state. If a captured bit is not important it is multiplied by one and

initial bit is not loaded. Considering the result of this formula, it loses the captured

data if the data is important. Therefore, it cannot be applied for 7-Series FPGAs and

SoCs.

Bitstream manipulation time is important for preemptable circuits. It depends on

where the manipulation is performed. Processor architecture, clock rate and algo-

rithm change the total elapsed time. Morford presents BitMaT tool to manipulate a

Virtex-II FPGA bitstream with a speed of 304 KB/s on a Pentium 4 machine [40].

BITMAN bitstream manipulation tool perform a manipulation which needs low-level

details about sources and routings. It can run on ARM Cortex-A9 processor and it

manipulates one CLB state in 94 us and one BRAM content in 229 us [41]. Number

of bytes manipulated per second with BITMAN tool cannot be calculated directly

since the throughput is given for only one CLB and BRAM content.

30

CHAPTER 3

BEHAVIORAL MODEL OF THE CONTEXT SWITCHING SYSTEM

It is already discussed that GPP based computing platforms provide design flexibility

and high level programming environment for designers. GPP based personal com-

puters meet low level requirements for average users without considering power con-

sumption, reconfigurability, performance and operating system support. In enterprise

computing, high performance criterion is the main goal. Multi-processor systems can

increase the performance to a considerable level with a power consumption penalty.

On the other hand, it can lose operating system support. Reconfigurable devices have

the facility to increase the performance by parallelizing computing tasks with extra

development time and low power consumption. There is a trade-off between recon-

figurable and GPP based systems.

Hybrid SoC architecture is composed of a GPP and reconfigurable hardware. It eases

the development of a system employing many peripherals. The performance also in-

creases due to short distance/high throughput communication lines between GPP and

reconfigurable part. A soft-processor implemented in a reconfigurable device can also

be used to get a hybrid architecture, but a hard-processor has much more performance

due to higher clock frequency and internal structure. In addition, a hard processor can

increase the utilization of reconfigurable part because of its static structure.

The overall system architecture which can run dynamically context-switchable tasks

is shown in Figure 3.1. It contains both GPP and reconfigurable hardware. Reconfig-

urable hardware is capable of partial and full reconfiguration and hence, dynamically

switching between hardware tasks on the reconfigurable part can be performed with

a control mechanism running in GPP.

31

Figure 3.1: System Architecture for Dynamic CS

The system memory is connected to GPP and it is used to store partial and full bit-

streams. Xilinx has commercially available SoCs having the architecture shown in

Figure 3.1. Xilinx 7-Series, Ultrascale, Ultrascale+ Zynq SoCs are suitable for the

context-switchable hardware design. It can be used in an embedded system which

needs the criteria mentioned above.

Some of the design concepts needs to be examined to run dynamically context-switchable

system on SoC architecture. Software execution on GPP and hardware execution on

FPGA can be done together. Partial reconfiguration is performed on FPGA to switch

between hardware executions.

3.1 Operating System Model

In personal computers, operating system (OS) handles all low-level executions with-

out showing processing steps to the user. Peripherals are used to give inputs to the

system and user does not care about the rest. OS must be capable of executing given

inputs with a good performance by working in harmony with other hardware parts.

In an embedded SoC system, OS must handle all given tasks by cooperating with both

GPP and reconfigurable hardware. Tasks can consist of a software part and a hard-

ware part. Depending on the system requirements, a context switch can be required

32

to complete given tasks. Context-switch in a GPP is executed by saving internal pro-

cessor registers to a memory to run at another time and running other tasks instead.

Context-switch in reconfigurable hardware is executed by reading back states of FFs

and BRAM contents located at partially reconfigurable area and copying them to a

memory and reconfiguring the related area for other circuits.

Figure 3.2: Embedded OS Running on SoC

An embedded OS should do these operations without user intervention. Reconfig-

urable part of SoC should be managed by OS as if the system contains only a hard

processor. It can be programmed to respond to all requests including real-time tasks.

The user does not see any low-level operation running in between GPP and recon-

figurable hardware. Thus, flexibility and performance of the whole system can be

increased. A general model for embedded OS handling both software and hardware

tasks is depicted in Figure 3.2.

There are some available operating systems in the market for embedded systems such

as FreeRTOS, VxWorks, etc. BareMetal OS can also be used for single thread.

3.2 Task Model

The task in the hybrid reconfigurable system can be composed of both software and

hardware executions. Software task can run individually or can manage hardware

task executions while running.

33

Spatial and temporal partitioning requirements should be analyzed during design

phase. If a hardware task cannot fit into a reconfigurable partitions, it can be di-

vided into two tasks if possible, which can run on different reconfigurable partition.

Partition size is also important, and it can be set for the largest hardware task to fit

into. In contrast to that, two or more small sized hardware tasks can be combined to

run together in one reconfigurable partition to reduce fragmentation. This depends on

the application.

All hardware tasks can run on any partition so that if a hardware task cannot find an

available partition for a long time, an equivalent software task should be available so

that it can be executed on GPP before deadline, if there is.

Inter-task communication between consecutive tasks due to data dependency should

be provided by the processor. Output data of one hardware task cannot be directly

transferred through a separate bus to the consecutive task. There is no direct or ad-

dressable data line between running tasks. All tasks are connected to each other

through processor.

Context-switch operation in reconfigurable computing can be considered in preemp-

tive and non-preemptive manner. If a software task is preempted, it can be saved

to memory to run on another time. The preemption operation for a software task is

relatively easy as mentioned in previous chapters. On the other hand, hardware task

preemption requires capturing and saving states of CLBs and content of BRAMs to a

memory. Hardware task can be preempted with the conditions given below:

• Hardware task must contain only CLB and BRAM sources. State of DSP

sources cannot be saved and captured so that hardware task containing a DSP

source cannot be preempted.

• Hardware task must have higher priority than other hardware task running al-

ready in one of reconfigurable partition. This condition depends on the appli-

cation specifications.

• If a hardware task execution gets close to the end of its execution so that remain-

ing execution time is lower than context-switching time overhead, it should not

34

be preempted. This condition is also application dependent, but user should

avoid for unnecessary context-saving and restoring which results in time wast-

ing.

For overall system, an example flow of software and hardware task execution with a

context switch operation on two reconfigurable partitions is shown in Figure 3.3. T 11
s

represents the first sub-task of task 1 running in GPP. ‘s’ stands for software and ‘h’

stands for hardware. T 12
h represents second sub-task of task 1 running in hardware

and so on. After running T 12
h , T 13

h and T 14
h continue on hardware. They are stopped

before the end of their executions and a context saving occurs at 4th cycle by saving

task 1 and a partial reconfiguration occurs for task 2. After the execution of T 22
h

and T 23
h , a context restoring occurs at 5th cycle for task 1 to complete the rest of the

execution. Task 1 and 2 end in software task at the end.

Figure 3.3: Task Model for Context Switching

To reduce or remove the configuration time overhead, partial reconfiguration can be

done before the execution of the task, if there is an available slot that will not be used

until the execution. An example task execution flow showing a software/hardware

35

combined task for pre-reconfiguration is shown in Figure 3.4.

Figure 3.4: Software Flow for SW/HW Combined Task

3.3 Reconfigurable Block Model

Figure 3.5: AXI4-based Reconfigurable Block Model

Input and output ports of the reconfigurable modules must be defined to be compatible

with reconfigurable partition. The connection between the static and reconfigurable

logic is only through partition pins. The partition pins must be well defined to meet

the needs for reconfigurable block. An example for a reconfigurable block model is

depicted in Figure 3.5. The model for the reconfigurable block has an AXI4-based

address structure. Addressable design is used to direct input and output data easily

to the correct location. On the other hand, reconfigurable block have configuration

36

registers which is used to control execution cycle of the reconfigurable module. If one

of the commercial Intellectual-Property (IPs) is used in reconfigurable module, it can

be easily connected as a submodule without extra logic to convert the data. Clock and

reset pins are also available. An optional interrupt output can be added depending on

the overall system requirements.

Xilinx uses Advanced eXtensible Interface (AXI) protocol for IP cores for newer

devices including 7-Series FPGAs and SoCs [42]. AXI is a part of AMBA. AMBA

is used for on-chip communication as a standard protocol. AXI4 is the second major

version after AXI3 and it was released with AMBA 4.0 in 2010. AXI4 defines the

following three interfaces;

• AXI4: Memory-mapped architecture and high throughput is offered. Up to 256

data transactions can be done for 1 address range via bursting mode.

• AXI4-Lite: Memory-mapped architecture and low-throughput is offered for

simple read/write operations. Only 1 read/write operation can be done for 1

address which slows data throughput.

• AXI4-Stream: High throughput is offered but it is not used in memory-mapped

applications. It is used in long data streaming.

AXI4 and AXI4-Lite

The AXI4 interface is composed of master and slave sides. The reconfigurable block

is the slave side. Input data is given by master side and the execution starts with the

permission of master side. When the execution ends, output data is transferred to

master side. Read/write operations can be performed at the same time through AXI4.

The general data transaction architecture for AXI4 is shown in Figure 3.6.

The AXI protocol provides the independent read address, read data, write address,

write data and write response channels. Each channel has its own handshake signals

called valid and ready. Master side asserts valid signal indicating that the data or

address is valid while slave side is asserting ready signal indicating ready to receive

address or data. The data bus width can be 8, 16, 32, 64, 128, 256, 512, 1024 bits.

Most commonly used data width is 32 bits.

37

(a) Read Cycle

(b) Write Cycle

Figure 3.6: AXI Protocol R/W Data Transactions

One or more master can start data transaction to multiple slaves with the help of in-

terconnect mechanism between master and slave sides. Since each slave has different

address, data transaction is established with the correct slave and master. General

structure for AXI interconnect is shown in Figure 3.7.

Figure 3.7: General Structure of AXI4 Interconnect

AXI4 interface on both sides can work together even if no interconnect circuit is

used. However, the interconnect is used for addressing between different slaves and

masters. AXI4-Lite on slave side can work with AXI4 on master side through both

38

the interconnect and direct connection. AXI Interconnect provides smooth interop-

erability between AXI4 and AXI4-Lite. On the other hand, direct connection is also

possible by directing unconnected signals to the right way. Considering master side

using AXI4, some important pin names and existence of those pins in slave side cor-

responding to AXI4-Lite is given in Table 3.1.

Table 3.1: AXI4 and AXI4-Lite Pin Names

AXI4 (MASTER) Description Direction AXI4-Lite (SLAVE)

awaddr Address of data to be written → YES

awburst Burst type for write operation → NO

wdata Data of write operation → YES

wlast Current wdata is the last data → NO

wvalid Current wdata is valid → YES

wready Slave is ready to accept data ← YES

WRITE CHANNEL

araddr Address of data to be read → YES

arburst Burst type for read operation → NO

rdata Data of read operation ← YES

rlast Current rdata is the last data ← NO

rvalid Current rdata is valid ← YES

rready Master is ready to accept data → YES

READ CHANNEL

bresp Write Response ← YES

bvalid Current bresp is valid ← YES

bready Master is ready to accept bresp value → YES

rresp Read response ← YES

RESPONSE CHANNEL

Some signals are not supported by AXI4-Lite interface. Reconfigurable block has the

interface of AXI4, but reconfigurable module (RM) can have either AXI4 or AXI4-

Lite interface. If RM has AXI4 interface, there is no change in I/O connections. If

RM has AXI4-Lite interface, non-existent output pin ’rlast’ should be driven by ’1’

since the master side is affected by seeing always ’0’. In addition, non-existent input

pins are handled by software tool not to dangle.

39

AXI4-Stream

AXI4-Stream is not memory-mapped so that it cannot be directly connected to AXI4

interface. A DMA engine can be used to transfer data between streaming and memory-

mapped interfaces. AXI DMA IP block can be added to the design to convert and

transfer data. General I/O pins of a AXI DMA block is shown in Figure 3.8.

Figure 3.8: AXI DMA I/O structure

The control circuit sends the address, direction and length of the data to AXI DMA

IP. If the direction is from read channel to AXI4-Stream, the DMA starts a data trans-

action on read channel. Memory controller takes the address and reads corresponding

values and DMA converts incoming AXI4 signal to AXI4-Stream signal. If the di-

rection is from AXI4-Stream to Write Channel, the DMA takes streaming data and

converts it to memory-mapped data transaction. The memory controller writes the

data to the memory using given address information. If no data comes from AXI4-

Stream, the DMA waits until any transaction starts and does not abort the transaction

until the number of words is equal to the length.

The reconfigurable block takes the input from AXI4-Stream interface in addition to

AXI4. Streaming interface have the pins shown in Table 3.2.

Connecting an IP which have slave AXI4-Stream interface in partially reconfigurable

block eases the development and increase the data transaction throughput.

40

Table 3.2: I/O pins of AXI4-Stream Interface

AXI4-Stream Direction Description

tdata M→ S Data to be transferred

tkeep M→ S Indicates which byte is valuable

tlast M→ S Indicates the last tdata

tvalid M→ S Current tdata is valid

tready S→M Slave is ready to accept tdata

Combining the requirements for I/O interface of execution block model, AXI protocol

provides all solutions for performance and interoperability which a reconfigurable

system requires.

3.4 ICAP Controller Model

ICAP is a primitive which can be added in partially reconfigurable HDL designs for

Xilinx FPGAs. ICAPE2 is the version used in Xilinx 7-Series FPGAs. ICAP stands

for Internal Configuration Access Port and it is used for only partial reconfiguration.

Full reconfiguration cannot be done due to disrupting its input routing with the new

configuration. ICAP primitive can also be used for reading back configuration mem-

ory. It has an 32-bit input and output pins, enable pin, read/write selection pin and

clock pin.

ICAP controller uses ICAPE2 as a submodule and drives the I/O ports with its state

machine. It consumes 57 LUTs, 94 FFs and no BRAM. However, it must be used

with a FIFO which follows the controller and takes the configuration readback data

as input. General structure of ICAP controller is shown in Figure 3.9.

It takes the first input from streaming interface to determine whether it is a write

operation or read operation. For example, if the first data is 0x80000001, it is a read

operation and only one 32-bit data will be read from the output of ICAP primitive.

0x80000001 can be a read request for a configuration register which is one 32-bit

data. If the first data is 0x40000000, it is a write operation and rest of the stream is

41

Figure 3.9: ICAP Controller and ICAPE2 Primitive

configuration data. It does not give a length for input data since the state machine

waits for the tlast signal on AXI4-Stream interface.

ICAP controller converts not-bitswapped bitstream to the format of bit-swapped. If

the configuration bitstream is created with -disablebitswap option, it needs to be con-

verted. Table 3.3 shows bit ordering for bitswapped and not-bitswapped version of

32-bit data in configuration bitstream. 32-bit configuration data is bitswapped and

loaded to the input pin of ICAP primitive.

Table 3.3: Bit Ordering Types of Configuration Data

Not-Bitswapped Bit Ordering

31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0

Bitswapped Bit Ordering

24 25 26 27 28 29 30 31 16 17 18 19 20 21 22 23 8 9 10 11 12 13 14 15 0 1 2 3 4 5 6 7

3.5 Context Saving and Restoring Model

Context-switching operation on a reconfigurable hardware needs context extraction,

bitstream manipulation and context restoration successively as a summary. There

are some other steps which need to be done by the application. In Xilinx 7-Series

Zynq SoCs, there are two internal configuration ports called PCAP and ICAP. Zynq

architecture chooses default configuration port as PCAP but provides a device con-

42

figuration (DevC) library to choose ICAP also from ARM side of the SoC. There is a

PL configuration path in Zynq architecture which is shown in Figure 3.10.

Figure 3.10: PCAP and ICAP Configuration Paths

XDCFG_CTRL_OFFSET register controls the PCAP_PR bit (27th bit) to switch be-

tween PCAP and ICAP [43]. It is selected as 1 after each power-up. This bit should be

selected as 0 to use ICAP hard macro. PCAP_MODE is selected as 1 after power-up.

Therefore, there is no need to change that value.

Clock and reset signals for the reconfigurable block should be managed before read-

ing states back. The clock is driven by 0 while reset is driven by 1. Thus, all FFs

and BRAMs stops at a stable point. Reset should be 1 because AXI protocol uses

active-low reset. This can be done with partial reconfiguration decoupler IP, which

decouples clock and reset from the reconfigurable part by a control signal ‘decouple’.

To capture all states and BRAM contents, there are two options available.

• CAPTUREE2 Primitive:

This primitive is used to capture current states of the flip-flops and latches so

that captured values can be read from ICAP or PCAP interfaces. CAPTUREE2

43

Figure 3.11: CAPTUREE2 Hard Macro

has two inputs which are shown in Figure 3.11. If the CAP input is high and the

CLK has a transition from low-to-high, current state data is captured. Data is

captured every CLK transition by default, but we can disable it with the generic

attribute ONESHOT by setting it to true. In the design, only one data capture

cycle is wanted so that if the second capture event is wanted, CAP input needs to

be low and high again. CAP input is set and reset via a GPIO IP. CAPTUREE2

primitive needs to be instantiated in the top module.

• Sending GCAPTURE Command: Another option to obtain last state of flip-

flops and latches is to use GCAPTURE command register code. FPGA ar-

chitecture incorporates configuration registers to manage reconfiguration and

other FPGA-related options. Command Register (CMD) takes GCAPTURE

command (01010) and does the same capturing event that CAPTUREE2 prim-

itive does. The sequence of the commands and descriptions are shown in [23].

After capturing the last states, configuration memory must be readback to the system

memory. To be able to readback, the user must send a readback request by sending

readback commands to ICAP primitive through ICAP controller. A DMA engine

transfers all readback data to system memory.

Readback can be performed for each CLB state and BRAM content in frame address

intervals. Frame addresses for BRAM blocks can be obtained from logic location file

(.ll) created by Vivado. CLB frame address interval can be obtained from original

partial bitstream file. A separate readback procedure can be applied for CLBs and

BRAMs successively to reduce the time overhead. If whole FPGA surface was read

back, it would take much longer time.

Bitstream manipulation can be done on ARM processor with copying captured values

to the original partial bitstream. Only the related payload intervals must be manipu-

44

Figure 3.12: A general partial bitstream structure and manipulation intervals

lated. Figure 3.12 shows the intervals to be manipulated in a partial bitstream.

Partial bitstream file structure contains two programming payloads for CLBs and

BRAMs. If the original file is reviewed, it can be seen that BRAM contents are

the same for two programming payloads. In case of CLB states, second program-

ming payload block of CLB logics represents desired initial states while the first one

is unknown. This can be verified with the readback of initial configuration without

capturing event.

After manipulation, new configuration bitstream is programmed when the context

restoring is requested. Programming operation consists of only sending the bitstream.

Partially reconfigurable area is initialized with the last states captured. Clock and

reset circuit should be activated again to start the execution. Whole context saving

and restoring procedure can be summarized as below:

45

Step-1: Change configuration path to ICAP.

Step-2: If context saving is required by the system, enable decoupling for the partially

reconfigurable block so that the circuit stops.

Step-3: Toggle CAPTUREE2 primitive or send GCAPTURE command to capture

the states.

Step-4: Send readback commands to the ICAP controller through the DMA engine.

Step-5: Wait for readback data to be copied to the DDR memory. Start bitstream

manipulation using the technique as mentioned in Figure 3.12.

Step-6: Load another hardware task to the reconfigurable block, disable decoupling

and wait for the end of execution or another context-saving.

Step-7: If context restoring is required, enable decoupling for the reconfigurable

block.

Step-8: Send new bitstream data to the ICAP controller through the DMA engine and

wait for the end of partial reconfiguration.

Step-9: Disable decoupling for the reconfigurable module so it can run.

Step-10: Context restoring is done.

46

CHAPTER 4

IMPLEMENTATION

4.1 Base System Architecture

An AXI4 based reconfigurable computing platform is developed to meet the need

for context switching on a partially reconfigurable system. The system is based on

Xilinx Zynq-7000 SoC architecture which is composed of two main parts. It has

dual-core ARM Cortex-A9 processor system (PS) running at 666 MHz and 7-series

programmable logic (PL), namely FPGA side. DDR3 SDRAM and SD card interface

which are used mainly for bitstream storage is connected to the PS side of the system.

Reconfigurable blocks are located at the PL side of the system.

The SoC architecture connects PS and PL sides with AXI protocol and some discrete

lines. Reconfigurable blocks are directed with AXI interface and they are used as

accelerator for the processor (ARM) side in case the processor wastes more time

to execute related task. The SoC board used in implementation is Avnet ZedBoard

which has Xilinx Zynq XC7Z020-1CSG484 SoC on it.

Zynq SoC has an internal clock generator supported by 3 PLLs at PS side which can

be distributed to PL side. These are ARM PLL, I/O PLL and DDR PLL. Those PLLs

use the same clock source which is 33MHz and they are supported by several MUXes

to direct different frequencies for DDR3 SDRAMs, I/Os and ARM side. There is also

one 100MHz clock input at PL side. This clock can be divided, or another clock can

be synthesized by Mixed-Mode Clock Manager (MMCM) and the generated clock

can be used in both PL and PS side to run together synchronously.

47

Figure 4.1: Zynq Architecture

Additionally, the SoC architecture has an SD Card interface connected to the PS side

via Central Interconnect shown in Figure 4.1. Full and partial bitstreams are stored

in an SD Card and can be transferred to DDR memory via DDR controller which

is also connected to Central Interconnect. RS232 (UART) interface is used to send

commands or output debugging results. It works at baud rate of 115200 bits/sec.

1Gbit Ethernet can also be used to receive bitstreams or to take some commands

from network. Internal 16/32bit timers (TTC) are used to count clock cycles needed

for data transactions and computations.

Application Processor Unit (APU) has a DMA facility to support mainly long data

transfers between DDR RAMs and other peripherals which have a connection to Cen-

tral Interconnect such as 32bit General Purpose (GP) AXI4 based master and slave

ports. Another AXI DMA block is added at PL side to support AXI4-Stream inter-

face.

General Zynq SoC interfaces and AXI4 based implementation is shown in Figure

4.2. There are two different interfaces between PS and PL sides in the design. One

of them is 32-bit General Purpose (GP) AXI master ports. There are two separate GP

AXI master ports to manage designs at PL side. Only one of them is used. AXI GP0

port is connected to AXI Interconnect IP. Both AXI4 and AXI4-Lite based slaves

48

Figure 4.2: Base System for HW Tasks Without ICAP Controller

can be connected to AXI Interconnect IP. Obviously, the interconnect works to op-

erate different slaves coherently. When the master wants to transfer input data to a

slave, the data comes from the PS side to PL side via the interconnect and reaches the

slave. Conversely, when the master wants to read output data from a slave, the data

transaction way is the inverse. Since AXI4 has address based architecture, this trans-

action is all done with the help of addressing scheme of registers. The 32-bit address

determines which data is transmitted or received under the supervision of master side.

Second interface between PS and PL is high performance port (HP) which runs in

slave mode since the managing side is the PL for this connection. There are four

HP ports on Zynq in total and only one of them is used. AXI Interconnect IP is also

mandatory for this interface and it has one master memory reading channel connected

to AXI DMA and one master port connected to HP port of Zynq. AXI DMA IP

block manages the traffic from DDR memory to reconfigurable blocks running with

AXI4-Stream interface. AXI4-Stream is completely different from AXI4/AXI4-Lite

interface since it has no addressing signals but basic handshake and data signals.

All data transactions and AXI4 to AXI4-Stream conversion is managed by the DMA

which receives directives by its own control registers through GP master port as a

slave as shown in Figure 4.2. AXI DMA IP block has some customization options

49

which affects the throughput and hence performance. Specifications selected in AXI

DMA IP block is shown in Table 4.1. All address and data width values must be 32-

bit. Width of Buffer Length Register states maximum size of data transfer in bytes as

power of two. It is selected as the highest value. Write channel of the DMA engine is

also selected because it will be used for ICAP controller in the next section.

Table 4.1: AXI DMA IP Block Specifications

Option Selection Value

Enable Scatter/Gather Engine Not Selected -

Enable Micro DMA Not Selected -

Width of Buffer Length Register - 23 bits

Address Width - 32 bits

Enable Read Channel Selected -

Enable Write Channel Selected -

Memory Map Width for R/W Ch. - 32 bits

Stream Data Width for R/W Ch. - 32 bits

Max. Burst Size for R/W Ch. - 256

Allow Unaligned Transfers for R/W Not Selected -

At PL side, there are three reconfigurable blocks which have both AXI4-Stream

(slave) and AXI4 (slave) interfaces to take input data and process the related task.

Therefore, there are two ways on which data is transferred to the slave reconfigurable

blocks. If input data comes from AXI4-Stream interface, valid, ready and last signals

must be switched to related transaction path because stream does not have addressing

scheme. Since there are three computing blocks and one master AXI4-Stream data

sender on DMA side, this single output of DMA must be switched by AXI4-Stream

Switch IP block to one of the computing blocks. SEL pin of AXI4-Stream Switch IP

block is used to select the path and it can be set by GPIO IP block. After choosing

proper data transaction path, task runs and can create output data. When the task

completes or some part of output data is generated before the completion, the output

data is read back to PS side via AXI4 port.

The base system architecture shown in Figure 4.2 cannot be reconfigured through the

ICAP. It can be reconfigured through JTAG or PCAP with a slower throughput. On

the other hand, the readback operation cannot be performed reliably because there

50

is no decoupling circuit in front of partially reconfigurable blocks to decouple clock

and reset signal. Therefore, context-switching is not suitable for the base system and

requires more equipped system components.

4.2 Complete Context-Switchable System Architecture

The overall system must have readback and partial reconfiguration features. To ac-

complish this, some readback and reconfiguration mechanisms are added to the exist-

ing system components to run coherently with the final design.

Partial Reconfiguration (PR) Decoupler IP is recommended for a design which en-

ables partial reconfiguration due to metastability conditions during reconfiguration

[44]. PR Decoupler IP is added in front of each three partial blocks to decouple clock

and reset signals from the partial block. Decoupling of clock and reset is required

when the circuit is wanted to be stopped before readback and to be started after par-

tial reconfiguration operation.

Figure 4.3: Complete Architecture for Context-Switchable PR System on Zynq SoC

51

Since reset logic is active-low in AXI standard, reset should stay at logic ‘1’ in order

not to reset related circuit to the initial state. PR Decoupler IP is managed by one pin

of General Purpose I/O IP (GPIO). It has an input called “decouple” which is con-

nected to one of the outputs of GPIO IP and it has an output called “decouple_status”

which is connected to one of the inputs of GPIO IP. These signals are used to control

and to see the status of decoupling logic. PR Decoupler IP and its connections are

shown in Figure 4.3.

Partial reconfiguration can be performed through both ICAP and PCAP by toggling

PCAP_PR bit as mentioned in Chapter 3. However, when PCAP is used, configura-

tion throughput is slower than the one in ICAP. To increase the configuration speed,

ICAP controller can be added to the design. It controls reading and writing pro-

cedures for ICAPE2 primitive. ICAP controller has both master and slave ports of

AXI4-Stream. It can be connected to the AXI DMA IP like ZyCAP and MiCAP-

Pro [28, 32]. However, reconfigurable blocks have also slave streaming port so that

streaming output of the DMA was connected to AXI4-Stream Switch IP block to

switch related signals in the base system. Since ICAP controller has also streaming

(slave) port, it can be connected to the switching block. In addition, master streaming

output of ICAP controller cannot be directly connected to the DMA. This is because

the streaming output of ICAP controller provides output consistently while the DMA

and the Interconnect have some delays which causes data loss. To compensate the

delay, an AXI4-Stream Data FIFO with size 1024 is added between ICAP controller

and the DMA. The connections for ICAP controller are shown in Figure 4.3

PCAP has also full reconfiguration capability since it is located at PS side. BareMetal

operating system has a driver so that PCAP can be used for full and partial reconfig-

uration. Device configuration driver (XDcfg) is added to the main C file. When full

reconfiguration needed, PCAP is used for switching between different configurations.

To obtain the last state of the circuit when the clock and reset are decoupled from the

partial block, there are two options to save the last logic state (0 or 1). One of them

is to use CAPTUREE2 hard macro and other option is to use GCAPTURE command

sequence to capture current state information. The command sequence can be sent

to ICAP or PCAP interfaces in software. CAPTUREE2 hard macro is added to the

52

design so that it can be triggered with a control signal. GPIO IP is used to control

’CAP’ input of CAPTUREE2 primitive.

Clock distribution of the design is done with two generated clocks from one 100MHz

source as shown in Figure 4.4. MMCM is used to forward 100MHz input to the first

output which drives the circuit running AXI4-Stream interface such as AXI DMA IP,

AXI Interconnect IP for DMA, ICAP controller, AXI4-Stream FIFO and HP pin of

Zynq side. Second output clock is 50MHz and drives AXI4 related circuits which

contains the rest of the circuit. This clock distribution is done due to timing problems

when sourcing all clock inputs with a single 100MHz. This customization depends

on the application specifications.

Figure 4.4: Clock Distribution for Overall Design

Reconfigurable blocks be misguided on AXI4-Stream interface since only one clock

source 50MHz is driven into the block while streaming interface run at 100MHz.

When AXI DMA IP transfers the data on streaming interface with 100MHz, about

half of the streaming data is lost at slave side. To overcome this issue, AXI4-Stream

Clock Converter IP is used to manage input data coming at 100MHz and transfer the

data to the partial blocks at 50MHZ. This IP block uses the technique of toggling

tready signal to decrease the clock frequency. Thus, actual frequency is 50 MHz from

DDR memory to reconfigurable blocks so that the problem of data loss is solved.

CRC checking is required by default when partial or full reconfiguration occurs. CRC

value is appended to the end of bitstream to check bitstream integrity. It can be gen-

erated by Vivado during bitstream generation and the related FPGA/SoC device can

53

generate the same CRC value during configuration. When reconfiguration reaches

to the end of bitstream, the device creates the same CRC value and compares the

two CRCs to finish reconfiguration. Since bitstream manipulation is performed, CRC

value in the partial bitstream must be changed. However, there is no online CRC gen-

eration algorithm provided by Xilinx, but there is an option to disable the CRC check

in Vivado. It is disabled for this design since bitstream manipulation is performed so

that a new CRC value is not required.

4.3 Example Application for Context Saving and Restoring

4.3.1 Reconfigurable Modules

There are two RMs designed to be run on a reconfigurable block. First one is FFT

IP core which takes FFT of a given input. Fast Fourier Transform (FFT) is an algo-

rithm to take Discrete-Time Fourier Transform which shortens the time needed for

the computation by decreasing computational complexity. Xilinx provides an FFT

IP block which can be customized for its size dynamically and statically. It uses the

AXI4-Stream as an interface. There are two stream inputs and one stream output.

One of the inputs is for FFT specifications and the other is for the data. Output stream

is for the FFT result. There are also six single outputs which are used for the status.

General I/O structure and configuration options for FFT IP core is shown in Figure

4.5 and Table 4.2 successively.

Figure 4.5: FFT IP Core I/O Structure

54

Table 4.2: FFT Configurations in FFT IP Core

Configuration Name Value/Option Configuration Name Value/Option

Number of Channels 1 Input Data Width 16

Transform Length 1024 Phase Factor Width 16

Architecture Radix-2 Lite,Burst I/O Memory Option(Data) Block RAM

Data Format Fixed Point Memory Option(Phase Factor) Block RAM

Scaling Scaled Complex Multipliers CLB Logic

Rounding Mode Truncation Butterfly Arithmetic CLB Logic

It has 24-bit configuration port and 32-bit input data port. However, there is only

one port for AXI4-Stream in reconfigurable block. To connect both, a simple state

machine is written to map the input stream to data and configuration channels. In

addition, output of FFT IP core uses AXI4-Stream. Since there is no output port

for AXI4-Stream in reconfigurable block, FFT result can be handled with a FIFO

which has both AXI4-Stream and AXI4-Lite interface. Input of FIFO IP core can

be connected to output of FFT IP core and AXI4-Lite interface can be connected to

reconfigurable AXI4 interface as shown in Figure 4.6.

Figure 4.6: Reconfigurable Module Connections

Another IP core used for context switching is simple AXI4-based register. It contains

four 32-bit registers which can be set with AXI4 data interface. It is used to show a

register read/write operation between context saving and restoring of FFT circuit. It

can be connected through AXI4 interface in reconfigurable block. Figure 4.6 shows

connections between each RM and the reconfigurable block.

55

4.3.2 Context-Saving and Restoring

Context switching flow in the example application is given in Figure 4.7. Context sav-

ing occurs after FFT IP core takes whole input data and starts the calculation. During

execution, clock and reset is decoupled from the partial block. Then, CAPTUREE2

primitive is triggered or GCAPTURE command is sent to ICAP controller to capture

last states of FFs and content of BRAMs. Readback procedure is started for CLB

and BRAM frames successively and readback data is copied to the DDR memory.

Context saving is accomplished by this way.

Figure 4.7: Example Application Context Switching Flow

The procedure between context saving and context restoring starts with partial recon-

figuration for register IP. After partial reconfiguration, the decoupler is disabled so

that the register circuit can run. Then a read/write test runs for registers. If the test is

passed, it means partial reconfiguration is completed successfully. It is already known

that partial reconfiguration is performed without a problem.

Then bitstream manipulation is performed on ARM processor. The method for bit-

stream manipulation is defined in Chapter 3.5. Clock and reset are decoupled again.

New partial bitstream for FFT is used to configure the partial block. When reconfig-

uration is done, clock and reset are activated again. After FFT operation is complete,

output stream sends output data to a FIFO which can be readable by the processor.

If the result is the same with the expected result, then context-saving, bitstream ma-

nipulation and context-restoring works on the system. Figure 4.8 shows that real and

56

imaginary part of the FFT output are the same with the expected result. Expected

result is created with a different project running FFT IP core with the same specifi-

cations but no context-saving and restoring is included. FFT result of the given input

in MATLAB is not the same with the one in the example application since both plat-

forms have different rounding and scaling policies. Therefore, MATLAB result is not

comparable with the output of this system.

(a) Real Part (Example App.) (b) Real Part (Non-CS App.)

(c) Imaginary Part (Example App.) (d) Imaginary Part (Non-CS App.)

Figure 4.8: FFT Results for Example Application and Non-CS Project

Total execution takes 12325 clock cycles for 1024 point FFT according to core spec-

ifications. Figure 4.9 is taken from a debugging circuit and shows how and when

decoupling/coupling is applied and shows that total number of execution cycle is

consistent with the given information. It takes 5925 clock cycles before decoupling

and takes 6400 clock cycles after coupling the clock and reset connections. Sum of

57

(a) Enabling Decoupling

(b) Disabling Decoupling

Figure 4.9: Decoupling Procedure for Clock and Reset of FFT RM

58

these two values is equal to 12325 which is needed clock cycle for FFT calculation by

FFT IP core. This measurement is done to show that FFT operation continues where

it was stopped from. Thus, context saving and restoring and bitstream manipulation

is performed without disrupting running circuit.

4.4 Partitioning Properties

There are three reconfigurable partitions in overall system as mentioned in previous

chapters. Floorplanning is done with manual area selection. Selected areas contain

enough resources which is required for the largest circuit. On the other hand, recon-

figurable partitions can have homogeneous or heterogeneous resources. Figure 4.10

shows where static and reconfigurable areas are located in the example application.

Selected areas are homogeneous and have enough sources to execute FFT computa-

tion. Static areas are shown as orange while the reconfigurable ones are shown as

green. Reconfigurable partitions have a pink rectangular border inside a clock region.

Figure 4.10: Floorplanning For The Example Application

59

ARM side of the SoC is located at top-left of the surface and AXI4-based HP and GP

ports are located at the boundary. Partition pins are shown as small white rectangles

inside each reconfigurable block. Each partition has 1400 slices, 20 RAMB36, 40

RAMB18, 40 DSP blocks. Table 4.3 shows utilization values for FFT example and

other reconfigurable modules which can fit into those reconfigurable partitions.

Table 4.3: Utilization for Reconfigurable Modules

Reconf. Module Name #SLICE #RAMB36 #RAMB18 #DSP

FFT 729(52%) 1(5%) 4(10%) 0(0%)

4x32-bit Register 127(9%) 0(0%) 0(0%) 0(0%)

Greybox (empty block) 111(8%) 0(0%) 0(0%) 0(0%)

FFT module and register IP are partially reconfigurable for this platform. None of

them includes DSP resources because they would not be preemptable if they include

DSP resources. Greybox indicates an empty partition which is useful for power saving

policies. Each reconfigurable module is implemented for all three partitions. There

are 3x3=9 partial bitstream files and each has the same size. The size does not de-

pend on the utilization rates, but partition location and size. Table 4.4 shows full and

partial bitstream sizes in bytes for .BIT and .BIN files. There is an extra textual in-

formation header in .BIT file in comparison to .BIN file. A reconfigurable block has

roughly 20% of total resources according to bitstream sizes. Since the partitions are

homogeneous, the values are equal to each other.

Table 4.4: Bitstream Sizes for Full and Partial Designs

Type .BIT (bytes) .BIN (bytes)

Full 4,045,663 4,045,564

Partial 799,676 799,564

60

CHAPTER 5

EVALUATION AND TEST RESULTS

5.1 Measurement Environment and Tools

Vivado 2017.4 and its SDK tool is used for measurements. They are both provided

by Xilinx. On Vivado, a hardware logic analyzer is added to the design to measure

delays and clock cycles. SDK provides a BareMetal operating system with debugging

options. All hardware drivers are included in SDK. Throughput measurements are

done via an internal timer running on ARM processor. The accuracy of the timer is

confirmed with a counter running on FPGA side.

5.2 Throughput Measurements and Evaluations

Zynq SoC, a hybrid reconfigurable system, can execute both software and hard-

ware tasks concurrently with an operating system running on ARM processor. It

can increase the system performance by utilizing reconfigurable hardware with true-

multitasking while managing software tasks on the processor. When a task preemp-

tion is required on hardware, it requires saving the circuit and reconfiguring it again.

However, to load the circuit onto the hardware, a new bitstream must be created for

the circuit to continue where it was saved from. This creation is performed by ma-

nipulating the bitstream which requires extra time. As a result, there are three timing

requirements in hardware which needs to be evaluated. These are context-saving,

bitstream manipulation and context-restoring time.

During context saving and restoring, ICAP controller is used with 100 MHz clock.

ICAP has 32-bit interface so that at each rising edge of the clock, four bytes are

61

loaded into the ICAP. All throughput values are measured for long write/read cycles.

The formula for calculation of each throughput is given as;

Throughput =
Number of Bytes

Elapsed T ime

5.2.1 Context-Saving Time Evaluation

Context-saving requires the following time-consuming operations;

• Decoupling of clock and reset circuit is done roughly in 40 clock cycles with

software overhead. GPIO IP is loaded with a value in software which toggles

decoupling circuit. 50 MHz clock is used to control decoupler, therefore, it

lasts 800ns.

• Capturing states of FFs and BRAM contents can be performed by CAPTUREE2

primitive. If it is controlled with the GPIO IP, it takes the same time with de-

coupling logic. If it is controlled on hardware, it takes only 1 clock cycle. If

GCAPTURE command is used, sending procedure is measured as roughly 7us

with software overhead.

• Readback commands are sent two times. First one is for CLB frames and the

second one is for BRAM frames. Each throughput is measured as 367.3 MB/s

including software overheads. If software overhead is not included, it has 381.4

MB/s throughput which is nearly equivalent to theoretical value.

Considering software overhead in these measurements, total time consumption for a

partial bitstream can be calculated. A configuration memory contains 353,500 bytes

as CLB and BRAM data and readback commands are 1,272 bytes while the through-

put is 367.3 MB/s. Dividing number of bytes to the speed of readback gives 921 µs.

Decoupling and capturing procedure takes approximately 1 µs when CAPTUREE2 is

controlled on hardware. Thus, total time for reading configuration memory to DDR

memory is 922 µs.

There are other controllers used in context saving applications. PCAP can be used

in readback without consuming any resource on FPGA. However, the throughput is

62

lower than DMA-based ICAP controllers. FaRM works on Virtex-5 FPGA through a

PLB bus. It has 95 MB/s throughput. MiCAP-Pro has the nearest value since it has

the same DMA-based architecture but there are I/O buffers in front of ICAP primitive

which causes lower throughput. Comparison of the throughput with other context

saving applications is given in Table 5.1.

Table 5.1: Throughput Comparison for Context Saving Applications

Source Cont. Name Throughput

[12] PCAP 145 MB/s

[32] MiCAP-Pro 272 MB/s

[38] FaRM 95 MB/s

This Work ICAP Controller 367.3 MB/s

While using PCAP option, 32-bit internal configuration data is loaded to a FIFO

before saving on DDR memory. AXI protocol is used for the transaction and AXI-

PCAP bridge in PS side reads the FIFO and directs the data to the DDR memory

controller [27]. MiCAP-Pro uses a DMA which is located at PL side which directs

the configuration data to the DDR memory controller via an HP port of Zynq [32].

FaRM uses two dedicated state machines and FIFO structures in front of the ICAP

primitive. Reading and writing channels uses the different clock frequencies [38].

ICAP controller in this work uses an analogous architecture to MiCAP-Pro. The

difference between our ICAP controller and MiCAP-Pro is how the FIFO is used

for readback. MiCAP-Pro waits for the FIFO to be full before forwarding to the

DDR memory. Our controller uses a FIFO which has AXI4-Stream slave and master

interfaces and it does not wait to be full.

5.2.2 Bitstream Manipulation Time Evaluation

Bitstream manipulation is performed by reading a value from DDR memory and writ-

ing in an appropriate way to another DDR memory address. The address information

depends on the size of partial bitstream and location of reconfigurable partition. Bit-

stream manipulation throughput is measured as 46 MB/s. It contains reading CLB

and BRAM values from DDR memory and writing CLB data to one memory interval

63

and BRAM data to two memory intervals because of partial bitstream architecture. It

takes about 7.3 ms when 353,500 bytes are manipulated.

It is not appropriate to compare different platforms for bitstream manipulation since

there can be many options/algorithms to copy or manipulate data independently. Ta-

ble 5.2 is just to show that there are other works performing manipulation.

Table 5.2: Throughput Comparison for Bitstream Manipulation

Source Manip. Platform Throughput

[40] Pentium-4 CPU 304 KB/s

[41] ARM Cortex-A9 N/A, 94 µs - CLB, 229 µs - BRAM

This Work ARM Cortex-A9 46 MB/s

5.2.3 Context-Restoring Time Evaluation

Reconfiguration throughput is measured for many reconfigurable systems since it is

seen as a bottleneck compared to run time of hardware tasks. DMA-assisted ICAP

controller reduces the time needed for context-restoring. Partial bitstream size for

this system is 799,564 bytes and the throughput is measured as 380.1 MB/s including

software overhead. It is higher than the one in context-saving since number of data

transaction is one while it is three for context-saving so that software overhead is

higher. Calculating the time, context-restoring requires 2 ms in this system. Time

consumption due to decoupler can be ignored since it is much smaller than 2 ms.

Table 5.3: Context-Restoring/Partial Reconfiguration Throughput Comparison

Source Controller Name Throughput Software Overhead

[26] HWICAP 14.6 MB/s Included

[27] PCAP 126.8 MB/s Included

[32] MiCAP-Pro 272 MB/s Included

[26] BRAM_HWICAP 371.4 MB/s Unknown

[28] ZyCAP 381.46 MB/s (Th.) Not Included

This Work ICAP Controller 380.1 MB/s Included

Table 5.3 gives the throughput for some configuration controllers. HWICAP is a FIFO

based and lightweight ICAP controller. It cannot be used in a system which needs low

64

reconfiguration time. ZyCAP and MiCAP-Pro are DMA-based ICAP controllers. The

ICAP controller in this work depends on the same DMA-based architecture. It gives

a good performance compared to others. BRAM_HWICAP has also high throughput

but needs internal BRAMs.

All configuration controllers can be implemented on Zynq SoCs. Each has a con-

siderable configuration speed except the Xilinx’s HWICAP IP. ZyCAP is the based

system for our ICAP controller but there is an extra state machine which determines

the writing or reading mode.

5.3 Complete System Evaluation

Time overhead for whole process is sum of context saving, bitstream manipulation

and context restoring. For a partial bitstream with size 799,564 bytes, it takes about

10.2 ms. Overall throughput is calculated as 74 MB/s. Obviously, bitstream manip-

ulation is a bottleneck for this system. If bitstream manipulation is performed by

overlapping other tasks so that its overhead is assumed to be zero, overall throughput

would increase to 263 MB/s. Besides, it takes only 2.9 ms.

65

66

CHAPTER 6

CONCLUSION AND FUTURE WORKS

6.1 Contributions

A reconfigurable SoC hardware model is chosen in this thesis work to establish a sys-

tem which is capable of context saving, bitstream manipulation and context restoring

on hardware. While doing these on hardware, flexibility of a GPP is considered. Tasks

are divided as software and hardware tasks but the management of hardware tasks is

given to a software task like a supervisor. In designer’s perspective, total development

time is reduced to only software development time. Pre-implemented hardware tasks

are loaded as if a new instruction set is assigned to GPP.

A commercial SoC Xilinx Zynq-7000 is selected to work on. Its configuration in-

terfaces are analyzed and architectural background is reviewed for context saving

applications. PCAP and ICAP interfaces are used to reconfigure the SoC. Some con-

figuration controllers are analyzed to have lower overhead. It has been observed that

ICAP controllers which use DMA engine have higher throughput than other alterna-

tives because there is no bottleneck circuit which delays data transfer of configuration

bitstream. A DMA-based ICAP controller is designed to be used in both reading and

writing configuration data. It gives better performance than similar DMA-based so-

lutions [28, 32] in terms of throughput and readback capability.

Context saving applications on reconfigurable hardware require preemption of a task

when a higher priority task arrives. A preemptable hardware task model is proposed.

The execution of the task starts under the supervision of a software task and context

saving of running circuit is performed via ICAP controller. Partial bitstream structure

is analyzed and both CLB states and BRAM contents are changed in DDR memory

67

to manipulate the bitstream. In task model, when context restoring is required, partial

reconfiguration of the new bitstream is performed for the task to execute where it was

saved from.

AXI protocol is used in many digital designs as a standart. A reconfigurable block

model is designed to have both AXI4/AXI4-Lite and AXI4-Stream interfaces as slave

side. An advantage of AXI protocol is to use available both commercial or free AXI4-

based IPs. When a new AXI4-based IP is released for developers, it can be added to

the design within a short synthesis time. Second advantage of AXI protocol is to give

designer an addressable structure in which read/write data transactions are done via

an address. Thus, each reconfigurable block has an address.

An FFT computation is demonstrated as an example on the designed system. Context

saving, bitstream manipulation and context restoring is performed reliably with a

good throughput. It is observed that the result for the given input is the same with

the expected result. It shows that dynamic context switching is feasible on partially

reconfigurable FPGAs.

6.2 Future Works

A hardware task can be saved from a reconfigurable partition on condition that it will

be restored to the same partition. Since each partition has different circuit design due

to routing and pin placement, hardware tasks cannot be relocated directly to any other

available partition. Vivado provides logic locations of FF states and BRAM contents

inside bitstream file. If it is possible to manipulate those bit locations, feasibility

study for the relocation of a task can be conducted in Xilinx 7-Series FPGAs.

Bitsream manipulation overhead can be decreased with different architectures and

algorithms because it depends on how ARM processor architecture is suitable to copy

a word from one address to another address.

This complete system runs with the BareMetal OS. It can be used with one of Linux

distributions to manage tasks and context switching on hardware.

68

REFERENCES

[1] F. Say and C. F. Bazlamaçcı, “A Reconfigurable Computing Platform for Real

Time Embedded Applications,” Microprocess. Microsyst., pp. 13–32, 2012.

[2] G. Sklivanitis, A. Gannon, S. Batalama, and D. Pados, “Addressing Next-

generation Wireless Challenges with Commercial Software-defined Radio Plat-

forms,” IEEE Communications Magazine, vol. 54, pp. 59–67, 2016.

[3] S. Gopinath, D. N. B. Balamurugan, and D. R. Harikumar, “Partial Reconfigu-

ration using FPGA – A Review,” in International Conference on Innovations in

Engineering and Technology, pp. 139–144, 2016.

[4] S. Donthi and R. L. Haggard, “A survey of dynamically reconfigurable FPGA

devices,” in Proceedings of the 35th Southeastern Symposium on System Theory,

pp. 422–426, 2003.

[5] K. Vipin and S. A. Fahmy, “FPGA Dynamic and Partial Reconfiguration: A

Survey of Architectures, Methods, and Applications,” ACM Comput. Surv.,

pp. 72:1–72:39, 2018.

[6] “Difference-Based Partial Reconfiguration, XAPP290.” https:

//www.xilinx.com/support/documentation/application_

notes/xapp290.pdf. Accessed: 2019-08-07.

[7] C. W. Yu, J. Lamoureux, S. J. E. Wilton, P. H. W. Leong, and W. Luk,

“The Coarse-Grained / Fine-Grained Logic Interface in FPGAs with Embed-

ded Floating-Point Arithmetic Units,” in 2008 4th Southern Conference on Pro-

grammable Logic, pp. 63–68, 2008.

[8] A. K. Jain, Architecture centric coarse-grained FPGA overlays. PhD thesis,

Nanyang Technological University, 2017.

[9] Y. Birk and E. Fiksman, “Dynamic reconfiguration architectures for multi-

69

https://www.xilinx.com/support/documentation/application_notes/xapp290.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp290.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp290.pdf

context FPGAs,” Computers and Electrical Engineering, vol. 35, pp. 878–903,

2009.

[10] “Correcting Single-Event Upsets Through Virtex Partial Config-

uration, XAPP216.” https://www.xilinx.com/support/

documentation/application_notes/xapp216.pdf. Accessed:

2019-08-07.

[11] H. Michel, A. Belger, T. Lange, B. Fiethe, and H. Michalik, “Read back scrub-

bing for SRAM FPGAs in a data processing unit for space instruments,” 2015

NASA/ESA Conference on Adaptive Hardware and Systems (AHS), pp. 1–8,

2015.

[12] A. Stoddard, A. Gruwell, P. Zabriskie, and M. Wirthlin, “High-speed PCAP

configuration scrubbing on Zynq-7000 All Programmable SoCs,” in 26th In-

ternational Conference on Field Programmable Logic and Applications (FPL),

pp. 1–8, 2016.

[13] “Configuration Readback Capture in UltraScale FPGAs, XAPP1230.” https:

//www.xilinx.com/support/documentation/application_

notes/xapp1230-configuration-readback-capture.pdf.

Accessed: 2019-08-07.

[14] P. Deshmukh, A. Kurup, and S. V Kulkarni, “Effective use of Multi-Core Ar-

chitecture through Multi-Threading towards Computation Intensive Signal Pro-

cessing Applications,” International Journal of Computer Applications, pp. 6–9,

2015.

[15] H. Walder, C. Steiger, and M. Platzner, “Fast online task placement on FPGAs:

free space partitioning and 2D-hashing,” in Proceedings International Parallel

and Distributed Processing Symposium, pp. 178–185, 2003.

[16] Qingxu Deng, Shuisheng Wei, Hai Xu, Yu Han, and Ge Yu, “A Reconfigurable

RTOS with HW/SW Co-scheduling for SOPC,” in Second International Con-

ference on Embedded Software and Systems (ICESS’05), pp. 116–121, 2005.

[17] “Vivado Design Suite User Guide Partial Reconfiguration, UG909.” https:

//www.xilinx.com/support/documentation/sw_manuals/

70

https://www.xilinx.com/support/documentation/application_notes/xapp216.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp216.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1230-configuration-readback-capture.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1230-configuration-readback-capture.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1230-configuration-readback-capture.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug909-vivado-partial-reconfiguration.pdf

xilinx2017_1/ug909-vivado-partial-reconfiguration.

pdf. Accessed: 2019-08-07.

[18] V. Kizheppatt and S. Fahmy, “Architecture-Aware Reconfiguration-Centric

Floorplanning for Partial Reconfiguration,” in 8th International Symposium

on Reconfigurable Computing: Architectures, Tools and Applications, ARC,

pp. 13–25, 2012.

[19] H. Kalte and M. Porrmann, “Context saving and restoring for multitasking in re-

configurable systems,” International Conference on Field Programmable Logic

and Applications., pp. 223–228, 2005.

[20] S. M. Trimberger, “Three Ages of FPGAs: A Retrospective on the First Thirty

Years of FPGA Technology,” Proceedings of the IEEE, pp. 318–331, 2015.

[21] “7 Series FPGAs Configurable Logic Block User Guide, UG474.”

https://www.xilinx.com/support/documentation/user_

guides/ug474_7Series_CLB.pdf. Accessed: 2019-08-07.

[22] “7 Series FPGAs Data Sheet: Overview, DS180.” https://www.xilinx.

com/support/documentation/data_sheets/ds180_7Series_

Overview.pdf. Accessed: 2019-08-07.

[23] “7 Series FPGAs Configuration User Guide, UG470.” https:

//www.xilinx.com/support/documentation/user_guides/

ug470_7Series_Config.pdf. Accessed: 2019-08-07.

[24] S. Saha, A. Sarkar, and A. Chakrabarti, “Spatio-Temporal Scheduling of Pre-

emptive Real-Time Tasks on Partially Reconfigurable Systems,” ACM Trans.

Des. Autom. Electron. Syst., pp. 1–26, July 2017.

[25] M. Liu, Z. Lu, W. Kuehn, and A. Jantsch, “Reducing FPGA Reconfiguration

Time Overhead using Virtual Configurations,” in ReCoSoC, pp. 149–152, 2010.

[26] M. Liu, W. Kuehn, Z. Lu, and A. Jantsch, “Run-time Partial Reconfiguration

speed investigation and architectural design space exploration,” 2009 Interna-

tional Conference on Field Programmable Logic and Applications, pp. 498–

502, 2009.

71

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug909-vivado-partial-reconfiguration.pdf
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/user_guides/ug474_7Series_CLB.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/data_sheets/ds180_7Series_Overview.pdf
https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf
https://www.xilinx.com/support/documentation/user_guides/ug470_7Series_Config.pdf

[27] “Partial Reconfiguration of a Hardware Accelerator on Zynq-7000

All Programmable SoC Devices, XAPP1159.” https://www.

xilinx.com/support/documentation/application_notes/

xapp1159-partial-reconfig-hw-accelerator-zynq-7000.

pdf. Accessed: 2019-08-07.

[28] K. Vipin and S. A. Fahmy, “ZyCAP: Efficient Partial Reconfiguration Manage-

ment on the Xilinx Zynq,” IEEE Embedded Systems Letters, pp. 41–44, 2014.

[29] K. Jozwik, H. Tomiyama, S. Honda, and H. Takada, “A Novel Mechanism for

Effective Hardware Task Preemption in Dynamically Reconfigurable Systems,”

in 2010 International Conference on Field Programmable Logic and Applica-

tions, pp. 352–355, 2010.

[30] S. Liu, R. N. Pittman, and A. Forin, “Minimizing partial reconfiguration over-

head with fully streaming DMA engines and intelligent ICAP controller,” in

FPGA, pp. 292–292, 2009.

[31] K. Vipin and S. A. Fahmy, “A high speed open source controller for FPGA Par-

tial Reconfiguration,” in 2012 International Conference on Field-Programmable

Technology, pp. 61–66, 2012.

[32] A. Kulkarni and D. Stroobandt, “MiCAP-Pro: a high speed custom reconfig-

uration controller for Dynamic Circuit Specialization,” Design Automation for

Embedded Systems, pp. 341–359, 2016.

[33] S. G. Hansen, D. Koch, and J. Torresen, “High Speed Partial Run-Time Re-

configuration Using Enhanced ICAP Hard Macro,” 2011 IEEE International

Symposium on Parallel and Distributed Processing Workshops and Phd Forum,

pp. 174–180, 2011.

[34] S. Jovanovic, C. Tanougast, and S. Weber, “A Hardware Preemptive Multitask-

ing Mechanism Based on Scan-path Register Structure for FPGA-based Recon-

figurable Systems,” in Second NASA/ESA Conference on Adaptive Hardware

and Systems (AHS 2007), pp. 358–364, 2007.

[35] D. Koch, C. Haubelt, and J. Teich, “Efficient Hardware Checkpointing: Con-

cepts, Overhead Analysis, and Implementation,” in Proceedings of the 2007

72

https://www.xilinx.com/support/documentation/application_notes/xapp1159-partial-reconfig-hw-accelerator-zynq-7000.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1159-partial-reconfig-hw-accelerator-zynq-7000.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1159-partial-reconfig-hw-accelerator-zynq-7000.pdf
https://www.xilinx.com/support/documentation/application_notes/xapp1159-partial-reconfig-hw-accelerator-zynq-7000.pdf

ACM/SIGDA 15th International Symposium on Field Programmable Gate Ar-

rays, pp. 188–196, 2007.

[36] M. Gokhale, P. Graham, E. Johnson, N. Rollins, and M. Wirthlin, “Dynamic

reconfiguration for management of radiation-induced faults in FPGAs,” in 18th

International Parallel and Distributed Processing Symposium, 2004. Proceed-

ings., p. 145, 2004.

[37] “Vivado Design Suite User Guide Programming and Debug-

ging, UG908.” https://www.xilinx.com/support/

documentation/sw_manuals/xilinx2017_1/

ug908-vivado-programming-debugging.pdf. Accessed: 2019-08-

07.

[38] F. Duhem, F. Muller, and P. Lorenzini, “FaRM: Fast Reconfiguration Manager

for Reducing Reconfiguration Time Overhead on FPGA,” in Reconfigurable

Computing: Architectures, Tools and Applications, pp. 253–260, 2011.

[39] A. Morales-Villanueva and A. Gordon-Ross, “On-chip Context Save and Re-

store of Hardware Tasks on Partially Reconfigurable FPGAs,” in 2013 IEEE

21st Annual International Symposium on Field-Programmable Custom Com-

puting Machines, pp. 61–64, 2013.

[40] C. J. Morford, “BitMaT - Bitstream Manipulation Tool for Xilinx FPGAs,” Mas-

ter’s thesis, Virginia Polytechnic Institute and State University, 2005.

[41] K. Dang Pham, E. Horta, and D. Koch, “BITMAN: A tool and API for FPGA

bitstream manipulations,” in Design, Automation Test in Europe Conference Ex-

hibition (DATE), 2017, pp. 894–897, 2017.

[42] “Vivado Design Suite AXI Reference Guide, UG1037.”

https://www.xilinx.com/support/documentation/

ip_documentation/axi_ref_guide/latest/

ug1037-vivado-axi-reference-guide.pdf. Accessed: 2019-

08-07.

[43] “Zynq-7000 SoC Technical Reference Manual, UG585.” https:

73

https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/support/documentation/sw_manuals/xilinx2017_1/ug908-vivado-programming-debugging.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/support/documentation/ip_documentation/axi_ref_guide/latest/ug1037-vivado-axi-reference-guide.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

//www.xilinx.com/support/documentation/user_guides/

ug585-Zynq-7000-TRM.pdf. Accessed: 2019-08-07.

[44] M. Pagani, A. Balsini, A. Biondi, M. Marinoni, and G. Buttazzo, “A Linux-

based support for developing real-time applications on heterogeneous platforms

with dynamic FPGA reconfiguration,” in 2017 30th IEEE International System-

on-Chip Conference (SOCC), pp. 96–101, 2017.

74

https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf
https://www.xilinx.com/support/documentation/user_guides/ug585-Zynq-7000-TRM.pdf

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	Scope of the Thesis
	Motivation
	Contributions
	Thesis Organization

	BACKGROUND AND RELATED WORK
	Concepts of Reconfigurable Computing
	Static and Dynamic Configuration
	Partial Reconfiguration
	Coarse-Grained and Fine-Grained Architectures
	Single and Multi-Context Configuration
	Off-chip and Context Configuration
	Readback and Readback Capture

	Design Considerations For Floorplanning
	Architecture of Xilinx 7-Series FPGAs and SoCs
	Bitstream Structure
	Concepts in Software Tool
	Context Switching
	Context Restoring Time
	Context Saving Time
	Bitstream Manipulation Time

	BEHAVIORAL MODEL OF THE CONTEXT SWITCHING SYSTEM
	Operating System Model
	Task Model
	Reconfigurable Block Model
	ICAP Controller Model
	Context Saving and Restoring Model

	IMPLEMENTATION
	Base System Architecture
	Complete Context-Switchable System Architecture
	Example Application for Context Saving and Restoring
	Reconfigurable Modules
	Context-Saving and Restoring

	Partitioning Properties

	EVALUATION AND TEST RESULTS
	Measurement Environment and Tools
	Throughput Measurements and Evaluations
	Context-Saving Time Evaluation
	Bitstream Manipulation Time Evaluation
	Context-Restoring Time Evaluation

	Complete System Evaluation

	CONCLUSION AND FUTURE WORKS
	Contributions
	Future Works

	REFERENCES

