
 

 

 

 

A FULLY DECENTRALIZED FRAMEWORK FOR SECURELY SHARING 

DIGITAL CONTENT 

 

 

 

 

A THESIS SUBMITTED TO 

THE GRADUATE SCHOOL OF INFORMATICS OF 

THE MIDDLE EAST TECHNICAL UNIVERSITY 

 

BY 

 

 

AHMET SERHAT DEMİR 

 

 

 

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS  

FOR  

THE DEGREE OF MASTER OF SCIENCE 

IN 

THE DEPARTMENT OF CYBER SECURITY 

 

 

 

 

 

 

 

 
SEPTEMBER 2019 

 



 

 

 



  

 

Approval of the thesis:  
 

 

 

 

A FULLY DECENTRALIZED FRAMEWORK FOR SECURELY SHARING 

DIGITAL CONTENT 
 

 

Submitted by AHMET SERHAT DEMİR in partial fulfillment of the requirements for the 

degree of Doctor of Philosophy/Master of Science in Cyber Security Department, Middle 

East Technical University by, 

 

 

Prof. Dr. Deniz Zeyrek Bozşahin 

Dean, Graduate School of Informatics 

 

Assoc. Prof. Dr. Aysu Betin Can 

Head of Department, Cyber Security 

 

Asst. Prof. Dr. Aybar Can Acar 

Supervisor, Health Informatics Dept., METU 

 

Dr. Ali Arifoğlu 

Co-Supervisor, Information Systems Dept., METU 

 

 

 

Examining Committee Members: 

 

Prof. Dr. Ali Aydın Selçuk 

Computer Engineering Dept., TOBB ETÜ 

 

Asst. Prof. Dr. Aybar Can Acar 

Health Informatics Dept., METU 

 

Assoc. Prof. Dr. Banu Günel Kılıç 

Information Systems Dept., METU 

 

 

 

 

 

 

Date:                          

 

 



 



iii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

I hereby declare that all information in this document has been obtained and 

presented in accordance with academic rules and ethical conduct. I also declare 

that, as required by these rules and conduct, I have fully cited and referenced all 

material and results that are not original to this work. 
 

 

 

 

 

 

Name, Last Name :   Ahmet Serhat Demir 
 

 

 

Signature               :       

  



iv 

 

 

 

 

 

ABSTRACT 

 

A FULLY DECENTRALIZED FRAMEWORK FOR SECURELY SHARING 

DIGITAL CONTENT 

 

Demir, Ahmet Serhat 

MSc., Department of Cyber Security 

Supervisor: Asst. Prof. Dr. Aybar Can Acar 

Co-Supervisor: Dr. Ali Arifoğlu 

 

September 2019, 97 pages 

 

 

Blockchain is a secure, immutable, and distributed public ledger that stores 

transactional data. It enables information transfer without the need for a trusted third 

party via its decentralized consensus mechanism. Besides finance, blockchain 

technology has the potential to change several industries, through smart contracts and 

decentralized applications. This thesis explores using blockchain technology, smart 

contracts, and Ethereum Web 3.0 stack for secure information and file sharing on a 

fully decentralized architecture. We aim to remove the need for a central authority in 

all layers of the application, and thus provide an alternative to the drawbacks of 

centralized content exchange platforms. Accordingly, a proof-of-concept 

decentralized application is designed. This design is implemented in the Ethereum 

ecosystem using blockchain for the immutable distributed ledger, Ether for cash 

transfers, and smart contracts for application logic. Since data storage in blockchain is 

expensive, Swarm is used as a decentralized reliable content storage system. 

Nevertheless, permissionless systems in the Ethereum ecosystem lack necessary data 

privacy, which causes risk for secure information exchange. In order to provide access 

control for sensitive content delivery without the need for a pre-shared secret, public 

key encryption is used. Also, to enable fair exchange between separate untrusted 

rational parties, a double escrow functionality is implemented as a model of fairness 

via incentive with deposit penalties. According to the validation and evaluation of our 

proof-of-concept, we show that Ethereum Web 3.0 stack is applicable to securely 

sharing and exchanging digital content without relying on a trusted third party.  

 

Keywords: blockchain, smart contract, decentralized application, digital content 

sharing, fair exchange   



v 

 

 

 

 

 

ÖZ 

 

TAMAMEN MERKEZİ OLMAYAN GÜVENLİ DİJİTAL İÇERİK PAYLAŞIM 

SİSTEMİ 

 

Demir, Ahmet Serhat 

Yüksek Lisans, Siber Güvenlik Bölümü 

Tez Yöneticisi: Dr. Öğr. Üyesi Aybar Can Acar 

    Ortak Tez Yöneticisi: Öğr. Görevlisi Ali Arifoğlu 

 

Eylül 2019, 97 sayfa 

 

 

Blokzincir, merkezi olmayan konsensüs özelliği sayesinde güvenilir bir üçünü tarafa 

ihtiyaç duymadan bilgi aktarımı sağlayan, işlem verilerinin kaydedildiği, güvenli, 

değişmez, dağıtık bir genel defterdir. Akıllı sözleşmeler ve merkezi olmayan 

uygulamalar ile blokzincir teknolojisi finans sektörünün yanı sıra, diğer birçok sektörü 

de derinden etkileme potansiyeline sahiptir. Bu tez, blokzincir teknolojisi, akıllı 

sözleşme ve Ethereum Web 3.0 yığınının tamamen merkezi olmayan bir mimaride 

dosya ve bilgi paylaşımı için kullanılabilirliğini incelemektedir. Sürecin tüm 

katmanlarında merkezi otorite ihtiyacını ve bu sayede merkezi içerik paylaşım 

platformlarının sakıncalarını ortadan kaldırmak amaçlanmıştır. Bu doğrultuda, kavram 

kanıtlama amaçlı bir merkezi olmayan uygulama tasarlanmıştır. Bu tasarım Ethereum 

ekosistemi içinde, değişmez dağıtık defter olarak blokzincir, para transferi için Ether, 

uygulama mantığı için de akıllı sözleşmeler kullanılarak geliştirilmiştir. Blokzincirde 

veri kaydetmek pahalı bir işlem olduğundan, merkezi olmayan güvenilir depolama 

sistemi Swarm kullanılmıştır. Bununla beraber, izin gerektirmeyen Ethereum ortamı 

gerekli veri mahremiyetini sağlamadığından, güvenli bilgi alışverişi için risk 

oluşturmaktadır. Güvenli bir içerik paylaşımı için erişim denetimi sağlamak amacıyla, 

genel anahtar şifreleme sistemlerinden yararlanılmıştır. Ayrıca, birbirlerine güven 

duymayan akılcı taraflar arasında adil bir alışveriş sağlamak amacıyla iki taraflı 

emanet özelliği eklenmiştir. Geliştirilen kavram kanıtlama uygulaması için 

gerçekleştirdiğimiz testlere ve yapılan değerlendirmelere göre, Ethereum Web 3.0 

yığınının güvenilir üçüncü bir kişiye ihtiyaç duymadan güvenli bir şekilde dijital içerik 

paylaşımı ve alışverişini mümkün kıldığı gösterilmiştir. 

 

Anahtar Sözcükler: blokzincir, akıllı sözleşme, merkezi olmayan uygulama, dijital 

içerik paylaşımı, adil alışveriş  



vi 

 

 

 

 

 

 

 

 

 

 

DEDICATION 

 

 

To My Family 

  



vii 

 

 

 

 

 

ACKNOWLEDGMENTS 

 

 

First of all, I would like to express my gratitude to my supervisor Asst. Prof. Dr. Aybar 

Can Acar for his guidance and advices throughout each phase of the thesis. Dr. Acar 

has been a positive and supportive mentor during my study. 

I would like to acknowledge my co-supervisor Dr. Ali Arifoğlu for his support and 

inspiration in development of innovative technologies. 

I would also like to thank my girlfriend and all my friends for being supportive to me.  

Finally, I would like to thank to my family for always being there for me. I am most 

grateful to them. Without them, this work would not have been possible. Thank you. 

 

 

 

  



viii 

 

 

 

 

 

TABLE OF CONTENTS 

 

ABSTRACT ................................................................................................................ iv 

ÖZ ................................................................................................................................. v 

DEDICATION ............................................................................................................ vi 

ACKNOWLEDGMENTS .......................................................................................... vii 

TABLE OF CONTENTS .......................................................................................... viii 

LIST OF TABLES ...................................................................................................... xi 

LIST OF FIGURES .................................................................................................... xii 

LIST OF ABBREVIATIONS ................................................................................... xiii 

CHAPTERS 

1. INTRODUCTION ................................................................................................ 1 

1.1. Problem Statement ......................................................................................... 1 

1.2. Motivation ..................................................................................................... 2 

1.3. Purpose and Research Questions ................................................................... 4 

1.4. Thesis Outline ................................................................................................ 6 

2. LITERATURE REVIEW ..................................................................................... 7 

2.1. Decentralized Digital Content Publishing and Sharing ................................. 7 

2.2. Fair Exchange of Digital Content .................................................................. 9 

3. BACKGROUND ................................................................................................ 11 

3.1. Blockchain ................................................................................................... 11 

3.1.1. Consensus ............................................................................................. 14 

3.1.2. Decentralization ................................................................................... 15 

3.1.3. Benefits ................................................................................................. 15 

3.1.4. Limitations and Scalability ................................................................... 16 

3.1.5. Potential Vulnerabilities and Risks ...................................................... 17 

3.1.6. Blockchain Types ................................................................................. 18 

3.2. Ethereum ...................................................................................................... 19 

3.2.1. Accounts ............................................................................................... 20 

3.2.2. Messages, Transactions, and Calls ....................................................... 21 

3.2.3. Gas ........................................................................................................ 22 



ix 

 

3.3. Smart Contracts ........................................................................................... 23 

3.3.1. Solidity ................................................................................................. 25 

3.3.2. Vyper .................................................................................................... 25 

3.3.3. Smart Contract Security ....................................................................... 26 

3.4. Privacy ......................................................................................................... 27 

3.5. Ethereum Web 3.0 Stack (Decentralized Web) ........................................... 28 

3.5.1. Decentralized Apps (DApps) ............................................................... 29 

3.5.2. DApp Browsers (Metamask) ............................................................... 30 

3.5.3. Decantralized Data Storage (Swarm) ................................................... 31 

3.5.4. Ethereum Name Service ....................................................................... 32 

3.5.5. Message Communications (Whisper) .................................................. 33 

3.5.6. Data Feeds (Oracle).............................................................................. 33 

4. SYSTEM DESIGN AND ARCHITECTURE ................................................... 35 

4.1. Software Requirements ............................................................................... 36 

4.1.1. User Roles ............................................................................................ 36 

4.1.2. Functional Requirments ....................................................................... 36 

4.1.3. Non-functional Requirements .............................................................. 37 

4.1.4. Use Cases ............................................................................................. 38 

4.2. Data Management ........................................................................................ 39 

4.2.1. Data Confidentiality ............................................................................. 39 

4.2.2. Data Storage ......................................................................................... 40 

4.3. Smart Contracts ........................................................................................... 42 

4.3.1. Reasonably Fair Exchange via Double Escrow Smart Contract .......... 42 

4.3.2. Management Contract .......................................................................... 48 

4.4. Final System Architecture ........................................................................... 49 

5. IMPLEMENTATION AND VALIDATION .................................................... 53 

5.1. Development Environment .......................................................................... 53 

5.2. Swarm Usage ............................................................................................... 55 

5.3. Smart Contract Implementation .................................................................. 56 

5.4. Front-end Implementation ........................................................................... 56 

5.5. A Test Scenario ........................................................................................... 60 

6. EVALUATION AND DISCUSSION ............................................................... 67 

6.1. Security ........................................................................................................ 67 

6.1.1. Smart Contract Security ....................................................................... 67 

6.1.2. Private Key Security ............................................................................ 68 

6.1.3. Confidentiality ..................................................................................... 68 



x 

 

6.1.4. Integrity ................................................................................................ 69 

6.1.5. Availability ........................................................................................... 70 

6.1.6. Access Control ..................................................................................... 70 

6.2. Privacy ......................................................................................................... 71 

6.3. Costs ............................................................................................................ 71 

6.4. Scalability .................................................................................................... 74 

6.5. Usability....................................................................................................... 75 

6.6. Performance ................................................................................................. 76 

7. CONCLUSION AND FUTURE DIRECTIONS ............................................... 77 

7.1. Contribution ................................................................................................. 79 

7.2. Limitations and Future Work ...................................................................... 79 

7.3. Future Research ........................................................................................... 80 

REFERENCES ........................................................................................................... 83 

APPENDIX ................................................................................................................ 93 

 

  



xi 

 

 

 

 

 

LIST OF TABLES 

 

Table 3.1: Comparison of blockchain networks ........................................................ 19 
Table 3.2: Message Components ............................................................................... 21 

Table 3.3: Transaction Components .......................................................................... 21 
Table 3.4: Transactions vs Calls ................................................................................ 22 
Table 3.5: Operation Costs in EVM ........................................................................... 23 

Table 3.6: Taxonomy of vulnerabilities in Ethereum smart contracts ....................... 27 
Table 4.1: State variables of the smart contract ......................................................... 41 
Table 6.1: Costs of Ethereum operations in ETH and USD ...................................... 73 
Table 6.2: Costs of actions of the DApp in ETH and USD ....................................... 74 

  



xii 

 

 

 

 

 

LIST OF FIGURES 

 

Figure 3.1: Simplified Blockchain ............................................................................. 12 
Figure 3.2: Transactions Hashed in a Merkle Tree .................................................... 13 

Figure 3.3: Solidity Bytecode and ABI ...................................................................... 25 
Figure 3.4: Web 3.0 Abstracted Stack ........................................................................ 29 
Figure 3.5: Simplified DApp architecture .................................................................. 30 

Figure 3.6: MetaMask User Interface ........................................................................ 31 
Figure 3.7: Swarm File Storage Process .................................................................... 32 
Figure 4.1: Use Case diagram of the Content Sharing DApp .................................... 38 
Figure 4.2: Seller Flowchart ....................................................................................... 47 

Figure 4.3: Buyer Flowchart ...................................................................................... 48 
Figure 4.4: Management Contract .............................................................................. 49 

Figure 4.5: Final System Architecture ....................................................................... 50 
Figure 5.1: Ganache graphical user interface ............................................................. 54 
Figure 5.2: Swarm Web Interface .............................................................................. 55 

Figure 5.3: DApp MetaMask Authorization .............................................................. 60 

Figure 5.4: Content Sharing DApp initial interface ................................................... 61 
Figure 5.5: Put a content on sale in DApp ................................................................. 61 
Figure 5.6: OpenPGP key pair generation ................................................................. 62 

Figure 5.7: Buy a digital content ................................................................................ 63 
Figure 5.8: Deliver secret in DApp ............................................................................ 64 

Figure 5.9: Confirm received in DApp ...................................................................... 65 
Figure 5.10: Exchange is finalized ............................................................................. 66 

Figure 5.11: Contract balances after the exchange .................................................... 66 
Figure 6.1: Ethereum Gas market metrics .................................................................. 72 
Figure 6.2: Scalability Trilemma in Blockchain ........................................................ 75 

 

  



xiii 

 

 

 

 

 

LIST OF ABBREVIATIONS 

 

ABI Application Binary Interface 

DApp Decentralized Application 

DASP Decentralized Application Security Project 

DNS Domain Name Service 

DoS Denial of Service 

ECC Elliptic-curve Cryptography 

ECDSA Elliptic Curve Digital Signature Algorithm 

ENS Ethereum Name Service 

EOA Externally Owned Accounts 

EVM Ethereum Virtual Machine 

FR Functional Requirement 

GDPR General Data Protection Regulation 

ICO Initial Coin Offering 

IoT Internet of Things 

IPFS Interplanetary File System 

NFR Non-functional Requirement 

OWASP Open Web Application Security Project 

PKC Public Key Cryptography 

PoC Proof of Concept 

PoS Proof-of-Stake 

PoW Proof-of-Work 

TTP Trusted third party 
  

 

  



xiv 

 

 



1 

 

 

 

 

 

CHAPTER 1 

 

 

1. INTRODUCTION 

 

 

 

Blockchain technology has become one of the most popular and significant 

technologies recently, along with Artificial Intelligence (AI) and Internet of Things 

(IoT). Blockchain is basically an immutable, decentralized, and cryptographically 

secure distributed database (or “ledger”). When the Bitcoin [1] blockchain was first 

introduced, cryptocurrencies were seen as the only innovation blockchain technology 

would bring, and consequently would challenge only the current financial system. 

However, with the introduction of Ethereum [2] as a smart contract and decentralized 

application platform, the true potential of blockchain technology was realized. 

Accordingly, blockchain systems can function as a way to transfer any “value” across 

the internet [3]. Using smart contracts, which are self-executing computer programs 

that runs on the blockchain network, blockchain technology has made it possible to 

enable business transformations in several domains. The main innovation that 

blockchain technology offers is eliminating the necessity of trusted third parties 

(TTPs) and centralized authorities that exist in the conventional business models. This 

is made possible with decentralized consensus mechanisms.  

Blockchain provides a new type of internet infrastructure based on decentralized 

applications that operate on a distributed network, and maintains a source of 

information sharing [4]. Also, using blockchain (permissionless or permissioned) is 

suitable when it is desired that numerous mutually mistrusting parties be able to 

interact and change the state of the system, without the need for a TTP [5]. This is 

achieved because instead of a central authority, blockchain relies on network 

consensus for decision making and value exchange. It follows that, blockchain 

technology can be used to enable separate parties share and exchange information 

without relying on a TTP, in a decentralized way. 

1.1. Problem Statement 

The privacy of the blockchain data is not addressed in permissionless blockchains, 

such as Bitcoin and Ethereum. As anybody can join the network, and the data is 

available to any peer of the network. This yields a problem when users want to share 

or exchange sensitive information or digital content. As well as sharing digital content, 

since these blockchains also include built-in cryptocurrencies, it is logical to use these 

currencies to sell digital content too, like an e-commerce system. Naturally, the 



2 

 

aforementioned privacy issue becomes a problem to be solved in order ensure that only 

the buyers can access the content that is for sale. We used public key cryptography 

(PKC) as an access control mechanism and solve the lack of privacy of the sensitive 

information in the blockchain. 

Publishing digital content is often achieved via simple mechanisms. However, 

exchanging value in the internet, especially in the field of e-commerce where users 

exchange goods for money, requires more complex protocols. Such protocols should 

satisfy goods atomicity [6],  where a seller get paid only when the buyer receives the 

good, and a buyer receives the good only when the seller gets paid. This refers the 

fairness of the exchange in e-commerce. According to Asokan [7], an exchange is fair 

when either both parties get the item they expect, or none of them gets any additional 

information at the end of the protocol. This requirement of fairness yields a problem 

called fair exchange between multi parties in distributed systems. Relying on TTPs is 

a common solution to this problem, and many conventional exchange and e-commerce 

platforms are dependent on TTPs to ensure fairness. Actually, it was shown that fair 

exchange protocols cannot completely assure strong fairness without TTPs [42]. Two 

party digital content exchange using blockchain and cryptocurrencies can be 

considered as a subset of fair exchange protocols in electronic commerce. Instead of a 

conventional TTP, we have utilized a smart contract as an escrow service acting as a 

trustless third party in order to provide a close approximation of fairness. This is 

achieved by incentivizing rational pairs to act honestly via predefined deposits, which 

they would lose if they act maliciously.  

Storing optional information or unnecessary data in blockchain is inefficient in several 

ways. First, since every node in the blockchain stores blockchain data, the data would 

be replicated to all the nodes, which would inflate the blockchain data size. Second, 

due to the limitation on the block size in blockchain, files have to be split and 

reassembled off-chain [8]. Third, since read/write operations in blockchain cost Ether, 

i.e., actual money, it becomes very expensive to store large data in the blockchain. As 

a result of these, an off-chain storage system is suitable while dealing with digital 

content in the blockchain. In order to maintain network consensus and 

decentralization, it makes sense to use immutable decentralized storage systems such 

as IPFS, and Swarm, instead of a local or cloud storage. 

By taking these issues in to consideration, this study explores the usability of 

blockchain technology and smart contracts for securely sharing and fairly exchanging 

digital content in distributed storage with a built-in payment system on a fully 

decentralized architecture where the parties do not need to trust each other. For this 

purpose, a proof of concept (PoC) was designed, implemented, tested, and evaluated.  

1.2. Motivation 

Starting from the 2000s, especially with the advance of social media, the internet has 

been considered more than just a source of information, but a space where people can 

contribute, publish, and share digital content using platforms such as blogs, social 

media, and media exchange platforms [9]. Digital content publishing and sharing over 



3 

 

the internet has become a giant business with millions of contributors and worth 

billions of dollars. This content can be any digitally stored information such as audio, 

image, text, software, or video files. There are numerous platforms in the internet, such 

as YouTube, Facebook, Shutterstock, Soundcloud, Amazon KDP, etc., where 

publishers share, exchange, or sell their digital content. Currently all of these platforms 

operate on a centralized scheme and act as, or rely on a TTP between the users to 

achieve fairness. On the other hand, centralization of this business model running on 

the internet for the purpose of sharing digital content has its own drawbacks, hence it 

makes sense to decentralize the digital content sharing process without relying on a 

TTP. In this section we address these issues: 

• Privacy issues with the centralized content sharing platforms.  

Currently centralized platforms or marketplaces for content publishing, 

sharing, exchanging are controlled by a few giant companies. Enormous 

amount of personal data is stored in data servers of these oligopolies. As a 

result of very long privacy policies and user agreements, most of the time users 

lose control of their own data once the data is stored in the servers. Often users 

are required to give detailed personal information such as credit card 

information, address, company name etc., before they are accepted to a content 

publishing platform, which raises privacy issues. Although there are recently 

emerged laws to protect the privacy of the users, such as EU General Data 

Protection Regulation (GDPR), the logs of the database transactions are still 

managed centrally by this companies, which can raise questions about the 

immutability of the logs.  

Users trust their data with these platforms but sometimes their data are given 

to yet another party. For example Facebook shared personally identifiable 

information of millions of its users with Cambridge Analytica which raised 

many debates [10]. Besides, there is always a risk of the information on the 

servers being hacked, as occurred in several data breaches in the last decade 

[11].  

• Monetary issues with the centralized content sharing platforms.  

Digital content exchange platforms can be free to use, or charge money for 

membership, or charge commission for digital content trades. When the 

platform is free to use, there is a renowned marketing expression: if you are 

not paying for the product, then you are the product. Most of the time users 

lose control and ownership of their content when they upload it to the internet, 

either receive a small amount of money or usually not paid at all, besides they 

need to deal with annoying advertisements. For the platforms which provide 

secure content trading, they get a cut out of the price from both the sellers and 

buyers. Because of this, sellers receive less money than they deserve, and 

buyers pay more money than they actually should. On top of this, content 

publishers have to wait a few days until they receive their money. 

In content publishing platforms where the digital asset is for sale, as an addition 

to the platform, financial institutions act as another TTP for the actual payment. 



4 

 

Current financial systems are centralized, and prone to risks of centralized 

architectures. They validate, safeguard, and preserve transactions between 

users. As a result, and to compensate for some unavoidable fraud, transaction 

costs are high [12]. In addition to this, international, or large money transfers 

take longer time. Also, since the banking system is a permissioned system, 

financial institutions control who can use the financial system. 

• Issues with the centralized web architecture. 

Current web services are very much centralized and built on the client/server 

architecture. Clients access web services and digital content over servers such 

as web servers, DNS servers, cloud servers, Content Distribution Servers 

(CDN). However, this architecture forms a single point of failure, and is 

vulnerable to denial-of-service (DoS) attacks. For example, Amazon Web 

Services (AWS) outages occurred in 2015 and 2017, which took 5 and 4 hours 

respectively, made several web services inaccessible and resulted with 

hundreds of millions of dollars’ worth of loss [13] [14]. Also in 2016, a 

distributed DoS (DDoS) attack on Dyn, one of the most important DNS 

providers, broke several DNS services and affected access to several 

significant web services such as Twitter, Spotify, Netflix, etc. [15]. 

Considering the number of online devices and with the increase of network 

bandwidth, also sometimes by amplifying the packets,  serious DDoS attacks 

of even now more than hundreds of gigabytes per second traffic rates [16] are 

important threats to centralized architectures. Another drawback of the 

centralized architecture of the web services is censorship. There are many 

countries censoring several web services in their countries, because of political, 

military, social, security, or even copyright protection reasons [17]–[19]. 

1.3. Purpose and Research Questions 

This study aims to explore the usability of blockchain for secure content sharing. 

Blockchain technology and peer-to-peer networks promise solutions to inherited 

problems of conventional content sharing platforms due to their centralized nature, as 

well as the necessity of TTPs for validating transactions between users that do not 

necessarily know or trust each other, for both information and currency exchange. In 

this study we have explored the solutions for the problems stated in Problem 

Statement.  

The goal of this thesis is to design, implement, and evaluate a decentralized application 

on the Ethereum blockchain which enables a channel for securely sharing digital 

content between parties that do not necessarily trust each other. The solution would 

remove TTPs, obtain a decentralized, immutable, secure, autonomous data storage and 

transaction environment with built-in currency on a permissionless distributed 

network underpinned by blockchain technology.  



5 

 

In order to reach the goal of the study, and remedy the issues with the centralized 

architecture that depends on TTPs, following research questions are addressed during 

the study: 

• Is it possible to make a secure content exchange between separate parties with 

payment or contract, without the need for a TTP?  

We have investigated Ethereum blockchain technology as the underlying 

platform for proposed application, and smart contracts as the application logic 

for the secure digital content sharing decentralized application.  

• How can we combine blockchain and storage of large data in a fully 

decentralized way?  

Storing data in blockchain is inefficient, so it is necessary to find a suitable 

way to store the large data off-chain. For this reason, we explored decentralized 

storage systems and how to integrate them with Ethereum blockchain and 

smart contracts. 

• How can we securely share content on a fully decentralized software and 

network architecture in a permissionless blockchain?  

Ethereum blockchain is a permissionless and open platform, and it cannot 

ensure the privacy of the transactions and smart contracts. Likewise, the data 

in public decentralized storages are accessible by anybody. Thus, extra 

measures need to be taken in order to provide content confidentiality. 

Accordingly, we made use of PKC. 

• How can we ensure fair exchange between separated users that do not trust 

each other, without a conventional TTP?  

We explored smart contracts to implement as a trustless mediator with double 

escrow service to achieve a reasonable approximate solution for the fair 

exchange problem. 

The supplementary goal of this study is to address security and privacy issues of our 

proposed solution, as well as other non-functional requirements. In order to share 

content in a secure way the system should be secure, our implementation should 

provide confidentiality, integrity, availability of the data along with an access control 

mechanism. Privacy, and other aspects such as costs, scalability, usability, and 

performance of the proposed framework should be addressed as well. Accordingly, 

detailed evaluations are performed regarding these concerns, capped with discussions 

to reflect our point of view. 



6 

 

1.4. Thesis Outline 

The rest of this thesis is organized as follows. Chapter 2 covers the literature review 

conducted for this study. Chapter 3 outlines the necessary background information 

about blockchain technology and Ethereum ecosystem. Chapter 4 explores the 

solutions to issues stated in Section 1.1, accordingly system design and architecture of 

the proof of concept is sketched in this chapter. We also highlight the rationale behind 

the choice of technology for the design of this study. Chapter 5 deals with 

implementation of the designed application and its validation with a test scenario. 

Chapter 6 evaluates this application of the proof of concept regarding the its design 

requirements. We also elaborate and further survey the topic specific to each non-

functional requirement. In Chapter 7, conclusion, limitations of work, and future 

directions are discussed.  



7 

 

 

 

 

 

CHAPTER 2 

 

 

2. LITERATURE REVIEW 

 

 

 

Blockchain has the potential to be a “disruptive” technology which makes it possible 

to build new business models with a built-in economic foundation. Using blockchain 

provides benefits such as decentralization, security, immutability, transparency. 

Additionally, it makes it possible to get rid of the necessity for the TTPs which act as 

an intermediary between users. Consequently, information and content exchange over 

blockchain has many benefits such as integrity, availability, and non-repudiation. 

There are several academic studies and industrial practices that attempt to adapt 

blockchain and distributed architectures for sharing digital value and content in a 

secure way. 

In the context of this thesis, there are four technical aspects of sharing digital content. 

(i) Using blockchain and smart contracts to avoid TTP, (ii) utilizing decentralized 

storage system to avoid costly on-chain storage or centralized off-chain storage 

systems, (iii) enforcing access control to mitigate the lack of data privacy in Ethereum, 

and (iv) developing a fair exchange protocol to protect separated untrusted parties 

against fraud.  

A permissionless blockchain, in this case Ethereum, is a transparent system. Although 

the transactions are cryptographically signed, blockchain data is stored in plain text 

and accessible to anyone due to nature of the system. This aspect of Ethereum raises 

privacy issues, for sensitive data in particular. In order to securely store the data in 

blockchain and provide privacy, extra measures need to be carried out as discussed in 

several works [20] [21] [22]. Cryptographically secure obfuscation [22], zero-

knowledge proofs [23], using one-time accounts [23], ring signatures [24], encryption 

of the transactions [25], and trusted execution environments  [26] are examples of 

approaches for this privacy issue. 

2.1. Decentralized Digital Content Publishing and Sharing 

There are several studies utilizing blockchains to develop a framework for sharing 

digital content, mostly in healthcare, in which the contents are medical records or 

personal health information files. However, the approaches in these studies are not as 

decentralized as this study aims for, and depends on some centralized authority at some 

point. They utilize at least one of: permissioned blockchain [27] [28] [29] [30] [31], 



8 

 

centralized data storage (cloud or local storage) [32] [33] [28] [29] [30], and 

centralized back-end logic (no smart contracts) [27] [29] [31]. The reason is that, in 

healthcare the data is very sensitive, there are many roles, there are various data types, 

and there are regulations. Hence, a high level of decentralization is harder to achieve. 

The author in [34]  aimed to provide a system for secure data sharing between 

providers and electronic health record (EHR) systems using blockchain technology. 

The proposed solution addresses the protection of sensitive health information in 

Ethereum blockchain with a containerized application that secure enables 

cryptographic algorithms, smart contracts and a distributed architecture for 

microservices. For the storage and sharing of large files, IPFS decentralized storage 

system was included in the implementation. The study has claimed the necessity of 

combining permissioned blockchain and cryptography to achieve integrity, security, 

and portability of user data. Accordingly, different roles have been assigned for users 

with different access levels in a permissioned Ethereum instance. Proposed system 

addresses the security and privacy issues while sharing EHR data, even so it relies on 

a web application layer for the management, and the design or implementation details 

are not discussed. 

In order to have a more refined review, we further limited our interest into more 

decentralized study approaches for content sharing which use permissionless 

blockchains (i.e., Ethereum) as the distributed ledger, decentralized data storage 

systems (i.e., IPFS, Swarm) for content storage, and smart contracts (decentralized 

applications) for decentralized back-end logic. 

Cui et al. [35] addressed the problems with access revocation in blockchain based file 

sharing when multiple users have access to the same encrypted file. Access revocation 

was enabled by combining blockchain with proxy re-encryption, by which a scalable 

key management scheme was provided. For access revocation, a re-encryption proxy 

re-encrypted the data while ensuring the access of the authorized users. The proposed 

system architecture has data owners, data users, miners with different roles, which 

suggests it requires a permissioned blockchain. The paper does not address the details 

of the implementation, for example the storage provider and back-end logic are not 

discussed. Nonetheless, authors addressed the access revocation issue with encrypted 

storage in blockchain, and promised the technical details and an implementation of a 

prototype as a future work, so a more decentralized approach could be assured. 

The author in [36] contemplated the suitability of using blockchain technology to 

enable secure information sharing between multi-agency groups in crime and security 

domain. In order to do so, a decentralized application was developed using Ethereum 

blockchain, smart contracts, and a web interface, and IPFS as the off-chain storage. To 

share data, sender requires recipient’s public address, so that she can set this account 

as the only authorized account in the smart contract. Sender and recipient are also 

required to agree on a secret key so that the confidentiality of the data is ensured with 

symmetric-key cryptography. The drawback of this application is that it requires 

several pieces of pre-shared information such as the recipient public address and smart 

contract address, as well as an agreement on a secret key before transaction through 

an off-chain channel.  



9 

 

Wang et al. [37] explored data storage and sharing issues in decentralized storage 

systems, and proposed a solution which utilizes IPFS, Ethereum blockchain, smart 

contracts, and attribute-based encryption (ABE) technologies. ABE is a type of PKC 

which can define fine-grained access control by using different attributes on deriving 

keys for the decryption process. ABE schemes conventionally use Private Key 

Generators (PKG) which act as a trusted party. For the sake of decentralization, the 

authors set up a system to distribute secret keys, and eliminate the trusted PKG. Smart 

contracts were used to enable keyword search function on the ciphertext of the 

decentralized systems. In the proposed framework, data owner and data user derive a 

shared key using Diffie-Hellman key exchange scheme, and this shared key is used for 

encrypting/decrypting the transaction data where secret key is stored. However, the 

channel for Diffie-Hellman key exchange is not described. 

Using blockchain technology is also particularly beneficial for publishing digital 

content with author royalty and protecting intellectual properties of the creators. When 

the author saves her digital asset in the blockchain with a transaction she signed with 

her private key, it will be recorded with a timestamp in the blockchain. This means the 

blockchain acts as a notary and provides authenticity of the content, such as books, 

music, movie, etc. Most of the time, saving the hash of the digital content is a suitable 

way so that it would be cheaper to store, and authenticity of the content is still provable. 

Digital content created with collaboration, such as scientific research papers are also 

suitable for publication in the blockchain. In [38], authors implemented and evaluated 

a use case of this using Ethereum blockchain, smart contracts, and IPFS. 

2.2. Fair Exchange of Digital Content 

Fair exchange is a well-studied subject in distributed computations. A fair exchange 

protocol enables two actors to exchange items in a way that, either each player gets 

other’s item or neither of them does [39]. Francez [40] identified several fairness 

notions in distributed systems with concurrency. Asokan et al. [41] described a generic 

protocol for fair exchange of electronic goods, such as confidential data, public data, 

or payment information. In his thesis, Asokan [7] adopted fairness to the protocols in 

electronic commerce where items of value are exchanged. In this context, an exchange 

is fair only if at the end of the exchange, either both parties receive the value they 

expect, or neither party obtains any extra useful information [7]. 

In order to provide fair exchange, many conventional systems and protocol 

propositions rely on TTPs. As a matter of fact, Pagnia and Gärtner [42] showed that it 

is impossible for a fair exchange protocol to completely assure strong fairness without 

a TTP. A TTP can be utilized either online or offline depending on the activeness of 

the TTP in the protocol. An online TTP is always active during the exchange, whereas 

offline TTP is active only in the case of fraud [43]. Thus, online TTPs bring overhead 

to the communication and raise privacy issues.  

Protocols that assume parties would act honestly most of the time, and has an offline 

TTP which becomes active by a call triggered by one of the parties in case of a dispute 

are called optimistic fair exchange protocols [41] [44] [45] [39] [46] [47]. Even though 



10 

 

TTP is not used in optimistic protocols as long as both parties do not misbehave, 

relying on a TTP still has its drawbacks; such as honesty, reliability, and privacy 

issues. Distributing the trust to multiple arbiters is studied as a proposition to mitigate 

these drawbacks [46] [48]. Escrow services, which act as the TTP, are proposed as an 

arbiter in a peer-to-peer file sharing system with an optimistic protocol for efficiency 

[47].  

Using blockchain and cryptocurrencies, it is shown that fair exchange can be achieved 

in a trustless manner [49]. Advance of the blockchain technology changed existing fair 

exchange schemes, and instead of a conventional TTP or escrow, it is possible to 

utilize secure and  decentralized escrow protocols as a trustless third party [50] which 

releases money when the digital content is delivered. Smart contracts can take the role 

of the TTPs [51] to achieve fair exchange between parties that do not trust each other, 

similar to optimistic fair exchange protocols, but without suffering its drawbacks.  

Enforcing monetary penalties to malicious users or mediators [47] [50] is proposed as 

an approach for fair exchange protocols. Likewise, there are protocols that enforce 

parties to deposit predefined amount of money as an incentive to achieve fair 

exchange. [52] [53] [54] [55]. Zero knowledge cryptography, i.e., zk-SNARKs can be 

also used to achieve fair exchange of sold goods in Bitcoin network, by utilizing Zero 

Knowledge Contingent Payment protocols [49]. Nevertheless, this is a 

cryptographically expensive approach and proposed due to the limitations of Bitcoin 

scripting language. Ethereum smart contracts can be used as the trustless mediator as 

proposed in [51]. 

 

 

  



11 

 

 

 

 

 

CHAPTER 3 

 

 

3. BACKGROUND 

 

 

 

Since the internet and social media era took over, people started to realize the potential 

risk of centralization through power groups like nation states and giant internet 

companies and how these organizations, if corrupted, can manipulate financial 

instruments and digital data obtained from the people. Although the demand for 

decentralization of authority got stronger, due to technical limitations, it was not fully 

realized until decentralized technologies like blockchain emerged. Blockchain first 

started to use as the transaction ledger of the Bitcoin network and made 

decentralization really feasible for business. 

3.1. Blockchain 

Blockchain is a distributed ledger made from a list of records which are called blocks 

linked using cryptography in a peer-to-peer network. The idea of a cryptographically 

secure chain of blocks was introduced by cryptographers Stuart Haber and W. Scott 

Stornetta in 1991, as an attempt to create an immutable document timestamp records 

using cryptographic hash functions [56]. They even improved the efficiency and 

reliability of their digital timestamping service utilizing Merkle trees allowing multiple 

documents to be stored in a block [57]. Nevertheless, the blockchain as we know it 

was first introduced by Satoshi Nakamoto as the immutable transaction ledger of 

Bitcoin, the first and most famous cryptocurrency. Although Nakamoto, whose true 

identity is still unknown, did use block and chain terms separately, blockchain term 

got popular later on. 

Despite the fact that digital currency term is not new, Bitcoin was the first deregulated 

and decentralized cryptocurrency in the market. In his/her famous paper [1] Nakamoto 

came up with this decentralized and peer-to-peer digital currency which can make 

possible to directly send and receive digital cash from one party to another without the 

need for any financial organizations in the middle. Proposing a solution to the double-

spending problem using peer-to-peer networks, hence eliminating the need for a TTP 

was the remarkable innovation in the digital cash systems. This could be achieved by 

timestamping the transactions and hashing the transaction blocks in to a chain utilizing 

proof-of-work and as a result producing an immutable ledger. 



12 

 

Blockchain provides a distributed ledger which is cryptographically secure and runs 

on a peer-to-peer network. It is append-only, and updatable only with the consensus 

among peers, which makes it immutable (extremely hard to change, and cannot be 

changed without notice). Parallel to this characteristics, and Zheng et al.’s work [58], 

we can list the key features of the blockchain as follows:  

• Decentralization: there is no third party, authority is reached with consensus 

among peers. 

• Immutability: once the transactions are recorded in the ledger, the ledger cannot 

be changed without notice. 

• Anonymity: transactions can be made with easily generated public addresses 

and asymmetric cryptography. The identity can be found using other internet 

means, but in the blockchain there is only addresses and keys, hence no 

personal information is stored. 

• Auditability: all the peers can have the blockchain data so it is publicly 

available, and all the transactions can be traced back to the first block, aka 

genesis block. 

 

Figure 3.1: Simplified Blockchain 

As a typical blockchain implementation, a Bitcoin transaction is executed as follows. 

Alice and Bob both have a pair of public and private keys, both users are uniquely 

identified in the network through their public addresses and PKC. Alice initiates a 

transaction to Bob over the blockchain network. This transaction message is 

broadcasted to the network participants, which are called nodes. These unconfirmed 

transactions stay in a pool called the transaction pool until they are verified and 

validated. These transactions are validated by miners and recorded in the public ledger 

with a process called mining. The miners create a block with the transactions they 

validated, and Merkle root of the hashes of these transactions is stored in the block 

header. For the miner to add a block to the blockchain she needs to solve a complex 

mathematical problem with the hash of the head of that particular block, which is 

called the proof-of-work. After a certain number of nodes reach a consensus, the new 



13 

 

block which contains these new confirmed transactions is immutably chained to the 

blockchain with cryptographic hash functions and the miner is rewarded as an 

incentive. Figure 3.1 illustrates a segment of a blockchain, and how the blocks are 

chained to each other in a simplified way.  

Merkle root hashes are the root node of Merkle trees, which are a fundamental part of 

the blockchains for immutability assurance. Theoretically, it is possible to make a 

blockchain without Merkle trees, however this would yield scalability issues [59]. This 

is because Merkle trees are used to derive a single hash from a chunk of transactions 

to store in the block, instead of storing all the hashes of each transaction in the block 

separately. As depicted in Figure 3.2 [1], Merkle trees are sort of a binary tree, in which 

all the leaf nodes are hashes of transactions and other nodes are hashes of previous 

hash pairs. As a result of this architecture, even if a single transaction data changes, 

the root hash changes, which assures the immutability of all the transactions in the 

blocks with a single hash.  

 

 

Figure 3.2: Transactions Hashed in a Merkle Tree 

Blockchain technology gained enormous recognition with the introduction of Bitcoin, 

but in 2013 when Vitalik Buterin [2] came up with the idea of implementing smart 

contracts in a blockchain network he named Ethereum, the era of second generation 

blockchain technology has started by presenting and offering far more opportunities 

with the possibility to change the Web itself.  Ethereum platform pioneers the next 

generation of decentralized applications in a discretionary distributed ecosystem as an 

attempt to achieve a whole new Web architecture. 

In addition to Bitcoin and Ethereum, there exist numerous other blockchain networks 

which use other approaches to achieve basic characteristics of the blockchain 

technology and even change some of them, or offer even more features. For example 

Zcash is a digital currency concentrated on protecting the privacy of its users, which 

uses zk-SNARKS, a form of zero knowledge cryptography to achieve this [60]. 

Monero claims to provides secure, private and untraceable blockchain experience [61]. 

There are also several other blockchain platforms supporting smart contracts and 

offering infrastructure for decentralized applications, such as EOS and Quorum.  



14 

 

Blockchain technology provides a transparent and verifiable architecture that has the 

potential to alter the traditional way of exchanging cash and assets, enforcing 

contracts, and sharing data and information. Financial applications with a peer-to-peer 

cash payment system are the first adaptations of the blockchain technology in the real 

world, which is natural because of the way the system provided a new approach to 

currencies and digital currencies as cryptocurrencies like Bitcoin and Ether. Later with 

the support of scripts, more complex applications like value and property exchange, 

and smart contracts have been developed. With recent advancements in the ecosystems 

such as Ethereum platform, blockchain applications in the areas like government, 

health, science, industry, IoT, notary, data storage and many more have been 

actualized. Swan [62] described these three stages as Blockchain 1.0, Blockchain 2.0 

and Blockchain 3.0 respectively. 

There are also cloud providers such as Amazon, IBM, Microsoft and Google that 

provides cloud services for blockchain technology, i.e. blockchain-as-a-service 

(BaaS). For example an Ethereum modification JP Morgan’s Quorum, R3 Corda, and 

Hyperledger technologies are available in Azure cloud provider [63]. Amazon Web 

Services (AWS) supports Ethereum and Hyperledger Fabric blockchains [64]. Google 

offers a click-to-deploy Ethereum service [65].  

A few key points of blockchain technology, which inherently applies our further study 

in this thesis, are described as follows. 

3.1.1. Consensus 

In blockchain, a new block is permanently added to the blockchain using a consensus 

protocol, which ensures all the distributed nodes synchronize and store the same order 

of transactions and blocks, consequently provides integrity of the blockchain. Since 

the immutability and auditability is ensured by consensus algorithms, the security of 

the consensus model is very essential for the security of the blockchain. These 

algorithms have to be resilient to node failures and other possible network problems 

due to nature of distributed networks, and especially they have to deal with selfish and 

malicious nodes [66]. Wang et al. [67] highlighted the necessity of incentive 

mechanisms in permissionless blockchain networks as a common characteristic. There 

are several consensus algorithms proposed for different kinds of blockchains, but we 

are going to mention two major permissionless and distributed consensus algorithms 

for permissionless blockchains.  

Bitcoin uses the consensus algorithm which Nakamoto [1] called Proof-of-Work 

(PoW). The nodes who validate transactions in the blockchain network are called 

miners. These miners solve a very hard mathematical problem with their CPUs or 

GPUs. The miner who solves the problem shares the solution with other mining nodes 

and these nodes confirm this solution and add the new block to their own copy of the 

blockchain and eventually the longest chain is accepted as the blockchain. The miner 

whose solution is accepted earns Bitcoin as a reward. Ethereum is also using PoW as 

its consensus mechanism. 



15 

 

The concept of Proof-of-Stake (PoS) is proposed as a modified PoW scheme in order 

to increase the scalability and reduce the huge electricity consumption of processing 

units due to exhaustive hash queries [67]. In PoS, nodes cannot freely join validation 

process, instead only nodes that made a significant security deposit, which is called 

stake, can validate the transactions in Ethereum blockchain [66]. Ethereum is planning 

to switch to a variant of PoS scheme called Casper with its major Serenity upgrade. In 

Casper, the stake holders have the vote right according to their stakes. Different 

variations of PoS scheme is applied in several other blockchain networks. 

3.1.2. Decentralization 

Decentralization of authority is one of the most important aspects of blockchain 

technology. Strong decentralization eliminates the need for trust to any kind of central 

authority in the network without compromising the trustworthiness of the system [68]. 

Even though all the nodes are trusted equally in an ideal blockchain system to 

maximize decentralization, it is not always easy to achieve satisfactory 

decentralization while designing blockchain systems. Due to possible 51% 

vulnerability (see Section 3.1.5) in PoW consensus based blockchain systems, 

satisfactory level of decentralization is crucial for a blockchain.  

In the Nakamoto PoW mechanism, nodes spend computing resources in order to earn 

rewards. Since the chance of getting the reward increases with the amount of the 

computational power of the miner, in Bitcoin network, power has been significantly 

biased towards a few nodes which are called mining pools [69]. As a result of this, 

generally in PoW scheme, risk of centralization increases with the growth of the 

blockchain network [70]. This issue is often referred as democratizing the mining 

power. For example, several blockchains utilize ASIC-proof hashing algorithms, as 

these processors are expensive, thus they affect the decentralization of the blockchain 

negatively. Kwon et al. [69] addressed the difficulty of designing a good 

decentralization and proved that a good decentralization  is not possible if the 

blockchain system has no Sybil costs, which actually means if the gap between rich 

and poor in the real world is not reduced, level of decentralization will not be able to 

high forever with a high probability.  

3.1.3. Benefits 

The reason that made blockchain technology so in demand is the benefits the 

technology offers. Several advantages and benefits of blockchain technology for 

financial institutions as well as in several other industries are discussed in many studies 

[4] [71]. A comparison to conventional cash transfer systems would depict the 

potential of the technology: with blockchain, someone has transferred $1.2 billion 

worth cash in 1.1 seconds with a cost of $0.015 [72], which would take days [73], even 

weeks with a significant amount of cost if the cash was transferred through banks.  

We can list the main benefits of the blockchain technology derived from its natural 

characteristics as follows: Decentralization of the authority, hence no need for a TTP 

as the system is trustless by itself. Reliability and availability because of its peer-to-



16 

 

peer network with no central point of failure. Security as all the transactions and the 

blockchain itself are secured with cryptographic hash functions and PKC. Immutability 

as once the data is added to the blockchain, it is extremely hard to change it without 

noticing. Smart contracts which enables to change many of the current paradigms in 

business with its autonomous and trustless characteristics. There are other potential 

benefits of the blockchain technology as published in [74]. Nevertheless, it should be 

noted that, most of the time it is hard to achieve all the benefits at the same time as 

some of the benefits can contradict each other and in some cases the benefits are 

dependent to each other.   

3.1.4. Limitations and Scalability 

Although blockchain technology has gained enormous attention from both academia 

and industry, the concept is relatively very new. The technology is still immature, lacks 

regulations, and has adaptability problems which limits its usability in different areas 

of education and business. In traditional PoW consensus schemes, miners have to 

download all the chain data, which is more than 200GB for Bitcoin [75] and more than 

100GB for Ethereum [76]. When the size of the blockchain data dramatically increases 

in the future, mining process will not scale well with current mining mechanisms of 

Bitcoin and Ethereum. 

Distributed and decentralized solutions like blockchains are inefficient compared to 

the traditional centralized database solutions and client-server architecture, which 

means decentralization is achieved with the cost of scalability limitations. For example 

with a generalized state transition function of Ethereum, it is very hard to partition and 

parallelize transactions to apply a divide and conquer scheme [77]. Hence, it is more 

difficult to scale up to higher capacity, and because of its design it is harder to make 

changes, which results in less flexibility for the blockchain [74].  

A fully decentralized blockchain limits scalability because of the throughput upper 

bound [68]. As a result of this, it prevents scaling of the smart contract execution too, 

as it was experienced when a decentralized application named Cryptokitties crippled 

the Ethereum blockchain in late 2017.  Current permissionless blockchains process 3-

20 transactions per second which is way less than mainstream payment systems [22]. 

It follows that, blockchain systems are faster than centralized systems in validating 

transactions due to its nature of network and validation mechanisms, compared to 

transactions per second capacity of traditional centralized networks like Visa and 

PayPal. However, Bitcoin and Ethereum network are still very slow because of this 

aforementioned scalability issues.  

There are several studies that propose improvements to scalability problem of 

blockchains, naturally the communities behind Bitcoin and Ethereum are also trying 

to solve this problem too. Ethereum community is planning to solve the scalability 

problem of Ethereum blockchain using sharding [68]. Via sharding, nodes store and 

process only the data that is relevant to them which decreases the amount of resources 

required to join the network [78]. Sharding in this context simply means fragmenting 

the network in to pieces without compromising Ethereum network’s decentralization 

and security aspects. Currently Ethereum has 15 transactions per second capacity and 



17 

 

with sharding it is anticipated that it will be at least 1000 transaction per second and 

even more. 

3.1.5. Potential Vulnerabilities and Risks 

Even though blockchain technology provides a reliable and cryptographically secure 

architecture, there are still some potential vulnerabilities and risks needs to be 

discussed. Some of these vulnerabilities and risks are inherited from its online nature 

similar to other online systems, and some of the vulnerabilities are specific to genuine 

design of the blockchain technology itself. In this section we address permissionless 

blockchain mechanism related vulnerabilities, such as 51% vulnerability, private key 

security, criminal activity, double spending, transaction privacy leakage and Sybil 

attacks [79] [80] [81]. Smart contract specific vulnerabilities and related security 

issues are discussed in Section 3.3.3. 

• 51% Vulnerability. As a result of the PoW consensus mechanism, when a 

miner or mining pool gains majority of the hashing power, the malicious miner 

can launch a 51% attack to take over the validation and verification process of 

transactions and control the entire blockchain. With this majority of 

computational power, attacker can modify/reverse the transaction data which 

may result with double spending, modify the ordering of transactions, stop the 

block verifying process of normal transactions, and stop other miners mining 

any available block [79] [81].  

• Private key security. In blockchain, user’s public address is her identity and 

related private key is her security credential to access her account. Since there 

is not any TTP in the architecture, if the private key is lost or stolen, it is almost 

always impossible to get the account back. Blockchain accounts are generally 

handled with account managers acting as a vault, which ensures the security of 

the private keys. Software wallets, i.e., hot wallets, are nothing but a standalone 

or web applications, thus they are intrinsically exposed to hacks.  

• Criminal activity. Most of the time it is hard to track the identity of a blockchain 

account in permissionless blockchain systems. There are even zero proof 

knowledge blockchains that secures the privacy of the account. Because of this 

the system has the risk to be used for illegal activities in the internet and cause 

bad reputation, which was the case for Bitcoin until the technology was very 

well recognized recently.  

• Double spending. PoW based blockchains tries to prevent double spending 

with time stamping the transactions in a block and broadcasting it to the all 

network. Because of the nature of the consensus mechanism, there is a chance 

that an attacker leverage race attack for double spending during the 

intermediate time between the transactions’ initiation and confirmation, and 

before the second transaction verified to be invalid, the attacker gets the first 

transaction’s output, which causes a double spending [79]. In order to avoid 

this race attacks, many merchants wait for at least 6 confirmations of a 

transaction before considering it as successfully finalized. 



18 

 

• Transaction privacy leakage. Since blockchain is an open architecture, all the 

transactions can be traced back to genesis block. Although users have public 

addresses as their identity, analyzing of blockchain data can reveal some 

private information. In an attempt to solve this issue, blockchain platforms 

Zcash uses zero proof knowledge mechanism to secure the privacy of its users. 

Lack of privacy of the transaction data is one of the major barriers for 

mainstream adaptation of blockchain technology by the industry.   

• Sybil attacks. Due to nature of the permissionless blockchain, a single 

malicious user can generate multiple fake identities all controlled by this single 

user, which appear to be unique benign users to the rest of the network. Sybil 

attack occurs when the attacker uses these fake accounts to influence and 

manipulate the network with its voting power during the consensus process. 

Since this attack increases the reputation of these malicious pool, other users 

might join this attacker’s mining pool as well in order to earn more reward 

without knowing its true intentions. Increasing the cost to create an identity is 

a preventive measure, and PoW mechanism implement this by requiring 

expensive hardware to join and mine in the network. Another mechanism 

proposed to mitigate Sybil attacks is trust and reputation mechanisms [82] as 

implemented in TrustChain [80]. 

3.1.6. Blockchain Types 

There are three types of blockchain networks regarding how they accept nodes for the 

network consensus: 

• Permissionless (Public) Blockchain. This blockchain network and its data is 

publicly accessible, and anyone can participate in the consensus process 

anonymously. Typically, there is a cryptocurrency of the system used for 

incentivizing members to join the mining process. Ethereum and Bitcoin are 

examples of permissionless blockchain networks. 

• Permissioned (Private) Blockchain. This blockchain network typically 

belongs to a company. There is an access control layer trough which network 

owner determines who can join the network and even specify who can verify 

the transactions, which as a result causes the centralization of the authority on 

the blockchain network. This central authority can also revoke permissions for 

the users that can access the system or participate in the validation process. 

• Consortium (Public Permissioned) Blockchain. This blockchain network 

can be considered as a hybrid of private and public blockchains. The consensus 

process is controlled by a group of preselected nodes, typically a consortium 

of companies, and no other parties can join or interfere with decision making. 

Hyperledger and Quorum (Ethereum based) are examples of projects to build 

permissioned blockchain applications. 

Each blockchain network has its own advantages and disadvantages. According to 

Wust and Gervais, there are use cases suitable for each of the technologies [5]. Zheng 



19 

 

et al [83] explored the blockchain types and made a comparison of these blockchain 

networks which is given in Table 3.1. We added a transaction cost row in the table as 

an addition. Since permissionless networks require consensus schemes such as PoW, 

transactions costs are higher than permissioned blockchains. 

Table 3.1: Comparison of blockchain networks 

Property/Type Public  Consortium  Private  

Consensus All miners Preselected set of nodes Single entity 

Read permission Public Public/restricted Public/restricted 

Immutability Yes Could be tampered Could be tampered 

Efficiency Low High High 

Transaction cost High Low Low 

Decentralized Yes Partial No 

 

3.2. Ethereum  

Ethereum is an open source, globally decentralized computing infrastructure which 

executes smart contracts written in a Turing-complete programming language [84]. 

Vitalik Buterin [2] defined Ethereum as a blockchain with a built-in Turing-complete 

programming language, that allows anyone to write smart contracts and decentralized 

applications; with the intention to have a platform that allows developers to create 

consensus based applications with scalability, standardization, feature-completeness, 

ease of development, and interoperability.  

Similar to Bitcoin, Ethereum platform has its own digital currency, named Ether, 

which is necessary in the operating of the blockchain as a transaction fee for metering 

and constraining execution resource costs [84]. Due to their decentralized blockchain 

architecture, there is no one controls or owns Ethereum and Bitcoin networks. 

Nevertheless, Ethereum offers more than just a distributed digital cash payment 

network, thanks to its smart contracts running in a global virtual machine shared across 

all the network. This virtual machine running in every node is called Ethereum Virtual 

Machine (EVM), and as a whole, Ethereum network acts as “the world computer”.  

EVM is a global virtual machine distributed among the nodes of its peer-to-peer 

network. Ethereum smart contracts, which are basically just computer programs, run 

on this EVM. These programs can be written with a user-friendly programming 

language, such as Solidity and Vyper. EVM is an isolated runtime environment 

running on nodes and because of its sandboxed nature smart contracts running on EVM 

have no access to the resources of the node hosting it. In Ethereum, transactions are 

made in order to: create new contacts, call functions of a contract, and transfer Ether 

to contract accounts or external accounts [85]. The transactions that change the state 

of an account requires computation, and every computation on the network is actually 

done by nodes delegated with EVM. Since these computations are handled with real 



20 

 

hardware resources on nodes, there is a price for every computation occurred as a result 

of a transaction. This price is called Gas. Transaction cost is important to protect the 

network from intentional or unintentional malicious and heavy computational tasks 

like DDoS attacks. 

As described above, each node in the Ethereum network runs the EVM and all the 

nodes executes the same instructions. This massive parallelization of the computing 

makes computation on Ethereum slower and more expensive than on a traditional 

computer. But the goal of this process is to maintain consensus across blockchain, in 

an attempt to achieve extreme levels of fault tolerance, zero downtime, unchangeable 

and censorship-resistant data storage on blockchain [86]. Transactions costs and 

consensus rewards are collected by miners which provides the economic incentive for 

miners to dedicate hardware resources and electricity to the Ethereum. 

An Ethereum network can be created trivially by creating a genesis block, i.e., the first 

block of an Ethereum blockchain. Actually, there are many Ethereum blockchains 

operating on the internet. The public Ethereum that we know, runs on its 

permissionless main network, called Ethereum Mainnet. There are other public 

Ethereum networks created for smart contracts testing purposes, such as Ropsten, 

Kovan, and Rinkeby. Ethereum can also be deployed as a private blockchain, in a 

permissioned network, in a company or in a consortium. As a matter of fact, an 

Ethereum blockchain can be run on a single computer, as well, mostly for smart 

contract development purposes. 

3.2.1. Accounts 

An account in Ethereum is an object that stores the state of an ordinary user or smart 

contract, and it is uniquely identified with a 160-bit address. An Ethereum account 

contains four fields [2]: Nonce, balance, contract code (if present), and a key-value 

store called storage. The state of the Ethereum network is actually the state of all the 

accounts, which is updated with every new block. 

There are two types of accounts [2] [86]:  

• Externally owned accounts (EOAs), which are controlled by private keys, and 

do not have associated code.  

• Contract accounts, which are controlled by their contract code, and have 

associated code. 

Externally owned accounts represent identities of external agents such as human users 

and mining nodes. Users need these accounts to interact with Ethereum blockchain by 

sending messages via transactions that are signed by accounts’ private keys. An 

externally owned account can send messages to other externally owned accounts, or 

to other contract accounts. A message between two externally owned accounts are 

basically a value transfer, like a Bitcoin transaction. A message from an externally 

owned account to a contract account activates the code of the contract account, 

allowing it to read and write to internal storage and send other messages or create 



21 

 

contracts in turn [2]. A message from an externally owned account to a contract 

account has a data field addition to the value field. Contract accounts cannot initiate 

new transactions on their own, like mentioned above, they can only fire transactions 

as a response to other transactions they have received. Therefore, all the action that 

occurs on the Ethereum blockchain is always set in motion by transactions instantiated 

from externally controlled accounts [86]. 

3.2.2. Messages, Transactions, and Calls 

Messages in Ethereum platform are similar to transactions in Bitcoin but there are 

three important differences [2]: an Ethereum message can be created by a user or a 

smart contract, Ethereum messages can contain data along with value, and if the 

recipient of the Ethereum message is a contract account it can return a response. 

Components of a message is given in Table 3.2 [2][86]. 

Table 3.2: Message Components 

Message 

Sender Address  

Recipient Address 

VALUE 

Data (optional) 

STARTGAS 

 

In Ethereum, transaction is cryptographically signed data package that stores a 

message originated from an externally owned account and sent to another externally 

owned account or contract account on the blockchain. Components of a transaction is 

given in Table 3.3 [2][86]. 

Table 3.3: Transaction Components 

Transaction 

Recipient Address  

VALUE 

Data (optional) 

STARTGAS 

GASPRICE 

Signature 

 

There are two types of transactions: message calls and contract creations. Essentially, 

a message is like a transaction, except it is produced by a contract and not an external 

actor, and it is not signed, thus it is not explicitly included in the blockchain. An 

important consequence of the message mechanism is the idea that contracts accounts 



22 

 

have equivalent powers to externally owned accounts, including the ability to send 

message and create other contracts [2] [86]. Transactions changes the state of the 

blockchain, and they are used for writing data to the network. 

In order to read data from the network, calls are used. By using calls, code can be 

executed in the network, but it does not change a data in the blockchain. A function in 

a smart contract can be executed by a call, and it returns a value immediately; whereas 

transactions need to be mined, thus require some time to finalize. Differences between 

transactions and calls are given in Table 3.4 [87]. 

Table 3.4: Transactions vs Calls 

Transactions Calls 

Write data to the blockchain Read data from the blockchain 

Cost gas for the execution Free to run 

Change the state of the network Do not change the state of the network 

Wait for mining Processed immediately 

No return value, but a result object Return value 

 

3.2.3. Gas 

When the EVM executes smart contracts, it accounts for every instruction 

(computation, data access, etc.) with a predetermined cost in units of gas [84]. For 

example, reading data is more expensive than basic mathematic calculations, and 

writing data is even more expensive than reading data. Gas costs for several common 

Ethereum operations in the EVM is given in Table 3.5  [86]. As can be seen, storing 

large amount of data in blockchain is not a good practice. Gas is one of the most crucial 

components of Ethereum operating architecture. To begin with, it serves as the main 

economic incentive in Ethereum network, and also it provides protection against DoS 

attacks and faulty smart contracts that could drain the resources of the network. The 

price per unit of Gas is represented in Gwei, and 1 Ether is equal to 109 Gwei, and 

1018 Wei. 

There are two main components of the Gas mechanism: Gas Limit and Gas Price. Gas 

Limit is the maximum number of Gas a user is willing to spend on a computation. Gas 

Price is the amount of Wei a user is willing to spend on every unit of gas. Users can 

increase or decrease the Gas Price for their transactions to have their transactions 

mined faster or slower, respectively. This happens because high Gas Price attracts 

more miners, and if the Gas Price is not sufficient the user might wait for a long time 

for her transactions to be mined.  

 

 



23 

 

Table 3.5: Operation Costs in EVM 

Operation Name Gas Cost Remark 

step 1 default amount per execution cycle 

stop 0 free 

suicide 0 free, refund given 

sha3 20  

sload 20 get from permanent storage 

sstore 100 put into permanent storage 

balance 20  

create 100 contract creation 

call 20 initiating a read-only call 

every 
memory 1 every additional word when expanding memory 

txdata 5 every byte of data or code for a transaction 

transaction 500 base fee transaction changed 

contract creation 53000 changed in homestead from 21000 

 

The initial cost of a transaction is the product of Gas Limit and Gas Price [2] [86]. 

With smart contracts a user cannot know in advance the exact amount of Gas that will 

be used for the related computations in the EVM. In Ethereum, transaction costs are 

paid in advance, so the user have to specify the Gas Limit during the initiation of the 

transaction. When the smart contract execution successfully ends, unused gas is 

refunded to the source address. If the amount of gas used by the smart contract exceeds 

the Gas Limit, execution of the smart contract throws and exception and all the 

modifications done in contract execution are reverted to the original state. In this case, 

the amount of Gas spent is not refunded to the source address. For this reason, it is a 

good practice to set the gas limit reasonably high. Given the above, we can find the 

overall cost of a transaction after it is finalized as follows. 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 𝑐𝑜𝑠𝑡 = (𝑈𝑠𝑒𝑑 𝐺𝑎𝑠) 𝑥 (𝐺𝑎𝑠 𝑃𝑟𝑖𝑐𝑒) 

3.3. Smart Contracts 

In Ethereum ecosystem, a smart contract is an autonomous computer program that runs 

in EVM. It has a set of predefined functions and logic which it executes accordingly. 

Smart contracts are immutable computer programs, which means once the smart code 

is created and deployed in the blockchain; its state can change, but its code, thus its 

predetermined behavior cannot be changed. Smart contracts are Ethereum accounts 

which store their associated code in the blockchain, and they are uniquely identified 

by their 160-bit addresses. With the special data field of contract account, smart 

contracts can store data which can be used to store information, balances, or any other 

data necessary for implementing the application logic. As a result of the decentralized 

characteristic of its underlying blockchain architecture, smart contracts enable 



24 

 

exchange of cash, property, digital asset, information, and value without the need for 

a trusted middleman. 

There are other implementations of smart contracts in other blockchains, too. For 

example, Bitcoin provides a Turing-incomplete scripting language to create custom 

limited smart contracts  [88]. Bitcoin’s scripting language supports a large subset of 

computations but main functionality it is missing is loops [2]. On the other hand, 

Ethereum implements Turing-complete EVM code, including loops. This makes 

Ethereum an outstanding smart contract framework.   

Smart contracts are written in a high-level programming language and compiled to 

low-level bytecode that runs in the EVM. When compiled, they are deployed to the 

Ethereum blockchain by a special contract creation transaction. Contracts only run if 

they are called by a transaction originated by an EOA, either directly or over another 

contract call.  Contracts can call other contracts, hence that contract’s functions, via 

message calls. Although a contract’s code is immutable, a contract can be deleted by 

removing its code and internal state, which leaves an address of an empty account. In 

order to be able to delete a contract, the contract must be programmed with that 

functionality from the beginning. When a contract is deleted, some gas is refunded to 

the contract owner. This incentivizes the users to delete unused contracts, and thus 

release the network resources [84].  

The most popular and adapted application for smart contracts is custom tokens. Tokens 

are basically exchangeable cryptocurrencies, specific to a decentralized application 

(DApp). A video arcade is a simple analogy to understand why tokens might be 

necessary when we already have Ether as a payment method [89]. There are hundreds 

[90] of custom Ethereum tokens in use, with different exchange rates, and serving for 

several purposes in particular applications. Tokens are mostly used as utility tokens or 

equity tokens [84]. Antonopoulos and Wood [84] define utility tokens as the tokens 

required to gain access to a service, application, or resource, and equity tokens as the 

tokens that represent shares in control or ownership of an application or startup. There 

are two token standards in Ethereum: ERC20 and ERC721 Token Standards which 

define fungible and non-fungible tokens, respectively. 

Token sale is a popular way to raise funds for Ethereum projects. This crowdsourcing 

is called Initial Coin Offering (ICO) and, there are thousands [91] of Ethereum projects 

have been trying to finance their blockchain project with ICOs. Most of the ICOs is 

managed through ERC-20 Token Standard Contract [92]. Nevertheless, since there is 

no regulation in ICOs there are also many scam projects as well, which requires special 

analysis for decision making [93].  

Related to equity tokens, another application of smart contracts worth to note is 

Decentralized Autonomous Organizations (DAOs).  DAOs are complex, long-term 

smart contracts that encode the bylaws of a decentralized organization [2]. Using smart 

contracts, ownership in an organization and terms for the disbursal of funds can be 

specified at the outset. The smart contract can be written such that it can be only 

changed with the approval of the majority of the owners [86]. 



25 

 

Solidity and Vyper are two notable high-level programming languages designed for 

developing Ethereum smart contracts that run in the EVM. These programming 

languages and security issues in smart contracts are described further in the following 

sections. Note that, security issues related to blockchain architecture of Ethereum is 

already addressed in Section 3.1.5. 

3.3.1. Solidity 

Solidity is the primary smart contract programming language that runs on the EVM. It 

is an object-oriented, high-level language, with a syntax similar to JavaScript, and 

influenced by C++ and Python, as well. It is a statically typed language, and supports 

inheritance, libraries, and complex user defined types [94]. Solidity smart contract 

source file is composed of contract definitions, import directives, pragma directives, 

and comments. Contracts in Solidity are like classes in object-oriented programming 

languages, and likewise, contracts can inherit from other contracts. Each contract can 

contain declarations of State Variables, Functions, Function Modifiers, Events, Struct 

Types and Enum Types [94].  

Solidity code is compiled by Solidity compiler in to low level bytecode that can be 

executed by the EVM. This bytecode is deployed to an Ethereum network, such as 

Mainnet, Ropsten, Rinkeby, etc., in that particular contract account’s code storage. 

Bytecode can only be understood by EVM, as a result of this, in order to access the 

smart contract’s functionalities through DApps, Solidity compiler also emits an 

Application Binary Interface (ABI). ABI is a JSON format description for the smart 

contracts that makes it possible to understand and access functions of a contract, and 

read/write data of it. When the contract is deployed, a contract address is created. 

Using this contract address and its ABI, a contract instance can be accessed and used 

from a decentralized application over JavaScript calls. These processes are illustrated 

in Figure 3.3 

 

Figure 3.3: Solidity Bytecode and ABI 

3.3.2. Vyper 

Vyper is a contract-oriented, Python like smart contract development language for the 

EVM. Contracts in Vyper are similar to classes in object-oriented programming 



26 

 

languages, and each contract can contain declarations of State Variables, Functions, 

Events, structure-struct types and contract interfaces [95]. 

A study in 2018 [96]  analyzed one million deployed Ethereum smart contracts, written 

in Solidity, according to a systematic characterization of a class of trace vulnerabilities 

they presented. They focused on three vulnerabilities with properties such as smart 

contracts that either lock funds indefinitely, leak them carelessly to arbitrary addresses, 

or can be killed by anyone. These vulnerable smart contracts are named greedy 

contracts, prodigal contracts, and suicidal contracts, respectively. According to this 

study, they found out that many of the smart contracts have these trace vulnerabilities. 

Smart contract vulnerabilities are caused via bad practice of code. This is why, Vyper 

is designed with the purpose of making it easier to write secure code, or equally making 

it harder to accidentally write misleading or vulnerable code [84]. Vyper achieves this 

with principles and goals such as security, language and compiler simplicity, and 

auditability. Although Vyper enables developers to write relatively secure codes, the 

language itself is still experimental. 

3.3.3. Smart Contract Security 

Smart contract code, transactions, and all the data on the immutable Ethereum 

blockchain are public, and any state and its data can be accessed and read in a node’s 

local copy without leaving a trace in the system. As a result of this, executing smart 

contracts in Ethereum brings certain risks. Because smart contracts deal with cash, 

these risks and issues often results in catastrophic situations.  

The well-known DAO attack took place in 2016, in which hackers stole $50 million 

worth Ether, and induced a hard fork in the Ethereum blockchain. This attack was 

caused by the security flaws in the smart contracts introduced by Solidity language, 

although the DAO was working as intended [97]. In order to have a secure smart 

contract, code and contract should execute how developer intended, and should not 

lose ether. 

There are several known smart contract vulnerabilities. Similar to Open Web 

Application Security Project’s (OWASP) prominent list of top 10 application security 

risks, Decentralized Application Security Project (DASP) [98] has a list of top ten 

vulnerabilities for smart contracts. Atzei et al. [88] also investigated the attacks against 

smart contracts comprehensively, and listed 12 smart contract vulnerabilities, as listed 

in Table 3.6. 

Defensive programming style is a good approach to avoid vulnerabilities for smart 

contracts, with the following best practices: minimalism/simplicity, code reuse, code 

quality, readability/auditability, and test coverage  [84]. Since Ethereum ecosystem is 

still young and vibrant, Solidity language specifications change often, and being up-

to-date is important, as well. During a complex developing process, the programmer 

should use open source and tested industry standard contract security patterns, such as 

OpenZeppelin [99] contracts. This reuse practice can be considered as parallel with 

reusing proven cryptographic libraries, instead of writing by one’s own. The 

programmer also should use Ethereum smart contract security best practices provided 



27 

 

by Consensys [100], and original Solidity documentation [101], in order to avoid 

vulnerabilities and write secure smart contracts.  

Table 3.6: Taxonomy of vulnerabilities in Ethereum smart contracts 

Level Vulnerability Cause 

Solidity Call to the unknown Invoking the fallback function 

 Gasless send Incurring in an out-of-gas exception 

 Exception disorders Irregularity in how exceptions are handled 

 Type casts Type-check error during contract execution 

 Reentrancy A function is re-entered before its termination 

 Keeping secrets A field is visible in the node even if it is private 

EVM Immutable bugs A contract cannot be altered after it is deployed 

 Ether lost in transfer Ether is sent to an orphan address and lost 

 Stack size limit The call stack exceeds the limit of 1024 frames 

Blockchain Unpredictable state State of the contract is changed before transaction 

 Generating randomness A malicious miner bias the seed for randomness 

 Time constraints A malicious miner choosing a suitable timestamp 

 

Using security tools is a reasonable approach while writing complex, or cash-heavy 

smart contracts. In 2018, new security tools are introduced into the Ethereum market, 

which made it easier to build secure Ethereum smart contracts and DApps [102]. 

Remix, Trail of Bits, Securify, MythX, Manticore, Oyente are a few examples of these 

tools that performs static or dynamic analysis of Ethereum smart contracts.  

3.4. Privacy 

The user accounts can be considered as anonymous in permissionless blockchains such 

as Bitcoin and Ethereum, unless the user reveals her identity and public key. However, 

as all the transactions are readable; rather than the name of the user, users public 

address is recorded in transaction, thus, all transactions are actually pseudonymous 

[103]. It follows that, these pseudonyms can be deanonymized  in this public scheme 

[21] [104]. For example, third-party web trackers can achieve this deanonymization if 

users use cryptocurrencies for the payments [105]. As can be seen, the anonymity and 

user privacy are hard to fully achieve in Ethereum.  

In the context of the privacy of the blockchain, privacy can be generalized as the 

security of the blockchain data. This data is not limited with cryptocurrency 

transactions, but also smart contract binary code, and all the sensitive content of the 

blockchain, as well. Public blockchains such as Bitcoin and Ethereum are actually 

public records and since they have permissionless architectures, anybody can join the 

network, and access/read blockchain data. The privacy issue is a significant problem 



28 

 

with permissionless blockchains, and along with scalability, privacy is the main 

concern that hinders the mainstream usability of blockchain [22]. Typically, 

companies and individuals hesitate to use the technology because storing sensitive data 

on a place where everybody can read is generally not a good idea. 

There are different strategies to overcome the privacy issue in permissionless 

blockchains. Cryptographically secure obfuscation, zero-knowledge proofs, using 

one-time accounts, encryption of the data are different approaches, which have their 

own advantages and disadvantages [22]. Ethereum community is aiming to solve the 

privacy issues in its next major update, by including zk-SNARKs in its on-chain 

verification process.  

There are also several blockchain projects trying to address privacy issues of 

permissionless blockchains: Hawk project is a blockchain-based smart contract 

platform that stores encrypted transactions on the blockchain, and provides a platform 

to write private smart contracts [25]. Zcash utilizes zero knowledge proofs 

cryptography (i.e., zk-SNARKs) and one time accounts to provide security and privacy 

of the platform [23]. Lightstreams has developed a protocol called Permissioned 

Blocks and manage access to protected content in decentralized networks, integrating 

blockchain and distributed file sharing [106]. Enigma uses trusted execution 

environments, rather than zero-knowledge-proof, to allow nodes to make 

computations using encrypted fragments of the smart contracts without the need to 

decrypt them [26]. Enigma can act as a side-chain to Ethereum and provides users with 

the ability to write secret smart contracts. 

3.5. Ethereum Web 3.0 Stack (Decentralized Web) 

Web 2.0 is the name used to describe the era of the World Wide Web (WWW, Web) 

after 2000s, where the technology moved from static pages to interactive services like 

social media applications, which enabled people to contribute and share information 

online. Web 2.0 can be considered as the participatory Web [9]. Nevertheless, all these 

services and applications are controlled by a middleman, in a client-server architecture 

where all the data are stored in centralized databases. 

Web 3.0 actually refers to the transition from client-server internet to a decentralized 

and secure internet, in an attempt to make it censor and control free. Web 3.0 replaces 

centrally owned applications with decentralized applications, client-server architecture 

with peer-to-peer network, the need for a trusted middleman with trustless blockchain 

consensus, centralized databases with distributed storages, and application logic with 

smart contracts. Note that these Web 2.0 and Web 3.0 definitions are not official 

denotations or technical specifications for the different aspects of Web, but a 

convention to differentiate the new applications and the technology behind it. 

Ethereum has transformed itself from a mere platform of smart contracts and 

decentralized applications in to a large software ecosystem. Ethereum community has 

been developing more components to fully decentralize web applications and offers a 

full backend to a decentralized internet, aka Web 3.0 [86]. These concept and 



29 

 

technologies are still in early stages and most of the components are still in alpha 

versions. Ethereum offers an internet with built-in money and payment system, users 

owning their own data, and an open financial system and permissionless infrastructure 

controlled by no middleman. 

Compared to current internet and web applications architecture, in Ethereum Web 3.0 

stack: instead of servers, computations are done on EVM in a peer to peer network. 

Instead of web servers, hosting is done on distributed storages like Swarm and IPFS. 

Instead of HTTP API, service layer is handled by smart contracts. Instead of databases, 

storage is done on distributed storages or decentralized databases. Web 3.0 abstracted 

stack is depicted in Figure 3.4 [107]. We already explored Ethereum blockchain 

related concepts in earlier sections, other concepts in Ethereum Web 3.0 stack are 

elaborated in the following sections. 

 

 

Figure 3.4: Web 3.0 Abstracted Stack 

3.5.1. Decentralized Apps (DApps) 

Decentralized applications are computer applications that run on a distributed network. 

In Ethereum, a decentralized application (DApp) refers to a web application that runs 

on the Ethereum network. Thousands of DApps have been developed on the Ethereum 

blockchain, in several categories like finance, games, insurance, etc. [108].  

Application logic and payment functions of DApps are handled by Ethereum smart 

contracts as back-end software. In addition to smart contracts, DApps have a web 

front-end user interface as well, which is why a DApp does not look different from an 

ordinary web application to the end user. A simplified DApp architecture is illustrated 

in Figure 3.5. 

The possible components of a DApp are as follows [84]: 

• Back-end software (smart contracts) 

• Front-end software (HTML, CSS, JavaScript, etc.) 



30 

 

• Data storage (Swarm, IPFS) 

• Message communications (Whisper) 

• Name resolution (ENS) 

 

 

Figure 3.5: Simplified DApp architecture 

Each of these components can be decentralized or left centralized. If all the 

components are decentralized, we can consider this DApp as entirely decentralized. 

Compared to conventional centralized web applications, DApps provides other 

advantages like resiliency, transparency and censorship resistance [84]. 

As the back-end software of a DApp, smart contracts store the program logic of the 

application, replacing the regular server-side web APIs. As we discussed in Section 

3.2.3, smart contracts computations are very expensive, so a DApp developer need to 

be careful to keep the smart contract as minimal as possible, by identifying the aspects 

of the application that really needs to be decentralized on the Ethereum blockchain. 

The front-end is linked to Ethereum via the web3.js JavaScript library. Web3.js is a 

collection of libraries which enables interaction with a local or remote Ethereum node, 

using an HTTP, WebSocket or IPC connection [109]. Using web3.js, you can retrieve 

user accounts, send transactions, interact with smart contracts, etc. As well as the 

Ethereum network, web3.js also enables interaction with Ethereum’s peer-to-peer 

storage network called Swarm, and Ethereum’s peer-to-peer messaging service called 

Whisper, through web3-eth, web3-bzz, and web3.shh APIs respectively [84]. 

3.5.2. DApp Browsers (Metamask) 

While running a DApp in a web browser, users need a bridge to interact with Ethereum 

for signing messages, sending transactions, and managing keys. MetaMask is the most 

popular web browser extension that allows users to run Ethereum DApps in web 

browsers such as Chrome, Firefox, and Opera. It is an account manager and it includes 

a secure identity vault, providing a user interface to manage identities on different 

DApps ,and sign Ethereum transactions [110]. The typical user interface of MetaMask 



31 

 

is shown in Figure 3.6, over which a user can send and deposit Ether, and sign 

transactions. 

 

 

Figure 3.6: MetaMask User Interface 

3.5.3. Decantralized Data Storage (Swarm) 

Since storing and processing large amounts of data in smart contracts costs a lot of 

Gas, Ethereum blockchain is not suitable for storing large data, therefore most DApps 

require storing their data in a place somewhere outside of the blockchain. This off-

chain (which is a term used to refer platforms off the blockchain) data storage can be 

centralized, such as a cloud storage service like Amazon S3 or a typical database. 

DApps also require a front-end interface for the users to interact with the smart contract 

easily. Likewise, this web interface data can be hosted in a centralized way, on a web 

server like a regular web page serving over HTTP and HTTPS protocols.  

Although these centralized solutions provide a good working environment, they 

violate the decentralized principle of Web 3.0. They also become a possible target to 

DoS attacks, and suffering censorship. In order to overcome these problems and 

maintain the decentralization, distributed data storage platforms can be used for storing 

large static assets such as media files and static web interface files such as HTML, 

CSS, and JavaScript files.  

Interplanetary File System (IPFS) and Swarm are the most common decentralized data 

storage and content publication platforms. IPFS is a content addressed, versioned, 

peer-to-peer file system [111] for storing and accessing files, websites, applications, 

data, and any digital assets. Thanks to its decentralized architecture, IPFS does not 

have a single point of failure, and its nodes do not need to trust each other [112]. Main 

idea behind IPFS is to replace and build a better decentralized web [113]. Similarly, 



32 

 

Swarm is a content addressable peer-to-peer storage system and content distribution 

service, a native base layer service of the Ethereum Web 3.0 stack. Providing a 

sufficiently decentralized and redundant service for storing and distributing DApp 

code, DApp data, and Ethereum blockchain data, is the primary objective of Swarm 

[114]. For the end user, as it is it with DApps from other traditional web applications, 

Swarm is not much different from the WWW. Thanks to its architecture, Swarm offers 

a decentralized web which is fault tolerant, censorship resistant, DDoS resistant, zero 

downtime, and self-sustaining [115]. 

In the local Swarm node, data is split up into pieces called chunks with limited sizes 

(max 4K), which are the basic units of storage and retrieval system [114]. After chunks 

are stored in a Merkle tree in the local node and addressed with the hash of their 

contents, the chunks are distributed across the network. The hash references of the data 

chunks that makes a content are packaged in to a single chunk with the Merkle root 

hash of all the chunks as depicted in in Figure 3.7. The final root hash acts as a 32-

byte reference address, and by using this address the file is retrievable while ensuring 

data integrity of the file via Merkle tree. Since the network layer and nodes know only 

the chunks, they do not have information in the file level, which increases the security 

of Swarm. 

 

 

Figure 3.7: Swarm File Storage Process 

Once a content is uploaded to the local node, that node syncs the chunks of data with 

other nodes on the network. Consequently, that content will be available on the 

network even the original node goes offline. However it should be noted that, 

persistence of the content is not guaranteed until the incentive mechanism of Swarm 

is implemented, so it should not be considered as a safe storage till then [114]. 

3.5.4. Ethereum Name Service 



33 

 

In Swarm, a content is retrievable with its unique addresses derived from the 

cryptographic hash of the data. This address derived from hash is not user friendly, on 

top of it, when the content is changed, the hash of the content and its address changes 

accordingly. To solve this issue, Ethereum Web 3.0 stack has another native base layer 

service called Ethereum Name Service (ENS), which acts as a name service. ENS is 

basically the Ethereum equivalent of the Domain Name Service (DNS) in the WWW. 

ENS provides a secure and decentralized way to address resources both on and off the 

Ethereum blockchain, such as Ethereum addresses and content hashes, using human-

readable names with “.eth” extension like “alice.eth” [116]. ENS is based on a suite of 

smart contracts in Ethereum mainnet and in order to use ENS to resolve names to 

Swarm addresses, that swarm node has to connect to the Mainnet over an Ethereum 

client [114]. 

3.5.5. Message Communications (Whisper) 

Communication protocols are necessary for enabling applications and users to send 

messages in the network. In the current web architecture, this is achieved by central 

servers and protocols. In order to decentralize message communications, Ethereum 

Web 3.0 stack has a native layer service, called Whisper. Whisper is a peer-to-peer 

communication protocol to enable DApps and its users a communication channel in 

Ethereum network. It is an identity-based communication system, and provides private 

and secure communication directly between nodes, using PKC [117]. 

3.5.6. Data Feeds (Oracle) 

Blockchains, and inherently Ethereum, are deterministically verifiable architectures, 

which means, each node can verify the entire blockchain at any time. This 

deterministic model is ensured by allowing only on-chain data during transaction 

executions. In Ethereum, a smart contract can use only the data which is passed with 

a transaction. Since this unreliable external source may give different answers to same 

queries in different times, allowing off-chain data breaks this deterministic model. This 

is also the reason why Ethereum smart contract languages and EVM architecture does 

not support built-in randomness. Since most of the web applications use real word 

data, this limited data feed restricts the usefulness of the smart contracts and DApps. 

In order to make useful DApps, Ethereum requires a data feed system to be able to get 

data from off-chain systems. This data feed system is called as Oracle, which is a 

service that provides data external to Ethereum, and feed that data into smart contracts 

or DApps. Oracles might be used to provide real world information such as random 

numbers, exchange rate data, sport events, weather data, statistics, etc. [84].  

To be used as a reliable source of information, oracles must provide certain guarantees 

for the data they provide. Ideally, like other decentralized components of Ethereum 

Web 3.0 architecture, oracles should be trustless, too. Nevertheless, there are 

centralized oracles as well. Oraclize is a centralized oracle which uses authenticity 

proofs in order to demonstrate the data fetched from the original data-source is genuine 

and untampered, thus acting as some sort of an trustless intermediary [118]. ChainLink 



34 

 

offers a reliable decentralized oracle service, which ensures the integrity of the oracles 

with validation, reputation, certification, and contract-upgrade services [119].    



35 

 

 

 

 

 

CHAPTER 4 

 

 

4. SYSTEM DESIGN AND ARCHITECTURE 

 

 

 

Using blockchain (permissionless or permissioned) is suitable when it is desired that 

mutually mistrusting parties be able to interact and change the state of the system, 

without the need for a TTP [5]. As we know already, there are three types of blockchain 

networks regarding how they accept nodes for the network consensus: permissionless 

blockchain, permissioned blockchain, and consortium blockchain. Each type of 

blockchain network has its own advantages and disadvantages as listed in Table 3.1. 

This study aims to provide a secure framework for content sharing, open to anybody, 

without a limitation or censorship. Although efficiency in permissionless blockchain 

is low, and there are transaction costs; nonetheless, it ensures immutability, reliability, 

transparency, and decentralization. Therefore, permissionless blockchain was the 

reasonable approach for our proof of concept.  

In order to maintain decentralization of our application logic, we utilized smart 

contracts to create proof of concept decentralized application (DApp) of this study. 

There are several permissionless smart contract and decentralized application 

platforms, such as Ethereum, Cardano, EOS etc. Nevertheless, we opted for Ethereum 

as the development platform for our proof of concept because of several reasons: First, 

Ethereum is the most commonly used [120] and most popular [121] technology among 

its competitors. Second, Ethereum beats its competitors in terms of usability, 

documentation, and development support [122]. Third, there are more DApps created 

with Ethereum compared to other platforms [108]. Fourth, Ethereum is not a mere 

decentralized application platform, but it provides a whole ecosystem for decentralized 

web. Fifth, as the first of its kind, Ethereum platform is relatively mature, and has a 

large and active community. Finally, there are several real-world applications of 

Ethereum in use. Although Ethereum blockchain can be setup as a private blockchain 

inside an access-controlled network by creating a new genesis block and filtering the 

miners, we did stick by permissionless public blockchain.  

After we observed the suitability of the blockchains and smart contracts for content 

sharing, in order to investigate the subject further, we have developed a proof of 

concept DApp which enables a channel for securely sharing digital content between 

parties that do not necessarily trust each other, as defined a goal of this study. In this 

chapter we thoroughly describe and explain the design of this proof of concept.  

As illustrated in Figure 3.5, a typical Ethereum DApp architecture has several 

components such as the DApp browser, blockchain, smart contracts, and potentially a 



36 

 

few of the services of the Ethereum Web 3.0 stack. Before we started design phase, 

we conducted a simple requirement analysis. Namely, we elicited functional and non-

functional requirements, defined user roles and use cases, chose the technologies to 

use for our software with the justifications of the rationale behind them. Subsequently, 

we designed smart contracts, and finally came up with the overall architectural design 

of the system.  

4.1. Software Requirements 

For the use of our DApp, we assumed users had carried out following procedures in 

advance, thus we excluded these actions from our design: 

• Install a modern web browser such as Chrome, Firefox, or Opera. 

• Install the MetaMask extension and create a passphrase to use the vault. 

• Connect to Ethereum network (personal test network for this proof of concept). 

• Create or import an Ethereum account in MetaMask. 

• Transfer reasonable amount of Ether to the Ethereum account to be able to 

make transactions (for this proof of concept users have already pre-installed 

Ether on their accounts). 

• Run a Swarm node.  

Using MetaMask, a user can unlock her Ethereum account and interact with Ethereum 

network and DApps. Therefore, there is no dedicated user registration or user login 

requirements specific to our DApp. Likewise, authentication procedure is managed by 

MetaMask. 

4.1.1. User Roles 

In our content sharing DApp, there are two types of user roles: 

• Seller (Sender). Seller is the user who publishes the digital content on sale. 

Note that the content can be free. So according to price and context, we can 

use the terms ‘seller’, ‘sender’, and ‘publisher’ interchangeably. 

• Buyer (Recipient). Buyer is the user who fulfill requirements to access the 

digital content on sale. Similarly, according to price and context, we can use 

‘buyer’, ‘recipient’, and ‘consumer’ interchangeably. 

4.1.2. Functional Requirments 



37 

 

In order to let users securely exchange content, our proof of concept DApp must satisfy 

the following functional requirements (FR): 

FR1. The DApp shall be accessible and usable by any Ethereum account. 

FR2. The DApp shall let users view content on sale. 

FR3. The DApp shall let a seller to put digital content up for sale. 

FR4. The DApp shall let a buyer to buy digital content on sale. 

FR5. The DApp shall let a seller to abort the sale before it is bought. 

FR6. The DApp shall let a buyer to pay for an open sale. 

FR7. The DApp shall let a seller to encrypt digital content. 

FR8. The DApp shall let a seller to upload digital content. 

FR9. The DApp shall let a buyer to decrypt digital content. 

FR10. The DApp shall let a buyer to download digital content. 

FR11. The DApp shall let a buyer to confirm receipt. 

FR12. The DApp shall let a seller get paid. 

FR13. The DApp shall act as an escrow to protect both buyers and sellers against 

fraudulent users. 

4.1.3. Non-functional Requirements 

We elicited functional and non-functional requirements (NFR) together, so they 

actually reinforce each other. Accordingly, we came up with several non-functional 

requirements according to different quality attributes. 

NFR1. (Confidentiality).  The DApp shall enforce confidentiality of the content by 

providing access to unencrypted content to only authorized users using PKC. 

NFR2. (Integrity). The system shall preserve integrity of the data in the front-end, 

blockchain, and decentralized storage. 

NFR3. (Availability). The system shall be available for all Ethereum users and the 

content shall be available only for authorized users.  

NFR4. (Privacy).  The system shall maintain sufficient privacy for the users. 

NFR5. (Usability).  The system shall be sufficiently easy to use with a simple and 

descriptive front-end. 



38 

 

NFR6. (Transparency and Auditability).  The system shall let the transaction data 

be transparent and auditable.  

NFR7. (Costs). The DApp usage shall be free of charge, and transaction costs shall be 

sufficiently low. The data written to blockchain shall be kept minimum, by storing 

large data in the decentralized storage. 

NFR8. (Reliability).  The system shall ensure confidence in the correctness of 

executed transactions. 

NFR9. (Scalability). The system shall allow several sale and buy actions to be made 

at the same time with a sufficient performance.  

NFR10. (Performance). The system shall provide a fast frontend interaction, and the 

user actions shall be completed sufficiently fast. 

4.1.4. Use Cases 

Users achieve their goals using certain actions they are able to perform as listed in 

functional requirements. Different ways a user can interact with the system is depicted 

in a use case diagram in Figure 4.1.  

 

 

Figure 4.1: Use Case diagram of the Content Sharing DApp 



39 

 

4.2. Data Management 

A buyer needs to securely deliver the digital content in order to finalize the trade. 

Dealing with the data in our DApp has two aspects, providing confidentiality and 

storage. First, the digital content must be encrypted so as to be only decrypted by a 

buyer. This is the one of the most crucial factors when sharing a secret in Ethereum. 

Second, digital content itself, and large sized data related with the exchange must be 

stored off-chain, in a decentralized storage, i.e., Swarm. Likewise, this is one of the 

most crucial factors for the overall usability of the blockchain. 

4.2.1. Data Confidentiality 

Confidentiality of the digital content is the most critical non-functional requirement 

for our content share framework. As discussed before, Ethereum does not have a built-

in privacy support for the data stored in its blockchain. Smart contract data and logic 

is also transparent. Consequently, to enable the information to be accessed only by 

authorized users, we needed to enforce confidentiality off-chain. For Alice and Bob to 

exchange secret information with each other, without revealing the data to any third 

party, we utilized cryptography. For this purpose, we could either use symmetric key 

cryptography or PKC.  

If symmetric key cryptography was used, sensitive data would be encrypted and 

decrypted with the same secret key, thus both Alice and Bob had to possess the key 

before the transaction. This approach requires off-channel information exchange in 

order to come to an agreement for the secret key. When Alice and Bob do not know 

each other, it is not very feasible to use a pre-shared key for the encryption. Instead, 

we aimed to provide a framework where Alice and Bob would not need to know or 

trust each other. Accordingly, we used PKC in our design. In PKC, a key pair is 

generated and when a secret is encrypted with the public key, it can only be decrypted 

with the private key. This mechanism also suits our content sharing framework. Bob 

writes his public key to the smart contract; Alice use this key to encrypt the secret and 

write the encrypted secret back to the smart contract. Bob decrypts the encrypted secret 

with his private key and access the secret, thus the content which is accessible only 

with this secret over local Swarm node. 

Since Alice and Bob use an Ethereum account to interact with our DApp, they already 

have ECDSA key pairs for their Ethereum accounts. Using these keys for 

encryption/decryption of the secret is the first thing that came to our mind. Yet, there 

are three issues with this approach. First, it is not a good practice to use the same 

private key for both encryption and transaction signing. This is why, for example, 

GnuPG [123], which is an implementation of the OpenPGP standard, creates a master 

key for signing and a different sub-key for encryption. Second, dealing with the key 

pairs that belongs to an account that holds actual Ether is risky. Normally, MetaMask 

acts as a secure identity vault and deals with the private keys of Ethereum accounts 

while signing the transactions for Ethereum blockchain and DApps. MetaMask does 

not offer a mean to use private keys for decryption. So, we need to deal with the 

Ethereum account’s private keys from the front-end, which can raise security concerns. 

Third, using the same key pair for every buy transaction would yield several pieces of 



40 

 

encrypted content to be decrypted by a malicious user once the private key is somehow 

disclosed in the future. To ensure forward secrecy, the user needs to create a new 

Ethereum account and transfer Ether to this account each time she buys a content, 

which is not very practical. Because of the security and usability concerns, we decided 

not to use Ethereum account key pairs for ensuring the confidentiality of the digital 

content. 

Rather than using existing Ethereum key pairs, we thought we could create a new  

PGP key pair for each buy action. By this means, we ensured that the same key would 

be newer used twice, and hence provided forward secrecy without the need for creating 

new Ethereum accounts for each buy action. In this context, we can think of our key 

pair generation strategy as an occasion for achieving forward secrecy, similar to 

ephemeral key exchange mechanisms, such as Ephemeral Diffie-Hellman (DHE) and 

Ephemeral Elliptic-curve Diffie-Hellman (ECDHE).  

PKC in our DApp was achieved by using a JavaScript library to generate the key pairs 

and perform encryption and decryption of the secret from the front-end via OpenPGP 

protocol. During our research, we found out a proven open source library called 

OpenPGP.js 1  , which is a JavaScript implementation of the OpenPGP protocol. 

Although OpenPGP2 is a protocol mainly used for end-to-end e-mail encryption, it can 

also be used as a mean for encrypted messaging. Having said that, OpenPGP.js library 

is used and maintained by ProtonMail3, an e-mail service provider specialized in end-

to-end encryption of the e-mails. OpenPGP.js library has also passed an independent 

security audit conducted by Cure53 [124]. Namely, we confirmed this library is safe 

to use in our DApp. In order to generate an OpenPGP key pair, OpenPGP.js requires 

the user to fill three fields: name, e-mail, and passphrase. The PGP private key is 

encrypted with the passphrase so actually it behaves like a keystore file. Thus, saving 

the private key file in the owner’s local directory is relatively safe, as the file cannot 

be decrypted without the passphrase. 

4.2.2. Data Storage 

Smart contracts in Ethereum can store data in order to perform the application logic of 

the DApp. Our smart contracts need several state variables that are stored in the 

blockchain, such as price of the content, seller, buyer, name and description of the 

content, a link to content, and a link to public key of the buyer. Storing data in 

blockchain requires gas, so we stored as much data as we can in off-chain, specifically 

the files. Without compromising the decentralized approach of the DApp, we could 

store the large data in a decentralized storage system, such as Swarm and IPFS. Note 

that these large data and files are not actually required for blockchain consensus. Thus, 

 

1
 https://openpgpjs.org 

2
 https://openpgp.org 

3
 https://protonmail.com 



41 

 

rather than the actual content itself, we stored the reference address of the content on 

the blockchain. 

Either of IPFS and Swarm could have been used in this study. As a matter of fact, 

compared to Swarm, IPFS is more mature, it has a larger community, and has been 

adopted by more projects and studies. According to our literature review, there are 

very limited number of studies that choose Swarm as the decentralized storage system. 

Nevertheless, we opted for Swarm, due to several key advantages of it over IPFS: First, 

according to Swarm documentation[114], Swarm is a native base layer service of 

Ethereum, this is why a Swarm account is actually an Ethereum account and Swarm 

is intrinsically linked to the Ethereum blockchain as a storage network. Second, Swarm 

provides a built-in incentive layer in its architecture, which makes it possible to upload 

a content and go offline, though this incentive mechanism is not fully implemented 

yet. Third, Swarm reference addresses are 32 bytes, which are compatible with 256-

bit word size of the EVM[77]. Thus, Swarm references can be stored in Byte32 value 

type, which is cheaper than storing in a string. IPFS reference address are larger than 

32 bytes. Finally, and most importantly, Swarm has built-in encryption and access 

control mechanisms, which are useful when dealing with sensitive data. In conclusion, 

assured the security and immutability of our off-chain data utilizing Swarm. 

Table 4.1: State variables of the smart contract 

uint public price; 

address public seller;     //Ethereum address 

address public buyer;     //Ethereum address 

string public name; 

string public description; 

bytes32 public secretHashAddress;      //Swarm reference address 

bytes32 public contentHashAddress;   //Swarm reference address 

bytes32 public buyerPublicKey;          //Swarm reference address 

 

For interacting with the Swarm network in order to upload and download data, we 

used Erebos4 API. Erebos is a JavaScript client that is supported by Swarm. When a 

file or directory is uploaded to Swarm, it gives a reference address to the uploaded 

content. Swarm references are 32 bytes. So, technically, if a data is larger than 32 

bytes, it is cheaper to store it in Swarm, compared to storing it in blockchain. The state 

variables that store data of a content share action in our smart contract are listed in 

Table 4.1 with their Solidity value types and visibilities. Note that accounts in 

Ethereum network are identified by Ethereum addresses, which are 20 bytes long. We 

also did not store the name and description of the content in Swarm, since we assume 

these strings would be probably less than 32 bytes. Nevertheless, strings are arbitrary 

length values, so the length of the strings would be limited in the front-end, in order 

 

4 https://erebos.js.org 



42 

 

not to let user to spend unnecessary amount of gas for the transaction. Typically, it is 

a good idea to store the content, secret file, and OpenPGP standard public key to 

Swarm. So, in the smart contract, only reference addresses of these files are stored. 

4.3. Smart Contracts 

Smart contracts enforce the application logic in DApps. We have two smart contracts 

for our DApp. First smart contract handles the sell/buy processes among users. The 

second smart contract handles the information and deployment of the first smart 

contract in to separate instances. 

Solidity is the de facto programming language for Ethereum smart contracts. Although 

Vyper is the emerging security oriented smart contract language, and it provides a 

simple programming approach to be more resistant to human errors, it is still an 

experimental programming language with only beta versions released yet [95]. On the 

other hand, Solidity is more mature, has a large community, has many independent 

documentations with lots of examples. Accordingly, we programmed out smart 

contracts using Solidity. As discussed in Section 3.3.3, smart contracts have several 

potential vulnerabilities and smart contract security is a critical aspect to be careful 

about. There are tools to conduct security tests for Solidity source codes. So, in order 

to be in the safe side, we had our smart contracts tested for security vulnerabilities. 

4.3.1. Reasonably Fair Exchange via Double Escrow Smart Contract 

In conventional web based digital exchange platforms, interest of buyers and sellers 

are protected by the website owner, or privileged users with delegated powers, which 

act in disputed transactions. Most of the time, publishers upload their digital content 

to the web app’s server, leaving the digital content in the hands of the web app owner. 

When a user purchases the content, buyer downloads the files from the website. This 

process protects the buyer from fraud. In this scenario, payments are done over 

banking systems, which protects the seller from fraud. Most of the time, web apps keep 

the money for certain amount of time before they deliver it to the seller, in case there 

is a dispute. These are all examples of current applications of fair exchange using 

TTPs. 

In private blockchain based sharing platforms, only permissioned users can join and 

interact with the system. This yields a framework where users trust each other, because 

they share the same business interest, or there is a centralized authority that maintains 

the order against malicious behavior. In this scenario, a remote purchase is intrinsically 

safe.  

In decentralized applications on permissionless blockchains, where the blockchain 

data is transparent, access control can be provided via PKC. However, ensuring safe 

remote purchase, i.e., fair exchange is still not trivial, in a network where users do not 

trust each other. When Alice puts her digital content on sale, she wants it to be 

accessible by only buyers. Thus, the digital content on the blockchain must be 



43 

 

encrypted until the buyer downloads and decrypts it.  After Bob makes the payment, 

there is a possibility that he finds out Alice acted maliciously and sent garbage content 

instead. On the other hand, if the digital content is delivered to the Bob before he 

makes the payment, then a malicious Alice can decide not to pay at all. In this scenario 

there is no protection mechanism for either of the buyer or seller against fraud. This 

problem is called fair exchange problem in electronic commerce. For an exchange to 

be fair, either both parties should get what they want, or neither party should get 

anything. 

Having a reputation system for the users is a common practice in content sharing 

platforms. For example, in eBay, people mostly prefer buying goods from the 

reputable sellers with high points. This is an incentivized approach, where sellers sell 

more goods when they have high reputation, thus do not act maliciously because users 

can give negative feedback and lower their points. Reputation based fairness solutions 

are proposed in the context of fair exchange [125]. Although a reputation system can 

help achieving a somewhat fair exchange, it is stated that reputations systems have 

limited applicability due to uncertainty of the definition of reputation for the new users 

[126]. Thus, it could act only as an auxiliary function for our DApp, which can be 

applied in the future. 

In Ethereum, transactions are first broadcasted to the network and a malicious user can 

get information before that transaction is verified and mined. So, implementing an 

escrow mechanism with deposits makes sense in the context of blockchain based 

exchanges. Using escrow services for taking deposits in blockchain is a method studied 

in several work [54] [50] [53]. Enforcing monetary penalties to malicious users or 

mediators [47] [50] is proposed as an approach for fair exchange protocols. Likewise, 

there are protocols that enforce parties to deposit predefined amount of money as an 

incentive to achieve fair exchange [52] [53] [54] [55]. Similarly, we implemented our 

two-party fair exchange protocol using escrows and deposits, though using smart 

contracts.  

Asokan et al. [41] defined three type of electronic goods as the exchangeable items in 

their generic protocol for fair exchange: confidential data, public data, and payments. 

Similarly, our approach to fair exchange of digital content has all three type of 

exchangeable items: encrypted content and its symmetric key are the confidential data, 

smart contract data is the public data, and cryptocurrency transfer is the payment. 

Payment and confidential data should be tied to each other in order to achieve fairness. 

On the other hand, revealing of the public data does not affect the fairness. 

Escrow services are the agents where at least one of the parties deposit a certain 

amount of money before their transaction. According to Hu et. al, adopting online 

escrow services as a remedy for internet fraud in customer to customer online trading 

systems is a viable approach [127]. They determined the demand for escrow services 

and conducted a numerical study for optimal prices for the service. According to their 

study, online escrow agents effectually prevent fraud. 

Our escrow logic is handled and autonomously enforced by a smart contract. Since 

smart contracts can transfer and receive Ether, they are inherently suitable to act as an 

escrow stakeholder between seller and buyer. In addition, smart contract logic and data 



44 

 

is transparent and can be audited by anybody who is interested. Hence, our smart 

contract is both the trustless mediator and escrow service. This approach is different 

from other Bitcoin based escrow propositions such as the work of Goldfeder et al. [50], 

where the mediator is offline, and the protocol is optimistic. Our escrow protocol, is 

active on deposits, active on withdrawals, is not optimistic, is secure, is not externally-

hiding, and is not internally hiding due to the fact that Ethereum blockchain does not 

provide privacy, according to the definitions given in [50]. 

When we decided to implement an escrow feature via a smart contract, we needed to 

decide the specifications of our escrow logic, such as the amount of deposit, which 

parties should make deposit, when to make deposit, and when to return deposit. In 

order to ensure the fairness of the exchange, as the problem described above, we need 

both seller and buyer to make certain amount of deposit, as an incentive to act honestly. 

After our research, we found out that there are already proposed schemes for double 

escrow services in blockchain systems. For example, Zimbeck proposed a double 

deposit escrow in Bitcoin network [128]. Also, Asgaonkar and Krishnamachari 

proposed a dual-deposit escrow protocol for a cheat-proof delivery [129].  

For our smart contact, we adapted a double escrow mechanism based on the “Safe 

Remote Purchase” contract example in Solidity Documentation [130]. Escrow smart 

contract is developed as stateful, with the following states: Created, Locked, and 

Inactive. The amount of deposit that the seller needs to make is double the amount of 

the price of the digital content that the seller put on sale. Likewise, the total amount of 

deposit that the buyer needs to make is again double the amount of the price of the 

digital content she wants to buy. When the transaction ends successfully, seller 

receives full deposit plus the content price, and the buyer receives deposit minus 

content price. Safety and liveness of the purchase process is directly proportional to 

the amount of the deposit [129]. Nonetheless, we assumed double the value of the price 

is an optimal deposit amount for us. 

The rationale behind choosing this deposit amount is to equally incentivize both the 

buyer and seller to finish the purchase process, otherwise they lose same amount of 

money. Assume Alice put a digital content on sale with the price of 10 Ether, and Bob 

wants to buy the content. So they both deposit 20 Ether to the smart contract. Assume 

Alice deposits 10 Ether, then she may not send the content, and Bob would lose more 

money than Alice. Assume Bob’s deposit is 10 Ether, then he may not confirm that he 

received the content, then Alice lose 20 Ether, and Bob does not lose anything because 

he deposited the same amount of money with the price of the content. As can be seen, 

by choosing this deposit amount, we make the seller and buyer to take the same amount 

of risk, thus equally committing to the purchase process.  

Since we have a commitment scheme, which means both parties deposit certain 

amount of money to the mediator escrow smart contract before the exchange, we 

achieved a two-party fair exchange protocol with incentive, of which the penalty 

amount is predetermined, and equal for both of the parties. 

Our equal incentive approach actually assures exchange fairness for rational users, as 

it is described in studies on incentive game theory based secret sharing schemes [131] 

[132]. These works do not define users as pure malicious or pure honest, but with the 



45 

 

assumption that they are rational. A rational party acts honestly when he cannot gain 

advantage over other party, however acts maliciously if he can gain advantage over 

the other party. This means, rational parties will act honestly if there is no incentive or 

negative incentive for fraud. In other words, when a rational buyer deposits more 

money than the price of the digital content, or a rational seller deposits more money 

than he would receive as a payment, they will act honestly. They will be equally 

committed to finish the transaction and they would not deviate from the protocol, 

because it is against their self-interest. A purely malicious user would be discouraged 

from using the system, and a rational malicious user would act honestly. 

Since Alice and Bob are not supposed to make any off-chain communication, and all 

the communication is done via the smart contract, our fair exchange protocol is not 

optimistic. Nevertheless, it does not cause any extra communicational overhead, as it 

is in conventional TTPs. Instead of any transaction addressed to either Alice or Bob, 

they both send transactions to the escrow. Since reading blockchain data is free, there 

is no need for the smart contract to send any message to any parties, so that actually 

the number of transactions does not change whether the mediator exist or not. 

However, the overhead this mediator brings is actually gas (i.e., Ether) and time. 

Optimistic fair exchange protocols require TTPs for aborting the transaction or 

triggering a dispute. Our smart contract enables abort action, and thanks to the penalty 

scheme, we would not need dispute mechanism, with the assumption of users being 

rational. 

Our escrow smart contract is the trustless mediator, acting on predefined rules so that 

neither Alice nor Bob can withdraw money unilaterally. There is no chance that the 

mediator act maliciously because there is no one controls it, namely, the mediator 

cannot have access the digital content, cannot send deposits to Chuck, cannot seize the 

deposits unless one of the parties act maliciously, and cannot favor one of the parties 

against other. 

We should also note that, although this double escrow scheme discourages users act 

maliciously as they would lose their deposit, an irrational user may want to make other 

party lose money at the cost of him losing his money as well. The architecture can be 

modified so that a seller can abort the sale any time before the delivery is confirmed 

by the seller which would send the deposits back to both of the parties. Or a time limit 

can be integrated in to the system so that both sides need to take action within the time 

limit. Although these modifications can protect users in some ways, they have their 

own drawbacks as well. When a seller aborts the sale after the buyer send money, the 

buyer would lose time and her money that would be usable for that time being. When 

there is time locks, if a user has a DoS attack or is not available for some reason, she 

might lose money even if she did not act maliciously. In conclusion, there can be other 

approaches to the problem, nevertheless, the protocol we implemented can be 

considered as secure and fair with the assumption that the users act rationally. 

The two-party fair exchange protocol of safe remote purchase via double escrow 

mechanism in our DApp is described in the following steps: 

 



46 

 

• Put Content on Sale.  

Seller creates a purchase contract with the price, say 10 Ether. Seller deposits 

20 Ether. Contract state is “Created” and anybody can buy the content at this 

moment. Contract balance is 20 Ether. 

• Abort Sale. 

If the contract state is “Created”, i.e., nobody bought the content yet, seller can 

abort the sale. This is an optional functionality for enabling seller to retrieve 

her deposit back if nobody buys the content or the seller does not want to sell 

the content anymore. When the sale is aborted, contract state becomes 

“Inactive”, so it cannot be bought any more. Escrow contract transfers 20 Ether 

back to seller. Contract balance is zero Ether in the end. 

• Buy Content. 

Buyer sends 20 Ether to the contract. Buyer stores her public key to smart 

contract. Contract state is now “Locked”, which means only this buyer can 

continue with the buying process from now on. Escrow contract balance is 40 

Ether now. 

• Deliver Content. 

Seller sees the contract is bought. Seller encrypts the secret with buyer’s public 

key and stores the encrypted secret in to the blockchain, meaning she delivers 

the encrypted content to the buyer. Contract state is still “Locked”, and 

Contract balance is still 40 Ether. 

• Confirm Received. 

Buyer sees the content is delivered by the seller. Buyer download and decrypts 

the content with her own private key. Buyer confirms the content received. 

Contract state becomes “Inactive”. Contract transfers 30 Ether to seller, and 10 

Ether to buyer. Eventually contract balance becomes zero, and the extra 

amount of Ether the seller receives is actually the price of the digital content 

she is selling in the first place. 

Sell process and buy process with our escrow scheme via a stateful smart contract 

implementation are depicted in Figure 4.2 and Figure 4.3, respectively. 



47 

 

 

Figure 4.2: Seller Flowchart 

 



48 

 

 

Figure 4.3: Buyer Flowchart 

4.3.2. Management Contract 

The escrow smart contract described above, handles the sale and purchase logic 

between a buyer and seller. In order to allow multiple simultaneous sale/buy actions, 

we need to have multiple contents with its specific state variables, such as buyer 

address, seller address, price, etc. in our smart contract. It is possible to manage 

separate content sales by storing each sale in an array. However, there is a problem 



49 

 

with this approach. Since our smart contract acts as an escrow, it stores deposits from 

both the buyer and seller. So, if we store every escrow in one array, our single smart 

contract would hold total amount of deposits coming from each sale. Keeping all the 

escrows in one place might be risky. On the other hand, if we deploy a new escrow 

contract for each sale, seller needs to pay more Ether for the sale initial transaction, 

because contract creation would costs an extra 32000 gas [77]. According to ETH Gas 

Station5, the current (as of August 2019) standard gas price is 3 Gwei. So, deploying 

a new contract is going to additionally cost no more than 0.02 USD, which is actually 

negligible if you sell a content for, let’s say 100 USD (see Section 6.3 for detailed cost 

analysis). In any case, separating escrow logic from platform logic would decrease the 

complexity of the smart contract, and we want to keep the smart contracts as simple as 

possible as it is recommended by the best practice. Given the above, a seller creates a 

new escrow contract for each sale using the management contract, so it acts like a 

contract factory. For the purpose of manageability, management contract stores an 

array of addresses of all deployed escrow contracts as illustrated in Figure 4.4. 

Deployed sale contracts can be listed in the frontend by reading addresses of the 

contracts from the deployedContracts array and getting the details of each escrow 

purchase contract. 

 

 

Figure 4.4: Management Contract 

4.4. Final System Architecture 

In this section we describe the final system architecture of our secure content sharing 

DApp. Figure 4.5 depicts the overall architecture, and it shows the components of the 

 

5 https://ethgasstation.info/ 



50 

 

system, as well as how they interact each other in detail. As can be seen, there are two 

main layers in the architecture: presentation layer (front-end), and database and 

application layers (back-end). A user interacts with all of these components either 

directly or indirectly in order to sell and buy content in our decentralized secure content 

sharing framework.  

 

 

Figure 4.5: Final System Architecture 

Front-end software is a collection of components that makes a graphical user interface 

which enables an end user to use the DApp through their web browser. With CSS and 

HTML files, this interface lets the end user send information to frontend, and displays 

the contents and information back to the user. It also has JavaScript libraries acting as 

client-side tools and communication interfaces to interact with the back-end. Erebos.js 



51 

 

library is used to read/write static content from/to local Swarm node though bzz API. 

This is used to store the large files in smart contracts as reference addresses. 

OpenPGP.js library provides the necessary PKC primitives, such as key generation, 

encryption, and decryption. This is used to let a seller send a secret to the buyer without 

any pre-shared information. Web3.js library enables a link between front-end and a 

local or remote Ethereum node. As a matter of fact, Ethereum blockchain provides a 

JSON RPC API to interact with a local or remote node through RPC calls, and Web3.js 

is a JavaScript wrapper that enables a developer friendly access to several 

functionalities, without the need to write raw JSON RPC calls. All the read/write 

global state from/to Ethereum node actions, interactions with smart contracts, signing 

and sending transactions, etc. are handled by Web3.js library. Web3.js utilizes the 

contract ABIs, which are JavaScript interpretation layers to interact with the deployed 

contracts in the blockchain from the front-end.  

MetaMask runs integrated with our front-end software as a component for blockchain 

interaction. It is the de facto standard for DApp browsing, used for account and key 

management, user authorization, transaction signing, and interaction of end users with 

a local or remote Ethereum node using Web3.js. Since it is a browser extension, it can 

interact with every webpage that user browses. It injects a Web3 object, which is 

available in JavaScript context, to loading pages, thus enabling them to be used by the 

JavaScript code of the DApp. Detection of the current user and other account actions 

are handled by this web3 object. 

Back-end software represents the database and application layers. Database and data 

access layers consist of the immutable distributed ledger of Ethereum blockchain and 

the Swarm storage system. All the transactions and data used in application logic is 

stored in blockchain, either directly or with reference addresses. Swarm stores the 

large files in chunks, which are accessible by the reference addresses stored in the 

blockchain. Basically, blockchain acts as the immutable database, and Swarm acts as 

the content delivery network for our DApp. The application layer is actually the smart 

contracts that manage the business logic of the application. In addition to smart 

contracts and transactions ledger, blockchain also stores EOA accounts for 

transactions, triggered by the DApp and signed by MetaMask. All the back-end 

software, i.e., Ethereum blockchain and Swarm, operate on a peer-to-peer network. 

Ethereum nodes mine Ethereum blockchain for validation and consensus purposes. 

Swarm nodes host referenced chunks of the files. Note that, in order to interact with 

peer-to-peer networks, a user need to be a peer, as well. For Ethereum, MetaMask 

takes this burden from the user by directing the transactions to secure Ethereum nodes 

provided by Infura6, so end-user does not need to be an Ethereum node to interact with 

the network. For Swarm, although there is a possibility to use a public gateway7 to 

upload/retrieve data to/from Swarm, it is not safe to use this gateway for sensitive data. 

Besides, accessing access-controlled content is enabled only when using a local 

Swarm node [114]. Hence, the users of the proof of concept are required to run a local 

 

6 https://infura.io 

7 https://swarm-gateways.net 



52 

 

Swarm node as a peer in the peer-to-peer network, which is expressed in the final 

system architecture (Figure 4.5). 

By utilizing blockchain, and storing files in Swarm, rather than cloud or local storages, 

we reached a high level of decentralization for our DApp, as a matter of fact, only 

central point of failure for our DApp is that it is served from a web server. In order to 

achieve a full decentralization, we can host the front-end software, i.e., HTML, CSS, 

and JavaScript files in the Swarm. Swarm supports only static pages, accordingly the 

components in the front-end need to be made static. This can be achieved via a 

JavaScript bundler, such as Webpack. Once all the files deployed to a static library, 

proposed DApp is able to be served by Swarm. When a user wants to view previous 

sales, the existing sales can be reached by the front-end software via the array of 

escrow-purchase contracts stored in the management contract. Information regarding 

these deployed contracts needs to be loaded each time a user accesses the DApp. 

Nevertheless, this content exchange platform is not going to be able to utilize dynamic 

web pages, so it would have limited functionality relative to more complex designs. 

Essentially, instead of relying a server, and by hosting our DApp in Swarm, we would 

decentralize our DApp even more, with limitation of a relatively simple architecture. 

Consequently, when the proposed DApp is hosted in Swarm, it becomes resistant to 

DoS attacks and censorship, and maintaining security and zero downtime, thus 

assuring the availability of the DApp to anybody without any permission or limit. 

Note that when a seller sets the price to zero, our prosed DApp can be used to securely 

share information and digital content between any two parties, with end-to-end 

encryption. Since Ethereum blockchain data is transparent, and all the other operations 

are done in client side via JavaScript scripts, both sides can verify the security of the 

application.  

 

  



53 

 

 

 

 

 

CHAPTER 5 

 

 

5. IMPLEMENTATION AND VALIDATION 

 

 

 

After we conducted requirement analysis and system design of the proof of concept, 

we implemented the proposed DApp. This chapter gives information about this 

implementation process. First the development environment is described, then 

implementation of the smart contracts and front-end software are explained. Finally, 

in the last section, the validation process of the implemented DApp according to the 

functional requirements and design specifications is described. Note that since this is 

a proof of concept, we connected our DApp to a private test network, instead of the 

Ethereum mainnet.  

5.1. Development Environment 

The tools we used for the development of the DApp are as follows: Geth, Ganache, 

Truffle, MetaMask, and WebStorm. 

Geth8 (Go Ethereum) is the official implementation of the Ethereum protocol, written 

in Go language. It provides a command line interface to run a node connected to 

Ethereum blockchain, through which, the mining process, and other interactions with 

the blockchain, such as account creation, transaction sending, etc. are enabled. It also 

allows to connect any public or private Ethereum blockchain. Ethereum and Swarm 

accounts are created using Geth. 

Ganache9 is an in-memory personal Ethereum blockchain for developers to run tests 

on. It provides a graphical user interface to enable easier access to global state of the 

private blockchain. Accounts, blocks, transactions, contracts, events, and logs can be 

inspected from this user interface. Through Ganache, all the software tests can be done 

before actually deploying the DApp to the Ethereum mainnet or other test networks. 

Ganache was used as the Ethereum blockchain throughout implementation and testing. 

As can be seen in Figure 5.1, Ganache provides pre-created accounts with balances to 

 

8 https://geth.ethereum.org 

9 https://trufflesuite.com/ganache 



54 

 

make transactions. It also provides access to the blocks, transactions, deployed 

contracts, events, and logs in the blockchain, which were useful for the 

implementation. 

 

Figure 5.1: Ganache graphical user interface 

Truffle 10  is a development framework for Ethereum projects. It increases the 

development speed by allowing writing, testing, and deploying smart contracts in to 

an Ethereum blockchain. It also includes a Solidity compiler, and gives access to 

contract ABIs, which are JavaScript interpretations to define smart contracts during 

implementation. Integrating front-end software to smart contracts is a complex task 

that requires many configurations. We used Truffle Boxes to start our project. Boxes 

are boilerplate starter projects built by Truffle or community, preparing a template of 

an empty project for the developer.  

MetaMask is used for the connection to Ganache and it deals with account 

management and transaction signing for our PoC DApp. 

WebStorm11 is the JavaScript IDE that we used for developing front-end and smart 

contracts. 

 

10 https://trufflesuite.com/truffle 

11 https://jetbrains.com/webstorm 



55 

 

5.2. Swarm Usage 

In order to upload and download encrypted content to Swarm, a user is required to be 

running a local Swarm node. Thus, users need to run local Swarm nodes in order to 

sell and buy content on our proposed DApp.  

Swarm provides a CLI for interaction, but there is also a graphical user interface as a 

web service that runs on TCP port 8500. A user can check if the node is running, or 

download the content from Swarm, using web interface with a browser over 

127.0.0.1:8500 (Figure 5.2). 

 

 

Figure 5.2: Swarm Web Interface 

A seller can upload a content that she wants to be encrypted, with –encrypt method, 

which gives the reference address of the encrypted content.  

 

After she uploads the encrypted content, then she wraps this encrypted content with a 

secret (secret key, password) she decides, which gives the reference of the encrypted 

content with the new password.  

 

Reference addresses of both the encrypted content and the encrypted secret password 

file are stored in the smart contract. Buyer decrypts the password file using PKC.  



56 

 

Reference address of the encrypted content and decrypted password are used by the 

buyer to download and decrypt the encrypted content from her local node.  

 

As can be seen below, this encrypted content cannot be accessed without a password 

or the secret file itself. 

  

One of main reasons we chose Swarm over IPFS is, as mentioned earlier, Swarm 

presents built-in complex access control schemes. 

5.3. Smart Contract Implementation 

We implemented our Purchase contract according to the safe remote purchase via 

double escrow design described in Section 4.3. We used the source code given in 

Solidity documentation[133] as a base for this contract, then we adapted it to our 

overall design where we exchange digital content online instead of offline delivery of 

the goods. We also implemented Contract Management contract according to our 

design, so that sellers can deploy new Purchase contracts using this contract. Both of 

the contracts are written in Solidity version 0.5.x, latest version of the Solidity for 

security and adaptability considerations (see APPENDIX).  

5.4. Front-end Implementation 

As mentioned above, we used Truffle Boxes to start our project. For that purpose, we 

used chainskills-box as the truffle box, and chainlist as a basis for the frontend 

software, which are both in the chainskills12 repository. The entry point to our DApp 

is the index.html file which sketches the GUI of our DApp. The frontend interaction 

with the backend was handled in app.js. In order to use web3.js for blockchain 

interaction, and to access active accounts in the browser, we needed to initialize web3 

by using the web3 object injected by MetaMask or Ganache. Then we request user’s 

permission to access account information. 

 

12 https://github.com/chainskills/ 



57 

 

if (typeof web3 !== 'undefined') { 

    // Legacy dapp browsers 

    App.web3Provider = web3.currentProvider; 

} else { 

    // If no injected web3 instance is detected, fall back to Ganache 

    App.web3Provider = new Web3.providers.HttpProvider( 

        'http://localhost:7545'); 

} 

web3 = new Web3(App.web3Provider); 

 

// request account access permission 

ethereum.enable() 

    .then(function (accounts) { 

    }) 

    .catch(function (error) { 

        // Handle error. Likely the user rejected the login 

        console.error(error) 

    }) 

 

In order to access the components of the deployed smart contract, we need the ABI of 

the contract, as described in Section 3.3.1. Truffle automatically loads this ABI into a 

JSON file, so we initialized the contract with this ABI. 

initContract: function () { 

    $.getJSON('Purchase.json', function (purchaseArtifact) { 

        // Get the necessary contract artifact file and instantiate it with truffle-contract 

        App.contracts.Purchase = TruffleContract(purchaseArtifact); 

        // set the provider for our contract 

        App.contracts.Purchase.setProvider(App.web3Provider); 

        // listen to events 

        App.listenToEvents(); 

        // Use our contract to retrieve contents from the contract 

        return App.reloadContents(); 

    }); 

 

DApp listens to the events of the blockchain and reloads the front-end automatically. 

First, an instance of the deployed contract is accessed then the Log function from the 

smart contract is called with JavaScript promises. Calls returns results, and this result 

is shown to the user. As an example, we listen the event triggered by buy content action 

below. 

// listen to events triggered by the contract 

listenToEvents: function () { 

    App.contracts.Purchase.deployed().then(function (instance) { 

        instance.LogBuyContent({}, {}).watch(function (error, event) { 

            if (!error) { 

                $("#events").append('<li class="list-group-item">' + event.args._buyer + ' 



58 

 

bought ' + event.args._name + '</li>'); 

            } else { 

                console.error(error); 

            } 

            App.reloadContents(); 

        }); 

 

Calling the functions of the smart contract is handled asynchronously. As an example, 

we show the implementation of the buyContent function below. This function acts as 

a middleman between the user interface and smart contracts. It gets inputs from the 

user interface, and then calls the buyContent function from the smart contract via a 

transaction, using the particular instance of the deployed contract. For data storage and 

retrieval of the encrypted content, secret, and buyer PGP public key, we used Swarm. 

This function uploads the public key of the buyer to the Swarm, and sends the returned 

reference address to the smart contract, together with the value that is sent as the 

deposit. For Swarm interaction, we utilized erebos.js based on file storage examples 

in its official documentation13. 

buyContent: async function () { 

    event.preventDefault(); 

 

    // retrieve the content price 

    var _price = 2 * parseFloat($(event.target).data('value')); 

    const name = $('#buyerName').val(); 

    const email = $('#buyerEmail').val(); 

    const passPhrase = $('#buyerPassPhrase').val(); 

 

    var buyerKeyPair = await getPublicKey({name, email, passPhrase}); 

    const _buyerPublicKey = buyerKeyPair.publicKey; 

    const _buyerPrivateKey = buyerKeyPair.privateKey; 

 

    swarmClient.bzz 

        .upload(_buyerPublicKey, {contentType: 'text/plain'}) 

        .then(hash => { 

            $('#buyerPrivateKey').val(_buyerPrivateKey); 

            downloadTextAsFile($('#contentName').text() + '.pk', _buyerPrivateKey); 

 

            App.contracts.Purchase.deployed().then(function (instance) { 

                return instance.buyContent(hash, { 

                    from: App.account, 

                    value: web3.toWei(_price, "ether"), 

                    gas: 500000 

                }); 

            }).catch(function (error) { 

 

13 https://erebos.js.org/docs/examples-storage 



59 

 

                console.error(error); 

            }); 

        }) 

}, 

 

For generating elliptic curve key pairs, and the encryption/decryption using PKC, we 

utilized OpenPGP.js in our app.js, based on the examples in its official 

documentation[134]. As an example of using PKC, we show the implementation of 

downloadSecret function below. This function decrypts PGP private key of the buyer 

with the passphrase that only buyer knows, downloads the encrypted secret from 

Swarm, decrypts the secret using buyer’s private key, and downloads the decrypted 

secret in to local directory with the name of the content on sale. 

 

downloadSecret: async function () { 

    const passPhrase = $('#buyerPassPhrase2').val(); 

    const publicKeyHash = $('#buyerPublicKey').text(); 

    const secretHash = $('#secretHashAddress').text(); 

    const publicKey = await downloadFromHash(publicKeyHash); 

    const encryptedContent = await downloadFromHash(secretHash); 

    const privateKeyObj = openpgp.key.readArmored(this.buyerPrivateKey).keys[0]; 

    await privateKeyObj.decrypt(passPhrase); 

 

    const optionsProvider = { 

        message: openpgp.message.readArmored(encryptedContent), 

        publicKeys: openpgp.key.readArmored(publicKey).keys, 

        privateKeys: [privateKeyObj] 

    }; 

    const decryptedContent = await 

openpgp.decrypt(optionsProvider).then(decryptedMessage => { 

        return decryptedMessage.data; 

    }); 

    downloadTextAsFile($('#contentName').text() + '.txt', decryptedContent); 

    console.log(decryptedContent); 

}, 

 

In the smart contract, we enforced authorization for seller or buyer specific functions 

(see APPENDIX). If an invalid request is made by the user, the smart contract will 

throw an exception and break the transaction. In addition to this, as a second layer of 

security, and to protect users from invalid operations and spending gas for nothing, we 

did hide or show utility buttons according to the contract state and account address. 

So, a user is not able to make an invalid action through the user interface of the 

implemented DApp. Nevertheless, if these access restricted functions are called 

manually via a geth clients by a third peer, as we told above, the transaction will fail, 

and that peer will lose the spent gas. 



60 

 

5.5. A Test Scenario 

In this section we test the proof of concept secure content sharing DApp we 

implemented to ensure that it meets the pre-defined functional requirements. For this 

purpose, we fulfill a scenario where a seller publishes a content and a buyer buys it 

with all the steps of these actions. 

Before selling and buying a content, a user has to connect to an Ethereum network and 

manage her accounts via MetaMask. There are several Ethereum networks that can be 

connected to, however, we connect to Ganache, which is our test Ethereum network 

in this study. During implementation, we configured so that Ganache listens RPC 

requests on TCP port 7545. For sell and buy actions , we take actions for separate seller 

and buyer accounts by switching the accounts in MetaMask, both of which have 

different address and private key pair. 

In order to increase the privacy, MetaMask runs with privacy mode enabled by default. 

If the user does not authorize the DApp, user’s Ethereum address and related 

information is not revealed to the DApp. As a result of this, a user needs to first 

authorize our PoC Secure Content Exchanging DApp as shown in Figure 5.3. 

 

 

Figure 5.3: DApp MetaMask Authorization 

After the permission is given to the DApp, the user can access the web interface of the 

DApp. Accordingly, account address, account balance, and connected Ethereum 



61 

 

network information are displayed in this interface. There is not any content on sale at 

the moment (Figure 5.4).  

 

 

Figure 5.4: Content Sharing DApp initial interface 

 

 

 

Figure 5.5: Put a content on sale in DApp 



62 

 

Put Content on Sale. We put a content on sale via Sell a Content button. The price of 

the content is set to 10 ETH, so after seller deposits 20 ETH, the content is now on 

sale as shown in  Figure 5.5. As is seen, the buyer can abort the sale now. Also the 

details of the contract can be viewed. Note that the contract balance is 20 ETH, which 

is the deposit amount of the seller. Also, account balance of the seller is less than 80 

ETH because of the transaction cost. The contract state is Created. 

 

Buy Content. When we switch to the account that we want to buy the content with, 

we see that we can no longer abort the sale via user interface. Instead the buyer can 

generate OpenPGP key pair specific to this action by entering name, e-mail address, 

and a passphrase to encrypt and decrypt the private key (Figure 5.6).  

 

 

Figure 5.6: OpenPGP key pair generation 

After the key pair is generated, buyer buys the digital content by transferring 20 ETH 

(10 ETH for the content and 10 ETH as the deposit) to the contract as shown in Figure 

5.7. During the process, buyer’s generated public key is uploaded to Swarm and its 

reference address is stored in the smart contract. Also, the encrypted private key is 

stored in buyer’s local directory. When the transaction is signed and mined, state and 

other fields of the contract is updated. 

 



63 

 

 

Figure 5.7: Buy a digital content 

 

Deliver Content. When we switch back to seller account, we can observe that the 

contract state is Locked, and the contract balance is 40 ETH after the buyer deposits 

20 ETH. The seller selects a file for encrypting, this file can be a very tiny sensitive 

information, or in this case it is the secret symmetric key to decrypt the large sensitive 

digital content. When the secret is delivered, we can assume that the content is 

delivered as it is already in the smart contract. This secret is encrypted with buyer’s 

public key downloaded from Swarm, and the encrypted secret is uploaded to Swarm. 

This transaction does not transfer any Ether, but still some gas is spent to run the 

transaction (Figure 5.8). 



64 

 

 

Figure 5.8: Deliver secret in DApp 

 

Confirm Received. When we switch back to the buyer account, the buyer can 

download the encrypted secret and decrypt it with her private key decrypted with the 

passphrase. This is done via a call to the blockchain so no gas is spent. Then she 

confirms that she received the content by downloading the digital content from Swarm 

with the secret. This transaction does not transfer any Ether but some gas is spent 

(Figure 5.9).  



65 

 

 

Figure 5.9: Confirm received in DApp 

 

When the buyer confirms received, the exchange is finalized, and the escrow contract 

pays the deposits back to the seller and buyer; consequently the contract balance is 0 

ETH, and the contract state is Inactive , as seen from a third user’s Ethereum account 

(Figure 5.10).  

When the exchange is finalized, addition the deposit, extra 10 Ether is transferred to 

the seller as the content price. The buyer receives her deposit after 10 Ether is deduces 

as the content price. Account balances of the users after the exchange is shown in 

Figure 5.11. As is seen, instead of 110 ETH and 90 ETH, seller and buyer has 109.97 

ETH and 89,98 ETH, respectively. The remaining ETH was spent as gas during the 

exchange transactions. These transaction expenses are very high and as a matter of fact 

they are not accurate. The real amount of cost is way less than it is shown by Ganache. 

We thoroughly discussed the total costs for the usage of this DApp in Section 6.3. 



66 

 

 

 

Figure 5.10: Exchange is finalized 

 

 

 

 

Figure 5.11: Contract balances after the exchange 

 

 

  



67 

 

 

 

 

 

CHAPTER 6 

 

 

6. EVALUATION AND DISCUSSION 

 

 

 

In this chapter, we evaluate our proposed secure content sharing solution regarding the 

security goals of the study stated in the Introduction chapter, and all the non-functional 

requirements of the DApp stated in Design chapter. Accordingly, security of the 

system components, i.e., blockchain, Swarm, and smart contracts are explored, as well. 

In the meantime, we are also going to discuss further about these evaluations to have 

a broader point of view for the study. 

6.1. Security 

6.1.1. Smart Contract Security 

Software vulnerabilities are the most common risks for an application. In this proof of 

concept, application logic is handled by smart contracts, and it is the most sensitive 

point for our DApp. Smart contracts in Ethereum intrinsically deal with Ether, thus 

actual money, so the security of the smart contracts is crucial. Accordingly, smart 

contract security analysis needs to be performed. Our smart contracts are written in 

Solidity language. This language is still not mature, and it is not mainstream compared 

to programming languages like Python, C, Java, etc., and as a matter of course there 

are not many academic studies related to security of the language, such as software 

verification. There have been several vulnerabilities in Ethereum smart contracts that 

originated from the Solidity programming language, EVM, and blockchain 

architectures. Note that these vulnerabilities are explored in Section 3.3.3.  

Given the above, it is a common practice in the Ethereum community to use proven 

libraries and adopt security best practices. Accordingly, we based our Escrow logic on 

the official Ethereum source code examples. Nevertheless, we tested our smart 

contracts in Remix14, a browser-based IDE, to find out if there is any vulnerability 

 

14 https://remix.ethereum.org 



68 

 

found. In addition to this, we performed security tests with SmartCheck15, which 

analysis Solidity source code for the security vulnerabilities and best practices.  

6.1.2. Private Key Security 

In proposed scenario, account authentication is provided by MetaMask, acting as the 

identity vault for the interaction with the Ethereum blockchain and smart contracts. 

Transaction signing is done with the private key stored by MetaMask. Internet 

connected wallets, i.e., hot wallets, are naturally prone to attacks, this is why it should 

be ensured that the MetaMask account is kept safe, and the private key is not lost. Both 

MetaMask and OpenPGP stores the AES encrypted version of the private key, so we 

can consider that both ECDSA private key in MetaMask, and OpenPGP private key 

buyer stores are secure as long as passphrases used for encryption are not 

compromised. 

For generation of the key pairs and signing transactions, Ethereum depends on PKC. 

More specifically, ECDSA, which utilizes secp256k1 curve, is used in Ethereum [77]. 

ECDSA key pair is generated with this algorithm, and transactions are signed with 

ECDSA private keys and verified by related ECDSA public keys. An Ethereum 

account address is actually derived from calculating the Keccak256 hash of this 

ECDSA public key, and taking the rightmost 160 bit of the result [77]. Swarm also 

uses the same procedure described above, in order to integrate with Ethereum 

blockchain in the Ethereum ecosystem. As can be seen, overall security of the 

Ethereum and Swarm depends on the security of this secp256k1 curve and Keccak256 

hash functions, which are proven to be secure since to this date. So, unless these 

cryptographic primitives are broken, we can consider the Ethereum and Swarm are 

secure. 

6.1.3. Confidentiality 

Confidentiality is the most critical non-functional requirement for our proof of concept 

implementation. As discussed before, Ethereum does not have a built-in privacy 

support for the data stored in its blockchain. Smart contract data and logic is also 

transparent. Consequently, to enable the information to only authorized users’ access, 

we need to enforce off-chain confidentiality. For Alice and Bob to exchange secret 

information between each other without a pre-shared secret, they need PKC. In order 

to ensure confidentiality of the digital content, we utilized PKC for key generation and 

encryption of the secret. Accordingly, to implement cryptography in our proof of 

concept DApp, we used OpenPGP.js16, which is a JavaScript implementation of the 

OpenPGP protocol. To provide security, we chose options that would make the 

encryption as strong as the modern cryptography standards require. A strong key 

generation is crucial and for this purpose we used elliptic-curve key generation and 

 

15 https://tool.smartdeck.net 

16 https://github.com/openpgpjs/openpgpjs 



69 

 

selected secp256k1 curve. We chose this curve in order to correspond to Ethereum 

Web 3.0 stack ECC security.  

For key generation, we could have used RSA or Elliptic-Curve Cryptography (ECC) 

as the PKC primitive for the PGP key pair of the OpenPGP protocol. RSA requires 

much larger key sizes to achieve sufficient security level compared to ECC. For 

instance, for 128-bit security: RSA requires 3072-bit key, whereas ECC requires 256-

bit key; for 256-bit security: RSA requires 15360-bit key, whereas ECC requires 512-

bit key [135]. Even though public key operations are relatively faster with RSA, given 

the same key size, we opted for elliptic-curve key generation in our PoC to achieve a 

better security to computational cost compromise. PKC is far slower than symmetric 

key cryptography for encryption/decryption tasks. As a result of this, PKC is not 

suitable to encrypt/decrypt large files.  Accordingly, we used PKC only for encrypting 

the symmetric key, which is used for encrypting/decrypting the digital content with a 

much faster symmetric key algorithm, i.e., AES. 

In PKC, trust is the essential aspect of the scheme. Alice needs to trust that the public 

key, which is claimed to be Bob’s, is actually Bob’s public key, thus it is authentic. 

Which means the public key is not tampered by Chuck. In modern internet security, 

such as in TLS, this is accomplished by using digital certificates issued by trusted 

Certificate Authorities. If so, in our scheme, how does the seller make sure the received 

public key is authentic? There are two aspects of this: First, a man-in-the-middle attack 

is not possible in our scenario, because the public key is never transferred over an 

unsecure HTTP traffic. It is uploaded to the decentralized Swarm network, through the 

local node running in the buyer’s computer. As mentioned in Section 3.5.3, data is 

distributed and stored in chunks, and as a result, a reference to the file in Swarm is 

created. This reference address generation is deterministic, so one particular public 

key file can only have one reference address, and once it is created it cannot be 

changed. If you put a different public key in Swarm, it would be accessible from a 

different reference. This would assure the integrity of the file in Swarm network. Also, 

when a Swarm address is requested, the data and the requested address are compared, 

which makes a man-in-the-middle attack infeasible. Second, derived Swarm reference 

is written to the smart contract with a transaction signed by seller herself. Since this 

address is signed by the seller with her Ethereum account private key, we can conclude 

that this Swarm reference information is correct, thus authenticity of the public key is 

assured. These two aspects suggest that the public key information accessible from the 

reference address that is stored in the blockchain is trustable. 

6.1.4. Integrity 

In our proposed scheme Ethereum blockchain acts as the distributed ledger that 

immutably stores transactions and manages cash transfer between buyers and sellers. 

On the other hand, Swarm acts as the decentralized storage with immutable content 

addressing. Immutability of the both blockchain data and Swarm contents is a key 

aspect of the overall integrity of the system.  

Ethereum, as it is a permissionless blockchain, makes it possible for separate users that 

do not trust each other to securely share valuable data with making tampering 



70 

 

impossible. This tamperproof architecture is enabled by linking the blocks with the 

hash of the previous block and storing a Merkle root hash of the transactions and the 

state of the blockchain in the block header. This is ensured with the proof-of-work 

consensus mechanism. Both of these processes are dependent to the decentralization 

of the network. If either of this process is compromised, the security of the whole 

system is compromised. The 51% vulnerability, Sybil attacks, and selfish mining are 

key risks for the permissionless blockchain systems, regarding the level of 

decentralization of the system. There is another risk with decentralization, that is, the 

possibility of the power is significantly biased in favor to a few nodes, called mining 

pools. Note that the issues we discussed above are thoroughly explored in Section 3.1.2 

and Section 3.1.5. 

Cryptographic hash functions are used in both Ethereum blockchain and Swarm in 

order to provide the immutability of the data, thus ensuring the integrity of the system. 

In blockchain, these hash functions are used during the processes of proof-of-work 

consensus, chaining the blocks with the hash of the previous block, and Merkle root 

hash generation. In Swarm, hash functions are used to generate reference addresses of 

the contents. The contents are mapped in to a Merkle tree, buy packaging the reference 

address of the chunks in to another chunk with its own hash address [114]. Both 

Ethereum and Swarm uses Keccak25617 hashing algorithm, and as mentioned above, 

unless this algorithm is broken, we can consider the integrity of Ethereum and Swarm 

is assured.  

In the front-end of the DApp, interaction with the Ethereum network is handled locally 

via MetaMask. Similarly, interaction with the Swarm network is done over a local 

node. As a result of this, the data is never sent to the internet over an unsecured 

network. Thus, as long as the integrity of the Ethereum and Swarm is assured, we can 

conclude that our DApp provides integrity. 

6.1.5. Availability 

The proposed DApp is utilizing the blockchain and Swarm, both of which are 

operating on peer-to-peer networks with no central point of failure. Due to this 

architecture, sufficient redundancy of the data is achieved. Note that both Ethereum 

and Swarm are relatively new technologies, the software in decentralized architectures 

and the community are continuously evolving. We can assume that, as long as 

Ethereum and Swarm peers continue to exist, the proposed architecture will be 

available. 

6.1.6. Access Control 

To evaluate further, we can discuss about access control and access revocation aspects 

regarding the shared sensitive content. As mentioned before, there is a single key, i.e., 

buyer’s public key, that enables encryption of the content, thus giving access to the 

 

17 https://keccak.team/keccak.html 



71 

 

buyer. We only have seller and buyer roles in our context. Therefore, there is no need 

for fine grained access control in our proposed scheme. On the other hand, when a file 

is uploaded to Swarm the file is propagated to other nodes as well. Thus, the publisher 

loses control of the file when she uploads it as there is no delete mechanism in Swarm. 

As a result of this, once the access is granted, there is no access revocation mechanism 

for the content. 

6.2. Privacy 

As described in Section 3.4, Ethereum blockchain is actually pseudonymous [103], 

and these pseudonyms can be deanonymized [21] [104] [105]. Thus, true anonymity 

is quite hard to achieve in blockchains. Nevertheless, compared to centralized 

exchange platforms where many personally identifiable information, such as name, e-

mail address, mail address, credit card information, etc., is actually required to use the 

service; better privacy is achieved in our proposed scheme, as just an Ethereum 

account and private key is enough to identify and authenticate a user. 

In its older versions, MetaMask used to reveal Ethereum addresses of the user to the 

website the user browses. This used to occur because MetaMask used to automatically 

inject a web3 object to interact with the webpage. As Ethereum addresses are unique 

to users, exposing of it to every webpage yields privacy concerns. In an attempt to 

solve this, MetaMask has offered a privacy mode in a recent version, which is enabled 

by default. With privacy mode enabled, a DApp needs to ask for permission, and users 

can choose to use the DApp and reveal their Ethereum addresses to the website by 

granting authorization. This is a significant step to protect user privacy in decentralized 

applications. 

For some particular services, more personal information can be required from users. 

In order to give users the control of the information they share with the third parties, 

there are decentralized identity management systems, such as uPort 18 , which 

corresponds with the decentralized nature of our DApp. So, a better privacy could be 

still achieved with these systems, as the personal information cannot be shared with a 

third party, without the approval of the user, as the user is the only one in control with 

her own information. Since this is a proof of concept design, we did not utilize any 

decentralized identity management systems, but it can be considered in a production-

ready DApp.  

6.3. Costs 

The implemented DApp does not need any TTP to function, as it is data, transactions, 

and logic is operating on decentralized systems. A decentralized consensus mechanism 

 

18 https://uport.me 



72 

 

is necessary to make this possible. However, this consensus mechanism, i.e., PoW, 

requires miners to allocate hardware resources in order to verify transactions. Thus, 

when a smart contract is executed in Ethereum and if the transaction changes the state 

of the blockchain, triggered operations of the transactions are executed in every node, 

which requires hardware resources. Allocating these resources is paid with gas by the 

transaction senders, so every action that changes the global state of the Ethereum costs 

gas. In short, a buyer and seller need to pay gas fee for their transactions in our 

proposed scheme. In order for this DApp to be feasible, the cost for selling and buying 

actions needs to be reasonable.  

The gas fees for EVM operations used in the cost calculations of this thesis were 

derived from Gavin Wood’s Ethereum Yellow Paper [77], and the current metrics for 

the Ethereum gas market was derived from ETH Gas Station [136], as depicted in 

Figure 6.1. The gas price is dynamic and changes depending on transaction senders 

and miners. If a user wants to have a faster transaction, she can increase the gas price. 

As the gas price for following calculations, we take the standard gas price, which is 3 

Gwei (Figure 6.1). Also, we took 1 ETH as around 225 USD, the actual price taken on 

the same day with the above metrics (August 2019). This price is dynamic as well, so 

overall costs of operations in USD are actually dependent to gas price and ETH price 

at the time of the calculation. 

 

 

Figure 6.1: Ethereum Gas market metrics 

Cost for a transaction that creates a contract is 32000 gas. So a seller has to pay 32000 

gas for each sale. For each transaction, 21000 gas is required, so both buyer and sellers 

pay this amount and plus the costs for other operations, i.e., SSTORE operation for 

storing data permanently in the blockchain. The word size of the EVM machine is 256 

bits, and to store a new non-zero 256-bit word in smart contract requires 20000 gas. 

Speaking of which, changing the value of a previously stored word requires 5000 gas. 

When we check the Ethereum Yellow Paper for gas prices, we can see that SSTORE 

operation is the most expensive operation for dealing with the data in a smart contract. 

If storing a 32-byte word costs 20000 gas, then it means storing a 1KB file costs 

640,000 gas ((1024 x 20000) / 32), and storing a 1MB file costs 655,360,000 gas 

(640,000 x 1024). The further costs for these operations in Ether and USD are given 

in Table 6.1. As is seen, storing 1 MB data or 1 GB data in Ethereum costs 444 USD 

and 454,656 USD, respectively! In fact, there is a block gas limit in Ethereum which 

is set to keep the transaction time required by each block at minimum. Block gas limit 

is around 6,700,000 gas, so technically you cannot request an operation to spend more 

than this amount per block. Nevertheless, theoretically, these large data can be stored 

in fragments in separate blocks. Given these numbers, Ethereum blockchain is not 

suitable for storing large files, indeed. 



73 

 

Table 6.1: Costs of Ethereum operations in ETH and USD 

Operation\Cost gas ETH USD 

(Aug. 

2019) 
Transaction 21000 0.000063 0.01418 

Create Contract 32000 0.000096 0.0216 

Store word 20,000 0.00006 

 

0.0135 

 Store 1 KB 640,000 0.00192 0.4339 

Store 1 MB 655,360,000 1.966 444 

Store 1 GB 671,088,640,000 2013 454,656 

 

In order to make this DApp usable, we upload large files to Swarm and store the 

reference addresses in the smart contract. Specifically, digital content, secret file, and 

buyer’s OpenPGP public key were stored in Swarm. Swarm reference addresses are 

32 bytes which are compatible with 32-bit word size of the EVM. Thus, each of this 

operation costs 0.0135 USD.  

As we did not deploy our smart contracts in the Mainnet, in order to estimate the total 

amount of transactions costs that buyer and seller would spend using our proposed 

DApp, we used the gas estimation functionalities of Ganache and Remix. These 

estimations are not precisely accurate so we wanted to see if the transactions costs in 

both of the tools are close to each other, so that we could come up with a more accurate 

estimation. First, we checked the remaining Ether balances of the users after a sale of 

a content was finalized, in which all the transactions were made with standard gas 

prices. Since Ganache gas prices is overwritten by web3 default gas price, we could 

not set the gas price to 3 Gwei, instead it was taken as 100 Gwei, which explains the 

high amount of costs we saw before in Figure 5.11. When we count the gas price as 3 

Gwei, total costs for the seller and buyer drops to more reasonable amounts. We 

compared transactions costs for each action both in Ganache and Remix and we 

confirmed that the amounts are close to each other.  

The implemented DApp has five use cases as described in Section 4.1. The estimated 

transaction costs and their Ether and USD values for each of these five actions are 

given in Table 6.2. As can be seen, putting a content on sale is by far the most 

expensive action for users. In this action there is base transaction cost, contract creation 

cost, additional cost for the data fields, and execution costs. Depending on the cost 

estimation, we can deduce that selling a content in the proposed DApp costs roughly 

1 USD to the seller. On the other hand, cost of buying a content to the buyer is less 

than 0.1 USD. We assume a cost which is less than 1 USD can be considered 

acceptable for many of the digital content exchanges, considering the loss of money 

to the TTPs in the centralized systems. 

Note that, there is also a cost for deploying the ContractManagement contract, which 

is 2892138 gas, 0.00867 ETH, and 1,675 USD. This is a one-time payment paid by the 

DApp owner. Nevertheless, this owner has no privilege in the system, and cannot 

influence any of the deployed Escrow contracts, unless she is either the seller or the 

buyer.  



74 

 

Table 6.2: Costs of actions of the DApp in ETH and USD 

User Action Transaction 

Cost (Gas) 

ETH USD 

Seller Put Content on Sale 

 

1796171 

 

0.0053 

 

 

1,04 

Seller Abort Sale 

 

46776 

 

0.0001403 

 

0,027 

Buyer Buy Content 

 

132852 

 

0.00039 

 

0,077 

Seller Deliver Content 

 

92042 

 

0.0002761 

 

0,053 

Buyer Confirm Received 

 

46460 

 

0.0002761 

 

0,027 

 
 

From the users’ point of view, we can deduce that, the more expensive the content is, 

the less significant buy and sell costs become. This is because the cost is fixed and not 

affected by the price of the content. In conventional centralized exchange platforms, a 

seller generally waits at least a week to receive the money the buyer paid for the 

content. The TTP, i.e., the website, generally cuts share from seller, as well. As a result 

of this seller might put the price more than she intended in the first place, and the buyer 

pays more than she actually supposed to. As long as this cut is more than our 

transaction costs, which is less than 1 USD, using our proof-of-concept is actually 

cheaper to use, compared to conventional exchange platforms.  

According to Solidity documentation [94], string should be used for arbitrary-length, 

and bytes should be used for data with limited length. This is because bytes is cheaper 

then string in gas consumption. We stored Swarm reference address values in string 

type, rather than byte32 type for simplicity. Also, limiting the string sizes for name 

and description of the content fields is necessary to keep the transaction cost 

reasonable. If the user is required to enter very long string, this field can be stored as 

a Swarm reference as well. Although there may be other ways to reduce the gas 

consumption, our DApp is a proof-of-concept so more optimizations can be performed 

in the future. 

6.4. Scalability 

The scalability of our the PoC DApp is inherently bounded with Ethereum blockchain 

scalability. Currently Ethereum process less than 20 transactions per second. Current 

transaction capacity of Ethereum is relatively low compared to several other 

programmable blockchain networks. Ethereum uses PoW as the consensus mechanism 

and each node in the network is theoretically equal (although this is not valid in the 

real world as there are mining pools and each node has different processing power). 

Ethereum will switch to a variant of PoS consensus in its next major update, which is 

also used in other blockchain networks with higher transaction capacity. Although 

PoW theoretically provides more decentralization, it comes with the cost of scalability 

to ensure the security of the blockchain. Main reason behind the scalability bottleneck 

in Ethereum is because all the operations performed in EVM are actually performed 

in each node. The scalability issue in Ethereum is planning to be solved by a process, 



75 

 

called sharding, in the new major upgrade of the Ethereum. Note that, sharding is 

discussed in detail in Section 3.1.4. 

Scalability, decentralization, and security of a blockchain are all dependent on each 

other, and it is a challenging task to achieve all of them at the same time with sufficient 

optimization. Buterin [137] called this problem as the scalability trilemma. He claims 

that it is hard to achieve all three of these features in a blockchain, and it is a problem 

that should be solved. Figure 6.2 illustrates this trilemma, and for instance, when a 

blockchain is secure and decentralized, it is hard to make it scalable, and so on. Many 

blockchains decrease decentralization level to achieve scalability.  

 

 

Figure 6.2: Scalability Trilemma in Blockchain 

6.5. Usability 

From the end user point of view, a DApp is not very different compared to ordinary 

web applications. However, a DApp still requires a DApp browser, which, in this case 

is MetaMask. In our prosed scheme, a user also needs to run a local Swarm node. 

Ethereum technologies and peer-to-peer networks are still not common, and most of 

their users are computer savvy people. So, the usability of this DApp for an ordinary 

end-user is not going to be as high as an ordinary web application in the near future, 

not before these technologies become mainstream. There are projects to decrease the 

steps necessary for a user to use DApps, such as Universal Login19 which aims to solve 

the adaptation barrier issue. In addition to these, if the DApp is hosted in Swarm, the 

website will be accessible by a 64-character long address, which is not practical to use. 

Hence, using decentralized name services, i.e., ENS, would increase the usability of 

the application. 

From the security and usability tradeoff point of view, we tried to keep the DApp as 

usable as possible, without compromising the security of it. Generating OpenPGP key 

pairs in Swarm CLI, encrypting the secret and decrypting it all through CLI would 

actually make the DApp more secure from the end user’s point of view. However, this 

 

19 https://universallogin.io 



76 

 

will decrease the usability of the system. All in all, this is a proof of concept design, 

and a better security and usability balance can be achieved in the future. 

6.6. Performance 

A user’s interaction speed with the frontend of a basic DApp is not different compared 

to other web applications. However, in our proof of concept, we have two actions that 

can affect the interaction performance: (i) interacting with Swarm, and (ii) PKC 

operations such as ECC key pair generation, and encryption/decryption of the secret. 

According to our tests, these operations does not cause a significant wait time for the 

user. Nevertheless, all the DApps whose smart contracts are deployed in public 

Ethereum mainnet require some wait time when the state of the smart contract is 

changed. This is the time for the transactions to be verified and mined in to the new 

block. According to ETH Gas Station [136] as shown in Figure 6.1, median wait time 

for a transaction is 31 seconds. Ethereum block time is about 15 seconds, thus this 

makes mining time of 2 blocks. It is most likely that a transaction with the standard 

gas price is executed in less than 5 minutes.  

In addition to this, in order to make sure to prevent a double spending attack and ensure 

non-reversion of the blockchain, a certain amount of confirmations is necessary for the 

user to make sure that particular block is actually a part of the eventual consensus. It 

is required to wait for 10 confirmations to achieve a 99,99% probability of security, 

for blockchains with 17 seconds block time [138]. So, in Ethereum, in order to be in 

the absolutely safe side, three minutes (31 seconds for median wait time + 150 seconds 

for confirmation time) is necessary for a transaction with enough gas price. 

Considering the privacy protecting scheme of decentralized systems, this 3-minute 

delay can be considered acceptable. Three minutes is actually the fastest wait time for 

a safe transaction. For the standard gas price, this time would increase according to the 

congestion of the Ethereum network. 

𝐹𝑎𝑠𝑡𝑒𝑠𝑡 𝑡𝑜𝑡𝑎𝑙 𝑤𝑎𝑖𝑡 𝑡𝑖𝑚𝑒 𝑓𝑜𝑟 𝑎 𝑠𝑎𝑓𝑒 𝑡𝑟𝑎𝑛𝑠𝑎𝑐𝑡𝑖𝑜𝑛 = 180 𝑠𝑒𝑐𝑜𝑛𝑑𝑠 

In conventional exchange systems the payment can be completed in seconds if the user 

identity or the credit card is verified. However, for purchases with anonymous identity 

or for new registrars, most of the time the credit card needs to be confirmed by the web 

application before the payment is issued. For international purchases sometimes the 

verification process takes more than hours. Required wait time is even longer for very 

high prices, because of the banking system anti-fraud restrictions. On the other hand, 

buying Ether is not a very straightforward process either, for a regular end user. 

Currently, a user can buy an Ether via exchange platforms, most of which require 

identification and credit card verification, as well. So, as a matter of fact, for a first-

time user of an exchange platform, onboarding time requires more pre-work for 

decentralized applications, as most of the people are already adapted to the current 

financial system. 

 

  



77 

 

 

 

 

 

CHAPTER 7 

 

 

7. CONCLUSION AND FUTURE DIRECTIONS 

 

 

 

In this thesis, we have proposed and implemented a blockchain and smart contract 

based proof of concept in an attempt to study a secure digital content sharing platform 

built on a decentralized architecture. Throughout the thesis, our research demonstrates 

that secure content sharing between two parties is viable over a permissionless 

blockchain, i.e., Ethereum. Our approach enables separate users that do not trust each 

other to use the implemented decentralized application without the need for a TTP. 

Nevertheless, extra measures were taken to assure the confidentiality of the content, 

decentralized storage, and fair exchange between parties. 

According to our validation and tests, the implemented design satisfies the functional 

requirements that were elicited during the design phase. The proposed architecture 

allows separate parties to use the system to securely exchange digital content. Via this 

DApp, a seller can put a digital content on sale, abort the sale if it is not bought by 

anybody, encrypt and upload a secret, and get paid when the content delivery is 

confirmed. On the other hand, a buyer can view the sales, buy and make payment for 

a content if the sale is open, decrypt and download the secret, confirm received and 

recover their deposit. 

Nevertheless, for our implementation to be feasible, it has to satisfy certain non-

functional requirements as well, which are given in the Introduction chapter as a 

complementary goal of the study, and others elicited during the design. Upon 

evaluating of the implementation, we confirmed that the proof of concept ensures the 

security of the sensitive data by providing the confidentiality, integrity, and availability 

of it. Certain amount of user privacy is provided as there is no required personal 

information to use the platform. We also confirmed that the built application incurs a 

reasonable amount of usage cost, provides sufficient performance, allows scalability, 

and it is actually relatively easy to use, thus our implementation is viable and usable 

indeed. 

During this study, all of the research questions of the thesis, which are introduced in 

the Introduction chapter, are answered: 

• Is it possible to make a secure content exchange between separate parties with 

payment or contract, without the need for a TTP? 



78 

 

Blockchains are suitable when it is required to eliminate TTP for the interaction 

of separate users while also providing a framework to make payment. This is 

achieved by the decentralized consensus schemes, which is PoW for Ethereum. 

In order to implement the application logic for content exchange, smart 

contracts were used without sacrificing decentralized architecture of the 

system.  

• How can we combine blockchain and storage of large data in a fully 

decentralized way?  

As we have demonstrated in this work, storing large data in Ethereum is 

impractically expensive. Therefore we utilized Swarm, a decentralized storage 

system, native to Ethereum ecosystem. All the contents and other necessary 

large data was stored in Swarm. In order to ensure the immutability of the data, 

32-bytes reference address of the data was stored in the blockchain.  

• How can we securely share content on a fully decentralized software and 

network architecture in a permissionless blockchain?  

Security of the system is a key target for our study. Although Ethereum assure 

immutability, availability, auditability, reliability of the system, it does not 

provide privacy of the blockchain data. This is because all the transactions and 

smart contracts are accessible by any node. As a result, confidentiality of the 

data is not addressed in Ethereum. In the context of a digital content exchange, 

the content should be accessible by only the buyer. In order to provide this 

access control scheme, we employed a PKC encryption framework over 

OpenPGP protocol using elliptic-curve key pairs. In our design, the seller 

encrypts the secret with the public key of the buyer, thus the content, which is 

encrypted with a symmetric key, is decryptable and accessible by only the 

buyer. 

• How can we ensure fair exchange between separated users that do not trust 

each other, without a conventional TTP?  

Protecting the interest of both buyer and seller is a challenge in decentralized 

systems known as the fair exchange problem. This problem is conventionally 

solved by depending on TTPs. Nevertheless, instead of a conventional TTP, 

we used smart contracts to enable remote purchase logic, which acts as the 

trustless mediator between users. With the intention of achieving a model of 

fairness, we applied a double escrow service in our smart contract design, by 

which both seller and buyer make deposits, so they cannot act maliciously. In 

our model of fairness, we ensure that a rational malicious party cannot gain 

any advantage over the other. By not depending on a TTP, our two-party fair 

exchange protocol avoids certain problems caused by it.  

Note that, although the proposed DApp provides a framework for selling and buying 

a digital content in a secure way, it also allows the content owner to set the price to 

zero. In this case, DApp acts as the means for publishing digital content if the content 

is not encrypted. Also, it provides a platform for exchanging information and content 



79 

 

between any two parties, with end-to-end encryption. With a small amount of cost, 

users can send and receive secret information totally on distributed networks, through 

a secure, reliable, censor-free decentralized platform. 

7.1. Contribution 

In this thesis, we designed and implemented a decentralized platform that enables 

separated parties to securely exchange, buy and sell digital content by utilizing the 

Ethereum ecosystem. We used and explored Swarm as the decentralized storage 

system in our DApp, even though all the papers and thesis we investigated preferred 

IPFS. Furthermore, by applying PKC, this proof of concept enables users to exchange 

digital content without the need for any pre-shared secret. Also, a double escrow 

service is integrated via smart contract which makes it possible to achieve certain level 

of fairness between buyer and seller. Although there are related studies that explores 

these concepts, as far as we know, this is the only work that combines Ethereum 

blockchain, smart contracts with double escrow functionality as a measure of 

reasonable fairness in the context of fair exchange, PKC with forward secrecy to 

mitigate data privacy issues in Ethereum, decentralized storage to achieve a secure 

remote purchase over a fully decentralized architecture, decentralized application with 

a frontend for usability, and a detailed evaluation of the technology regarding its 

aspects such as security, privacy, scalability, cost, usability, and performance. We 

thoroughly explored Ethereum blockchain and its Web 3.0 stack; we discussed 

security, privacy, decentralization, scalability, and usage cost of the technology in 

detail. As a whole, this study brings many aspects of decentralization and Ethereum 

ecosystem in one place, hopefully as a comprehensive guide to the technology, and its 

application, specifically in digital content exchange. 

7.2. Limitations and Future Work 

Blockchain and smart contracts are very new technologies, so all of the back-end 

technologies we used in this study, such as Ethereum blockchain, smart contracts, and 

Swarm, are very new software. As a part of the Ethereum ecosystem, they are either 

beta versions, or proof of concept applications. The community is very vibrant, and 

the software changes often as it gets more mature with the feedback from earlier 

versions. As a result of this, all different software we used during this thesis is awaiting 

new major updates that would change or break the way it works in the current versions.  

During this study, we designed and implemented a proof of concept to explore the 

viability of the Ethereum ecosystem for securely exchanging digital content. Although 

the developed software indicates that we achieved the main objective of the thesis, it 

is not production ready. As it is a proof of concept design, it has several limitations 

that can be addressed in the future.   

• As the Ethereum blockchain, we used Ganache, which is an in-memory private 

blockchain for development purposes. Although Ganache imitates almost all 



80 

 

of the functionality of the Mainnet, we can also deploy our smart contracts to 

a public Ethereum test network or the Ethereum mainnet. 

• Although we utilized Swarm to decrease the costs of data storage in our smart 

contracts, and actually decreased the cost to a reasonable amount, there are still 

space for improvement to have a more cost effective DApp.  

• Although we use Swarm for content upload and download operations, we did 

not fully benefit from the access control functionalities of it. Swarm can 

provide access control mechanisms via Swarm account public keys, without 

the need for a separate key generation. As Swarm is fundamentally developed 

to integrate with the Ethereum blockchain, we can also integrate it to our DApp 

profoundly, though Swarm is still very immature.  

• We implemented the smart contracts for multiple buy and sell operations, and 

multiple sale and buy operations can be made through a geth client. However, 

our front-end software supports only one buy and sell operation. Since the 

scalability of our DApp is totally dependent on the scalability of the Ethereum 

blockchain, and as this is a proof of concept design, we assumed that a single 

buy and sell set of operations is enough to illustrate how our design works in 

order to achieve the goals of this study. Nevertheless, front-end software can 

be further developed before using this DApp in Ethereum mainnet and hosting 

it on Swarm. 

• As a key risk of using blockchain technology and decentralized storage 

systems, this proof of concept enables anonymous usage without censorship, 

which might encourage criminal activities.  

7.3. Future Research 

In this work, user authentication is handled by MetaMask and there is no identity 

management. This approach is enough to provide a platform for anonymously 

exchanging content, however, in order to have a more business-oriented product, 

identity management should be addressed. For the continuity of our decentralized 

architecture and provide privacy, a decentralized identity management should be 

utilized. Decentralized identity management is an important concept, and can be 

researched further along with its compatibility with the GDPR. 

In order to be able to use our PoC DApp, there are many steps a user has to go through. 

This necessity decreases the usability of our DAPP, and it is actually a common 

problem with all Ethereum based DApps. There are studies to solve this problem and 

make the adoption process easier. Universal Login is an example project created for 

this purpose, and this topic can be researched in the future. 

In order to solve the privacy issue of the Ethereum blockchain data, we applied PKC 

to assure confidentiality. Nevertheless, there are other approaches to solve this 

problem. Enigma, Hawk, Lightstreams, Parity secret store are example projects that 



81 

 

are built in an attempt to solve this privacy issue of permissionless blockchains. Using 

different cryptographic approaches, such as zero proof knowledge cryptography, these 

projects are aiming to enable sharing of a secret over permissionless blockchains. 

Ethereum is also going to implement zk-SNARKS in its next major update (aka 

Ethereum 2.0) for this objective. These projects and the protocols they provide can be 

researched further. 

Fair exchange in two-party computations is a well-studied subject, however 

exchanging digital goods over blockchain and utilizing smart contracts is a new area 

of subject. In this thesis, our approach of fairness by incentivizing the parties with 

deposits via the double escrow smart contract, achieves fairness for rational users. 

Although unlikely, it is possible for a non-malicious user to lose money in our protocol 

because there is no TTP to resolve a dispute, and time-locks have their own drawbacks 

hence our protocol does not provide timeliness. Achieving two-party or multi-party 

fair exchange with strong fairness in the Ethereum ecosystem in the context of digital 

content exchange can be researched further. 

   

 

  



82 

 

  



83 

 

 

 

REFERENCES 

 

 

[1] S. Nakamoto, “Bitcoin: A Peer-to-Peer Electronic Cash System,” 2008. 

[2] V. Buterin, “Ethereum White Paper: A Next Generation Smart Contract & 

Decentralized Application Platform,” Ethereum, 2013. . 

[3] A. M. Antonopoulos, The Internet of Money: A collection of talks by Andreas 

M. Antonopoulos, 1st Editio. Merkle Bloom LLC, 2016. 

[4] G. Chen, B. Xu, M. Lu, and N.-S. Chen, “Exploring blockchain technology and 

its potential applications for education,” Smart Learn. Environ., vol. 5, no. 1, p. 

1, Dec. 2018. 

[5] K. Wust and A. Gervais, “Do you need a blockchain?,” in Proceedings - 2018 

Crypto Valley Conference on Blockchain Technology, CVCBT 2018, 2018, pp. 

45–54. 

[6] J. D. Tygar and J. D., “Atomicity in electronic commerce,” in Proceedings of 

the fifteenth annual ACM symposium on Principles of distributed computing - 

PODC ’96, 1996, pp. 8–26. 

[7] N. Asokan, “Fairness in electronic commerce,” University of Waterloo, 1998. 

[8] M. Steichen, B. Fiz, R. Norvill, W. Shbair, and R. State, “Blockchain-Based, 

Decentralized Access Control for IPFS,” in 2018 IEEE International 

Conference on Blockchain (Blockchain 2018), 2018, pp. 1499–1506. 

[9] G. Blank and B. C. Reisdorf, “The Participatory Web: A user perspective on 

Web 2.0,” Information Communication and Society, vol. 15, no. 4. pp. 537–

554, May-2012. 

[10] J. Isaak and M. J. Hanna, “User Data Privacy: Facebook, Cambridge Analytica, 

and Privacy Protection,” Computer (Long. Beach. Calif)., vol. 51, no. 8, pp. 56–

59, Aug. 2018. 

[11] S. Wheatley, T. Maillart, and D. Sornette, “The extreme risk of personal data 

breaches and the erosion of privacy,” Eur. Phys. J. B, vol. 89, no. 1, p. 7, Jan. 

2016. 

[12] M. Crosby, Nachiappan, P. Pattanayak, S. Verma, and V. Kalyanaraman, 

“BlockChain Technology: Beyond Bitcoin,” 2016. 

[13] C. Davis, “Realizing Software Reliability in the Face of Infrastructure 

Instability,” IEEE Cloud Comput., vol. 4, no. 5, pp. 34–40, Sep. 2017. 



84 

 

[14] J. Bort, “AWS outage hurt internet retailers except Amazon - Business Insider,” 

Business Insider, 2017. [Online]. Available: 

https://www.businessinsider.com/aws-outage-hurt-internet-retailers-except-

amazon-2017-3. [Accessed: 01-Jul-2019]. 

[15] Dyn, “Dyn Analysis Summary Of Friday October 21 Attack | Dyn Blog,” Dyn 

Company News, 2016. [Online]. Available: https://dyn.com/blog/dyn-analysis-

summary-of-friday-october-21-attack/. [Accessed: 01-Jul-2019]. 

[16] Cloudflare, “Famous DDoS Attacks | Cloudflare,” 2018. [Online]. Available: 

https://www.cloudflare.com/learning/ddos/famous-ddos-attacks/. [Accessed: 

05-Jul-2019]. 

[17] C.-W. Chu, “Censorship or Protectionism? Reassessing China’s Regulation of 

Internet Industry,” Int. J. Soc. Sci. Humanit., vol. 7, no. 1, pp. 28–32, 2017. 

[18] J. Zittrain, R. Faris, H. Noman, J. Clark, C. Tilton, and R. Morrison-Westphal, 

“The Shifting Landscape of Global Internet Censorship An Uptake in 

Communications Encryption Is Tempered by Increasing Pressure on Major 

Platform Providers; Governments Expand Content Restriction Tactics,” 2017. 

[19] C. Doctorow, “EU Internet Censorship Will Censor the Whole World’s Internet 

| Electronic Frontier Foundation,” Electronic Frontier Foundation, 2018. 

[Online]. Available: https://www.eff.org/tr/deeplinks/2018/10/eu-internet-

censorship-will-censor-whole-worlds-internet. [Accessed: 05-Jul-2019]. 

[20] G. Zyskind, O. Nathan, and A. “Sandy” Pentland, “Decentralizing privacy: 

Using blockchain to protect personal data,” in Proceedings - 2015 IEEE 

Security and Privacy Workshops, SPW 2015, 2015, pp. 180–184. 

[21] H. Halpin and M. Piekarska, “Introduction to Security and Privacy on the 

Blockchain,” in 2017 IEEE European Symposium on Security and Privacy 

Workshops (EuroS&PW), 2017, pp. 1–3. 

[22] V. Buterin, “Privacy on the Blockchain,” 2016. [Online]. Available: 

https://blog.ethereum.org/2016/01/15/privacy-on-the-blockchain/. [Accessed: 

28-Feb-2019]. 

[23] D. Hopwood, S. Bowe, T. Hornby, and N. Wilcox, “Zcash Protocol 

Specification,” Tech. rep. 2016–1.10, 2016. 

[24] R. Mercer, “Privacy on the Blockchain: Unique Ring Signatures,” Dec. 2016. 

[25] A. Kosba, A. Miller, E. Shi, Z. Wen, and C. Papamanthou, “Hawk: The 

Blockchain Model of Cryptography and Privacy-Preserving Smart Contracts,” 

in 2016 IEEE Symposium on Security and Privacy (SP), 2016, pp. 839–858. 

[26] G. Zyskind, O. Nathan, and A. Pentland, “Enigma: Decentralized Computation 

Platform with Guaranteed Privacy,” 2015. 

[27] V. Patel, “A framework for secure and decentralized sharing of medical imaging 

data via blockchain consensus,” Health Informatics Journal, SAGE 

PublicationsSage UK: London, England, p. 146045821876969, 25-Apr-2018. 



85 

 

[28] T. T. Thwin and S. Vasupongayya, “Blockchain Based Secret-Data Sharing 

Model for Personal Health Record System,” in 2018 5th International 

Conference on Advanced Informatics: Concept Theory and Applications 

(ICAICTA), 2018, pp. 196–201. 

[29] K. Fan, S. Wang, Y. Ren, H. Li, and Y. Yang, “MedBlock: Efficient and Secure 

Medical Data Sharing Via Blockchain,” J. Med. Syst., vol. 42, no. 8, p. 136, 

Aug. 2018. 

[30] H. Yang and B. Yang, “A Blockchain-based Approach to the Secure Sharing of 

Healthcare Data,” Proc. Nor. Inf. Secur., 2017. 

[31] S. Wu and J. Du, “Electronic medical record security sharing model based on 

blockchain,” 2019, pp. 13–17. 

[32] P. Zhang, J. White, D. C. Schmidt, G. Lenz, and S. T. Rosenbloom, 

“FHIRChain: Applying Blockchain to Securely and Scalably Share Clinical 

Data,” Comput. Struct. Biotechnol. J., vol. 16, pp. 267–278, Jan. 2018. 

[33] S. Amofa et al., “A blockchain-based architecture framework for secure sharing 

of personal health data,” in 2018 IEEE 20th International Conference on e-

Health Networking, Applications and Services, Healthcom 2018, 2018, pp. 1–

6. 

[34] M. A. Cyran, “Blockchain as a Foundation for Sharing Healthcare Data,” 

Blockchain Healthc. Today, vol. 1, no. 0, Mar. 2018. 

[35] S. Cui, M. R. Asghar, and G. Russello, “Towards blockchain-based scalable 

and trustworthy file sharing,” in Proceedings - International Conference on 

Computer Communications and Networks, ICCCN, 2018, vol. 2018–July. 

[36] I. Barclay, “Innovative Applications of Blockchain Technology in Crime and 

Security,” Cardiff University, 2017. 

[37] S. Wang, Y. Zhang, and Y. Zhang, “A blockchain-based framework for data 

sharing with fine-grained access control in decentralized storage systems,” 

IEEE Access, vol. 6, pp. 38437–38450, 2018. 

[38] M. R. Hoffman, L. D. Ibáñez, H. Fryer, and E. Simperl, “Smart Papers: 

Dynamic Publications on the Blockchain,” in The Semantic Web. ESWC 2018., 

2018, vol. 10843 LNCS, pp. 304–318. 

[39] G. Ateniese and Giuseppe, “Efficient verifiable encryption (and fair exchange) 

of digital signatures,” in Proceedings of the 6th ACM conference on Computer 

and communications security  - CCS ’99, 1999, pp. 138–146. 

[40] N. Francez, Fairness, Texts and. Springer, 1986. 

[41] N. Asokan, M. Schunter, and M. Waidner, “Optimistic protocols for fair 

exchange,” in Proceedings of the 4th ACM conference on Computer and 

communications security - CCS ’97, 1997, pp. 7–17. 

[42] H. Pagnia and F. C. Gärtner, “On the Impossibility of Fair Exchange without a 

Trusted Third Party,” Technical Report TUD-BS-1999-02, 1999. 



86 

 

[43] H. Bürk and A. Pfitzmann, “Value exchange systems enabling security and 

unobservability,” Comput. Secur., vol. 9, no. 8, pp. 715–721, Dec. 1990. 

[44] N. Asokan, V. Shoup, and M. Waidner, “Optimistic fair exchange of digital 

signatures,” in Advances in Cryptology - EUROCRYPT’98, 1998, vol. 1403, pp. 

591–606. 

[45] Feng Bao, R. H. Deng, and Wenbo Mao, “Efficient and practical fair exchange 

protocols with off-line TTP,” in Proceedings. 1998 IEEE Symposium on 

Security and Privacy (Cat. No.98CB36186), 1998, pp. 77–85. 

[46] A. Küpçü and A. Lysyanskaya, “Optimistic fair exchange with multiple 

arbiters,” in Computer Security – ESORICS 2010., 2010, vol. 6345 LNCS, pp. 

488–507. 

[47] A. Küpçü and A. Lysyanskaya, “Usable optimistic fair exchange,” Comput. 

Networks, vol. 56, no. 1, pp. 50–63, Jan. 2012. 

[48] A. Küpçü, “Distributing trusted third parties,” ACM SIGACT News, vol. 44, no. 

2, pp. 92–112, Jun. 2013. 

[49] M. Campanelli, R. Gennaro, S. Goldfeder, and L. Nizzardo, “Zero-Knowledge 

Contingent Payments Revisited,” in Proceedings of the 2017 ACM SIGSAC 

Conference on Computer and Communications Security  - CCS ’17, 2017, pp. 

229–243. 

[50] S. Goldfeder, J. Bonneau, R. Gennaro, and A. Narayanan, “Escrow protocols 

for cryptocurrencies: How to buy physical goods using bitcoin,” in Financial 

Cryptography and Data Security. FC 2017. Lecture Notes in Computer Science, 

2017, vol. 10322 LNCS, pp. 321–339. 

[51] S. Dziembowski, L. Eckey, and S. Faust, “Fairswap: How to fairly exchange 

digital goods,” in Proceedings of the ACM Conference on Computer and 

Communications Security, 2018, pp. 967–984. 

[52] I. Bentov and R. Kumaresan, “How to use Bitcoin to design fair protocols,” in 

Advances in Cryptology – CRYPTO 2014, 2014, vol. 8617 LNCS, no. PART 2, 

pp. 421–439. 

[53] E. Wagner, A. Volker, F. Fuhrmann, R. Matzutt, and K. Wehrle, “Dispute 

Resolution for Smart Contract-based Two-Party Protocols,” in 2019 IEEE 

International Conference on Blockchain and Cryptocurrency (ICBC), 2019, pp. 

422–430. 

[54] M. Andrychowicz, S. Dziembowski, D. Malinowski, and Ł. Mazurek, “Fair 

two-party computations via bitcoin deposits,” in Financial Cryptography and 

Data Security. FC 2014. Lecture Notes in Computer Science, 2014, vol. 8438, 

pp. 105–121. 

[55] M. Andrychowicz, S. Dziembowski, D. Malinowski, and L. Mazurek, “Secure 

Multiparty Computations on Bitcoin,” in 2014 IEEE Symposium on Security 

and Privacy, 2014, pp. 443–458. 

[56] S. Haber and W. S. Stornetta, “How to time-stamp a digital document,” J. 



87 

 

Cryptol., vol. 3, no. 2, pp. 99–111, 1991. 

[57] D. Bayer, S. Haber, and W. S. Stornetta, “Improving the Efficiency and 

Reliability of Digital Time-Stamping,” 1992. 

[58] Z. Zheng, S. Xie, H. N. Dai, X. Chen, and H. Wang, “Blockchain challenges 

and opportunities: a survey,” Int. J. Web Grid Serv., vol. 14, no. 4, p. 352, 2018. 

[59] V. Buterin, “Merkling in Ethereum,” Ethereum Blog, 2015. [Online]. Available: 

https://blog.ethereum.org/2015/11/15/merkling-in-ethereum/. [Accessed: 29-

Jul-2019]. 

[60] Zcash, “What are zk-SNARKs? | Zcash,” 2019. [Online]. Available: 

https://z.cash/technology/zksnarks/. [Accessed: 31-May-2019]. 

[61] Monero, “What is Monero (XMR)? | Monero - secure, private, untraceable,” 

2018. [Online]. Available: https://web.getmonero.org/get-started/what-is-

monero/. [Accessed: 31-May-2019]. 

[62] M. Swan, Blockchain : blueprint for a new economy. O’Reilly Media, 2015. 

[63] M. Russinovich, “Digitizing trust: Azure Blockchain Service simplifies 

blockchain development,” Microsoft Azure Blog, 2019. [Online]. Available: 

https://azure.microsoft.com/en-us/blog/digitizing-trust-azure-blockchain-

service-simplifies-blockchain-development/. [Accessed: 05-Jul-2019]. 

[64] AWS, “Blockchain on AWS,” Amazon Web Services, 2019. [Online]. 

Available: https://aws.amazon.com/blockchain/. [Accessed: 05-Jul-2019]. 

[65] Google, “Ethereum (Google Click to Deploy),” Google Cloud Platform, 2019. 

[Online]. Available: 

https://console.cloud.google.com/marketplace/details/click-to-deploy-

images/ethereum. [Accessed: 05-Jul-2019]. 

[66] A. Baliga, “Understanding Blockchain Consensus Models,” Whitepaper, pp. 1–

14, 2017. 

[67] W. Wang et al., “A Survey on Consensus Mechanisms and Mining Strategy 

Management in Blockchain Networks,” IEEE Access, vol. 7, pp. 22328–22370, 

2019. 

[68] S. Chu and S. Wang, “The Curses of Blockchain Decentralization,” Oct. 2018. 

[69] Y. Kwon, J. Liu, M. Kim, D. Song, and Y. Kim, “Impossibility of Full 

Decentralization in Permissionless Blockchains,” May 2019. 

[70] A. Gervais, G. O. Karame, V. Capkun, and S. Capkun, “Is Bitcoin a 

Decentralized Currency?,” IEEE Secur. Priv., vol. 12, no. 3, pp. 54–60, May 

2014. 

[71] Don Tapscott and Alex Tapscott, “The Impact of the Blockchain Goes Beyond 

Financial Services,” Harv. Bus. Rev., p. 7, 2016. 

[72] Binance, “Transaction Information,” 2019. [Online]. Available: 

https://explorer.binance.org/tx/00B41E4CCB8B977C78E20C19B8A0E39E57



88 

 

2FCC80F53AA009163FA08B0AD57DE9. [Accessed: 26-Jun-2019]. 

[73] D. Seaman, The Bitcoin Primer: Risks, Opportunities, And Possibilities. 

Amazon Digital Services LLC., 2013. 

[74] S. Ølnes, J. Ubacht, and M. Janssen, “Blockchain in government: Benefits and 

implications of distributed ledger technology for information sharing,” 

Government Information Quarterly, vol. 34, no. 3, JAI, pp. 355–364, 01-Sep-

2017. 

[75] Bitinfocharts, “Bitcoin (BTC) statistics - Price, Blocks Count, Difficulty, 

Hashrate, Value,” 2019. [Online]. Available: https://bitinfocharts.com/bitcoin/. 

[Accessed: 28-May-2019]. 

[76] Etherscan, “Ethereum ChainData Size Growth - Fast Sync,” 2019. [Online]. 

Available: https://etherscan.io/chart2/chaindatasizefast. [Accessed: 28-May-

2019]. 

[77] G. Wood, “Ethereum: A Secure Decentralised Generalised Transaction 

Ledger,” 2019. 

[78] A. E. Gencer, S. Basu, I. Eyal, R. van Renesse, and E. G. Sirer, 

“Decentralization in Bitcoin and Ethereum Networks,” Jan. 2018. 

[79] X. Li, P. Jiang, T. Chen, X. Luo, and Q. Wen, “A survey on the security of 

blockchain systems,” Future Generation Computer Systems, 2017. 

[80] P. Otte, M. de Vos, and J. Pouwelse, “TrustChain: A Sybil-resistant scalable 

blockchain,” Future Generation Computer Systems, Sep-2017. 

[81] I. C. Lin and T. C. Liao, “A survey of blockchain security issues and 

challenges,” Int. J. Netw. Secur., vol. 19, no. 5, pp. 653–659, 2017. 

[82] F. Gai, B. Wang, W. Deng, and W. Peng, “Proof of reputation: A reputation-

based consensus protocol for peer-to-peer network,” in Database Systems for 

Advanced Applications. DASFAA 2018., 2018, vol. 10828 LNCS, pp. 666–681. 

[83] Z. Zheng, S. Xie, H. Dai, X. Chen, and H. Wang, “An Overview of Blockchain 

Technology: Architecture, Consensus, and Future Trends,” in 2017 IEEE 

International Congress on Big Data (BigData Congress), 2017, pp. 557–564. 

[84] A. M. Antonopoulos and G. Wood, Mastering Ethereum, 1st Editio. O’Reilly 

Media, 2018. 

[85] N. Atzei, M. Bartoletti, and T. Cimoli, “A Survey of Attacks on Ethereum Smart 

Contracts (SoK) BT - Principles of Security and Trust,” in International 

Conference on Principles of Security and Trust, 2017, pp. 164–186. 

[86] Ethereum Community, “Ethereum Homestead Documentation Release 0.1,” 

2017. 

[87] Truffle, “Interacting with Your Contracts,” Truffle Documentation, 2019. 

[Online]. Available: https://www.trufflesuite.com/docs/truffle/getting-

started/interacting-with-your-contracts. [Accessed: 26-Jul-2019]. 



89 

 

[88] N. Atzei, M. Bartoletti, T. Cimoli, S. Lande, and R. Zunino, “SoK: Unraveling 

bitcoin smart contracts,” in Principles of Security and Trust. POST 2018., 2018, 

vol. 10804 LNCS, pp. 217–242. 

[89] district0x, “The Role of Tokens in Ethereum | Understanding Ethereum 

Tokens,” 2019. [Online]. Available: https://education.district0x.io/general-

topics/understanding-ethereum/the-role-of-tokens/. [Accessed: 28-Jun-2019]. 

[90] Etherscan, “Etherscan Token Tracker,” 2019. [Online]. Available: 

https://etherscan.io/tokens. [Accessed: 28-Jun-2019]. 

[91] Icotoplist.com, “ICO List - Top List of Best ICOs in 2019,” 2019. [Online]. 

Available: https://icotoplist.com/. [Accessed: 28-Jun-2019]. 

[92] G. Fenu, L. Marchesi, M. Marchesi, and R. Tonelli, “The ICO phenomenon and 

its relationships with ethereum smart contract environment,” in 2018 IEEE 1st 

International Workshop on Blockchain Oriented Software Engineering, 

IWBOSE 2018 - Proceedings, 2018, vol. 2018–Janua, pp. 1–7. 

[93] S. Bian et al., “IcoRating: A Deep-Learning System for Scam ICO 

Identification,” 2018. 

[94] Solidity, “Solidity Documentation,” 2019. [Online]. Available: 

https://solidity.readthedocs.io/en/latest/index.html. [Accessed: 08-Jun-2019]. 

[95] V. Buterin, “Vyper Documentation,” 2018. 

[96] I. Nikolic, A. Kolluri, I. Sergey, P. Saxena, and A. Hobor, “Finding The Greedy, 

Prodigal, and Suicidal Contracts at Scale,” 2018. 

[97] F. Klint, “A $50 Million Hack Just Showed That the DAO Was All Too Human 

| WIRED,” WIRED.com, 2016. [Online]. Available: 

https://www.wired.com/2016/06/50-million-hack-just-showed-dao-human/. 

[Accessed: 09-Jun-2019]. 

[98] DASP, “DASP - TOP 10,” 2018. [Online]. Available: https://dasp.co/. 

[Accessed: 09-Jun-2019]. 

[99] OpenZeppelin, “OpenZeppelin,” 2019. [Online]. Available: 

https://openzeppelin.org/. [Accessed: 09-Jun-2019]. 

[100] ConsenSys Diligence, “Ethereum Smart Contract Best Practices,” 2019. 

[Online]. Available: https://consensys.github.io/smart-contract-best-practices/. 

[Accessed: 09-Jun-2019]. 

[101] Solidity, “Security Considerations — Solidity 0.5.10 documentation,” 2019. 

[Online]. Available: https://solidity.readthedocs.io/en/latest/security-

considerations.html#. [Accessed: 09-Jun-2019]. 

[102] J. Stark, E. Van Ness, and D. Zakrisson, “The Year in Ethereum,” 2019. 

[Online]. Available: https://medium.com/@jjmstark/the-year-in-ethereum-

87a17d6f8276. [Accessed: 09-Jun-2019]. 

[103] M. Ober, S. Katzenbeisser, and K. Hamacher, “Structure and Anonymity of the 



90 

 

Bitcoin Transaction Graph,” Futur. Internet, vol. 5, pp. 237–250, 2013. 

[104] N. Kshetri, “Blockchain’s roles in strengthening cybersecurity and protecting 

privacy,” Telecomm. Policy, vol. 41, no. 10, pp. 1027–1038, Nov. 2017. 

[105] S. Goldfeder, H. Kalodner, D. Reisman, and A. Narayanan, “When the cookie 

meets the blockchain: Privacy risks of web payments via cryptocurrencies,” 

Proc. Priv. Enhancing Technol., vol. 2018, no. 4, pp. 179–199, Oct. 2018. 

[106] Smolenski Michael, “Lightstreams White Paper,” 2018. 

[107] S. Tual, “Web 3.0 Revisited — Part One: ‘Across Chains and Across 

Protocols,’” 2017. [Online]. Available: https://blog.stephantual.com/web-3-0-

revisited-part-one-across-chains-and-across-protocols-4282b01054c5. 

[Accessed: 31-May-2019]. 

[108] StateoftheDApps, “State of the DApps,” 2019. [Online]. Available: 

https://www.stateofthedapps.com/. [Accessed: 03-Jun-2019]. 

[109] web3.js, “Web3.js - Ethereum JavaScript API,” web3.js Documentation, 2018. 

[Online]. Available: https://web3js.readthedocs.io/en/1.0/. [Accessed: 31-May-

2019]. 

[110] Metamask.io, “MetaMask,” 2019. [Online]. Available: https://metamask.io/. 

[Accessed: 01-Jun-2019]. 

[111] J. Benet, “IPFS - Content Addressed, Versioned, P2P File System,” 2014. 

[112] B. Skvorc et al., Learn Ethereum : The Collection, 1st ed. SitePoint, 2018. 

[113] IPFS, “IPFS is the Distributed Web,” 2019. [Online]. Available: ipfs.io. 

[Accessed: 31-May-2019]. 

[114] V. Tron, A. Fischer, N. Johnson, D. A. Nagy, and Z. Felfo, “Swarm 

Documentation Release 0.3,” 2019. 

[115] Swarm, “Swarm Website,” 2019. [Online]. Available: https://swarm-

gateways.net/bzz:/theswarm.eth/. [Accessed: 04-Jun-2019]. 

[116] ENS, “Introduction - Ethereum Name Service,” 2019. [Online]. Available: 

https://docs.ens.domains/. [Accessed: 04-Jun-2019]. 

[117] Whisper, “Whisper PoC 2 Protocol Spec,” 2018. [Online]. Available: 

https://github.com/ethereum/wiki/wiki/Whisper-PoC-2-Protocol-Spec. 

[Accessed: 03-Jun-2019]. 

[118] Oraclize, “Oraclize Documentation,” 2019. [Online]. Available: 

https://docs.oraclize.it/. [Accessed: 05-Jun-2019]. 

[119] S. Ellis, A. Juels, and S. Nazarov, “ChainLink: A Decentralized Oracle 

Network,” vol. 2017, no. September, pp. 1–38, 2017. 

[120] M. Alharby and A. van Moorsel, “Blockchain Based Smart Contracts : A 

Systematic Mapping Study,” in Computer Science & Information Technology 

(CS & IT), 2017, pp. 125–140. 



91 

 

[121] T. T. Kuo, H. Zavaleta Rojas, and L. Ohno-Machado, “Comparison of 

blockchain platforms: A systematic review and healthcare examples,” Journal 

of the American Medical Informatics Association, vol. 26, no. 5. pp. 462–478, 

2019. 

[122] M. Macdonald, L. Liu-Thorrold, and R. Julien, “The Blockchain: A 

Comparison of Platforms and Their Uses Beyond Bitcoin,” no. February, pp. 

1–18, 2017. 

[123] GnuPG, “The GNU Privacy Guard,” 2019. [Online]. Available: 

https://gnupg.org/. [Accessed: 09-Sep-2019]. 

[124] D. Huigens, “Cure53 security audit,” OpenPGP.js Wiki, 2018. [Online]. 

Available: https://github.com/openpgpjs/openpgpjs/wiki/Cure53-security-

audit. [Accessed: 27-Jul-2019]. 

[125] G. Asharov, Y. Lindell, and H. Zarosim, “Fair and efficient secure multiparty 

computation with reputation systems,” in Advances in Cryptology - 

ASIACRYPT (2), 2013, pp. 201–220. 

[126] E. J. Friedman and P. Resnick, “The Social Cost of Cheap Pseudonyms,” J. 

Econ. Manag. Strateg., vol. 10, no. 2, pp. 173–199, Jun. 2001. 

[127] X. Hu, Z. Lin, A. B. Whinston, and H. Zhang, “Hope or Hype: On the Viability 

of Escrow Services as Trusted Third Parties in Online Auction Environments,” 

Inf. Syst. Res., vol. 15, no. 3, pp. 236–249, 2004. 

[128] D. Zimbeck, “Two Party double deposit trustless escrow in cryptographic 

networks and Bitcoin,” 2014. 

[129] A. Asgaonkar and B. Krishnamachari, “Solving the Buyer and Seller’s 

Dilemma: A Dual-Deposit Escrow Smart Contract for Provably Cheat-Proof 

Delivery and Payment for a Digital Good without a Trusted Mediator,” in 2019 

IEEE International Conference on Blockchain and Cryptocurrency (ICBC), 

2019, pp. 262–267. 

[130] Solidity Documentation, “Safe Remote Purchase,” 2017. [Online]. Available: 

https://solidity.readthedocs.io/en/v0.4.18/solidity-by-example.html#safe-

remote-purchase. [Accessed: 29-Jul-2019]. 

[131] S. J. Ong, D. C. Parkes, A. Rosen, and S. Vadhan, “Fairness with an honest 

minority and a rational majority,” in Theory of Cryptography. TCC 2009., 2009, 

vol. 5444 LNCS, pp. 36–53. 

[132] J. Halpern and V. Teague, “Rational secret sharing and multiparty 

computation,” in Proceedings of the thirty-sixth annual ACM symposium on 

Theory of computing  - STOC ’04, 2004, p. 623. 

[133] Solidity, “Safe Remote Purchase,” Solidity Documentation, 2019. [Online]. 

Available: https://solidity.readthedocs.io/en/latest/solidity-by-

example.html#safe-remote-purchase. [Accessed: 03-Aug-2019]. 

[134] OpenPGP.js, “Encrypt and decrypt String data with PGP keys,” OpenPGP.js 

Documentation, 2019. [Online]. Available: 



92 

 

https://github.com/openpgpjs/openpgpjs/blob/master/README.md#encrypt-

and-decrypt-string-data-with-pgp-keys. [Accessed: 03-Aug-2019]. 

[135] E. Barker, “Recommendation for Key Management Part 1: General - NIST 

Special Publication 800-57 Part 1 Revision 4,” 2016. 

[136] ETH Gas Station, “Consumer oriented metrics for the Ethereum gas market,” 

ethgasstation.info, 2019. [Online]. Available: https://ethgasstation.info/. 

[Accessed: 06-Aug-2019]. 

[137] V. Buterin, “Sharding FAQ,” Ethereum Wiki, 2019. [Online]. Available: 

https://github.com/ethereum/wiki/wiki/Sharding-FAQ. [Accessed: 21-Aug-

2019]. 

[138] V. Buterin, “On Slow and Fast Block Times,” ethereum.org, 2015. [Online]. 

Available: https://blog.ethereum.org/2015/09/14/on-slow-and-fast-block-

times/. [Accessed: 09-Aug-2019]. 

 

 

 

 

  



93 

 

 

 

APPENDIX 

 

SOURCE CODE OF MANAGEMENT AND PURCHASE SMART 

CONTRACTS 

 

 

// Our ContractManagement contract is a typical “contract factory” implementation 

that spawns new contracts and holds their addresses in an array.  

 

// Our Purchase contract source code is based on the “Safe Remote Purchase” 

example in official Ethereum documentation. 

// url: https://solidity.readthedocs.io/en/v0.5.11/solidity-by-example.html#safe-

remote-purchase 

// August 2019 

 

 

pragma solidity ^0.5.11; 

 

// this contract acts as a contract factory to create new Purchase contracts 

contract ContractManagement { 

    address[] public deployedContracts; 

    address public owner; 

 

    // seller creates a Purchase escrow contract to put a content on sale. 

    // Put content on sale use case. 

    function newPurchaseContract( 

        string memory _name, 

        string memory _description, 

        string memory _contentHashAddress) 

    public 

    payable 

    returns(address _newContract) 

    { 

        Purchase newContract = (new Purchase).value(msg.value)( 

            msg.sender, 

            _name, 

            _description, 

            _contentHashAddress); 

        deployedContracts.push(address(newContract)); 

        return address(newContract); 



94 

 

    } 

 

    // get the total number of escrow contracts to use in a loop in the frontend 

    function getPurchaseCount() 

    public 

    view 

    returns(uint _contractCount) 

    { 

        return deployedContracts.length; 

    } 

 

    // return the address of a particular escrow contract according to its index, 

    // so that users can list and interact with the contracts from the frontend 

    function getPurchaseAddress(uint i) 

    public 

    view 

    returns(address _contractAddress) 

    { 

        return deployedContracts[i]; 

    } 

} 

 

 

// this contract acts as the double escrow trustless mediator to ensure fair exchange 

contract Purchase { 

    // state variables 

    uint public value; 

    address payable public seller; 

    address payable public buyer; 

    string public name; 

    string public description; 

    string public secretHashAddress; 

    string public contentHashAddress; 

    string public buyerPublicKey; 

    enum State { Created, Locked, Inactive } 

    // The state variable has a default value of the first member, `State.created` 

    State public state; 

 

 

    // Put content on sale use case. 

    // Ensure that `msg.value` which is the deposit is an even number. 

    constructor( 

        address payable _seller, 

        string memory _name, 

        string memory _description, 

        string memory _contentHashAddress) 

    public 

    payable 



95 

 

    { 

        seller = _seller; 

        name = _name; 

        description = _description; 

        contentHashAddress = _contentHashAddress; 

 

        value = msg.value / 2; 

        require((2 * value) == msg.value, "Deposit amount has to be twice of the 

price."); 

 

        emit LogSellContent(seller, name, value); 

    } 

 

    // Modifiers for user authorization 

    modifier condition(bool _condition) { 

        require(_condition); 

        _; 

    } 

 

    modifier onlyBuyer() { 

        require( 

            msg.sender == buyer, 

            "Only buyer can call this." 

        ); 

        _; 

    } 

 

    modifier onlySeller() { 

        require( 

            msg.sender == seller, 

            "Only seller can call this." 

        ); 

        _; 

    } 

 

    modifier inState(State _state) { 

        require( 

            state == _state, 

            "Invalid state." 

        ); 

        _; 

    } 

 

    // emit events for information purposes required by the frontend 

    event LogSellContent( 

        address indexed _seller, 

        string _name, 

        uint _value 



96 

 

    ); 

 

    event LogBuyContent( 

        address indexed _buyer, 

        string _name, 

        uint _value 

    ); 

 

    event LogUploadSecret( 

        address indexed _seller, 

        string _name, 

        string _secretHashAddress 

    ); 

 

    event LogContentReceived( 

        address indexed _buyer, 

        string _name 

    ); 

 

    event LogAborted( 

        address indexed _seller, 

        string _name 

    ); 

 

 

    // Abort the purchase and reclaim the deposit. 

    function abort() 

    public 

    onlySeller 

    inState(State.Created) 

    { 

        emit LogAborted(seller, name); 

        state = State.Inactive; 

        seller.transfer(address(this).balance); 

    } 

 

 

    // Buyer confirms the purchase and buys the content 

    function buyContent(string memory _buyerPublicKey) 

    public 

    inState(State.Created) 

    condition(msg.sender != seller) 

    condition(msg.value == (2 * value)) 

    payable 

    { 

        emit LogBuyContent(buyer, name, value); 

        buyer = msg.sender; 

        state = State.Locked; 



97 

 

        buyerPublicKey = _buyerPublicKey; 

    } 

 

    // seller uploads the secret for content delivery use case. 

    function uploadSecret(string memory _secretHashAddress) 

    public 

    onlySeller 

    inState(State.Locked) 

    { 

        emit LogUploadSecret(seller, name, secretHashAddress); 

        secretHashAddress = _secretHashAddress; 

    } 

 

 

    // Buyer Confirms Received (release deposits) 

    function confirmReceived() 

    public 

    onlyBuyer 

    inState(State.Locked) 

    { 

        emit LogContentReceived(buyer, name); 

        // change state first for security 

        state = State.Inactive; 

 

        buyer.transfer(value); 

        seller.transfer(address(this).balance); 

    } 

 

 

    // get the details of the content to display in the frontend 

    function getContent() 

    public 

    view 

    returns( 

        address _seller, 

        address _buyer, 

        string memory _name, 

        string memory _description, 

        string memory _secretHashAddress, 

        uint _value, 

        uint8 _state, 

        string memory _contentHashAddress, 

        string memory _buyerPublicKey) 

    { 

        return(seller, buyer, name, description, secretHashAddress, value, uint8(state), 

contentHashAddress, buyerPublicKey); 

    } 

} 



 

TEZ İZİN FORMU / THESIS PERMISSION FORM 
 

                                     
ENSTİTÜ / INSTITUTE 
 
Fen Bilimleri Enstitüsü / Graduate School of Natural and Applied Sciences 

 
Sosyal Bilimler Enstitüsü / Graduate School of Social Sciences      

 
Uygulamalı Matematik Enstitüsü / Graduate School of Applied Mathematics  

   
Enformatik Enstitüsü / Graduate School of Informatics 

 
Deniz Bilimleri Enstitüsü / Graduate School of Marine Sciences    

   
 
YAZARIN / AUTHOR 
 
Soyadı / Surname   :  ........................................................................................................ 
Adı / Name    :  ........................................................................................................ 
Bölümü / Department : ......................................................................................................... 

 
 

TEZİN ADI / TITLE OF THE THESIS (İngilizce / English) : .......................................................... 
.................................................................................................................................................. 
.................................................................................................................................................. 
.................................................................................................................................................. 
.................................................................................................................................................. 

 
TEZİN TÜRÜ / DEGREE:   Yüksek Lisans / Master                            Doktora / PhD   
 

 
1. Tezin tamamı dünya çapında erişime açılacaktır. / Release the entire work immediately 

for access worldwide.  
 

2. Tez iki yıl süreyle erişime kapalı olacaktır. / Secure the entire work for patent and/or 
proprietary purposes for a period of two year. * 

 
3. Tez altı ay süreyle erişime kapalı olacaktır. / Secure the entire work for period of six 

months. *   
                                              
 

* Enstitü Yönetim Kurulu Kararının basılı kopyası tezle birlikte kütüphaneye teslim edilecektir. 
  A copy of the Decision of the Institute Administrative Committee will be delivered to the 
library together with the printed thesis. 

                                                       
 
 

Yazarın imzası / Signature     ............................                    Tarih / Date ..................... 
 


