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ABSTRACT 

 

NONLINEAR VIBRATION ANALYSIS OF ROTORS SUPPORTED BY 

BALL BEARINGS 

 

Bahan, Doğancan 

Master of Science, Mechanical Engineering 

Supervisor: Prof. Dr. Ender Ciğeroğlu 

 

 

August 2019, 57 pages 

 

Performance of ball bearing-rotor systems is highly dependent on and often limited by 

characteristics of ball bearings. Ball bearings are nonlinear by their nature and this 

nonlinearity must be investigated rigorously to correctly predict vibration response of 

the system. The steady-state periodic response of rotor systems with nonlinear ball 

bearings is investigated. The rotor is modeled with the Finite Element Method. 

Nonlinear model for the bearings considers finite number of balls, bearing clearance 

and contact between balls and races. The nonlinear differential equation of motion is 

converted to a nonlinear algebraic equation set by Harmonic Balance Method. 

Receptance Method is applied to decrease the number of nonlinear equations to be 

solved. Newton’s Method with arc-length continuation is used to solve the resulting 

equation set. Case studies are performed to investigate bearing vibrations such as 

varying compliance resonance, response to unbalance and interaction of flexible rotor-

bearing vibrations. 

 

Keywords: Rotor-bearing systems, varying compliance,   
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ÖZ 

 

BİLYALI RULMANLAR İLE DESTEKLENEN ROTORLARIN LİNEER 

OLMAYAN TİTREŞİM ANALİZİ 

 

Bahan, Doğancan 

Yüksek Lisans, Makina Mühendisliği 

Tez Danışmanı: Prof. Dr. Ender Ciğeroğlu 

 

Ağustos 2019, 57 sayfa 

 

Bilyalı rulman – rotor sistemlerinin performansı sıklıkla bilyalı rulman tarafından 

sınırlandırılmaktadır. Bilyalı rulman doğası gereği doğrusal değildir ve bu özellik 

sistemin frekans cevabını doğru şekilde tahmin etmek için dikkatlice incelenmelidir. 

Bu çalışmada doğrusal olmayan bilyalı rulmanlar ile desteklenmiş bir rotor sisteminin 

kararlı hal periyodik titreşimleri incelenmiştir. Rotor sistemi Sonlu Elemanlar Metodu 

ile modellenmiştir. Bilyalı rulman modeli sonlu sayıda topu, rulman boşluğunu ve 

bilya kontaklarını dikkate almaktadır. Sistemin doğrusal olmayan diferansiyel hareket 

denklemi Harmonik Denge Metodu ile doğrusal olmayan cebirsel denklemler setine 

çevrilmiştir. Reseptans metodu ile çözülecek doğrusal olmayan denklem sayısı 

azaltılmıştır. Çözüm yöntemi olarak yay uzunluğu sürdürme yöntemi ile Newton 

Metodu kullanılmıştır. Çeşitli analizler gerçekleştirilmiş ve rulmanların değişken 

direngenlik rezonansı, dengesizlik yükü gibi titreşimleri ile rulman ile esnek rotor 

etkileşiminden kaynaklanan titreşimler incelenmiştir. 

 

Anahtar Kelimeler: Rotor-rulman analizi, değişken direngenlik 

 



 

 

 

vii 

 

To my family 



 

 

 

viii 

 

ACKNOWLEDGEMENTS 

 

I want to thank my supervisor Prof. Dr. Ender Ciğeroğlu, for his supervision, 

guidance, and help from the beginning till the end. 

  

I also want to express my gratitude to Mr. Bülent Acar, who introduced me to the 

world of rotor dynamics and taught me patiently in this intricate subject. 

  

Another gratitude must go to the members of the Dynamic Analysis and Test Unit, 

without their help and sacrifice, this thesis would not have been completed. 

  

I’m grateful to my family, who supported and encouraged me, as they always have 

done throughout my life. 

 

Last thanks go to my dear friends Ersin Altın, Baran Özmen and Hasan Akman who 

have always been with me in my good and bad times.  



 

 

 

ix 

 

TABLE OF CONTENTS 

 

ABSTRACT ................................................................................................................. v 

ÖZ    ........................................................................................................................... vi 

ACKNOWLEDGEMENTS ..................................................................................... viii 

TABLE OF CONTENTS ........................................................................................... ix 

CHAPTERS 

LIST OF TABLES ..................................................................................................... xi 

LIST OF FIGURES .................................................................................................. xii 

LIST OF ABBREVIATIONS .................................................................................. xiv 

LIST OF SYMBOLS ................................................................................................. xv 

1. INTRODUCTION AND LITERATURE SURVEY ............................................ 1 

 Introduction ....................................................................................................... 1 

 Literature Survey ............................................................................................... 5 

 Motivation and Scope ........................................................................................ 8 

2. MATHEMATICAL MODELLING OF THE SYSTEM...................................... 9 

 Finite Element Modelling .................................................................................. 9 

2.1.1. Modelling of the Shaft ................................................................................ 9 

2.1.2. Modelling of the Disks ............................................................................. 10 

2.1.3. Assembling Global Matrices .................................................................... 11 

 Roller Bearing Modelling ................................................................................ 11 

2.2.1. Lumped-Parameter REB Model ............................................................... 12 

3. NONLINEAR SOLUTION METHOD .............................................................. 15 

 Harmonic Balance Method .............................................................................. 15 



 

 

 

x 

 

 Calculation of The Fourier Coefficients of The Nonlinear Forces ................. 19 

 Receptance Method ......................................................................................... 22 

 Newton’s Method with Arclength Continuation ............................................. 24 

 Usage of The AFT Method for The Calculation of The Jacobian Matrix ...... 26 

 Stability Analysis ............................................................................................ 28 

4. VERIFICATION OF THE COMPUTER CODE .............................................. 31 

 Verification of FE Modelling .......................................................................... 31 

 Verification of Roller Bearing Modelling ....................................................... 33 

5. CASE STUDIES ................................................................................................ 37 

 Effect of Asymmetry on Parametric Resonance ............................................. 37 

 Unbalance Response Under Multiple Excitation ............................................ 42 

6. CONCLUSION .................................................................................................. 51 

REFERENCES .......................................................................................................... 53 

 

 



 

 

 

xi 

 

LIST OF TABLES 

 

TABLES 

Table 4.1. Properties of the Rotor Model Used for FE Verification .......................... 32 

Table 4.2. Comparison of Natural Frequencies for a Non-Rotating Shaft................. 32 

Table 4.3. Parameters for JIS6306 ............................................................................. 35 

Table 5.1. Position of the Disk for the Configurations for Case Study 1 .................. 37 

Table 5.2. Parameters for the Shaft-Disk System for Case Study 1 .......................... 37 

Table 5.3. Parameters for SKF6002 ........................................................................... 43 

Table 5.4. Parameters for the Shaft-Disk System for Case Study 2 .......................... 43 

 



 

 

 

xii 

 

LIST OF FIGURES 

 

FIGURES 

Figure 1.1. Main Parts of a Ball Bearing, Courtesy of SKF ........................................ 1 

Figure 1.2. Radial and Axial Internal Clearance in a Ball Bearing, Courtesy of SKF 2 

Figure 1.3. Schematic Hertzian Contact Ellipse for a Ball Bearing [2] ...................... 3 

Figure 1.4. A typical Critical Speed Map [6] .............................................................. 4 

Figure 1.5. Contact Status of The Balls At Different Angles During Rotation ........... 5 

Figure 1.6. Radial Reaction Forces of Balls During One Revolution of the Cage ...... 6 

Figure 1.7. Overall Reaction Force of The Bearing for One Revolution of The Cage 6 

Figure 2.1. Nelson Finite Rotor Element [40] ........................................................... 10 

Figure 2.2. Rigid and Flexible Disk Modelling [41] and Elastic Disk Modelling .... 10 

Figure 2.3. Assembling Scheme for Global Matrices [42] ........................................ 11 

Figure 2.4. Sketch of the Bearing Model ................................................................... 12 

Figure 2.5. Contact Angle 𝛼 [24] .............................................................................. 13 

Figure 3.1. Limit Trajectory in State-Space (top) and Time Evolution [44] ............. 15 

Figure 3.2. Iteration scheme for HBM with AFT ...................................................... 21 

Figure 3.3. Points Per Cycle vs. Percent Error on Peaks [50] ................................... 22 

Figure 3.4. Nonlinear FRF for a System with Cubic Stiffness .................................. 25 

Figure 4.1. ABAQUS Model Used for Verification .................................................. 31 

Figure 4.2. Comparison of The Normalized Campbell Diagrams for 2nd Bending Mode

 ................................................................................................................................... 33 

Figure 4.3. Bearing Model in [61] ............................................................................. 33 

Figure 4.4. Comparison of Results for Vertical (Black) and Horizontal (Red) 

Directions for Varying Compliance Vibrations (𝛿0 = 2 𝜇𝑚) .................................. 34 

Figure 5.1. Sketch of the System for Case Study 1 ................................................... 37 

Figure 5.2. Total Responses for C1 (Upper) and C2 Configurations ........................ 38 

Figure 5.3. Acceleration FRFs for C1 (Upper) and C2 Configurations .................... 39 



 

 

 

xiii 

 

Figure 5.4. Individual Harmonic Responses for Bearing 1, C1 Top, C2 Bottom ...... 40 

Figure 5.5. Bearing-1 Reaction Forces for C2, 𝛺 = 4389 RPM ............................... 40 

Figure 5.6. Rotor Orbits for C2 at 𝛺 = 2030 RPM Top and 𝛺 = 2420 RPM Bottom

 .................................................................................................................................... 41 

Figure 5.7. Sketch of the System for Case Study 2 .................................................... 42 

Figure 5.8. Relative Unbalance Angle, 𝜓 .................................................................. 42 

Figure 5.9. Total FRFs, Top to Bottom 𝜓 = 0,90,180 .............................................. 44 

Figure 5.10. Total Acceleration FRFs, Top to Bottom 𝜓 = 0,90,180 ...................... 45 

Figure 5.11. Rotor Orbits for the Resonances Around 2000 and 5000 RPM, 𝜓 = 180

 .................................................................................................................................... 46 

Figure 5.12. Individual Harmonics for Bearing-1, Top to Bottom 𝜓 = 0,90,180 .... 47 

Figure 5.13. Individual Harmonics for Bearing-2, Top to Bottom 𝜓 = 0,90,180 .... 48 

Figure 5.14. Bearing-1 Reaction Forces, 𝜓 = 0, 𝛺 = 2290 RPM ............................ 49 

Figure 5.15. Bearing-2 Reaction Forces, 𝜓 = 180, 𝛺 = 3537 RPM ........................ 49 

Figure 5.16. Bearing-1 Reaction Forces, 𝜓 = 180, 𝛺 = 7280 RPM ........................ 50 

 



 

 

 

xiv 

 

LIST OF ABBREVIATIONS 

 

ABBREVIATIONS 

AFT  Alternating Frequency Time 

DOF  Degree of Freedom 

EVP  Eigenvalue Problem 

FE  Finite Element 

DFT  Discrete Fourier Transform 

FRF  Frequency Response Function 

HBM  Harmonic Balance Method 

NLAE  Nonlinear Algebraic Equation 

ODE  Ordinary Differential Equation 

REB  Roller Element Bearing 

VC  Varying Compliancy 

 



 

 

 

xv 

 

LIST OF SYMBOLS 

 

SYMBOLS 

a  Any bold lowercase letter denotes a vector 

A  Any bold uppercase letter denotes a matrix 

𝑎𝑖  Superscript i denotes imaginary variables 

𝑎𝑟  Superscript  r denotes real variables 

𝑎𝑙  Subscript l denotes linear degrees of freedom 

𝑎𝑛  Subscript n denotes nonlinear degrees of freedom 

𝛼  Roller contact angle 

𝐷𝑏  Ball diameter 

𝐷𝑝  Pitch diameter of the bearing 

2𝛿0  Bearing internal clearance 

𝐸  Young’s Modulus 

𝜂  Structural damping coefficient 

𝐟  Linear force vector 

𝐟𝐍  Nonlinear force vector 

G  Gyroscopic matrix 

H  Receptance matrix 

J  Jacobian matrix 

K  Stiffness matrix 



 

 

 

xvi 

 

𝐾𝐻  Effective stiffness of the bearing 

𝐿  Length of the shaft 

𝑚𝑑  Mass of the disk 

𝑚𝑢  Unbalance mass 

M  Mass matrix 

n  Number of nonlinear degrees of freedom 

𝑛𝑏  Stiffness exponent of rollers 

N  Total degrees of freedom 

𝑁𝑏  Number of rollers 

𝜈  Poisson’s ratio 

𝛁  Derivative operator in frequency domain 

𝜓  Relative angle between unbalance forces 

𝑟𝐷  Disk radius 

𝑟𝑖  Shaft inner radius 

𝑟𝑜  Shaft outer radius 

𝜌  Density 

𝜔𝑐𝑎𝑔𝑒  Cage rotational speed 

𝜔𝑉𝐶  Varying compliance frequency 

Ω  Rotor speed 

𝐙(ω)  Dynamic Stiffness Matrix 

tD  Thickness of the Disk 



 

 

 

1 

 

CHAPTER 1  

 

1. INTRODUCTION AND LITERATURE SURVEY 

 

 Introduction 

Bearings are indispensable parts of all rotating machines. Their durability and 

performance are crucial for the safety and reliability of the whole system. For this 

reason, many types of bearings are developed as industrial demand grows for higher 

performance. The most common type of bearings is fluid bearings and roller element 

bearings (REBs). Other types, such as magnetic bearings or gas bearings, show high 

potential but still have not replaced the previous two. 

Although fluid bearings have almost infinite life, more load carrying capacity, higher 

damping, and very high-speed operability compared to REBs, their main disadvantage 

is their weight and space requirement. Fluid bearings need extra oil feeding systems 

which usually add more weight to the system than allowable. Therefore, rolling 

element bearings are continuing to be used extensively, especially for aerospace 

applications. 

 

Figure 1.1. Main Parts of a Ball Bearing, Courtesy of SKF  
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A rolling-element bearing consists of four main parts. Inner race, which is connected 

to the rotating shaft, the outer race which is usually connected to a housing, rollers 

which roll between inner and outer races and a cage that holds the rollers together. 

A rolling-element bearing would have an internal clearance, which is defined as the 

relative distance a ring can travel with respect to the other ring in radial or axial 

directions, without compressing a rolling element. This clearance is sometimes desired 

to compensate for thermal expansions and achieve the desired contact angle for 

angular contact bearings. The amount of internal clearance varies the load distribution 

on the rollers and directly effects the bearing life. It is desired to achieve a slightly 

negative clearance at operating conditions; however, this may not be possible all the 

time. 

 

Figure 1.2. Radial and Axial Internal Clearance in a Ball Bearing, Courtesy of SKF 

When contact occurs between a roller and the rings, a spherical or cylindrical body is 

squeezed between a concave and a convex surface. This contact is usually assumed as 

Hertzian type, but other approaches are also present in the literature. A recent survey 

might be found in [1]. 
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Figure 1.3. Schematic Hertzian Contact Ellipse for a Ball Bearing [2] 

Both internal clearance and the contact geometry makes the nature of the bearing 

nonlinear. Therefore it is not an easy task to assign a linear stiffness coefficient to a 

particular bearing type. Gargiulo in 1980 [3], has offered simple relations, which is 

still used today by software such as DyRoBes [4]. Radial stiffness, 𝐾, for an angular 

contact radial ball bearing with this formulation is,  

 
6 2 530.0325 10 cos ( )b r bK D F N =       (1.1) 

where 𝐷𝑏 is the ball diameter, 𝐹𝑟 is radial force exerted on the bearing, 𝑁𝑏 is the 

number of rolling elements and 𝛼 is the contact angle. Note that this equation is in 

English engineering units. Tamura [5] has expressed linearized bearing stiffness as, 
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Functions Φ1 and Φ2 can be found in [5]. 

As rotors become faster and lighter, the importance of bearing stiffness to the shaft 

stiffness ratio on rotor dynamic behavior of the system became more evident. Classical 

rotor dynamics texts show this ratio on a chart called “Critical Speed Map.” 

 

Figure 1.4. A typical Critical Speed Map [6] 

In these texts, bearings are usually modeled as linear stiffness elements. However, it 

is seen that linear stiffness assumptions may fail to predict in-field measurements. 

Childs [7] has reported subsynchronous vibration in the development phase of High-

Pressure Oxidizer Turbo Pump for the Space Shuttle Main Engine, originating from 

bearing clearances. This motion could not be observed with a linear model.  

More accurate mathematical models have been developed as the need for precise 

analysis has increased. One difficulty encountered is, most of these models are 

nonlinear. Although nonlinear equation solving in the time domain is relatively 

straight-forward; to obtain a total dynamic picture of the system, frequency domain 

solutions are desired. This desire has made systems with REBs a study area of 

nonlinear vibration analysis. 
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 Literature Survey 

One of the first studies with nonlinear behavior of ball bearings is made by Sunnersjö 

[8]. In his paper, he investigated the so-called Varying Compliance vibrations. VC is 

an inevitable result of the REB structure. Consider a bearing with eight balls, 

supporting a rotating, rigid, balanced shaft. The only force the bearing carries is the 

weight of the shaft. As expected, weight is carried by the balls sequentially during a 

bearing period. During this process, the number of balls in contact varies as weight is 

transferred from one ball to the next one.  

In Figure 1.5, the contact status of the balls for two different cage angles is presented. 

At the beginning of the period, i.e. 𝜃𝑐𝑎𝑔𝑒 = 0𝑜, balls number 1,2 and 8 are in contact. 

On the other hand, for 𝜃𝑐𝑎𝑔𝑒 = 202.5𝑜, balls number 3,4,5 and 6 are in contact. 

Contact intensity is shown with a colormap. 

  

Figure 1.5. Contact Status of The Balls At Different Angles During Rotation 

In Figure 1.6, the radial reaction forces of the individual rollers are shown for one 

revolution of the cage.  
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Figure 1.6. Radial Reaction Forces of Balls During One Revolution of the Cage 

In Figure 1.7, the overall reaction forces of the bearing in vertical and horizontal 

directions are given. It is seen that reaction forces or stiffness (compliance) of the 

bearing is not constant but a function of time. This phenomenon is called Varying 

Compliance (VC). This variation is an internal source of excitation to the system even 

in the absence of an external time-varying one. So, any system with an REB is called 

parametrically excited. 

 

Figure 1.7. Overall Reaction Force of The Bearing for One Revolution of The Cage 

cage = 202.5o

cage = 202.5o



 

 

 

7 

 

In 1985, Fukata [9] had reported superharmonic, subharmonic, and chaotic vibrations 

for a ball bearing under constant radial load through computer simulations. In the same 

year, Saito [10] has analyzed the unbalance response of a Jeffcott rotor supported by 

bearings with clearances. He used the Harmonic Balance Method (HBM) to obtain 

steady-state solutions. Kim [11] also investigated a Jeffcott rotor with HBM aided by 

Alternating Frequency Time (AFT) scheme. The stability of the Harmonic Balance 

solutions is investigated by Monodromy Matrix Method. Later, Kim [12] extended his 

previous research to quasi-periodic response by expressing the unknowns as a double 

harmonic Fourier series. Ehrich [13] has investigated subcritical, superharmonic, and 

chaotic vibrations of a nonlinear Jeffcott rotor and compared the results with data 

taken from the core spool of an aircraft engine gas turbine. Mevel [14] has examined 

mechanisms that route to the chaotic vibration of ball bearings.  

Tiwari [15–17] has studied unbalance response, the effect of radial clearance, and 

stability of a rigid rotor-ball bearing system both analytically and experimentally. 

Harsha [18,19] has analyzed effect of speed and internal clearance on stability. 

Lioulios [20] has considered the effect of rotational speed fluctuations on REBs. Villa 

[21] has considered a rotor-stator system coupled with nonlinear ball bearings. Bai 

[22] has examined the effect of axial preload with a 5 Degree of Freedom (DOF) 

flexible rotor-bearing system. Cheng [23] has considered a Jeffcott rotor with the 

Alford force. Bai [24] considered subharmonic resonance with a flexible 6 DOF 

symmetric rotor-bearing system. Zhang [25] has utilized a 5 DOF Jones-Harris type 

bearing model to investigate the stability of a rigid rotor-bearing system. Zhang [26] 

has offered a new rotor-bearing model that considers preload and varying contact 

angle. Hou [27] considered a dual rotor system, which has a nonlinear inter-shaft ball 

bearing. Wang [28] has developed a dynamic model for angular contact ball bearing-

rotor systems. Jin [29] has given experimental results for a rigid rotor-ball bearing 

system. Yang [30] has investigated the influence of rotor eccentricity and different 

ball numbers on VC resonance of a Jeffcott rotor. 
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Up to this point, rotors are either assumed rigid or modeled with simple 

approximations such as a Jeffcott rotor. Nevertheless, modern rotor systems need 

much more detailed modeling to get results with desired precision. Villa [31] and 

Sinou [32] have used the Finite Element Method (FEM) to model a rotor supported 

by nonlinear bearings and investigated unbalance response and stability. Gupta [33] 

also utilized FEM and studied instability and chaos. Babu [34] has investigated an 

elastic rotor supported on angular contact ball bearings and concluded that flexible 

rotor modeling yields high amplitude vibration, especially at elevated rotor speeds, 

which is missed with rigid rotor approximation. Yi [35] also investigated VC 

resonance on a flexible rotor. Li [36] has proposed a general method which combines 

FEM and 6 DOF bearing models. Metsebo [37] has utilized a continuous Timoshenko 

beam to study unbalance response.  Lu [38] investigated a dual rotor system with an 

inter-shaft bearing under multiple unbalance conditions.  

Cao in 2018 [1], has given a review on the development of modeling of rolling bearing 

– rotor systems. 

 Motivation and Scope 

It is seen in the literature that rotor-bearing systems are mostly modeled with basic 

rotor models. There are few studies, which use FEM [31–36,38]. Furthermore, even 

FEM is used, system response is investigated by varying REB parameters or unbalance 

masses. However, rotor – REB systems should also be studied in more detail in a rotor 

dynamics manner.  

This thesis aimed the development of a computer code that can model a complex rotor 

– REB structure and analyze this system in the frequency domain. The thesis consists 

of mathematical modeling of rotor and bearings, nonlinear solution methodology in 

the frequency domain, verification of the code, and case studies. 
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CHAPTER 2  

 

2. MATHEMATICAL MODELLING OF THE SYSTEM 

 

 Finite Element Modelling 

Finite element modeling is the most widely used mathematical approach today, 

especially in the industry. The reason is its capabilities, such as to model any geometry 

without simplification, to allow multi-disciplinary calculations, i.e., thermal, 

structural, electrical, magnetic, acoustic and interactions between these disciplines. 

Modern FE solvers can now handle systems with millions of DOFs in industrially 

logical periods and deal with numerous nonlinearities at a time such as material 

nonlinearities and geometric nonlinearities. 

To model shaft and disks FEM is chosen, to benefit from its flexibility to model 

different types of systems. This way, any shaft geometry or any number of disks or 

nonlinear elements, i.e., any configuration can be included in the analysis easily. 

2.1.1. Modelling of the Shaft 

Nelson and McVaugh [39] made one of the first attempts to include FEM in rotor 

dynamics modeling. They used finite beam elements to model the shaft. 

A three-dimensional linear beam finite element would have twelve DOFs, six on each 

node on its each side. These six DOFs correspond to three displacements and three 

rotations. Nelson used four DOFs for the nodes by neglecting the axial and torsional 

flexibility of the element. A view of the element is given in Figure 2.1. 

Beam finite elements can use any of the beam theories in the literature. Most of the 

time, Euler-Bernoulli or Timoshenko beam theories are considered. There are other 

ones that use higher-order beam theories to model more realistic cross-sectional shear 

deformations. In this thesis, the chosen element has eight DOFs and considers the 
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Timoshenko beam theory. The formulation of the element and resulting matrices may 

be found in [39]. 

 

Figure 2.1. Nelson Finite Rotor Element [40] 

2.1.2. Modelling of the Disks 

Components such as turbine and compressor disks are usually modeled as simple disk 

geometries while studying shaft vibrations. The main reason for this simplification is 

shaft and disk vibrations are almost uncoupled, except for specific vibration modes. 

There are mainly three methods to include a disk in a rotor dynamic analysis. These 

three methods are explained in Figure 2.2. In this thesis, disks are considered as rigid 

and modeled as mass and inertia elements. Formulation and resulting matrices can be 

found in [39]. 

 

Figure 2.2. Rigid and Flexible Disk Modelling [41] and Elastic Disk Modelling 
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2.1.3. Assembling Global Matrices 

After matrices for each element is obtained, these matrices are assembled in a 

particular manner to get the final global matrices of the system. The assembling 

process is straight forward and described in Figure 2.3. 

 

Figure 2.3. Assembling Scheme for Global Matrices [42] 

 Roller Bearing Modelling 

Dynamic behavior of a rolling element bearing may be very complicated to predict 

and to model. REB modeling can be investigated under five main titles; Lumped-

parameter models, quasi-static models, quasi-dynamic models, dynamic models, and 

lastly finite element models. A lumped parameter model is used in this thesis, so only 
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this model is explained below. Detailed explanations about other ones can be found in 

[1] and its references. 

2.2.1. Lumped-Parameter REB Model 

Two main assumptions of lumped-parameter models are planar bearing motion and 

pure rolling of bearing elements, i.e., no friction is present between element interfaces. 

Besides, centrifugal and gyroscopic effects are not considered, which may lead to 

inaccuracies, especially for high-speed systems. 

Two types of lumped-parameter models are present in the literature. In the first type, 

each element has its own dynamic equations. In the second type, the bearing is 

considered as a two DOF system. The reaction force of the bearing is found by 

summing forces on each ball. Latter approximation is considered here. A sketch of the 

model is given in Figure 2.4. 

Figure 2.4. Sketch of the Bearing Model 

   

Cage rotational speed, obtained under the assumption of no slippage of the balls can 

be written as follows [43], 

 ( )
1

1 cos
2

b
cage

p

D

D
 

 
=  −  

 

 (2.1) 

where 𝐷𝑏 and 𝐷𝑝 are ball and pitch diameters respectively and 𝛼 is the contact angle 

which can be calculated from, 

 

 

 

 

 

x 

y 

g 

i 

𝛿0 



 

 

 

13 

 

 0

, ,

arccos 1
g i g o br r D




 
= −  + − 

 (2.2) 

where 𝑟𝑔,𝑖 and 𝑟𝑔,𝑜 are inner and outer groove radius respectively. Angle 𝛼 is shown 

in Figure 2.5.  

 

Figure 2.5. Contact Angle 𝛼 [24] 

In certain cases, contact angle is assumed 0o and cage speed is written as, 

 
,

, ,

b i

cage

b i b o

r

r r


 
=   + 

 (2.3) 

Varying Compliance (VC) frequency is defined as number of balls times the cage 

rotation speed, 

 
VC b cageN =   (2.4) 

Deflection of an individual ball can be written as follows if the inner ring is fixed to 

the shaft and outer ring is fixed to the ground, 

 
0cos( ) sin( ) 0

0

i i i

i

x y

otherwise

   


 +  −  
=  

 
 (2.5) 

Where 𝑥, 𝑦 are the shaft or inner ring deflections and 𝜃𝑖 is the angle, representing the 

𝑖𝑡ℎ ball’s angular position with respect to time. 
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 ( )
2

1i cage

b

i t
N


 = −  +   (2.6) 

The total reaction force of the bearing in 𝑥 and 𝑦 directions is then found by, 

 
( )

( )

1

1

cos

sin

b

b

b

b

n

x H i i

n

y H i i

N

i

N

i

F K

F K

 

 

=

=

=  

=  




 (2.7) 

Stiffness matrix of the bearing can be expressed by partial derivatives of its reaction 

forces. Such as, 

 

x x

B

y y

F F

x y
K

F F

x y

  
  
 =
  

 
  

 (2.8) 

and, 

 

( ) ( )

( ) ( )

( ) ( )

2

2

1

1

1

1

1

1
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cos sin( )

b b

b b

b b

x
H b i

y

H b i

yx
H b i i

N n

ii

N n

i

N n

ii

i

F
K n
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F
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y

FF
K n

y x

 

 

  

−

=

−

=

−

=


=   




=   




= =    

 







 (2.9) 
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CHAPTER 3  

 

3. NONLINEAR SOLUTION METHOD 

 

Long-term behavior of nonlinear dynamic systems can be classified into four 

categories; Stationary, periodic, quasi-periodic, and chaotic (erratic). The time 

evolution of these systems and their state-space trajectories are given in Figure 3.1.  

 

Figure 3.1. Limit Trajectory in State-Space (top) and Time Evolution [44] 

The last three of these cases are observed both analytically and experimentally for 

REB-rotor structures. 

 Harmonic Balance Method 

The name Harmonic Balance Method (HBM) came out in 1936. However, it has been 

started to be used widely only since the sixties, in the fields of mechanical and 

electrical engineering [45].  Today, it has become a well-known approach to analyze 

a nonlinear vibratory system in the frequency domain, i.e., to find the steady-state 

response. 
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HBM is focused on periodic responses of systems, the second case in Figure 3.1. HBM 

for quasi-periodic responses is an active research area, but it is out of scope for this 

thesis [46–48].  

Any periodic signal can be written as a Fourier series expansion as follows, 

 ( ) ( ) ( )( )0 , ,1
cos sinc p s pp

y t y y p t y p t 


=
= +    +     (3.1) 

Here, 𝑦𝑐,𝑝 and 𝑦𝑠,𝑝 are the cosine and sine coefficients for the 𝑝𝑡ℎ harmonic 

respectively. 𝜔 is called the base frequency which determines the period and all other 

frequencies present in the series are integer number multiples of this base frequency. 

Recall that this is necessary for periodicity.  

HBM is originated from the idea that, if the nonlinear system is excited periodically, 

its answer will also be periodic. Therefore, both the excitation and the response can 

be expressed as a Fourier series. Of course, a Fourier series will have infinite terms; 

however, practice shows us after using a certain number of terms, the truncation of 

upper ones will result in insignificant errors, especially for engineering purposes. Most 

of the time, a “number of harmonics to be used” convergence study is done, similar to 

a mesh convergence study in FE analysis.  

The main objective of the method is to transform the set of nonlinear Ordinary 

Differential Equations (ODEs) into a set of nonlinear algebraic equations (NLAEs). 

After expressing each term as a Fourier series expansion and inserting into the 

Equation of Motion (EOM), time derivatives are now transformed into sine and cosine 

terms. By using orthogonality property of Fourier base functions, each harmonic, i.e., 

each sine and cosine term, is equated in other words ‘balanced’. 

One catchy but straightforward example can be the Duffing Oscillator to show the 

logic of HBM. Consider the nonlinear ODE, 

 
3 sin( )cm x c x k x k x f t +  +  +  =    (3.2) 
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Let us assume the unknown 𝑥 is periodic and can be expressed as a Fourier series 

expansion.  

 ( ) ( ) ( )( )0 , ,1
cos sin

H

c p s p

N

p
x t x x p t x p t 

=
= +    +     (3.3) 

where 𝑁𝐻 is the harmonic truncation order. For this example, let 𝑁𝐻 = 1 and since no 

static force is present, 𝑥0 = 0. So, 

 

,1 ,1

,1 ,1

2 2

,1 ,1

( ) cos( ) sin( )

( ) sin( ) cos( )

( ) cos( ) sin( )

c s

c s

c s

x t x t x t

x t x t x t

x t x t x t

 

   

   

=   +  

= −    +   

= −    −   

 (3.4) 

The cubic nonlinear forcing 𝑘𝑐 ∙ 𝑥(𝑡)3, after some trigonometric manipulations, 

can be expressed as,  

 

( ) ( )

( )

( ) ( ) ( ) ( )

3 3 2

,1 ,1 ,1

3 2

,1 ,1 ,1

3
cos( )

4

3
sin( )

4

... cos 3 ... sin 3

c c s

s c s

x t x x x t

x x x t

t t





 

=  +   

+  +   

+    +   

 (3.5) 

Substituting (3.4),(3.5) into (3.2) and regrouping one has, 

 

( ) ( )

( ) ( )

   

2 3 2

,1 ,1 ,1 ,1 ,1

2 3 2

,1 ,1 ,1 ,1 ,1

3
cos( )

4

3
sin( )

4

sin( )cos(3 ) ... sin(3 ) ...

c s c c c s

s c c s c s

t k m x c x k x x x

t k m x c x k x x x

F tt t

 





  



 
 − + + + 
 

 
+  − − + + 

 

+ +   =

 (3.6) 

Since cos(𝜔𝑡) , sin(𝜔𝑡), cos(3𝜔𝑡) and sin(3𝜔𝑡) are all orthogonal Fourier base 

functions, to satisfy (3.6) for all 𝑡, each term must balance itself. Neglecting the higher 

harmonic terms written in red, one has the following two equations, 

 ( ) ( )2 3 2

,1 ,1 ,1 ,1 ,1

3
0

4
c s c c c sk m x c x k x x x − + + + =  (3.7) 

 ( ) ( )2 3 2

,1 ,1 ,1 ,1 ,1

3

4
s c c s c sk m x c x k x x x F − − + + =  (3.8) 
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As one can observe, the procedure started with a nonlinear ODE (3.2) and resulted in 

two NLAEs (3.7), (3.8). The obtained equations are functions of frequency and can be 

used to sweep the frequency response of the system. Instead of solving for 𝑥(𝑡), one 

is now solving for the coefficients of the Fourier series expansion of 𝑥(𝑡). The price 

to pay is the increased number of equations to be solved. HBM will result in 

(2 ∙ 𝑁𝐻 + 1) ∙ 𝑁 equations where 𝑁 is the number of unknowns in the EOM, and +1 

accounts for the static term in (3.1).  

HBM equations can be generalized for multi-DOF systems. Resulting HBM equations 

for the 𝑝𝑡ℎ harmonic can be written as follows, 

 ( )
 

 + 
 

c,p

p N,p p

s,p

x
Z f (x) = f

x
 (3.9) 

Where, the dynamic stiffness matrix 𝐙𝐩(𝜔) is, 

 

2

2

( ) ( )
( )

( ) ( )

p p

p p

 


 

 −  
=  

−  −  
p

K M D
Z

D K M
 (3.10) 

Whole NLAE set for the system is, 

 ( ) ( )  + =
N

Z x f x f  (3.11) 

Where, 

 ( )( ) ( ), ( ), ..., ( ), ..., ( )diag    =
H0 1 p N

Z Zj j j j ZjZ Z  (3.12) 

 , , ..., , =  H H

T
T T T T T

0 c,1 s,1 c,N s,Nx jx , x xj j j x jx  (3.13) 

 , , , ..., , =  H H

T
T T T T T

N N N,c,1 N,s,1 N,c,N N,s,Nf j j j jf f jf f f  (3.14) 

 , , ..., , =  H H

T
T T T T T

0 c,1 s,1 c,N s,Nf jf , f fj j j f jf  (3.15) 

Note that the above representation is called 𝑐𝑜𝑠𝑖𝑛𝑒 − 𝑠𝑖𝑛𝑒 since 𝑐𝑜𝑠𝑖𝑛𝑒 terms are 

written first. However, this is not obligatory. One can write the equations in 𝑠𝑖𝑛𝑒 −

𝑐𝑜𝑠𝑖𝑛𝑒 representation as well. More detailed information about the theory of HBM 

can be found in [44].  
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 Calculation of The Fourier Coefficients of The Nonlinear Forces 

Fourier coefficients of the nonlinear forces should be expressed as functions of Fourier 

coefficients of nonlinear DOFs like it has been done in (3.5). Fourier integrals to 

determine each coefficient is given below,  

 ,0
0

1
( )

2

T

N Nf f t dt


=   (3.16) 

 ( ), ,
0

1
( ) cos

T

N c p Nf f t p t dt


=     (3.17) 

 ( ), ,
0

1
( ) sin

T

N s p Nf f t p t dt


=     (3.18) 

Above expressions are straightforward to evaluate analytically when nonlinear terms 

are smooth and continuous such as the cubic nonlinearity, 

 
3( ) ( )Nf t k x t=   (3.19) 

Let us see how fast things may get complicated when harmonic truncation order 

increases. Assume a displacement variable 𝑥(𝑡) with two harmonics and a bias term, 

 
0 ,1 ,1

,2 ,2

( ) cos( ) sin( )

cos(2 ) sin(2 )

c s

c s

x t x x t x t

x t x t

 

 

= +  + 

+   +  
 (3.20) 

Let us assume nonlinear forcing will also consist of a bias term and two harmonics. 

 
,0 , ,1 , ,1

, ,2 , ,2

( ) cos( ) sin( )

cos(2 ) sin(2 )

N N N c N s

N c N s

f t f f t f t

f t f t

 

 

= +  + 

+   +  
 (3.21) 

For example, 𝑓𝑁,𝑠,1 will be found from the following integral. 

 ( )3

, ,1
0

1
( ) sin

T

N sf x t t


=    (3.22) 

There are 35 terms in (3.22) according to the Multinomial Theorem, but it can be 

evaluated very fast with the usage of orthogonality of sines and cosines. 

Now let us have a discrete nonlinearity, such as a spring with a gap. 𝑓𝑁(𝑡) can be 

stated as, 
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0 ( )

( )
( ) ( )

N

x t
f t

k x t x t






= 

 
 (3.23) 

When trying to evaluate (3.16)-(3.18) one needs to find when 𝑥(𝑡) is greater or smaller 

than 𝛿. This requires determination of the 𝑡 values from the following equation in the 

frequency domain, since these time steps are not known apriori in most of the cases. 

 
0 ,1 ,1

,2 ,2

( ) cos( ) sin( )

cos(2 ) sin(2 )

c s

c s

x t x x t x t

x t x t

  

 

= = +  + 

+   +  
 (3.24) 

(3.24) is itself nonlinear, probably has many roots and requires nonlinear equation 

solving, just to find Fourier coefficients of the nonlinear forcing term. As one can 

observe, this method will be more cumbersome as the number of harmonics will 

increase. These difficulties made researchers search for more robust approaches to 

evaluate nonlinear forcing coefficients. Some methods, such as Incremental Harmonic 

Balance Method (IHBM) and Alternating Frequency Time (AFT) or different 

continuation schemes are proposed [45]. 

AFT uses Discrete Fourier Transform (DFT) and if applicable Fast Fourier Transform 

(FFT) techniques to switch between frequency and time domains, aiming to avoid 

using classical Fourier integration [49]. Estimated Fourier coefficients for the 

unknown vector 𝐱 is used to obtain the assumed periodic representation of the original 

unknown 𝑥(𝑡) by inverse DFT. Then, nonlinear forcing law is applied in time domain 

which is straight forward for nonlinearities like (3.23). Obtained time representation 

of the nonlinear force 𝑓𝑁(𝑡) is transformed into the nonlinear forcing Fourier 

coefficients vector 𝐟𝐍 by DFT. Iteration scheme for HBM with AFT is given in Figure 

3.2 
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Figure 3.2. Iteration scheme for HBM with AFT 

While using AFT, one should consider the basic rules of digital signal processing. 

Otherwise, the resulting frequency spectrum may suffer from effects like leakage, 

aliasing, etc. [44]. Another critical parameter is the sampling frequency. Since the 

exact magnitudes of the Fourier coefficients are desired, one needs to choose a higher 

sampling frequency than the Nyquist frequency. The relation between sampling-

frequency and amplitude error is given as [50], 

 2 sin
2

k

s

f
P

f

 
=   

 
 (3.25) 

where 𝑃𝑘 is the percentage error on peaks, 𝑓 is the frequency of the sine wave and 𝑓𝑠 

is the sampling frequency. The plot of (3.25) is given in Figure 3.3, showing that ten 

points per cycle will give an error about 1 percent. 
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Figure 3.3. Points Per Cycle vs. Percent Error on Peaks [50] 

 Receptance Method 

Most of the time, the number of nonlinear DOFs, i.e., DOFs connected to nonlinear 

elements, is much less compared to the total number of system DOFs. This difference 

becomes greater, especially when FEM is utilized to obtain system matrices. 

Therefore, researchers looked for methods to decrease the number of nonlinear 

equations to be solved. 

Receptance Method (RM), [51–53] can be used to split linear and nonlinear DOFs and 

solve them separately. EOM for a rotor with nonlinear elements can be written as, 

 ( ) ( )( ) ( ) (1 ) ( ) ( ) ( )t Ω t i t t t + +  + +  + =
N

M x G C x K x f x f  (3.26) 

Steady-state response for the 𝑝𝑡ℎ harmonic can be expressed as, 

 ( )
p p N,p p

x +H f (x)- f = 0  (3.27) 

where, 

 ( ) ( ) ( )( )
1

2
(1 )i p i p Ω  

−

 + −   −   +pH = K M G C  (3.28) 
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is the so-called receptance matrix. If equations are reordered such that nonlinear terms 

will be the bottom ones in the unknown vector, equation set can be partitioned as 

follows, 

 0
             

+ − =                     

l,p p,ll p,ln l,p

n,p p,nl p,nn N,p n n,p

x H H 0 f

x H H f (x ) f
 (3.29) 

The second row of (3.29) is only in terms of the nonlinear DOFs and can be solved 

separately from the first row. This way number of nonlinear equations to be solved is 

decreased from (2 ∙ 𝑁𝐻 + 1) ∙ 𝑁 to (2 ∙ 𝑁𝐻 + 1) ∙ 𝑛. As stated, practically 𝑛 is 

significantly less than 𝑁, so this is a considerable saving. See that after solving the 

second equation, 𝐱𝐥,𝐩 can be found directly from the first row since 𝐟𝐍,𝐩(𝐱𝐧) will be 

available. Now, consider the second equation, 

 
  

 +  −  =  
  

l,p

n,p p,nn N,p n p,nl p,nn
n,p

f
x H f (x ) H H 0

f
 (3.30) 

All terms of (3.30) are complex, so it is a complex equation. To be solved, first, it 

needs to be divided into real and imaginary parts. Upon dividing and some 

manipulation, we have, 

 
              

= +  −  −        
              

r r r i

n,p N,p n l,p l,p

i i r i1,p 2,p 3,p

n,p N,p n n,p n,p

r
p

x f (x ) f f

x f (x ) f f
 (3.31) 

where 𝚯𝟏..𝟑,𝐩 stands for 

 
 

 =  
  

r i

p,nn p,nn

i r1,p

p,nn p,nn

H -H

H H
 (3.32) 

 
 

 =  
  

r r

p,nl p,nn

i i2,p

p,nl p,nn

H H

H H
 (3.33) 

 
 

 =  
  

i i

p,nl p,nn

r r3,p

p,nl p,nn

-H -H

H H
 (3.34) 
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Note that real terms account to 𝑐𝑜𝑠𝑖𝑛𝑒 representation for the unknowns and the forcing 

terms, whereas imaginary terms are for 𝑠𝑖𝑛𝑒 representation.  

There are two alternatives to calculate receptance matrix. The first one is direct 

inversion, as shown in (3.28). The second way is using modal superposition. The latter 

one is computationally much cheaper for many systems however, recall that 

gyroscopic matrix is skew-symmetric, therefore a quadratic eigenvalue problem must 

be solved and complex eigenvalues and eigenvectors should be calculated for rotor 

systems. On top of that, the gyroscopic matrix is also frequency-dependent; therefore, 

the eigenvalue problem should be solved repeatedly during a frequency sweep 

analysis. 

 Newton’s Method with Arclength Continuation 

After application of the Receptance Method, equation set one needs to solve can be 

stated as, 

 ( , ) , , ..., , ...,  = = H

T
T T T T

0 1 p Nj 0j j rj jr x r r r  (3.35) 

where 𝜔 is the parameter increased or decreased incrementally to search for solutions 

of 𝐱 at those 𝜔 values. Therefore, it is frequently called a path-following or 

continuation parameter. Newton’s method for such sets can be stated as, 

 ( ) ( )
1

, , 
−

= − k k-1 k-1 k-1x x J x r x  (3.36) 

where 𝐉 is the so-called Jacobian matrix consisting all partial derivatives of 𝐫 with 

respect to the unknown vector, 

 
j

j,k

k


=



r
J

x
 (3.37) 

Still, in nonlinear vibration solutions, phenomena such as bifurcations, turning points, 

etc. occurs. 
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Figure 3.4. Nonlinear FRF for a System with Cubic Stiffness    

As can be seen in Figure 3.4, the solution path cannot be followed by increasing or 

decreasing 𝜔 without knowing the turning points apriori. Moreover, the determinant 

of the Jacobian matrix is very small around the turning points, so it is not possible to 

invert it without numerical difficulties. To follow the path even at the turning points, 

a new parameter called the arclength parameter is introduced into the solution set. This 

arclength parameter, denoted by 𝑠, is the radius of a hypothetical n-dimensional sphere 

centered at the current solution point. The next solution point will be searched on the 

surface of this sphere. 

 ( ) ( )
2 2

1 1 2k k k k s − −− + − =x x  (3.38) 

In this extended equation set the frequency term, 𝜔, is also an unknown. Details for 

the iteration procedure of arclength continuation is not provided here, but can be found 

in [54–57]. 

While solving multi-harmonic problems, harmonics might differ in the order of 

magnitude. Also, the order of magnitude of the frequency might vary from system 
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vibration amplitudes. These differences can make Jacobian closer to an ill-conditioned 

matrix, which will cause inaccuracies during the inversion process. 

To overcome this problem, a process called “Scaling” is used. Many algorithms are 

proposed in the literature to make the condition number of the Jacobian close to unity. 

For this thesis, the algorithm in [58] is used, which follows an iterative process to scale 

the infinity norms of both columns and rows of the Jacobian matrix to unity. 

 Usage of The AFT Method for The Calculation of The Jacobian Matrix 

Most of the time, the calculation of the Jacobian matrix is the most time-consuming 

process during nonlinear equation solving. As shown in (3.37), the Jacobian matrix 

consists partial derivatives of the nonlinear equation set with respect to the unknowns. 

The fastest method to evaluate the Jacobian is to calculate these derivatives 

analytically. Unfortunately, this might not be possible for all nonlinearity types. 

Therefore, numerical differentiation schemes such as forward difference or central 

difference are used. This brings the necessity of many function evaluations and 

extends the solution time. 

AFT method can help the calculation of the Jacobian by applying the chain rule. The 

procedure for a general case is given in [44]. Here, the procedure for the resulting 

equation set after the application of the Receptance Method is presented. The 

derivative of (3.35) respect to a variable 𝑞 is as follows, 
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 (3.39) 

If 𝑞 is an element of the unknown vector 𝐱: 

• the first term will contain one element equal to one, and all the others are zero. 
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• Derivatives of 𝚯𝟏, 𝚯𝟐, 𝚯𝟑 will be zero since they are only the functions of the 

frequency. 

• Derivatives of the external linear forces will be zero. 

Therefore, the remaining terms will be, 

 ( )
( )( , )

q q q




 
= +  N

1

f xr x x
 (3.40) 

When AFT scheme is used, partial derivative for the nonlinear force can be expressed 

such as, 

 ( )( )
( )

Nf
q q

 
=  -1Nf x

T T x  (3.41) 

Here 𝐓 and 𝐓−𝟏 stands for the inverse DFT and DFT operations respectively and 𝑓𝑁() 

is the nonlinear force law such as in (3.23). If the differentiation is moved into the 

parenthesis, one has 

 
( )

q q

   =     
  

-1N
N

f x x
T F T  (3.42) 

Here the matrix 𝐅𝐍′ is written as follows, 

 ( )1 2 1(0), ( ), ( ), ..., ( )
sN N N N Ndiag f f t f t f t −

    =
N

j j j jF  (3.43) 

where 𝑡𝑖 is the 𝑖𝑡ℎ sampled time and, 

 

, ( )

( ) N
N i

i it t x x t

f
f t

q = =

 =  (3.44) 

as in (2.9).  

It should be noted that (3.40)-(3.42) are valid only if 𝑞 ∈ 𝐱 and 𝑓𝑁(𝑡) is only a function 

of 𝑥(𝑡), i.e., not a function of 𝑥̇(𝑡). For other cases, additional terms might appear 

[44].  
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The main benefit is that the procedure is almost independent of the number of 

harmonics used for the solution. So, the number of function evaluations needed for 

the calculation of the Jacobian matrix can be reduced significantly.  

 Stability Analysis 

During an HB analysis, both stable and unstable solution points are obtained. What is 

meant by an unstable solution point is; This point mathematically exists but cannot be 

observed in an experiment. HB does not immediately provide information about 

stability; thus, further investigation is required.  

The logic behind the stability analysis is to add a small perturbation to the obtained 

solution point and observe the time behavior of this perturbed solution. If the small 

perturbation dies as time evolves and the solution point goes back to its original state, 

it can be concluded that the solution point is stable. Otherwise, the point is unstable. 

The stability of the solutions of a periodic system might be checked with Floquet 

Theory, by computing Floquet multipliers or exponents. The two most used methods 

are Monodromy Matrix Method and Hill’s Method. Hill’s Method is especially 

suitable for the Harmonic Balance process since it uses the Fourier Coefficients of the 

obtained solution. With Hill’s Method, Floquet exponents are calculated by the 

quadratic eigenvalue problem (EVP) in (3.45). 

 
2 +  + =2 1Δ λ Δ λ J 0  (3.45) 

where 𝚫𝟏,𝟐 is given as follows,  

 (2 1)2
HN  + + =  

1
M I DΔ  (3.46) 

 (2 1)HN += 
2

Δ I M  (3.47) 

where ⨂ is the Kronecker delta product, 𝛁 is the derivative operator in the frequency 

domain [59], 𝐉 is the Jacobian matrix in (3.37), 𝐈 is the identity matrix of size (2𝑁𝐻 +

1) and 𝐃 is the coefficient of the velocity term in the equation of motion, i.e. (𝐂 + 𝐆) 

in (3.26). 
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The procedure to obtain this EVP from a perturbed solution point is not given here but 

can be found in [60]. Derivative operator in the frequency domain, 𝛁, is expressed as, 

 ( )1, ..., , ...,diag =   
Hp N

0, j j j j j  (3.48) 

where 𝛁𝐩 for 𝑐𝑜𝑠𝑖𝑛𝑒 − 𝑠𝑖𝑛𝑒 representation is, 

0 1

1 0
p

 
 =  

− 
p  (3.49) 

for 𝑠𝑖𝑛𝑒 − 𝑐𝑜𝑠𝑖𝑛𝑒 representation, -1 and 1 terms should be switched. The 

representation of 𝛁 and procedure followed to obtain the Jacobian matrix should be 

consistent. 

 𝚫𝟏,𝟐 matrices in (3.46), for 𝑐𝑜𝑠𝑖𝑛𝑒 − 𝑠𝑖𝑛𝑒 representation, can be written explicitly as, 
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D MD M
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 (3.50) 

 ( )2 , , ...,diag = M M Mj j j  (3.51) 

One should note when Receptance Method is utilized, the Jacobian Matrix obtained is 

not consistent with the formulation in (3.45). One should reformulate the EVP or 

multiply the Jacobian with the Dynamic Stiffness Matrix, (3.12), to overcome the 

problem. 

Floquet exponents or multipliers will also provide information about what kind of 

stability loss has occurred. For a stable solution point, all Floquet multipliers must lie 

within a unit circle in the complex plane. The multipliers may leave the unit circle in 

three ways, and each way addresses a different kind of stability loss [59,61]. 

• When a multiplier goes beyond +1, trans-critical, symmetry-breaking or 

cyclic-fold bifurcations may occur. Cyclic fold bifurcation indicates that the 

system has jumped from a periodic solution point to another periodic solution 

point. 
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• When a multiplier goes beyond -1, period-doubling bifurcation occurs, 

meaning that the period of the solution is doubled. 

• If two complex conjugate multipliers leave the circle, secondary Hopf or 

Neimark-Sacker bifurcation occurs, indicating transition from periodic to 

aperiodic response.   

The relation between a Floquet multiplier and exponent is, 

 
Te =  (3.52) 

where 𝜇 is the multiplier for the corresponding exponent 𝜆 from (3.45) and 𝑇 is the 

solution period. 

One major drawback of Hill’s Method is the quality of the eigenvalues calculated. The 

size of the eigenvalue problem in (3.45) should be ∞ ∙ ∞ with the original formulation 

[60].  However, due to the truncation of harmonics as mentioned in Section 3.1, EVP 

becomes finite, and some eigenvalues become less accurate than the others. The size 

of the EVP in (3.45) is (2𝑁𝐻 + 1) ∙ 𝑁. Floquet Theory needs 𝑁 multipliers to decide 

on stability so eigenvalues should be filtered to choose the most accurate 𝑁 ones from 

the total (2𝑁𝐻 + 1) ∙ 𝑁. 

There are two methods for this elimination in the literature. The first one states that 

eigenvalues with the smallest imaginary part should be selected [59]. The second one 

uses eigenvalues, which has the most “symmetric” eigenvectors [60]. Till today, there 

is no consensus about which method should be followed [44]. 
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CHAPTER 4  

 

4. VERIFICATION OF THE COMPUTER CODE 

 

Computer code developed during the thesis can be divided into three sections. These 

are:  

1. Generation of system matrices with FEM  

2. Nonlinear forcing calculation for roller bearing model 

3. Nonlinear solver which uses HBM with AFT and Newton’s method with 

arclength continuation 

First, system matrices are verified with commercial FE program ABAQUS. Later, the 

second and third sections are verified with the literature data. 

 Verification of FE Modelling 

A shaft model with disks is used for verification. The model can be seen in Figure 4.1 

 

Figure 4.1. ABAQUS Model Used for Verification 

The model consists of 20 equal length B32 quadratic beam elements that use the 

Timoshenko beam theory. The beam section uses the thick-walled formulation. Axial 

and torsional DOFs of the nodes are constrained. At two locations, mass and inertia 

elements are added to the shaft to simulate two disks. The properties of the system are 

given in Table 4.1. 
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Table 4.1. Properties of the Rotor Model Used for FE Verification 

Shaft Inner Radius 5 mm Disk 1 Location 100 mm from left end 

Shaft Outer Radius 10 mm Disk 2 Location 300 mm from left end 

Shaft Length 500 mm Disk Inner Radius 5 mm 

Young’s Modulus 70 GPa Disk Outer Radius 30 mm 

Density 2300 kg/m3 Disk Thickness 5mm 

Poisson’s Ratio 0.3   

 

Model is constrained to the ground at two ends. The first ten natural frequency results 

for a non-rotating shaft are given in Table 4.2. 

Table 4.2. Comparison of Natural Frequencies for a Non-Rotating Shaft 

Mode ABAQUS (Hz) CODE (Hz) % Error 

1st Bending 384.3 383.9 0.12 

1st Bending 384.3 383.9 0.12 

2nd Bending 1032.2 1029.7 0.25 

2nd Bending 1032.2 1029.7 0.25 

3rd Bending 2021.1 2013.9 0.36 

3rd Bending 2021.1 2013.9 0.36 

4th Bending 3164.8 3149.9 0.47 

4th Bending 3164.8 3149.9 0.47 

5th Bending 4964.8 4945.7 0.38 

5th Bending 4964.8 4945.7 0.38 

 

Later, to include and verify gyroscopic effects a normalized Campbell diagram is 

drawn and compared for the second bending mode. From Figure 4.2, it can be 

observed that curves are parallel to each other, meaning that gyroscopic effects are 

modeled correctly. 
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Figure 4.2. Comparison of The Normalized Campbell Diagrams for 2nd Bending Mode 

 Verification of Roller Bearing Modelling 

To verify the lumped parameter roller bearing model explained in Section 2.2.1, a 

model consisting of a single bearing is chosen from the literature [61]. This paper 

investigates primary parametric resonances of a lumped-parameter ball bearing. A 

sketch of the model is given in Figure 4.3 and the equation of motion for the bearing 

can be found in (4.1). 

 

Figure 4.3. Bearing Model in [61] 
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 (4.1) 

Where, 𝐹𝑥 and 𝐹𝑦 stands for nonlinear bearing forces and 𝑊 is the weight of the 

bearing. The bearing type used for the analysis is JIS6306 and all parameters can be 

found in Table 4.3. A comparison of results for the bearing clearance 𝛿0 = 2 𝜇𝑚 is 

given in Figure 4.4. 

 

Figure 4.4. Comparison of Results for Vertical (Black) and Horizontal (Red) Directions for Varying Compliance 

Vibrations (𝛿0 = 2 𝜇𝑚) 

𝑇𝑉𝐶 −2

𝑇𝑉𝐶 −1
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Vibrations having the same period with varying compliance are denoted with TVC-1 

whereas TVC-2 stands for oscillations having a period twice of the VC. TVC-1 solutions 

are obtained by building the Fourier series on VC frequency. On the other hand, to 

obtain TVC-2 results, base frequency for the Fourier series is VC/2. It is seen that, same 

FRFs are obtained for both cases. 

In Figure 4.4, dashed lines indicate unstable periodic solutions where solid lines are 

for stable periodic motion. Purple FRFs in literature data and purple stars in the upper 

plot are obtained with Runge-Kutta integrations. 

Table 4.3. Parameters for JIS6306 

𝐾𝐻 13.34E9 N/m3/2 𝐷𝑏 11.9062 mm 

𝑁𝑏 8 𝐷𝑝 52 mm 
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CHAPTER 5  

 

5. CASE STUDIES 

 Effect of Asymmetry on Parametric Resonance 

For this case study, a Jeffcott rotor geometry supported by two nonlinear ball bearings 

(JIS6306) is chosen. The rotor is parametrically excited, i.e., only external forcing is 

the weight of the rotor. Bearing internal clearance, 2𝛿0, is taken as 10 𝜇𝑚. Parametric 

resonances are investigated by shifting disk’s location closer to one of the bearings. 

 

Figure 5.1. Sketch of the System for Case Study 1 

Rotor geometry is shown in Figure 5.1 

Table 5.1. Position of the Disk for the Configurations for Case Study 1 

Configuration L1 (mm) L2 (mm) 

C1 (Jeffcott) 300 300 

C2 214.3 385.7 

 

Table 5.2. Parameters for the Shaft-Disk System for Case Study 1 

𝐸 210 GPa 𝜈 0.3 

𝜌 7800 kg/m3 𝜂 0.01 

𝑟𝑖 7.5 mm 𝑟𝑜 15 mm 

𝐿 600 mm 𝐿𝑏 85.7 mm 

𝑟𝐷 160 mm 𝑡𝐷 20 mm 

 

𝐿𝑏 

𝐿1 𝐿2 

𝑔 

𝐿𝑏 

Bearing-1 Bearing-2 

𝑥 

𝑦 

𝑧 
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Harmonics used for the solution are 0, 0.5 VC, VC, 2VC, 3VC and 4VC, which are 

observed for a balanced rotor by Fukata [9] and Tiwari [16]. Fourier series is built on 

0.5VC base frequency as shown in (5.1.) 

 ( )
1

cos sin
2 2

H VC VCN

p
t p t p t

 
=

    
= +   +      

    
0 c,p s,p

x x x x  (5.1) 

 

Figure 5.2. Total Responses for C1 (Upper) and C2 Configurations 
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Figure 5.3. Acceleration FRFs for C1 (Upper) and C2 Configurations 

As expected, Bearing-1 and 2 have the complete same responses for Jeffcott (C1) 

configuration so, only Bearing-1 response is plotted in Figures 5.2 and 5.3 for C1. 

In Figure 5.2, it can be observed that system got stiffer as disk is moved closer to 

Bearing-1. Also, Bearing-1 resonances appeared around 3000 and 4500 rpm.  
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Figure 5.4. Individual Harmonic Responses for Bearing 1, C1 Top, C2 Bottom 

 

Figure 5.5. Bearing-1 Reaction Forces for C2, 𝛺 = 4389 RPM 



 

 

 

41 

 

Individual harmonic responses for Bearing-1 are provided in Figure 5.4 for C1, and 

C2. It can be observed that 2VC vibrations occurred as system became asymmetric. 

Bearing reaction forces at the resonant frequency close to 4500 rpm is given in Figure 

5.5. Finally, rotor orbits are provided for resonances at 2030 and 2420 rpm for C2 in 

Figure 5.6. Here black and red circle denotes Bearings 1 and 2 respectively, where 

blue circle is for the disk. 

 

Figure 5.6. Rotor Orbits for C2 at 𝛺 = 2030 RPM Top and 𝛺 = 2420 RPM Bottom 
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 Unbalance Response Under Multiple Excitation 

For rotors carrying more than one disks, multiple unbalance excitation is always a 

possibility. Under such excitations, the relative angle between the unbalance forces 

may have a significant effect on the system response. For this case study, a rotor with 

two disks and supported by two nonlinear ball bearings is studied. A sketch of the 

system is given in Figure 5.7.

 

Figure 5.7. Sketch of the System for Case Study 2 

 

 

Figure 5.8. Relative Unbalance Angle, 𝜓 

Three relative angles considered are, 0𝑜 , 90𝑜 and 180𝑜. A sketch of concept of relative 

unbalance angle, 𝜓, is given in Figure 5.8. 

Ball bearing used for this case is SKF6002. Parameters of the bearing are given in 

Table 5.3. 

𝑙1 𝑙2 𝑙1 

𝑔 

𝑙2 

Bearing-1 Bearing-2 

Disk-1 Disk-2 

𝑥 

𝑧 

𝑦 

Disk-1 

Front View 

Disk-2 

Front View 

𝐹𝑢2 𝐹𝑢1 
𝜃1 

𝜃2 

𝜓 

𝜃2 
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Table 5.3. Parameters for SKF6002 

𝐾𝐻 7.055E9 N/m3/2 𝐷𝑏 4.762 mm 

𝑁𝑏 9 𝐷𝑝 24.35 mm 

 

The ratio of cage speed to shaft speed defined by (2.3) for SKF6002 is 0.4. This allows 

to include harmonics coming from both rotor and the bearings into the solution. This 

ratio was 0.385 for JIS6306. Bearing clearance 2𝛿0 is chosen as 7 𝜇𝑚, which was 

among the values provided by Tiwari and R&D Department of SKF for clearance class 

C2 [17].  

Parameters for the shaft-disk system is given in Table 5.4., 

Table 5.4. Parameters for the Shaft-Disk System for Case Study 2 

𝐸 210 GPa 𝜈 0.3 

𝜌 7800 kg/m3 𝜂 0.01 

𝑟𝑖 0 mm 𝑟𝑜 7.5 mm 

𝐿 600 mm 𝑙1 85.7 mm 

𝑟𝐷 120 mm 𝑙2 128.6 mm 

𝑡𝐷 20 mm   

 

Fourier series for the solution, 

 ( ) ( ) ( )( )1
cos sin

HN

p
t p Ω t p Ω t

=
= +   +  0 c,p s,px x x x  (5.2) 

Where considered harmonics are 0, 0.5X, 1X, 2X, VC – 1X, 3X and VC + 1X, which 

have been observed experimentally [17]. Here nX means, n times the rotor sped 𝛺. 

Sinou [32] has investigated unbalance response of a similar rotor structure for 2 and 4 

grams of unbalance masses. For this study, an unbalance mass of 8 grams is 

considered. Unbalance masses are placed on the edge of the disks. 

Unbalance response for three phase angles are given in Figure 5.9 and acceleration 

FRFs are given in Figure 5.10. 
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Figure 5.9. Total FRFs, Top to Bottom 𝜓 = 0,90,180 
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Figure 5.10. Total Acceleration FRFs, Top to Bottom 𝜓 = 0,90,180 
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When peak points in Figure 5.9. are investigated one can notice a slight softening as 

𝜓 increases. An anti-nodal point exists for Bearing-1 for 𝜓 = 0𝑜 between 2000-3000 

rpm. A similar behavior is observed for Bearing-2 for 𝜓 = 180𝑜 between 3000-4000 

rpm. Bearing-1 has a complicated response region for 𝜓 = 180𝑜 starting from 7000 

rpm and continues still after 10000 rpm.  

Rotor orbits for the resonances about 2000 and 5000 rpm are given in Figure 5.11. 

Response of each individual harmonic for both bearings are provided in Figures 5.12-

5.13. 

 

Figure 5.11. Rotor Orbits for the Resonances Around 2000 and 5000 RPM, 𝜓 = 180 
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Figure 5.12. Individual Harmonics for Bearing-1, Top to Bottom 𝜓 = 0,90,180 
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Figure 5.13. Individual Harmonics for Bearing-2, Top to Bottom 𝜓 = 0,90,180 
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It can be seen from Figure 5.12 that amplitude of all harmonics tend to decrease for 

𝜓 = 0𝑜 between 2000-3000 rpm. 2X and 3X harmonics seem to have the largest 

amplitudes. Same conclusions can be made for 𝜓 = 180𝑜 between 3000-4000 rpm. 

Vertical and horizontal reaction forces of the bearings are given in Figures 5.14-5.16. 

 

Figure 5.14. Bearing-1 Reaction Forces, 𝜓 = 0, 𝛺 = 2290 RPM 

 

Figure 5.15. Bearing-2 Reaction Forces, 𝜓 = 180, 𝛺 = 3537 RPM 
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Figure 5.16. Bearing-1 Reaction Forces, 𝜓 = 180, 𝛺 = 7280 RPM
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CHAPTER 6  

 

6. CONCLUSION 

Roller Element Bearings will continue to be at the heart of the aerospace industry. 

Their nonlinear behavior has been a study area for almost fifty years. However, there 

is much to discover, especially for fast and accurate methods to help the design of 

complex rotor systems with these bearings. This thesis aims the development of a 

computer code that can model a complex rotor structure supported by any number of 

ball bearings and obtain solutions in the frequency domain. 

For this reason, the Finite Element Method (FEM) is chosen to model different rotor 

geometries fast and accurately. Lumped parameter bearing model, which is widely 

used in the literature for bearing behavior investigation, is utilized for the bearings. 

Nonlinear vibration analysis in the frequency domain is accomplished by the 

Harmonic Balance Method. The resulting set of nonlinear algebraic equation set is 

then solved by Newton’s Method with arclength continuation, to obtain a whole 

dynamic picture of the structure. Since FEM results in a large number of unknowns 

and few of them are nonlinear, the Receptance Method is utilized to decrease the 

number of nonlinear equations to be solved. REBs are generic nonlinear elements that 

have both clearance and Hertzian contact. Therefore, the Alternating Frequency-Time 

scheme is used to obtain Fourier coefficients of the unknown nonlinear forces and help 

the calculation of the Jacobian matrix. The stability of the solutions is checked with 

Hill’s Method. FEM part of the computer code is tested with commercial FEM 

program ABAQUS. REB model is verified from the literature [61].  

In Chapter 5, two case studies have been performed with the developed code. For the 

first case, parametric resonances of a rotor with two nonlinear ball bearings and one 

balanced disk have been investigated. Evaluation of the resonances and contribution 

of different harmonics are examined, as disk location is altered. For the second case, 

a similar system to the previous one but this time with two disks, under multiple 
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unbalance excitations have been studied. The nonlinear response is calculated for 

different relative unbalance angles. Orbit plots and bearing reaction forces are 

presented for both cases, which both can be taken as an output from the code. 
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