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ABSTRACT 

 

NUMERICAL MODELLING OF REINFORCED CONCRETE PRESSURE 

TUNNELS USING THE OVERLAPPING LATTICE METHOD 

 

Işık, Gökberk 

Master of Science, Earthquake Studies 

Supervisor: Prof. Dr. Kağan Tuncay 

Co-Supervisor: Prof. Dr. Yalın Arıcı 

 

September 2019, 98 pages 

 

Pressure tunnels transmit water from the reservoir to the turbines of hydroelectric 

power plants. The computational studies conducted to understand the behavior and 

shed light on the design guides of pressure tunnels were scarcely validated with 

experimental data as experimental work on pressure tunnels is very limited. Recent 

experimental studies on reinforced concrete pressure tunnels carried out at the Middle 

East Technical University (METU), for the first time, allow computational models to 

be validated with experimental data. Instead of the conventional approach of using 

finite elements with smeared and discrete crack models, in this study, an Overlapping 

Lattice Model (OLM) was used to simulate the nonlinear behavior of the reinforced 

concrete tunnel as well as the surrounding rock body. First, parameters used in the 

OLM were calibrated using the fracture energy, the tensile strength and the elasticity 

modulus of concrete. A normalization rule was developed to make sure that energy 

dissipation is independent of lattice length scale. Then, the quasi-static tunnel 

experiments performed at METU were simulated and internal pressure-tunnel 

expansion curves as well as crack patterns obtained in the numerical studies were 

compared with the experimental observations. OLM predictions are shown to be in 

agreement with the experimental data. Calibrated model was then applied to study 
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dynamic crack initiation and propagation in pressure tunnels. In line with the 

experimental observations and numerical inferences, in-situ stress conditions in the 

surrounding rock body play an important role on the behavior of the tunnel lining. 

Low confining stress or lack of sufficient contact between tunnel lining and 

surrounding rock body are possible causes of the cracks observed in pressure tunnels. 

As a future research opportunity, OLM developed in the context of this research can 

be used to evaluate the seismic behavior of tunnels. 

 

 

Keywords: Pressure Tunnel, Reinforced Concrete, Simulation, Lattice Model, 

Fracture Mechanics  
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ÖZ 

 

İÇ BASINÇLI BETONARME TÜNELLERİN ÖRTÜŞEN KAFES MODELİ 

KULLANILARAK SAYISAL MODELLENMESİ 

 

Işık, Gökberk 

Yüksek Lisans, Deprem Çalışmaları 

Tez Danışmanı: Prof. Dr. Kağan Tuncay 

Ortak Tez Danışmanı: Prof. Dr. Yalın Arıcı 

 

Eylül 2019, 98 sayfa 

 

Basınçlı enerji tünelleri, hidroelektrik santrallerde suyu rezervuardan türbinlere 

iletirler. Bu tünellerin davranışını anlamak ve tasarım kılavuzları oluşturmak için 

yapılan hesaplama çalışmaları, deneysel çalışmaların sınırlı olması nedeniyle güçlükle 

doğrulanabilmiştir. Orta Doğu Teknik Üniversitesinde (ODTÜ) betonarme enerji 

tünelleri üzerine yapılan deneysel son çalışmalar, ilk kez hesaplama modellerinin 

deneysel verilerle doğrulanmasına imkân sağlamıştır. Yayılı ve ayrık çatlak 

modelleriyle sonlu elemanların kullanılmasına yönelik geleneksel yaklaşımlar yerine, 

bu çalışmada, betonarme tünelin ve çevresindeki kayanın doğrusal olmayan 

davranışını simüle etmek amacıyla Örtüşen Kafes Metodu - OLM (Overlapping 

Lattice Method) kullanılmıştır. İlk olarak, OLM'de kullanılan parametreler çatlak 

enerjisi, çekme dayanımı ve betonun elastisite modülü kullanılarak kalibre edilmiştir. 

Enerji dağılımının eleman uzunluğu ölçeğinden bağımsız olmasını sağlamak için bir 

normalleştirme kuralı geliştirilmiştir. Daha sonra ODTÜ'de yapılan yarı-statik tünel 

deneyleri simüle edilmiş, iç basınç-tünel açılma eğrilerinin yanı sıra sayısal 

çalışmalarda elde edilen çatlak dağılımları, deneysel gözlemlerle karşılaştırılmış ve 

OLM tahminlerinin deneysel verilerle uyumlu olduğu gösterilmiştir. Son olarak 

kalibre edilmiş model, basınçlı tünellerde dinamik etkiler altında çatlak oluşumlarını 
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ve yayılımlarını incelemek amacıyla kullanılmıştır. Deneysel gözlemler ve sayısal 

çıkarımlar doğrultusunda, tünel etrafındaki kayanın yerinde gerilme koşullarının, 

tünel kaplamasının davranışı üzerinde önemli bir rol oynadığı ortaya konmuştur. 

Tünel kaplaması ile etrafındaki kayanın arasında yeterli temasın olmaması ya da 

kayanın düşük saha gerilimlerine sahip olması, basınç tünellerinde gözlenen 

çatlakların olası nedenleri olarak gösterilmiştir. Bu çalışma kapsamında geliştirilen 

OLM’nin, tünellerin sismik davranışını değerlendirmek için de kullanılabileceği 

görülmüştür 

 

Anahtar Kelimeler: Basınçlı Tüneller, Betonarme, Simülasyon, Kafes Modelleri, 

Çatlama Mekaniği 
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CHAPTER 1  

 

1. INTRODUCTION 

 

1.1. General 

Pressure tunnels, which are key components of hydroelectric energy systems, are 

subjected to high internal pressure due to hydraulic head difference between tunnel 

interior and exterior. Unlike conventional tunnels constructed as parts of 

transportation systems, internal pressure on the walls of the tunnel is the primary load 

for the tunnel lining. Internal pressure increases suddenly during filling and leads to 

tensile stresses on tunnel lining in the hoop direction. Properties of rock formations 

surrounding pressure tunnels and in-situ stresses are among the key factors in the 

design of tunnel lining. In this study, laboratory scale pressure tunnel experiments 

were computationally studied to enhance our understanding of quasi-static pressure 

tunnel behavior. The validated simulation tool was then used to get insight into the 

dynamic behavior of pressure tunnels. 

1.2. Organization of Thesis 

This thesis is divided into five chapters. First chapter is presented as an overview and 

includes the motivation of the study. 

Second chapter provides a brief introduction of literature including previously studied 

pressure tunnels and a brief background on computational modelling of nonlinear 

behavior of reinforced concrete members. 

The details of the simulation tool Overlapping Lattice Model (OLM) and the 

theoretical and numerical background of the model are explained in Chapter 3. 

Validation studies are also presented in this chapter. 
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In Chapter 4, the brief information about pressure tunnel experiments conducted at the 

Structural Laboratory of the Middle East Technical University are given. After 

providing numerical setup of the OLM simulations, quasi-static results are compared 

with the experimental data. Then, validated OLM is used to evaluate the dynamic 

behavior of the tunnel. 

Chapter 5 summarizes the numerical findings for the pressure tunnels and provides 

recommendations for future work. 

1.3. Objectives 

This study aims to apply the OLM to predict the nonlinear behavior of reinforced and 

fiber-reinforced concrete tunnel linings for the first time in the literature. The emphasis 

is on the prediction of the nature of dynamic crack initiation and propagation. The 

major objectives of the study are listed as follows: 

• Calibrate the OLM parameters for concrete and fiber-reinforced concrete 

• Validate the OLM for crack initiation and propagation with experimental data  

• Investigate the influence of the surrounding rock properties and in-situ stress 

on the quasi-static and dynamic behavior of reinforced concrete and synthetic 

fiber-reinforced concrete lining performance 

The development of such a numerical model, calibrated with experimental results, 

which was obtained recently at METU, is the main outcome of this study. Based on 

the findings of this study, design and production stages of the pressure tunnel can be 

evaluated in depth. It is hoped that the research effort spent in this thesis will lead to 

novel design guides to assist practicing engineers. 
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CHAPTER 2  

 

2. LITERATURE REVIEW 

 

2.1. Pressure Tunnels 

Dams are generally constructed to meet more than one purpose. These purposes may 

be irrigation, water-supply, flood control, food-supply (fishing) and energy 

production. With the development of hydropower projects to convert the energy of 

falling water to electricity, energy tunnels (or pressure tunnels) that are constructed to 

transmit water in reservoirs through turbines have become one of the most important 

concerns in such power plants. In general, requirements of these tunnels are quite 

simple: to convey water safely through to energy turbines without excessive water loss 

and residual materials, to transmit internal pressure to the surrounding rock body, and 

to remain operational for the life of the project without major maintenance costs. In 

Turkey, energy tunnels completed in recent years include Arkun (13655 m), Kandil 

(9513 m), Tefen (3200 m), Topçam (7460 m), Dim (4221 m) and Akkay (12430 m) 

energy tunnels. A large number of energy tunnels are also under construction as of 

today. Internal pressure in these tunnels are in the range of 0.3 to 3 MPa. 

USBR Design Standard (2014) classifies the range of unlined pressure tunnels 

maximum velocities from 1.1 m/s to 2.7 m/s depending on whether paved inverts are 

built or not, and classifies concrete-lined pressure tunnels with a usual flow velocity 

of about 3.0 m/s and a maximum velocity of 6.1 m/s. Although, in every structural 

design, maximum flow velocity is limited, smooth water flow does not cause damage 

in the tunnel lining if a good quality of concrete surface is available. Sudden changes 

in tunnel cross section that may cause velocity jumps and pressure drops, result in 

formation of vapors bubbles (cavitation) and extensive erosion of rock or lining layers. 

Cavitation may also occur when rapid flowing water is in contact with rough surfaces. 
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In short, design flow velocity selection depends on hydraulic head loss calculations 

due to friction and erosion of tunnel lining. 

Unlike dry tunnels, the basic structural design consideration in these tunnels is the 

internal pressure applied to the interior walls of the tunnel. This pressure increases 

with the filling of the tunnel and leads to tension in the tunnel lining. As the internal 

pressure may be as high as 2-3 MPa, the tensile stress exceeds the tensile strength of 

concrete resulting in cracks. This may cause host material fallout, infiltration, 

exfiltration of water and even cavitation. Therefore, performance criteria are required 

for the internal pressure tunnels.  

In the tunnel design, it is generally assumed that the lining carries at least 30% of the 

internal pressure load (Sinha, 1989). In order to make this assumption, it is necessary 

to have sufficient tunnel lining-rock contact. Pressure tunnels are surrounded by rock 

formations and in-situ stresses are key factors affecting the lining behavior. In-situ 

stress conditions are generally assumed from overburden rock layers, since it is very 

difficult to obtain reliable measurements from deep boreholes or in-situ data using 

hydraulic fracturing tests, jacking tests, etc. For this reason, depending on the quality 

of rock mass, a reinforced lining can be preferred to provide crack control and limit 

water outflow from the tunnel. As described in Palmström and Stille (2015), the most 

preferable rock masses are fair and good quality crystalline, unweathered rocks such 

as granite, gneiss, basalt and quartzite. Although rocks are divided into three major 

classes according to their formation, there are different approaches to classify ultimate 

strength. In the Geological Strength Index (GSI) charts based on Hoek’s descriptive 

catalogues (Hoek et al., 1998), classification depends on observations and visual 

impressions of the rock mass. This grading procedure requires qualified and 

experienced geologists. However, it is not precise and it is used as an initial estimate 

for the classification of rocks. In addition, rock quality can be investigated with 

modulus of deformation values, which is the ratio of stress to the corresponding strain 

including elastic and inelastic parts. It can be computed using the Rock Quality 

Designation method (RQD) by the degree of fracture in a rock mass (Coon and Merritt, 
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1969) or the Rock Mass Rating (RMR) (Bieniawski, 1978) considering six different 

parameters which are uniaxial compressive strength, RQD, spacing discontinuities, 

condition of discontinuities, orientation of discontinuities and groundwater condition. 

The sum of assigned values of these six parameters give RMR value which ranges 

between 0 and 100. 

Tunnel materials that are recommended according to the magnitude of internal 

pressure are given in Table 1. Depending on the selection of tunnel lining material, 

pressure tunnels can be designed as impermeable, semi-permeable and permeable. 

Material used for the tunnel lining depends on the level of water pressure. Reinforced 

concrete linings are recommended for pressure levels up to 0.70 MPa (Table 1) 

excluding the dynamic amplification factor. Reinforced concrete tunnel linings are 

considered as semi-permeable. If the radius/thickness ratio is taken to be 4-5 (a typical 

value), with the dynamic amplification factor, this leads to tensile stresses in the order 

of 2-3 MPa in the tunnel lining. When horse-shoe shaped tunnel geometry is chosen, 

due to the stress concentration at the bottom corners, this value is expected to be 

exceeded further. Even for a circular tunnel geometry, this level of tensile stress is 

sufficient to cause cracking in concrete which is then infiltrated by water potentially 

further increasing crack widths. 

Table 1. Support systems according to internal pressure [Sinha, 1989] 

 

 

 

 

As seen in Table 1, it is suggested that impermeable linings (steel oriented) should be 

selected if internal pressure higher than 1.5 MPa. In Turkey, due to the economic 

reasons and constraints on construction time, most tunnels in energy systems have 

been constructed using shotcrete (wherein said shotcrete is acceptable as a support 

having a thickness greater than 75 mm, is not the one used as a protective coating) and 

Support System Water Pressure 

Rock bolts, Shotcrete up to 0.30 MPa 

Concrete lining 0.30 - 0.70 MPa 

Steel sets 0.70 - 1.50 MPa 

Steel lining More than 1.50 MPa 
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reinforced / non-reinforced concrete. Unlined pressure tunnels were even preferred. 

Although, for instance in Norway, there are more than 80 safely operating unlined, 

high head pressure shafts and tunnels, such designs without adequate geo-

investigations and rock stress measurements may result in catastrophic consequences 

(Palmstrom, 1987). Different design solutions should be used for this type of 

applications like headrace tunnels to stabilize the pressure level until a certain point 

or pipelines to deal with high pressure in short distances (Figure 1). 

Regardless of the tunnel type selection, in many cases, first filling, emptying and later 

refilling procedures should be done slowly to avoid permanent damages in the tunnel. 

 

Figure 1. Different design solutions for pressure tunnels and shafts [Palmstrom, 1987] 

Since underground tunnel shapes are influenced by their intended usage, hydraulic 

decisions and construction methods, circular and modified horseshoe shape 

geometries are the common ones. Circular tunnels are the most suitable to withstand 

internal and external forces since they do not have any stress concentration at the 

bottom corners and have better stress transfer to the surrounding rock body. In Turkey, 
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pressure tunnels are mostly horseshoe-shaped due to the fact that the flat floor gives 

enough working space in drilling and blasting applications. A comparative study 

evaluating the effects of different tunnel geometries on the behavior by Ng, Wang, 

and Boonyarak (2016) revealed that a tunnel with reverse horseshoe geometry 

experiences approximately 20% more vertical elongation than a tunnel with regular 

circular geometry. With a larger vertical expansion, more bending strains at the flat 

invert of the horse-shoe shaped tunnel develop as expected. 

The seismic risk of underground structures increases closer to active fault zones with 

the increase in ground accelerations. Design loads of underground structures are 

calculated in estimating deformations and strains imposed on the structure by the 

surrounding ground depending on seismicity level. Therefore, the main variable 

affecting design is the free field movement of the ground and its interaction with the 

structure. This approach is admissible for relatively low energy motions and the 

structures constructed in relatively stiff mediums (Hashash et al., 2001). In the study 

of Dowding and Rozen (1978), rock-tunnel responses to earthquake motions were 

compared with selected ground motions (ground accelerations and peak ground 

velocities, PGAs and PGVs) for 71 cases to determine damage levels. It is concluded 

that moderate to heavy damages will occur in tunnels only if the PGAs are larger than 

0.5 g (gravitational acceleration). In USBR (2014), it is reported that for PGA values 

lower than 0.19 g, there were no observable damage in the existing tunnels located in 

the stiff rock bodies. It is further indicated by Jaramillo (2017) that tunnels in rock are 

able to withstand moderate earthquake events.  

2.1.1. Early Computational Studies 

The stress distribution due to a point load on a two or three dimensional medium was 

given by the well-known formulae of Boussinesq (1877). It was based on the 

assumption of a linear–elastic, homogeneous, isotropic material behavior. 

Boussinesq’s solution was integrated into the preliminary studies to estimate the stress 

distribution in tunnel lining design by Biot (1935) and Westergaard (1938). In the 
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proposed tunnel analysis, the radial displacement of the tunnel was determined under 

internal pressure and the required support was calculated. 

In the 1980s, a number of studies were conducted assuming permeable or semi-

permeable tunnel linings (Schlesis, 1986; Fernández, 1994; Schleiss, 1997), 

Hendron’s potential failure modes of pressure tunnels have been presented as 

excessive leakage, excessive pore-water pressures in rock mass, collapse of openings 

and mechanical failure of linings (as cited in Fernández, 1994). Considering the 

potential failure modes, excessive flow out of the lining appear to be a major reason 

for the stability and strength loss of the tunnel. The water amount flowing out of 

cracked concrete changes the material behavior of concrete lining. Even the gaps in 

millimeters that are neglected in practice are effective in the propagation and 

distribution of cracks. Therefore, one of the most important parameters in the design 

of semi-permeable pressure tunnels is the crack width. Hydraulic and mechanical 

interaction between lining and rock boundaries have to be taken into account to 

accurately calculate the outflow rate. Vast majority of past failures observed in 

pressure tunnels were due to water flow through lining and loss of rock integrity. 

Brekke and Ripley (1993) reported that 59% of pressure tunnels failed due to 

excessive water loss whereas 22% of them failed due to the loss of rock integrity 

caused possibly because of excessive water loss. Hence, width and distribution of 

cracks are particularly important parameters in the design of concrete tunnel linings. 

Olumide et al. (2012) presented a seepage flow analysis, and found that the leaked-

out water could be in accepted range in practice even though with higher internal water 

pressure if the crack widths are kept below a certain level. However, there is no design 

guide to determine the crack width limit for these energy tunnels. In today's existing 

regulations, the crack width limit is reported to be around 0.3 mm. TS-500 (2000) 

structure design regulation in force in Turkey gives the service crack width for humid 

conditions in the order of  0.2 - 0.3 mm, while ASTM C-76-15 (2009) (Standard 

Specification for Reinforced Concrete Culvert, Storm Drain, and Sewer Pipe) gives 
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the crack limit for pressurized reinforced concrete pipes as 0.25 mm, since cracks 

widths around 0.25 mm allow small silt and sand particles into the tunnel. 

Until 2000s, there were very few studies on tunnel behavior and collapse risks due to 

developing cracks. They were based on estimations of the water pressure level in 

surrounding rock body and the crack widths evaluated with simple analytical models. 

However, in these studies, the objective was not to determine how and why the 

concrete lining is cracked. They focused on the risk of pieces falling into the tunnel 

from cracks (eg Chung et al., 2001). In the studies on the calculation of the stresses in 

the tunnel lining with finite element models, it is not possible to accurately predict the 

location or width of cracks since the concrete lining is modelled as a shell element 

(Olumide and Marence, 2012). Common deficiencies in these studies are that the 

numerical results were not validated with experimental results. 

Even in properly designed and constructed pressure tunnels, due to shrinkage of 

concrete and cold joints caused by interruptions of the casting process, there might be 

a gap between the lining and rock body. Therefore, surrounding rock body does not 

provide adequate support to the bearing of the internal pressure. Sudden filling 

applications lead water to seep out from preformed gaps. On the other hand, 

filling/emptying the tunnel slowly allows pressure equalization and this limits the 

deformation of lining and rock body. Apart from this reason, to prevent the tunnel 

form permanent damages, filling rate is determined depending on erosion potential, 

cavitation risk, safe air escape velocity limits and pressure drops. Maximum filling 

rate is recommended as 15% of the design flow rate if air valves are used (USBR, 

2014). In short, hydro-mechanical coupling of stress redistributions in watering and 

dewatering stages of the tunnel and seepage calculations become determining factors 

in tunnel ultimate strength (Olumide, 2013). 

As mentioned earlier, there are very few studies in the literature that investigate the 

structural behavior of pressure tunnel linings with overburden stress from rock body 

(in-situ stress). Tuncay et al. (2016) stated that magnitude of expansion of the tunnel 
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lining that causes concrete cracks does not only depend on thickness and stiffness of 

the lining, but also depends on strength and stiffness of the surrounded rock formation. 

In order to estimate the effects of geological strength indexes (GSI) of rock formation, 

overburden heights and lateral to axial stress ratios (K0) on performance of the horse-

shoe shaped concrete tunnel lining, twelve nonlinear finite element analysis have been 

conducted in the first stage of the study. Based on these simulations, dynamic fracture 

propagation was estimated via peridynamic analysis and finally an equation was 

derived showing significant increase in crack width and number as the confinement 

effects of the rock body decrease. 

 

2.2. Concrete Fracture Mechanics 

In Egyptian and later Roman eras, first cementitious material was produced with 

combination of lime mortars and natural pozzolans to overcome the weakness of stone 

and brick materials in tension. Over the years, these concrete ingredients were 

improved upon, combined with other materials and chemical admixtures, and 

ultimately morphed into the modern portland cement concrete. After the use of steel 

reinforcement to overcome the tensile strength deficiency, concrete has become the 

second most used material in the world following water. About 10 billion tons of 

concrete is produced ever year. In today’s world, concrete has many types varying in 

composition, fabrication and site applications. Normal strength concrete compressive 

and tensile strengths may range from 20 to 60 MPa and 1.5 to 4.5 MPa, respectively. 

Considering its composite mixture, concrete is a typical example of a random 

heterogeneous material consisting of fine and coarse aggregates which have a wide 

range of size from a few millimeters to 30-40 millimeters in diameter. This random 

heterogeneous nature as a consequence of complex microstructure leads to 

complicated mechanical behavior. This behavior was first attempted to be introduced 

with linear constitutive models. Griffith (1921) developed the fundamental concepts 

of linear fracture mechanics. It is stated that fracture occurs when a reduction in 
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potential energy due to crack propagation becomes greater than the increase in surface 

energy due to new surfaces. Irwin (1958) further associated fracture theory with the 

release rate of strain energy and combined it with Weibull’s (1939) statistical 

approach.  Fracture parameters were introduced in the mid 1960's in the models of 

Wells (1961) for metals and were altered for a comparative model for concrete by Jenq 

and Shah (1985). Starting from the 1960s, a large number of studies have been carried 

out to shed light on this nonlinear behavior investigating development and propagation 

of cracks with multi-linear softening material models.  

Since the classical linear elastic fracture approach was insufficient to predict 

progressive failures,  cohesive crack models were initiated in the works of Dugdale 

(1960) and Barenblatt (1959) evaluating stress distribution across cracks in polymer, 

metal and ceramic types of materials. In the models, it is assumed that the material 

behaves in a linear-elastic manner until the tensile stress reaches its strength and crack 

initiates afterwards. With the inspiration of these softening models, fracture energy 

concept was introduced further for concrete by Hillerborg et al. (1976). It is defined 

with the GF denotation as the area under the complete softening stress-displacement 

curve. GF was further linked to the area under the initial tangent of the diagram by 

finding GF ≈ 2.5Gf from the test results (Guinea, Planas, and Elices, 1992). During the 

crack propagation, this formulation was consistent with the cohesive crack models 

with fixed softening laws. 

Fracture process zone, a region of damage around crack tip, (FPZ) was proposed to 

overcome crack tip shielding mechanism due to heterogeneous aggregate resistance 

and to overcome crack propagation accelerating mechanism due to void formation 

(Bazant and Oh, 1983). Length of fracture process zone which is generally considered 

as a material property was evaluated over three main behaviors. 1- Negligible size of 

FPZ in which the behavior approaches to linear elastic fracture mechanics, 2- 

Significant size of FPZ in which the behavior reaches to ultimate strength or yielding 

point, 3-Intermediate size of FPZ in which the behavior is in transitional between 

strength and linear elastic fracture. Size effect law is incorporated with intermediate 
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size of FPZ which is determined by the size of the inhomogeneity in the 

microstructure, such as the maximum grain size in rock or the maximum aggregate 

size in concrete. Rao and Prasad (2001) reported that the size of FPZ increases with 

coarse aggregate size up to 16 mm, and thereafter it starts to decrease. Cement ratio is 

also another concrete-mix property which effects the FPZ size, thus it effects the crack 

branching. 

 

2.2.1. Finite Element-Based Models 

With the development of the finite element method for finding numerical solutions to 

boundary value problems, discrete crack models and two types of smeared crack 

models came to the forefront to predict crack formation; rotating crack models 

(Collins and Vecchio, 1986; Rots, 1988) and fixed cracking models (Willam et al., 

1987). As the names imply, while the orientation of the crack can change in the 

rotating crack models, in the fixed crack models it remains constant throughout 

process. The main disadvantage of finite element-based methods which are developed 

based on the continuity principle is that the crack cannot be represented in the model 

in a realistic manner by operating with average strains over a measurement length 

instead of the actual crack openings. On the other hand, in discrete crack models (Ngo 

and Scordelis, 1967), crack growth is implemented by nodal split (when the nodal 

force exceed a tensile strength limit, the node split into two nodes and procedure is 

repeated in every step). Similar fracture models were developed by using contact 

elements and springs between discrete finite elements (Ingraffea and Saouma, 1985; 

Kwak and Filippou, 1990; Rots and Blaauwendraad, 1989). Despite the advantages of 

the modeling of cracks through discrete elements, as the location of the cracks is not 

predetermined, the numerical mesh has to be repeatedly reproduced in the simulation 

process. The need for different structural models in the fracture zone and in the regions 

where the continuity continues, is another disadvantage of the discrete crack models.  
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In the following years, a method to determine material fracture parameters, 

independent of the size effects and remeshing procedures, was developed (Bazant and 

Planas, 1997). This approach was used to reduce mesh dependency commonly 

observed in computational studies. However, the formula in the method was not 

smooth and did not include the statistical part for crack initiation. In the more recent 

studies (Fantilli et al., 2014; Trivedi et al., 2015), three-point bending tests are used to 

validate numerical methods of the size independent fracture energy calculations. 

Although it was shown that bilinear softening models based on size independent 

fracture energy yield consistent finite elements results, existing continuum based finite 

element modeling via smeared and discrete crack methods have limitations in 

capturing the local nature of cracking (Olumide, 2013; Zhou et al., 2015). 

Alternatively, the extended finite element method (XFEM) has been developed by 

Belytschko et al. (2000) to capture crack propagation without remeshing and post 

processing by adding enrichment functions to the displacement-based formulations. 

The main advantage of this local mesh-free method was that nodes can be easily 

manipulated around vicinity of the crack tip, adding and removing nodes do not affect 

crack propagation.  

 

2.2.2. Lattice Based Models 

Before the development of finite element-based approaches, numerous researchers 

endeavored to clarify the behavior of heterogeneous materials using analog models. 

The easiest way could be thought as characterizing a structure by a truss system, dating 

back as early as 1900s with the introduction of the truss analogy originally proposed 

by Ritter (1899). Mörsch (1909) introduced the famous truss case analogy for shear 

transfer in reinforced concrete beams. Wagner (1929) developed a similar approach 

to explain the behavior of thin metal beams when they had a higher shear load than 

the first buckling loads. Weibull (1939) have studied the rupture probability in solids 

with  different mathematical expressions. Hrennikoff (1941) used a truss model to 
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solve elastic problems. Aforementioned approaches have been developed for the 

approximate engineering solution in the years when numerical work on a mechanics 

continued with a focus on the finite element method based on the continuity principle. 

Due to this continuity limitation of such models, the use of lattice-based models was 

also continued for simplified nonlinear analysis. In particular, a new truss system 

named as strut and tie model (STM) (Schlaich et al., 1987) found wide application in 

the design of deep beams, corbels and pile caps (Figure 2). Fundamental objective of 

the model was to distribute the load on elements by utilizing the compression and 

tension stress fields together. Stress trajectories were defined either as B fields 

(Bernoulli or beam) where stresses are easily derived from sectional forces or D fields 

(discontinuity or disturbance) where distributions of strains are nonlinear and required 

capacity calculations. Modeling method has been encouraged for more widespread 

use, guidelines being included in modern concrete specifications such as Eurocode 2 

and ACI 318. Conceptual design of an element or quantitative checks of structural 

systems can be carried out in a rather easy way using STM.  

 

   a)  Deep beam STM             b) Corbel STM                  c) Pile cap STM 

Figure 2. Strut and tie models [Schlaich et al., 1987] 

First theoretical studies which share a common approach to the modeling of the 

structure and force flow using a truss system have showed that lattice type models are 

quite successful for the simulation of concrete behavior. This success encouraged 

researchers to further investigate lattice-based models to simulate concrete fracture in 
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detail. For instance, in Herrmann (1988), crack growth was simulated by performing 

a linear elastic analysis and removing (or partially removing) an element from mesh 

that exceed threshold tensile strength value. Random heterogeneous nature of concrete 

was implemented to models in beam strength and stiffness. A three dimensional lattice 

model was used to simulate mechanical behavior of concrete by connecting aggregates 

centers in Cusatis et al. (2003). Lattice elements were also used to model cement, 

aggregates and interfacial transition zones separately with different material constants 

(Van Mier, 2012). These multi-scale numerical results were in good agreement with 

the experimental data. 

Concrete fracture in previously mentioned studies used lattice or mesh elements 

considering small springs or beams. Similarly, the peridynamic theory (PD), which 

was developed by Silling (2000) based on particle interactions has been used to solve 

many complex engineering problems in recent years. In the bond-based PD, each point 

connects with adjacent points within a specific distance by a pairwise force function, 

and damage is incorporated in this pairwise force function by allowing the bonds to 

break when the elongation exceeds the threshold value. This specific distance that 

brings nonlocality to the system was called the horizon (δ). It enabled the particles to 

interact with many particles and capture cracks in arbitrary orientations. Within this 

horizon, particles continued to carry load even after failure (softening). Particle 

interaction (bond strength) was integrated to the model as a nonlinear function of 

extension. For brittle materials that do not exhibit tension softening, after a bond 

breaks, points at the ends of the bond are disconnected from each other. For materials 

that exhibit tension softening, the bond force is a nonlinear function of the elongation. 

The bond forces are continuously updated and the resulting load redistribution is 

calculated through Newton’s equations of motion which enables the consequential 

anisotropy in material behavior. In Gerstle et al., (2005), PD was employed for plain 

and reinforced concrete elements. Both rectangular and hexagonal node patterns with 

different horizon selections were successfully applied to two-dimensional plain strain 
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problems (Figure 3). It was reported that models with hexagonal node patterns might 

have rapid convergence and improved material isotropy.  

 

Figure 3. Node patterns and horizon levels [Gerstle et al., 2005] 

Major shortcoming of the original bond-based PD was the limitation of the 

representation of poisson’s ratio (v) which is 1/3 for two and 1/4 for three dimensional 

problems in this formulation. Later in Silling et al. (2007), this issue was addressed by 

introducing rotational degrees of freedom into a bond-based PD and the state based 

PD theory was introduced. PD models were compared with both experimental and 

other numerical studies in many applications and it has been validated with 

experimental data, especially for dynamic crack formation prediction (Gerstle et al., 

2009; Madenci and Oterkus, 2014; Mitchell, 2011). 

 

2.3. Fiber-Reinforced Concrete 

Fibers have long been used to suppress the weakness of construction materials in 

tension in composite materials. Historically, naturally available engineering materials 

including glass, plastic, ceramic and asbestos were used as fibers to reinforce bricks 

and masonry mortar. Because of health hazards related with asbestos fibers which 

were widely used in constructions until 1970s, alternate fiber types such as steel and 

synthetic fibers have been developed. The effect of these fibers on ultimate behavior 
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were studied by many researchers (Shah and Naaman, 1976; Swamy, 1975). Although 

moment capacities were not increased significantly, early studies (Henager and 

Doherty ,1976) showed that using steel fibers in beams improved the flexural behavior 

by decreasing the crack width and crack spacing. Similarly, in ACI Committee 544, it 

was reported that randomly distributed steel fibers increases the tensile toughness and 

ductility of concrete. Use of steel fiber-reinforced concrete in tunnel lining segment is 

a common method to minimize the cracking for underground rail and road tunnels, 

since the durability of a tunnel is highly dependent on concrete permeability (Sorelli 

and Toutlemonde, 2005). Due to the lack of guidelines and manuals in this area, 

studies (Bakhshi and Nasri, 2016; Johnson et al., 2017) were mostly focused on 

providing design recommendations for both production and construction stages. In 

Nitschke et al. (2017), it is demonstrated that macro synthetic fiber-reinforced 

concrete offers same long term behavior and durability for tunnel linings but better 

corrosion resistance in aggressive exposure conditions. 

As a summary, although finite element and lattice based models were used to predict 

nonlinear behavior of reinforced and fiber-reinforced concrete beams or columns up 

until today, very few studies exist to evaluate concrete pressure tunnels in the 

literature. For the first time, a new computational approach named as the overlapping 

lattice model used to simulate crack initiation and propagation compared with 

experimental results. 
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CHAPTER 3  

 

3. OVERLAPPING LATTICE MODELLING 

 

3.1. Theory 

Overlapping Lattice Model (OLM) is a numerical tool developed in the Civil 

Engineering Department of the Middle East Technical University. Validation studies 

of the OLM were reported in Aydın (2017). A computational platform, written in 

Fortran programming language, following simple rules for the force-deformation 

response of bonds between nodes was developed. The collective dynamics of damage 

and complex bond connectivity dictates the OLM response. As in the bond-based 

peridynamics approach, each material point (node) is assumed to interact with all 

nodes within a certain distance. This distance is called horizon. If a uniform lattice is 

used, then horizon is chosen to be proportional to the shortest distance between the 

nodes, i.e., 𝛿 = 𝑎 ×  𝑑 where d represents uniform distances between nodes. 

Choosing a = 1.5 gives the simplest lattice with 8 bonds for each node whereas 

choosing a = 3.01 yields 28 bonds with many nonlocal interactions (Figure 4).  OLM 

is not a micro-scale approach that accounts for the distribution of the concrete 

constituents.  
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Figure 4. Lattice system for (a) δ = 1.5 * d and (b) δ = 3.01 * d  [Aydın, 2017] 

In the OLM, for an initially linearly elastic isotropic medium, elasticity modulus times 

cross sectional area (EAt) is taken to be same for tension and compression of concrete. 

It is calculated by utilizing the strain energy density approach as presented in Aydın 

(2017). To calculate the energy in the original geometry Energyoriginal, a deformation 

field is created by giving an arbitrary deformation field  (εx = constant while  εy =

0) to every bond. (It was stated that results would be more or less the same if the same 

procedure applied for other direction) Energyoriginal is expressed as 

Energyoriginal =
E ×  εx  ×  w ×  A

2 ×  (1 − v2)
 [3.1] 

where the geometrical properties w and A are the width and the area, respectively. v 

is the poisson ratio, and E is the actual modulus of elasticity. 

Summation of energies of all lattice element forces gives the total elastic energy stored 

in the domain. While EA was taken as 1 for the unit deformation field, energy stored 

in a single truss member is expressed as   

       EnergyOLM =  
N2 ×  L

2
  [3.2] 
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where element force is represented with N and length of it is represented with L. 

Accordingly, EAt is obtained as the ratio of the total energy calculated analytically 

[3.1] to the total energy stored in the analog lattice model. 

                   EAt =
Energyoriginal

Σ EnergyOLM
  [3.3] 

OLM is calibrated for the homogenized properties of concrete and it conveniently 

allows one to solve for the autonomous creation and propagation of cracks. Bonds are 

assumed to behave like truss elements, i.e., direction of force was along the direction 

connecting the nodes. As most practical problems faced in concrete mechanics 

involves tension and shear failures, bonds are assumed to be linearly elastic in 

compression and assumed to soften in tension. In this way, the number of parameters 

are kept to a minimum while providing a global match of the force-deformation 

response along with the crack propagation pattern for most practical problems.  

Nonlinear tension softening part is assumed to be in the form of a stepwise linear 

softening function as shown in Figure 5. This shape is chosen only for convenience 

and other alternatives could be utilized as well. Concrete behavior in compression is 

assumed to be linearly elastic as none of the investigated problems failed due to 

concrete crushing. The input material properties needed for the overlapping lattice 

simulations are the modulus of elasticity (Et), tensile strength (fcr) and the fracture 

energy (GF) are usually obtained from material tests depending on five constitutive 

model parameters which are multipliers of tensile strength (b1 and b2) and critical 

strain (a1, a2 and a3). Elements connecting both steel and concrete nodes (i.e. bonding 

materials) have to carry at least 70 % of tensile strength of the concrete to stop pullout 

steel from concrete (Figure 6). 
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Figure 5. Idealized constitutive model for concrete [Aydin et al., 2018] 

 

Figure 6. Idealized constitutive models for steel and bond elements [Aydin et al., 2018] 

In Aydin et al. (2018), the calibration procedure for these material coefficients were 

provided in depth. Fracture energy was defined as energy dissipated per unit fracture 

area. When bond lengths were small, it was assumed that there is a single crack in 

each bond. Then, the area under force-deflection diagrams were forced to be same 

regardless of bond length. This required a normalization of force-strain diagrams so 

that area under the force-deflection diagram was constant for all bonds regardless of 

their lengths. In this case, a different lattice element having the same material 

properties but whose length was longer than ds was addressed. The length of the lattice 

element (h) was considered to be sufficiently small, it was assumed that there is a 

single crack in each lattice element. The critical strain for all elements were taken as  

εcr. However, as the crack opened, the force carried by the crack was reduced, thus 
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reducing the deformation value of the region in the elastically acting region. In this 

case, the values of a1, a2, a3 were calculated by Eq. 3.4 for the length of a lattice of h. 

𝑎1
′ =

𝑏1 ×  (ℎ − 𝑑𝑠)

ℎ
+

𝑎1 ×  𝑑𝑠

ℎ
 

 

 

𝑎1
′ =

𝑏1 ×  (ℎ − 𝑑𝑠)

ℎ
+

𝑎1 ×  𝑑𝑠

ℎ
 

[3.4] 

𝑎3
′ =

𝑎3 ×  𝑑𝑠

ℎ
 

 

For instance, if the OLM horizon is selected as δ = 3.01d, there are six different 

element lengths (d, 1.41d, 2d, 2.24d, 2.83d, 3d). In Figure 7, sample stress-unit 

deformation curves are given for a1, a2, a3, b1, b2 values which were 3, 40, 240, 0.6 

and 0.2 respectively. When ds = 0.005 m, d = 0.025 m, Ec = 35 GPa, ε cr = 1.10e-04, 

w = 0.2 m values are used, the crack energy GF value is calculated as 142 N/m. Element 

lines shown in the Figure 7 are obtained for their lengths in such a way as to decrease 

the area under them as their length increases. However, their total fracture energy 

contributions do not change as this area is multiplied by the total length of the element. 

 

Figure 7. Stress vs strain curves obtained by fracture energy normalization rule for lattice elements 

with six different length  

In previous versions of the OLM, the force - displacement behavior of the system 

modeled for the problems was investigated using the SLA - Sequentially Linear 
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Analysis solution algorithm proposed by Rots (2001) for mainly quasi-static effects. 

SLA is an easy-to-program approach that requires elastic analysis without any 

repetitions. It provides a solution to the snapback behavior that may occur in force-

displacement curves. The results of the analysis included ups and downs due to the 

successive elastic analysis and the monotonic behavior was considered to be the 

envelope of the load-displacement curve (Aydın, 2017). However, for large systems 

with large horizon values, too many linear analyzes are required for convergence.  

In this study, the OLM is used for the solution of nonlinear dynamic problems, explicit 

integration method is preferred instead of the implicit integration method to this end. 

Explicit integration makes it necessary to use relatively small time steps for a stable 

solution, but allows the modeling of nonlinear crack formation and propagation 

without any convergence problems. The well-known differential equation (equation 

of motion) used in dynamic analysis can be written as follows: 

𝑀𝑢̈(𝑡) + 𝐶𝑢̇(𝑡) + 𝐾𝑢(𝑡) = 𝑓(𝑡) [3.5] 

where M, C and K are the mass matrix, damping matrix and stiffness matrix 

respectively. u defines the displacement vector and f is the external dynamic force 

vector. For damping matrix, mass and stiffness proportional Rayleigh approach is 

preferred. (C = αM + βK). For explicit integration, the algorithm proposed by Chung 

and Lee (1994) is preferred. The algorithm consists of the following steps: 

1. Calculate diagonal M matrix and nonlinear internal force vector N(𝑢0, 𝑢̇0) 

𝑁 = 𝑓 − 𝐾𝑢 − 𝐶𝑢̇  

2. Calculate the initial values of 𝑢0, 𝑢̇0, 𝑁(𝑢0, 𝑢̇0), 𝑓0 and 𝑢̈0 

𝑢̈0 = (𝑓0 − 𝑁(𝑢0, 𝑢̇0))  

3. Select the integration parameter 𝛽 value (1 < 𝛽 ≤ 28/27) and appropriate 

time step ∆𝑡 , then calculate the following specified parameters  
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𝛽1 = ∆𝑡2(1 2⁄ − 𝛽) ,       𝛽2 = ∆𝑡2(𝛽),        𝛾1 = − ∆𝑡 2⁄ ,        𝛾2 = 3 ∆𝑡 2⁄       

4. Calculate the following values for each step  

𝚤𝑢̈𝑛+1 = 𝑀−1(𝑓𝑛 − 𝑁(𝑢𝑛, 𝑢̇𝑛))    

𝑢𝑛+1 = 𝑢𝑛 + ∆𝑡𝑢̇𝑛 + 𝛽1𝑢̈𝑛 + 𝛽2𝑢̈𝑛+1  

𝑢̇𝑛+1 = 𝑢̇𝑛 + 𝛾1𝑢̈𝑛 + 𝛾2𝑢̈𝑛+1  

5. Go to the next time value, n = n + 1 and repeat first four steps until the 

simulation is complete. 

This method is efficient particularly for non-linear dynamic analyses with the proper 

selection of the β value.  

Although explicit integration is a better choice for nonlinear dynamic problems, it is 

not suitable for simulations of experiments performed under displacement controlled 

and/or slow loading speeds. To tackle this problem, PID control loop mechanism 

which takes its name from first letters of Proportional (P), Integral (I) and Derivative 

(D) was added to enhance the capability of explicit solution of the OLM. This control 

algorithm was previously applied to dynamic analysis of a concrete frame system and 

validated with experimental results (Kocamaz, 2018). 

Continuous modulated control type enables to control by generating a signal to the 

output according to the error difference. A PID controller compares signal of measured 

process variable (PV) with signal of desired set-point (SP). The difference between 

them is recorded as error. According to this error, the PID controller makes an impact 

by trying to minimize the error and sends it to the output. In this way, errors are 

determined with continuous feedback from output to input until the error is minimized, 

and the error is reduced by sending the controller effect to the output. Assuming that 

the desired change of the control parameter is determined as u (t) and the value from 

the model output is expressed as up (t), the difference between them gives the error at 

time t, e (t) = u (t) – up (t).  The time variation of the external load F is controlled by 

an integral-differential equation as follows 

http://www.wikizero.biz/index.php?q=aHR0cHM6Ly9lbi53aWtpcGVkaWEub3JnL3dpa2kvU2V0cG9pbnRfKGNvbnRyb2xfc3lzdGVtKQ
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dF

dt
= Kpe + Ki ∫ edt

t

0

+ Kd

de

dt
 [3.6] 

where Kp, Ki and Kd are the proportional, integral and derivate parameters 

respectively. Kp parameter produces proportional control and monitors output. The Ki 

parameter controls the accumulation of errors and increases the amount of static 

accuracy at the risk of error in the dynamic response. Kd increases dynamic behavior 

and forces a return according to the rate of change of the error. This equation is solved 

in the OLM simulation at the same time in each step taken in time and the F value is 

updated. When behavior changes from linear to non-linear, the time-dependent 

derivative of F starts to take negative values and this ensures that the softening 

behavior is correctly modeled.  

OLM analysis engine with the PID control was tested and validated with experimental 

results before being applied to tunnel simulations. Although results are very close to 

experiments, the solution time of OLM is greatly increased if a large number of nodes 

and elements are used. Results obtained from simply reinforced concrete beam tests 

are presented in section 3.2. 

An approximate method which is similar to the sequentially linear analysis (SLA) 

solution algorithm was developed to decrease computational time in quasi-static 

simulations. In this method, while load is increased in each step, every element 

exceeding the threshold tensile strength was softened according to the material model. 

Same procedure is repeated in each step.  Unlike SLA, method was not focused on a 

single element. Method is appropriate for force control systems and has no 

convergence problem. This provides an important advantage over the PID method. As 

the load increment decreases, accuracy of the solution increases. Validation study and 

comparative results are given in section 3.2. 
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3.2. Validation of OLM for a Simply Supported Reinforced Concrete Beam 

Walraven (1978) performed a four-point flexural test of a reinforced concrete beam 

which had a height of 150 mm and a length of 2300 mm with 2Ø10 + 1Ø8 tension 

reinforcement and 25 mm bottom clear cover. The modulus of elasticity Ec and tensile 

strength fcr values for concrete were taken as 25 GPa and 2.5 MPa, respectively. The 

modulus of elasticity Es and yield stress fy were taken as 210 GPa and 440 MPa, 

respectively, for steel. External force was applied 600 mm away from both ends of the 

beam and the deflection was measured at the middle point of the beam. Geometry of 

the beam is shown in Figure 8. 

 

Figure 8. Four-point beam bending experiment [Walraven, 1978] 

Reinforced concrete beam was simulated with 2405 nodes, 30124 elements, a grid size 

of d = 12.5 mm with 3.01d horizon (δ). Elastic-softening based force displacement 

models was employed to this study as multipliers of strain (a1, a2 and a3), and critical 

force (b1 and b2) were taken as 3.1, 30, 200, 0.6, 0.2 respectively. These values 

correspond approximately to a fracture energy GF = 68 N/m. Elements between steel 

and concrete nodes were assumed to have a strength of 0.7fcr and show an elastoplastic 

behavior as suggested by Aydin et al. (2018). First, the parameters of the PID solution 

algorithm integrated to the OLM model were calibrated as Kp = 6 x 109, Ki = 3 x 107 

and Kd = 1.35 x 104 for minimum error and oscillation. Then, the aforementioned 

approximate method was used as an alternative solution algorithm. In order to 

minimize the computational error, after the evaluation of different load increments 

shown in Figure 9, lowest load increment that provides reasonable computational 

time, 0.1 kN per step was used. The comparison of the measured and computed 

deflections as a function of the applied load is given in Figure 10 showing an excellent 

match. While analysis with PID solution algorithm lasts almost a day, analysis with 
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approximate method takes at most an hour with the same personal computer. This 

shows the superior performance of approximate method with a reasonable accuracy. 

 

 

Figure 9. OLM computed force-deflection diagrams for different load increments 

 

Figure 10. Experimental and OLM computed force-deflection diagrams 
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Figure 11 and Figure 12 illustrate both OLM PID and OLM approximate predicted 

damage patterns.  More validations of OLM for plain concrete and reinforced concrete 

structural elements were documented in Aydin et al. (2018). 

 

 

Figure 11. Damage pattern for 2.5 mm mid span deflection (OLM PID). Color contours shows 

normal strain 

 

 

Figure 12. Damage pattern for 2.5 mm mid span deflection (OLM Approximate). Color contours 

show normal strain 

 

3.3. Validation of OLM for a Steel Fiber-Reinforced Concrete Beam 

To increase the ductility of concrete exhibiting brittle behavior under tension, one of 

the preferred methods is to use steel and synthetic fibers. It is frequently used in tunnel 

linings, shotcrete and retrofit applications. In this study, simply supported beam test 

results were used to evaluate the performance of steel fiber-reinforced pressure tunnel 

linings, to obtain the most suitable fiber concrete mixture ratios for linings design and 

to calibrate OLM parameters. The experiments were performed by Sengun et al. 

(2016)  in the Middle East Technical University Materials Laboratory. In the 

experimental study, four-point bending tests were performed with the samples of 150 

mm x 150 mm x 600 mm (Figure 13). The concrete pressure strength values used in 

the experiments were reported in the range of 40-45 MPa. The modulus of elasticity 

of the fiber-reinforced concrete was measured as 37 GPa. Two different lengths of 30 

mm (0.55 mm thickness) and 60 mm (0.75 mm thickness) fibers were used in the 
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experiments. Four-point bending tests were performed by taking these fiber dosages 

at 30, 60 and 90 kg/m3. At the end of the experiments, the energy values calculated 

for the 25 mm beam deflection are given in Table 2. 

 

Figure 13. Four-point bending test experimental [Sengun et al., 2016] 

The bending tests were modeled using the OLM analysis engine with 12.5 mm mesh, 

637 nodes, 7820 elements and a 3.01d horizon (δ). The rate of change of the magnitude 

of the vertical force required for constant speed change of the vertical displacement of 

the midpoint of the beam in the OLM analysis engine was found using the PID control 

equation. Simulations were repeated at different speeds and the results were 

independent of speed. The vertical displacement velocity is taken as 0.001 m/s. The 

PID parameters were calibrated as Kp = 109, Ki = 107 and Kd = 104. An example OLM 

simulation results showing strain values of the elements which was obtained with a 30 

mm long fiber, 30 kg/m3 fiber dosage is given in Figure 14. 

 

Figure 14. Four-point bending test results obtained with the OLM (30 mm fiber, 30 kg/m3) 
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OLM total force-displacement curves are compared in Figure 15 with experimental 

results for different lengths and dosages. The parameters, calibrated with curve-fitting 

method, used in the OLM material model and GF values corresponding to these 

parameters are given in Table 2. OLM curves are very close to experimental curves 

except for the inconsistency in experimental results using 60 mm long fibers with 30 

kg/m3 fiber dosage (60 kg/m3 and 90 kg/m3 results were almost the same). 

 

Figure 15. Experimental vs OLM results for steel fiber-reinforced concrete beams 

Table 2. OLM parameters and fracture energies for steel fiber-reinforced concrete 

Fiber 

Length Dosage 

Energy with respect 

to 25mm midspan 

deflection (N.m) εcr a1 a2 a3 b1 b2 

GF 

fracture 

energy 

(N/m) 

30 mm 30 kg/m3 116462 0.0001 1 1500 5000 0.15 0.1 1260 

30 mm 60 kg/m3 201911 0.0001 1 2000 5000 0.25 0.2 2535 

30 mm 90 kg/m3 274158 0.0001 1 3000 5000 0.30 0.25 3630 

60 mm 30 kg/m3 496032 0.0001 1 2000 7000 0.13 0.5 6355 

60 mm 60 kg/m3 682444 0.0001 1 5000 15000 0.35 0.3 10570 

60 mm 90 kg/m3 651541 0.0001 1 5000 15000 0.37 0.27 9971 
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3.4. Validation of OLM for a Synthetic Fiber-Reinforced Concrete Beam 

Due to the corrosion problem that may be caused by the use of steel fibers in pressure 

tunnels, macro synthetic fibers were used as the second option in laboratory 

experiments. Identical tests on simply supported beams with macro synthetic fiber 

concrete performed by Sengun et al. (2016) were used for the calibration of the OLM 

parameters. The concrete compressive strength values used in the experiments were 

reported in the range of 40-45 MPa. The modulus of elasticity of the fiber concrete 

was measured to be 37 GPa. The modulus of elasticity of forta-ferro synthetic fiber 

used in the experiments, which has 54 mm in length and 0.677 mm in diameter, is in 

the range of 550 - 750 MPa. Detailed synthetic fiber properties are given in Table 3. 

In OLM, same nodes and elements were used with same 12.5 mm mesh and 3.01d 

horizon (δ) as in steel fiber-reinforced simulations. The vertical displacement velocity 

is taken as 0.001 m/s same as steel fibers. The PID parameters were calibrated as         

Kp = 109, Ki = 107 and Kd = 104. OLM total force-displacement curves are compared 

in Figure 16 with experimental results for dosages of synthetic fibers. It shows that 

simulation results are fairly well agreements with the experimental data. The 

parameters used in the OLM material model and the crack energy values 

corresponding to these parameters are given in Table 4. 

 
Table 3. Synthetic fiber properties 

Tensile Strength 570-660 MPa 

Length 54 mm 

Material  Pure Copolymer  

Melting Point 162-168 °C 

Modulus of Elasticity 5.75 GPa 

Quantity 220000 per kg 

Surface Texture Deformed 

Acid / Alkali Resistance Excellent 
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Figure 16. Experimental and OLM results for synthetic fiber-reinforced concrete 

 

Table 4. OLM parameters and the fracture energies for synthetic fiber-reinforced concrete 

Dosage 

Energy with 

respect to 25mm 

midspan 

deflection (N.m) εcr a1 a2 a3 b1 b2 

GF 

fracture 

energy 

(N/m) 

3 kg/m3 84402 0.0001 1 1000 5000 0.2 0.1 1184 

6 kg/m3 121392 0.0001 1 1000 8000 0.2 0.1 1691 

9 kg/m3 203878 0.0001 1 1000 12000 0.2 0.1 2367 
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3.5. Validation of OLM with Transparent Boundary Conditions 

As the goal of the study is to analyze dynamic tunnel behavior placed in an infinite 

environment, new boundary conditions were required for proper absorption of the 

travelling waves. These boundary conditions are known as conductive / transparent / 

absorbing boundary conditions in the literature. In the transparent boundary condition 

approach, instead of using the original governing equation at the boundary, anti-

reflection one-way wave equations are implemented to prevent wave reflection at the 

edges. The objective is to minimize the contamination in the numerical solution due 

to reflections. The simplest transparent boundary conditions for plane waves are 

implemented in the OLM. Transparent boundary condition is formulated in Eq. 3.7 as 

follows. 

 

Shear Modulus 𝐺 =
𝐸

2 × ( 1 +  𝑣)
 

 

Bulk Modulus 
 𝐾 =

𝐸

3 × ( 1 − 2 × 𝑣)
 

 

 

 

[3.7] 

P –Wave Velocity 
 

𝑉𝑝 = √
𝐾 + 4

3⁄  ×  𝐺

𝜌
 

 

 

Transparent Boundary 
Condition 

𝜕𝑢

𝜕𝑥
=  −

1

𝑉𝑝
 ×  

𝜕𝑢

𝜕𝑡
 

 

where E, 𝑣 and 𝜌 are the modulus of elasticity, poisson ratio and density respectively. 

u defines the displacement vector.  

1D wave propagation in a uniform beam is used for the simulations of transparent 

boundary condition definition. The geometry used to check whether energy is 

dissipated properly in the boundary is shown in Figure 17. 
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Figure 17. Transparent boundary condition test study setup 

2121 nodes and 8120 elements were used in the model. The thickness was selected as 

1 m and mesh size (d) was selected as 5 cm. Using the modulus of elasticity of concrete 

(E) as 25 GPa and Poisson ratio (v) as 0.33, shear modulus, bulk modulus and P-wave 

velocity were obtained as 9.4 MPa, 24.5 MPa and 3928.6 m/s respectively. External 

normal stress of magnitude 0.1 MPa load was applied as a short duration pulse as 

shown in Figure 18. 

 

 

Figure 18. Normal stress as a function of time applied on the test problem 
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The displacements and velocities at 5 different points were tracked. The pressure wave 

travelled though the beam and radiated away at the transparent boundary; the model 

worked appropriately. In Figure 19, the displacements at the boundary are reported 

showing no reflection condition.  

 

Figure 19. Displacement vs time at L= 5 m 
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CHAPTER 4  

 

4. PRESSURE TUNNEL EXPERIMENTS 

 

4.1. Summary of the Laboratory Experiments 

 Physical experimentation is a preferred way to gain insight and improve 

understanding of complex behaviors, supply data sets for developing and validating 

numerical models and testing proposed designs. As field experimentation does not 

seem to be feasible for pressure tunnels, laboratory experiments seem to be the only 

realistic choice. For this reason, a laboratory-based scaled experimental study focusing 

on the behavior of reinforced concrete tunnel linings was conducted at METU 

Structural Engineering Laboratory (Kalaycıoğlu, 2019). The testing programme 

consisted of seven different scenarios which were simulated with OLM. In all of the 

cases in this study, a reverse horse-shoe shaped lining was adopted from an existing 

pressure tunnel in Turkey (Topçam Dam, Ordu) with a scale factor of 0.4. The 

thickness of the laboratory model was 0.20 m. The thickness of the reinforced concrete 

lining was 16 cm on the laboratory corresponding to a 40 cm thick liner at real size. 

The setup was built horizontally on top of polytetrafluoroethylene and nylon sheets 

floor. Inner radius of the test apparatus was 72 cm. The surrounding rock media, which 

was planned to simulate weak rock conditions, was built in a special setup. In order to 

have an equivalent rock elastic modulus of approximately 8 GPa, two 5 cm thick 

concrete layers were designed to sandwich 10 cm thick autoclaved aerated concrete 

blocks. This composite rock substitute was built around the tunnel. There were also 

four screws connected to each aerated concrete block to work together to transfer loads 

as a shear key. For the low confinement case, this rock body outside the tunnel lining 

is approximately 1 meter thick in perfect decagon shape shown in Figure 28. The 

reinforcement of the concrete tunnel lining is given in Figure 20. 
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Figure 20. Scaled reinforcement arrangement [Kalaycıoğlu, 2019] 

A novel loading system to simulate uniform water pressure to the inner walls of the 

tunnel lining was used in the program consisting of the hydraulic loading pistons (1) 

and load transfer steel plates (2) as shown in Figure 21. The system was designed to 

have a load capacity of each 300 kN in each direction. This capacity was sufficient to 

raise the internal pressure up to 1.30 MPa. Thin rubber sheets, 1 cm thick, were 

attached between these plates and the reinforced concrete lining to ensure uniform 

load distribution, in order to prevent concentrated point loadings due to rough concrete 

surface. In order to observe and measure the lining behavior better, the force in the 

pistons was increased by 10-20 kN in each step during the experiments. Details of the 

experiments were provided in Kalaycıoğlu (2019). 

 

Figure 21. Geometry of the loading system 1) loading pistons, 2) load transfer plates, 3) reinforced 

concrete tunnel lining 
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Table 5. Experimental and theoretical concrete properties 
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During concrete pouring stage of each experiments, cylindrical samples with a radius 

of 150 mm and height of 300 mm were prepared from same mixture in order to obtain 

compressive strength, split tensile strength and modulus of elasticity of concrete 

(Kalaycıoğlu, 2019). OLM requires the direct tensile strength of concrete. Due to 

challenges in the experimental determination of the direct tensile strength of concrete, 

split tensile strength was experimentally determined. Direct tensile strength was 

calculated using the relationship between the compressive strength and direct tensile 

strength (0.35√fc). Similarly, the split tensile strength was also calculated (0.5√fc). 

The direct tensile strength used in the simulations was calculated by correcting the 

estimate 0.35√fc  with a correction factor (C) given by the ratio of the actual split 

tensile strength with the estimate of split tensile strength as indicated in Table 5. 

 

4.2. Quasi-Static OLM Simulations of the Laboratory Experiments  

4.2.1. First Experiment: No Confinement  

This experiment was conducted to investigate the nonlinear behavior of tunnel in case 

of inadequate rock support outside the tunnel, which is frequently encountered in 

practice. The overall geometry of the experiment is shown in Figure 22. During the 

experiment, when the total applied force was around 100 kN (internal pressure 0.1 

MPa), first cracks occurred in the lower right corner of the specimen. When the total 

applied force was around 375 kN (internal pressure 0.4 MPa), the cracks extremely 

widened and therefore the test was terminated. Vertical and horizontal expansions of 

the tunnel lining were reported in Kalaycıoğlu (2019). In vertical and horizontal 

directions, the relative displacements in the same directions coincided with the sum of 

absolute displacements showing that the measurements were consistent with each 

other. The similarity of the movement of the tunnel left and right shows that the 

experiment provided a symmetrical deformation state. Due to the reverse horse-shoe 

geometry, the tunnel lining deformed mainly downwards in the linear invert part 

expected.  
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Figure 22. The setup of the first experiment with no rock confinement 

 

Figure 23. OLM elements used in the modeling of the first experiment 

The experiment was simulated with 5341 nodes, 20531 elements and a horizon of 1.5d 

horizon (δ). The experimentally measured modulus of elasticity (24.3 GPa) was used 

for the concrete lining. The OLM parameters for the lining were cr = 6e-05, a1 = 5,   

a2 = 80, a3 = 300, b1 = 0.6, and b2 = 0.2. These values correspond approximately to a 

GF value of 45 N/m (fracture energy). Tensile strength was taken as 1.45 MPa. In the 
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model, the modulus of elasticity of rubber was assumed to be 1 GPa. A low critical 

strain value εcr for the rubber was chosen to allow rubber to separate from the lining 

in the numerical simulations. The modulus of elasticity and yield strength of the 

reinforcement were 200 GPa and 420 MPa, respectively. The loading plates, local 

stiffeners on the plates, the rubber sheets between the plates and the interior of the 

tunnel lining, steel reinforcement and the tunnel lining are shown in the OLM model 

given in Figure 23. While velocity is kept constant as 0.001 m/s in simulation with the 

PID analysis method, maximum 20 kN force steps is used in simulations with 

approximate method.  

Figure 24 and Figure 25 show comparisons of the numerical and experimental 

horizontal/vertical tunnel expansions for the PID analysis method and approximate 

method, respectively. The numerical results are close to the experiment except perhaps 

for the initial stiffness. Figure 27 shows the computed damage distribution for four 

different stages of loading. Predictions agree reasonably well with the experimentally 

observed cracks shown in Figure 26. 
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Figure 24. Computed (PID Method) and measured tunnel expansions as a function of the applied 

load (total force is multiplied by 0.00107 to obtain the internal pressure in MPa) 

 

 

Figure 25. Computed (Approximate Method) and measured tunnel expansions as a function of the 

applied load  
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Figure 26. Cracks observed in the first experiment [Kalaycıoğlu, 2019] 

 

 

Figure 27. Strain values when total applied force is 160 kN, 180 kN, 220 kN and 250 kN. Color 

scaled adapted to values between -0.0005 (blue) and 0.001 (red). (Approximate Method) 
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4.2.2. Second Experiment: Low Rock Confinement  

In this experiment, the tunnel lining was in continuous contact with the surrounding 

rock body; but in-situ confining stress was negligible. The overall geometry of the 

experiment is shown in Figure 28. During the experiment, the first crack was observed 

just outside the tunnel lining, when internal pressure value reached to 0.34 MPa. 

Confining stress vanished immediately after the crack reached the outside boundary. 

When the loading corresponded to an internal pressure of about 0.50 MPa, the test 

ended with an increase in the crack width and the rupture of the right lower 

reinforcement. 

 

Figure 28. The setup of the second experiment with low rock confinement 
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Figure 29. OLM elements used in the modeling of the second experiment 

The experiment was simulated with 28582 nodes, 112986 elements and a horizon of 

1.5d with the model shown in Figure 29. Modulus of elasticity was adjusted to 23.3 

GPa and 8.37 GPa according to experimentally measured values for reinforced 

concrete and rock body respectively. The same OLM material parameters were used 

for the reinforced concrete corresponds to a GF value of 43 N/m (fracture energy). 

OLM parameters for the rock body was cr = 5e-05, a1 = 10, a2 = 30, a3 = 40, b1 = 0.6, 

and b2 = 0.2 corresponding to a low fracture energy (3 N/m). Tensile strength was 

taken as 1.40 MPa for reinforced concrete and 0.42 MPa for the rock body. The 

modulus of elasticity and the yield strength of the reinforcement were taken as the 

same with the previous experiment. The experimentally observed 10% difference 

between applied forces in two orthogonal directions by the pistons was also considered 

in the numerical modeling studies. 

Until cracking started, the rock body provided stiffness to the tunnel lining in the OLM 

model. With the initiation of cracking in the rock body as there were no confining in-

situ stress, in the medium surrounding the tunnel was lost suddenly causing a brittle 

tunnel behavior. This was captured by the OLM as illustrated by the experimental and 

computed damage patterns shown in Figure 31. 
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Figure 30. Computed and measured tunnel expansions as a function of the applied load  

 

  
(a)                      (b) 

Figure 31. Observed and computed damage patterns for (a) 1 mm vertical expansion and (b) 8 mm 

vertical expansion 
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4.2.3. Third Experiment: Full Rock Confinement  

In this experiment, the tunnel lining was in perfect contact with the surrounding rock 

body. The goal of the test was to investigate the nonlinear behavior of tunnel lining 

under in-situ confining stresses. Confinement creates a compression field in the rock 

body which eventually stops crack propagation in the rock body. In-situ stresses were 

created using post-tensioned rock setup shown in Figure 32, (details reported by 

Kalaycıoğlu, 2019). Decagon rock shape used in the second experiment was converted 

into a rhombic shape to enable symmetrical post-tensioning application. In addition to 

the first and second experiments, this setup included post tensioning tendons (two 

tendons in each axis with 125 kN tension) corresponding to a soil depth of 60-100 m 

(horizontal and vertical confining stresses were assumed equal, K0 = 1). Tendons were 

fixed to I-shaped HEA360 steel beams. Four reinforced concrete transition layers 

(beams) were placed between I beams and the rock substitute to prevent local crushing 

at the contact areas. The three-layer composite material was used on the inside of this 

concrete beam with screws (shear key) as it is in the previous experiment (Figure 32). 

No damage was observed on the rock substitute other than the local crushing of the 

transition RC beams adjacent to the steel beams. 

 

 

Figure 32. The setup of the third experiment with full rock confinement 
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Figure 33. OLM elements used in the modeling of the third experiment 

In the OLM simulations, six different materials (load transfer plates, concrete lining, 

rubber between load transfer plates and lining, rock body, 20 cm thick reinforced 

concrete layer between I beams and rock body, I beams) were used. Number of 

elements and nodes were 39638 and 155349, respectively while the horizon was 

selected as 1.5d. The experimentally measured modulus of elasticity (33.8 GPa) was 

used for the concrete lining. The parameters used in the OLM material model were   

cr = 6.4e-05, a = 5, a2 = 80, a3 = 300, b1 = 0.6, and b2 = 0.2 for the lining and                      

cr = 5e-05, a1 = 10, a2 = 30, a3 = 40, b1 = 0.6, and b2 = 0.2 for the rock layer. These 

values correspond approximately to GF = 70 N/m and GF = 3 N/m, respectively. 

Tensile strength was taken as 2.17 MPa. Modulus of elasticity of the rubber sheets 

was taken as 1 GPa same as the first two experiments. Post tensioning performed in 

the experiment was carried out in the first loading phase in the OLM analysis. The 

load transfer of each tendon was carried out via 4 OLM nodes in order to eliminate 

local stresses caused by the post tensioning effect at a single point. In addition, the 

tunnel lining was not allowed to take any load during the post tensioning stage (Figure 

34).  
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There was no damage to the rock materials computed other than the local crushing of 

adjacent RC beam elements as shown in Figure 35. In the second phase, the 

experimental setup was loaded with perfect contact between the lining and rock body. 

As anticipated, pressure levels over 1 MPa was reached with no visible cracks showing 

the importance of the contact condition. The computed and measured tunnel 

expansions are compared for the vertical/horizontal directions in Figure 36. The 

numerical results are very close to the observed values for vertical expansions 

considering that experiment was almost in the linearly elastic range. In contrast, local 

stiffness changes are seen in the horizontal expansion curve that may be related with 

early cracks due to the uneven post tension application. Strain values and damage 

patterns for this test are shown in Figure 39 and Figure 38.    

 

 

Figure 34. Strains that occur after the post tensioning was completed. Color scaled adapted to values 

between -0.0001 (blue) and 0.0001 (red) 
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Figure 35. OLM damage patterns after post tensioning 

 
Figure 36. Computed and measured tunnel expansions as a function of the applied load  
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Figure 37. Strain values when total applied pressure was around 1 MPa 

 

Figure 38. OLM damage patterns 

 

4.2.4. Fourth Experiment: Partial Rock Confinement  

In this experiment, a partial contact condition was obtained by creating a void between 

the tunnel lining and the rock body in order to evaluate the effects of local 

imperfections (Figure 39). Due to local loss of confinement in the tunnel, as expected, 

damage was seen mainly at locations where the contact was lost. During the 
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experiment, first cracks were observed when the internal pressure value reached 0.43 

MPa. When the loading corresponded to an internal pressure of about 0.59 MPa, upon 

finding that the lining did not carry any more load and with rapidly increasing 

displacements, the experiment was ended. 

 

Figure 39. The setup of fourth experiment with partial in-situ confining stresses 

In OLM, six different materials were used as in the third experiment with a gap created 

by removing elements between the lining and the rock body (Figure 40). The 

parameters a1, a2, a3, b1, b2 and b3 used in the OLM material model and the calculated 

GF crack energy were same as those used in the modeling of the third experiment. Post 

tension load (250 kN for each axle direction) was handled as in third experiment and 

the tunnel lining was kept free of loading during the first phase.  

In post tensioning part (first OLM loading phase), no damage was shown other than 

same local crushing. Internal pressure was applied in the second loading phase. 

Experimentally measured and computed tunnel expansions in the vertical and 

horizontal directions are in good agreement as shown in Figure 41. The observed and 

computed damage patterns are provided in Figure 42.  
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Figure 40. OLM elements used in the modeling of the fourth experiment 

 
Figure 41. Computed and measured tunnel expansions as a function of the applied load  
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Figure 42. Experimental and computed damage for the experiment with partial contact between 

tunnel lining and rock body under in-situ confining stresses. Color scaled adapted to values between -

0.0005 (blue) and 0.002 (red)  

 

4.2.5. Fifth Experiment: No Confinement with Fiber-Reinforced Lining  

This experiment is similar to the first experiment carried out without the rock support. 

The main difference between the two experiments is the addition of fibers and super 

plasticizer to the concrete mixture. The second important difference is that the loading 

plates are filled with concrete in order to increase the rigidity of the plates and lead to 

better uniform load transfer to the lining. The stiffness differences in the plates has 

thus been removed. The specific gravity of the fibers used in the experiment was 
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reported to be 910 kg/m3. The tensile strength of synthetic fibers was reported as 570 

MPa. As expected, the vertical expansion of the tunnel lining initiated prior to the 

horizontal deformation and increased faster than the horizontal expansion. The initial 

cracks were seen in the stress concentration zones when force was around 150 kN 

(internal pressure 0.16 MPa) at the right and left lower corners. Later, the cracks 

occurred in all directions of the lining and the distribution was relatively homogeneous 

(Figure 45). Similar to first experiment, it was seen that the bottom segment forming 

the lower part of the tunnel had a beam-like behavior. 

The experiment was simulated with 5341 nodes, 20531 elements and 1.5d horizon as 

in the first experiment. The experimentally measured modulus of elasticity (36.8 GPa) 

was used for the concrete lining. In OLM model, according to simple beam tests, 

material model parameters were determined as cr = 5.1e-05, a1 = 1, a2 = 1000,                   

a3 = 10000 and b1 = 0.2, b2 = 0.1 for 14 kg / m3 macro synthetic fiber mixing ratio. 

These values correspond to a fracture energy (GF) value of 527 N/m. Tensile strength 

was taken as 1.89 MPa. While loading plates, rubber sheets and steel reinforcements 

were used in exactly the same fashion with previous experiment, local stiffness 

changes of the loading plates were removed from the model since these plates were 

filled with concrete before this experiment as shown in Figure 43. 

 

Figure 43. OLM elements used in the modeling of the fifth experiment 
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Figure 44 shows a comparison of the numerical and experimental horizontal and 

vertical tunnel expansion. The results of the simulations compare well with the 

measured displacements. When the numerical and experimental results obtained for 

this experiment are compared with the first experiment, it is understood that fiber-

reinforced concrete helps to spread cracking along to the lining (Figure 45 and Figure 

46). While maximum applied load is increased by around 15%, expansions are 

increased by 40%. 

 

Figure 44. Computed and measured tunnel expansions as a function of the applied load  
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Figure 45. Experimental damage pattern [Kalaycıoğlu, 2019] 

 

Figure 46. Damage patterns when total applied force is 160 kN, 180 kN, 220 kN and 250 kN Color 

scale indicates strain of elements between -0.0005 (blue) and 0.002 (red) 



 

 

 

59 

 

4.2.6. Sixth Experiment: Partial Rock Confinement with Fiber-Reinforced Lining 

The sixth experiment, similar to the fourth, was conducted to examine the behavior of 

reinforced concrete lining in partial contact with rock under high field stresses. Fiber-

reinforced concrete usage was the only difference from the fourth experiment. During 

the preparation of the experiment, an inner mold was formed similar to the previous 

ones. There was a rock layer outside of the lining, which was under tension with the 

post tensioning tendons. As in the fourth experiment, a gap was introduced between 

the upper side of the lining and the rock. Non-contact area was created by placing 

foams before concrete casting which was removed after casting the lining (Figure 47). 

Concrete mix was the same as those used in the fifth experiment. During the 

experiment, cracks in the stress concentration zones started almost simultaneously. 

The cracks began to wıden when the internal pressure was in the order of 0.3 MPa. 

When the internal pressure reached 0.65 MPa, crack widths increased extensively and 

the experiment was terminated. 

 

Figure 47. The setup of sixth experiment with partial in-situ confining stresses 

In OLM model, six different materials were used similar to those used in the fourth 

experiment. Similarly, a gap was placed between the fiber-reinforced lining and the 

rock medium at the top of the tunnel. The main difference between the two 
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experiments was the use of the material model considering the fiber and 

superplasticizer admixture added to the concrete mixture content. In this model, the 

material parameters of the OLM model obtained from the synthetic fiber-reinforced 

beam tests and used in fifth model were utilized (elasticity modulus Ec = 31.8 GPa,  

cr = 5.5e-05, a1 = 1, a2 = 1000, a3 = 10000 and b1 = 0.2, b2 = 0.1). These values 

correspond a fracture energy of GF = 530 N/m. Tensile strength was taken as 1.75 

MPa. 

 

Figure 48.  Computed and measured tunnel expansions as a function of the applied load  

Figure 48 shows a comparison of the numerical and experimental horizontal and 

vertical length changes in the interior of the tunnel. It is seen that the results are quite 

close to each other. Although fibers do not change the tensile strength of concrete 

considerably, they provide a more ductile behavior after cracking. This leads to more 

frequent but narrower cracking. It can also be said that OLM results are similar to the 

results of the fourth experiment. When the numerical and experimental results 

obtained for this case are compared with the fourth experiment, it is seen that fibers 

spread the damage along the lining. 
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Figure 49. Strains when total applied force is 200 kN, 300 kN, 350 kN and 450 kN. Color scaled 

adapted to values between -0.0005 (blue) and 0.002 (red) 

 

 

4.2.7. Seventh Experiment: Partial Contact-Full Rock Confinement with Fiber-

Reinforced Lining 

The last experiment was carried out to investigate the behavior of the reinforced 

concrete lining in partial contact with rock under high field stresses, similar to the 

fourth and sixth experiments. The difference from the sixth experiment is that the 

contact with the rock in both upper parts of the tunnel lining is partially achieved since 

additional concrete was poured as shown in Figure 50. Concrete mixing ratios were 

the same as those used in the fifth and sixth experiments. During the experiment, the 
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tunnel lining was loaded and unloaded to three different load levels (0.4 MPa, 1.05 

MPa and 0.9 MPa). Due to the closure of the cracks observed in the first unloading 

cycle, only first loading cycle of the experiment was modeled with the OLM. 

 

Figure 50. The setup of the last experiment with additional concrete layers 

 

Figure 51. OLM elements used in the modeling of the seventh experiment 
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OLM simulation model for the final experiment included, similar to the fourth and 

sixth experiments, 6 different materials as shown in Figure 51. The main difference of 

this experiment from the sixth experiment was to provide increased rock interaction 

by adding concrete filling to a part of the cavity formed in the previous experiments. 

This fill layer was added to the model and analyzes were performed. For this layer, 

OLM material parameters were assumed as cr = 5e-05, a1 = 10, a2 = 30, a3 = 40 and 

b1 = 06, b2 = 0.2, similar to material parameters of rock body. The OLM material 

parameters for the lining were elasticity modulus Ec = 31.8 GPa and cr = 5.5e-05,          

a1 = 1, a2 = 1000, a3 = 10000 and b1 = 0.2, b2 = 0.1 corresponding to a fracture energy 

(GF) of 530 N/m. Tensile strength was taken as 1.75 MPa. 

 

Figure 52. Computed and measured tunnel expansions as a function of the applied load  
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Figure 53. Experimental damage pattern [Kalaycıoğlu, 2019] 

The horizontal and vertical tunnel expansions from the experiment are in good 

agreement with the OLM computed expansions (Figure 52). Figure 54 shows the 

damage distribution obtained from the simulation at four different values of total load. 

When OLM results and experimental results are compared, it is seen that the damage 

on the fiber-reinforced concrete lining is concentrated in the parts where rock contact 

is lost at the top (Figure 53 and Figure 54). 
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Figure 54. Strains when total applied force is 200 kN, 300 kN, 350 kN and 450 kN. Color scaled 

adapted to values between -0.0005 (blue) and 0.002 (red) 
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4.3. Dynamic OLM Simulations  

In this part, behavior of pressure tunnels under dynamic loads is examined by using 

the OLM model calibrated and validated with the experimental results. Since it is not 

possible to carry out such experiments in the laboratory, numerical analysis seems to 

be the only way to comprehend the dynamic behavior. 

While approximate method or PID control method given in Section 3.1 were used to 

solve quasi-static problems, explicit integration method is preferred to simulate 

dynamic behavior due to the difficulty in solving equilibrium equations by iterations 

due to the major and sudden changes caused by the cracks in the system stiffness 

matrix. When explicit integration is used, the damping matrix, which has little effect 

on slow loading rates, becomes quite important in dynamic analysis. The damping 

matrix is chosen as Rayleigh energy damping matrix as described in Section 3.1. 

Damping was kept below 1% with an α value of 0.1, and β value of 0.0001. 

In the previous sections, it was shown that all the experimental results can be predicted 

reasonably with the help of the developed constitutive relations in OLM. Therefore, 

the numerical results given in this section were obtained by using the identical material 

parameters with the models used for the laboratory experiments. The OLM parameters 

for the lining were cr = 6e-05, a1 = 5, a2 = 80, a3 = 300, b1 = 0.6, and b2 = 0.2, whereas 

the OLM parameters for the rock body were cr = 5e-05, a1 = 10, a2 = 30, a3 = 40, b1 = 

0.6, and b2 = 0.2.  

In order for the transparent boundary conditions to work successfully, the boundary 

must be located at a sufficiently far distance from the tunnel lining. For this reason, 

after carrying out test simulations, transparent boundary conditions were placed four 

times the inner radius of the tunnel from the center of the tunnel. Tunnel geometry 

was taken as the same geometry used in the experimental studies. The internal radius 

used in the experiment was 0.72 m, the boundary conditions were placed at a distance 

of 2.88 m (Figure 56). In the dynamic analysis for circular tunnels, the inner radius 
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was taken as 0.72 m and the boundary conditions were again placed at a distance of 

2.88 m (Figure 74). 

In dynamic analysis part, internal normal pressure load was applied up to five different 

value ranged from 0.2 MPa to 1.0 MPa as shown in Figure 55 with a very small time 

step Δt = 5x10-8. 

 

Figure 55. Internal pressure values vs time 

 

4.3.1. Results of Different Rock Qualities 

First, dynamic analyzes were performed for the case where in situ stresses were 

negligible. Modulus of elasticity (24.3 GPa) measured experimentally in the first 

experiment was used for the concrete lining. With the aforementioned OLM material 

parameters, concrete fracture energy (GF) for the lining were taken as 45 N/m. These 

lining parameters were used in all dynamic simulations. On the other hand, three 

different rock modulus of elasticity values (2 GPa, 4 GPa and 8 GPa) were used. In 

the analyses, since there was no loading plate and rubber sheet in these experiments, 

the uniform internal pressure was applied on the tunnel wall in the normal direction 

corresponding to real field conditions. 
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Figure 56. OLM elements and corresponding data points for the horse-shoe shaped lining 

First, the results the low stiffness rock (E = 2 GPa) are presented. The vertical and 

horizontal expansions of the tunnel over time are presented in Figure 57 and Figure 

58. The tunnel lining exhibits a nearly linear behavior up to an internal pressure of 0.2 

MPa, and above this value the damage is progressively increasing, and after about 0.6 

MPa the tunnel is subjected to major deformations due to the severe damage to both 

the rock and the tunnel lining. Vertical and horizontal length changes are given in 

Figure 59 depending on internal pressure. Dashed lines show that the tunnel continues 

to deform when the internal pressure is greater than 0.4 MPa. That is, as observed in 

the second experiment, rock cracks and the tunnel undergoes severe damage under 

extreme internal pressure. The strain distributions which indicates the cracks 

estimated by the OLM are given in Figure 60. In Figure 61, all elements exceeding 

tensile strength are shown in red. It can be seen in both figures, when the internal 

pressure is 0.2 MPa, although tensile strength is exceeded in the left and right bottom 

corners of the tunnel, no observable cracks occur (crack widths below 0.2mm). When 

the internal pressure reaches 0.6 MPa, a significant part of the tunnel exceeds the 

tensile strength and many cracks begin to open. 
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Figure 57. Vertical expansions over time (E = 2 GPa) 

 

 

Figure 58. Horizontal expansions over time (E = 2 GPa) 
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Figure 59. Vertical and horizontal expansions according to internal pressure. The dashed lines 

indicate that the tunnel continues to take damage (E = 2 GPa) 

 

Figure 60. The strain distribution estimated by the OLM for the internal pressure values of 0.2 MPa, 

0.4 MPa, 0.6 MPa, 0.8 MPa and 1.0 MPa (color scale: blue = -0.001, red = 0.003, E = 2 GPa) 

0.0

0.2

0.4

0.6

0.8

1.0

0.00 0.25 0.50 0.75 1.00 1.25 1.50

P
re

ss
u

re
 (

M
P

a)

Expansion (mm)

Pressure - Vertical Expansion

Pressure - Horizontal Expansion



 

 

 

71 

 

 

Figure 61. Elements exceeding the tensile strength for internal pressure of 0.2 MPa, 0.4 MPa, 0.6 

MPa, 0.8 MPa and 1.0 MPa shown in red (E = 2 GPa) 

The results obtained with elasticity modulus 4 GPa and 8 GPa are given in Figure 62 

and Figure 65, respectively. Similar to the previous results, it should be noted that 

dashed lines represent continuation of the tunnel deformation, thus the distribution of 

damage given for these internal pressure values is not the final distribution of damage. 

As the load increased is far beyond the acceptable level, the final distribution of 

damage is not of interest. As the rock modulus of elasticity increases, it is seen that 

the number and the width of the cracks in the tunnel lining decrease Figure 66. In 

Figure 68, where all the results are compared, it is clearly observed that nonlinear 

behavior starts at smaller internal pressure values as the rock stiffness decreases. In 

the second experiment, when the internal pressure reached about 0.45 MPa, the rock 

surrounding the tunnel started to crack and the tunnel was severely damaged due to 

the pressure applied exceeding the tunnel lining capacity and the experiment was 

terminated. Taking rock modulus of elasticity as 8 GPa, it is observed that the 

formation of the first crack and the progression of this crack are quite similar with the 
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experimental observations (Figure 31 and Figure 69). In the second experiment, when 

the internal pressure reached about 0.50 MPa, the rock surrounding the tunnel started 

to crack and the tunnel was severely damaged due to exceeding the tunnel lining 

capacity and the experiment was terminated. Although pressure is slightly smaller than 

the internal pressure value in which severe damage occurs in Figure 68, it should be 

noted that the test was surrounded by a limited rock body. Numerical results were 

obtained as a tunnel placed in an infinite environment, therefore the numerical values 

were higher than experimental values.  

 

Figure 62. Vertical and horizontal expansions according to internal pressure. The dashed lines 

indicate that the tunnel continues to take damage (E = 4 GPa) 
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Figure 63. The strain distribution estimated by the OLM for the internal pressure values of 0.2 MPa, 

0.4 MPa, 0.6 MPa, 0.8 MPa and 1.0 MPa (color scale: blue = -0.001, red = 0.003, E = 4 GPa) 

 

Figure 64. Elements exceeding the tensile strength for internal pressure of 0.2 MPa, 0.4 MPa, 0.6 

MPa, 0.8 MPa and 1.0 MPa shown in red (E = 4 GPa) 
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Figure 65. Vertical and horizontal expansions according to internal pressure. The dashed lines 

indicate that the tunnel continues to take damage (E = 8 GPa) 

 

 

Figure 66. The strain distribution estimated by the OLM for the internal pressure values of 0.2 MPa, 

0.4 MPa, 0.6 MPa, 0.8 MPa and 1.0 MPa (color scale: blue = -0.001, red = 0.003, E = 8 GPa) 
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Figure 67. Elements exceeding the tensile strength for internal pressure of 0.2 MPa, 0.4 MPa, 0.6 

MPa, 0.8 MPa and 1.0 MPa shown in red (E = 8 GPa) 

 

 

Figure 68. Vertical and horizontal expansion for rock stiffness E = 2 GPa, 4 GPa and 8 GPa 
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Figure 69. Strain distribution estimated by OLM when total applied force is 0.2 MPa, 0.4 MPa, 0.6 

MPa, 0.8 Mpa and 1.0 MPa respectively (E = 8 GPa) (color scale: blue = -0.0001, red = 0.0002) 
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4.3.2. Effects of In-situ Stress 

The overburden stress on the tunnel is one of the important parameters affecting the 

behavior of the tunnel lining. Experimental studies with in-situ stress have clearly 

demonstrated this effect (Kalaycıoğlu 2019). As the tunnel is placed deeper, the in-

situ stress delays the cracking of the rock and helps to maintain the rigidity of the rock. 

In cases where the tunnel is placed too deep, the stresses caused by the opening of the 

tunnel may cause the rock to show plastic deformation. However, this behavior is 

expected to be at very high depths which is beyond the scope of this study. 

In this study, considering the absence of in-situ stress testing of such structures, the 

gravitational in situ stress due to overlying rock is derived by the application of theory 

of elasticity with the tunnel depth and the tensile strain limit of rock (Equation 4.1). 

Poisson ratio is taken as 0.25. This approach can be used for rocks which do not lose 

their stiffness due to plastic deformation. Assuming that the vertical and horizontal 

stresses are equal (K0 =1) depending on the depth of the tunnel, previous simulations 

were repeated by increasing this critical unit deformation capacity of the rock at the 

same rate. Therefore, the results given in the previous section correspond to the 

situation where the tunnel is very close to the surface. 

𝜎𝑣 = 𝛾 ×  𝑧 = 𝜎ℎ  (𝐾0 = 1)  

𝜀 =  
𝜎ℎ × (1 − 2 × ν)

𝐸𝑟𝑜𝑐𝑘
 [4.1] 

𝜀 =  𝛾 ×  𝑧 ×
0.5

𝐸𝑟𝑜𝑐𝑘
  

𝜀𝑐𝑟 =  𝜀 +  𝜀𝑐𝑟  

where 𝛾 is the unit weight of the rock and 𝑧 is the depth of tunnel. 𝜎𝑣 defines the 

vertical stress and 𝜎ℎ is the horizontal stress. In Figure 70, the horizontal and vertical 

length changes are given for the case where the elastic modulus of the rock is 2 GPa 

and the internal pressure is 0.8 MPa. The parameters used in the simulations are the 
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same as those given in the previous section. The only difference is the increase in 

cracking strain (𝜀𝑐𝑟) of the rock as a function of depth and unit weight. As it is clearly 

seen in the figure, increasing the depth of the tunnel causes the rock to crack less and 

this leads to the reduction of cracks caused by the transfer of internal pressure to the 

rock and to maintain rock rigidity. After a depth of approximately 50 m, the rock 

hardly loses its rigidity. A similar behavior can be observed in cases where the rock 

modulus of elasticity is 4 GPa and 8 GPa (Figure 71 and Figure 72). 

 

 

Figure 70. Variation of horizontal and vertical expansions over depth (Erock = 2 GPa) for internal 

pressure 0.8 MPa 
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Figure 71. Variation of horizontal and vertical expansions over depth (Erock = 4 GPa) 
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Figure 72. Variation of horizontal and vertical expansions over depth (Erock = 8 GPa) 

The damage in the tunnel lining in the simulation is shown in Figure 73. Damage on 

tunnel lining decreases as in-situ stress increases. However, it should also be noted 

that even if the tunnel is surrounded by rock that does not lose its rigidity, cracks 

occurs depending on the ratio of tunnel and rock stiffness.  

With the help of numerical simulations, it can be said that the rock will behave almost 

elastic after a depth of 50 m. It is understood that for weak rock and / or rock 

environment that are expected to be damaged during the pressurization, therefore the 

design will be on the safe side without taking the field stresses into account. 
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(a) E = 2 GPa 

 

(b) E = 4 GPa 

 

(c) E = 8 GPa 

Figure 73. Estimated strain distribution according to the elasticity modulus of rock (E = 2 GPa, E = 

4 GPa, E = 8 GPa) from top to bottom and the increasing depth from left to right (0 m, 25 m, 50 m) 

(color scale: blue = -0.001, red = 0.003, 0.8 MPa internal pressure). 
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4.3.3. Effect of Geometry 

In this study, reverse horse-shoe tunnel geometry was used in experiments and 

numerical simulations. The reason for this choice is the widespread use of this type of 

internal pressure tunnel geometry in Turkey due to the advantages it provides in the 

construction process. The high tension zones in the left and right corners of the reverse 

horse-shoe shaped tunnel have come to the fore as the first cracking part in both 

experimental and numerical studies. Therefore, it can be said that the geometry used 

has a significant disadvantage. In this section, the reverse horseshoe geometry used in 

the experiments is compared with classical circular geometry in pressure tunnel 

simulations. There is an approximate 3% difference in the circumferential lengths of 

these two geometries, which are very close to each other in terms of total area (the 

circumference of the circular section is shorter).  

Modulus of elasticity (24.3 GPa) measured experimentally in the first experiment was 

used for the concrete lining. With the previously mentioned OLM material parameters, 

concrete fracture energy (GF) for the lining was taken as 45 N/m. The rock elasticity 

modulus was selected as 8 GPa, similar to the layered rock material in the second 

experiment. Therefore, fracture energy for rock body incorporated into OLM model, 

was approximately 3.0 N/m. 
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Figure 74. OLM elements and corresponding data points for circular lining 

When Figure 78 is compared with Figure 73, it is observed that the difference in 

damage amounts distributes the load of the circular section up to 0.6 MPa value of the 

internal pressure, but above this value, both tunnel geometries are insufficient to meet 

the pressure. In the reverse horse-shoe tunnel geometry, due to stress concentrations, 

cracks occur in the lower corners when the internal pressure exceeds 0.4 MPa, and 

when the internal pressure reaches 0.6 MPa, significant differences occur between the 

vertical and horizontal tunnel expansions. In circular tunnel geometry, when the 

internal pressure is below 0.6 MPa, the cracks are considered as within acceptable 

limit. As shown in Figure 75, depending on modulus of elasticity of the rock, circular 

shaped tunnels have 10-20 % less expansions comparing to the tunnels with horse-

shoe shaped geometry. With rock modulus of elasticity as 4 GPa, it is concluded that 

the rock lost its strength when the internal pressure exceeds the limit 0.6 MPa (Figure 

76). Finally, OLM simulations were performed for all combinations where the circular 

tunnel was placed at 0 m, 25 m and 50 m depth and the rock elasticity modulus was 2 

GPa, 4 GPa and 8 GPa by the method described in Section 4.3.2. The results are shown 
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in Figure 77 and Figure 78. Similar to the horse-shoe shaped geometry results, it can 

be said that the rock confinement up to 50 m, decreases the number of cracks and 

crack widths considerably. 

 

Figure 75. Tunnel expansions for rock stiffness E = 2 GPa, 4 GPa and 8 GPa 
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Figure 76. Strain distribution estimated by OLM when total applied force is 0.2 MPa, 0.4 MPa, 0.6 

MPa, 0.8 MPa and 1.0 MPa respectively (E = 4 GPa) (color scale: blue = -0.0001, red = 0.0002) 
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Figure 77. Variation of tunnel expansions over depth 
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(a) E = 2 GPa 

 

(a) E = 4 GPa 

 

(a) E = 8 GPa 

Figure 78. Estimated strain distribution according to the elasticity modulus of rock (E = 2 GPa, E = 

4 GPa, E = 8 GPa) from top to bottom and the increasing depth from left to right (0 m, 25 m, 50 m) 

(color scale: blue = -0.001, red = 0.003, 0.8 MPa internal pressure) 
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CHAPTER 5  

 

5.  CONCLUSION 

In this study, OLM simulations of pressure tunnel experiments are presented. 

Following conclusions are drawn with future studies for applications and further 

development of the numerical modeling as follows: 

• OLM was capable of predicting the key variables (such as tunnel expansion, 

damage distribution, etc.) with a reasonable accuracy using just a few variables 

(fracture energy, elasticity modulus, tensile strength).  

• Behavior of tunnel lining depends considerably on the contact between the 

lining and rock body. Local imperfections are likely cause of cracks that are 

observed in practice.  

• Dynamic amplification was not accounted in the computations, as loading rate 

considered in the experiments were very low. As dynamic experiments do not 

seem feasible, computational approach is the only way to simulate the actual 

crack initiation and propagation in pressure tunnels.  

• Fiber-reinforced concrete tunnel linings are likely to distribute evenly the 

damage and decrease crack widths.  

• Circular shaped tunnels have 10-20 % less expansions compared to the tunnels 

with horse-shoe shaped geometry 

• Tunnel linings with appropriate rock confinement have less cracks with the 

application of in-situ stress conditions up to 50 m.  

• Based on the findings of experimental and computational studies, design 

guidelines for pressure tunnels can be created to assist practicing engineers. 

• The effect of water pressure in the cracks was ignored. Experimental and 

computational research programs focusing on the micro modeling of this 

phenomenon are necessary for more advanced mathematical models.  
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• Effects of cold joints and localized rock softening due to early tunneling 

applications could be studied to be incorporated into mathematical models. 

• Computational time of the PID solutions should be evaluated further to obtain 

an optimum time-cost relation. 

• Shear and compression failure modes could be implemented into the OLM for 

better understanding of concrete behavior. 

• Three-dimensional OLM studies should be carried out to eliminate the 2D-3D 

effect which can be the cause of the differences between dynamic results. 
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