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ABSTRACT

MODEL COMPARISON FOR GYNECOLOGICAL CANCER DATASETS
AND SELECTION OF THRESHOLD VALUE

Bahgivanci, Basak
Master of Science, Statistics
Supervisor: Prof. Dr. Vilda Purut¢uoglu

September 2019, 75 pages

Cancer is a very common system’s disease with its structural and functional
complexities caused by high dimension and serious correlation of genes as well as
sparsity of gene interactions. Hereby, different mathematical models have been
suggested in the literature to unravel these challenges. Among many alternates, in this
study we use the Gaussian graphical model, Gaussian copula graphical model and
loop-based multivariate adaptive regression splines with/without interaction models
due to their advantages over others from simulated datasets. In the first part of the
thesis, we apply these models in our quasi-true cancer network by implementing real
microarray datasets. The gynecological cancer is the second leading cancer type in
women after the breast cancer. But there are less studies about it regarding the breast
cancer because of its sociological reasons. Herein, initially, we detect the related
literature and generate a list of core genes for this illness. Then, we construct a quasi-
true network from these genes. Finally, we infer this network via underlying models
and assess their accuracies. Hence we can realistically evaluate the performance of

these models in an actual disease’s system.

In these analyses, we also observe that the estimates of models highly depend on their
threshold values which convert estimated strengths of gene interactions as binary form

to construct the graphical network. Thereby, in the second part of the thesis, we



propose a novel approach for the selection of this value by considering the topology

of networks and assess our performance via accuracy and computational time.

Keywords: Gaussian Graphical Model, Gaussian Copula Graphical Model, The Birth-
and-death Monte Carlo Method, Reverse Jump Markov Chain Monte Carlo Method,
Loop-based Multivariate Adaptive Regression, Threshold Selection

vi



0z

JINEKOLOJIK KANSER VERI KUMELERI iCiN MODEL
KARSILASTIRILMASI VE ESiK DEGERI SECILMESI

Bahc¢ivanci, Basak
Yiiksek Lisans, Istatistik
Tez Danigmani: Prof. Dr. Vilda Purut¢uoglu

Eyliil 2019, 75 sayfa

Gilintimiizde ¢ok yaygin goriilen ve bir sisten hastalig1 olan kanser; genler arasindaki
ciddi korelasyon, yiiksek boyutluluk ve dahasi gen etkilesimlerinin seyrekligi
sebebiyle, yapisal ve fonksiyonel olarak karmasik bir yapidadir. Bu karmagikliklarin
iistesinden gelebilmek igin literatiirde birgok model ortaya atilmistir. Bu ¢aligmada,
bu modeler arasindan simiilasyon veri setleri aracilifiyla digerlerine gore daha
avantajli oldugu goriilen Gaussian grafiksel modeli, Gaussian Coplula grafiksel
modeli ve son olarak etkilesimli/etkilesimsiz dongii temelli c¢ok degiskenli
uyarlanabilir regresyon modelleri kullanilmistir. Tezin ilk boliimiinde, bu modellerle
ve gergek mikrodizin veri setlerini kullanarak, olusturdugumuz olasi-gercek
jinekolojik kanser agmi modelliyoruz. Jinekolojik kanser kadinlarda, meme
kanserinden sonar en sik goriilen kanser tiiriidiir. Fakat bu kanser iizerine, meme
kanserine gore sosyolojik sebepler yiiziinden daha az ¢alisma bulunmaktadir. Bu
nedenle, calismada, ilk olarak jinekolojik kanser iizerine literatiir ¢aligmas1 yaparak,
bir gen listesi elde etmekteyiz. Daha sonra bu genlerden olasi-ger¢ek bir ag yapisi
olusturmaktayiz. Son olarak, secgilen modeler araciligiyla ag yapisini tahmin ederek,

model dogruluklarini degerlendirmekteyiz.

Bu analizler esnasinda ayrica, tahmin edilen gen etkilesim miktarlarini iki degiskenli

forma doniistiirerek grafiksel model elde edebilmek i¢in kullanilan esik degerinin ve
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dolayisiyla bu degerin se¢iminin model tahminlerinde ¢ok 6nemli oldugunu goérdiik.
Bu sebeple, tezin ikinci boliimiinde ag yapilarinin topolojik 6zelliklerini géz oniinde
bulundurarak esik degeri se¢imi yapan yeni bir yaklasim Onermekteyiz ve bu
yaklasimim performansi dogruluk oOlciitleri ve hesaplama zamani acgisindan

degerlendirmekteyiz.

Anahtar Kelimeler: Gaussian Grafiksel Model, Gaussian Kopula Grafiksel Model,
Dogum ve Oliim Markov Zinciri Monte Carlo Metodu, Geri Sigramali Markov Zinciri
Monte Carlo Metodu, Dongii Temelli Cok Degiskenli Uyarlanabilir Regresyon
Modeli, Esik Degeri Se¢imi
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CHAPTER 1

INTRODUCTION

Cancer is a branch of system disease that is caused by mutations in tumor suppressor
genes, oncogenes and DNA repair genes (Romero-Garcia et al., 2011). Considering
all cancer types, gynecological cancers are the most prevalent among women in
developing counties. (Hsu et al., 2017, Small et al., 2017; Iyoke & Ugwu, 2013).
Because of sociological reasons, there is an imminent and serious crisis for
gynecological cancer types in developing countries (Small et al., 2017). In addition to
that, only small proportion of cancer patients respond to the drug prescribed for their
treatment (Wijst et al., 2018). Therefore, accurately screening genes and their
interactions has become more crucial to prevent gynecological cancers and finding the

right cure.

On the other hand, still, there are several challenges to discover gene interactions due
to the structural and the functional complexities inherited in biological systems such
as high sparsity of the system, high number of genes relative to the number of
observations and high correlation between genes. Hence, to be able to obtain reliable
interaction network to explain actual system’s disease, the choice of mathematical
models plays very critical role. For this purpose, in this study, mathematical models
are studied carefully to model network systems more accurately in the real network
datasets. Because in the literature, majority of the comparative studies are based on
either Monte Carlo runs or benchmark data. Herein, we evaluate them
comprehensively in order to construct gynecological cancer networks by using real
microarray datasets whose core genes are investigated from the associated literature.
Since detecting the genes related with the particular cancer is the first step to cure that

disease, we aim to compare network models to figure out which model can detect the



cancer related genes better. We also aim to improve one of these models, GGM, by

comparing the threshold methods.

Hereby, in the organization of the thesis, we present the following content. In Chapter
2, we give some background information about the networks, graph theory and the
topology of biological network. Afterwards, we represent how a true (quasi) network
for gynecological cancers can be constructed. For the construction of the underlying
network, we check the associated literature and detect eleven genes selected from
different review studies. There genes are MAP2K1, MAPK1, CEBPB, CTNNBI,
TFAM, TP53, PDIA3, IMP3, ERBB2, CHD4 and MBD3 (The Cancer Genome Atlas
Research, 2011; Cancer Genome Atlas Research Network, 2013; Hu et al., 2015).

Accordingly, Chapter 3 continues with the description of different mathematical
methods to construct the network. The first method used in this study is the Gaussian
graphical model (GGM). This model is one of the fundamental modeling approaches
to explain the relationship between two biological entities under the steady-state
activation of the system via an undirected graph (Whittaker, 1990). The second
approach applied in our analyses is the Gaussian copula graphical model (GCGM)
which is the combination of GGM with the Gaussian copula (Green,1995). The major
distinction of this model regarding GGM is its inference in the sense that GCGM can
be estimated via reverse jump Markov chain Monte Carlo (RIMCMC) approach
(Dobra & Lenoski, 2011; Farnoudkia & Purutguoglu, 2018) and the birth-and-death
Monte Carlo methods (BDMCMC) (Mohammadi & Wit, 2015) under the Bayesian
settings. On the other side, GGM is inferred by the penalized likelihood approach or
generalized least square methods. Besides these two parametric techniques, we also
implement a nonparametric method that is specifically designed for complex
biological network. This model is called the loop-based Multivariate Adaptive
Regression Splines (LMARS) model.

On the other hand, in the application of all these mathematical models, it is seen that

the selection of the threshold value which converts the estimated model parameters to



a binary form has a direct effect in the accuracy of the fitted model. Accordingly, in
order to make more reliable decisions about the activations of the complex systems,
certain methods about the selection of the optimal threshold value are suggested in the
literature (Bassest & Bullmore, 2006). Some of these selections are based on
parametric approaches and some are fully nonparametric. For instance, Scheneider et
al. (2019) select the threshold in their studies parametrically by taking into account of
the distribution of the data. They also adopt an optimization approach based on an
estimator, which is the Hill, in order to propose a nonparametric threshold selection
method in the univariate extreme value analysis. On the other hand, a nonparametric
procedure which depends on the selection of the optimal p-value for the edges’
significance via a hypothesis testing is done by comparing existing edges via their
randomness is suggested by Aldemuvar (2019). Moreover, Chen et al. (2015) present
a parametric method which uses the mixture of distributions in the exponential family.
There are also other studies which implement empirical analyses for the underlying
system (Liu et al., 2016) or intuitively select 0.5 or 0.6 value as a constant term in
order to control biological networks sparsity (Gibson et al., 2013). On conclusion,
considering all of the threshold selection methods mentioned above, it is observed that
parametric approaches needed detailed information about the data and have
restrictions about the underlying distribution. On the contrary, the nonparametric
approaches are flexible. However, they can be computationally demanding if their
calculations depend on the optimization techniques. On the other side, such methods
like using a fix value or accuracy measures to validate the estimated systems ‘structure
by their (quasi) representations can be more computationally user-friendly. Whereas,
current methods in this group do not consider the topology features of the network of
interest. Thereby, in this study, we initially evaluate the influence of major threshold
selection methods in the literature that are typically applied for the binary construction.
Then, we propose an alternative approach in this field and assess the accuracies of
estimates under distinct measures and computational time. In this assessment, we
apply GGM as it is the fundamental model of many complex approaches. Thus, in

Chapter 3, we also describe well-known threshold selection methods which are used



to convert numerical entries of precision matrix into a binary form under an adjacency
matrix. The selected threshold selection methods are the kappa maximized threshold
criterion (Guisan et al., 1998), minimized difference threshold (Jiménez-Valverde &
Lobo, 2007), maximized sum threshold (Manel et al., 2001), and 0.5T criterion (Manel
et al., 1999). In addition to these approaches, researchers can also perform either by
expert opinions or assigning arbitrary constants for the selection of this value in gene
network analysis (Zhao & Duan, 2019; Purutguoglu & Segcilmis, 2019). Accordingly,
as a contribution to the field, we introduce a novel nonparametric procedure which
considers the topology of the gene network system while imposing a threshold value

to the precision matrix.

Additionally, in Chapter 4, firstly, we present how we obtain the real datasets which
include all the genes of the true (quasi) gynecological network. To collect microarray
data, we use the ArrayExpress database which is a free database for microarray
studies. After searching throughout the ArrayExpress which has more than 1000 data
for gynecological cancers, only three different types of gynecological data are found
which have same the characteristics and worked simultaneously in the same study.
Afterwards, the models which are mentioned in Chapter 3 are assessed by comparing
their accuracy measures for the underlying three real oncogenic datasets. Once the
listed eleven genes are modelled under a network, we also augment the dimensions
(i.e., the total number of genes in the system) in the network construction.
Furthermore, to estimate adjacency matrix comparable with the true precision matrix,
threshold selection methods are applied under GGM. To illustrate the performance of
threshold methods, outputs are evaluated via simulated datasets which are created
under different Monte Carlo scenarios, as well as real datasets. Finally, we cover the

findings, discuss the outputs and suggest some future works.



CHAPTER 2

BACKGROUND

2.1. Networks

Even in this moment we are surrounded by many changing and interconnected
networks while signaling of our neurons and our organs for their works. So, since from
the beginning till the end, everything has connection with a network. The network
science is a rising and very interdisciplinary research area which develops
mathematical approaches in order to expand our natural and man-made network
understanding (Borner et al., 2007). Hereby, as a description, network is a group of
interconnected things which consists of nodes and edges, and has the application in
almost all systems. Majority of the mathematical description of networks is based on
the graph theory due to its visual simplicity in understanding the complexity of the
actual structure and its flexibility in the application. Hence, the graphs which can
represent the network can be divided into two groups. These are directed and
undirected graphs. Below, we initially describe these two sorts of graphs. Then, we
explain the networks which generate graphs based on their topologies. These
topological distinctions are originated from the distributions of the interactions in the
systems. For the biological networks, we can observe two types of the distribution in
the spread of the interactions. They are the random networks and scale-free networks.

Hereby, in the following parts, we also introduce both networks’ types in details.



Directed and Undirected Graphs
A finite directed graph consists of a set of edges and nodes in such a way that each

edge connects a starting node u to a terminal node v. By this way, the direction of the
flow can be observable from the graph. On the other hand, an undirected graph also
consists of a set of edges and nodes. However, there is no direction between node u
and v. For biological networks, the nodes indicate the genes, proteins or other species
in the systems and the edges show the physical or functional interactions (or
relationships) between them. Figure 2.1 presents the basic representation of both

graphs for two nodes via one edge.

Figure 2.1. A Directed (Left) and an Undirected Graph (Right), Consists of Two Nodes and One Edge

For the biological networks, majority of the graphs are presented by the undirected
type since there is a limited information from the direction of the flow (i.e., interaction)
about each gene in the system. Therefore, in this study, we merely work on the class
of undirected graphs for both the mathematical modeling and the threshold selection.
Below, we describe the main criterion which can separate the undirected graphs into
two parts as random and scale-free. This criterion is called the degree or connectivity

of the graph.

The basic characteristic of a node is its degree (or connectivity), k, which represents
the number of links that the node has to other nodes. An undirected network is

characterized by an average degree



= 2L
k== 2.1)

where N is the size of the networks. The network types can be classified by the
probability distribution of their links. Below, we present them with their mathematical

descriptions.

2.1.1. Random Networks

There are two definitions for the random network. First one is a G (N, L) model which
can simply be described as N labeled nodes that are connected with L randomly placed

links (Barabasi, 2016).

On the other side, the second definition stands for a G(N,p) model. This model
connects each pair of N labeled nodes with a probability p. Accordingly, the G(N,p)
model fixes the probability, on the contrary, the G (N, L) model fixes the number of
links. Since in real networks, the number of links doesn’t stay fixed, the second model

is given below as a description of random networks.

In a random network, the probability that a selected node having k links is the product

of the following steps (Barabasi, 2016):

e The probability that the link & has connection is presented by p*

e The probability that remaining (N — 1 — k) links are missing is computed by
(1 -p)¥

e The number of possible ways that k links from N — 1 potential links a node
can have is selected via (N; 1)

So, the degree distribution py can be shown by

pe = (" pk( —p)NrE 2.2)



However, most real networks indicate a sparse structure (Barabasi, 2016), therefore,
k <« N where k shows the average degree. Hence, the limiting distribution of the
degree (2.2) can be approximated by the Poisson distribution as presented in the

following expression.

Pe=e "~ (2.3)

The density Equation (2.3) is also called the degree distribution of the random
network. In Figure 2.2 (a), a simple view of a random network with eleven nodes can

be seen.

2.1.2. Scale-free Networks

The degree distribution py gives the proportion of a selected node having k links. The
probability is calculated by

N(k
k=0 (24)

where N (k) is the the number of nodes with k number of links.

Most biological networks including protein-protein networks are scale-free (Milo et
al., 2002; Barabasi & Oltvai, 2004). That is, their degree distribution follows a power

law distribution as stated below.
Pr=k7", (2.5)
in which y denotes the degree exponent. For the biological networks, this value lies

from2to3,2 <y <3.

For scale-free networks, although most of the nodes have less number of links, i.e.,
small-degree, there exists few nodes having very large number of links, i.e., high-

degree, in such a way that they are father than the average degree, k. Those nodes are



called as hubs (Barabasi & Oltvai, 2004). In figure 2.2 (b), a simple illustration of a
scale-free network with eleven nodes is shown.

Random network Scale-free network

¢

(a) (b)

Figure 2.2. The Representation of (a) the Random and (b) the Scale-free Networks with Eleven Genes

2.2. Biological Networks

Although there are many publications suggesting that most of the biological networks
are scale-free (Barabasi & Oltvai, 2004), there are some recent publications proposing
its contrary (Broido & Clauset, 2019). As illustrated in the Figure 2.3, Broido and
Clauset (2019) show that a majority of the biological networks do not have any direct

and indirect evidence for the structure of scale-free network.

Broido and Clauset (2019) argue that 63% of the biological data that they examine
have a lack evidence of scale-freeness. However, they also state that 6% of the
biological data, which are mostly metabolic networks, are in the category of strongest,
and not all, but most of them, show a direct evidence of the scale-free structure such

as some protein-protein interaction networks.

Hereby, in our analyses for the threshold selection, we study via both random and

scale-free networks under different Monte Carlo runs. On the other side, we only



consider the scale-free network structure for the real gene networks’ data since they

are benchmark datasets and are worked as scale-free in distinct studies.

Scale Free

163 (0.33)

Super-Weak

Weakest 94 (0.19)
Weak 48 (0.10)
Strong 30 (0.06)

Strongest 30 (0.06)

Figure 2.3. The Proportion of Biological Networks by Scale-Free Evidence Category Regarding the
Study of Broido and Clauset (2019)

2.2.1. Quasi-Gynecological Network

The gynecological cancer is the second most common cancer type among women after
the breast cancer (Iyoke & Ugwu, 2013). There are five main gynecological cancer
types seen in the oncogenic literature. These are the vaginal, vulvar, ovarian, cervical
and endometrial cancers. In this study, we combine those five subtypes of cancers
under a single group and call it as the gynecological cancer while constructing a quasi-

gynecological cancer network.

Accordingly, by comprehensive literature review given below, we find that CTNNBI,
TFAM, CEBPB, MAP2K1, MAPKI1, TP53, PDIA3, IMP3, ERBB2, CHD4 and
MBD3 are the genes related with the gynecological cancer by having significant fold
changes, and these genes have dense connections within each other so that they can

generate complete graph. However, it should be underlined that these genes have

10



many aliases. For instance, MRPS4, BRMS2, C150rf12 are some aliases of the IMP3
gene symbol and other aliases can be found for the same gene as well. Hence, the
researchers can choose each one of the aliases in their works since they all represent
the same gene symbol. But this situation creates difficulties in the detection of genes
which are related with some specific cancers. Accordingly, in this study, gene aliases
are also considered and some of the findings are presented for the eleven genes

mentioned above.
CTNNB!

The Ovarian and endometrial carcinomas include many gynecological carcinomas in
developed countries (McConechy et al., 2013). It is found that most frequent mutations
are observed for ovarian and endometrial endometrioid carcinomas related with
CTNNBI gene (Cho & Shih, 2009; McConechy et al., 2013; Hong et al., 2015).
Especially, the endometrial carcinomas are proven to have different types of mutations

specific to each subtype by a mutation in CTNNB1 (O’Hara & Bell, 2012).
TFAM

The mitochondrial transcription factor is encoded by the TFAM gene. It has been
shown that the unsteady state of Mitochondrial DNA (mtDNA) has a link to metabolic
changes, and therefore, contributes to tumorigenesis and increases expression of pro-
tumorigenic genes. Hereby, TFAM regulates the energetic metabolism of the
glutamine in order to maintain the metabolic needs of the cancer cell. Since highly
invasive ovarian cancer are highly dependent to glutamine, TFAM also plays
important role on the ovarian cancer cells as well. (Arauja et al., 2018). In another
study, Liu et al. (2001) also report that the finding of a high occurrence (60%) of the
somatic mtDNA mutations in the human ovarian carcinomas and it is shown that it

also has mutations in the endometrial carcinomas (Hong et al.; 2015).

CEBPB
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From the studies, it is indicated that a high expression level of the CEBPB gene
detected in the endometrial cancers’ cells. Since the CEBPB gene is only expressed in
the proliferative cancer cells, the expression level of CEBPB plays an important role
as a proliferative maker for both cervical and endometrial cancers (Arnett et al., 2003).
Moreover, Pan et al. (2010) also report the fact that CEBPB is involved in the cervical

cancer.
MAP2K]

The mutation in this gene is found with several types of cancer. The study of
carcinoma by He et al. (2015) points out that MAPK1 and MAP2K1 are two of the
target genes for the endometrial cancer. Another study states that MAP2K1 (MEK1)
is a critical mediator of the pathway which has a significant role in the ovarian

carcinogenesis (Miller et al., 2014).
MAPK1

This gene is linked with ovarian, endometrial carcinoma and cervical cancers as
presented in the studies of Yiwei et al. (2015) and He et al. (2015). Especially, the
studies present that the primary cervical carcinomas are related with the high
frequency of mutations in MAPKI1. This is also supported by the recent integrated
studies of the genomic characterization (Penson et al., 2016). Other studies report that,
besides the endometrial cancer, MAPK1 has a crucial role in tumors progression too

(He et al., 2015; Chang et al., 2017).
TP53

This gene is the most frequently mutated genes in the human cancer as tumor
suppressor gene. Specifically, TP53 is recognized by its association with the ovarian
cancer (Kobel et al., 2016; Penson et al., 2016). Moreover, researchers encounter with
the TP53 mutations in almost all advanced ovarian carcinomas (Brachova et al., 2014;
Mullany et al., 2015). The cancer Genome Atlas also supports the fact that 96% of

advanced ovarian carcinomas have the TP53 mutation (Vang et al., 2016).
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PDIA3

PDIA3 gene is reported to be highly expressed in serous ovarian cancer (Chay et al,
2010; Takata et al., 2016). PDIA3 is also related with the adenocarcinoma of the
uterine cervix (Liao et al, 2011) and the squamous cell carcinoma of the uterine cervix

(Chung et al, 2013).
IMP3

IMP3 is reported and validated as biomarker for the ovarian clear cell carcinoma
(Kdbel et al., 2009). It is also highly expressed in a serous ovarian cancer cell line and
is chosen as the best independent biomarker for the uterine serous carcinoma
(Mhawech et al., 2010). Lastly, IMP3 is detected to involve in progression of the

ovarian cancer and a potential prognostic biomarker (Noske et al., 2009).
ERBB2

ERRB?2 is reported to be related with the ovarian cancer, and it is often observed in
advanced stages of the cancer (Afify et al., 1999; Fukushi et al., 2001; Wu et al., 2003).
Although, its role is controversial, recent studies show that ERBB2 can be used as a
prognostic biomarker in the ovarian cancer patients (Luo et al., 2018). Since when
ERBB2 is overexpressed, it is reported to be associated with ovarian, endometrial
cancer (Koopman et al., 2018; Yang et al., 2019) as well as the uterine serous

carcinoma (Zao et al., 2013).
CHD4

CHD4 is also shown as mutated in endometrial endometrioid carcinomas (Le Gallo et
al., 2012; Hong et al., 2015). CHD4 is reported as the third most frequently mutated
gene in the study of the uterine serous carcinoma (Zao et al., 2013). Another recent
study also supports these findings in such a way that CHD4 is a frequently mutated

gene in the endometrial cancer (Li et al., 2018).

MBD3
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In the pathogenesis of the uterine serous carcinoma, the somatic copy number of the
variations plays a major role. Most of the copy number of the deletion is found in the
segment of the chromosome 19 which includes 17 genes. Considering those 17 genes,
CHD4 and MBD4 are the part of the same complex -the NuRD-. Therefore, MBD3 is
also represented as the mutated gene in the uterine serous carcinoma (Zhao et al.,

2013).

Table 2.1. Full Names, Aliases and Functions of Our Eleven Core Genes

Gene Symbol/Name Full Name Alias Function
involves in the

production of a
protein called
beta-catenin
NEDSDV, MRDI19, | which plays an

CTNNBI Catenin Beta 1 EVR7, CTNNB important role
in the cell
adhesion and
in the cell-cell
communication
encodes an
important
MTDPS15, mitochondrial
Transeription TCF6L1, TCF6L2, transcr.iption
TFAM Factor A, TCF6 factor in the
Mitochondrial TCF6L3, MTTF1, charge of

MTTFA, MtTF1, | mitochondrial
TCF-6, MtTFA DNA
replication and
the repair
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encodes a

transcription
factor which
C/EBP-Beta, . plays
CCAAT Enhancer|  C/EBP Beta, | PO al}llt roles
CEBPB Binding Protein | IL6DBP, NF-IL6, reg;?a:i:n o
Beta TCEFE-5, TCF5, LAP, .
LIP genes 1.nvolved
in the immune
and the
inflammatory
responses
directs the
production of
the protein
EC 2.7.12.2, known as the
. MAPKK 1, MKK1, | MEK1 protein
Mitogen- . e
MAP2K1 Activated Protein PRKMK1, MEK 1, |kinase which is
Kinase Kinase | MAPKK1, CFC3, apartofa
MAPK/ERK signaling
Kinasel, cascade called
the
RAS/MAPK
pathway
encodes a
member of the
MAP kinase
P42MAPK, family which
P41mapk, is the part of
. . MAPK 1, MAPK2, | many cellular
MAPK1 M1togf':n-A.c tivated ERK, P38, P40, processes such
Protein Kinase 1
P41, as the
PRKM1, PRKM2, | proliferation,
ERK-2, ERK2 differentiation
and the
transcription
regulation
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encodes a
protein called

Tumor Supressor the tumor
) P53, protein p53 (or
TP53 Tumo}: Protein Tumor Protein 53, p53) which
>3 BMEFSS, TRP53, | acts as a tumor
BCC7, LFS1 suppressor
(regulates the
cell division)
directs the
production of a
GRPSS, ERp57. protein of the
ERp60, P58, en‘doplasmlc
- HEL-S-269, | cticulum that
Protein Disulfide interacts with
PDIA3 Isomerase Family HEL-5-93n, the lectin
A Member 3 HsT17083, PL-PLC, chaperones to
ERp61, GRP57,
ERP57, ERP60, regul.ate the
ER60 folding of
newly
synthesized
glycoproteins
involves in the
production of
the human
IMP U3 Small homolog of the
IMP3 Nucleolar Cl5orfl12, yeast Imp3
Ribonucleoprotein| MRPS4, BRMS2 protein and
3 interacts with
the U3
snoRNP
complex
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encodes a
member of the

epidermal
P185erbB2, growth factor
MLNI19, (EGF) receptor
ERBB? Erb-B2 Receptor HER2, NGL, family of the
Tyrosine Kinase 2 NEU, CD340, receptor
HER-2, TKRI1, tyrosine
HER-2/Neu kinases and
stabilizes the
binding of
ligands
directs the
production of
Mi2-BETA, SNth/lllzeAD 4
Chromodomain | Mi2-Beta, EC 3.6.1, helicase fam?ly
CHD4 Helicase DNA SIHIWES, Mi-2b, .
Binding Protein 4 | ATP-Dependent Whlch involves
Helicase CHD4 1.n the .
epigenetic
transcriptional
repression
the final
Methyl-CpG product of this
Binding Domain ge.:ne
. constitutes a
Protein 3, . )
Methyl-CpG Methyl-CpG | Tultisubunit
MBD3 Binding Domain | Binding Domain cqmplex wl.nch
. . involves in
Protein 3 Protein 3,
Methyl-CpG nucleosqme
Binding Protein remoc.leImg
MBD3 and histone
deacetylase
activities
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Table 2.2. Sources and Cancer Types of Our Eleven Core Genes

Gene Symbol/Name Sources Cancer Types
Cho & Shih, 2009;
Cancer Genome Atlas Ovarian
Research Network, 2011; cancer
Cancer Genome Atlas .
CTNNBI1 O’Hara & Bell, 2012: endometflefl
McConechy et al., 2013; endor.netrlold
Research Network, 2013; carcinomas
Hong et al., 2015
Liu et al., 2001; Ovarian
TFAM Hong et al., 2015; caneet,
Arauja et al., 2018 endometrial
carcinomas
cervical
Arnett et al., 2003; cancer,
CEBPB Pan et al., 2010 endometrial
carcinomas
Endometrial
MAP2K 1 Miller et al., 2014; carcinomas
He et al., 2015 ) ’
ovarian cancer
Cancer Genome Atlas Ovarian
Research Network, 2011; cancer,
Cancer Genome Atlas cervical
MAPK1 Research Network, 2013 cancer,'
He et al., 2015; endometrial
Yiwei et al., 2015; carcinomas,
Penson et al., 2016; tumor
Chang et al., 2017; progression
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Research Network, 2011;

Cancer Genome Atlas

Cancer Genome Atlas

Research Network, 2013; Ovarian
TPS3 Brachova et al., 2014; C;?;Zi’
Mullany et al., 2015; .
Kobel et al., 2016; progression
Oda et al., 2016;
Penson et al., 2016;
Vang et al., 2016
Chay et al, 2010; Ovarian
Liao et al, 2011; cancer,
PDIA3 Chung et al, 2013; carcinoma of
Takata et al., 2016 uterine cervix
Kobel et al., 2009; Ovarian
IMP3 Noske et al., 2009; ctancer,
Mhawech et al., 2010 utermg serous
carcinoma
Afify et al., 1999;
Fukushi et al., 2001;
Wu et al., 2003; .
Cancer Genome Atlas Ovarian
Research Network, 2011; cancer,.
ERBB2 Cancer Genome Atlas endometrial
Research Network, 2013; ctancer,
Zao etal., 2013; uterm.e serous
Luo et al., 2018; carcinoma
Koopman et al., 2018;
Yang et al., 2018
Le Gallo et al., 2012; Endomet.rlz.il
endometrioid
CHD4 Zao etal,, 2013, carcinomas
Hong et al., 2015; ) ’
Lietal, 2018 uterm? serous
carcinoma
MBD3 Zhao et al., 2013 Uterine serous
carcinoma
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CHAPTER 3
METHODS
3.1. Gaussian Graphical Models

The graphical models are an efficient way to represent interactions between two
entities of a biological system. They have a set of nodes which represent proteins or
genes, and edges between those biological entities as interactions. It is assumed that
graphical models have p set of nodes and state vector formalized as Y = (Y7, ..., ¥).
Depending on the application area, Y represents different random variables, such as
genes for microarray experiment. As mentioned in Chapter 2, graphical models are
divided into two groups such as directed and undirected graphical models. The
Gaussian graphical model (GGM) is one of the well-known undirected graphical
models for the multivariate continuous data which assumes for the vector Y to be a

multivariate Gaussian distribution via,
Y~ N(p X), (2.6)

where u' = (uy, ..., ) shows the mean vector and X denotes variance-covariance
matrix with a (p X p) dimension where g;; is the covariance between Y; and Y; when

i #j and the variances when i = j. Furthermore, X is a symmetric and positive

definite matrix.

As the generalization of the univariate normality, the multivariate normally distributed

Y has a p dimensional density function as

(OO _op <y < oo, (2.7)

f) =

1
CORE
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In GGM, the absence of an edge between two nodes means that these nodes are
conditionally independent given all the other nodes. Thatis, ¥; L Y; | Y\; ; where V =
{1, 2, ..., p} be the set of nodes.

The concept of the independence can be represented indirectly with the variance-
covariance matrix. Particularly, it is related with the precision matrix which is the

inverse of the variance-covariance matrix, denoted by

@=x1=9¢ (2.8)

ij
where X is invertible since it is symmetric and positive definite matrix. Furthermore,
zero in the precision matrix means the conditional independence between the
corresponding variables since the precision can is written in terms of the partial
covariance. Moreover, the diagonal entries of the precision matrix are simply the

inverse of the partial variance as shown below.

1

0;; = , 2.9
Yovar(Y; | Yi) (2:9)
and a minus partial correlation forms the scaled of the diagonal entries via
—9..
M = — (2.10)

g

0;:6;;
with 77;; the partial correlationasY; L Y; | Yp\;; .

However, as mentioned above, the high number of genes relative to the number of
observations causes the sample variance-covariance estimator, S, to be a singular
matrix which results in a matrix that is not invertible. Therefore, it is difficult to obtain
positive definite and symmetric variance-covariance matrix, X, for the networks such

as gene networks because of their distinct nature.

Fortunately, there are different methods to obtain a network’s partial correlations. It
is a Gaussian graphical model which consists of a set of regression functions with each

node against all remaining nodes.
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The method can be shown as a joint multivariate Gaussian with vector ¥ =
Y—p) ¥p), where Y _p) = (Y1, Y,,..,Y,_1) contains all nodes except p. The

conditional distribution of the node Y,, given the remaining node is

- ty-1 -1
Yo 1 Yp) =Y~ N(ty(¥ = ) Z55p0pp Opip = OLppE 75 p0pp). (2.11)

Furthermore, the mean and the covariance matrix can be written by partitioning as
X ,p O_
p=("7) and = [ D ”"’]. (2.12)
14

O-pp Opp

Here, p_, is the mean vector of all nodes except p and y;, denotes the mean vector of

the node p. The variance-covariance matrix of all nodes except the node p is indicated

as X_p _p, and the covariance vector for ¥(_p) is shown as 0_,,, and finally, the

variance of the node p is represented as 0y, ,. Hereby, the model is presented as
yP =y PR +¢. (2.13)

Here, the conditional independence structure is determined by f = Z:;‘_pa_p,p , that

is, by regression coefficients. Since, Z£~1 = I, with I as the identity matrix, we can

get
0_pp=—0,,520 0 _pp (2.14)
=—0,,p. (2.15)
Therefore,
B = —%. (2.16)
p.p

As seen in Equation (2.14),  and the precision matrix are directly connected with
each other. It can be said that Y; is independent of ¥} given the rest when f;; = 0 or

equivalently 6; ; = 0.
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The regression functions are very useful formulations of a Gaussian graphical model
when the precision matrix @ is desired to estimate via the maximum likelihood

technique. The joint density function for observation y; can be given as

n 1
D = @0 ke s o- I o-w), @217)

and likelihood is given by

L(px) = nf(yi;u, ), (2.18)
i=1

n 1% R
e, 2) = log(L(w, D)) = — S logl®l =5 > (i~ W= G — ). (219)
i=1
By replacing the variance-covariance matrix X with the precision matrix @,
n
n 1 "
(1,0) =Zloglel =3 ) i —W' @ (=), (220)
i=1

and also, replacing pu with its maximum likelihood estimate y in Equation (2.20), we

get following function:

n 1% _ —
(1,©) =Zloglel =5 ) =P 0=, (221)
i=1
Since,

D G- eri-3 =) -9 00—, (222)

i=1 i=1
=Y e G- -], 223)

i=1

Equation (2.21) can be rearranged as following equation:



n

1(©) = —logl(':)l —lz tr(©S), (2.24)

i=1
where the sample variance covariance is § = s;;
lzn: O _50)(yO - 30). (2.25)
=

Finally, maximum likelihood estimator of the precision matrix can be obtained by
maximizing Equation (2.24) under the constraints on zero entries. One down side of
maximum likelihood estimator technique is that it does not tend to estimate a sparse
graph. On the other hand, biological networks have very sparse network structure.
Therefore, in order to estimate a sparse and also symmetric precision matrix, graphical
lasso (GLASSO) with L, -penalty can be imposed on the entries of the precision matrix

and not on the regression coefficient.
In GLASSO, the optimization equation can be described as

max [log|@®| — tr(0S)], (2.26)

1011 <a

where 4 is a non-negative tuning parameter and ||@]|; is equal to Zij|9i j|. Then the

dual form of the Lagrange multiplier is applied for optimization problem via

mgx[logl@l —tr(0S) — 1]|10]|1 ], (2.27)

with the non-negative Lagrange multiplier 4. When A gets larger, the solution gets
sparser which means that precision matrix contains the larger number of zero
elements, but the lower the related likelihood. This form of optimization allows us to
obtain a symmetric and a sparse estimate of the precision matrix. In the R
programming, the “glasso” method by the suge package is applied to infer the graph.
The Huge package offers a couple of model selection criteria that can be listed as BIC,

AIC, RIC, and StARS to find an optimal penalty value. In this study, I use the StARS
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(Liu et al., 2010) criterion to select the optimal model, resulting in choosing the

optimal A while estimating the precision matrix for GGM via GLASSO.
3.2. Gaussian Copula Graphical Models

In statistical analysis, the copula is used when the assumption of normality does not
hold for the data while there are correlated measurements. Thus, the problem can be
solved by different approaches and one of the efficient solution can be combining the
data in such a way that their joint distribution can be partitioning via a separate

Gaussian variance-covariance matrix.

Accordingly,let Y=Y, , V ={1,2,...,p} be the set of nodesand E c V X V be the
set of existing edges while (i,j) € E. It is assumed that ¥,, can be continuous, count,
binary and categorical with ordered categories. For ordinal categorical data and binary
data, a continuous latent variable Z is introduced. Furthermore, the observed samples
are associated with ¥, which can be denoted by {y3, 2, ..., y'}. Then, the observed
samples from Z,, are presented by {z}, z2, ..., z'}. Here, the relationship between Y,
and its substitute Z,is shown through some increasing thresholds 7, =

(T, 10 T2 +os Tow, ). 1L 1S set as

Wy
j_ |
vl = Z IXT, g (2.28)
=1

So the approach follows that the relationship between the latent and the observed

samples satisfies the constraints below.
WWEeZ <, <z} syl <yl (229)
forwhich 1 < j; #j, <n.

1.2

Moreover, the latent samples z1'™ = (z1, 22, ..., z™) belong to the following set
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A(yt™) = {Zl:n € Rnxp:L{J(zl:n) < le;' < UJ(Zlm}, (2.30)
where L{;(Zl:n) = max{fo:yf < yJ} and UJ(Zlin) = min{z,’,‘:yf < y,f}

For the precision matrix O, the joint distribution of ¥ =Y, is modelled as follows

(Hoff, 2007):

Z,~N,(0,071), (2.31)
s Z,
Zy=—-7, VEV, (2.32)
e-1:,
Y, =F*(®(Z,)), vev (2.33)
v v v ) . .

Here, ®(+) stands for the cumulative distribution function of the stanard normal
distribution. In addition, F,, stands for the univariate distribution of ¥, and FE;!
denotes the pseudo inverse of F,,. The joint distribution of the latent variables is the
multivariate normal with Z = Zv~Np (0,Y(0®)) where Y(O®) is a correlation matrix

with entries

(0_1)171,172

J@Dun @,

Yy, 0,(0) = (2.34)

In Equation (2.34), @, ,,, and 0,,, ,,, stand for the diagonal entries of v; and v, nodes,
respectively. Correspondingly, @,, ,,, indicates the precision value between v, and v,

nodes.

Therefore, by standing C(uy, ..., up | Y) as the Gaussian copula matrix with a p X p

dimensional correlation matrix Y, we have

p(Yy <y, .Yy <9p) = C(yy, s ¥y | Y(O), Fy, .. F,) (2.35)

=C (Fl(yl), o B(3,) | Y(O) ) (2.36)
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To avoid making a formal assumption for the parametric representation of the
marginal distributions {F,: v € V} which can be discouraging task for most of the real
datasets, their marginal distribution are treated as nuisance parameters. Accordingly,
this method focus on Z,, which is the joint distribution of the latent variables and the
joint distribution has a relationship with the observed variables Y, as shown in

Equation (2.33) (Dobra & Lenkoski, 2011).

Hoff (2007) suggests the inference in the space of the latent variable via a substitution
of the observed data y™ with the event D = {z'" € A(y'™)}. Then the likelihood

function is written as
p(y'" 1 0,{F:veV})=p(DI0)p(y"™|D,Y(O),{F:veEV}). (2.37)

For this decomposition, only the likelihood of the observed data part, which is related
with the inference on @, is indicated by p(®D | @) and it does not depend on the
marginal distributions {F,:v € V}. For the estimation of p(®D | @), Hoff (2007)

constructs a Gibbs sampler with stationary distribution as below.
p(O1D)xp(D|6O)p(0O). (2.38)
Here, @ has a Wishart prior distribution W, (b, D).

On the other side, the joint posterior distribution of @ € P; and the graph G are given
by

p(0,G1D)xp(DIO)p(O]G) p(G). (2.39)

In this expression, G-Wishart W; (b, D) is the prior distribution of @ conditional on

G. and the prior distribution is uniform, i.e., p(G) « 1.
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3.2.1. Gaussian Graphical Model Under Reverse Jump Markov Chain Monte
Carlo Method

The reverse jump Markov chain Monte Carlo method uses the Cholesky
decomposition in order to obtain a positive definite precision matrix due to its
advantageous for the precision matrix which considers the G-Wishart prior W; (b, D)

for @ with the following density

b-2 1
p(016)= (det®) 7 exp {— . tr(@TD)}, (2.40)

1
1;(b,D)

where G stands for the graphical structure of the data, I;(b, D) is the normalizing
constant with b > 2 and D is set to p-dimensional identity matrix, I, (Dobra &
Lenkoski, 2011). If G is complete graph (i.e., no missing edges) with p nodes,
W (b, D) becomes the Wishart distribution W, (b, D) and the normalizing constant

can be explicitly calculated. However, when G is not complete graph, then it is not
decomposable and therefore, the Monte Carlo method should be applied to

numerically approximate its normalizing constant.

Furthermore, Lenkoski (2013) applies the sampling algorithm from the G-Wishart
distribution. Therefore, the G-Wishart distribution with parameters b + nand D + U

is the posterior distribution of @ for the given G. Here, U denotes

n
U=y, (241)
=1

that is, the trace of YY7T.

For the joint distribution given in Equation (2.38), the method describes a Markov

chain Monte Carlo sampler. Dobra and Lenkoski (2011) use small values for o, and

agwhich are the precision parameters, i.e., 0, = g5 = 0.1.
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Considering the current state of the chain (@5, G®), the next state (@5*1,G5*1) is

generated by the following steps.
Step 1: Resample the latent data.

The latent variable Z is used instead of the observed variable Y, if Y’s are not normally

distributed. Here, Z is an matrix with a dimension of (n X p). In this step, for each

v €V and j € {1,2,...,n}, the latent value z,f is updated via sampling from its

conditional distribution.
ZV\{v} = Z‘]/\{v}NN(‘Ll‘Ul 03): (2-4‘2)

truncated to the interval [L{,, Ulf], where

e, .
Py =— Z =z, (243)
v'ebdg(v) Y
and
2 1 (2.44)
o5 = 05, :

bound for L and U are given in Equation (2.30).

So, at the end, the new value of z{,. is obtained via sampling from a truncated normal

distribution.
Step 2: Resample the precision matrix.

In this stage, the precision matrix is calculated via using the latent variables which are
obtained from Step 1 and here, this method also applies the Cholesky decomposition

to the precision matrix.

In this stage, ¢° shows the upper triangular of the precision matrix @ at the current
state, i.e., @°. Thereby, the method applies the Metropolis-Hasting update of @°

related with a diagonal element ¢° >0 by sampling a value y from

V1,1
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N((i)svl'vl,ag) which is truncated below at 0. Afterwards, y is replaced with the

related diagonal elements of ¢°, denoted as ¢’, with the acceptance probability

min{R,, 1} via

S
O] <m> b+n+d§f—1
_ % 4 '

R, = 7 e R, , (2.45)

O—p V1,V1
where
1
Ry, = exp {—Etr(O’ - 05T (D + tr(ZTZ)} : (2.46)

In this equation, @ = (¢")"¢’ and the candidate matrix @' are accepted with a

probability min{R,, 1} . Finally, the precision matrix obtained via performing the

Metropolis-Hasting update is taken as @5%1/2 € P s.
Step 3: Resample the graph.

The Cholesky decomposition for @571 = (¢S+1/2)TpS+1/2 where ¢pS+1/2 is the upper
triangular. If there is no edge between v, and v, in G°, one can update the system by
adding this edge to the current graph G* so that a candidate graph G’ can be obtained.
Accordingly, the candidate precision matrix can be found by @' = (¢")T¢’ € Pgr.
Since the parameter space dimension increases by one, the reverse jump Markov
chains methodology by Green (1995) is used. Hence, the update of (@5+'/2,G%) to
(@', G") with a probability min{R, 1}, where R, is below, can be perfrmed.

2
ZO'g

’ g S+1/2
X exp {—%tr ((@’ — @)T(D + tr(ZTZ))> + ST A )2}.

(2.47)
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If there is an edge between v; and v, in G¥, the system is updated by deleting this
edge from the current graph G° so that a candidate graph G'can be obtained. Like
above, taking @' = (¢")T¢’ € P, and increasing the dimension of parameter space
by one from ¢5*1/2 to ¢, one can lastly compute the acceptance probability of the
update from (@5+1/2,G%) to (@’,G") with a probability min{R}, 1} where Rj is as
follows.

s+1/2\ s (b, D)
(ag\/Zn ®v, vy ) 1.(b.D) X

s+1/2
((pél_vl ~ Puivg )2

2
204

X exp {—%tr ((@’ - Q)T(D + tr(ZTZ))) +

(2.48)

Finally, the updated graph G**! and the related precision matrix @5*! are found at the

end of Step 3.

3.2.2. Gaussian Graphical Model Under Birth-and-Death Markov Chain Monte
Carlo Method

As given in Chapter 3.2, let V = {1,2, ..., p} be the set of nodes and E ¢ V X V be the
set of existing edges and (i, j) € E and E as the set of non-existing edges. Accordingly,
G = (V,E) denotes an undirected graph. This time, let show the independent and
identically distributed sample as y = {y',y?, ..., y"}. Then, the likelihood can also be
written as follows (Wit & Mohammadi, 2015).

n 1
p(y16,6) 6] Zexp{- 3 tr(65)}, (2.49)
where § = y'y. The joint distribution is formulated as Equation (2.40). Thus, the

posterior distribution of @ is
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*

b*— 1
p(@|y,G)= (det®) 2 exp {—ztr(@TD*)}, (2.50)

1
I;(b*, D*)
where b* = b +nand D* = D + S, so it is G-Wishart distribution, W (b*, D*).

Hereby, this joint posterior distribution is described with a trans-dimensional Markov
chain Monte Carlo (MCMC) sampler scheme which is the birth-death (MCMC)
(BDMCMC) method. This process search over the graph space, G, by adding and
removing as a birth and death event. The birth and death rates determined by the

stationary distribution of the process occurs in a continuous time.

Let the birth and death process at time t be denoted by the state (G, @), So the method

considers the following continuous time process.
Death:

By a poisson process with a rate of §, (@), each edge e € E dies independently on the
others. Therefore, the overall death rate is §(@) = Y .cg 5.(0). If a death of an edge
occurs, i.e., e = (i,j) € E, the process jumps to a new state which is show as
(G™%,07°), where the undirected graph becomes G~ ¢ = (V,E \ {e}), and the
precision matrix is @~¢ € P;-e. Only the difference between the precision matrix @
and @~¢ is the entries corresponds to {(i, ), (j, i), (j,j)} (recall by definition of an
edge i < J).

Birth:

By a poisson process with a rate of 8,(@), each edge e € E is born independently on
the others. Thus, overall birth rate is S(0) = Y..cg f(0). If a birth of an edge occurs,
ie., e = (i,)) € E, the process jumps to a new state which is show as (G*¢,07%¢)
where the undirected graph becomes G*¢ = (V,E U {e}), and the precision matrix is

0*¢ € P+c. Only difference between the precision matrix @ and @€ is the entries

corresponds to {(i, ), G, 1), (, ) }-

B(0)

P(birth for the edge e) = m,

for eache € E, (2.51)
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6.(0)

P(death for the edge e) = 500) +5(0)’

foreache € E, (2.52)

Wit and Mohammadi (2015) propose a BDMCMC algorithm which is based on the
choice of the birth and the death rates specifically. The birth and death rates are

considered as follows.

P(G*%,0%\(kij, kjj) 1 y)
P(G,0\k;;) | y)

B.(0) = foreache € E, (2.53)

P(G™¢,07°\ kj; | y)
P(G,0\(kij, kj;) 1 y)

6.(0) = foreache € E. (2.54)

Based on the rates given above and a given graph G as well as and the precision matrix
0, BDMCMC algorithm iterates the following steps whose mathematical details are

presented in the following part.
Step 1. Process of birth and death

1.1 Calculate the birth rates by Equation (2.53) and S(@) = Y.ccg B.(0),
1.2 Calculate the death rates by Equation (2.54) and §(@) = Y..cx 8.(0),

1.3 Simulate the jump type (birth or death) by Equation (2.51) and Equation
(2.52)

Step 2. According to jump type, sampling from the new precision matrix.
Step 1: Computing the Birth and Death Rates

In this step, the method calculates the rates. However, since both the birth and the
death rates are computed with the same manner, only the calculation of the death rates

are given as below.

The death rates’ numerator (see Equation (2.54)) for each e € E is
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P(G_e,@_e\kjj |y)
P(kj | @\kj;,G™¢,y)

P(P(G™¢,07\(kij, k;) 1 ¥) = (2.55)

Following is obtained by Wang and Li (2012) and after some simplification,

o P(G)1(b",D;)) vz *
P(G ¢,0 e\(kij, kjj) | }’) = T}’)I(;——e |@8\j,V\j| 2 exp {—EtT(QOD )},
(2.56)

where @° = @ with the exception of an entry 0 in positions (i, j) and (j, i) and an entry
c in the position (7, j) and | (b*, Dj*j) denotes the normalizing constant of the G- Wishart

distribution for p = 1.
For the denominator of Equation (2.54), the following expression is taken.

P(G,01y)
P((kij kjp) | O\(kij k), G, p)’

By using the expression obtained via Wang and Li (2012) and after some

simplification,

P(K\(kij. ki, | )

_ P(G)](b*PD;CI 9) 1 b*z—_z 1 e
~ P(y) I;(b,D) |9V\e,V\e| exp {—Etr(e D )} (2.58)

where

1

* * 21 \2 * * 1 b*__z 1 * D:}Z 1
J(b*, D¢, @) = D 1(b*, D) (ky—ki) 2 exp 5 D; ~ (ki—kip) (-
i) 1))

(2.59)

Herein, @' = @ with the exception of an entries @e,V\e(@V\e,V\e)_1@V\e,e in the

positions corresponding to e = (i, j).
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By plugging Equation (2.56) and (2.58) into the death rate, and the equation below

can be found.

P(G™®) I5(b,D)
P(G) Io—(b,D)

5,(0) = H(O,D%,e), (2.60)

where H () stands for

H(@,D" e) = /B L
Y 21 (ky—k)

1 . Dby’ 1
X expi—> tr(D*(0° — 0%)) — D — o+ (ki—kD ;. (2.61)
7]

Furthermore, let suppose (G, @) is the current state of the algorithm. So, in order to
calculate death rates via Equation (2.60), first @ is sampled from W;(b,D) by
algorithm below (see step 2). Then, the death rates are replaced with

P(G™®)H(O,D" e),

%O =50 H@.De),’

(2.62)

Step 2: Direct Sampler from Precision Matrix

Lenkoski (2013) presents an exact sampler method as follows where the precision

matrix is @ and X = @ ~! while the graph G = (V,E).
Step 1. Set 2 = X
Step 2. Until the converges, repeat fori = 1, ...,p

2.1 Let N; c V be the set of node i in graph G. Solve
Bi = 05! Znyi (2.63)

by forming Xy, ; and Qy,.

2.2 By padding the f; elements to the appropriate places and zeroes in those

places not connected to i in the graph G, form ; € RP™L.
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2.3 By 'Q—i,—i:éia update 'Qi,—i and '-Q—i,i-

Step 3. Return @ = 271,
3.3. Loop-based Multivariate Adaptive Regression Splines

The multivariate adaptive regression Splines (MARS) is a nonparametric regression
modelling technique which does not use an assumption between dependent and
independent variables. The method has a procedure to reduce the complexity of
nonlinear functions by constructing the piecewise linear functions. Such smoothing
has the calculation which implements a two stage procedure, called as the forward
stage and the backward stage. In the forward stage, model starts by adding the
intercept term to the model and inserts the basis functions (BFs), iteratively. The
procedure ends up with the largest model that includes many basis functions. On the
other hand, the backward stage reduces the complexity of the model by removing the

BFs resulting in a slight increase in the residual sum of squared error.

Suppose the parametric model as follows.

yvi=fBx)+e, (2.64)

where B is the parameters of the vector and x; (i = 1, ...,n) denotes the predictors
vector for the ith case, &; (i = 1, ..., n) stands for the vector of the random error and »

is the total number of observations. Finally, y; shows the associated response vector.

Furthermore, the fundamental element of MARS has a form where function /" consists

of the piecewise linear BFs given below (for x € R)

,and [t—x]; =

x —t, x>t
-t = {

{t — X, x <t
0, otherwise

0, otherwise’

(2.65)
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In the Equation (2.65), ¢ stands for the knot and represents the breaking point of the
spline function, as illustrated in Figure 3.1. The goal is obtain the reflected pairs of
each x; with the knots at each observed x;;. Therefore, the set of all basis functions is

random variables which can be defined as follows.

C = {[x —tl,t—x], | tE {xl,j,xz,j, ...,xN,j},j =1,2, ...,p}, (2.66)

where N represents the number of observations and p is the number of independent

variables. Thus, 2Np numbers of basis function exists if all the input variables are

different.
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Figure 3.1. A Simple Representation of the MARS via a Knot and Splines

The model building strategy of MARS consists of the forward and backward
elimination and the functions from the C set is used, rather than the original variables.

Thus, the model can be described as
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M
)= o+ D Brhm(0) +¢, (2:67)
m=1

in which h,,(x) refers to the spline basis functions and M is the total number of
parameters, and finally f, and f3,, refer to the intercept term and the regression
coefficient, respectively. 5, is estimated via minimizing the residual sum of squares
by a linear regression given a choice of h,,. Furthermore, as mentioned beforehand,
at the end of the forward stage, a similar large model as in Equation (2.67) is obtained.
However, this model may overfit the data. Hence, the backward scheme is applied by
removing the term which induces the smallest increase in the residual squares. Then,
the best model denoted by f; is obtained with the 4 number of terms. The best model
in MARS is obtained by getting the optimal A. To do so, the generalized cross
validation value (GCV) is used and GCV is presented as follows

YA — fi (x)?
M)\
-2

GCV(A) = (2.68)

where M (A) is the effective number of parameters and it can be obtained with the
equation M (1) = r + cK where r represents the number of linearly independent BFs
and K stands for the number selected knots during the forward stage. Finally, ¢
indicates the cost for the optimization of the basis function and also the smoothing
parameter of the model. Generally, this model is equated to ¢ = 3, however when the

model is an additive model, it is setto ¢ = 2.

Hereby, one can construct the model for MARS similar to the lasso regression as it is
used in GGM in Equation (2.13). By doing so, we model each node against all the
remaining nodes. By this way, one can detect a selected gene’s links with the other
remaining genes. In this study, the model which contains only the main effects is the
LMARS without interaction and the model with also second-order interaction terms,

1s named as the LMARS with interaction terms.
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3.4. Threshold Selection Methods

To obtain a system’s graphical representation and evaluate the network model, the
numerical entries of the precision matrix, @, should be converted into a binary
representation via a threshold value. In this representation, “0” stands for no
interaction between two entities of the network system, whereas, “1” implies the
functional or physical interaction between those two entities. So as to convert the real-
valued O to a binary form, there are different threshold-determining approaches in the
literature. In this study, the most common ones which are the kappa maximized
threshold criterion, maximized sum threshold, minimized difference threshold and 0.5
value criterion are presented. These methods are known and widely used either
because of their high accuracy measures or for their conveniences in the application.
Other than these methods, we present the novel nonparametric threshold selection

criterion which consider the underlying topology of the network system.

3.4.1. Kappa Maximized Threshold Criterion

The kappa maximization threshold approach (KMT) is an approach which maximizes

the kappa statistics. (Guisan et al., 1998).

Kappa maximized threshold criterion (KMT) calculates kappa scores via

Po-DPe
K =

= , (2.69)
1- Pe

where p, stands for the observed percentage of the agreement (accuracy), and p,

denotes the expected agreement probability due to the chance are calculated by

_TP+TN

Po=—— (270)
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_ (TP +FN) % (TP + FP) + (TN + FN) * (TN + FP)

— (2.71)

e

In these expression, the meaning of abbreviation can be listed as follows:
True Positive (TP): The number of the agreement on the presence of the edge, i.e., 1.
True Negative (TN): The number of the agreement on the absence of the edge, i.e., 0.

False Positive (FP): The number of incorrect prediction of the actually absence of the

edge.

False Negative (FN): The number of incorrect prediction of the actually presence of

the edge.
In Table 3.1, the meaning of these entries are also shown via confusion matrix.

Furthermore, the procedure which can select the optimal kappa statistic involves series
of calculations. The method calculates a kappa value for each 100-threshold value and
the one that provides the maximum kappa statistics is accepted as the threshold

(Guisan et al., 1998; Thuiller, 2003; Jiménez-Valverde & Lobo, 2007).

For the application of KMT criterion, in this study, the 100 candidate threshold values
which are between the minimum and the maximum entries of the precision matrix are

calculated via an increment and the increment is calculated with following formula.

max(entries of S™1) — min(entries of S71)
100 '

increment = (2.72)

Thereon, the kappa statistics are calculated for each 100 candidate thresholds and the

one which provides the maximum kappa value is selected as the optimal threshold.
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3.4.2. Maximized Sum Threshold Criterion

In maximized sum threshold (MST) (Manel et al., 2001), it first calculates the sum of

the specificity and the sensitivity which are calculated as

e TN
Sp€lelClty = m, (273)
S itivity = P 2.74
ensi Lvly—TP_I_FN. (2.74)

Here, the specificity calculates the proportion of actually non-existing edges that are
correctly identified, whereas the sensitivity computes the proportion of actually

existing edges that are correctly identified.

After calculating the sum of specificity and sensitivity for each 100 candidate
threshold value which is calculated with the same manner as in the KMT criterion,
MST selects the one which maximize the sum as the optimal threshold (Jiménez-

Valverde & Lobo, 2007).

3.4.3. Minimized Difference Threshold Criterion

The minimized difference threshold (MDT) criterion (Jiménez-Valverde & Lobo,
2007) calculates the difference between the specificity and the sensitivity for again
each 100 candidate thresholds which is calculated as in the previous two methods;

KMT criterion and MST.

Accordingly, this method selects the one which has the minimum difference between
the specificity and the sensitivity (considering their absolute values) as its optimal

threshold value (Jiménez-Valverde & Lobo, 2007).
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3.4.4. 0.5T Criterion

This method is considered as the subjective approach in the literature since it neither
uses a specific index such as kappa nor the trade-off between two properties which are
conflicted such as the sensitivity and the specificity (Liu et al., 2005). The optimal
threshold is selected as 0.5. Even if this method is widely preferred (Jiménez-Valverde
& Lobo, 2007), the outcome is actually biased since it fails to represent the nature of
the data (Liu et al., 2005). However, it may be robust if we both consider situations

such as having more cancer patients in the data or less cancer patients in the data.

3.4.5. Proposed Threshold Selection Criteria

Rather than using a specific index or a trade-off between two properties, this method
makes use of the topology of the network. To do so, in order to select the optimal
threshold value, we use a very important feature of the network which is the sparsity

level that changes from one network class to another.

The steps of the procedure are as follows:

Step 1: Calculate the sparsity percentages specific to the network classes.
Step 2: Construct GGM model via GLASSO and obtain the precision matrix.
Step 3: Sort the entries of the precision matrix from the smallest to the largest.

Step 4: Find the threshold value by imposing the sparsity level to the vector which has

the sorted entries of the precision matrix.

Step 5: Construct the adjacency matrix via imposing the threshold value to the

precision matrix.
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Step 6: Obtain the accuracy measures by using the adjacency matrix found in the

previous step.

For Step 1, by using /huge package in the R programming, the sparsity percentages of
the random and scale-free networks’ mean are calculated under 300 Monte Carlo runs
via generating random and scale-free networks. On the other hand, from our
preliminary analyses, it is observed that the dimension is another network
characteristic that can affect the sparsity percentage of the system. Therefore, the
dimensions are also considered when calculating the sparsity percentages. In the
application part, it needs to be mentioned that the structure of the random network is
considered for the gynecological datasets with the dimension of eleven genes since
our quasi network has a complete graph structure. On the other side, when considering
1000 genes’ system for real gynecological datasets, we consider their network
structures as scale-free. For the random network under a dimension of eleven genes,
the mean sparsity percentage is found via the Monte Carlo runs and found as 0.745.
On the other hand, since it is computationally demanding to calculate a mean sparsity
percentage for the dimension of 1000 genes under the scale-free network structure, we
merely calculated the mean sparsity percentage under the 300 Monte Carlo runs and
obtain as 0.961. Additionally, in the simulation part, we consider the dimension of the
system as 20, 50 and 100 for both random and scale-free structure. Therefore, we
calculate the mean sparsity percentage of the random network under the 300 Monte
Carlo runs for the dimensions of the system 20, 50 and 100 as 0.854, 0.942 and 0.97,
respectively. Then, we also calculate the mean sparsity percentage of the scale-free
network under the 300 Monte Carlo runs for the dimensions of the system 20, 50 and
100 as 0.905, 0.961 and 0.98, respectively.

In Step 3, we sort the precision matrix entries, which is obtained in Step 2, from
smallest to the largest by creating a vector. Then, in Step 4, by multiplying the length
of the vector with the sparsity percentage, we get the vector index corresponding to
the cut-off place that will satisfy the sparsity percentage of the underlying network.

Thus, we get the element of the vector which denotes the vector index. The element
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that we obtain from the vector is simply one of the entries of the precision matrix and
it also corresponds to our optimal threshold value that satisfies the sparsity percentage

of the underlying network structure which imposes to the precision matrix.

Hereby, in Step 5, by using the threshold value which optimize the precision matrix’
sparsity level, we convert the precision matrix into the adjacency matrix in the same
manner as applied in the literature. That is, the entries which exceed the threshold
value are converted into “1” which stands for an interaction between two nodes, and
the entries below the threshold value are converted into “0” which represents no
interaction between two nodes. In Step 6, the accuracy measures are calculated by

using the adjacency matrix.

3.5. Measure of Accuracy

There are different accuracy measures which can be used in the literature in order to
evaluate the performances of the models or methods. In this study, accuracy, F-
measure and Matthew correlation coefficient (MCC) are used for the evaluation of the
performances of the methods and models. When evaluated together, each of the
method gives a different point of view about how accurate the performances are. For
example, the accuracy considers the correctly classified objects which are true positive
(TP) and true negative (TN). Therefore, when the number of true negative is high, the
accuracy value tends to be high too. On the other side, the F-measure does not take
into account the correctly classified objects with no interactions, i.e., true negatives
(TNs). As aresult, that helps us to assess threshold criteria with another point of view.
Herein, F-measure is between 0 and 1, and if F-measure is closer to 1 is the better. The
same evaluation is also valid for the accuracy. Finally, although it is not applicable for
some cases in our analysis, MCC value is another measurement that combines the true

positive (TP), true negative (TN), false positive (FP), false negative (FN). Therefore,
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it is an important accuracy measure as well. When MCC is closer to 1, it is interpreted

as high accuracy. By contrast, when it is closer to -1, it is interpreted as low accuracy.

In Table 3.1, the representation of the actual and the predicted classes are given.

Table 3.1. The General Confusion Matrix

ACTUAL CLASS
Positive Negative
PREDICTED Positive TP FP
CLASS Negative FN TN
A _ TP+ TN 578
CCUracY = TP Y TN + FP + FN’ (2.75)
precision X recall
F — measure = 2 — , (2.76)
precision + recall
where
sion = —+ d Il = e 2.77
precision = TFP and recall = 5 TFN’ (2.77)
TPXTN —FP XFN
MCC (2.78)

- JTP + FP)(TP + FN)(TN + FP)(TN + FN)
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CHAPTER 4

APPLICATION

In this chapter, the procedure of the data collection and the application of real data via
network models are presented. Accordingly, we first describe the description of each
dataset. Then, we evaluate the model performance for eleven core genes by accuracy
measures, and afterwards, we extend our study and use 1000 genes with our core
eleven genes in each dataset. Within these augmented datasets, the accuracy of the
links is still evaluated for the same eleven core genes regardless of the dimension of
the system. In the third part, we initially apply threshold methods under 1000 Monte
Carlo runs via simulated data. Finally, we implement them in the analyses via real

datasets under different dimensions.

4.1. Dataset Collection

At first step of the data collection, the ArrayExpress database was searched by
gathering all studies about gynecological cancers as well as ovarian, cervical,
endometrial, vulvar and vaginal cancers, separately. Here, our aim was to collect
datasets which include our eleven core genes mentioned in Chapter 2. However, there
were some constraints to consider when selecting datasets. In this searching process,
we applied two major constraints: i) Datasets should be normalized with RMA or
MASS.0 techniques so that they can be comparable. ii) The datasets should be
published between 2008-2018, so that recent studies are considered.

However, in this type of searching, one can face with certain difficulties. Initially,

most of published works have the datasets from their own laboratories with their own
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gene numbering without any information about corresponding gene symbols. For
instance, one study implements an arbitrary number like “7984319” for a gene symbol,
he/she cannot present a supplementary text file which gives corresponding probe set
or gene symbols related with those arbitrary numbers. Therefore, majority of the data
cannot be comparable even though their associated laboratories work on the same
genes. On the other hand, some of the datasets do not have any published articles,
resulting in no supplementary text files attached to their measurements so that the
researcher can follow the condition (i.e., treatment and control group) as well as design

of the data.

Another difficulty is that even if the laboratory includes gene symbols or probe set
names, it uses gene aliases in the measurements. In other words, there exists more than
one symbol for a gene. Therefore, for the datasets that include directly gene symbols
in their data files, the researcher has to check all gene aliases related with his/her gene
list. Hence, in our work, we checked our core eleven genes with their gene aliases in
the studies where this information is available. However, not all datasets include all

of our eleven core genes.

Furthermore, for the studies that used arbitrary numbering in their datasets and have
probe set names in their supplementary files which have correspondence to these
arbitrary numbers, as described above, we first looked for our core genes’ probe set
names from the literature and found the datasets which cover those eleven core genes

through their supplementary files.

As a result, it has been detected that there are a lot of constraints which hinder the
researcher to find suitable datasets by using free database. Because of this reason, after
our comprehensive searching process in more than 1000 datasets in ArrayExpress, we
merely obtained three reliable datasets. Below, application of methods are presented

with selected datasets.
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4.2. Real Data Application via Network Models

Here, we have three datasets from ArrayExpress database. Datasets’ feature such as
cancer types which are included in the studies are also given in Table 4.1. In the
analyses, we see that, E-GEOD-63678 dataset has higher accuracies compare to other

datasets since it includes more types of gynecological cancers.

Table 4.1. Real Datasets

Datasets Cancer Type Data Source
E-GEOD-9891 Ovarian tumor https://www.ebi.ac.uk/arrayexpre
ss/experiments/E-GEOD-9891/
E-GEOD-14764 Ovarian cancer https://www.ebi.ac.uk/arrayexpre
ss/experiments/E-GEOD-14764/
E-GEOD-63678 Cervical, https://www.ebi.ac.uk/arrayexpre

Endometrial, Vulvar ss/experiments/E-GEOD-63678/

4.2.1. Application of E-GEOD-9891 Data

Data Description

This dataset has the transcription profiling of 285 human ovarian tumors. The data is
a cohort of 285 patients with the epithelial ovarian, primary peritoneal, or fallopian
tube cancer, diagnosed between the years 1992 and 2006. They are identified through
Australian Ovarian Cancer Study (sample size n = 206), Royal Brisbane Hospital (n
= 22), Westmead Hospital (n = 54) and Netherlands Cancer Institute (NKI-AVL; n =
3) (Tothill et al., 2008). In this E-GEOD-9891, the arrays are designed by randomly

selected samples from the Australian Ovarian Cancer Study whose expression profiles
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on the Affymetrix U133-plus2 platform aim to identify novel subtypes of the ovarian
tumor by the gene expression profiling with a linkage to clinical and pathologic

features (Tothill et al., 2008).

In Table 4.2, the findings of our accuracy measures from eleven core genes in the E-
GEOD-9891 dataset are presented. As seen in Table 4.2, best accuracy is obtained for
LMARS with interaction under nonparametric models and GCGM via RIMCMC
approach under parametric models. Moreover, GGM has the lowest accuracy to detect
the true network system from the E-GEOD-9891 data. The reason for GGM has such
lower accuracy compared to GCGM via RIMCMC and GCGM via BDMCMC is that
GCGM makes inference by modelling multivariate associations separately from the

observed variables’ univariate distributions.

Table 4.2. The Accuracy Table for E-GEOD-9891 Data

Methods F-Measure Accuracy
GGM 0.167 0.091
GCGM via RIMCMC 0.846 0.733
GCGM via BDMCMC 0.448 0.298
LMARS without
Interaction 0.752 0603
LMARS with Interaction 0.858 0.752

Table 4.3. The Accuracy Table for E-GEOD-9891 Data under 1000 Genes’ System

Methods F-Measure Accuracy
GGM 0.271 0.157
LMARS Wlthout 0.246 0.140
Interaction
LMARS with Interaction 0.271 0.157
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On the other hand, in Table 4.3, we extend our study and use 1000 genes which also
includes our core eleven genes and evaluate the accuracy for the eleven genes only.
Table 4.3 shows that nonparametric model LMARS with interaction and parametric
model GGM have the same accuracies for the detection of network systems when the
dimension increases. However, when the dimension is augmented, GCGM via
RIMCMC and BDMCMC estimations are discarded since their procedure become

computationally infeasible. The underlying analyses take five days.

4.2.2. Application of E-GEOD-63678 Data

Data Description

This dataset presents the gene expression data from vulvar, cervical, endometrial and
carcinoma tissues. In this set, 35 samples that are used to identify potential biomarkers
and signatures in each type of cancer. Specifically, 18 cancer samples with 5 cervical,
7 endometrial and 6 vulvar cancers, and also 17 normal samples with 5 cervical, 5
endometrial and 7 vulvar cancers are hybridized on the Affymetrix platform in order
to identify the common features among cancer types, embryonic stem cells and the
newly discovered cell population of the squamocolumnar junction of the cervix,
considered to host the early cancer events (Pappa et al., 2015). Moreover, total RNAs
are extracted from physiological and cancer patients from cervix, endometrium and
vulvar tissues and are hybridized on the Affymetrix HG133-A-2.0 microarray chips
corresponding to more than 12.000 uniquely represented genes (Pappa et al., 2015).
Also, this data is recently used to investigate the gynecological cancer types in the
work of Liu et al (2019). They try to find hub genes that may serve as biological

markers for three types of gynecological cancer.
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Here, Table 4.4 shows that GCGM via RIMCMC has the best accuracy measures
comparing to others. GCGM via BDMCMC also performs well. On the other hand,
GGM is still the worst method to detect existing links.

Table 4.4. The Accuracy Table for E-GEOD-63678 Data

Methods F-Measure Accuracy
GGM 0.167 0.091
GCGM via RIMCMC 0.981 0.791
GCGM via BDMCMC 0.964 0.655
LMARS without Interaction 0.726 0.570
LMARS with Interaction 0.778 0.636

Accordingly, Table 4.5 gives the accuracy for eleven genes under 1000 genes’ system.
From the tabulated values, it is seen that LMARS without interaction produces the
best accuracies with respect to other approaches. Lastly, similar to previous analyses,
GCGM with both estimation methods cannot be applicable due to the serious

computational demands.

Table 4.5. The Accuracy Table for E-GEOD-63678 Data under 1000 Genes’ System

Methods F-Measure Accuracy
GGM 0.167 0.091
LMARS without Interaction 0.193 0.107
LMARS with Interaction 0.167 0.091
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4.2.3. Application of E-GEOD-14764 Data

Data Description

This dataset describes the prognostic gene expression in the ovarian cancer. The data
have a cohort of 80 ovarian carcinomas (TOC cohort) for the development of a
predictive model, which is then evaluated in an entirely independent cohort of 118
carcinomas (Duke cohort) (Denkert et al., 2009). In this dataset, RNAs from 80 frozen
ovarian cancer samples are hybridized on the Affymetrix Human Genome U133A
Array and the collected data contain our eleven core genes. In the data collection, it is
aimed to investigate the hypothesis that molecular markers are able to predict outcome
of the ovarian cancer independently from classical clinical predictors, and these
molecular markers can be validated by using independent datasets (Denkert et al.,

2009).

For this datasets, Table 4.6 shows that GCGM gives significantly the best accuracy
measures regarding other models and LMARS with interaction has the second best
performance. GGM, however, fails to correctly estimate links between eleven core

genes compare to other methods.

Table 4.6. The Accuracy Table for E-GEOD-14764 Data

Methods F-Measure Accuracy
GGM 0.167 0.091
GCGM via RIMCMC 0911 0.836
GCGM via BDMCMC 0.226 0.127
LMARS without Interaction 0.193 0.107
LMARS with Interaction 0.752 0.603
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On the other hand, Table 4.7 presents the outcomes under 1000 genes’ system. From
the findings, it is observed that LMARS without interaction has the best performance

and the performance of LMARS with interaction is the worst.

Table 4.7. The Accuracy Table for E-GEOD-14764 Data under 1000 Genes’ System

Methods F-Measure Accuracy
GGM 0.167 0.091
LMARS without Interaction 0.193 0.107
LMARS with Interaction 0.049 0.025

On conclusion, by considering all cases, it is observed that LMARS without
interaction is better than its alternates in the construction of networks for high
dimensional real datasets. On the other hand, for small dimensional real datasets,
among other models, GCGM with the RIMCMC inference approach is more accurate.
Since the performance of this model has a strong limitation via dimension of the
system, we can recommend it for small or moderate dimensional systems. Lastly, it is
observed that GGM has the worst accuracy in all datasets although it is one of the

most well-known and common methods in the systems biology.

4.3. Application via Threshold Methods

In the following parts, simulated and real data application results are given,

respectively.
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4.3.1. Simulated Data Application

In order to evaluate the performances of threshold methods on the data under
normality assumption, we generate random and scale-free network data in the R
programing language with huge package. We use the Gaussian graphical model
(GGM) via the graphical lasso (glasso) to estimate precision matrix. To do so, GGM
algorithm uses a penalty value, 4, to construct the structure of the network. The higher
the value of the 4, results in sparser the network (or precision matrix). On the other
hand, the lower 4 causes denser network which is not commonly seen in the majority
of biological network. Accordingly, as stated in Chapter 3, StARS (Liu et al., 2010)
criterion is implemented to calculate optimal A and to estimate precision matrix for
GGM via glasso. However, the estimation of adjacency matrix from the estimated
precision matrix has some add-hoc calculation since the selection of the threshold
value which converts the precision matrix to the adjacency matrix is not clear although
the selection of the threshold has an undeniable impact on accuracy of the model. In
the literature, there are certain selection methods which are either computationally
very demanding or not very insightful. Therefore, the researcher generally chooses a
suitable threshold value after a preliminary study by controlling the associated studies
or he/she intuitively assigns a threshold in such a way that the network looks like
sparse. Hereby, in the following analyses, we present the results of the methods for
different threshold selection in the literature together with the results for our suggested

threshold method which takes into account the topology of the underlying network.

In our analyses, the simulated networks are generated under 20, 50 and 100
dimensions with 50 observations per gene. Hence, we generate random and scale-free
network data whose states are multivariate normal distribution and we compare the
mean accuracy value, F-measure and Matthew’s correlation coefficient (MCC) based
on 1000 Monte Carlo runs for the dimension of 20 and 50, however, because of its

computational demand we compare the mean accuracy value, F-measure and
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Matthew’s correlation coefficient (MCC) based on 200 Monte Carlo runs for the

dimension of 100.

Table 4.8. GGM via Graphical Lasso Results Based on 1000 Monte Carlo Runs under the Dimension
of 20 with Random Network

Methods Accuracy F-Measure MCC User. CPU
Time
Proposed Method 0.837 0.312 0.215 0.065
MST Method 0.839 0.289 0.212 5.818
MDT Method 0.835 0.283 0.188 5.834
KMT Method 0.839 0.289 0.212 5.663
0.5T Criterion 0.809 - -0.093 0.062

Table 4.9. GGM via Graphical Lasso Results Based on 1000 Monte Carlo Runs under the Dimension
of 20 with Scale-Free Network

Methods Accuracy F-Measure MCC Uset: CPU
Time
Proposed Method 0.878 0.324 0.248 0.066
MST Method 0.881 0.320 0.256 5.709
MDT Method 0.878 0.315 0.24 5.741
KMT Method 0.881 0.320 0.256 5.524
0.5T Criterion 0.855 - -0.074 0.060

Hereby, the simulated network which is generated under the dimension of 20 for
random and scale-free networks are given in Table 4.8 and Table 4.9, respectively. It
is seen that MST and KMT method have the best accuracy for both network types.
However, KMT method has better computational time than MST method.
Furthermore, the proposed method is the best in terms of F-measure, and it has

significantly better computational time compared to KMT method. On the top of that,
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0.5T Criterion has the worst MCC, and it cannot calculate F-measure since it fails to

detect any true positive (any interaction).

Table 4.10. GGM via Graphical Lasso Results Based on 1000 Monte Carlo Runs under the

Dimension of 50 with Random Network

Methods Accuracy F-Measure MCC Uset: CPU
Time
Proposed Method 0.932 0.271 0.247 0.538
MST Method 0.930 0.312 0.280 34.271
MDT Method 0.930 0.312 0.280 34.063
KMT Method 0.930 0.312 0.280 35.408
0.5T Criterion 0.921 - -0.036 0.342

Table 4.11. GGM via Graphical Lasso Results Based on 1000 Monte Carlo Runs under the

Dimension of 50 with Scale-free Network

Methods Accuracy F-Measure MCC Usel: CPU
Time
Proposed Method 0.954 0.149 0.180 0.538
MST Method 0.943 0.249 0.220 35.144
MDT Method 0.942 0.245 0.217 33.837
KMT Method 0.943 0.251 0.223 33.725
0.5T Method 0.941 - -0.029 0.347

Results in the Table 4.10 and Table 4.11 show the results of the Monte Carlo runs that
are generated under the dimension of 50 for random and scale-free networks,
respectively. It is seen that proposed method is slightly better in terms of the detection
of correctly classified interactions, which is presented as the accuracy value in the
table. On the other hand, 0.5T criterion is the worst one to predict interactions with its
negative MCC and lowest accuracy value compared to other methods, even though it

is widely used criteria (Jiménez & Lobo, 2007). Moreover, F- measure of 0.5T is not
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applicable since the method is unable to investigate any correctly classified
interactions, represented as true positive (TP). On the other side, besides the
comparisons via the accuracy of all methods, the second major criterion for the
researchers is the computational demand that can be evaluated under the central
processing unit (CPU) time. should be considered together to be able to interpret the

method performances.

Although MST, MDT and KMT criteria are better than the proposed method in terms
of F-measure and MCC, Table 4.10 and Table 4.11 indicate that they are
computationally very demanding regarding the suggested approach. MST, MDT and
KMT methods require considerably more CPU time with respect to our proposed

method and 0.5T criterion even though 0.5T criterion has low accuracy.

Overall, the results in both Table 4.10 and Table 4.11 present us that the proposed
method can be a reasonable threshold criterion comparing to other criteria under both

network types.

Table 4.12. GGM via Graphical Lasso Results Based on 200 Monte Carlo Runs under the Dimension
of 100 with Random Network

Methods Accuracy F-Measure MCC Us;l;n?ePU
Proposed Method 0.958 0.292 0.273 1.609
MST Method 0.960 0.273 0.255 154.009
MDT Method 0.960 0.273 0.255 154.066
KMT Method 0.960 0.273 0.255 153.868
0.5T Method 0.960 - -0.018 1.605

Hereby, Table 4.12 and following Table 4.13 present the Monte Carlo runs for the
random and scale-free networks for the dimension of 100, respectively. It is observed

that MST, MDT and KMT criteria have the best accuracy, however the proposed
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method has a better F-measure, MCC and significantly much better CPU time for

random network with the dimension of 100.

On the other hand, in Table 4.13, it is seen that KMT is the best in terms of F-measure
and MCC, however it has worse CPU time compared to the proposed method and 0.5T
criterion for scale-free network. Furthermore, it is clear that although 0.5T criterion
has the best accuracy and CPU time, it dramatically fails to catch network structure
since it cannot predict any interaction at all and has the worst MCC. Overall, the
proposed method has high accuracy measures as KMT and less computational time as

0.5T criterion.

Table 4.13. GGM via Graphical Lasso Results Based on 200 Monte Carlo Runs under the Dimension
of 100 with Scale-free Network

Methods Accuracy F-Measure MCC US;I;H?:U
Proposed Method 0.967 0.166 0.149 1.452
MST Method 0.965 0.174 0.158 141.767
MDT Method 0.965 0.173 0.157 141.798
KMT Method 0.966 0.175 0.159 141.746
0.5T Method 0.970 - -0.014 1.449

4.3.2. Real Data Application

In this part, we present the performance of the proposed method and 0.5T criterion for
three gynecological datasets under both eleven and 1000 genes. In this analysis, MST,
MDT and KMT methods, as well as MCC values for all approaches are not applicable
since the quasi-true network is a complete graph and therefore, TN and FP values are

all zero for these datasets. Hereby, to be able to compare all methods via real gene
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network datasets, we use two different real gene network datasets which are cell
signaling pathway data and the human gene expression data. These datasets are bench-
mark data that are applied in different studies for comparative analyses and their true

network structures are known.

Table 4.14. The Performances of the Proposed Method and 0.5T Criterion for Gynecological Datasets

with Eleven Genes

Methods Proposed Method 0.5T Criterion

Datasets Accuracy F-Measure Accuracy F-Measure
E-GEOD-9891 0.207 0.343 0.107 0.193
E-GEOD-14764 0.107 0.193 0.091 0.167
E-GEOD-63678 0.174 0.296 0.091 0.167

Table 4.15. The Performances of the Proposed Method and 0.5T Criterion for Gynecological Datasets
with 1000 Genes

Methods Proposed Method 0.5T Criterion

Datasets Accuracy  F-Measure Accuracy F-Measure
E-GEOD-9891 0.091 0.167 0.091 0.167
E-GEOD-14764 0.091 0.167 0.091 0.167
E-GEOD-63678 0.124 0.221 0.174 0.296

As seen in Table 4.14, the performance of the proposed method is far better than the

0.5T criterion for a small dimensional system.

On the other hand, in Table 4.15, since underlying model which is Gaussian graphical
model (GGM) itself is affected directly by the higher dimensionality when making an
inference about network system, the performances of both method is affected

indirectly.
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From the findings of Table 4.15 it is observed that the accuracies drastically decrease
for both methods. However, surprisingly, accuracy measures for data E-GEOD-63678
increases under the 0.5T criterion and gives better accuracy regarding the outputs of

Table 4.14.

Cell Signaling Pathway

This dataset is obtained from the study of Sachs et al. (2005). The dataset includes the
flow cytometry measurements of eleven phospholipids and phosphorylated proteins
which are measured on 11,672 red blood cells. These components belong to network
of the cellular protein signaling of the human immune system’s cells. By doing so, in
the data collection, researchers intent to understand the signals of the native state
tissue, actions of the complex drug and the dysfunctional signals of the diseased cells

(Sachs et al., 2005).

In the Table 4.16, we list the results of different threshold selection methods by

considering the true network system as given in the study of Sachs et al. (2005).

Human Gene Expression Data

The Large-scale human gene expression data are described in the works of Bhadra and
Mallick (2013), Chen and Chen (2008) and Stranger et al. (2007). In this study, the
gene expression of B-lymphocyte cells from the Utah residents with Northern and
Western European ancestry sample is included in this study. The genes of 60 unrelated
individuals are probed for 100 different transcripts. But, the focus is on the 3125
Single Nucleotide Polymorphisms (SNPs) that are found in the 5 UTR (untranslated
region) of mRNA (messenger RNA) with a minor allele frequency greater than 0.1.
This system includes 45 biologically validated links whose transcription factor and

target genes are known (Bhadra & Mallick, 2013). Therefore, in our analyses, the
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performances of all threshold selection methods are compared by considering these
45 validated links.

In the Table 4.16, it is seen that worst measures are obtained from widely used 0.5T
criterion for cell signaling pathway dataset. Furthermore, the MST method and the
KMT method have the same accuracy measures and are the best methods. On the other
hand, our proposed method is the second best method by being very close to MST and
KMT methods in terms of accuracy measures. Whereas, from the outputs of Table
4.17, it is seen that the KMT method is the best method by considering the all accuracy
measures for the human gene expression dataset. As second best method, our proposed

method can be selected since it has better results overall.

Table 4.16. The Performances of Threshold Selection Methods for Cell Signaling Pathway Dataset

Methods Accuracy F-Measure MCC
Proposed Method 0.793 0.615 0.578
MST Method 0.802 0.637 0.596
MDT Method 0.785 0.618 0.542
KMT Method 0.802 0.637 0.596
0.5T Method 0.719 0.392 0.411

Table 4.17. The Performances of Threshold Selection Methods for Human Gene Expression Dataset

Methods Accuracy F-Measure MCC
Proposed Method 0.990 0.752 0.748
MST Method 0.968 0.544 0.599
MDT Method 0.976 0.604 0.645
KMT Method 0.991 0.783 0.781
0.5T Method 0.991 0.689 0.722
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CHAPTER 5

CONCLUSION

In this study, we initially aimed to generate a gynecological cancers pathway by a
quasi-network and compare the selected parametric and nonparametric network
models via real datasets. Secondly, by considering the Gaussian graphical model
(GGM) as a fundamental model, we aimed to compare certain threshold selection
criteria in the literature and our proposed threshold selection method which considers
the underlying network topology in order to construct the adjacency matrix from the
precision matrix. Overall, since it is very crucial to detect cancer related genes to cure
cancer, our aim is to evaluate certain network models which are already validated by
the literature, and to see which model can capture gene interactions better via real data
applications. Then, we try to improve one of these models, GGM, by applying and
comparing some of the main threshold selection criteria and our proposed

nonparametric threshold selection method.

Hereby, in Chapter 2, the background information about the networks classes and the
biological networks are given. First of all, the structures of the random and scale-free
network are described. Although most of the biological networks are thought to be
scale-free, the literature review shows that some of them do not follow the degree
distribution, that is, they are not scale-free. On the other hand, majority of the
researchers are in agreement to accept the fact that the metabolic networks are scale-
free networks, mostly. Accordingly, in the application part, both network classes are
considered for the modeling and the application of the threshold selection methods.
Lastly, in the Chapter 2, the construction of our quasi-gynecological network is

explained via the detailed literature review for the further analyses.
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Accordingly, in Chapter 3, the parametric and nonparametric network models are
presented. In this part, initially, GGM as an undirected model under the steady-state
behaviors of biological system is explained. Then, the copula Gaussian graphical
model (GCGM) which is the combination of GGM with the Gaussian copula is
described via two different estimation methods which are reverse jump Markov chain
Monte Carlo (RIMCMC) approach and the birth-and-death Monte Carlo methods
(BDMCMC) under Bayesian settings. GCGM under RIMCMC approach makes use
of the univariate marginal distributions of the observed variables by using copulas’
theoretical framework which enables the multivariate associations to be modelled
from those univariate marginal distributions. Its stationary distribution is the joint
posterior distribution of the parameters and the model. On the other hand, GCGM
under BDMCMC approach jumps between the models which are always accepted so
that the stationary distribution is always the posterior distribution of interest. So, the
algorithm of these two MCMC methodology searches over the model space in order
to estimate the parameter of interests and to identify the high posterior regions for
probability models. In addition to the parametric models, under the nonparametric
methods, the loop-based Multivariate Adaptive Regression Splines (LMARS) is
presented which is based on lasso regression. Then, LMARS model is constructed in
two ways. First of all, we consider only the main effects in the model. And secondly,
we also include the second-order interactions to the model. Accordingly, it is seen that
converting the precision matrix into the adjacency matrix in the application of these
methods is very important since it directly affects the accuracy of the methods. For
this reason, we also present certain threshold selection criteria in the literature and also

propose a method which considers the topology of the network systems.

Herein, in Chapter 4, the comparative analyses show that GCGM via RIMCMC and
BDMCMC are not computationally feasible with the high dimensional data. However,
GCGM via RIMCMC performs well for the small dimensions regarding other
methods. Considering all of the results and the advantages over GGM and GCGM,
LMARS without interaction is better than the other method for the high dimensional
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networks. On the other hand, GGM performs very poorly in every case. In addition,
threshold selection methods are evaluated via simulated and real datasets under
distinct dimensions. We can conclude that the proposed method can efficiently detect
the network structure by correctly classifying the true links between genes regarding
the other approaches for both random and scale-free networks under the simulated
data. Moreover, the proposed method and the 0.5T criterion have the lowest the central
processing unit (CPU) time as compared to other methods. However, although the
0.5T criterion is the most common approach in the literature, it has the worst
prediction performance to detect the interactions of the network for both network
classes. On the other side, real data application under different dimensions via real
gynecological datasets and benchmark datasets indicate that the proposed method also
performs very well regarding the all other methods when considering both accuracy

measures and the computational demand of the procedure under GGM.

As the future study, we consider to select the threshold value via a novel parametric
approach by considering the distribution of the underlying network, i.e., the degree
distribution of the scale-free networks. Furthermore, similar to GGM model, the
LMARS model also uses a threshold value implicitly so that its regression coefficients
can be directly converted into a binary form to be able to represent a graph. So, we
think that a threshold selection procedure can be also inserted in its computation and
the gain in performance of the model can be evaluated. By doing so, we believe that
models can detect cancer related genes better. Thus, critical biomarkers can be
detected more accurately, and it can support the treatments of cancers in the future
(Liu et al, 2019). Finally, datasets which have the same features and are collected in
the same manner, can be merged and analyses results can be generalized via data

integration.
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