
IMPLEMENTING THE TYPE-RAISING ALGORITHM BY GRAMMAR
COMPILING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF INFORMATICS

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

OĞUZHAN DEMİR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COGNITIVE SCIENCE

SEPTEMBER 2019





IMPLEMENTING THE TYPE-RAISING ALGORITHM BY GRAMMAR
COMPILING

submitted by OĞUZHAN DEMİR in partial fulfillment of the requirements
for the degree of Master of Science in Cognitive Science Department, Mid-
dle East Technical University by,

Prof. Dr. Deniz Zeyrek Bozşahin
Dean, Graduate School of Informatics Institute, METU

Prof. Dr. Cem Bozşahin
Head of Department, Cognitive Science, METU

Prof. Dr. Cem Bozşahin
Supervisor, Cognitive Science, METU

Examining Committee Members:

Assist. Prof. Dr. Umut Özge
Cognitive Science, METU

Prof. Dr. Cem Bozşahin
Cognitive Science, METU

Assist. Prof. Dr. Burcu Can
Computer Engineering, Hacettepe University

Date: 05 September 2019





I hereby declare that all information in this document has been obtained
and presented in accordance with academic rules and ethical conduct. I
also declare that, as required by these rules and conduct, I have fully cited
and referenced all material and results that are not original to this work.

Name, Last Name: OĞUZHAN DEMİR

Signature :

iii



ABSTRACT

IMPLEMENTING THE TYPE-RAISING ALGORITHM BY GRAMMAR
COMPILING

Demir, Oğuzhan

M.S., Department of Cognitive Science

Supervisor : Prof. Dr. Cem Bozşahin

September 2019, 36 pages

Type-raising is part of theory of Combinatory Categorial Grammar, by which
all arguments including complements are type-raised. Generating type-raising
rules in an automatic manner in the compile-time via a simple tool would
make experimenting with Combinatory Categorial Grammar faster, allowing
control on each run. In this study, created tool is tested with various gram-
mars including large scale Eve database, giving results in O(N) where N is the
number of verbs in the grammar.

Keywords: Combinatory Categorial Grammar, Type-Raising

iv



ÖZ

DİLBİLGİSİ DERLEME YÖNTEMİYLE TÜR-YÜKSELTME
ALGORİTMASININ GELİŞTİRİLMESİ

Demir, Oğuzhan

Yüksek Lisans, Bilişsel Bilimler Bölümü

Tez Yöneticisi : Prof. Dr. Cem Bozşahin

Eylül 2019 , 36 sayfa

Tür-yükseltme, Bileşimsel Ulamsal Dilbilgisi teorisinin bir parçasıdır. Her tüm-
lece ve argümana bu teori dahilinde Tür-yükseltmesi uygulanır. Tür-yükseltme
kurallarını kendi kendine derleme zamanında oluşturabilen basit bir araç Bi-
leşimsel Ulamsal Dilbilgisi ile oynamada zaman kazandıracaktır ve her prog-
ram çalıştırılışında işletmeye izin verecektir. Bu çalışmada yaratılan araç bun-
ların içinde büyük ölçekli veritabanı Eve de olan çeşitli dilbilgisi ile de test
edildi ve dilbilgisindeki yüklem sayısının N olduğu durumda O(N) karma-
şıklığında sonuç verdiği görüldü.

Anahtar Kelimeler: Bileşimsel Ulamsal Dilbilgisi, Tür-yükseltme

v



This page is like a tattoo. Once it is written it is never deleted. I don’t have a
tattoo and may never have it but I am grateful to some people in my life and

would like to express it.

To my father and mother that taught me to be honest and responsible. To my sister
that taught me to believe in myself. I am happy to make them proud and all my life I

will try not to change that.

vi



ACKNOWLEDGMENTS

I would like to express my appreciation to Prof. Cem Bozşahin for taking
his time to help me each and every week along my research while keeping
his patience to tell the mistakes I make, explaining the parts that I had hard
time understanding. I would also like to thank my company and colleagues
for allowing me to do my research using the resources of the company while
providing an almost home-office environment on the campus of my univer-
sity. This work could not have been completed without my family’s support.
Thanks mom, dad and sis. My friends also supported me morally throughout
the thesis period, thanks for being a part of this valuable work. Special thanks
to random strangers that shared funny contents and made genious comments
on social media, those kept me going as well.

vii



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . xii

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The Need for Type-Raising . . . . . . . . . . . . . . . . . 1

1.2 Transparency and Surface Structure . . . . . . . . . . . . 2

2 BACKGROUND . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

2.1 Combinatory Categorial Grammar (CCG) . . . . . . . . 5

2.2 Type-Raising (TR) . . . . . . . . . . . . . . . . . . . . . . 7

2.3 What is the Problem with TR . . . . . . . . . . . . . . . . 9

2.4 CCGlab . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.5 CHILDES Database and Brown Corpus . . . . . . . . . . 10

3 MATERIALS AND METHODS . . . . . . . . . . . . . . . . . . . 13

3.1 Methods of TR . . . . . . . . . . . . . . . . . . . . . . . . 13

3.1.1 Memoization . . . . . . . . . . . . . . . . . . . 13

3.1.2 Chart Based Parsing . . . . . . . . . . . . . . . 13

3.1.3 Normal Form Parsing . . . . . . . . . . . . . . 13

3.1.4 Proliferation of TR . . . . . . . . . . . . . . . . 14

viii



3.1.5 Online Learning . . . . . . . . . . . . . . . . . . 14

3.2 Tools to work with CCG . . . . . . . . . . . . . . . . . . 16

3.2.1 OpenCCG . . . . . . . . . . . . . . . . . . . . . 16

3.2.2 Clark & Curran Parser . . . . . . . . . . . . . . 16

3.2.3 easyCCG . . . . . . . . . . . . . . . . . . . . . . 17

3.3 Procedure and Algorithm . . . . . . . . . . . . . . . . . . 17

3.3.1 Data Structures . . . . . . . . . . . . . . . . . . 17

3.3.2 Workflow . . . . . . . . . . . . . . . . . . . . . 18

3.3.3 Algorithm to type-raise syntactic categories . . 20

3.3.4 Detailed code analysis and complexity discus-
sion . . . . . . . . . . . . . . . . . . . . . . . . . 20

3.3.5 Type-raising function implementation details . 21

3.3.6 Algorithm to type-raise semantic categories . . 25

4 RESULTS AND DISCUSSIONS . . . . . . . . . . . . . . . . . . . 29

4.1 Results and Examples . . . . . . . . . . . . . . . . . . . . 29

4.2 Discussions . . . . . . . . . . . . . . . . . . . . . . . . . . 32

5 CONCLUSION AND FUTURE DIRECTIONS . . . . . . . . . . 33

5.1 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . 33

5.2 Future Directions . . . . . . . . . . . . . . . . . . . . . . 33

ix



LIST OF TABLES

Table 2.1 Lambda calculus . . . . . . . . . . . . . . . . . . . . . . . . . . 6

Table 3.1 Set of Unary Rules used by Clark and Curran . . . . . . . . . . 16
Table 3.2 Set of Unary Rules used by easyCCG . . . . . . . . . . . . . . . 17
Table 3.3 Lex Item Features . . . . . . . . . . . . . . . . . . . . . . . . . . 19
Table 3.4 Lex Rule Features . . . . . . . . . . . . . . . . . . . . . . . . . . 27
Table 3.5 Compile-TR global variables . . . . . . . . . . . . . . . . . . . . 27

Table 4.1 Eve and PFTL database TR Rule Generation results . . . . . . 32
Table 4.2 # of Derivations when TR on Atomic Types enabled / disabled 32

x



LIST OF FIGURES

Figure 2.1 Generative grammar and top-down parse example . . . . . . 5
Figure 2.2 Functional application rules . . . . . . . . . . . . . . . . . . . 6
Figure 2.3 Example grammar of CCG . . . . . . . . . . . . . . . . . . . . 7
Figure 2.4 CCG bottom-up parse example . . . . . . . . . . . . . . . . . 7
Figure 2.5 Basic composition rules . . . . . . . . . . . . . . . . . . . . . . 7
Figure 2.6 CCG forward subject type-raising example . . . . . . . . . . 8
Figure 2.7 CCG object type-raising example . . . . . . . . . . . . . . . . 8
Figure 2.8 CCG complement type-raising example . . . . . . . . . . . . 8
Figure 2.9 Type-raising is not construction specific . . . . . . . . . . . . 8
Figure 2.10 Type-raising is universal . . . . . . . . . . . . . . . . . . . . . 9
Figure 2.11 Extract from original Eve Corpus . . . . . . . . . . . . . . . . 12

Figure 3.1 Composition example . . . . . . . . . . . . . . . . . . . . . . . 14
Figure 3.2 Categories given for Show me the latest flight from Boston to

Prague . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
Figure 3.3 Categories for Boston to Prague the latest on Friday . . . . . . . 15
Figure 3.4 Algorithm to type-raise syntactic categories . . . . . . . . . . 20
Figure 3.5 Example *ccg-grammar* variable contents . . . . . . . . . . . 25
Figure 3.6 Example grammar written for CCGlab . . . . . . . . . . . . . 26

Figure 4.1 Derivation 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 4.2 Derivation 2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 4.3 Derivation 3 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 4.4 Derivation 4 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
Figure 4.5 Derivation including basic category type-raising . . . . . . . 31

xi



LIST OF ABBREVIATIONS

CCG Combinatory Categorial Grammar
CFG Context Free Grammar
CNF Chomsky Normal Form
DCCG Discourse CCG
POS Part of Speech

xii



CHAPTER 1

INTRODUCTION

Type-raising is Combinatory Categorial Grammar’s capture of grammatical
case in all its aspects. In this chapter, we define what type-raising is and
why we need it, together with its relation to Categorial Type Transparency
and Surface Structure. After that, in the following chapters, Combinatory
Categorial Grammar (CCG) (Steedman, 1996, 2000) and CCGlab (Bozsahin,
2015) are taken up in detail.

In this study, we type-raise all the verbs’ arguments and create type-raising
rules out of them. Then these rules are given to CCGlab parser to bring more
control on the parsing of sentences. Unlike the already present parsers that
use specifically selected type-raising rules, this tool allows us to create these
rules according to the provided grammar. The algorithm to generate type-
raising rules’ details are discussed in chapter 3. Other tools that use CCG to
parse sentences are examined in chapter 3 as well. Chapter 4 gives some sta-
tistical information by providing tables on parsing sentences using this tool.

1.1 The Need for Type-Raising

The type-raising mechanism is considered to be universal and it allows an
additional non-standard "surface-structure" by making the subjects a func-
tion over predicates, facilitating their combination. We shall see that not only
subjects but all arguments must be type-raised. The action referred to as type-
raising will be elaborated both in this section and in the rest of the thesis.

Type-raising is necessary when an argument wants to compose with a verb
that seek such argument so that they can be a part of a coordination. A mo-
tive behind using type-raising as a facilitator would be that when a category
is type-raised, it creates a constituent that becomes a clue that can be used
to combine the rest of the sentence with the type-raised portion. A crucial
feature of type-raising is that it is intended to give the same semantic inter-
pretation when a sentence is parsed without type-raising. This is because
the functional composition rules of combinatory categorial grammars (CCG)
are procedurally neutral (Pareschi and Steedman, 1987) meaning there is no
more than one way to combine any given two substantive categories. Eventu-
ally the type-raising rules can be understood as a tool to enable composition

1



where a basic category of CCG would not allow composition.

The other combinatory rules aside, type-raising can be thought as a lexi-
cal or morphological level process and the previous CCG parsers (easyCCG,
openCCG, Clark and Curran parser) included it in the derivation via a unary
rule. We generate these rules automatically by looking at the grammar. This
gives more power over deriving sentences than selecting specific type-raising
rules and hoping them to work in all of the cases. However, rule generation
is a computationally challenging process especially when identical rules are
generated more than one time. As a result, the number of derivations may be-
come too many to deal with because of using the same rules over and over. A
solution to this problem is mentioned in the Results and Discussions chapter.

1.2 Transparency and Surface Structure

Transparency is a property of surface structure. The surface structure of a
sentence is the final stage in the syntactic representation of a sentence, which
provides the input to the phonological component of the grammar, and which
thus most closely corresponds to the structure of the sentence that is articu-
lated and heard.

Semantic transparency in a word is the degree to which the meaning of a
compound word or an idiom can be inferred from its parts (or morphemes)
(Nordquist, 2019). Transparency in Categorial Grammars, on the other hand,
depends on the principle Categorial Type Transparency. Each syntactic cate-
gory is connected to a semantic logical form. Although some predicates have
the exact same category, their logical form is different. CCG has this type
of transparent projection that holds the meaning of a predicate in the logical
form. The Categorial Type Transparency says that the reduction application
made in the semantic logical form of a category follows its syntactic type. This
is exemplified in the Background chapter, under the title CCG.

People tend to compute syntax by looking at a number of cues as they try
to understand the sentence and the surface structure gives clear information
about the syntactic representation of a sentence. The researchers Bever (1970),
Fodor and Garrett (1967) proposed a method of parsing sentences using syn-
tactic cues. They explained that when a determiner like ’the’ or ’a’ is heard,
it is supposable that a noun phrase has started. Another example of this dy-
namic would be word order. Although it is prone to change when the struc-
ture of a sentence is made passive, in most sentences, people expect the first
noun to be the subject and the second to be the object. (Harley, 2014)

Having made such points about cues in language and parsing, it can now be
understood where lexicalized grammars obtain their power from. Each set of
structural definitions includes deep structures, surface structures, a phonetic
representation and a semantic representation. If a grammar is able to provide
the information that a structural definition has, then the information can be
used to parse sentences or create new ones in accordance with the syntax and

2



semantics of the sentence. As a lexicalized grammar, CCG together with the
type-raising rules, adds a surface structure by enabling a sentence reach its
final form in lock-step with semantics.

3



4



CHAPTER 2

BACKGROUND

2.1 Combinatory Categorial Grammar (CCG)

Combinatory Categorial Grammar (Steedman, 1996, 2000) is a way to express
a grammar by classifying the units as categories. It is an approach that ex-
presses a sentence both syntactically and semantically. This can be a sentence
in a natural or synthethic language. Units’ categories are divided into two;
Basic and complex. CCG is a type of lexicalized grammar. While generative
grammars parse strings top-down as shown in Figure 2.1, CCG parses strings
bottom-up.

Figure 2.1 Generative grammar and top-down parse example
(a)
S→ NP VP
VP→ V NP
NP→ Sansa, Arya
V→ backed
(b) S

VP

NP

Sansa

V

backed

NP

Arya

CCG has both the syntactic and semantic rules as lexical correspondence. Ev-
ery CCG grammar entry has a syntactic category and a logical form repre-
senting the semantic type.

The syntactic category assignment system works as a function taking argu-
ments and returning a result. After assigning each unit a category, all the
units are parsed together to form a meaningful sentence. Basic categories
would be N, NP, S etc.(noun, nounphrase and sentence, respectively), while
complex categories are the combination of these basic categories. The nota-
tion to combine them is α / β or α \ β .

5



Here the argument is β and the result is α . The slash in between indicates the
side where the function needs to get its argument to give the desired output.
In a category like (S / NP), α is S, and β is NP. The slash is leaning forward,
meaning that a word that has aforementioned category expects an NP to its
right to become an S, with NP being the argument and S being the output of
this function. It can also be (S \ NP). This time it expects the NP to its left to
become an S.

(S / NP) by itself may be an argument or a result. For example in a category
like S \ (S / NP), β is (S / NP) and if (S / NP) is provided to the left of the
holder of this category, it will give an S. (S / NP) / S will give (S / NP) as
a result if we provide S to its right. These categories are assumed to be left
associative so we do not need to use parenthesis in the category (S / NP) / S,
because it equals S / NP / S.

After the category assignment is settled, units can be joined by a set of com-
binatory rules. These include application, type raising (T), composition (B),
and substitution (S) combinators. Out of these the most common are forward
and backward functional application rules and they are shown in Figure 2.2.

Logical form for the semantic representation of words is defined using lambda
calculus. Lambda calculus (also written as λ -calculus) is denoted as a math-
ematical logic to represent computation which employs function abstraction
and function application methods using variable binding and substitution. It
is utilized as a universal model of computation.

Lambda calculus includes constructing lambda terms and performing reduc-
tion operations on them. In the simplest form of lambda calculus, terms are
built using only the following rules, shown in Table 2.1:

Table 2.1: Lambda calculus

SYNTAX NAME DESCRIPTION
x Variable A character or string representing

a parameter or mathematical/logical value
(λ x.M) Abstraction Function definition (M is a lambda term).

The variable x becomes bound in the expression.
(M N) Application Applying a function to an argument.

M and N are lambda terms.

Figure 2.2 Functional application rules
(a) X/Y : f Y : a ⇒ X : f a (Forward Application : >)
(b) Y : a X\Y : f ⇒ X : f a (Backward Application : <)

An example grammar is provided in Figure 2.3

6



Figure 2.3 Example grammar of CCG
Sansa := NP : Sansa’
Leg := N : Leg’
Days := NP\N : λx. days’x
skips := S\NP/NP : λxλy. skips’xy

Figure 2.4 shows how the combinatory rules are applied to the grammar in
Figure 2.3.

Figure 2.4 CCG bottom-up parse example
Sansa skips leg days

NP S\NP/NP N NP\N
: Sansa′ : λxλy.skips′ xy : leg′ : λxλy.days′ xy

<

NP : leg′ days′
>

S\NP : λy.skips′ leg′ days′ y
<

S : skips′ leg′ days′Sansa′

Another rule used in CCG is composition. In Figure 2.5 two of the composi-
tion rules are shown.

Figure 2.5 Basic composition rules
(a) X/Y : f Y/Z : g ⇒B X/Z : λx. f (gx) (Forward Composition : >B)
(b) Y\Z : f X\Y : g ⇒B X\Z : λx. f (gx) (Backward Composition : <B)

2.2 Type-Raising (TR)

In order for a sentence like "Arya does but Sansa skips leg days" to compose,
arguments must seek a functor to make themselves attach to the rest of the
sentence. Type-raising allows this. When an argument gets type-raised, it
becomes a function by itself so that any other category near it can combine
with it. Figure 2.6 is an example to both forward type-raising and subject
type raising of the sentence mentioned in the beginning. NP’s Arya and Sansa
need to use type-raising rules to combine with their respective verbs does and
skips. Objects and complements also need type-raising when a sentence is
composed. In Figure 2.7, it is shown that objects dagger and sword need TR to
combine.

Type raising is universal. Every language needs TR in their derivations. An
example TR derivation in Turkish is shown in Figure 2.10. Below are the type-
raising rules:

Forward Type-raising: NP : a → T / (T\NP) : λ f : f a (>T)

7



Backward Type-raising: NP : a → T \ (T/NP) : λ f : f a (<T)

1. Subjects must be type-raised:

Figure 2.6 CCG forward subject type-raising example
Sansa skips but Arya does leg days

NP (S\NP)/NP CONJ N (S\NP)/NP NP
: Arya′ : λxλy.does′ xy

>T >T

S/(S\NP) S/(S\NP)
: λ f .f Arya′

>B >B

S/NP S/NP
: λx.does′ x′Arya′

<but >

S/NP
>

S

2. Objects (both direct and indirect) must be type-raised:

Figure 2.7 CCG object type-raising example
Arya gave Sansa a dagger and Jon a sword

S /(S\NP) (S\NP)/NP/NP ((S\NP)/NP)\((S\NP)/NP/NP) (S\NP)\((S\NP)/NP)
<B

(S\NP)\((S\NP)/NP/NP)
<&

(S\NP)\((S\NP)/NP/NP)
<

S\NP
>

S

3. Complements must be type-raised too:

Figure 2.8 CCG complement type-raising example
Samwell wants and Jon hates to read the book immediately

>B >T

S/(S\NP) (S\NP)/VP S/VP S\(S/VP) S\S
> <B

(S/VP) S\(S/VP)
>& <

S/VP
<

S

4. Type-raising is not a construction-specific requirement:

Figure 2.9 Type-raising is not construction specific
This book Samwell likes

>T

S/(S/NP) S/(S\NP) (S\NP)/NP
>B

S/NP
>

S

8



5. Type-raising is required in all languages:

Figure 2.10 Type-raising is universal
Adam kitabı kız dergiyi okumuş.

>T >T >B
S/(S\NPnom) (S\NPnom)/((S\NPnom)\NPacc) S/(S\NPnom\NPacc) S\NPnom\NPacc

>B

S/(S\NPnom\Npacc)
>& <

S/(S\NPnom\Npacc)
>

S

The subject type-raising rule provided in Figure 2.6 keeps the order of the
combining words because it allows the argument NP (in the given rule’s case)
to seek an argument to its right, keeping the subject and predicate order lin-
ear. The semantic interpretation of all combinatory rules is fully determined
by the Principle of Type Transparency; All syntactic categories reflect the se-
mantic type of the associated logical form and all syntactic combinatory rules
are type-transparent versions of one of a small number of semantic operations
over functions including application, composition and type-raising. That’s
why a type-raised subject NP will have a correct way of being composed with
predicates to be able to combine with the object leg days to form does’ leg days’
arya’ in Figure 2.6. We know that true linking verbs like become, seem and
suppose can compose with Arya does as in (a), meaning it may end in infinite
right-node raising. Or in an example like (b), it may culminate in an infinite
number of leftward extractions.

(a) [Sansa skips] but [you suppose Arya does]

(b) Leg days which [you suppose Arya does]

In English, type-raising and composition are used to successfully extract wh-
words and to do right-node raising and argument cluster coordination. It is
necessary to note that when there is type-raising, there will be a need for a
composition because they work in pairs (Hockenmaier and Bisk, 2010).

2.3 What is the Problem with TR

Type-raising may cause misunderstandings especially regarding when to type-
raise and when to combine. In order to avoid a structure like "Sansa speaks
because Valyrian, she enjoys Old Valyria.", some restrictions should be made
when combining. In this sentence, because has the category S/S/S (forward
crossing composition >B) which shall not be composed with backward type-
raising <T Valyrian S \ (S/NP), vice-versa is also disallowed, <B and >T (Hock-
enmaier and Bisk, 2010).

The problems regarding type-raising are:

a. Categorial ambiguity:

9



There may be more than one usable category usable. e.g., S,NP.

b. Spurious ambiguity:

Categories may lead to more than one derivations that end up having the
same semantics (Wittenburg, 1987). Mary saw Ayla has a derivation of both
left and right branching S which has a semantics equal to saw Ayla Mary. A
solution to this may seem obvious; pick one of the derivations doing a, for
example, reducing the first strategy, but then there arises another problem.
The constituent we would have in hand may not find an argument to combine
with itself, making all the analysis obligatory again. To find a genuine distinct
reading, it seems that all the spurious analyses must be discovered (Pareschi
and Steedman, 1987). Parsing solutions to this problem are stated in chapter
3. Steedman shows that these "spurious" readings are phonologically non-
redundant.

c. Genuine ambiguity:

(i) Lexico-semantic ambiguity: A lexical category may cause more than one
semantic relation.

(ii) Attachment ambiguity: More than one derivations of the same type of
category can have different semantics, e.g. PP attachment.

People that are working with CCG have tried to find ways to solve these am-
biguities. The section ’Methods of TR’ in the Materials and Methods chapter
lists the methods proposed to solve the problems arising with TR.

2.4 CCGlab

CCGlab is a tool for experimenting with CCG. CCGlab grammars are written
in paper-style and the results are almost in paper format (Bozsahin, 2019).
The tool is coded in COMMON LISP and it implements all the combinators
of CCG (application, combination, substitution).

Source code and the manual are at Github page of Bozsahin (2015).

2.5 CHILDES Database and Brown Corpus

The CHILDES database is a collection corpora of daily speech between chil-
dren and their parents (Macwhinney, 2000). It was created in 1973 and in-
cludes part-of-speech tags. Because the tool used as a CCGlab plug-in needs
to be tested with both artificial and natural language, this corpus is of great
value in its ability to simulate and work with spoken language. Among the
corpora, Eve corpus was selected (Brown, 1973). It has both the child’s and
parent’s utterances. An extract from the transcription of a random session is
shown in Figure 2.11.

10



Creating a lisp ready object out of this corpus was done manually by Sakirogullari
(2019). Grammar was written as shown in the chapter Materials and Meth-
ods. Derivations were gathered using this database’s converted grammar.

11



Figure 2.11 Extract from original Eve Corpus
@loc: /Brown/Eve/011100b.cha
@PID: 11312/c-00034754-1
@Begin
@Languages: eng
@Participants: CHI Eve Target_ Child , MOT Sue Mother , FAT David Father
, COL Colin Investigator
@ID: eng|Brown|CHI|1;11.00 |female |||Target_ Child|
@ID: eng|Brown|MOT||female |||Mother |||
@ID: eng|Brown|FAT||male |||Father |||
@ID: eng|Brown|COL|||Investigator|
@Date: 25-MAR-1963
@Time Duration: 11:15-12:15
*CHI: Fraser go sit right there .
%mor: n:prop|Fraser v|go v|sit adv|right adv|there .
%gra: 1|2|SUBJ 2|0|ROOT 3|2|OBJ 4|5|JCT 5|2|JCT 6|2|PUNCT
%add: MOT
%gpx: indicating couch
*MOT: alright . [+ IMIT]
%mor: co|alright .
%gra: 1|0|INCROOT 2|1|PUNCT
*CHI: I go get a pencil .
%mor: pro:sub|I v|go v|get det:art|a n|pencil .
%gra: 1|2|SUBJ 2|0|ROOT 3|2|COMP 4|5|DET 5|3|OBJ 6|2|PUNCT
*MOT: what’re you gonna do ?
%mor: pro:int|whatãux|be& PRES pro:per|you part|go-PRESPĩnf|to v|do
?
%gra: 1|4|SUBJ 2|4|AUX 3|4|SUBJ 4|0|ROOT 5|6|INF 6|4|COMP
7|4|PUNCT
*CHI: get a pencil . [+ RES]
%mor: v|get det:art|a n|pencil .
%gra: 1|0|ROOT 2|3|DET 3|1|OBJ 4|1|PUNCT
*CHI: Fraser (.) I get some .
%mor: n:prop|Fraser pro:sub|I v|get qn|some .
%gra: 1|3|LINK 2|3|SUBJ 3|0|ROOT 4|3|OBJ 5|3|PUNCT
%act: coming back with one pencil
*CHI: Fraser (.) I get xxx a pencil .
%mor: n:prop|Fraser pro:sub|I v|get det:art|a n|pencil .
%gra: 1|3|LINK 2|3|SUBJ 3|0|ROOT 4|5|DET 5|3|OBJ 6|3|PUNCT
*COL: what’s that you’re writing ?
%mor: pro:int|whatc̃op|be& 3S pro:rel|that pro:per|youãux|be& PRES
part|write-PRESP ?
%gra: 1|2|SUBJ 2|0|ROOT 3|6|LINK 4|6|SUBJ 5|6|AUX 6|2|CPRED
7|2|PUNCT
*CHI: that . [+ RES]
%mor: comp|that .
%gra: 1|0|INCROOT 2|1|PUNCT

12



CHAPTER 3

MATERIALS AND METHODS

3.1 Methods of TR

There are various ways to type-raise, which are listed below.

3.1.1 Memoization

In computer science, memoization is a dynamic programming technique to
keep the outputs of an expensive function call mostly in a hash table, in order
to get it back again when that function is invoked again. In the literature
Nakatsu and White (2010) referred to their method of parsing a grammar as
DCCG and they use this technique in openCCG parser.

3.1.2 Chart Based Parsing

The processes followed in this parsing technique are first extracting a lexicon,
i.e. a mapping from words to sets of lexical categories, and then manually
defining the combinatory rule schemas, such as functional application and
composition, which combine the categories together. The derivations in the
treebank are then used to provide training data for the statistical disambigua-
tion model (Hockenmaier and Steedman, 2005). This is the method used in
the C&C parser tool.

When selecting the type-raising rules in their parser C&C, Stephen Clark and
James Curran checked the most used type-raising categories on CCGbank
and utilized those as the type-raising rule set (Hockenmaier and Steedman,
2005). The categories are presented in Table 3.1.

3.1.3 Normal Form Parsing

Normal form parsing is not a type-raising method but it depends on type-
raising. A word in a grammar can have more than one category leading to

13



categorial ambiguity. According to the sentence to be derived, a specific cat-
egory can be selected and this ambiguity can be surpassed. All that is left
would be spurious ambiguities. Eisner (1996) presents a normal-form parsing
algorithm for CCG that has constraints in combining words to solve spurious
ambiguity. His solution does not have grammatical type-raising in its rule set
(It can still have categories like S/(S\ NP), but there is no system to change
derived NP to e.g. S/(S\ NP) like our plug-in does) and he states that all of
the spurious ambiguities are eliminated except the chain categories like A/B
B/C C/D. Hockenmaier and Bisk (2010) introduced a new normal form for
CCG by adding a couple of more constraints. By using standart CKY parsing,
they eliminated chained category’s spurious ambiguity as well.

3.1.4 Proliferation of TR

The dynamically type-raising of categories is possible. The use of polymor-
phic forms has the advantage of coming with very specific rules and thus
preventing the proliferation of categories.

3.1.5 Online Learning

In their paper Online Learning of Relaxed CCG Grammars for Parsing to Log-
ical Form, Zettlemoyer et all (2005) introduced a new mapping to logical form
from sentences. When a training example like "Show me flights to Prague" is
given, the mapped output is; λ x.flight(x) ∧ to(x, PRG).

Logical connectors: conjunction (∧), disjunction (∨), negation (¬)

Figure 3.1 Composition example
Show me flights to Prague

S /N N (N \N) /NP NP
: λ f .f′ : λx.flight′ x : λy.λ f .λx.f′ y∧ to′ (x,y) : PRG′

>B
(N\N)

: λ f .λx.λx.f′ y∧ to′ (x,PRG)
<B

N
: λx.flight′ x∧ to′ (x,PRG)

>B
S

: λx.flight′ (x)∧ to′ (x,PRG)

A challenging problem with this is that derivations are not annotated. Their
approach is to extend what was proposed earlier, which is learning a lexicon
and the parameters for a weighted CCG (Zettlemoyer and Collins, 2005).

For a mapping like above, learning CCG works well for complex, grammati-
cal sentences. For example;

14



Input: Show me flights from Newark and New York to San Francisco or Oakland
that are nonstop.

Output: λx.flight(x) ∧ nonstop(x) ∧ (from(x,PRG) ∨ from(x,NYC)) ∧ (to(x,SFO)
∨ to(x,OAK))

But what if the sentence is written in a way that only editing could correct its
grammar. For example;

Input: Boston to Prague the latest on Friday.

Output: argmax(λ x.from(x,BOS) ∧ to(x,PRG) ∧ day(x,FRI), λy.time(y))

Given a log-linear model with a CCG lexicon A, a feature vector f , and weights
w, the best parse is:

y* = argmax w. f (x,y)

where we consider all possible parses y for the sentence x given the lexicon A.

It generates all the possible substrings and matches them across categories
that trigger on the logical form. The normally given categories in Figure 3.2

Figure 3.2 Categories given for Show me the latest flight from Boston to Prague
Show me the latest flight from Boston to Prague on Friday

S /NP NP /N N N \N N \N N \N

will not parse the sentence in Figure 3.3.

Figure 3.3 Categories for Boston to Prague the latest on Friday
Boston to Prague the latest on Friday

NP N \N NP /N N \N

They add two rules to relax the combination of categories. By reversing the
direction of the principal categories and inserting the missing semantic con-
text, as well as bypassing missing nouns, it goes to a complete parse. The
algorithm gives points to those which are grammatical, and takes points from
those which are using relaxed parsing rules. It is able to select a subset of the
generated possible substrings and categories, and processes the data set one
example at a time. Their TR is map-like type-shifting, however. It always has
extra semantics than λ f . f a

Training and checking the correctness from the formula y* = argmax w. f (x,y) ,
it sees if lexicon A is a subset of the generated strings and logical form match,
sets this lexicon as the main lexicon A, and updates its parameters (weight w,
y′ and f (xi,y)). At the end, the output is the remaining lexicon A and parame-
ters w (Zettlemoyer and Collins, 2007).

15



3.2 Tools to work with CCG

3.2.1 OpenCCG

OpenCCG is an open source natural language processing library written in
Java, which provides parsing and realization services based on Mark Steed-
man’s Combinatory Categorial Grammar (CCG) formalism (Steedman, 2000).
The library makes use of the multi-modal extensions to CCG devised by Jason
Baldridge in his dissertation (Baldridge, 2002) and in a joint EACL-03 paper
with Bozsahin et al. (2006)

This tool uses some of the rules by default and following text is copied di-
rectly from openCCG’s Github page (White, 2012) which gives a clear idea on
used rules.

" Application, composition and crossed composition (forward and backward in each
case), as well as forward type-raising from NP to S/(S\NP) and backward type-
raising from NP to S$1\(S$1/NP).

A backward type-raising rule from PP to S$1\(S$1/PP). The $ causes a dollar-sign
raise category to be created, as shown; without it, we’d just get S\(S/PP). Type-raise
- $: PP => S; "

As they stated in the code file on their Github page ccg-format-grammars/
tiny/tiny.ccg, their type-raising rules are hard-coded and are not extended
beyond the stated ones.

3.2.2 Clark & Curran Parser

The C&C, CCG parser and supertagger form part of the language process-
ing tools developed by Clark and Curran (2007). The tools are written in
C++ and have been designed to be efficient enough for large-scale NLP tasks.
Combinatory rules as well as type-raising rules are selected by looking at the
occurrence frequency of the type-raising rules on CCGbank. Disadvantages
of this approach is discussed in Chapter 4.

Table 3.1: Set of Unary Rules used by Clark and Curran

Category Type-raising rule
NP S/(S\NP)
NP (S\NP)\((S\NP)/NP)
NP ((S\NP)/NP)\(((S\NP)/NP)/NP)
NP ((S\NP)/(S[to]\NP))\(((S\NP)/(S[to]\NP))/NP)
NP ((S\NP)/PP)\(((S\NP)/PP)/NP)
NP ((S\NP)/(S[adj]\NP))\(((S\NP)/(S[adj]\NP))/NP)
PP (S\NP)\((S\NP)/PP)
S[adj]\NP (S\NP)\((S\NP)/(S[adj]\NP))

16



3.2.3 easyCCG

EasyCCG is a CCG parser created by Mike Lewis and the source code is avail-
able at Github page of Lewis (2014). It uses factored lexical categories and the
parsing is then just a deterministic search and followed by the selection of the
highest probability category sequence that supports a CCG derivation.

The parser uses Steedman (2000)’s combinatory rules (forward application, back-
ward application, forward composition, backward crossed composition, generalized
forward composition, generalized backward crossed composition) because those are
put forward as linguistically universal. As type-raising rules, only the ones
shown in Table 3.2 are used (Lewis and Steedman, 2014).

Table 3.2: Set of Unary Rules used by easyCCG

Initial Result Usage
NP S/(S\NP) Type-Raising
NP (S\NP)/((S\NP)/NP)
PP (S\NP)/((S\NP)/PP)

3.3 Procedure and Algorithm

As stated in the previous chapters, CCG gives words the opportunity to com-
bine and eventually compose sentences using combinatory rules and type-
raising. This tool generates and adds the type-raising rules above the already
given grammar.

Inside our tool, a function takes a path as an argument to a file (the file types
that the tool works with are explained below in the Data Structures section).
It uses the predefined rules to generate new type-raised categories. The work-
flow for this generation process as well as a description of how to use the new
generated rules are also provided.

3.3.1 Data Structures

The input to the algorithm is a ccglab .ded file format. CCGlab file formats
for a file named P are as follows;

– P.ccg : This is the grammar provided to ccglab written by the user themself.
The user specifies the categories of the units in accordance with the rules in
the ccglab manual.

– P.ded : Short for deduction, this is what the program uses as an input. It
has a nested association list data structure that helps load into Lisp directly.
An association list is a list of pairs, and each pair is a key value association.
This helps the tool use listing comprehensions, pop and push the items to the

17



rule set while not changing the original copy. To be able to interpret what the
.ded file’s contents are, two tables 3.3 and 3.4 are good references to look at.

– P.ind : Short for induction, the same grammar but in a model-trained state.
This is to use the generated rules and derivations as parse ranking and has
the same format as P.ded.

– P.lisp : This is our code file and will be further explained in the Workflow
section.

Having described the file formats, the next step is to identify the code parts
and see what those parts do.

The lisp file is a plug-in for CCGlab. Its role is to enable type-raising on se-
lected verb morphemes. Work flow is explained in section 3.3.2 and the algo-
rithm is explained in section 3.3.3. An abstract data type approach has been
implemented to put the algorithm to use.

3.3.2 Workflow

The examples below are taken directly from the CCGlab manual (Bozsahin,
2019). A .ccg file which is a raw input to CCGlab consists of the elements
shown after this paragraph. The top 3 are called lexical items, and the bottom
one is called a unary rule. Only unary rules care about our order of specifi-
cations while the whitespacing is not important at all. As it parses, the latter
parsed unary rules can reach the former parsed rules. Also the same category
does not apply again once it already has.

John n := np[agr=3s] : !john ;
likes v := (s\np[agr=3s])/ ˆ np : \x\y. !like x y;
and x := (@X\*@X)/*@X : \p\q\x. !and (p x)(q x);
(L1) np[agr=?x] : lf –> s/(s\np[agr=?x]) :\lf \p. p lf ;

We mentioned unary rules because type raising is unary.

Having written the grammar and saved it as a my_grammar.ccg file, we run
CCGlab and type

*(load-grammar "my_grammar" :make t)

which creates my_grammar.ded and loads it onto Lisp.

OR

* (load-model "my_grammar" :make t)

which creates my_grammar.ind and loads it onto Lisp.

Let us assume that the upper option was typed and now my_grammar.ded is
ready. Since both options have the same workflow, there is no need to divide

18



them.

(1) The first step to use the compile-tr.lisp is to load it by doing;

* (load "compile-tr.lisp")

(2) The main method to type-raise categories gets two parameters. First ar-
gument is the path to our my_grammar.ded and the second argument to it is
the Lisp list of "to be type-raised" categories, henceforth it will be mentioned
as "morphemes’ list". If the file ’my_grammar.ded’ is in the path /home/docs
and desired morphemes are V, V3, Ving then it should be typed;

* (compile-tr "/home/docs/my_grammar.ded" ’(V V3 Ving))
File created at doc/raised-lex-rules.ded
The rules also set to the global variable *RAISED-LEX-RULES*

It prints two instructive messages. The above statement says that in the path
where ’compile-tr.lisp’ is a doc folder was created and a file raised-lex-
rules.ded was generated. The below statement says that in case we want to
manipulate the rules generated by the compile-tr method, we have an option
to do so by editing or using the variable *RAISED-LEX-RULES*. Type-raising
rule generation is achieved with these two simple function calls.

(3) The lisp translation of the rules are kept in the global variable *ccg-grammar*.
When we do (load-grammar) in CCGlab, it initializes and fills *ccg-grammar*
(global variables and their descriptions are in Table 3.5). Because of this, when
the function compile-tr is called, *ccg-grammar* is initialized and filled with
the rules using loaded grammar. compile-tr function makes use of this vari-
able to extract the category information and to start generating type-raising
rules. However, it does not alter *ccg-grammar*. There is a method to do this.
It is called (add-tr-to-grammar) and all it does is push the new set of rules
kept in *RAISED-LEX-RULES* to the end of *ccg-grammar*.

* (add-tr-to-grammar)
Type-raising rules added at the end of *ccg-grammar*

Table 3.3: Lex Item Features
LEX ITEM FEATURES
KEY unique key for an entry
PHON phonological form
MORPH POS tag
SYN syntactic type
SEM logical form
INDEX a unique value

(4) After pushing the newly generated rules at the end of *ccg-grammar*,
what should be done is to save the created grammar. Let us call the new
grammar grammar_withTR.ded.

19



* (save-grammar "grammar_withTR.ded")

(5) Loading the saved grammar again to make sure the grammar that is dealt
with is the one that is created just now. Be aware of the naming since load-
grammar does not use extensions when writing the file name, while save-
grammar in step (4) needs an extension.

* (load-grammar "grammar_withTR")

The rules are ready to be used to parse new sentences.

3.3.3 Algorithm to type-raise syntactic categories

The algorithm is provided by Cem Bozsahin. Figure 3.4 shows a representa-
tion of the provided algorithm and source code is at Github page of Demir
(2019).

Figure 3.4 Algorithm to type-raise syntactic categories
input: a CCG grammar, Part-of-speech(POS) categories for verbs.
output: list of unary rules for type-raising all arguments of the verbs in the
input.
method:

for each verb morpheme do
for each argument in the verb do

create a new item consisting of (category without the argument)
(opposed direction of the argument) (entire category)
store the new item
trim the argument from the category

end for
end for

The algorithm generates all the rules and works in all the arbitrary argument
inputs. This is for completeness. If there is no such rule, it will not add any-
thing to the end of the grammar. It also gives the argument type-raising cor-
rectly. We tested the system with various grammars, including the large scale
Eve database which has 4054 already defined rules.

3.3.4 Detailed code analysis and complexity discussion

Here is the main function’s step by step detailed execution plan that explains
how the type-raising is accomplished. An example *ccg-grammar* is pro-
vided in Figure 3.5 to show a snippet.

(1) At the start of the program, *ccg-grammar* is loaded as an input together
with the user provided morphemes’ list.

20



(2) Once the input is loaded, the verb morpheme finding function is called.
It is a straightforward searching function that goes through all the entries-
(KEY 1), (KEY 2) ... (KEY N)- on *ccg-grammar*, then in each one of them,
it checks if any of the morphemes given in the user provided list (morphemes’
list) equals that of *ccg-grammar*. Therefore, it has O(N) complexity. This
function stores the resulting items in *VERBS-IN-GRAMMAR*.

(3) A function gets the biggest key id and stores it in *last-key-id* for later
use. Iterates to the end of the list, so the complexity of this loop is O(N).

(4) After storing the biggest key id of *ccg-grammar*, a nested loop (shown
in 3.4) that seeks the syntactic part to be type-raised - namely (SYN X) pair- is
executed. The outer loop goes through the list that is initialized in the step 2
(named *VERBS-IN-GRAMMAR*) and the inner loop goes through the arguments
of current verb morpheme.

Since the inner loop’s iteration takes much less than the outer loop (a table
that shows the relation between the max number of arguments versus the
number of categories provided at chapter 4 ), inner loop’s complexity can be
assumed constant O(1). The outer loop takes O(N) time to execute, so this
step becomes O(1)*O(N)*O(complexity for the type raising operation). Inner
loop is where the type-raising function is called. Type-raising function’s com-
plexity is constant O(1), because what it does is simple list comprehension.

This brings us to the conclusion that the total complexity of this nested loop
is O(1)*O(N)*O(1) = O(N)

The whole program takes O(N) + O(N) + O(1)*O(N)*O(1) ≈ O(N)

3.3.5 Type-raising function implementation details

Having talked about the complexity of the type-raising algorithm function,
here is how the function itself is implemented;

When the syntactic category is obtained-(SYN X) pair where SYN is key and X
is the value-, (type-raise category) function starts the recursive type rais-
ing process.

(a) As the base case of a recursive function: it checks if the category is an
atomic category. If it is atomic (N, NP, S, P etc..), there is no argument left,
meaning type-raising must stop.

(b) If the category is complex ((S/NP),(S\NP)/V), etc.,) the direction in which
the argument is expected is noted.

(c) The argument to be type-raised is ’popped’ from the category and the new
category is formed according to the direction (category without the argument)
(opposed direction of the argument) (entire category)

(d) The new category and the last type-raised argument are saved in variables.

21



(e) The type-raising function is called again but this time without the last
type-raised argument. The process restarts from (a) until it hits the base case.

After the type raising function reaches the base case and type raising stops,
the resulting values are saved. A new syntactic category and the semantics of
type-raised morpheme are set and an index is assigned to the new category.
This entry is pushed to the *RAISED-LEX-RULES*.

When the iterations are over, the resulting *RAISED-LEX-RULES* is saved as a
file.

As an example, what happens to a category when the type-raising function
gets called using the example.ded file in Figure 3.5 is shown here;

Assume compile-tr is called with the argument ’(V) meaning the tool gets to
type-raise only the rules that have the morpheme V (MORPH V).

* (compile-tr "doc/example.ded" ’(V))

Grammar is loaded, *ccg-grammar* is initialized. Since there is only one key
entry matching the item in our file - that is (KEY 4) with the (MORPH V)-,
that item would be the only one to be inserted into the list *verbs-in-grammar*.

* *verbs-in-grammar*

( (KEY 4) (PHON ANSWER) (MORPH V) (SYN (((((BCAT S) (FEATS
((TYPE INF)))) (DIR BS) (MODAL ALL) ((BCAT NP) (FEATS NIL))) (DIR
BS) (MODAL ALL) ((BCAT AUX) (FEATS ((TYPE TEMP))))) (DIR FS)
(MODAL ALL) ((BCAT NP) (FEATS NIL))))
(SEM (LAMX (LAMY (LAM Z (((("SIMP" Y) "ANSWER") X) Z))))) (PARAM
1.0))

Then

(type-raise ’(((((BCAT S) (FEATS ((TYPE INF)))) (DIR BS) (MODAL
ALL) ((BCAT NP) (FEATS NIL)))
(DIR BS) (MODAL ALL) ((BCAT AUX) (FEATS ((TYPE TEMP)))))
(DIR FS) (MODAL ALL) ((BCAT NP) (FEATS NIL))))

is called.

As a base case of a recursive function, (type-raise) checks if the category
provided is complex or atomic. To do this, it checks if there is a DIR tag in
the category.

((BCAT S) (FEATS ((TYPE INF)))) (DIR BS) (MODAL ALL) ...

Having found a DIR tag, it interprets this as there being at least one argument

22



to type-raise. The argument is the part that comes after the latest 1st level
DIR. 1st level here means that it should reside in the outermost part of the
nested parenthesis.

Here is what the category in *verbs-in-grammar* should look like on paper;

((S\NP)\AUX) / NP

The outermost DIR is the rightest forward slash. The argument is NP whose
lisp representation is ((BCAT NP) (FEATS NIL)).

After type-raising this argument, the result should look like this;

((S\NP)\AUX) \ ((S\NP)\AUX) / NP

This is a new rule and will be stored in the *raised-lex-rules* variable.
With the remaining rule (the last argument is dropped from the category),
(type-raise category) gets called again.

[Stack 1] (type-raise ’((((BCAT S) (FEATS ((TYPE INF)))) (DIR BS) (MODAL
ALL) ((BCAT NP) (FEATS NIL)))
(DIR BS) (MODAL ALL) ((BCAT AUX) (FEATS ((TYPE TEMP))))))

First, it again checks if it is a complex cat. It finds a DIR tag and detects the
argument by checking the outermost level DIR which is being shown here

(DIR BS) (MODAL ALL) ((BCAT AUX) (FEATS ((TYPE TEMP))))

Then it starts type-raising.

(S\NP) \ AUX

is our category. AUX is the argument.

After the operation, it becomes;

(S\NP) / ((S\NP) \ AUX )

This will be pushed back to the *raised-lex-rules*. Remaining (S\NP) is
given to the recursive type-raise function.

[Stack 2] (type-raise ’(((BCAT S) (FEATS ((TYPE INF))))
(DIR BS) (MODAL ALL) ((BCAT NP) (FEATS NIL)))

It still is a complex category since there is a DIR
(DIR BS) (MODAL ALL) ((BCAT NP) (FEATS NIL))

Therefore it starts the operation on,

S\NP

23



NP is the argument. When it finishes the list comprehension, the output is:

S / (S\NP)

which is added to *raised-lex-rules*. After adding the rule, the next line
is a call to (type-raise category)

[Stack 3] (type-raise ’((BCAT S) (FEATS ((TYPE INF)))))

This will hit the base case, since it will not be able to find any DIR tag. Exe-
cution will be stopped and the function that is 3 stacks deep will return.

[Stack 2] Execution ends,there is no more line left to execute because last line
was a call to (type-raise).

[Stack 1] Execution ends, no more line left to execute.

* (compile-tr path category)

Since all recursive levels returned, the main function will stop and all that is
left is *raised-lex-rules* with its content filled with new type-raising rules.

* *raised-lex-rules*

(((KEY 6) (INSYN ((BCAT NP) (FEATS NIL))) (INSEM LF) (OUTSYN
(((BCAT S) (FEATS ((TYPE INF)))) (DIR FS) (MODAL ALL) (((BCAT S)
(FEATS ((TYPE INF)))) (DIR BS) (MODAL ALL) ((BCAT NP) (FEATS
NIL))))) (OUTSEM (LAM LF (LAM P (P LF)))) (INDEX # :|auto-tr398|)
(PARAM 1.0))

((KEY 7) (INSYN ((BCAT AUX) (FEATS ((TYPE TEMP))))) (INSEM LF)
(OUTSYN ((((BCAT S) (FEATS ((TYPE INF)))) (DIR BS) (MODAL ALL)
((BCAT NP) (FEATS NIL))) (DIR FS) (MODAL ALL) ((((BCAT S) (FEATS
((TYPE INF)))) (DIR BS) (MODAL ALL) ((BCAT NP) (FEATS NIL))) (DIR
BS) (MODAL ALL) ((BCAT AUX) (FEATS ((TYPE TEMP))))))) (OUTSEM
(LAM LF (LAM P (P LF)))) (INDEX # :|auto-tr399|) (PARAM 1.0))

((KEY 8) (INSYN ((BCAT NP) (FEATS NIL))) (INSEM LF) (OUTSYN
(((((BCAT S) (FEATS ((TYPE INF)))) (DIR BS) (MODAL ALL) ((BCAT
NP) (FEATS NIL))) (DIR BS) (MODAL ALL) ((BCAT AUX) (FEATS ((TYPE
TEMP))))) (DIR BS) (MODAL ALL) (((((BCAT S) (FEATS ((TYPE INF))))
(DIR BS) (MODAL ALL) ((BCAT NP) (FEATS NIL))) (DIR BS) (MODAL
ALL) ((BCAT AUX) (FEATS ((TYPE TEMP))))) (DIR FS) (MODAL ALL)
((BCAT NP) (FEATS NIL))))) (OUTSEM (LAM LF (LAM P (P LF)))) (IN-
DEX # :|auto-tr400|) (PARAM 1.0)))

Next is to see how these rules are used in the derivation of sentences. This
will be explained in the Chapter 4.

24



3.3.6 Algorithm to type-raise semantic categories

Semantic categories’ type raising is more straightforward. Any semantic type,
when it is type-raised, becomes

X : a ⇒T: λ f . f a

The grammar that Figure 3.5 represents is shown in another Figure 3.6

Figure 3.5 Example *ccg-grammar* variable contents
(DEFPARAMETER *CCG-GRAMMAR*

’(((KEY 1) (PHON ABC) (MORPH N)
(SYN ((BCAT N) (FEATS ((TYPE COUNT) (AGR 3) (COUNT SG)))))
(SEM "ABC") (PARAM 1.0))

((KEY 2) (PHON ABCS) (MORPH PLN)
(SYN ((BCAT NP) (FEATS ((TYPE COUNT) (AGR 3) (COUNT PL)))))
(SEM ("PL" "ABC")) (PARAM 1.0))

((KEY 3) (PHON ANY) (MORPH DET)
(SYN (((BCAT NP) (FEATS ((TYPE ?X) (AGR ?Y) (COUNT ?Z)))) (DIR
FS) (MODAL ALL) ((BCAT NP) (FEATS ((TYPE ?X) (AGR ?Y) (COUNT
?Z))))))
(SEM (LAM X ("ANY" X))) (PARAM 1.0))

((KEY 4) (PHON ANSWER) (MORPH V)
(SYN (((((BCAT S) (FEATS ((TYPE INF)))) (DIR BS) (MODAL ALL)
((BCAT NP) (FEATS NIL))) (DIR BS) (MODAL ALL) ((BCAT AUX)
(FEATS ((TYPE TEMP))))) (DIR FS) (MODAL ALL) ((BCAT NP) (FEATS
NIL))))
(SEM (LAM X (LAM Y (LAM Z (((("SIMP" Y) "ANSWER") X) Z)))))
(PARAM 1.0))

((KEY 5) (PHON ABOUT) (MORPH PRE)
(SYN ((((BCAT S) (FEATS NIL)) (DIR FS) (MODAL ALL) ((BCAT S)
(FEATS NIL))) (DIR FS) (MODAL ALL) ((BCAT NP) (FEATS ((TYPE
TIME))))))
(SEM (LAM X (LAM Y (("TIME" Y) ("ABOUT" X))))) (PARAM 1.0))

((KEY 6) (PHON ABOUT) (MORPH PRE)
(SYN ((((BCAT S) (FEATS NIL)) (DIR BS) (MODAL ALL) ((BCAT S)
(FEATS NIL))) (DIR FS) (MODAL ALL) ((BCAT NP) (FEATS ((TYPE
TIME))))))
(SEM (LAM X (LAM Y (("TIME" Y) ("ABOUT" X))))) (PARAM 1.0)))

25



Figure 3.6 Example grammar written for CCGlab
abc n := n[type=count,agr=3,count=sg] : !abc ;
abcs pln := np[type=count,agr=3,count=pl] : !pl !abc ;
any det := np[type=?x,agr=?y,count=?z]/np[type=?x,agr=?y,count=?z] :
\x.!any x;
answer v := s[type=inf]\np\aux[type=temp]/np : \x\y\z.!simp y !answer x z;
about pre := (s/s)/np[type=time] : \x\y.!time y (!about x);
about pre := (s\s)/np[type=time] : \x\y.!time y (!about x);

This is why in the compile-tr.lisp plug-in, the semantic type-raising is hard
coded. All semantic categories are turned into (LAM LF (LAM P (P LF)))
in the ded file when (compile-tr path morphs) function is used. When
(debug-tr path morphs) is used, however, semantic representation is filled
with the argument that has been type-raised in that step.

26



Table 3.4: Lex Rule Features
LEX RULE FEATURES
KEY unique key for an entry
INSYN input category
INSEM input logical form
OUTSYN output syntactic category rule
OUTSEM output logical category rule
INDEX a unique value

Table 3.5: Compile-TR global variables
Global variables
*ccg-grammar* all the lexical entries after loading a grammar to CCGlab
*verbs-in-grammar* selected list of lexical entries

according to "morphemes’ list"
*syns* type-raised SYN entries of a morph
*args* list of arguments of categories that have already type-raised
*last-key-id* highest KEY id in *ccg-grammar*
*raised-lex-rules* type-raised lexical rules including

INSYN OUTSYN INSEM OUTSEM

27



28



CHAPTER 4

RESULTS AND DISCUSSIONS

4.1 Results and Examples

For the very first experiment, a simple grammar can be picked. This is to get
an idea of what is trying to be achieved and what the resulting derivations
would look like when the type-raising plug-in is used. A grammar called
corner.ccg is provided here;

the d := np/*n: \x. x;
man n := n: !man;
in p := (n\n)/*np: \x\y.!in x y;
corner n := n: !corner;
hits v := (s\np)/np: \x\y.!hits x y;

After loading the grammar to CCGlab

* (load-grammar "corner")

Next is to type-raise the only verb "hits".

* (load "compile-tr")

* (compile-tr "corner.ded" ’(V))

* (add-tr-to-grammar)

Grammar added at the end of *ccg-grammar*

*(save-grammar "corner-tr.ded")

Now that it saved our grammar with the newly type-raised rules added at
the end of *ccg-grammar*.

The grammar had 5 words in total, and for the 2 arguments, it generated 2
different rules. The added items have the new type raised rules created from
the arguments of the verb "hits".

This one below is generated from the argument written in italic (S\NP)/NP .

29



a. (S \ NP) \ ((S \ NP) / NP)

This next one is generated from the argument written in italic (S\NP)/NP.

b. S / (S \ NP)

Those arguments were both NP’s but they had different functors, so the rules
turned out to be different. Let us parse using a simple sentence to test it out.

* (p ’(the man hits the corner))

This command returned true, which means there are derivations available for
this sentence.

* (ders)

Figure 4.1 Derivation 1
The man hits the corner

>B >B

NP (S\NP)/NP NP
<

(S\NP)
<

S

Figure 4.2 Derivation 2
The man hits the corner

>B >B

NP (S\NP)/NP NP
<T

(S\NP)\((S\NP)/NP)
<

(S\NP)
<

S

Figure 4.3 Derivation 3
The man hits the corner

>B >B

NP (S\NP)/NP NP
>T

S/(S\NP)
<

(S\NP)
>

S

Figure 4.4 Derivation 4
The man hits the corner

>B >B

NP (S\NP)/NP NP
>T <T

S/(S\NP) (S\NP)\((S\NP)/NP
<

(S\NP)
<

S

30



The tool generates all the possible type-raising rules. Here is another example
from the large scale database Eve:

If the parser is allowed to type-raise with basic categories like NP, PP, N, then
the number of derivations would be more than the number of derivations
when we disallow the type-raising of basic categories.

*(type-raise-off)

* (p ’(the fish finished the dish ))

* (ders)

This shows 4395 derivations. A random derivation is at 4.5

Figure 4.5 Derivation including basic category type-raising
The fish finished the dish

<T <T

(S/NP)/((S/NP)\NP) (S/NP)\NP NP/NP S\(S/NP)
>

S/NP
<B

S/NP
<

S
<T

(S\S)\((S\S)/S)

However, if we do:

* (type-raise-targets ’(NP PP N))

(NP PP N)

* (p ’(the fish finished the dish ))

* (ders)

Now the parsing without basic categories generates only 98 derivations. When
the tool is not allowed to use lower types like N, NP or PP in derivations, the
amount of derivations generated is drastically reduced because it basically
omits the lower types and proceeds with the complex categories only.

If a sentence that is going to be parsed is longer, then as one would expect,
number of derivations would become higher. This is because the number of
methods to combine categories is increasing thanks to type-raising. Imagine
combining two sentences with a ’but’. For example, the sentence "the fish
finished the dish but did not finish the cake" has 3958 derivations. Statistics
are shown in Table 4.2.

31



4.2 Discussions

Unlike other parsers, our tool generates type-raising rules by looking at the
provided grammar. This has two advantages over other parsers. The first
one is that we would have all the type-raising rules we need so that instead
of waiting for our predefined rules to work and parse sentences, we would
have the right ones to decide and tell if there is a derivation. The second
one is that while other parsers give limited amount of type-raising rules and
only one or two of them have features in their arguments, the rule generation
algorithm used in this tool do not drop the features of the categories. For that
reason we can also have the rules that have features in its arguments. Clark
and Curran parser has only [to] and [adj] as features on their type-raising rule
set. OpenCCG uses dollar sign notation to represent all the NP and PP’s in
the lexicon, however, arguments are not limited to only those two.

Our tool type-raises all the arguments. However, it does not check if more
than one identical type-raising rule is present. Therefore, if subsumption is
made, the number of rules would decrease remarkably and that would make
the computation even easier. As can be seen in the Table 4.1, the tool has gen-
erated 7419 rules but if the subsumption is made, number of rules generated
reduces to 523 in the Eve database (Subsumption has been designed and im-
plemented by Cem Bozşahin). These include 2471 different verbs’ arguments
with their features kept.

Table 4.1: Eve and PFTL database TR Rule Generation results

# of categories # of TR Rules Generated # of Rules if Subsumed
Eve 4054 7419 523

# of Verbs max # of arguments
2471 6

# of categories # of TR Rules Generated # of Rules if Subsumed
PFTL 251 148 47

# of Verbs max # of arguments
92 4

In Table 4.2, it is shown the number of derivations when type-raising with
atomic types allowed and when it is disallowed. Disabling the type-raising
on atomic types decreases the number of derivations as expected.

Table 4.2: # of Derivations when TR on Atomic Types enabled / disabled

Sentence TR w/ Atomic Types TR w/o Atomic Types
The fish finished the dish 4395 98
The fish finished the dish but- more than 3958
did not finish the cake allowed memory

32



CHAPTER 5

CONCLUSION AND FUTURE DIRECTIONS

5.1 Conclusion

Language modeling tools like CCG can be trained, and can be taught to choose
the correct derivation of words using both syntactic and semantic informa-
tion. The syntactic interpretation of combinatory rules are considered type
- transparent. All syntactic categories reflect the semantic type of the asso-
ciated logical form and all syntactic combinatory rules are type-transparent
versions of one of a small number of semantic operations over functions in-
cluding application, composition and type-raising. To be able to parse sen-
tences and find different derivations from categories, these functional opera-
tions are used. Type-raising is one of these operations and it is thought to be
universal. When a sentence is parsed, type-raising simulates the case where
arguments like noun phrases become functions and seek other arguments like
verb phrases or auxiliary verbs near them to compose and become a sentence.
Type-raising is not limited to subjects, objects or complements, however. It is
also used in non-complete sentences thanks to its being not a constructive re-
quirement. Additionally, type-raising is not language specific. The sentences
can be parsed with type-raising very often, such that, as can be seen in the Re-
sults and Discussions chapter, a simple example gives 4 derivations and 3 of
them are generated by type-raising rules. The plug-in integrated to CCGlab
was created in order to experience such types of cases. Instead of using spe-
cific type-raising rules, it generates all the rules with the features included.
This is what separates it from all the other tools. Having an intermediate
step filled using this plug-in, CCGlab can be used to examine the sentences
derived by type-raising rules faster and more efficient.

5.2 Future Directions

The implemented tool correctly generates all the type-raised categories us-
ing all the arguments of verbs as intended. However, there are arguments
with the same features and the same type of functors that when they are
type-raised, they give the exact same rule. These can be eliminated and a
subsumption can be found to reduce the number of rules. This would help

33



reduce the number of derivations. A result was reported in 4.2.

34



Bibliography

Baldridge, J. (2002). Lexically Specified Derivational Control in Combinatory Cat-
egorial Grammar. PhD thesis, University of Edinburgh.

Bever, T. (1970). The Cognitive Basis for Linguistic Structures. Wiley.

Bozsahin, C. (2015). Ccglab. https://github.com/bozsahin/ccglab.

Bozsahin, C. (2019). CCGlab manual. "https://github.com/bozsahin/
ccglab/blob/master/docs/CCGlab-manual.pdf.

Bozsahin, C., Kruij, G.-J., and White, M. (2006). Specifying grammars for
openccg: A rough guide.

Brown, R. (1973). A First language: the early stages. Cambridge, MA: Harvard
University Press.

Clark, S. and Curran, J. (2007). Wide-coverage efficient statistical parsing with
ccg and log-linear models. Computational Linguistics, 33:493–552.

Demir, O. (2019). Type-raising for ccglab. https://github.com/karavana/
cogs.

Eisner, J. (1996). Efficient normal-form parsing for combinatory categorial
grammar. In 34th Annual Meeting of the Association for Computational Lin-
guistics, pages 79–86, Santa Cruz, California, USA. Association for Compu-
tational Linguistics.

Fodor, J. A. and Garrett, M. (1967). Some syntactic determinants of sentential
complexity. Perception and Psychophysics, 7:289–296.

Harley, T. (2014). The Psychology of Language: From Data to Theory. Psychology
Press.

Hockenmaier, J. and Bisk, Y. (2010). Normal-form parsing for combinatory
categorial grammars with generalized composition and type-raising. COL-
ING ’10 Proceedings of the 23rd International Conference on Computational Lin-
guistics, pages 465–473.

Hockenmaier, J. and Steedman, M. (2005). Ccgbank. http://groups.inf.ed.
ac.uk/ccg/ccgbank.html.

Lewis, M. (2014). Easyccg. https://github.com/mikelewis0/easyccg.

Lewis, M. and Steedman, M. (2014). A ccg parsing with a supertag-factored
model. Proceedings of the 2014 Conference on Empirical Methods in Natural
Language Processing (EMNLP).

35

https://github.com/bozsahin/ccglab
"https://github.com/bozsahin/ccglab/blob/master/docs/CCGlab-manual.pdf
"https://github.com/bozsahin/ccglab/blob/master/docs/CCGlab-manual.pdf
https://github.com/karavana/cogs
https://github.com/karavana/cogs
http://groups.inf.ed.ac.uk/ccg/ccgbank.html
http://groups.inf.ed.ac.uk/ccg/ccgbank.html
https://github.com/mikelewis0/easyccg


Macwhinney, B. (2000). The CHILDES project: tools for analyzing talk. Child
Language Teaching and Therapy, 8.

Nakatsu, C. and White, M. (2010). Generating with discourse combinatory
categorial grammar. Linguistic Issues in Language Technology.

Nordquist, R. (2019). What is semantic transparency? https://www.
thoughtco.com/semantic-transparency-1691939.

Pareschi, R. and Steedman, M. (1987). A lazy way to chart-parse with catego-
rial grammars. ACL ’87: Proceedings of the 25th annual meeting on Association
for Computational Linguistics.

Sakirogullari, C. (2019). Measuring empirical bias toward ergativity and ac-
cusativity. Master’s thesis, Middle East Technical University.

Steedman, M. (1996). Surface structure and interpretation. MIT press.

Steedman, M. (2000). The syntactic process, volume 24. MIT press.

White, M. (2012). Openccg. https://github.com/OpenCCG/openccg/.

Wittenburg, K. (1987). Predictive combinators: a method for efficient process-
ing of combinatory categorial grammars. ACL ’87: Proceedings of the 25th
annual meeting on Association for Computational Linguistics.

Zettlemoyer, L. S. and Collins, M. (2005). Learning to map sentences to logical
form: Structured classification with probabilistic categorial grammars. Pro-
ceedings of the Twenty-First Conference on Uncertainty in Artificial Intelligence
(UAI2005), pages 658–666.

Zettlemoyer, L. S. and Collins, M. (2007). Online learning of relaxed ccg gram-
mars for parsing to logical form. In Proceedings EMNLP-CoNLL, pages 678–
–787.

36

https://www.thoughtco.com/semantic-transparency-1691939
https://www.thoughtco.com/semantic-transparency-1691939
https://github.com/OpenCCG/openccg/

	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	INTRODUCTION
	The Need for Type-Raising
	Transparency and Surface Structure

	Background
	Combinatory Categorial Grammar (CCG)
	Type-Raising (TR)
	What is the Problem with TR
	CCGlab
	CHILDES Database and Brown Corpus

	MATERIALS AND METHODS
	Methods of TR
	Memoization
	Chart Based Parsing
	Normal Form Parsing
	Proliferation of TR
	Online Learning

	Tools to work with CCG
	OpenCCG
	Clark & Curran Parser
	easyCCG

	Procedure and Algorithm
	Data Structures
	Workflow
	Algorithm to type-raise syntactic categories
	Detailed code analysis and complexity discussion
	Type-raising function implementation details
	Algorithm to type-raise semantic categories


	RESULTS AND DISCUSSIONS
	Results and Examples
	Discussions

	CONCLUSION AND FUTURE DIRECTIONS
	Conclusion
	Future Directions


