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ABSTRACT

OUTLIER ROBUST FILTERS AND THEIR MULTIPLE MODEL
EXTENSIONS

Şahı̇n Bozgan, İlknur

M.S., Department of Electrical and Electronics Engineering

Supervisor: Assist. Prof. Dr. Emre Özkan

September 2019, 149 pages

Kalman filter (KF), which is an algorithm that is utilized to estimate unknown vari-

ables based on noisy measurements, has been successfully employed in many appli-

cations such as navigation, control, signal processing and target tracking. It is the

optimum Bayesian filter in terms of mean square error (MSE) for linear Gaussian

state-space models (SSMs). However, in many real world applications, the perfor-

mance of KF degrades due to the presence of outliers in noises. Motivated by this

problem, several algorithms have been proposed to provide robustness towards out-

liers. In this thesis, existing outlier robust filters are investigated regarding their the-

oretical derivations, validity of their assumptions, and performances. Furthermore,

multi-model extensions of the filters are derived and the merits of the algorithms are

illustrated in simulations.

Keywords: Kalman Filter, Student’s-t Filter, Variational Bayesian, Interacting Multi-

ple Model, Gaussian Distribution, Student’s-t Distribution, Heavy-Tailed Noise, Tar-
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get Tracking, Inverse Wishart, Gamma-Gaussian, Outliers, Robustness
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ÖZ

AYKIRI DEĞER FİLTRELERİ VE ÇOKLU MODEL UZANTILARI

Şahı̇n Bozgan, İlknur

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Emre Özkan

Eylül 2019 , 149 sayfa

Gürültülü ölçümlere dayanarak bilinmeyen değişkenleri tahmin etmek için kullanılan

bir algoritma olan Kalman filtresi (KF), navigasyon, kontrol, sinyal işleme ve hedef

takibi gibi birçok uygulamada kullanılmıştır. Bu filtre, doğrusal ve Gauss gürültülü

durum-uzay modelleri için ortalama kare hatası cinsinden en iyi Bayes filtresidir. An-

cak, birçok gerçek hayat uygulamasında, Kalman filtresinin performansı, gürültüler-

deki aykırı değerlerin varlığı nedeniyle bozulur. Bu problemden yola çıkarak, aykırı

değerlere karşı dayanıklılık sağlamak için çeşitli algoritmalar önerilmiştir. Bu tezde,

mevcut aykırı değer filtrelerinin teorik çıkarımları, varsayımlarının geçerliliği ve per-

formansları incelenmiştir. Buna ek olarak, filtrelerin çoklu model uzantıları türetilmiş

ve algoritmaların kabiliyetleri simülasyonlarda gösterilmiştir.

Anahtar Kelimeler: Kalman Filtresi, Student’s-t Filtresi, Varyasyonel Bayes, Etkile-

şimli Çoklu Model, Gauss Dağılımı, Student’s-t Dağılımı, Ağır Kuyruklu Gürültü,

Hedef Takibi, Inverse Wishart, Gamma-Gauss, Aykırı Değerler, Sağlamlık
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CHAPTER 1

INTRODUCTION

Target tracking, which is the estimation of the present and prediction of future kine-

matic state of a moving target based on noisy measurements, is a research area that

has been developing for many years. It has wide spectrum of applications from mili-

tary to civilian such as tracking aircrafts, land vehicles, marine or submarine vehicles,

controlling air traffic, etc [13]. The first step for carrying out tracking is to model the

system by a state-space model (SSM). SSMs include the dynamic equation of the

state and the equation that describes the relation between the state and the measure-

ment. In many cases, some of the state variables cannot be measured directly due to

noisy measurements. Thus, Bayesian filtering [9] is used to estimate the states given

the measurements.

Kalman filter (KF) [24], which provides the best linear unbiased estimate for linear

Gaussian state-space models [45], is the closed form solution to the Bayesian filtering

equations. It is the optimum filter in terms of mean square error (MSE) [22]. How-

ever, in many real world applications, process and measurement noises have outliers

so they cannot be modeled as Gaussian distribution and the performance of KF de-

grades in such cases. The outliers can stem from unreliable sensors, target maneuver,

model mismatch, etc. For such systems, it is more suitable to utilize heavy-tailed

noise assumption. A large number of studies have been carried out for the filtering of

linear systems with heavy-tailed noises [22].

Earlier efforts for robustification of KF were made in [18, 31–34, 50]. In [32], to

robustify the KF for linear SSMs that have non-Gaussian noise, which is identified

as heavy-tailed or Gaussian contaminated with outliers, an asymptotically efficient

stochastic approximation type estimator is proposed. In addition, the robust filter
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proposed in [31] is also based on stochastic approximation. In [33], a robust KF that

belongs to the class of M-estimator is derived by introducing Huber cost function to

the linear SSM and the double exponential and Cauchy densities are used to define

heavy-tailed measurement noise. The outlier robust filter given in [50] is also based

on the M-estimation methodology and the Student’s-t distribution is referred to as

heavy-tailed noise. In addition, in [34], a recursion based on KF recursions is derived

by using Student’s-t mixture model to obtain outlier robust KF.

The algorithms proposed in [34,43,44,50] use the Student’s-t distribution to model the

noise distributions. Student’s-t distribution is similar to a Gaussian distribution that

can exhibit heavy-tails. The parameters of Student’s-t distribution are the mean, the

scale matrix and the degrees of freedom. The degrees of freedom parameter specifies

the heavy-tail property of the distribution. In [44], a Student’s-t filter is suggested to

estimate the states in linear SSMs with heavy-tailed process and measurement noise.

It is demonstrated that the suggested filter provides robustness towards outliers. Fur-

thermore, the suggested filter in [44] is also proposed in [43] by explaining the details

that are not provided in [44]. In addition to [44], [43] provides a Student’s-t based

smoothing algorithm for heavy-tailed process and measurement noise.

In recent years, variational Bayesian (VB) inference has become one of the most

used inference techniques to estimate the states of linear SSMs with heavy-tailed,

non-Gaussian, inaccurate, time varying or unknown noise distributions. In [46], VB

approximations were used for inferring the joint posterior distribution and noise co-

variances for the first time [20]. The joint distribution of the state and the time varying

measurement noise covariance is represented as the product of Gaussian and indepen-

dent Inverse-Gamma distributions. In [4], an adaptive KF for tracking with unknown

sensor characteristics is developed by utilizing VB approximation to infer the state

and the measurement noise covariance jointly by choosing Inverse-Wishart prior for

the unknown covariance of the Gaussian measurement noise. Another adaptive KF

is proposed in [23] for linear SSMs with inaccurate and slowly time varying process

and measurement noise covariance matrices. VB approximations are used to estimate

the state and noise covariances by choosing Inverse-Wishart priors for the one-step

predicted state covariance and measurement noise covariance matrices. As in [23],

an adaptive KF, which utilizes VB approximation, is proposed in [5] for linear SSMs
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with unknown process and measurement noise covariances. However, unlike [23],

the process noise covariance is inferred by choosing Inverse-Wishart prior in [5] in-

stead of the one-step predicted state covariance. Additionaly, in [30], an adaptive KF

is proposed for linear SSMs with unknown process noise covariance. The state and

the measurement noise covariance is inferred using VB approximation by choosing

Inverse-Wishart prior for the process noise covariance matrix.

VB algorithms are utilized for not only estimating the unknown, inaccurate or time

varying noise covariances but also robustification of KF for the linear SSMs with

heavy-tailed noise distributions. In [22], an outlier robust Student’s-t based KF is

developed using the VB algorithm. One-step predicted PDF and the likelihood PDF

are approximated as Student’s-t but posterior PDF is approximated as a Gaussian.

The Student’s-t PDFs can be expressed using Gamma-Gaussian approach. In this

approach, Student’s-t distribution is represented as an infinite mixture of Gaussians

by defining auxiliary variable that is Gamma distributed [42]. As in [22], [51] de-

velops a VB algorithm using Gamma-Gaussian approach for linear systems that have

Student’s-t distributed measurement noise. Furthermore, in [35], robust filtering and

smoothing algorithms, which use VB approximations of posterior distribution, are

proposed for linear SSMs with heavy-tailed and skewed measurement noise. The

heavv-tailed and skewed measurement noise is modeled as a product of independent

univariate skew-t distributions. To apply VB approximations, the likelihood PDF is

represented as the integration of the product of normal, truncated normal and Gamma

distributions.

In [1], an outlier robust filter, which utilizes VB approximation, is derived for linear

SSM with heavy-tailed measurement noise. Unlike in [22, 35, 42, 51], the SSM is

defined as a linear Gaussian SSM with an unknown measurement noise covariance

matrix in [1]. Then, the Inverse-Wishart distribution is selected as a conjugate prior

for the covariance matrix of the measurement noise as in adaptive KFs [4, 5, 23]. It

is shown in [1] that the VB approximation using Inverse-Wishart approach has the

ability to cope with outliers and heavy-tailed noises as well as unknown, inaccurate

or time varying noises.

Particle filters (PF) or Sequential Monte Carlo (SMC) [15] methods are generic and
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also robust estimation methods that are based on particle representations of probabil-

ity distributions. They can be applied to any SSM [6]. However, they are not preferred

for the purpose of providing robustness towards outliers since they are not feasible in

high-dimensional problems because of the curse of dimensionality.

Apart from the outliers in the noises, model uncertainties, which affect the filtering

performance, may occur in many real world applications. For example, a maneu-

vering target may exhibit maneuvers such as turning, acceleration and deceleration.

Single linear SSM is not enough to model such behaviors. Thus, these problems re-

quire the use of hybrid systems to track the target accurately with changing motion

models [17]. Such hybrid systems consist of multiple SSMs and a discrete mode vari-

able that specifies the active model at each time instant. A finite state Markov chain is

used to model the change of the discrete mode. In order to deal with such hybrid sys-

tems, several multiple-model algorithms such as autonomous multiple model (AMM),

generalized pseudo Bayesian of first order (GPB1), generalized pseudo Bayesian of

second order (GPB2) and interacting multiple model (IMM) algorithm [41] are devel-

oped. In this thesis, IMM framework [38], which is a method for combining multiple

filter models to obtain a better estimation accuracy [17], is used for the multiple-

model extensions of the filters.

Earlier studies about IMM framework were carried out in [7, 12, 28]. The IMM al-

gorithm for linear Gaussian systems is developed in [12]. However, the conventional

IMM approach under the linear Gaussian SSMs assumption is limited for many real

world applications because most systems are non-linear or non-Gaussian. In addi-

tion, the noise statistics may be unknown or varying with time. In [29], a recursive

multiple model approach for linear SSMs with unknown noise statistics is proposed.

It is illustrated that the approach in [29] is effective for time varying noises as well as

unknown stationary noises. In addition, an adaptive VB approach for multiple model

systems with unknown noise statistics is proposed in [27]. However, the proposed

methods in [29] and [27] are not robust towards the outliers in noises so they are not

applicable for multiple model systems with heavy-tailed noises.

In [47], an outlier robust VB-based IMM algorithm is proposed to cope with multi-

modality and outliers in the measurement noise. The state and the noise statistics for
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each mode of the hybrid system are recursively estimated by using VB algorithm that

utilizes Gamma-Gaussian approach. An algorithm which is similar to that in [47] is

proposed in [39] for solving the tracking problem of hypersonic vehicles with heavy-

tailed measurement noise. As in [47], Gamma and Gaussian distributions are used as

the priors of the state and the latent variable in [39]. It is shown that these VB-based

IMM algorithms provide robustness towards the outliers in the measurement in hy-

brid systems. Another VB-based IMM algorithm is presented in [49] by considering

the skewness property of measurement noise distribution towards the possibility of

asymmetric and heavy-tailed noise characteristics.

The focus of this study is to investigate the outlier robust filters and to derive their

multiple-model extensions. At the presence of outliers, the estimation performance of

the KF drastically degrades. In the literature, many algorithms have been proposed to

provide robustness towards outliers. We investigate only a sub-class of them. More-

over, we implement the multiple-model extensions of these algorithms for dealing

with both the multimodality and outliers in the noises.

First, a Student’s-t filter (STF) proposed in [44] is investigated and a multiple-model

extension of STF (IMM-STF) is derived based on IMM approach. It is demon-

strated that IMM-STF provides lower RMSE than the conventional IMM algorithm

for multiple-model systems with heavy-tailed process and measurement noise.

Second, we investigate two VB algorithms which utilize Gamma-Gaussian [22] and

Inverse-Wishart [23] priors. We refer to VB algorithm which uses Gamma-Gaussian

prior as VB-GG [22] and VB algorithm which uses Inverse-Wishart prior as VB-

IW [23]. In the literature, while VB-GG approach is generally utilized for linear

SSMs with heavy-tailed noises, VB-IW is generally proposed for inferring the state

and the unknown/inaccurate noise covariances. An outlier can also be interpreted as

an artifact which results from inaccurate noise covariance in the model. Therefore,

VB-IW approach can also be used for the purpose of outlier rejection. In this thesis,

we implement VB-GG [22] and VB-IW [23] algorithms for a linear SSM with heavy-

tailed measurement noise and the performances of the algorithms are compared in the

sense of outlier rejection. We show that VB-IW algorithm provides almost the same

robustness as VB-GG algorithm towards the outliers in the measurement noise. It can
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also outperform VB-GG algorithm under certain conditions. Therefore, VB-IW can

be used for the purpose of outlier rejection in addition to the purpose of inferring the

unknown noise covariances.

Finally, multiple-model extensions of VB-GG (IMM-VB-GG) and VB-IW (IMM-

VB-IW) algorithms are derived based on IMM approach. In the literature, IMM-VB-

GG algorithm is proposed for multiple-model systems with heavy-tailed measure-

ment noise. However, the multiple-model extension of VB-IW algorithm based on

IMM approach (IMM-VB-IW) has never been derived. In this thesis, we implement

IMM-VB-GG and IMM-VB-IW algorithms for a multiple-model system with heavy-

tailed measurement noise and the performances of the algorithms are compared.

The rest of the thesis is organized as follows. In Chapter 2, a brief background in-

formation about the basic algorithms is given. Bayesian filtering and smoothing,

Kalman filter and smoother, interacting multiple model (IMM) algorithm and vari-

ational Bayesian (VB) approximation are explained briefly. In addition, simulation

examples of KF, KS and IMM algorithm are given. In Chapter 3, firstly, STF [44]

is summarized. Then, the multiple-model extension of the Student’s-t filter (IMM-

STF) is derived. The IMM-STF is compared with conventional IMM algorithm by

simulation. In Chapter 4, the derivations of VB-GG and VB-IW algorithms for linear

SSMs with heavy-tailed measurement noises are given. Algorithms are tested in a

simulation for different noise statistics and the results are compared. The derivations

of multiple-model extensions of VB-GG algorithm (IMM-VB-GG) and VB-IW algo-

rithm (IMM-VB-IW) are given in Chapter 5. The methods are tested on simulations

of a moving target that has multiple-model SSM and heavy-tailed measurement noise

and the obtained results are compared. Finally, the conclusion of this thesis is given

in Chapter 6.
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CHAPTER 2

BACKGROUND

In this chapter, some background information, which composes the basis of studies

carried out in this thesis, is explained briefly.

2.1 Bayesian Filtering and Smoothing

Bayesian theory was first discovered by Thomas Bayes in [9]. However, it did not

get much attention until its modern form was discovered by Laplace. Then, Bayesian

inference has been applied successfully in many areas such as statistical decision,

detection and estimation, pattern recognition, and machine learning [14]. In addition,

it was started to be used for filtering purpose, i.e., Bayesian filtering. It is utilized

to infer the posterior density of the states given the measurements for general SSMs

which can be described as

xk = f(xk−1, wk−1), (2.1a)

yk = g(xk, vk), (2.1b)

where

• xk ∈ Rn is the state of the system at time step k,

• yk ∈ Rm is the measurement at time step k,

• f(.) is a known linear/nonlinear function of the systems dynamics,

• g(.) is a known linear/nonlinear function of the measurements,
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• wk−1 is the process noise,

• vk is the measurement noise.

The predicted distribution p(xk|y1:k−1) and the filtering distribution p(xk|y1:k) are

computed recursively by the following Bayesian filtering equations that consist of

two steps [45]:

• Time Update:

p(xk|y1:k−1) =

∫
p(xk|xk−1)p(xk−1|y1:k−1)dxk−1. (2.2)

• Measurement Update:

p(xk|y1:k) =
p(yk|xk)p(xk|y1:k−1)∫
p(yk|xk)p(xk|y1:k−1)dxk

. (2.3)

In filtering algorithms, the measurements obtained up to a time step are used to com-

pute the best possible estimate of the state at that time step. However, for some

applications, all measurements are used to estimate states at each time step. This pro-

cess is named as smoothing. It is obvious that the smoothing cannot be used in real

time applications.

Bayesian smoothing is used to compute the marginal posterior distribution of the state

xk after obtaining measurements up to a time step T , p(xk|y1:T ), where T > k. For

computing smoothed distributions, first of all, the filtering posterior state distributions

are computed by filtering equations. After obtaining the filtering distributions, the

smoothed distributions are calculated by the following Bayesian smoothing equations

[45]:

p(xk+1|y1:k) =

∫
p(xk+1|xk)p(xk|y1:k)dxk, (2.4a)

p(xk|y1:T ) = p(xk|y1:k)

∫
p(xk+1|xk)p(xk+1|y1:T )

p(xk+1|y1:k)
dxk+1. (2.4b)

In equation (2.4), p(xk|y1:k) is the filtering distribution at time step k and p(xk+1|y1:k)

is the predicted distribution at time step k + 1. In order to obtain the smoothing dis-

tribution, one needs to compute the filtering distributions up to time step T . Starting

from p(xT |y1:T ), a backward recursion is carried out to obtain smoothed distribu-
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tions. Smoothing is not suitable for online tracking applications, it can be used only

for offline tracking.

2.2 Kalman Filter and Smoother

Kalman filter, discovered by Rudolf E. Kalman in [24], is an algorithm that uses a

series of noisy measurements observed over time and estimates the unknown state

vector. It is the closed form solution of the Bayesian filtering equations for linear

Gaussian SSMs. The system dynamic and measurement equations are

xk = Axk−1 + wk−1, (2.5a)

yk = Cxk + vk, (2.5b)

where

• xk ∈ Rn is the state,

• yk ∈ Rm is the measurement,

• wk−1 ∼ N (0, Q) is the process noise,

• vk ∼ N (0, R) is the measurement noise,

• A is n× n state transition matrix,

• C is n×m measurement model matrix.

In addition, the prior distribution is assumed as Gaussian x0 ∼ N (m0, P0). It is

assumed that all basic random variables (x0, w0, w1, . . . , v0, v1, . . . ) are independent

and identically distributed (IID) and uncorrelated. The model can be expressed as

p(xk|xk−1) = N (xk;Axk−1, Q), (2.6a)

p(yk|xk) = N (yk;Cxk, R). (2.6b)

9



If we consider that the prior distribution is p(xk−1|y1:k−1) = N (xk−1;mk−1|k−1, Pk−1|k−1),

the predictive and posterior distributions, which are the result of the filtering equa-

tions, will be Gaussian as

p(xk|y1:k−1) = N (xk;mk|k−1, Pk|k−1), (2.7a)

p(xk|y1:k) = N (xk;mk|k, Pk|k). (2.7b)

The parameters mk|k−1, Pk|k−1,mk|k and Pk|k are computed by the following KF

equations:

• Time Update:

mk|k−1 = Amk−1|k−1, (2.8a)

Pk|k−1 = APk−1|k−1A
T +Q. (2.8b)

• Measurement Update:

Sk = CPk|k−1C
T +R, (2.9a)

Kk = Pk|k−1C
TSk

−1, (2.9b)

mk|k = mk|k−1 +Kk(yk − Cmk|k−1), (2.9c)

Pk|k = Pk|k−1 −KkSkK
T
k . (2.9d)

The recursion is started from the prior mean m0 and covariance P0. The derivation of

these equations are given as follows.

Derivation of the Time Update Equations:

mk|k−1 = E[xk|y1:k−1] = E[Axk−1 + wk−1|y1:k−1]

= E[Axk−1|y1:k−1] + E[wk−1|y1:k−1]

= Amk−1|k−1.

(2.10)
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Pk|k−1 =E[(xk −mk|k−1)(xk −mk|k−1)T )|y1:k−1]

=E[(Axk−1 + wk−1 − Amk−1|k−1)(Axk−1 + wk−1 − Amk−1|k−1)T |y1:k−1]

=E[(A(xk−1 −mk−1|k−1) + wk−1)(A(xk−1 −mk−1|k−1) + wk−1)T |y1:k−1]

=E[(A(xk−1 −mk−1|k−1) + wk−1)((xk−1 −mk−1|k−1)TAT + wk−1
T )|y1:k−1]

=E[A(xk−1 −mk−1|k−1)(xk−1 −mk−1|k−1)TAT + A(xk−1 −mk−1|k−1)wTk−1

+ (xk−1 −mk−1|k−1)TATwk−1 + w2
k−1|y1:k−1]

=E[A(xk−1 −mk−1|k−1)(xk−1 −mk−1|k−1)TAT |y1:k−1] + E[w2
k−1|y1:k−1]

=APk−1|k−1A
T +Q.

(2.11)

At the end of equations (2.10) and (2.11), the time update equations of KF are ob-

tained.

Derivation of the Measurement Update Equations:

Consider the measurement update equation of filtering equations (2.3). According to

this equation, it is known that

N (xk;mk|k, Pk|k) α N (yk;Cxk, R)N (xk;mk|k−1, Pk|k−1). (2.12)

Let x be a Gaussian random vector x ∼ N (x;m,P ). The probability density function

of this random vector is as follows,

fx(x) = |2πP |−1/2exp(−1

2
(x−m)TP−1(x−m)). (2.13)

Therefore, by (2.12) and (2.13), the probability density function of xk given y1:k is

|2πPk|k|−1/2exp(−1

2
(xk −mk|k)

TPk|k
−1(xk −mk|k))

=|2πR|−1/2exp(−1

2
(yk − Cxk)TR−1(yk − Cxk))

+ |2πPk|k−1|−1/2exp(−1

2
(xk −mk|k−1)T (Pk|k−1)−1(xk −mk|k−1)).

(2.14)
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By taking logarithms of both sides, below equation is obtained:

(xk −mk|k)
TP−1

k|k (xk −mk|k) =(yk − Cxk)TR−1(yk − Cxk)

+ (xk −mk|k−1)T (Pk|k−1)−1(xk −mk|k−1).

(2.15)

Then, we obtain

xTkP
−1
k|kxk − x

T
kP
−1
k|kmk|k −mT

k|kP
−1
k|kxk +mT

k|kP
−1
k|kmk|k

=yTkR
−1yk − yTkR−1Cxk − (Cxk)

TR−1yk + xTkC
TR−1Cxk

+ xTk (Pk|k−1)−1xk − xTk (Pk|k−1)−1mk|k−1 − (mk|k−1)T (Pk|k−1)−1xk

+ (mk|k−1)T (Pk|k−1)−1mk|k−1,

(2.16)

xTkP
−1
k|kxk − 2xTkP

−1
k|kmk|k +mT

k|kP
−1
k|kmk|k

=yTkR
−1yk − 2xTkC

TR−1yk + xTkC
TR−1Cxk

+ xTk (Pk|k−1)−1xk − 2xTk (Pk|k−1)−1mk|k−1 + (mk|k−1)T (Pk|k−1)−1mk|k−1.

(2.17)

The components which include the term xTk ()xk in both sides of equation (2.17) are

chosen and below equation is obtained:

xTkP
−1
k|kxk = xTkC

TR−1Ck + xTk (Pk|k−1)−1xk. (2.18)

According to equation (2.18), we have

P−1
k|k = CTR−1C + (Pk|k−1)−1, (2.19a)

Pk|k = (CTR−1C + (Pk|k−1)−1)−1. (2.19b)

By using matrix inversion lemma [48];

Pk|k = Pk|k−1 − Pk|k−1C
T (R + CPk|k−1C

T )−1CPk|k−1

= Pk|k−1 −KkSkK
T
k .

(2.20)
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For derivingmk|k, the components which include the term xTk of two sides of equation

(2.17) are used

2xTkP
−1
k|kmk|k = 2xTkC

TR−1yk + 2xTk (Pk|k−1)−1mk|k−1, (2.21a)

P−1
k|kmk|k = CTR−1yk + (Pk|k−1)−1mk|k−1. (2.21b)

By multiplying both sides of equation (2.21) with Pk|k, the following equation is

obtained:

mk|k = (CTR−1C + (Pk|k−1)−1)−1(CTR−1yk + (Pk|k−1)−1mk|k−1). (2.22)

By matrix inversion lemma [48];

(CTR−1C + (Pk|k−1)−1)−1 = Pk|k−1 − Pk|k−1C
T (R + CPk|k−1C

T )−1CPk|k−1

= Pk|k−1 − Pk|k−1C
T (Sk)

−1CPk|k−1.

(2.23)

Substituting (2.23) in (2.22) results

mk|k =(Pk|k−1 − Pk|k−1C
T (Sk)

−1CPk|k−1)(CTR−1yk + (Pk|k−1)−1mk|k−1)

=Pk|k−1C
TR−1yk +mk|k−1 − Pk|k−1C

T (Sk)
−1CPk|k−1C

TR−1yk

− Pk|k−1C
T (Sk)

−1Cmk|k−1

=Pk|k−1C
T (R−1 − (Sk)

−1CPk|k−1C
TR−1)yk − Pk|k−1C

T (Sk)
−1Cmk|k−1

+mk|k−1

=Pk|k−1C
T (Sk)

−1yk − Pk|k−1C
T (Sk)

−1Cmk|k−1 +mk|k−1

=mk|k−1 + Pk|k−1C
T (Sk)

−1(yk − Cmk|k−1)

=mk|k−1 +Kk(yk − Cmk|k−1).

(2.24)

Hence, KF equations are obtained.

Kalman smoother (Rauch-Tung-Striebel Smoother) is used to calculate the distribu-

tion p(xk|y1:T ) = N (xk;mk|T , Pk|T ) where T > k for linear Gaussian SSMs (2.5).
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First, mean and covariance values of filtering and predicted distributions for all time

steps up to time step T are computed by KF equations (2.8) and (2.9). Mean and

covariance values of smoothed distributions, which are the state distributions condi-

tional on the whole measurement data, are calculated by the following equations for

all time steps:

Gk = Pk|kA
T (Pk+1|k)

−1, (2.25a)

mk|T = mk|k +Gk(mk+1|T −mk+1|k), (2.25b)

Pk|T = Pk|k +Gk(Pk+1|T − Pk+1|k)G
T
k , (2.25c)

where mk|k and Pk|k are the mean and covariance values of filtering distribution at

the time step k and mk+1|k and Pk+1|k are the mean and covariance values of the

predicted distribution at the time step k + 1 computed by KF equations (2.8) and

(2.9). The recursion is started from the time step T , with mT |T and PT |T .

Before starting the derivation of KS equations, the following lemmas should be given

[45].

Lemma 1 (Joint Distribution of Gaussian Variables) If random variables x ∈ Rn

and y ∈ Rm have the Gaussian probability distributions

x ∼ N (m,P ), (2.26a)

y|x ∼ N (Cx,R). (2.26b)

Then, the joint distribution of x, y and marginal distribution of y are given as

x
y

 ∼ N
 m

Cm

 ,
 P PCT

CP CPCT +R

 , (2.27a)

y ∼ N (Cm,CPCT +R). (2.27b)

Lemma 2 (Conditional Distribution of Gaussian Variables) If the random variables

14



x and y have the joint Gaussian probability distribution

x
y

 ∼ N
a

b

 ,
 A C

CT B

 , (2.28)

the marginal and conditional distributions of x and y are given as follows,

x ∼ N (a,A), (2.29a)

y ∼ N (b, B), (2.29b)

x|y ∼ N (a+ CB−1(y − b), A− CB−1CT ), (2.29c)

y|x ∼ N (b+ CTA−1(x− a), B − CTA−1C). (2.29d)

Derivation of Kalman Smoother Equations:

By Lemma 1, the joint distribution of xk and xk+1 given y1:k is

p(xk, xk+1|y1:k) = p(xk+1|xk)p(xk|y1:k)

= N (xk+1;Axk, Q)N (xk;mk|k, Pk|k)

= N

 xk

xk+1

 ;m′, P ′

 ,

(2.30)

where

m′ =

 mk|k

Amk|k

 , P ′ =

 Pk|k Pk|kA
T

APk|k APk|kA
T +Q

 . (2.31)

Due to the Markov property, one can write

p(xk|xk+1, y1:T ) = p(xk|xk+1, y1:k). (2.32)

Let

p(xk|xk+1, y1:T ) = N (xk;m
′′, P ′′). (2.33)
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By Lemma (2), m′′ and P ′′ are computed as follows,

Gk = Pk|kA
T (APk|kA

T +Q)−1, (2.34a)

m′′ = mk|k +Gk(xk+1 − Amk|k), (2.34b)

P ′′ = Pk|k −Gk(APk|kA
T +Q)GT

k . (2.34c)

The joint distribution of xk and xk+1 given all the data is

p(xk+1, xk|y1:T ) = p(xk|xk+1, y1:T )p(xk+1|y1:T )

= N (xk;m
′′, P ′′)N (xk+1;mk+1|T , Pk+1|T )

= N

xk+1

xk

 ;m′′′, P ′′′

 ,

(2.35)

where

m′′′ =

 mk+1|T

mk|k +Gk(mk+1|T − Amk|k)

 ,
P ′′′ =

 Pk+1|T Pk+1|TG
T
k

GkPk+1|T GkPk+1|TG
T
k + P ′′

 .
(2.36)

The marginal distribution of xk given all measurement data up to time step T can be

written as

p(xk|y1:T ) = N (xk;mk|T , Pk|T ), (2.37)

where the mean and covariance are given by,

mk|T = mk|k +Gk(mk+1|T − Amk|k), (2.38a)

Pk|T = Pk|k +Gk(Pk+1|T − APk|kAT −Q)GT
k . (2.38b)
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2.2.1 Simulation Example: Implementing KF and KS for 2-D Target Tracking

Problem

In this simulation, KF and KS are implemented for tracking a moving target in 2-D

space. The target moves according to a constant velocity (CV) model [8] and the

position of the target is measured. The motion of the target is modeled by a linear

Gaussian SSM (2.5) where wk−1 ∼ N (0, Q) and vk ∼ N (0, R). The state transition

matrix and observation matrix are given by

A =


1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

 , C =

1 0 0 0

0 0 1 0

 , (2.39)

where T = 1. The process and measurement noise parameters are given by

Q =



T 3

3

T 2

2
0 0

T 2

2
T 0 0

0 0
T 3

3

T 2

2

0 0
T 2

2
T


× q, q = 1, R = r × I2, r = 10. (2.40)

The initial state is chosen as x0 = [0 10 0 10]T and the simulation is carried out

for 20 time steps. Figure 2.1 illustrates the true trajectory of the target, the estimated

trajectories of the target by KF and KS and the measurements. The position errors

that are calculated for each time step are shown in Figure 2.2. The error for the time

step k is calculated by

Error =
√

(pxk − p̂xk)2 + (pyk − p̂
y
k)

2, (2.41)

where (pxk, p
y
k) and (p̂xk, p̂

y
k) are the true and estimated positions of the target at time

step k. As it can be observed from the figures, KS estimates are closer to the true

position of the target than KF estimates.
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Figure 2.1: True and estimated trajectories of the target. True trajectory of the target is

shown by blue line, the estimated trajectory by KF is shown by orange dashed line and

the estimated trajectory by KS is shown by green dash-dot line. The measurements

are shown by black stars.
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Figure 2.2: Position errors of KF and KS. The error of KF is shown by orange line

and the error of KS is shown by green line.
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2.3 Interacting Multiple Model (IMM) Algorithm

The interacting multiple model (IMM) algorithm is a method for combining multiple

filter models to obtain better state estimate of the target with changing motion be-

haviors [17]. The filter models that are used in IMM algorithm should be selected to

cover several target behaviors.

We consider the hybrid system that has the following linear Gaussian SSM,

xk = Arkxk−1 + wrkk−1, (2.42a)

yk = Crkxk + vrkk , (2.42b)

where

• xk ∈ Rn is the state,

• rk ∈ {1, 2, .., N} is the discrete mode variable,

• yk ∈ Rm is the measurement,

• wrkk−1 ∼ N (0, Qrk) is the process noise,

• vrkk ∼ N (0, Rrk) is the measurement noise,

• Ark is the state transition matrix for the mode rk,

• Crk is the measurement model matrix for the mode rk.

The discrete mode variable rk is modeled as a finite Markov chain with transition

probability matrix (TPM) Π = [πji , P (rk = i|rk−1 = j)] and the hybrid system

consists of N SSMs. The aim is to infer or approximate the posterior distribution

p(xk|y1:k). The optimal posterior distribution is a mixture of Gaussians with an ex-

ponentially growing number of components. Therefore, we need approximations and

the following approximation is made by IMM filter:

p(xk|y1:k) ≈
N∑
i

µikN (xk;m
i
k|k, P

i
k|k), (2.43)
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where

µik , P (rk = i|y1:k), (2.44)

are the posterior mode probabilities. The overall posterior mean and covariance are

calculated as

mk|k =
N∑
i=1

µikm
i
k|k, (2.45a)

Pk|k =
N∑
i=1

µik
[
P i
k|k + (mi

k|k −mk|k)(m
i
k|k −mk|k)

T
]
. (2.45b)

The means, covariances and posterior mode probabilities {mi
k|k, P

i
k|k, µ

i
k}Ni=1 are cal-

culated recursively using {mj
k−1|k−1, P

j
k−1|k−1, µ

j
k−1}

N
j=1 statistics from the previous

step. We know from the previous step that

p(xk−1|y1:k−1, rk−1 = j) , N (xk−1;mj
k−1|k−1, P

j
k−1|k−1). (2.46)

Using equation (2.46), the following approximation is obtained:

p(xk−1|y1:k−1, rk = i) ,
N∑
j=1

µjik−1|k−1p(xk−1|y1:k−1, rk−1 = j),

=
N∑
j=1

µjik−1|k−1N (xk−1;mj
k−1|k−1, P

j
k−1|k−1),

≈ N (xk−1;m0i
k−1|k−1, P

0i
k−1|k−1),

(2.47)

where the merged mean m0i
k−1|k−1 and covariance P 0i

k−1|k−1 are calculated by moment

matching as

m0i
k−1|k−1 =

N∑
j=1

µjik−1|k−1m
j
k−1|k−1, (2.48)
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P 0i
k−1|k−1 =

N∑
j=1

µjik−1|k−1

×
[
P j
k−1|k−1 + (mj

k−1|k−1 −m
0i
k−1|k−1)(mj

k−1|k−1 −m
0i
k−1|k−1)T

]
.

(2.49)

This merging step is named as "mixing" in the literature. µjik−1|k−1 are mixing mode

probabilities calculated as

µjik−1|k−1 =
πjiµ

j
k−1

N∑
l=1

πliµlk−1

. (2.50)

Then, mean and covariance values of filtered distributions for each mode are calcu-

lated by using KF time and measurement update equations (2.8) and (2.9) as in below,

• Time Update:

mi
k|k−1 = Aim0i

k−1|k−1, (2.51a)

P i
k|k−1 = AiP 0i

k−1|k−1(Ai)T +Qi. (2.51b)

• Measurement Update:

Sik = CiP i
k|k−1(Ci)T +Ri, (2.52a)

Ki
k = P i

k|k−1(Ci)T (Sik)
−1, (2.52b)

mi
k|k = mi

k|k−1 +Ki
k(yk − Cimi

k|k−1), (2.52c)

P i
k|k = P i

k|k−1 −Ki
kS

i
k(K

i
k)
T . (2.52d)

In addition, updated mode probabilities are computed according to the following

equation,

µik =

N (yk;C
imi

k|k−1, S
i
k)

N∑
j=1

πjiµ
j
k−1

N∑
l=1

N (yk;C lml
k|k−1, S

l
k)

N∑
j=1

πjlµ
j
k−1

. (2.53)

After all these steps, we have means and covariances for all modes and the mode

probabilities. At the end of the algorithm, the overall mean and covariance are calcu-
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lated by equation (2.42). The block diagram of a single step of IMM algorithm for

N-models is shown in Figure 2.3.
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Figure 2.3: The block diagram of a single step of IMM algorithm for N-models.
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2.3.1 Simulation Example: Implementing KF and IMM Algorithm for Track-

ing Problem of a Maneuvering Target in 2-D Space

In this simulation, tracking of a maneuvering target in 2-D space is considered. The

target moves according to the constant velocity (CV) model [8] and the coordinated

turn (CT) model with known turn rate [40]. The motion of the target is modeled by

two linear Gaussian SSMs that are given below.

• While the target is moving according to CV model,

xk = ACV xk−1 + wk−1,

yk = Cxk + vk.
(2.54)

• While the target is moving according to CT model,

xk = ACTxk−1 + wk−1,

yk = Cxk + vk,
(2.55)

where wk−1 ∼ N (0, Q) and vk ∼ N (0, R). The state transition matrices and the

observation matrix are

ACV =


1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

 , ACT =


1

sin(ωT )

ω
0 −1− cos(ωT )

ω
0 cos(ωT ) 0 −sin(ωT )

0
1− cos(ωT )

ω
1

sin(ωT )

ω
0 sin(ωT ) 0 cos(ωT )


, (2.56)

C =

1 0 0 0

0 0 1 0

 , (2.57)

where T = 1 s and ω = π/15 rad/s. The process and measurement noises are
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generated according to the parameters

Q =



T 3

3

T 2

2
0 0

T 2

2
T 0 0

0 0
T 3

3

T 2

2

0 0
T 2

2
T


× q, q = 10, R = r × I2, r = 100. (2.58)

The transition probability matrix (TPM) is taken as

Π =

0.95 0.05

0.05 0.95

 . (2.59)

The motion of the target is simulated according to

• the CV model (2.54) from k = 1 to k = 30,

• the CT model (2.55) from k = 31 to k = 60,

• the CV model (2.54) from k = 61 to k = 90.

In this simulation, the position and the velocity of the target are estimated by both

IMM algorithm (with two KF models) and a single KF (with CV model). The per-

formance of these filters are compared in terms of position and velocity errors. True

trajectory of the target, measurements and the estimated trajectories by IMM algo-

rithm and a single KF are given in Figure 2.4. In Figure 2.5 and Figure 2.6, the

position errors and the velocity errors of IMM algorithm and a single KF are shown,

respectively. The errors are computed by equation (2.41). As seen in these figures,

the error of KF is greater than the error of IMM algorithm between time steps k = 31

and k = 60 seconds when the target makes circular motion, i.e., the target moves

according to CT model.

Despite the fact that the performance of the single KF degrades when the motion

behavior of the target changes, the performance of IMM algorithm does not change

by switching the other mode. Figure 2.7 illustrates the mode probabilities of CV

and CT models. In Figure 2.7, the mode probability of CT model increases and the

24



x (m)

600 800 1000 1200 1400 1600 1800

y
 (

m
)

800

900

1000

1100

1200

1300

1400

1500

1600

1700
True

Measurement

IMM

KF

Figure 2.4: True and estimated trajectories of the target. True trajectory of the target

is shown by blue line, the estimated trajectory by IMM algorithm is shown by green

dash-dot line and the estimated trajectory by the single KF is shown by orange dashed

line. The measurements are shown by black stars.

mode probability of CV model decreases between time steps k = 31 and k = 60

seconds which means that the algorithm switches CT model in that time interval.

This switching behavior provides the better estimation accuracy to IMM algorithm.

Also, the averaged position errors are calculated as 18 m and 8 m by the single KF and

IMM algorithm, respectively. In addition, the averaged velocity errors are calculated

as 16 m/s (by the single KF) and 5.5 m/s (by IMM algorithm). The averaged error is

computed by

Averaged Error =
1

K

K∑
k=1

√
(pxk − p̂xk)2 + (pyk − p̂

y
k)

2, (2.60)

where (pxk, p
y
k) and (p̂xk, p̂

y
k) are respectively true and estimated positions or velocities

and K is the total time step. By examining all these results, it is observed that the
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Figure 2.5: Position errors of IMM algorithm and a single KF (with CV model) for

all time steps. The error of IMM algorithm is shown by green line and the error of

KF is shown by orange line.

filter performance degrades if single filter model is used for tracking a target with

changing motion behavior.
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Figure 2.6: Velocity errors of IMM algorithm and a single KF (with CV model) for

all time steps. The error of IMM algorithm is shown by green line and the error of

KF is shown by orange line.

2.4 Variational Bayesian Methods

Variational Bayesian (VB) methods are the methods that approximate the posterior

distribution over a set of variables given the data, i.e., p(Θ|Y ), as q(Θ);

p(Θ|Y ) ≈ q(Θ), (2.61)

where Θ = {θ1, θ2, ..., θi, ..., θN}. We assume that q(Θ) is factorized [11] as

q(Θ) = q(θ1, θ2, ..., θi, ..., θN) =
N∏
i=1

q(θi). (2.62)

Among all PDFs {q(θi)}Ni=1, an optimal one can be calculated by minimizing the

Kullback-Leibler divergence between the approximate posterior PDF q(Θ) and true
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Figure 2.7: Mode Probabilities of CV and CT models. The mode probability of CV

model is shown by blue line and the mode probability of CT model is shown by red

line.

posterior PDF p(Θ|Y ) [22] as

{q∗(θi)}Ni=1 = argmin KLD(q(Θ)||p(Θ|Y )), (2.63)

where

KLD(q(Θ)||p(Θ|Y )) =

∫
q(Θ)log

q(Θ)

p(Θ|Y )
dΘ. (2.64)

Minimizing the the Kullback-Leibler divergence between q(Θ) and p(Θ|Y ) corre-

sponds to maximizing the lower bound L(q(Θ)) [11] that is given as

L(q(Θ)) =

∫
q(Θ)log

p(Θ, Y )

q(Θ)
dΘ. (2.65)
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The optimal solution of equation (2.63) is obtained by the following equation [21],

log q∗(θi) = EΘ−θi [log p(Θ, Y )] + cθi , (2.66)

where Θ−θi is the set of all elements of Θ except for θi, E[.] is the expectation opera-

tion and cθi is the constant. For solving equation (2.66), fixed-point iterations should

be carried out by updating only one parameter in Θ while keeping other parameters

fixed [22].
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CHAPTER 3

MULTIPLE-MODEL EXTENSION OF STUDENT’S T FILTER (IMM-STF)

Kalman filter (KF) is one of the most commonly used algorithms for state estimation

in linear systems. This is because of its ease of application and optimality in terms

of mean square error [3]. However, many real world applications have outliers in

process and measurement noises that cannot be modeled by Gaussians. Therefore, the

performance of KF degrades for such systems. In this situation, it is more suitable to

define heavy-tailed measurement and process noises. Student’s-t distribution exhibits

such heavy-tail property. A Student’s-t distributed random vector x ∈ Rd is described

by a mean vector m ∈ Rd, a scale matrix Σ and the degrees of freedom parameter ν

as St(x;m,Σ, ν) where d is the dimension of the random vector. The scale matrix is

the scaled version of the covariance matrix. The PDF of t-distributed random vector

x is expressed as [26]

fx(x) =
Γ
(
ν+d

2

)
Γ
(
ν
2

) 1

(νπ)
d
2

1√
det (Σ)

(
1 +

1

ν
(x−m)TΣ−1(x−m)

)− d+ν
2

. (3.1)

The covariance P of this t random variable is calculated as

P =
ν

ν − 2
Σ, (3.2)

for ν > 2 [26]. The Student’s-t distribution converges to Gaussian distribution as

ν goes to infinity [44]. Figure 3.1 shows the PDFs of Student’s t distributions with

different degrees of freedom values and a Gaussian distribution. As seen in the figure,

the Student’s-t distributions have heavier tails than the Gaussian distribution.

Several methods have been developed to deal with the tracking problem of the systems
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Figure 3.1: PDFs of Student’s-t distributions with different degrees of freedom values

and a Gaussian distribution.

that have outliers in process and measurement noises since KF cannot be used in

such cases. In [44], a Student’s-t filter (STF) is proposed for linear SSMs that have

heavy-tailed process and measurement noises. It is illustrated that the proposed filter

provides better estimation accuracy than KF in the presence of outliers in noises [44].

In this chapter, a multiple-model extension of STF [44] based on IMM approach

(IMM-STF) is derived to overcome the degrading effects of outliers and to track the

changing dynamics of the target. The rest of the chapter is organized as follows:

First, the filter derived in [44] is explained briefly. Then, the derivation of IMM-STF

is explained in detail. Finally, the performance of IMM-STF and IMM algorithm for

a maneuvering target, which have outliers in process and measurement, is tested in

simulations and the results are compared.
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3.1 Student’s t Filter

In this section, the Student’s t filter derived in [44] is explained briefly. We consider

the linear SSM

xk = Axk−1 + wk−1, (3.3a)

yk = Cxk + vk, (3.3b)

where

• xk ∈ Rn is the state at the time step k,

• yk ∈ Rm is the measurement at the time step k,

• wk−1 ∼ St(0, Q, γ) is the process noise,

• vk ∼ St(0, R, δ) is the measurement noise,

• The initial state is assumed as x0 ∼ St(m0,Σ0, η0).

Under these assumptions, the predicted PDF p(xk|y1:k−1) and the filtered PDF p(xk|y1:k)

are t-distributed [44]. The algorithm consists of two steps which are time update and

measurement update as in KF.

• Time Update:

Assume we have prior distribution p(xk−1|y1:k−1) ∼ St(mk−1|k−1,Σk−1|k−1, ηk−1)

and the state and the process noise are jointly t-distributed, i.e., ηk−1 = γ. The

joint distribution of the state and the process noise is

p(xk−1, wk−1|y1:k−1) = St

xk−1

wk−1

 ;

mk−1|k−1

0

 ,
Σk−1|k−1 0

0 Q

 , ηk−1

 .

(3.4)

The mean and the scale matrix of predicted PDF p(xk|y1:k−1) are computed by
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mk|k−1 = Amk−1|k−1, (3.5a)

Σk|k−1 = AΣk−1|k−1A
T +Q. (3.5b)

The degrees of freedom parameter ηk−1 is retained.

• Measurement Update:

Assume that the predicted state and the measurement noise are jointly t-distributed,

i.e., ηk−1 = δ, and the joint PDF is

p(xk, vk|y1:k−1) = St

xk
vk

 ;

mk|k−1

0

 ,
Σk|k−1 0

0 R

 , ηk−1

 . (3.6)

Then, the joint density of the state and the measurement noise is obtained by a

linear transformation as

p(xk, yk|y1:k−1) = St

xk
yk

 ;

 mk|k−1

Cmk|k−1

 ,
 Σk|k−1 Σk|k−1C

T

CΣk|k−1 Sk

 , ηk−1

 ,

(3.7)

where

Sk = CΣk|k−1C
T +R. (3.8)

The parameters of filtered PDF are calculated by the equations given below:

mk|k = mk|k−1 + Σk|k−1C
T (Sk)

−1(yk − Cmk|k−1), (3.9a)

Σk|k =
ηk−1 + ∆2

ηk−1 +m

(
Σk|k−1 − Σk|k−1C

T (Sk)
−1CΣk|k−1

)
, (3.9b)

ηk = ηk−1 +m, (3.9c)

where

∆2 = (yk − Cmk|k−1)T (Sk)
−1(yk − Cmk|k−1). (3.10)

Since the degrees of freedom parameter ηk is increased in each measurement update

step, the distributions converges to Gaussians and the heavy tail properties are lost
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after few steps later [43]. Therefore, the filter converges to KF. In order to avoid

this drawback, in [43], it is proposed ηk to be decreased to the previous value ηk−1

with updating the scale matrix of the filtered PDF by moment matching or the mini-

mization of Kullback-Leibler divergence. Before reducing ηk, according to moment

matching, the scale matrix is updated as Σ′k|k by

Σ′k|k = Σk|k−1

(
ηk

ηk − 2

)(
ηk−1 − 2

ηk−1

)
. (3.11)

Then, ηk is reduced. For the next time update step, Σ′k|k becomes the scale matrix of

the prior distribution.

The assumed noise conditions at the time update and the measurement update steps

are met with low possibility in real world applications [44]. In [44], a method is sug-

gested for this situation. In the time update step, if ηk−1 6= γ, the common degrees

of freedom parameter is selected as η′k−1 = min(ηk−1, γ) to preserve the heaviest

tail. Then, the scale matrices of the prior state and the process noise are updated by

the minimization of Kullback-Leibler divergence. Time update equations are carried

out by the updated paramaters. In the measurement update step, again the common

degrees of freedom parameter is selected as η′′k−1 = min(η′k−1, δ). Then, the scale

matrices of the predicted state and the measurement noise are updated by the mini-

mization of Kullback-Leibler divergence. Hence, the measurement update equations

are carried out by the updated parameters.

3.1.1 Simulation Example: Comparison of STF and KF

In this simulation, the performances of STF and KF are compared on a target tracking

example for three different cases. We assume that the target moves according to a CV

model [8] so consider the linear SSM (3.3) with the state-space matrices

A =


1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

 , C =

1 0 0 0

0 0 1 0

 , (3.12)
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where T = 0.5 s. The nominal process and measurement noise parameters are

Q =



T 3

3

T 2

2
0 0

T 2

2
T 0 0

0 0
T 3

3

T 2

2

0 0
T 2

2
T


× q, q = 1, R = r × I2, r = 100. (3.13)

The simulation is run for 1000 time steps and 500 Monte Carlo (MC) run. We con-

sider three different cases for noise generation. These cases are given below.

Case A:

The process and measurement noises are generated according to

wk ∼

N (0, Q) w.p. 0.95

N (0, 1000Q) w.p. 0.05
(3.14)

vk ∼

N (0, R) w.p. 0.9

N (0, 100R) w.p. 0.1
(3.15)

Case B:

The process noise is generated as wk ∼ N (0, Q) and the measurement noise is gen-

erated according to (3.15), i.e., only measurement noise have outliers.

Case C:

The process noise is generated as wk ∼ N (0, Q) and the measurement noise is gener-

ated as vk ∼ N (0, R), i.e., both process and measurement noises don’t have outliers.

The position and the velocity of the target are estimated by both KF and STF [44].

KF is not aware of the true noise covariances that’s why it is implemented by the

nominal noise covariance matrices Q and R. STF is also aware of the nominal noise

covariances but it assumes that the noises are t-distributed with degrees of freedom

parameter 3. Thence, the scale matrices of the noises are adjusted as 0.92 × Q and
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0.92 × R to preserve the 80% probability region. Root mean square error (RMSE)

and averaged root mean square error (ARMSE) [22] given in equations (3.16) and

(3.17) are used as performance metrics.

RMSE =

√√√√ 1

M

M∑
mc=1

(
(xmck − x̂mck )2 + (ymck − ŷmck )2), (3.16)

ARMSE =

√√√√ 1

MK

K∑
k=1

M∑
mc=1

(
(xmck − x̂mck )2 + (ymck − ŷmck )2), (3.17)

where (xmck , ymck ) and (x̂mck , ŷmck ) are the true and estimated positions or velocities at

mc th MC run and K is the simulation time.

Figure 3.2 illustrates the position errors of STF and KF for a specific time interval of

single run for Case 1. The errors are calculated by equation (2.41).
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Figure 3.2: Poisition errors by STF and KF for Case A. Only a specific time interval

is shown. The error of KF is shown by orange line and the error of STF is shown by

green line.

The spikes, seen in Figure 3.2, occur when the target is exposed to the measurement

outliers or it maneuvers. It can be seen in Figure 3.2 that once the target is exposed

37



to an outlier, KF error decreases in a longer time than STF error. Figures 3.3 and 3.4

show the RMSEs of position and velocity for Case A. The ARMSEs calculated by

equation (3.17) for Case A are given in Table 3.1.
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Figure 3.3: RMSEs of the position for 500 Monte Carlo run for Case A. RMSEs of

the position by KF is shown by orange line and RMSEs of the position by STF is

shown by green line.
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Figure 3.4: RMSEs of the velocity for 500 Monte Carlo run for Case A. RMSEs of

the velocity by KF is shown by orange line and RMSEs of the velocity by STF is

shown by green line.
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Table 3.1: ARMSEs of KF and STF for Case A

ARMSE of the position (m) ARMSE of the velocity (m/s)

KF 36.60 17.80

STF 25.80 16.19

Figure 3.5 and shows the RMSEs of position for KF and STFs with different degrees

of freedom parameters for 1000 MC run for Case A. The ARMSEs of KF and STFs

with different degrees of freedom parameters for Case A are given in Table 3.2. The

ARMSE increases as the degrees of freedom parameter increases according to Table

3.2.
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Figure 3.5: RMSEs of the position for KF and STFs with different degrees of freedom

parameters for 500 Monte Carlo run for Case A.
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Table 3.2: ARMSEs of KF and STFs with different degrees of freedom parameters

for Case A

ARMSE of the position (m) ARMSE of the velocity (m/s)

KF 36.74 17.82

STF with dof 3 25.83 16.19

STF with dof 5 28.21 16.66

STF with dof 7 32.18 17.08

Figures 3.6 and 3.7 show the RMSEs of position and velocity for Case B. The ARM-

SEs calculated by equation (3.17) for Case B are given in Table 3.3.
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Figure 3.6: RMSEs of the position for 500 Monte Carlo run for Case B. RMSEs of

the position by KF is shown by orange line and RMSEs of the position by STF is

shown by green line.
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Figure 3.7: RMSEs of the velocity for 500 Monte Carlo run for Case B. RMSEs of

the velocity by KF is shown by orange line and RMSEs of the velocity by STF is

shown by green line.

Table 3.3: ARMSEs of KF and STF for Case B

ARMSE of the position (m) ARMSE of the velocity (m/s)

KF 25.44 5.60

STF 20.37 7.02

Figures 3.8 and 3.9 show the RMSEs of position and velocity for Case C. The ARM-

SEs calculated by equation (3.17) for Case C are given in Table 3.4.
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Figure 3.8: RMSEs of the position for 500 Monte Carlo run for Case C. RMSEs of

the position by KF is shown by orange line and RMSEs of the position by STF is

shown by green line.
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Figure 3.9: RMSEs of the velocity for 500 Monte Carlo run for Case C. RMSEs of

the velocity by KF is shown by orange line and RMSEs of the velocity by STF is

shown by green line.
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Table 3.4: ARMSEs of KF and STF for Case C

ARMSE of the position (m) ARMSE of the velocity (m/s)

KF 8.50 2.84

STF 11.43 3.14

These results show that STF proposed in [44] provides better estimation accuracy than

KF for the systems that have outliers in process and measurement noise. Also, STF

provides lower RMSEs than KF for the system that have outliers in only measurement

noise. Therefore, STF provides robustness towards outliers. However, if both process

and measurement noises don’t have outliers, KF provides better position and velocity

estimates than STF since KF is the optimum Bayesian filter in terms of mean square

error for linear Gaussian SSMs.

3.2 Derivation of IMM-STF

The conventional IMM algorithm is composed of KF models so that the performance

of IMM algorithm degrades in the presence of outliers in process and measurement

noise. Therefore, in this section, IMM-STF, which is a multiple-model extension of

Student’s-t filter based on IMM approach, is derived to overcome the outliers and the

changing dynamics of the target. We consider the hybrid system that have the system

dynamic and measurement equations (2.42) where

• wrkk−1 is distributed with St(0, Qrk , γrk),

• vrkk is distributed with St(0, Rrk , δrk).

The mode state rk is modeled as a Markov chain that have the transition probability

matrix (TPM) Π = [πji , P (rk = i|rk−1 = j)]. In addition, we assume that all

degrees of freedom values are greater than 2. The block diagram of a single step of

IMM-STF is shown in Figure 3.10.
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Figure 3.10: The block diagram of a single step of IMM-STF for N-models.

We assume that we have statistics {mj
k−1|k−1,Σ

j
k−1|k−1, η

j
k−1}

N
j=1 and mode probabil-

ities {µjk−1}
N
j=1 from the previous step. The recursive equations for statistics of the

posterior t densities {mi
k|k,Σ

i
k|k, η

i
k}Ni=1 and posterior mode probabilities {µik}Ni=1 are

derived in this section. The posterior PDF can be expressed as

P (xk|y1:k) =
N∑
i=1

p(xk|y1:k, rk = i)P (rk = i|y1:k)

=
N∑
i=1

µikp(xk|y1:k, rk = i)

(3.18)

=
N∑
i=1

µik
p(yk|xk, rk = i)

p(yk|y1:k−1, rk = i)
p(xk|y1:k−1, rk = i). (3.19)
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Using Bayesian filtering time update equation (2.2);

P (xk|y1:k) =
N∑
i=1

µik
p(yk|xk, rk = i)

p(yk|y1:k−1, rk = i)

×
∫
p(xk|xk−1, rk = i)p(xk−1|y1:k−1, rk = i)dxk−1

(3.20)

=
N∑
i=1

µik
p(yk|xk, rk = i)

p(yk|y1:k−1, rk = i)

∫
p(xk|xk−1, rk = i)

×
N∑
j=1

p(xk−1|y1:k−1, rk−1 = j)P (rk−1 = j|rk = i, y1:k−1)dxk−1

(3.21)

=
N∑
i=1

µik
p(yk|xk, rk = i)

p(yk|y1:k−1, rk = i)

∫
p(xk|xk−1, rk = i)

×
N∑
j=1

µjik−1|k−1p(xk−1|y1:k−1, rk−1 = j)dxk−1.

(3.22)

From the previous step, we have

p(xk−1|y1:k−1, rk−1 = j) = St(xk−1;mj
k−1|k−1,Σ

j
k−1|k−1, η

j
k−1). (3.23)

According to equations (3.20), (3.22), (3.23), we can make the following approxima-

tion,

p(xk−1|y1:k−1, rk = i) =
N∑
j=1

µjik−1|k−1p(xk−1|y1:k−1, rk−1 = j) (3.24)

=
N∑
j=1

µjik−1|k−1St(xk−1;mj
k−1|k−1,Σ

j
k−1|k−1, η

j
k−1), (3.25)

p(xk−1|y1:k−1, rk = i) ≈ St(xk−1;m0i
k−1|k−1,Σ

0i
k−1|k−1, η

0i
k−1). (3.26)

It is assumed that the degrees of freedom values {ηjk−1}
N
j=1 are equal for all j, so that

ηjk−1 = η0i
k−1 = ηk−1. The merged mean m0i

k−1|k−1 and scale matrix Σ0i
k−1|k−1 are
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calculated by moment matching as follows,

m0i
k−1|k−1 =

N∑
j=1

µjik−1|k−1m
j
k−1|k−1,

Σ0i
k−1|k−1 =

ηk−1 − 2

ηk−1

N∑
j=1

µjik−1|k−1

×
[

ηk−1

ηk−1 − 2
Σj
k−1|k−1 + (mj

k−1|k−1 −m
0i
k−1|k−1)(mj

k−1|k−1 −m
0i
k−1|k−1)T

]
.

(3.27)

The mixing probabilities are computed as

µjik−1|k−1 , P (rk−1 = j|rk = i, y1:k−1)

∝ P (rk = i|rk−1 = j, y1:k−1)P (rk−1 = j|y1:k−1)

∝ P (rk = i|rk−1 = j, y1:k−1)µjk−1

∝ πjiµ
j
k−1.

(3.28)

Therefore,

µjik−1|k−1 =
πjiµ

j
k−1

N∑
l=1

πliµlk−1

. (3.29)

Equations (3.27) and (3.29) are the mixing step of the algorithm. Now, by using

equations (3.22) and (3.26), the following equation is obtained:

p(xk|y1:k) =
N∑
i=1

µik
p(yk|xk, rk = i)

p(yk|y1:k−1, rk = i)

×
∫
p(xk|xk−1, rk = i)St(xk−1;m0i

k−1|k−1,Σ
0i
k−1|k−1, ηk−1)dxk−1.

(3.30)

Assume that the process noise of the ith filter and the state are jointly t-distributed.
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Under this assumption, the following approximation can be done:

∫
p(xk|xk−1, rk = i)St(xk−1;m0i

k−1|k−1,Σ
0i
k−1|k−1, ηk−1)dxk−1

≈ St(xk;m
i
k|k−1,Σ

i
k|k−1, ηk−1),

(3.31)

where

mi
k|k−1 = Aim0i

k−1|k−1, (3.32a)

Σi
k|k−1 = AiΣ0i

k−1|k−1(Ai)T +Qi, (3.32b)

assuming ηk−1 = γi for all i. ηk−1 is retained. Now, if equation (3.31) is substituted

into equation (3.30), the following expression is obtained:

p(xk|y1:k) =
N∑
i=1

µik
p(yk|xk, rk = i)

p(yk|y1:k−1, rk = i)
St(xk;m

i
k|k−1,Σ

i
k|k−1, ηk−1). (3.33)

By performing mode-matched measurement updates the following approximation can

be obtained:

p(xk|y1:k) =
N∑
i=1

µikSt(xk;m
i
k|k,Σ

i
k|k, η

i
k). (3.34)

The mean and scale matrix for the ith filter are calculated as in STF [44]. Assume

ηk−1 = δi for all i,

mi
k|k = mi

k|k−1 + Σi
k|k−1(Ci)T (Sik)

−1(yk − ŷik|k−1), (3.35a)

Σi
k|k =

ηk−1 + ∆2
i

ηk−1 +m
(Σi

k|k−1 − Σi
k|k−1(Ci)T (Sik)

−1CiΣi
k|k−1), (3.35b)

ηik = ηk = ηk−1 +m, (3.35c)

where
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Sik = CiΣi
k|k−1(Ci)T +Ri, (3.36a)

ŷik|k−1 = Cimi
k|k−1, (3.36b)

∆2
i = (yk − ŷik|k−1)T (Sik)

−1(yk − ŷik|k−1). (3.36c)

In order to preserve the heaviest tail property, the degrees of freedom parameter ηk is

reduced to ηk−1 as in STF given in previous section. Before reducing ηk, the filtered

scale matrix is updated as

Σi
k|k
′
= Σi

k|k

(
ηk

ηk − 2

)(
ηk−1 − 2

ηk−1

)
. (3.37)

Now, to obtain the overall mean and scale matrix, mode probabilities {µik}Ni=1 should

be computed:

µik , P (rk = i|y1:k) ∝ p(yk|y1:k−1, rk = i)P (rk = i|y1:k−1)

∝ St(yk; ŷ
i
k|k−1, S

i
k, ηk−1)

N∑
j=1

P (rk = i|rk−1 = j)P (rk−1 = j|y1:k−1)

∝ St(yk; ŷ
i
k|k−1, S

i
k, ηk−1)

N∑
j=1

πjiµ
j
k−1.

(3.38)

Therefore,

µik =

St(yk; ŷ
i
k|k−1, S

i
k, ηk−1)

N∑
j=1

πjiµ
j
k−1

N∑
l=1

St(yk; ŷlk|k−1, S
l
k, ηk−1)

N∑
j=1

πjlµ
j
k−1

. (3.39)

Since we have the means, the scale matrices and the updated mode probabilities for

all filter models {mi
k|k,Σ

i
k|k, µ

i
k}Ni=1, the overall mean and scale matrix are calculated

as
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mk|k =
N∑
i=1

µikm
i
k|k, (3.40a)

Σk|k =
ηk − 2

ηk

N∑
i=1

µik

[
ηk

ηk − 2
Σi
k|k
′
+ (mi

k|k −mk|k)(m
i
k|k −mk|k)

T

]
. (3.40b)

3.3 Performance Evaluation

In this section, the conventional IMM and IMM-STF algorithms are tested on a sim-

ulation of a maneuvering target in 2-D space that have outliers in process and mea-

surement noise. Two motion models, constant velocity (CV) [8] and coordinated turn

(CT) with known turn rate [40], are used to model the motion of the target. The state

consists of positions and velocities in two dimensions as

xk =


pxk

vxk

pyk

vyk

 , (3.41)

where pxk, p
y
k, v

x
k and vyk are positions and velocities in x and y dimensions at the time

k, respectively. The system matrices in equation (2.42) for CV and CT models are

ACV =


1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

 , ACT =


1

sin(ωT )

ω
0 −1− cos(ωT )

ω
0 cos(ωT ) 0 −sin(ωT )

0
1− cos(ωT )

ω
1

sin(ωT )

ω
0 sin(ωT ) 0 cos(ωT )


, (3.42)

C =

1 0 0 0

0 0 1 0

 , (3.43)

where T = 1 s is the sampling time and ω = π/15 rad/s is the turn rate of CT model.

ACV and ACT are the state transition matrices for CV and CT models, respectively.

We consider three different cases for noise generation. These cases are given below.
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Case A:

The process and measurement noises are generated according to

wk ∼

N (0, Q) w.p. 0.95

N (0, 1000Q) w.p. 0.05
(3.44)

vk ∼

N (0, R) w.p. 0.9

N (0, 100R) w.p. 0.1
(3.45)

Case B:

The process noise is generated as wk ∼ N (0, Q) and the measurement noise is gen-

erated according to (3.45), i.e., only measurement noise have outliers.

Case C:

The process noise is generated as wk ∼ N (0, Q) and the measurement noise is gener-

ated as vk ∼ N (0, R), i.e., both process and measurement noises don’t have outliers.

The noise parameters are

Q =



T 3

3

T 2

2
0 0

T 2

2
T 0 0

0 0
T 3

3

T 2

2

0 0
T 2

2
T


× q, q = 1, R = r × I2, r = 100. (3.46)

The target is simulated as switching between two modes which are CV mode and CT

mode. The motion of the target is simulated according to

• the CV model between k = 0s and k = 100s,

• the CT model between k = 101s and k = 150s,

• the CV model between k = 151s and k = 250s,
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and the switching is controlled by TPM

Π =

0.95 0.05

0.05 0.95

 . (3.47)

In this simulation, the position and the velocity of the target are estimated with both

IMM algoirthm and IMM-STF proposed in this chapter. The IMM algorithm is only

aware of the nominal noise covariances Q and R. The IMM-STF is also aware of the

nominal noise covariances. However, it assumes that the noises are t-distributed with

degrees of freedom value 3. Therefore, the scale matrices of the noises are adjusted

as 0.92×Q and 0.92×R for IMM-STF to preserve the 80% probability region. The

simulation is carried out for 250 Monte Carlo (MC) runs.

True and the estimated trajectories obtained by IMM and IMM-STF algorithms for a

single run for Case 1 are shown in Figure 3.11. It is seen from Figure 3.11 that the

estimated trajectory by IMM-STF is closer to the true trajectory than the estimated

trajectory by IMM algorithm, especially at the moments when outliers occur.
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Figure 3.11: True and estimated trajectories of the target for Case A. True trajectory

is shown by blue line, the trajectory estimated by IMM algorithm is shown by orange

line and the trajectory estimated by IMM-STF is shown by green line.
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Figures 3.12, 3.13, 3.14, 3.15, 3.16 and 3.17 show position and velocity errors by

IMM and IMM-STF for a single run for Case A. The errors are calculated by equation

(2.41). It can be seen from the figures that the error of IMM-STF is generally smaller

than the error of IMM when outliers occur. This means that IMM-STF has ability to

mask the effect of outliers while IMM does not. In addition, Figure 3.18 illustrates the

mode probabilities for IMM-STF for Case A. As seen in Figure 3.18, the algorithm

switches to CT model for the time interval between k = 100 s and k = 150 s and this

means that the algorithm detects the motion model of the target.
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Figure 3.12: Position errors of IMM and IMM-STF algorithms for time interval k=0

and k=100 for Case A. In this time interval, the target moves according to CV model.

The error of IMM is shown by orange line and the error of IMM-STF is shown by

green line.

The RMSEs calculated by equation (3.16) and ARMSEs calculated by equation (3.17)

of position and velocity by IMM and IMM-STF for Case A are shown in Figures 3.19

and 3.20 and Tables 3.5 and 3.6.

The RMSEs and ARMSEs of position and velocity by IMM and IMM-STF for Case

B are shown in Figures 3.21 and 3.22 and Tables 3.7 and 3.8.

The RMSEs and ARMSEs of position and velocity by IMM and IMM-STF for Case

C are shown in Figures 3.23 and 3.24 and Tables 3.9 and 3.10.
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Figure 3.13: Position errors of IMM and IMM-STF algorithms for time interval

k=101 and k=150 for Case A. In this time interval, the target moves according to

CT model. The error of IMM is shown by orange line and the error of IMM-STF is

shown by green line.

Table 3.5: ARMSEs of IMM and IMM-STF for Case A for CV mode

ARMSE of the position (m) ARMSE of the velocity (m/s)

IMM-STF 26.65 17.35

IMM 36.58 25.06

These figures and tables demonstrate that IMM-STF outperforms IMM algorithm in

terms of RMSEs of position and velocity for multiple-model systems that have heavy-

tailed process and measurement noises. As a result, it can be said that IMM-STF can

accomplish both the multimodality and the outliers in the noises. If both process and

measurement noise don’t have outliers, IMM-STF and IMM algorithm provide nearly

the same position estimates.
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Figure 3.14: Position errors of IMM and IMM-STF algorithms for time interval

k=151 and k=250 for Case A. In this time interval, the target moves according to

CV model. The error of IMM is shown by orange line and the error of IMM-STF is

shown by green line.

Table 3.6: ARMSEs of IMM and IMM-STF for Case A for CT mode

ARMSE of the position (m) ARMSE of the velocity (m/s)

IMM-STF 26.37 17.73

IMM 36.90 26.37

Table 3.7: ARMSEs of IMM and IMM-STF for Case B for CV mode

ARMSE of the position (m) ARMSE of the velocity (m/s)

IMM-STF 20.36 7.58

IMM 30.34 11.98

54



Time (s)

0 10 20 30 40 50 60 70 80 90 100

V
e
lo

c
it
y
 E

rr
o
r 

(m
/s

)

0

10

20

30

40

50

60

70

IMM Error

IMM-STF Error

Figure 3.15: Velocity errors of IMM and IMM-STF algorithms for time interval k=0

and k=100 for Case A. In this time interval, the target moves according to CV model.

The error of IMM is shown by orange line and the error of IMM-STF is shown by

green line.
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Figure 3.16: Velocity errors of IMM and IMM-STF algorithms for time interval

k=101 and k=150 for Case A. In this time interval, the target moves according to

CT model. The error of IMM is shown by orange line and the error of IMM-STF is

shown by green line.
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Figure 3.17: Velocity errors of IMM and IMM-STF algorithms for time interval

k=151 and k=250 for Case A. In this time interval, the target moves according to

CV model. The error of IMM is shown by orange line and the error of IMM-STF is

shown by green line.
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Figure 3.18: Mode probabilities of CV and CT models for IMM-STF for Case A. The

mode probability of CV model is shown by blue line and the mode probability of CT

model is shown by red line.
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Figure 3.19: RMSEs of the position for 250 Monte Carlo run for Case A. RMSEs of

the position by IMM is shown by orange line and RMSEs of the position by IMM-

STF is shown by green line.
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Figure 3.20: RMSEs of the velocity for 250 Monte Carlo run for Case A. RMSEs of

the velocity by IMM is shown by orange line and RMSEs of the velocity by IMM-

STF is shown by green line.
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Figure 3.21: RMSEs of the position for 250 Monte Carlo run for Case B. RMSEs of

the position by IMM is shown by orange line and RMSEs of the position by IMM-

STF is shown by green line.
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Figure 3.22: RMSEs of the velocity for 250 Monte Carlo run for Case B. RMSEs of

the velocity by IMM is shown by orange line and RMSEs of the velocity by IMM-

STF is shown by green line.
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Table 3.8: ARMSEs of IMM and IMM-STF for Case B for CT mode

ARMSE of the position (m) ARMSE of the velocity (m/s)

IMM-STF 21.33 8.61

IMM 31.39 12.19
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Figure 3.23: RMSEs of the position for 250 Monte Carlo run for Case C. RMSEs of

the position by IMM is shown by orange line and RMSEs of the position by IMM-

STF is shown by green line.

Table 3.9: ARMSEs of IMM and IMM-STF for Case C for CV mode

ARMSE of the position (m) ARMSE of the velocity (m/s)

IMM-STF 11.62 4.12

IMM 11.33 8.29
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Figure 3.24: RMSEs of the velocity for 250 Monte Carlo run for Case C. RMSEs of

the velocity by IMM is shown by orange line and RMSEs of the velocity by IMM-

STF is shown by green line.

Table 3.10: ARMSEs of IMM and IMM-STF for Case C for CT mode

ARMSE of the position (m) ARMSE of the velocity (m/s)

IMM-STF 11.78 4.92

IMM 11.32 8.17
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CHAPTER 4

OUTLIER ROBUST FILTERS USING VB APPROACH

In the previous chapter, STF [44], which is one of the proposed methods to solve

the filtering problem of the systems that have heavy-tailed noises, is explained and a

multiple-model extension of STF is carried out based on IMM approach. In addition

to STF, variational Bayesian (VB) methods have been proposed for the systems that

have outliers in noises [1,2,22]. VB methods can also be used to derive noise adaptive

filters for unknown, inaccurate or time varying noises [4, 5, 23, 46]. In this chapter,

two different VB methods are evaluated in terms of robustness towards outliers. VB

approach which uses Gamma-Gaussian prior for heavy-tailed noise is referred as VB-

GG approach and VB approach which uses inverse-Wishart prior for the covariance

matrix of heavy-tailed noise is referred as VB-IW approach. In contrast to STF [44],

these VB algorithms approximate the predicted and filtered PDFs as Gaussians.

4.1 Gamma-Gaussian (GG) Approach

In this section, the derivation of VB-GG is given. In this VB algorithm, Student’s-t

distributed noise is expressed as the marginal distribution of a random vector when the

joint distribution of this random vector and a defined auxiliary variable is a Gamma-

Gaussian. This way of derivation of Student’s-t distribution is mentioned as "Gamma-

Gaussian expression of t distribution" in the rest of the thesis for convenience.

Let the scalar random variable u be Gamma distributed with shape parameter α and
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rate parameter β, i.e., u ∼ Gam(u;α, β). The PDF of u is

Gam(u;α, β) =


βα

Γ(α)
uα−1exp(−βu), u > 0

0, u ≤ 0

(4.1)

where α > 0, β > 0 and

Γ(z) =

∞∫
0

e−ttz−1dt, (4.2)

is the Gamma function [42]. Let X ∈ Rn be a random vector and PDF of X be

pX(x) =

∞∫
0

N (x;m,P/u)Gam(u;α, β)du. (4.3)

Using equations (2.13) and (4.1), the PDF of X becomes

pX(x) =

∞∫
0

βα

Γ(α)
uα−1exp(−βu)

1

(2π)n/2
1√

det(P/u)
exp(−u

2
∆2)du, (4.4)

where

∆2 = (x−m)TP−1(x−m). (4.5)

Equation (4.4) can be rewritten as

pX(x) =
βα

Γ(α)

1

(2π)n/2
1√

det(P )

∞∫
0

u
n
2

+α−1exp

(
−u
(
β +

∆2

2

))
du. (4.6)

Now, we define the integral in (4.6) as

A =

∞∫
0

u
n
2

+α−1exp

(
−u
(
β +

∆2

2

))
du. (4.7)
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In order to calculate A, the Gamma function of
n

2
+ α is defined as

Γ
(n

2
+ α

)
=

∞∫
0

e−tt
n
2

+α−1dt. (4.8)

Let

t = u

(
β +

∆2

2

)
and dt =

(
β +

∆2

2

)
du. (4.9)

Equation (4.8) can be written as

Γ
(n

2
+ α

)
=

(
β +

∆2

2

)n
2

+α
∞∫

0

exp

(
−u
(
β +

∆2

2

))
u
n
2

+α−1du

=

(
β +

∆2

2

)n
2

+α

A.

(4.10)

From equation (4.10), A is computed as

A =

(
β +

∆2

2

)−n
2
−α

Γ
(n

2
+ α

)
. (4.11)

Now, we have A so the PDF of X is rewritten as

pX(x) =
Γ
(
n
2

+ α
)

Γ(α)

1

(2βπ)n/2
1√

det(P )

(
1 +

∆2

2β

)−n
2
−α

. (4.12)

If α = β =
υ

2
, equation (4.12) is equal to the PDF of a t-distributed random vector

(3.1). Therefore, the PDF of a t-distributed random vector X ∼ St(x;m,P, υ) can

be expressed as

pX(x) =

∞∫
0

N (x;m,P/u)Gam(u; υ/2, υ/2)du. (4.13)

(4.13) is the Gamma-Gaussian expression of t distribution. This derivation is available

in [42].
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4.1.1 Derivation of Variational Bayesian Algorithm using Gamma-Gaussian

Approach (VB-GG)

An approximate solution for the posterior PDF for a linear SSM with heavy-tailed

measurement noise is derived by using VB approach. In this derivation, the heavy-

tailed measurement noise is modeled using the Gamma-Gaussian expression. We

consider the linear SSM (2.5) where

• wk−1 is distributed with N (0, Q),

• vk is distributed with St(0, R, v).

One-step predicted PDF p(xk|y1:k−1) and the likelihood PDF p(yk|xk) are

p(xk|y1:k−1) = N (xk;mk|k−1, Pk|k−1), (4.14a)

p(yk|xk) = St(yk;Cxk, R, υ). (4.14b)

The parameters of the one-step predicted PDF are calculated by using KF time update

equation (2.8) as

mk|k−1 = Amk−|k−1, (4.15a)

Pk|k−1 = APk−1|k−1A
T +Q. (4.15b)

The likelihood (4.14b) can be rewritten using (4.13) as

p(yk|xk) =

∫
N (yk;Cxk, R/λk)Gam

(
λk;

υ

2
,
υ

2

)
dλk. (4.16)

Therefore, we have

p(yk|xk, λk) = N (yk;Cxk, R/λk), (4.17a)

p(λk) = Gam
(
λk;

υ

2
,
υ

2

)
. (4.17b)

In order to estimate the state xk, the joint posterior PDF p(xk, λk|y1:k) needs to be

computed. However, one cannot obtain an analytical solution for this posterior PDF.
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Thus, we need to obtain an approximate solution using VB approach. According to

VB approach, the posterior PDF can be approximated as factorized densities

p(xk, λk|y1:k) ≈ q(xk)q(λk), (4.18)

where q(.) defines the PDF for corresponding variables. Among all such factorized

densities, an optimal one can be computed by minimizing the Kullback-Leibler di-

vergence between the approximate posterior PDF and the true posterior PDF [11]

as

{q∗(xk), q∗(λk)} = argminKLD(q(xk)q(λk)||p(xk, λk|y1:k)), (4.19)

where KLD is the Kullback-Leibler divergence given in (2.63). According to equation

(2.66),

logq∗(φ) = EΘ(−φ) [logp(Θ, y1:k)] + cφ, (4.20)

where Θ , {xk, λk} and φ is an arbitrary element of Θ. Θ(−φ) is the set of all

elements of Θ except for φ, E[.] is the expectation operation and cφ is a constant. For

solving equation (4.20), fixed point iterations should be carried out. The joint PDF

p(Θ, y1:k) can be written as

p(Θ, y1:k) = p(yk|xk, λk)p(xk|y1:k−1)p(λk). (4.21)

Substituting (4.14) and (4.17) in (4.21), we get

p(Θ, y1:k) = N (yk;Cxk, R/λk)N (xk;mk|k−1, Pk|k−1)Gam(λk;
υ

2
,
υ

2
) (4.22)
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=
1

(2π)
m
2

1√
det(R/λk)

exp

(
−λk

2
(yk − Cxk)TR−1(yk − Cxk)

)
× 1

(2π)
n
2

1√
det(Pk|k−1)

exp

(
−1

2
(xk −mk|k−1)TP−1

k|k−1(xk −mk|k−1)

)

×
(
υ
2

)υ
2

Γ
(
υ
2

)λ(υ2−1)
k exp

(
−υ

2
λk

)
.

(4.23)

By taking the logarithm of both sides, we obtain

logp(Θ, y1:k) =

(
m+ υ

2
− 1

)
logλk −

υ

2
λk

− λk
2

(yk − Cxk)TR−1(yk − Cxk)

− 1

2
(xk −mk|k−1)TP−1

k|k−1(xk −mk|k−1).

(4.24)

Let φ = λk and by using equations (4.20) and (4.24), the following equation is ob-

tained:

logq(λk)(i+1) =

(
m+ υ

2
− 1

)
logλk −

1

2

[
υ + tr(E

(i)
k R

−1)
]
λk + cλ, (4.25)

where q(.)(i+1) is the approximation of q(.) at (i + 1)th iteration, tr(.) is the trace

operation and

E
(i)
k = E(i)

[
(yk − Cxk)(yk − Cxk)T

]
. (4.26)

Using (4.25), q(λk)(i+1) is updated as Gamma PDF as

q(λk)
(i+1) = Gam(λk; γ

i+1
k , δi+1

k ), (4.27)

where

γi+1
k =

1

2
(m+ υ), (4.28a)

δi+1
k =

1

2

[
υ + tr(E

(i)
k R

−1)
]
. (4.28b)
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Let φ = xk and using equations (4.20) and (4.24), the following equation is obtained:

logq(xk)(i+1) =− 1

2
E[λk]

(i+1)(yk − Cxk)TR−1(yk − Cxk)

− 1

2
(xk −mk|k−1)TP−1

k|k−1(xk −mk|k−1) + cx.
(4.29)

The modified likelihood PDF p(yk|xk)(i+1) is expressed as

p(yk|xk)(i+1) = N
(
yk;Cxk, R̃

(i+1)
k

)
, (4.30)

where R̃(i+1)
k is the effective covariance matrix, which is used in the measurement

update of the state at (i+1)th iteration. It is calculated as

R̃
(i+1)
k =

R

E[λk]i+1
. (4.31)

Using equations (4.29), (4.30) and (4.31), q(xk)(i+1) is updated as Gaussian PDF as

q(xk)
(i+1) = N

(
xk;m

(i+1)
k|k , P

(i+1)
k|k

)
, (4.32)

where

m
(i+1)
k|k = mk|k−1 +K

(i+1)
k (yk − Cmk|k−1), (4.33a)

P
(i+1)
k|k = Pk|k−1 −K(i+1)

k CPk|k−1, (4.33b)

and

K
(i+1)
k = Pk|k−1C

T
(
CPk|k−1C

T + R̃
(i+1)
k

)−1

. (4.34)

After N iterations, the approximate posterior PDF of the state becomes

q∗(xk) ≈ q(xk)
(N) = N

(
xk;m

(N)
k|k , P

(N)
k|k

)
= N (xk;mk|k, Pk|k). (4.35)

The expectations E[λk]
(i+1) and E(i)

k are calculated as
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E[λk]
(i+1) =

γi+1
k

δi+1
k

, (4.36a)

E
(i)
k =

(
yk − Cm(i)

k|k

)(
yk − Cm(i)

k|k

)T
+ CP

(i)
k|kC

T . (4.36b)

VB-GG algorithm is summarized in Algorithm 1.
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Algorithm 1 VB-GG Algorithm
Inputs: mk−1|k−1, Pk−1|k−1, A, C, yk, Q, R, m, n, υ, N

Outputs: mk|k, Pk|k

Time Update:

1. mk|k−1 = Amk−1|k−1

2. Pk|k−1 = APk−1|k−1A
T +Q

Measurement Update:

3. Initialization: m(0)
k|k = mk|k−1, P (0)

k|k = Pk|k−1

for i = 0 : N − 1 do

Update q(λk)(i+1) given q(xk)(i)

4. E(i)
k = (yk − Cm(i)

k|k)(yk − Cm
(i)
k|k)

T + CP
(i)
k|kC

T

5. γi+1
k =

1

2
(m+ υ), δi+1

k =
1

2

(
υ + tr

(
E

(i)
k R

−1
))

,E[λk]
(i+1) =

γi+1
k

δi+1
k

Update q(xk)(i+1) given q(λk)(i+1)

6. R̃(i+1)
k = R/E[λk]

(i+1)

7. K(i+1)
k = Pk|k−1C

T
(
CPk|k−1C

T + R̃
(i+1)
k

)−1

8. m(i+1)
k|k = mk|k−1 +K

(i+1)
k (yk − Cmk|k−1)

9. P (i+1)
k|k = Pk|k−1 −K(i+1)

k CPk|k−1

end for

10. mk|k = m
(N)
k|k , Pk|k = P

(N)
k|k

VB method approach in this section is proposed in [22] for linear SSMs with heavy-

tailed process and measurement noise. In [22], since the process noise is assumed

as Student’s-t distributed, one-step predicted PDF of the state is also assumed as

Student’s-t distributed. Then, inverse-Wishart prior is selected for the covariance ma-

trix of one-step predicted PDF of the state and VB approximations are applied [22].
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4.2 Inverse Wishart (IW) Approach

In this section, the derivation of VB-IW is given. In this VB algorithm, it is proposed

that the inverse Wishart distribution is used as a conjugate prior distribution for the

covariance matrix of heavy-tailed measurement noise. This method enables us to find

the effective covariance of the measurement noise so it provides better estimation

accuracy.

Let Σ ,which is a symmetric positive definite random matrix with the dimension d×d,

be inverse Wishart distributed. The PDF of Σ is

IW (Σ;α, U) =
|U |α2 |Σ|−

(α+d+1)
2 exp

(
−1

2
tr(UΣ−1)

)
2
αd
2 Γ
(
α
2

) , (4.37)

where α is the degrees of freedom parameter and U is the inverse scale matrix [36].

In addition,

E[Σ−1] = (α− d− 1)U−1. (4.38)

4.2.1 Derivation of VB Algorithm using Inverse Wishart Approach (VB-IW)

We consider the linear SSM (2.5) where

• wk−1 is distributed with N (0, Q),

• vk is distributed with St(0, R, v).

One-step predicted PDF p(xk|y1:k−1) and the likelihood PDF p(yk|xk,Σk) are

p(xk|y1:k−1) = N (xk;mk|k−1, Pk|k−1), (4.39a)

p(yk|xk,Σk) = N (yk;Cxk,Σk), (4.39b)

where Σk is the effective covariance matrix of the measurement noise at time step k.

Since the process noise is assumed as Gaussian distributed, the parameters of one-step
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predicted PDF are calculated by KF time update equations (2.8) as

mk|k−1 = Amk−1|k−1, (4.40a)

Pk|k−1 = APk−1|k−1A
T +Q. (4.40b)

Now, the goal is to estimate the state xk and the effective covariance of the measure-

ment noise Σk. The posterior PDF p(Σk−1|y1:k−1) of effective measurement noise

covariance matrix Σk−1 at time step k is assumed as an inverse Wishart PDF, i.e.,

p(Σk−1|y1:k−1) = IW (Σk−1;uk−1|k−1, Uk−1|k−1), (4.41)

where uk−1|k−1 and Uk−1|k−1 are degrees of freedom parameter and inverse scale ma-

trix, respectively. The prior distribution of effective measurement noise covariance

matrix at Σk is chosen as inverse Wishart distributed as

p(Σk|y1:k−1) = IW (Σk;uk|k−1, Uk|k−1). (4.42)

In [23], the measurement noise covariance matrix is considered as slowly varying

with time. This time evaluation is formulated as [23]

uk|k−1 = λ(uk−1|k−1 −m− 1) +m+ 1, (4.43a)

Uk|k−1 = λUk−1|k−1. (4.43b)

In this algorithm, the initial effective measurement noise covariance matrix Σ0 is

assumed as inverse Wishart distributed, i.e.,

p(Σ0) = IW (Σ0;u0|0, U0|0). (4.44)

In many real world applications, the scale matrix of the Student’s-t distributed mea-

surement noise is not known. Generally, the nominal covariance of the measurement

noise is known. Let R0 be the nominal covariance of the heavy-tailed measurement

noise. In this algorithm, the mean of the initial effective measurement noise covari-

ance matrix Σ0 is set to the nominal covariance of the measurement noise R0. There-
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fore,

R0 =
U0|0

u0|0 −m− 1
. (4.45)

Let

u0|0 = τ +m+ 1, (4.46)

where τ ≥ 0 is a tuning paramater and it is used only at the beginning of the algo-

rithm. Hence, using equations (4.45) and (4.46),

U0|0 = τR0. (4.47)

In order to estimate the state xk and the effective measurement noise covariance Σk,

the posterior PDF p(xk,Σk|y1:k) should be calculated. Therefore, we need to obtain

an approximate solution by VB approach. According to VB approach, the posterior

PDF is approximated as factorized densities

p(xk,Σk|y1:k) ≈ q(xk)q(Σk), (4.48)

where q(.) defines the PDF for corresponding variables. Among all such factorized

densities, an optimal one can be computed by minimizing the Kullback-Leibler di-

vergence between the approximate posterior PDF and the true posterior PDF as

{q∗(xk), q∗(Σk)} = argminKLD (q(xk)q(Σk)||p(xk,Σk|y1:k)) . (4.49)

According to equation (2.66), we have

logq∗(φ) = EΘ(−φ) [logp(Θ, y1:k)] + cφ, (4.50)

where Θ = {xk,Σk}. As in VB-GG algorithm that expressed in the previous section,
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fixed point iterations should be carried out. The joint PDF can be written as

p(Θ, y1:k) = p(yk|xk,Σk)p(xk|y1:k−1)p(Σk|y1:k−1)p(y1:k−1). (4.51)

Using equations (4.39) and (4.42), we get

p(Θ, y1:k) =N (yk;Cxk,Σk)N (xk;mk|k−1, Pk|k−1)IW (Σk;uk|k−1, Uk|k−1)p(y1:k−1)

=
|Σk|−

1
2

(2π)
m
2

exp

(
−1

2
(yk − Cxk)TΣ−1

k (yk − Cxk)
)

×
|Pk|k−1|−

1
2

(2π)
n
2

exp

(
−1

2
(xk −mk|k−1)TP−1

k|k−1(xk −mk|k−1)

)

×
|Uk|k−1|

uk|k−1
2 |Σk|−

(uk|k−1+m+1)

2

2
muk|k−1

2 Γ
(uk|k−1

2

) exp

(
−1

2
tr
(
Uk|k−1Σ−1

k

))
.

(4.52)

By taking the logarithm of both sides,

logp(Θ, y1:k) =− 1

2
(m+ uk|k−1 + 2)log|Σk| −

1

2
(yk − Cxk)TΣ−1

k (yk − Cxk)

− 1

2
tr(Uk|k−1Σ−1

k )− 1

2
(xk −mk|k−1)TP−1

k|k−1(xk −mk|k−1) + cΘ.

(4.53)

Let φ = Σk and by using equations (4.50) and (4.53), the following equation is

obtained:

logq(Σk)
(i+1) = −1

2
(m+ uk|k−1 + 2)log|Σk| −

1

2
tr
(

(E
(i)
k + Uk|k−1)Σ−1

k

)
+ cΣ,

(4.54)

where

E
(i)
k = Ei

[
(yk − Cxk)(yk − Cxk)T

]
= (yk − Cmi

k|k−1)(yk − Cmi
k|k−1)T + CP

(i)
k|k−1C

T .
(4.55)
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By using (4.53), q(Σk)
(i+1) is updated as inverse Wishart PDF as

q(Σk)
(i+1) = IW (Σk;u

(i+1)
k , U

(i+1)
k ), (4.56)

where

u
(i+1)
k =uk|k−1 + 1, (4.57a)

U
(i+1)
k =E

(i)
k + Uk|k−1. (4.57b)

Let φ = xk and by using equations (4.50) and (4.53), below equation is obtained:

logq(xk)(i+1) =− 1

2
(yk − Cxk)TE[Σ−1

k ](i+1)(yk − Cxk)

− 1

2
(xk −mk|k−1)TP−1

k|k−1(xk −mk|k−1) + cx,
(4.58)

where

E[Σ−1
k ](i+1) = (u

(i+1)
k −m− 1)(U

(i+1)
k )−1. (4.59)

The likelihood PDF p(yk|xk)(i+1) can be expressed as

p(yk|xk)(i+1) = N (yk;Cxk, Σ̃
(i+1)
k ), (4.60)

where the estimated measurement noise covariance matrix is

Σ̃
(i+1)
k =

(
E[Σ−1

k ](i+1)
)−1

. (4.61)

q(xk)
(i+1) is updated as Gaussian PDF using equations (4.58), (4.59), (4.60) and

(4.61) as

q(xk)
(i+1) = N (xk;m

(i+1)
k|k , P

(i+1)
k|k ), (4.62)

where
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m
(i+1)
k|k = mk|k−1 +K

(i+1)
k (yk − Cmk|k−1), (4.63a)

P
(i+1)
k|k = Pk|k−1 −K(i+1)

k CPk|k−1, (4.63b)

and

K
(i+1)
k = Pk|k−1C

T
(
CPk|k−1C

T + Σ̃
(i+1)
k

)−1

. (4.64)

After N iterations, the posterior PDFs become

q∗(xk) ≈ q(xk)
(N) = N (xk;m

(N)
k|k , P

(N)
k|k ) = N (xk;mk|k, Pk|k), (4.65a)

q∗(Σk) ≈ q(Σk)
(N) = IW (Σk;u

(N)
k , U

(N)
k ) = IW (Σk;uk|k, Uk|k). (4.65b)

VB-IW algorithm is summarized in Algorithm 2.
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Algorithm 2 VB-IW Algorithm
Inputs: mk−1|k−1, Pk−1|k−1, uk−1|k−1, Uk−1|k−1, A, C, yk, Q, R, m, n, λ, N

Outputs: mk|k, Pk|k, uk|k, Uk|k

Time Update:

1. mk|k−1 = Amk−1|k−1

2. Pk|k−1 = APk−1|k−1A
T +Q

Measurement Update:

3. Initialization: m(0)
k|k = mk|k−1, P (0)

k|k = Pk|k−1, uk|k−1 = λ(uk−1|k−1 −m− 1) +

m+ 1, Uk|k−1 = λUk−1|k−1

for i = 0 : N − 1 do

Update q(Σk)
(i+1) given q(xk)(i)

4. E(i)
k = (yk − Cm(i)

k|k)(yk − Cm
(i)
k|k)

T + CP
(i)
k|kC

T

5. u(i+1)
k = uk|k−1 + 1, U (i+1)

k = E
(i)
k + Uk|k−1

Update q(xk)(i+1) given q(Σk)
(i+1)

6. E[Σ−1
k ](i+1) = (u

(i+1)
k −m− 1)(U

(i+1)
k )−1

7. Σ̃
(i+1)
k =

(
E[Σ−1

k ](i+1)
)−1

8. K(i+1)
k = Pk|k−1C

T
(
CPk|k−1C

T + Σ̃
(i+1)
k

)−1

9. m(i+1)
k|k = mk|k−1 +K

(i+1)
k (yk − Cmk|k−1)

10. P (i+1)
k|k = Pk|k−1 −K(i+1)

k CPk|k−1

end for

11. mk|k = m
(N)
k|k , Pk|k = P

(N)
k|k , uk|k = u

(N)
k , Uk|k = U

(N)
k

VB-IW approach expressed in this section is proposed in [23] for linear Gaussian

SSMs with unknown process and measurement noise. In this thesis, this approach is

proposed for linear SSMs with heavy-tailed measurement noise and it is compared

with VB-GG approach in terms of robustness towards outliers.

In contrast to VB-GG, VB-IW approach uses the sufficient statistics of the noise terms

as the prior in the next update. If we remove this carry over and fix the noise priors,

the algorithms exhibit similar performances. We refer to this algorithm as fixed prior

VB-IW. Fixed prior VB-IW algorithm is summarized in Algorithm 3.
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Algorithm 3 Fixed Prior VB-IW Algorithm
Inputs: mk−1|k−1, Pk−1|k−1, A, C, yk, Q, R, m, n, λ, N , τ

Outputs: mk|k, Pk|k

Time Update:

1. mk|k−1 = Amk−1|k−1

2. Pk|k−1 = APk−1|k−1A
T +Q

Measurement Update:

3. Initialization: m(0)
k|k = mk|k−1, P (0)

k|k = Pk|k−1, uk = τ +m+ 1, Uk = τR

for i = 0 : N − 1 do

Update q(Σk)
(i+1) given q(xk)(i)

4. E(i)
k = (yk − Cm(i)

k|k)(yk − Cm
(i)
k|k)

T + CP
(i)
k|kC

T

5. u(i+1)
k = uk + 1, U (i+1)

k = E
(i)
k + Uk

Update q(xk)(i+1) given q(Σk)
(i+1)

6. E[Σ−1
k ](i+1) = (u

(i+1)
k −m− 1)(U

(i+1)
k )−1

7. Σ̃
(i+1)
k =

(
E[Σ−1

k ](i+1)
)−1

8. K(i+1)
k = Pk|k−1C

T
(
CPk|k−1C

T + Σ̃
(i+1)
k

)−1

9. m(i+1)
k|k = mk|k−1 +K

(i+1)
k (yk − Cmk|k−1)

10. P (i+1)
k|k = Pk|k−1 −K(i+1)

k CPk|k−1

end for

11. mk|k = m
(N)
k|k , Pk|k = P

(N)
k|k
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4.3 Performance Evaluation

In this section, VB-GG and VB-IW algorithms are tested on a simulation of a moving

target in 2-D space that have Gaussian process noise and heavy-tailed measurement

noise. These tests are conducted for five different characteristics of measurement

noise. The CV model [8] is used to model the motion of the target. The state is the

same with (3.41). The system matrices in (2.5) are

A =


1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

 , C =

1 0 0 0

0 0 1 0

 , (4.66)

where T = 1s is the sampling time. The process noise is distributed with normal

distribution wk ∼ N (0, Q) where

Q =



T 3

3

T 2

2
0 0

T 2

2
T 0 0

0 0
T 3

3

T 2

2

0 0
T 2

2
T


. (4.67)

We consider five different cases for measurement noise generation. These cases are

given below.

Case 1:

The measurement noise is generated according to

vk ∼


N (0, R0) w.p. p0

N (µ1, R1) w.p. p1

N (µ2, R2) w.p. p2

(4.68)

where p0 = 0.4, p1 = 0.3, p2 = 0.4, R0 = 100 × I2, R1 = R2 = 50 × I2, µ1 =

[70 70]T and µ2 = [−70 −70]T . The nominal covariance, outlier covariances and
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the effective covariance is shown in Figure 4.1.
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Figure 4.1: The nominal covariance, outlier covariances and the effective covariance

for Case 1. The nominal covariance R0 is shown by blue circle, the outlier covariance

R1 is shown by orange circle, the outlier covariance R2 is shown by green circle and

the effective covariance is shown by purple ellipse.

Case 2:

The measurement noise is generated according to (4.68) where p0 = 0.4, p1 = 0.3,

p2 = 0.4,R0 = 100×I2,R1 = R2 = 50×I2, µ1 = [0 100]T and µ2 = [0 −100]T .

The nominal covariance, outlier covariances and the effective covariance is shown in

Figure 4.2.
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Figure 4.2: The nominal covariance, outlier covariances and the effective covariance

for Case 2. The nominal covariance R0 is shown by blue circle, the outlier covariance

R1 is shown by orange circle, the outlier covariance R2 is shown by green circle and

the effective covariance is shown by purple ellipse.

Case 3:

The measurement noise is generated according to

vk ∼

N (0, R0) w.p. 0.9

N (0, 100R0) w.p. 0.1
(4.69)

whereR0 = 100×I2. The nominal covariance, the outlier covariance and the effective

covariance is shown in Figure 4.3.
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Figure 4.3: The nominal covariance, the outlier covariance and the effective covari-

ance for Case 3. The nominal covariance R0 is shown by blue circle, the outlier

covariance 100×R0 is shown by orange circle and the effective covariance is shown

by purple circle.

Case 4:

The measurement noise is generated according to (4.68) where p0 = 0.8, p1 = 0.1,

p2 = 0.1, R0 = 100 × I2, R1 = R2 = 50 × I2, µ1 = [1000 1000]T and µ2 =

[−1000 − 1000]T . The nominal covariance, outlier covariances and the effective

covariance is shown in Figure 4.4.
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Figure 4.4: The nominal covariance, outlier covariances and the effective covariance

for Case 4. The nominal covariance R0 is shown by blue circle, the outlier covariance

R1 is shown by orange circle, the outlier covariance R2 is shown by green circle and

the effective covariance is shown by purple ellipse.

Case 5:

The measurement noise is generated according to (4.68) where p0 = 0.8, p1 = 0.1,

p2 = 0.1, R0 = 100 × I2, R1 = R2 = 50 × I2, µ1 = [0 1000]T and µ2 = [0 −
1000]T . The nominal covariance, outlier covariances and the effective covariance is

shown in Figure 4.5.
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Figure 4.5: The nominal covariance, outlier covariances and the effective covariance

for Case 5. The nominal covariance R0 is shown by blue circle, the outlier covariance

R1 is shown by orange circle, the outlier covariance R2 is shown by green circle and

the effective covariance is shown by purple ellipse.

In this simulation, the position, the velocity and the effective covariance of the mea-

surement noise are estimated with both VB-GG algorithm and VB-IW algorithm. The

algorithms are only aware of the nominal measurement noise covariance R0 for all

cases. The simulation is carried out for 500 Monte Carlo (MC) runs, 500 time steps

for each MC run and 10 iterations are performed for both VB algorithms. In addi-

tion, the degrees of freedom parameter υ in VB-GG algorithm is taken as 3 [22]. The

tuning parameter τ and the forgetting factor λ in VB-IW algorithm are taken as 5 and

1 [23], respectively. For evaluating the estimation accuracy of the state, root mean

square error (RMSE) and averaged root mean square error (ARMSE) [22] given in

equations (3.16) and (3.17) are used as performance metrics. These metrics are com-

puted for both position and velocity.
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Figure 4.6 and Figure 4.7 shows respectively the RMSEs of position and velocity for

Case 1. The ARMSEs of position and velocity for VB-GG, VB-IW, STF and KF

for Case 1 are given in Table 4.1. In Figure 4.8, the effective measurement noise

covariance, the estimated measurement noise covariance by VB-IW and the effective

covariance calculated by VB-GG used in the measurement update of the state in VB

iterations for Case 1 are shown for any time interval of a single MC run.
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Figure 4.6: RMSEs of the position for 500 Monte Carlo run for Case 1. RMSEs of

the position by VB-GG is shown by orange line, RMSEs of the position by VB-IW

is shown by green line, RMSEs of the position by STF is shown by purple line and

RMSEs of the position by KF is shown by blue line.

Figure 4.9 and Figure 4.10 shows respectively the RMSEs of position and velocity

for Case 2. The ARMSEs of position and velocity for VB-GG, VB-IW, STF and KF

for Case 2 are given in Table 4.2. In Figure 4.11, the effective measurement noise

covariance, the estimated measurement noise covariance by VB-IW and the effective

covariance calculated by VB-GG used in the measurement update of the state in VB

iterations for Case 2 are shown for any time interval of a single MC run.

Figure 4.12 and Figure 4.13 shows respectively the RMSEs of position and velocity

for Case 3. The ARMSEs of position and velocity for VB-GG, VB-IW, STF and KF

for Case 3 are given in Table 4.3. In Figure 4.14, the effective measurement noise

covariance, the estimated measurement noise covariance by VB-IW and the effective
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Figure 4.7: RMSEs of the velocity for 500 Monte Carlo run for Case 1. RMSEs of

the velocity by VB-GG is shown by orange line, RMSEs of the velocity by VB-IW

is shown by green line, RMSEs of the velocity by STF is shown by purple line and

RMSEs of the velocity by KF is shown by blue line.

covariance calculated by VB-GG used in the measurement update of the state in VB

iterations for Case 3 are shown for any time interval of a single MC run.

Figure 4.15 and Figure 4.16 shows respectively the RMSEs of position and velocity

for Case 4. The ARMSEs of position and velocity for VB-GG, VB-IW, STF and KF

for Case 4 are given in Table 4.4. In Figure 4.17, the effective measurement noise

covariance, the estimated measurement noise covariance by VB-IW and the effective

covariance calculated by VB-GG used in the measurement update of the state in VB

iterations for Case 4 are shown for any time interval of a single MC run.

Figure 4.18 and Figure 4.19 shows respectively the RMSEs of position and velocity

for Case 5. The ARMSEs of position and velocity for VB-GG, VB-IW, STF and KF

for Case 5 are given in Table 4.5. In Figure 4.20, the effective measurement noise

covariance, the estimated measurement noise covariance by VB-IW and the effective

covariance calculated by VB-GG used in the measurement update of the state in VB

iterations for Case 5 are shown for any time interval of a single MC run.

Figures 4.6, 4.7, 4.9, 4.10 and Tables 4.1, 4.2 show that VB-IW algorithm provides
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Table 4.1: ARMSEs of KF, VB-GG, VB-IW and STF for Case 1

ARMSE of the position (m) ARMSE of the velocity (m/s)

KF 42.33 8.90

VB-GG 61.94 5.77

VB-IW 31.86 4.15

STF 64.82 26.07

Table 4.2: ARMSEs of KF, VB-GG, VB-IW and STF for Case 2

ARMSE of the position (m) ARMSE of the velocity (m/s)

KF 42.60 9.02

VB-GG 61.23 5.74

VB-IW 31.45 4.17

STF 65.41 26.25

better estimation accuracy than other algorithms for Case 1 and Case 2 since in these

cases, outliers near to nominal covariance and they have high probability of occur-

rence. Therefore, these cases show behavior of unknown covariance instead of outlier

behavior. As seen in Figures 4.8 and 4.11, VB-IW algorithm estimates the effective

measurement noise covariances accurately. As a result, VB-IW algorithm outper-

forms VB-GG algorithm for the systems that have unknown measurement noise co-

variances in terms of RMSE and ARMSE.

Unlike Case 1 and 2, Case 3-5 show outlier behaviour. In these cases, VB-GG al-

gorithm has smaller RMSEs and ARMSEs than VB-IW algorithm as seen in Figures

4.12, 4.13, 4.15, 4.16, 4.18, 4.19 and Tables 4.3, 4.4, 4.5. In order to increase the

estimation accuracy of VB-IW algorithm for the systems that have outliers, we use

fixed prior VB-IW algorithm and the simulation results for this algorithm are given.
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Figure 4.8: Measurement noise covariance tracking of the algorithms VB-GG and

VB-IW for Case 1 (for any time interval of a single MC run). The effective mea-

surement noise covariances are shown by purple ellipses, the estimated measurement

noise covariances by VB-IW are shown by green ellipses and the effective covariance

calculated by VB-GG used in the measurement update of the state in VB iterations

are shown by orange circles. The blue circles and black stars show the true positions

and the measurements, respectively.

Figure 4.21 and Figure 4.22 shows respectively the RMSEs of position and velocity

for Case 3 by using fixed prior VB-IW algorithm. The ARMSEs of position and

velocity for VB-GG, fixed prior VB-IW, STF and KF for Case 3 are given in Table 4.6.

In Figure 4.23, the effective measurement noise covariance, the effective covariance

calculated by fixed prior VB-IW used in the measurement update of the state in VB

iterations and the effective covariance calculated by VB-GG used in the measurement

update of the state in VB iterations for Case 3 are shown for any time interval of a

single MC run.

Figure 4.24 and Figure 4.25 shows respectively the RMSEs of position and velocity

for Case 4 by using fixed prior VB-IW algorithm. The ARMSEs of position and

velocity for VB-GG, fixed prior VB-IW, STF and KF for Case 4 are given in Table 4.7.
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Figure 4.9: RMSEs of the position for 500 Monte Carlo run for Case 2. RMSEs of

the position by VB-GG is shown by orange line, RMSEs of the position by VB-IW

is shown by green line, RMSEs of the position by STF is shown by purple line and

RMSEs of the position by KF is shown by blue line.

In Figure 4.26, the effective measurement noise covariance, the effective covariance

calculated by fixed prior VB-IW used in the measurement update of the state in VB

iterations and the effective covariance calculated by VB-GG used in the measurement

update of the state in VB iterations for Case 4 are shown for any time interval of a

single MC run.

Figure 4.27 and Figure 4.28 shows respectively the RMSEs of position and velocity

for Case 5 by using fixed prior VB-IW algorithm. The ARMSEs of position and

velocity for VB-GG, fixed prior VB-IW, STF and KF for Case 5 are given in Table 4.8.

In Figure 4.29, the effective measurement noise covariance, the effective covariance

calculated by fixed prior VB-IW used in the measurement update of the state in VB

iterations and the effective covariance calculated by VB-GG used in the measurement

update of the state in VB iterations for Case 5 are shown for any time interval of a

single MC run.

As seen in Figures 4.21, 4.22, 4.24, 4.25, 4.27 and 4.28, the RMSEs of VB-IW al-

gorithm approaches to RMSEs of VB-GG algorithm, i.e., both VB-IW and VB-GG

provide almost the same estimation accuracy, by applying proposed approach for the
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Figure 4.10: RMSEs of the velocity for 500 Monte Carlo run for Case 2. RMSEs of

the velocity by VB-GG is shown by orange line, RMSEs of the velocity by VB-IW

is shown by green line, RMSEs of the velocity by STF is shown by purple line and

RMSEs of the velocity by KF is shown by blue line.

systems that have outliers. Consequently, VB-IW algorithm approaches to VB-GG

algorithm when the presence of outliers. It can also outperforms VB-GG algorithm

under certain circumstances.
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Figure 4.11: Measurement noise covariance tracking of the algorithms VB-GG and

VB-IW for Case 2 (for any time interval of a single MC run). The effective mea-

surement noise covariances are shown by purple ellipses, the estimated measurement

noise covariances by VB-IW are shown by green ellipses and the effective covariance

calculated by VB-GG used in the measurement update of the state in VB iterations

are shown by orange circles. The blue circles and black stars show the true positions

and the measurements, respectively.

Table 4.3: ARMSEs of KF, VB-GG, VB-IW and STF for Case 3

ARMSE of the position (m) ARMSE of the velocity (m/s)

KF 25.42 5.74

VB-GG 9.83 3.04

VB-IW 20.72 3.90

STF 19.49 6.37
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Figure 4.12: RMSEs of the position for 500 Monte Carlo run for Case 3. RMSEs of

the position by VB-GG is shown by orange line, RMSEs of the position by VB-IW

is shown by green line, RMSEs of the position by STF is shown by purple line and

RMSEs of the position by KF is shown by blue line.
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Figure 4.13: RMSEs of the velocity for 500 Monte Carlo run for Case 3. RMSEs of

the velocity by VB-GG is shown by orange line, RMSEs of the velocity by VB-IW

is shown by green line, RMSEs of the velocity by STF is shown by purple line and

RMSEs of the velocity by KF is shown by blue line.
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Figure 4.14: Measurement noise covariance tracking of the algorithms VB-GG and

VB-IW for Case 3 (for any time interval of a single MC run). The effective mea-

surement noise covariances are shown by purple ellipses, the estimated measurement

noise covariances by VB-IW are shown by green ellipses and the effective covariance

calculated by VB-GG used in the measurement update of the state in VB iterations

are shown by orange circles. The blue circles and black stars show the true positions

and the measurements, respectively.

Table 4.4: ARMSEs of KF, VB-GG, VB-IW and STF for Case 4

ARMSE of the position (m) ARMSE of the velocity (m/s)

KF 243.42 49.79

VB-GG 9.54 2.97

VB-IW 109.94 5.65

STF 242.59 205.62
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Figure 4.15: RMSEs of the position for 500 Monte Carlo run for Case 4. RMSEs of

the position by VB-GG is shown by orange line, RMSEs of the position by VB-IW

is shown by green line, RMSEs of the position by STF is shown by purple line and

RMSEs of the position by KF is shown by blue line.
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Figure 4.16: RMSEs of the velocity for 500 Monte Carlo run for Case 4. RMSEs of

the velocity by VB-GG is shown by orange line, RMSEs of the velocity by VB-IW

is shown by green line, RMSEs of the velocity by STF is shown by purple line and

RMSEs of the velocity by KF is shown by blue line.
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Figure 4.17: Measurement noise covariance tracking of the algorithms VB-GG and

VB-IW for Case 4 (for any time interval of a single MC run). The effective mea-

surement noise covariances are shown by purple ellipses, the estimated measurement

noise covariances by VB-IW are shown by green ellipses and the effective covariance

calculated by VB-GG used in the measurement update of the state in VB iterations

are shown by orange circles. The blue circles and black stars show the true positions

and the measurements, respectively.

Table 4.5: ARMSEs of KF, VB-GG, VB-IW and STF for Case 5

ARMSE of the position (m) ARMSE of the velocity (m/s)

KF 169.91 34.82

VB-GG 9.55 2.97

VB-IW 83.22 5.27

STF 165.73 132.32
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Figure 4.18: RMSEs of the position for 500 Monte Carlo run for Case 5. RMSEs of

the position by VB-GG is shown by orange line, RMSEs of the position by VB-IW

is shown by green line, RMSEs of the position by STF is shown by purple line and

RMSEs of the position by KF is shown by blue line.
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Figure 4.19: RMSEs of the velocity for 500 Monte Carlo run for Case 5. RMSEs of

the velocity by VB-GG is shown by orange line, RMSEs of the velocity by VB-IW

is shown by green line, RMSEs of the velocity by STF is shown by purple line and

RMSEs of the velocity by KF is shown by blue line.
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Figure 4.20: Measurement noise covariance tracking of the algorithms VB-GG and

VB-IW for Case 5 (for any time interval of a single MC run). The effective mea-

surement noise covariances are shown by purple ellipses, the estimated measurement

noise covariances by VB-IW are shown by green ellipses and the effective covariance

calculated by VB-GG used in the measurement update of the state in VB iterations

are shown by orange circles. The blue circles and black stars show the true positions

and the measurements, respectively.
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Figure 4.21: RMSEs of the position for 500 Monte Carlo run for Case 3 by using

fixed prior VB-IW algorithm. RMSEs of the position by VB-GG is shown by orange

line, RMSEs of the position by fixed prior VB-IW is shown by green line, RMSEs

of the position by STF is shown by purple line and RMSEs of the position by KF is

shown by blue line.
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Figure 4.22: RMSEs of the velocity for 500 Monte Carlo run for Case 3 by using

fixed prior VB-IW algorithm. RMSEs of the velocity by VB-GG is shown by orange

line, RMSEs of the velocity by fixed prior VB-IW is shown by green line, RMSEs

of the velocity by STF is shown by purple line and RMSEs of the velocity by KF is

shown by blue line.
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Table 4.6: ARMSEs of KF, VB-GG, fixed prior VB-IW and STF for Case 3

ARMSE of the position (m) ARMSE of the velocity (m/s)

KF 25.63 5.71

VB-GG 9.80 3.00

Fixed Prior VB-IW 10.05 3.06

STF 19.65 6.43

Table 4.7: ARMSEs of KF, VB-GG, fixed prior VB-IW and STF for Case 4

ARMSE of the position (m) ARMSE of the velocity (m/s)

KF 242.54 49.56

VB-GG 9.52 2.96

Fixed Prior VB-IW 9.85 3.03

STF 241.20 204.33

Table 4.8: ARMSEs of KF, VB-GG, fixed prior VB-IW and STF for Case 5

ARMSE of the position (m) ARMSE of the velocity (m/s)

KF 171.91 35.05

VB-GG 9.55 2.96

Fixed Prior VB-IW 9.94 3.03

STF 164.67 130.50
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Figure 4.23: Measurement noise covariance tracking of the algorithms VB-GG and

fixed prior VB-IW for Case 3 (for any time interval of a single MC run). The effective

measurement noise covariances are shown by purple ellipses, the effective covariance

calculated by fixed prior VB-IW used in the measurement update of the state in VB

iterations are shown by green ellipses and the effective covariance calculated by VB-

GG used in the measurement update of the state in VB iterations are shown by orange

circles. The blue circles and black stars show the true positions and the measurements,

respectively.
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Figure 4.24: RMSEs of the position for 500 Monte Carlo run for Case 4 by using

fixed prior VB-IW algorithm. RMSEs of the position by VB-GG is shown by orange

line, RMSEs of the position by fixed prior VB-IW is shown by green line, RMSEs

of the position by STF is shown by purple line and RMSEs of the position by KF is

shown by blue line.
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Figure 4.25: RMSEs of the velocity for 500 Monte Carlo run for Case 4 by using

fixed prior VB-IW algorithm. RMSEs of the velocity by VB-GG is shown by orange

line, RMSEs of the velocity by fixed prior VB-IW is shown by green line, RMSEs

of the velocity by STF is shown by purple line and RMSEs of the velocity by KF is

shown by blue line.
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Figure 4.26: Measurement noise covariance tracking of the algorithms VB-GG and

fixed prior VB-IW for Case 4 (for any time interval of a single MC run). The effective

measurement noise covariances are shown by purple ellipses, the effective covariance

calculated by fixed prior VB-IW used in the measurement update of the state in VB

iterations are shown by green ellipses and the effective covariance calculated by VB-

GG used in the measurement update of the state in VB iterations are shown by orange

circles. The blue circles and black stars show the true positions and the measurements,

respectively.
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Figure 4.27: RMSEs of the position for 500 Monte Carlo run for Case 5 by using

fixed prior VB-IW algorithm. RMSEs of the position by VB-GG is shown by orange

line, RMSEs of the position fixed prior VB-IW is shown by green line, RMSEs of the

position by STF is shown by purple line and RMSEs of the position by KF is shown

by blue line.
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Figure 4.28: RMSEs of the velocity for 500 Monte Carlo run for Case 5 by using

fixed prior VB-IW algorithm. RMSEs of the velocity by VB-GG is shown by orange

line, RMSEs of the velocity by fixed prior VB-IW is shown by green line, RMSEs

of the velocity by STF is shown by purple line and RMSEs of the velocity by KF is

shown by blue line.
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Figure 4.29: Measurement noise covariance tracking of the algorithms VB-GG and

fixed prior VB-IW for Case 5 (for any time interval of a single MC run). The effective

measurement noise covariances are shown by purple ellipses, the effective covariance

calculated by fixed prior VB-IW used in the measurement update of the state in VB

iterations are shown by green ellipses and the effective covariance calculated by VB-

GG used in the measurement update of the state in VB iterations are shown by orange

circles. The blue circles and black stars show the true positions and the measurements,

respectively.
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CHAPTER 5

MULTIPLE-MODEL EXTENSIONS OF OUTLIER ROBUST FILTERS

USING VB APPROACH

As mentioned before, both multimodality and heavy-tailed noises may exist at the

same time in many real world applications. In Chapter 3, IMM-STF is derived for

the multiple-model systems that have heavy-tailed noises. It is shown that IMM-STF

outperforms the conventional IMM algorithm. In addition to STF, VB methods are

proposed for the rejection of outliers. In the previous chapter, the derivations of two

different VB methods, VB-GG and VB-IW, are given and the performances of these

methods are compared. In order to solve the tracking problem of the multiple-model

systems that have heavy-tailed measurement noise, a multiple-model extension of

VB-GG approach is proposed in [39,47]. It is demonstrated by the simulation results

in the previous chapter that VB-IW algorithm provides better estimation accuracy

than VB-GG algorithm. Therefore, a multiple-model extension of VB-IW approach

is proposed in this chapter for multiple-model systems that have outliers in measure-

ments.

In this chapter, a multiple-model extension of VB-GG algorithm and a multiple-model

extension of VB-IW algorithm are derived based on IMM approach. These multiple-

model extensions are referred as IMM-VB-GG and IMM-VB-IW. The performances

of these two methods are compared for five different measurement noise characteris-

tics.
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5.1 Multiple-Model Extension of VB-GG Algorithm (IMM-VB-GG)

In this section, the derivation of IMM-VB-GG is given. We consider the hybrid sys-

tem (2.42) where

• wrkk−1 is distributed with N (0, Qrk),

• vrkk is distributed with St(0, Rrk , υrk).

The mode state rk is modeled as a Markov chain that have the TPM Π = [πji ,

P (rk = i|rk−1 = j)]. We assume that we have N modes. The block diagram of a

single step of the IMM-VB-GG algorithm is shown in Figure 5.1.
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Figure 5.1: The block diagram of a single step of IMM-VB-GG for N-models.

Since in VB-GG algorithm, the filtered PDF p(xk|y1:k) is approximated as Gaussian

distributed, the mixing calculations and the calculation of overall mean and covari-

ance are the same as in the conventional IMM algorithm. We assume that we have

statistics {mj
k−1|k−1, P

j
k−1|k−1, µ

j
k−1}

N
j=1 from the previous step. Then, the statistics
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{mi
k|k, P

i
k|k, µ

i
k}Ni=1 are obtained at the end of the one step of the algorithm. First of

all, the mixing mode probabilities are obtained as

µjik−1|k−1 =
πjiµ

j
k−1

N∑
l=1

πliµlk−1

. (5.1)

Then, the prior distributions are mixed using the mixed mode probabilities. The

merged means and covariances are computed by equation (2.49). Now, we have the

mixed statistics {m0i
k−1|k−1, P

0i
k−1|k−1}Ni=1 which are the inputs for VB-GG filters. The

posterior PDF for each mode is calculated by VB-GG algorithm given in the previ-

ous chapter. One-step predicted PDF p(xk|y1:k−1, rk = i) and the likelihood PDF

p(yk|xk, rk = i) are

p(xk|y1:k−1, rk = i) =N (xik;m
i
k|k−1, P

i
k|k−1), (5.2a)

p(yk|xk, rk = i) =St(yk;C
ixik, R

i, υi). (5.2b)

The parameters of the one-step predicted PDF are calculated by using KF time update

equation (2.8) since the process noise is Gaussian distributed, i.e.,

mi
k|k−1 = Aim0i

k−1|k−1, (5.3a)

P i
k|k−1 = AiP 0i

k−1|k−1

(
Ai
)T

+Qi. (5.3b)

The likelihood (5.2b) can be rewritten by using the Gamma-Gaussian representation

of the Student’s-t PDF (4.13) for each mode i

p(yk|xk, rk = i) =

∫
N
(
yk;C

ixik, R
i/λik

)
Gam

(
λik; υ

i/2, υi/2
)
dλik. (5.4)

Therefore, we have

p(yk|xk, λk, rk = i) = N
(
yk;C

ixik, R
i/λik

)
, (5.5a)

p(λk|rk = i) = Gam
(
λik; υ

i/2, υi/2
)
. (5.5b)

In order to estimate the state xik, the joint posterior PDF p(xk, λk|y1:k, rk = i) need to
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be approximated by VB approach as

p(xk, λk|y1:k, rk = i) ≈ q(xik)q(λ
i
k), (5.6)

where q(.) is the approximate posterior PDF. The approximation steps are the same

with given in Chapter 4. Thus, q(λik)
(s+1) is updated as Gamma PDF as

q(λik)
(s+1) = Gam

(
λik; γ

i
k

(s+1)
, δik

(s+1)
)
, (5.7)

where q(.)(s+1) is the approximation of q(.) at (s+ 1)th iteration and

γik
(s+1)

=
1

2
(m+ υi), (5.8a)

δik
(s+1)

=
1

2

[
υi + tr

(
Ei
k

(s) (
Ri
)−1
)]
, (5.8b)

Ei
k

(s)
=
(
yk − Cimi

k|k
(s)
)(

yk − Cimi
k|k

(s)
)T

+ CiP i
k|k

(s)
(Ci)T . (5.8c)

The modified likelihood PDF p(yk|xk, rk = i)(s+1) is defined as

p(yk|xk, rk = i)(s+1) = N
(
yk;C

ixik,
[
R̃i
k

](s+1)
)
, (5.9)

where
[
R̃i
k

](s+1)

is the effective covariance matrix, which is used in the measurement

update of the state for mode i at (s+1)th iteration. It is calculated as

[
R̃i
k

](s+1)

=
Ri

E [λik]
(s+1)

, (5.10)

and

E
[
λik
](s+1)

=
γik

(s+1)

δik
(s+1)

. (5.11)

As given in Chapter 4, q(xik)
(s+1) is updated as Gaussian PDF as

q(xik)
(s+1) = N

(
xik;m

i
k|k

(s+1)
, P i

k|k
(s+1)

)
, (5.12)

108



where

mi
k|k

(s+1)
= mi

k|k−1 +Ki
k

(s+1) (
yk − Cimi

k|k−1

)
, (5.13a)

P i
k|k

(s+1)
= P i

k|k−1 −Ki
k

(s+1)
CiP i

k|k−1, (5.13b)

and

Sik
(s+1)

= CiP i
k|k−1

(
Ci
)T

+
[
R̃i
k

](s+1)

, (5.14a)

Ki
k

(s+1)
= P i

k|k−1

(
Ci
)T (

Sik
(s+1)

)−1

, (5.14b)

After S iterations, the approximate posterior PDF of the state for each mode i be-

comes

q∗(xik) ≈ q(xik)
(S) = N

(
xik;m

i
k|k

(S)
, P i

k|k
(S)
)

= N
(
xik;m

i
k|k, P

i
k|k
)
, (5.15)

and the innovation covariance is

Sik = Sik
(S)
. (5.16)

In order to obtain the overall mean and covariance of the state, mode probabilities

should be updated as

µik , P (rk = i|y1:k) ∝ p(yk|y1:k−1, rk = i)P (rk = i|y1:k−1)

∝ p(yk|y1:k−1, rk = i)
N∑
j=1

P (rk = i|rk−1 = j)P (rk−1 = j|y1:k−1)

∝ p(yk|y1:k−1, rk = i)
N∑
j=1

πjiµ
j
k−1.

(5.17)

µik =

p(yk|y1:k−1, rk = i)
N∑
j=1

πjiµ
j
k−1

N∑
l=1

p(yk|y1:k−1, rk = l)
N∑
j=1

πjlµ
j
k−1

. (5.18)

The likelihood p(yk|y1:k−1, rk = i) in equation (5.18) can be obtained by computing
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the following integral:

p(yk|y1:k−1, rk = i) =

∫ ∫
p(yk|xk, λk, rk = i)p(xk|y0:k−1, rk = i)

× p(λk|rk = i)dλkdxk

=

∫ ∫
N (yk;C

ixik, R
i/λik)N (xik;m

i
k|k−1, P

i
k|k−1)

×Gam(λik; υ
i/2, υi/2)dλikdx

i
k

(5.19)

Since there is no analytical expression for integral in equation (5.19), it is approxi-

mated as in [25]

p(yk|y1:k−1, rk = i) ≈ N
(
yk;C

imi
k|k−1, C

iP i
k|k−1(Ci)T +

[
R̃i
k

](N)
)

(5.20)

By substituting equation (5.20) in (5.18);

µik =

N
(
yk;C

imi
k|k−1, C

iP i
k|k−1(Ci)T +

[
R̃i
k

](N)
)

N∑
j=1

πjiµ
j
k−1

N∑
l=1

N
(
yk;C lml

k|k−1, C
lP l
k|k−1(C l)T +

[
R̃l
k

](N)
)

N∑
j=1

πjlµ
j
k−1

. (5.21)

The overall mean and covariance are computed by equation (2.45). IMM-VB-GG

algorithm is summarized in Algorithm 4.
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Algorithm 4 IMM-VB-GG Algorithm

Inputs: {mj
k−1|k−1, P

j
k−1|k−1, µ

j
k−1}

N
j=1, {Ai, Ci, Qi, Ri, υi}Ni=1, yk, m, n, S

for i=1:N do

Mixing:

for j=1:N do

1. µjik−1|k−1 =
πjiµ

i
k−1

N∑
l=1

πliµlk−1

end for

2. m0i
k−1|k−1 =

N∑
j=1

µjik−1|k−1m
j
k−1|k−1

3. P 0i
k−1|k−1 =

N∑
j=1

µjik−1|k−1

×
[
P j
k−1|k−1 + (mj

k−1|k−1 −m
0i
k−1|k−1)(mj

k−1|k−1 −m
0i
k−1|k−1)T

]
Time Update:

4. mi
k|k−1 = Aim0i

k−1|k−1

5. P i
k|k−1 = AiP 0i

k−1|k−1(Ai)T +Qi

Measurement Update:

6. Initialization: mi
k|k

(0)
= mi

k|k−1, P i
k|k

(0)
= P i

k|k−1

for s=0:S-1 do

Update q(λik)
(s+1) given q(xik)

(s)

7. Ei
k

(s)
=
(
yk − Cimi

k|k
(s)
)(

yk − Cimi
k|k

(s)
)T

+ CiP i
k|k

(s)
(Ci)T

8. γik
(s+1)

=
1

2
(m+υi), δik

(s+1)
=

1

2

(
υi + tr

(
Ei
k

(s)
(Ri)−1

))
, E
[
λik
](s+1)

=

γik
(s+1)

δik
(s+1)

Update q(xik)
(s+1) given q(λik)

(s+1)

9.
[
R̃i
k

](s+1)

=
Ri

E [λik]
(s+1)

10. Sik
(s+1)

= CiP i
k|k−1(Ci)T +

[
R̃i
k

](s+1)

11. Ki
k

(s+1)
= P i

k|k−1(Ci)T
(
Sik

(s+1)
)−1

12. mi
k|k

(s+1)
= mi

k|k−1 +Ki
k

(s+1) (
yk − Cimi

k|k−1

)
13. P i

k|k
(s+1)

= P i
k|k−1 −Ki

k

(s+1)
CiP i

k|k−1

end for

14. mi
k|k = mi

k|k
(S), P i

k|k = P i
k|k

(S), Sik = Sik
(S)

end for
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for i=1:N do

15. µik =

N
(
yk;C

imi
k|k−1, C

iP i
k|k−1(Ci)T +

[
R̃i
k

](N)
)

N∑
j=1

πjiµ
j
k−1

N∑
l=1

N
(
yk;C lml

k|k−1, C
lP l
k|k−1(C l)T +

[
R̃l
k

](N)
)

N∑
j=1

πjlµ
j
k−1

end for

16. mk|k =
N∑
i=1

µikm
i
k|k

17. Pk|k =
N∑
i=1

µik
[
P i
k|k + (mi

k|k −mk|k)(m
i
k|k −mk|k)

T
]

Outputs: {mi
k|k, P

i
k|k, µ

i
k}Ni=1, mk|k, Pk|k

5.2 Multiple-Model Extension of VB-IW Algorithm (IMM-VB-IW)

In this section, the derivation of IMM-VB-IW is given. VB-IW algorithm is used to

estimate the effective covariance of the measurement noise and the state of each mode

of the hybrid system. We consider the hybrid system (2.42) where

• wrkk−1 is distributed with N (0, Qrk),

• vrkk is distributed with St(0, Rrk , υrk).

The mode state rk is modeled as a Markov chain that have the TPM Π = [πji ,

P (rk = i|rk−1 = j)]. We assume that we have N modes. The block diagram of a

single step of the IMM-VB-IW algorithm is shown in Figure 5.2.

As seen in Figure 5.2, we have probability distributions {N (xjk−1;mj
k−1|k−1, P

j
k−1|k−1),

IW (Σj
k−1;ujk−1|k−1, U

j
k−1|k−1)}Nj=1 from the previous step where Σj

k−1 is the effective

covariance of the measurement noise at time step k−1 for mode j and the probability

distributions {N (xik;mi
k|k, P

i
k|k), IW (Σi

k;uik|k, U
i
k|k)}Ni=1 are obtained at the end of the one

step of the algorithm. The prior distributions of the state and the effective covariance

of the measurement noise are Gaussian and Inverse-Wishart, respectively. Hence, the

joint distribution of the state end the effective covariance of the measurement noise

of the j th mode given the measurements can be seen as the product of Gaussian and
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Figure 5.2: The block diagram of a single step of IMM-VB-IW for N-models.

Inverse-Wishart distribution such that

p(xk−1,Σk−1|y1:k−1, rk−1 = j) =N (xjk−1;mj
k−1|k−1, P

j
k−1|k−1)

× IW (Σj
k−1;ujk−1|k−1, U

j
k−1|k−1),

(5.22)

which is named as Normal-Inverse Wishart distribution.

First of all, the mixing mode probabilities are obtained as

µjik−1|k−1 =
πjiµ

j
k−1

N∑
l=1

πliµlk−1

. (5.23)

Then, the prior Normal-Inverse Wishart distributions (5.22) are mixed using the mix-

ing mode probabilities. The merged statistics are calculated as

m0i
k−1|k−1 =

N∑
j=1

µjik−1|k−1m
j
k−1|k−1, (5.24)
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P 0i
k−1|k−1 =

N∑
j=1

µjik−1|k−1

×
[
P j
k−1|k−1 + (mj

k−1|k−1 −m
0i
k−1|k−1)(mj

k−1|k−1 −m
0i
k−1|k−1)T

]
,

(5.25)

U0i
k−1|k−1 =

(
u0i
k−1|k−1 −m− 1

)
×

(
N∑
j=1

µjik−1|k−1

(
u0i
k−1|k−1 −m− 1

) (
U j
k−1|k−1

)−1
)−1

,
(5.26)

and

u0i
k−1|k−1 = arg minu{mlog(u−m− 1)−

m∑
l=1

ψ0

(
u−m− l

2

)

− log

∣∣∣∣∣
N∑
j=1

µjik−1|k−1(u−m− 1)
(
U j
k−1|k−1

)−1

∣∣∣∣∣
+

N∑
j=1

m∑
l=1

µjik−1|k−1ψ0

(
u−m− l

2

)

−
N∑
j=1

µjik−1|k−1log
∣∣∣U j

k−1|k−1

∣∣∣},

(5.27)

by minimizing the Kullback-Leibler divergence where ψ0(.) is the digamma func-

tion [19], which is the 1st order derivative of the logarithm of the gamma function

[10]. Now, we have the mixed statistics {m0i
k−1|k−1, P

0i
k−1|k−1, u

0i
k−1|k−1, U

0i
k−1|k−1}Ni=1

which are the inputs for VB-IW filters. The posterior PDF for each mode is calcu-

lated by VB-IW algorithm given in the previous chapter. The one-step predicted PDF

p(xk|y1:k−1, rk = i) and the likelihood PDF p(yk|xk,Σk, rk = i) are

p(xk|y1:k−1, rk = i) =N (xik;m
i
k|k−1, P

i
k|k−1), (5.28a)

p(yk|xk,Σk, rk = i) =N (yk;C
ixik,Σ

i
k). (5.28b)

Since the process noise is assumed as Gaussian distributed, the parameters of one-step

predicted PDF are calculated by KF time update equations (5.3). Now, the goal is to

estimate the state xik and the effective covariance of the measurement noise Σi
k. The
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approximated posterior distributions q(xik) and q(Σi
k) are obtained for each mode i as

given in Chapter 4. Therefore, q(Σi
k)

(s+1) is approximated as Inverse-Wishart PDF as

q(Σi
k)

(s+1) = IW
(

Σi
k;u

i
k

(s+1)
, U i

k

(s+1)
)
, (5.29)

where q(.)(s+1) is the approximation of q(.) at (s+ 1)th iteration. According to equa-

tions (4.57), (4.43) and (4.55), we obtain

uik
(s+1)

=uik|k−1 + 1, (5.30a)

U i
k

(s+1)
=Ei

k

(s)
+ U i

k|k−1, (5.30b)

and

uik|k−1 =λ(u0i
k−1|k−1 −m− 1) +m+ 1, (5.31a)

U i
k|k−1 =λU0i

k−1|k−1, (5.31b)

Ei
k

(s)
=(yk − Cimi

k|k−1)(yk − Cimi
k|k−1)T + CiP i

k|k
(s)

(Ci)T . (5.31c)

where λ is the forgetting factor. As given in Chapter 4, q(xik)
(s+1) is updated as

Gaussian PDF as

q(xik)
(s+1) = N

(
xik;m

i
k|k

(s+1)
, P i

k|k
(s+1)

)
, (5.32)

where

mi
k|k

(s+1)
= mi

k|k−1 +Ki
k

(s+1)
(yk − Cimi

k|k−1), (5.33a)

P i
k|k

(s+1)
= P i

k|k−1 −Ki
k

(s+1)
CiP i

k|k−1, (5.33b)

Sik
(s+1)

=

(
CiP i

k|k−1(Ci)T +
[
Σ̃i
k

](s+1)
)
, (5.33c)

Ki
k

(s+1)
= P i

k|k−1(Ci)T
[
Sik

(s+1)
]−1

, (5.33d)
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and the estimated measurement noise covariance matrix is

[
Σ̃i
k

](s+1)

=

[(
uik

(s+1) −m− 1
)(

U i
k

(s+1)
)−1
]−1

. (5.34)

After S iterations, the approximate posterior PDFs of the state and the effective mea-

surement noise covariance matrix for each mode i become

q∗(xik) ≈ q(xik)
(S) = N

(
xik;m

i
k|k

(S)
, P i

k|k
(S)
)

= N
(
xik;m

i
k|k, P

i
k|k
)
, (5.35a)

q∗(Σi
k) ≈ q(Σi

k)
(S) = IW

(
Σi
k;u

i
k

(S)
, U i

k

(S)
)

= IW
(
Σi
k;u

i
k|k, U

i
k|k
)
, (5.35b)

and the innovation covariance is

Sik = Sik
(S)
. (5.36)

In order to obtain the overall mean and covariance of the state, mode probabilities

should be updated as

µik , P (rk = i|y1:k) ∝ p(yk|y1:k−1, rk = i)P (rk = i|y1:k−1)

∝ p(yk|y1:k−1, rk = i)
N∑
j=1

P (rk = i|rk−1 = j)P (rk−1 = j|y1:k−1)

∝ p(yk|y1:k−1, rk = i)
N∑
j=1

πjiµ
j
k−1.

(5.37)

µik =

p(yk|y1:k−1, rk = i)
N∑
j=1

πjiµ
j
k−1

N∑
l=1

p(yk|y1:k−1, rk = l)
N∑
j=1

πjlµ
j
k−1

. (5.38)

The likelihood p(yk|y1:k−1, rk = i) in equation (5.18) can be obtained by computing

the following integral:

p(yk|y1:k−1, rk = i) =

∫ ∫
p(yk|xk,Σi

k, rk = i)p(xk|y0:k−1, rk = i)

× p(Σi
k|y0:k−1, rk = i)dΣkdxk

(5.39)
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=

∫ ∫
N (yk;C

ixik,Σ
i
k)N (xik;m

i
k|k−1, P

i
k|k−1)

× IW (Σi
k;u

i
k|k−1, U

i
k|k−1)dΣi

kdx
i
k

(5.40)

Since there is no analytical expression for integral in equation (5.40), it is approxi-

mated as in [25]

p(yk|y1:k−1, rk = i) ≈ N

(
yk;C

imi
k|k−1, C

iP i
k|k−1(Ci)T +

U i
k|k−1

uik|k−1 −m− 1

)
(5.41)

In [16] and [37], different approximations are given for this integral. By substituting

equation (5.41) in (5.38);

µik =

N
(
yk;C

imi
k|k−1, C

iP i
k|k−1(Ci)T +

U i
k|k−1

ui
k|k−1

−m−1

)
N∑
j=1

πjiµ
j
k−1

N∑
l=1

N
(
yk;C lml

k|k−1, C
lP l
k|k−1(C l)T +

U l
k|k−1

ul
k|k−1

−m−1

)
N∑
j=1

πjlµ
j
k−1

. (5.42)

The overall mean and covariance values of the state are computed by equation (2.45).

IMM-VB-IW algorithm is summarized in Algorithm 5.

117



Algorithm 5 IMM-VB-IW Algorithm

Inputs: {mj
k−1|k−1, P

j
k−1|k−1, u

j
k−1|k−1, u

j
k−1|k−1µ

j
k−1}

N
j=1, {Ai, Ci, Qi, Ri}Ni=1, yk,

m, n, λ, S

for i=1:N do

Mixing:

for j=1:N do

1. µjik−1|k−1 =
πjiµ

i
k−1

N∑
l=1

πliµlk−1

end for

2. m0i
k−1|k−1 =

N∑
j=1

µjik−1|k−1m
j
k−1|k−1

3. P 0i
k−1|k−1 =

N∑
j=1

µjik−1|k−1

×
[
P j
k−1|k−1 + (mj

k−1|k−1 −m
0i
k−1|k−1)(mj

k−1|k−1 −m
0i
k−1|k−1)T

]
4. u0i

k−1|k−1 = arg minu{mlog(u−m− 1)−
m∑
l=1

ψ0

(
u−m− l

2

)
−log

∣∣∣∣∣
N∑
j=1

µjik−1|k−1(u−m− 1)
(
U j
k−1|k−1

)−1

∣∣∣∣∣
+

N∑
j=1

m∑
l=1

µjik−1|k−1ψ0

(
u−m− l

2

)

−
N∑
j=1

µjik−1|k−1log
∣∣∣U j

k−1|k−1

∣∣∣}
5. U0i

k−1|k−1 =
(
u0i
k−1|k−1 −m− 1

)
×

(
N∑
j=1

µjik−1|k−1

(
u0i
k−1|k−1 −m− 1

) (
U j
k−1|k−1

)−1
)−1

Time Update:

6. mi
k|k−1 = Aim0i

k−1|k−1

7. P i
k|k−1 = AiP 0i

k−1|k−1(Ai)T +Qi

end for

(to be continued)
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for i=1:N do

Measurement Update:

8. Initialization: mi
k|k

(0)
= mi

k|k−1, P i
k|k

(0)
= P i

k|k−1, uik|k−1 =

λ
(
u0i
k−1|k−1 −m− 1

)
+m+ 1, U i

k|k−1 = λU0i
k−1|k−1

for s=0:S-1 do

Update q(Σi
k)

(s+1) given q(xik)
(s)

9. Ei
k

(s)
=
(
yk − Cimi

k|k
(s)
)(

yk − Cimi
k|k

(s)
)T

+ CiP i
k|k

(s)
(Ci)T

10. uik
(s+1)

= uik|k−1 + 1, U i
k

(s+1)
= Ei

k

(s)
+ U i

k|k−1

Update q(xik)
(s+1) given q(Σi

k)
(s+1)

11. E
[(

Σi
k

)−1
](s+1)

=
(
uik

(s+1) −m− 1
)(

U i
k

(s+1)
)−1

12.
[
Σ̃i
k

](s+1)

=

(
E
[(

Σi
k

)−1
](s+1)

)−1

13. Sik
(s+1)

= CiP i
k|k−1(Ci)T +

[
R̃i
k

](s+1)

14. Ki
k

(s+1)
= P i

k|k−1(Ci)T
(
Sik

(s+1)
)−1

15. mi
k|k

(s+1)
= mi

k|k−1 +Ki
k

(s+1) (
yk − Cimi

k|k−1

)
16. P i

k|k
(s+1)

= P i
k|k−1 −Ki

k

(s+1)
CiP i

k|k−1

end for

17. mi
k|k = mi

k|k
(S), P i

k|k = P i
k|k

(S), uik|k = uik|k
(S), U i

k|k = U i
k|k

(S), Sik = Sik
(S)

end for

for i=1:N do

18. µik =

N
(
yk;C

imi
k|k−1, C

iP i
k|k−1(Ci)T +

U i
k|k−1

ui
k|k−1

−m−1

)
N∑
j=1

πjiµ
j
k−1

N∑
l=1

N
(
yk;C lml

k|k−1, C
lP l
k|k−1(C l)T +

U l
k|k−1

ul
k|k−1

−m−1

)
N∑
j=1

πjlµ
j
k−1

end for

19. mk|k =
N∑
i=1

µikm
i
k|k

20. Pk|k =
N∑
i=1

µik
[
P i
k|k + (mi

k|k −mk|k)(m
i
k|k −mk|k)

T
]

Outputs: {mi
k|k, P

i
k|k, u

i
k|k, U

i
k|k, µ

i
k}Ni=1, mk|k, Pk|k
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5.3 Performance Evaluation

In this section, IMM-VB-GG and IMM-VB-IW algorithms are tested on a simulation

of a moving target in 2-D space that have Gaussian process noise and heavy-tailed

measurement noise. The motion of the target is modeled by CV [8] and CT [40]

models. These tests are conducted for five different characteristics of measurement

noise. The state is the same with (3.41). The system matrices in (2.42) for CV and

CT models are

ACV =


1 T 0 0

0 1 0 0

0 0 1 T

0 0 0 1

 , ACT =


1

sin(ωT )

ω
0 −1− cos(ωT )

ω
0 cos(ωT ) 0 −sin(ωT )

0
1− cos(ωT )

ω
1

sin(ωT )

ω
0 sin(ωT ) 0 cos(ωT )


, (5.43)

and

C =

1 0 0 0

0 0 1 0

 , (5.44)

where T = 1 s is the sampling time and ω = π/15 rad/s is the turn rate of CT model.

ACV and ACT are the state transition matrices for CV and CT models, respectively.

The process noise is distributed with normal distribution wk ∼ N (0, Q) where

Q =



T 3

3

T 2

2
0 0

T 2

2
T 0 0

0 0
T 3

3

T 2

2

0 0
T 2

2
T


. (5.45)

We consider five different cases for measurement noise generation. These cases are

given below.
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Case 1:

The measurement noise is generated according to

vk ∼


N (0, R0) w.p. p0

N (µ1, R1) w.p. p1

N (µ2, R2) w.p. p2

(5.46)

where p0 = 0.4, p1 = 0.3, p2 = 0.4, R0 = 100 × I2, R1 = R2 = 50 × I2, µ1 =

[70 70]T and µ2 = [−70 −70]T . The nominal covariance, outlier covariances and

the effective covariance is shown in Figure 4.1.

Case 2:

The measurement noise is generated according to (5.46) where p0 = 0.4, p1 = 0.3,

p2 = 0.4,R0 = 100×I2,R1 = R2 = 50×I2, µ1 = [0 100]T and µ2 = [0 −100]T .

The nominal covariance, outlier covariances and the effective covariance is shown in

Figure 4.2.

Case 3:

The measurement noise is generated according to

vk ∼

N (0, R0) w.p. 0.9

N (0, 100R0) w.p. 0.1
(5.47)

where R0 = 100× I2. The nominal covariance, outlier covariances and the effective

covariance is shown in Figure 4.3.

Case 4:

The measurement noise is generated according to (5.46) where p0 = 0.8, p1 = 0.1,

p2 = 0.1, R0 = 100 × I2, R1 = R2 = 50 × I2, µ1 = [1000 1000]T and µ2 =

[−1000 − 1000]T . The nominal covariance, outlier covariances and the effective

covariance is shown in Figure 4.4.
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Case 5:

The measurement noise is generated according to (5.46) where p0 = 0.8, p1 = 0.1,

p2 = 0.1, R0 = 100 × I2, R1 = R2 = 50 × I2, µ1 = [0 1000]T and µ2 = [0 −
1000]T . The nominal covariance, outlier covariances and the effective covariance is

shown in Figure 4.5.

The target is simulated as switching between two modes which are CV mode and CT

mode. The motion of the target is simulated according to

• CV mode between k = 0s and k = 100s,

• CT mode between k = 101s and k = 150s,

• CV mode between k = 151s and k = 250s,

and the switching is controlled by TPM

Π =

0.95 0.05

0.05 0.95

 . (5.48)

In this simulation, the position, the velocity and the effective covariance of the mea-

surement noise are estimated with both IMM-VB-GG and IMM-VB-IW algorithms.

The simulations are carried out for 250 MC runs, 250 time steps for each MC run

and 10 iterations are performed for both VB algorithms. Moreover, the degrees of

freedom parameter υ in IMM-VB-GG algorithm for each mode is taken as 3 [22].

The forgetting factor λ in IMM-VB-IW algorithm is taken as 1 [23]. For evaluating

the estimation accuracy of the state, RMSE and ARMSE given in equations (3.16)

and (3.17) are used as performance metrics.

Figure 5.3 and Figure 5.4 show respectively the RMSEs of position and velocity for

Case 1. The ARMSEs of position and velocity for IMM-VB-GG and IMM-VB-IW

for Case 1 are given in Table 5.1. In Figure 5.5, the effective measurement noise

covariance, the estimated measurement noise covariance by IMM-VB-IW and the ef-

fective covariance calculated by IMM-VB-GG used in the measurement update of the

state in VB iterations for Case 1 are shown for any time interval of a single MC run.
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Furthermore, mode probability graphs of IMM-VB-GG and IMM-VB-IW algorithms

for Case 1 are given in figures 5.6 and 5.7, respectively.

Time (s)

0 50 100 150 200 250

R
M

S
E

p
o
s
 (

m
)

0

10

20

30

40

50

60

70

80

90

IMM-VB-GG

IMM-VB-IW

Figure 5.3: RMSEs of the position for 250 Monte Carlo run for Case 1. RMSEs of

the position by IMM-VB-GG is shown by orange line and RMSEs of the position by

IMM-VB-IW is shown by green line.

Table 5.1: ARMSEs of IMM-VB-GG and IMM-VB-IW for Case 1

ARMSE of the position (m) ARMSE of the velocity (m/s)

IMM-VB-GG 63.20 12.65

IMM-VB-IW 32.57 6.34

Figure 5.8 and Figure 5.9 show respectively the RMSEs of position and velocity for

Case 2. The ARMSEs of position and velocity for IMM-VB-GG and IMM-VB-

IW for Case 2 are given in Table 5.2. In Figure 5.10, the effective measurement

noise covariance, the estimated measurement noise covariance by IMM-VB-IW and

the effective covariance calculated by IMM-VB-GG used in the measurement update

of the state in VB iterations for Case 2 are shown for any time interval of a single
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Figure 5.4: RMSEs of the velocity for 250 Monte Carlo run for Case 1. RMSEs of

the velocity by IMM-VB-GG is shown by orange line and RMSEs of the velocity by

IMM-VB-IW is shown by green line.

MC run. Furthermore, mode probability graphs of IMM-VB-GG and IMM-VB-IW

algorithms for Case 2 are given in figures 5.11 and 5.12, respectively.

Figure 5.13 and Figure 5.14 show respectively the RMSEs of position and velocity

for Case 3. The ARMSEs of position and velocity for IMM-VB-GG and IMM-VB-

IW for Case 3 are given in Table 5.3. In Figure 5.15, the effective measurement

noise covariance, the estimated measurement noise covariance by IMM-VB-IW and

the effective covariance calculated by IMM-VB-GG used in the measurement update

of the state in VB iterations for Case 3 are shown for any time interval of a single

MC run. Furthermore, mode probability graphs of IMM-VB-GG and IMM-VB-IW

algorithms for Case 3 are given in figures 5.16 and 5.17, respectively.

Figure 5.18 and Figure 5.19 show respectively the RMSEs of position and velocity

for Case 4. The ARMSEs of position and velocity for IMM-VB-GG and IMM-VB-
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Figure 5.5: Measurement noise covariance tracking of the algorithms IMM-VB-GG

and IMM-VB-IW for Case 1 (for any time interval of a single MC run). The effective

measurement noise covariances are shown by purple ellipses, the estimated measure-

ment noise covariances by IMM-VB-IW are shown by green ellipses and the effective

covariance calculated by IMM-VB-GG used in the measurement update of the state

in VB iterations are shown by orange circles. The blue circles and black stars show

the true positions and the measurements, respectively.

IW for Case 4 are given in Table 5.4. In Figure 5.20, the effective measurement

noise covariance, the estimated measurement noise covariance by IMM-VB-IW and

the effective covariance calculated by IMM-VB-GG used in the measurement update

of the state in VB iterations for Case 4 are shown for any time interval of a single

MC run. Furthermore, mode probability graphs of IMM-VB-GG and IMM-VB-IW

algorithms for Case 4 are given in figures 5.21 and 5.22, respectively.

Figure 5.23 and Figure 5.24 show respectively the RMSEs of position and velocity

for Case 5. The ARMSEs of position and velocity for IMM-VB-GG and IMM-VB-

IW for Case 5 are given in Table 5.5. In Figure 5.25, the effective measurement

noise covariance, the estimated measurement noise covariance by IMM-VB-IW and
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Figure 5.6: Mode probabilities of CV and CT models for IMM-VB-GG for Case 1.

The mode probability of CV model is shown by blue line and the mode probability of

CT model is shown by red line.

the effective covariance calculated by IMM-VB-GG used in the measurement update

of the state in VB iterations for Case 5 are shown for any time interval of a single

MC run. Furthermore, mode probability graphs of IMM-VB-GG and IMM-VB-IW

algorithms for Case 5 are given in figures 5.26 and 5.27, respectively.

As seen in Figures 5.3, 5.4, 5.8 and 5.9, IMM-VB-IW algorithm has smaller RM-

SEs than IMM-VB-GG algorithm for the measurement noise characteristics in Case

1 and Case 2. It can be understood from Tables 5.1 and 5.2 that the ARMSEs of

position and velocity from IMM-VB-IW algorithm are respectively decreased by ap-

proximately 50% and 60% with respect to IMM-VB-GG algorithm for Case 1 and

Case 2. However, for Case 3-5, IMM-VB-GG algorithm has smaller RMSEs and

ARMSEs, i.e., has better estimation accuracy, than IMM-VB-IW algorithm as seen

in Figures 5.13, 5.14 and Table 5.3. Since the measurement noise characteristics in

Case 1 and Case 2 show the behavior of unknown covariance, IMM-VB-IW provides
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Figure 5.7: Mode probabilities of CV and CT models for IMM-VB-IW for Case 1.

The mode probability of CV model is shown by blue line and the mode probability of

CT model is shown by red line.

the best estimation accuracy for these cases. However, Case 3-5 show outlier behav-

ior unlike Case 1 and Case 2 so IMM-VB-GG provides better estimation accuracy

than IMM-VB-IW algorithm.

In the previous chapter, fixed prior VB-IW algorithm is proposed to increase the esti-

mation accuracy of VB-IW algorithm for the presence of outliers and it is shown that

by this approach, the RMSEs and ARMSEs of VB-IW algorithm approaches VB-

GG algorithm. Therefore, if this approach is applied to IMM-VB-IW algorithm, it

provides as good estimation accuracy as IMM-VB-GG algorithm.
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Figure 5.8: RMSEs of the position for 250 Monte Carlo run for Case 2. RMSEs of

the position by IMM-VB-GG is shown by orange line and RMSEs of the position by

IMM-VB-IW is shown by green line.

Table 5.2: ARMSEs of IMM-VB-GG and IMM-VB-IW for Case 2

ARMSE of the position (m) ARMSE of the velocity (m/s)

IMM-VB-GG 97.65 21.21

IMM-VB-IW 35.44 9.26

Table 5.3: ARMSEs of IMM-VB-GG and IMM-VB-IW for Case 3

ARMSE of the position (m) ARMSE of the velocity (m/s)

IMM-VB-GG 11.35 5.78

IMM-VB-IW 25.78 11.53
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Figure 5.9: RMSEs of the velocity for 250 Monte Carlo run for Case 2. RMSEs of

the velocity by IMM-VB-GG is shown by orange line and RMSEs of the velocity by

IMM-VB-IW is shown by green line.

Table 5.4: ARMSEs of IMM-VB-GG and IMM-VB-IW for Case 4

ARMSE of the position (m) ARMSE of the velocity (m/s)

IMM-VB-GG 10.21 5.39

IMM-VB-IW 95.25 7.58

Table 5.5: ARMSEs of IMM-VB-GG and IMM-VB-IW for Case 5

ARMSE of the position (m) ARMSE of the velocity (m/s)

IMM-VB-GG 10.29 5.38

IMM-VB-IW 84.24 10.16
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Figure 5.10: Measurement noise covariance tracking of the algorithms IMM-VB-

GG and IMM-VB-IW for Case 2 (for any time interval of a single MC run). The

effective measurement noise covariances are shown by purple ellipses, the estimated

measurement noise covariances by IMM-VB-IW are shown by green ellipses and the

effective covariance calculated by IMM-VB-GG used in the measurement update of

the state in VB iterations are shown by orange circles.. The blue circles and black

stars show the true positions and the measurements, respectively.
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Figure 5.11: Mode probabilities of CV and CT models for IMM-VB-GG for Case 2.

The mode probability of CV model is shown by blue line and the mode probability of

CT model is shown by red line.
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Figure 5.12: Mode probabilities of CV and CT models for IMM-VB-IW for Case 2.

The mode probability of CV model is shown by blue line and the mode probability of

CT model is shown by red line.
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Figure 5.13: RMSEs of the position for 250 Monte Carlo run for Case 3. RMSEs of

the position by IMM-VB-GG is shown by orange line and RMSEs of the position by

IMM-VB-IW is shown by green line.
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Figure 5.14: RMSEs of the velocity for 250 Monte Carlo run for Case 3. RMSEs of

the velocity by IMM-VB-GG is shown by orange line and RMSEs of the velocity by

IMM-VB-IW is shown by green line.
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Figure 5.15: Measurement noise covariance tracking of the algorithms IMM-VB-

GG and IMM-VB-IW for Case 3 (for any time interval of a single MC run). The

effective measurement noise covariances are shown by purple ellipses, the estimated

measurement noise covariances by IMM-VB-IW are shown by green ellipses and the

effective covariance calculated by VB-GG used in the measurement update of the

state in VB iterations are shown by orange circles. The blue circles and black stars

show the true positions and the measurements, respectively.
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Figure 5.16: Mode probabilities of CV and CT models for IMM-VB-GG for Case 3.

The mode probability of CV model is shown by blue line and the mode probability of

CT model is shown by red line.
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Figure 5.17: Mode probabilities of CV and CT models for IMM-VB-IW for Case 3.

The mode probability of CV model is shown by blue line and the mode probability of

CT model is shown by red line.
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Figure 5.18: RMSEs of the position for 250 Monte Carlo run for Case 4. RMSEs of

the position by IMM-VB-GG is shown by orange line and RMSEs of the position by

IMM-VB-IW is shown by green line.
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Figure 5.19: RMSEs of the velocity for 250 Monte Carlo run for Case 4. RMSEs of

the velocity by IMM-VB-GG is shown by orange line and RMSEs of the velocity by

IMM-VB-IW is shown by green line.
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Figure 5.20: Measurement noise covariance tracking of the algorithms IMM-VB-

GG and IMM-VB-IW for Case 4 (for any time interval of a single MC run). The

effective measurement noise covariances are shown by purple ellipses, the estimated

measurement noise covariances by IMM-VB-IW are shown by green ellipses and the

effective covariance calculated by VB-GG used in the measurement update of the

state in VB iterations are shown by orange circles. The blue circles and black stars

show the true positions and the measurements, respectively.
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Figure 5.21: Mode probabilities of CV and CT models for IMM-VB-GG for Case 4.

The mode probability of CV model is shown by blue line and the mode probability of

CT model is shown by red line.
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Figure 5.22: Mode probabilities of CV and CT models for IMM-VB-IW for Case 4.

The mode probability of CV model is shown by blue line and the mode probability of

CT model is shown by red line.
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Figure 5.23: RMSEs of the position for 250 Monte Carlo run for Case 5. RMSEs of

the position by IMM-VB-GG is shown by orange line and RMSEs of the position by

IMM-VB-IW is shown by green line.
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Figure 5.24: RMSEs of the velocity for 250 Monte Carlo run for Case 5. RMSEs of

the velocity by IMM-VB-GG is shown by orange line and RMSEs of the velocity by

IMM-VB-IW is shown by green line.
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Figure 5.25: Measurement noise covariance tracking of the algorithms IMM-VB-

GG and IMM-VB-IW for Case 5 (for any time interval of a single MC run). The

effective measurement noise covariances are shown by purple ellipses, the estimated

measurement noise covariances by IMM-VB-IW are shown by green ellipses and the

effective covariance calculated by VB-GG used in the measurement update of the

state in VB iterations are shown by orange circles. The blue circles and black stars

show the true positions and the measurements, respectively.
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Figure 5.26: Mode probabilities of CV and CT models for IMM-VB-GG for Case 5.

The mode probability of CV model is shown by blue line and the mode probability of

CT model is shown by red line.

Time (s)

0 50 100 150 200 250

M
o

d
e

 P
ro

b
a

b
ili

ty

0

0.2

0.4

0.6

0.8

1

CV (IMM-VB-IW)

CT (IMM-VB-IW)

Figure 5.27: Mode probabilities of CV and CT models for IMM-VB-IW for Case 5.

The mode probability of CV model is shown by blue line and the mode probability of

CT model is shown by red line.
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CHAPTER 6

CONCLUSION

Kalman filter (KF) is one of the most used algorithms in target tracking area due to its

ease of application and low computational complexity. Although it provides the best

linear unbiased estimate for linear Gaussian state-space models (SSMs), its estima-

tion performance degrades when outliers occur. For such cases, different algorithms

are dedicated to handle heavy-tailed noise. Until today, numerous studies have been

carried out to solve the filtering problem of linear systems with heavy-tailed noises

and to provide robustness towards outliers. In this thesis, a sub-class of outlier ro-

bust filters are investigated and their multiple-model extensions are derived based on

interacting multiple model (IMM) approach.

In the first part of this study, Student’s-t filter (STF) proposed in [44] is investigated.

In this filter, the process and measurement noises are described as t-distributed that

has heavier tails than Gaussian distribution. It is demonstrated that STF provides bet-

ter estimation accuracy than KF under heavy-tailed process and measurement noise

assumption. In addition, a multiple-model extension of STF (IMM-STF) is derived

based on IMM approach and it is compared with conventional IMM algorithm on a

simulation of a moving target in 2-D space. The simulation results show that IMM-

STF has smaller RMSEs than the conventional IMM algorithm for a multiple-model

system with heavy-tailed process and measurement noise.

In the second part, two VB algorithms which utilize Gamma-Gaussian (VB-GG) and

Inverse Wishart (VB-IW) priors are examined in detail and their derivations are given.

In VB-GG algorithm, the likelihood PDF is approximated as Student’s-t distributed

but posterior PDF is approximated as Gaussian distributed. The t-distributed likeli-

hood PDF is expressed using Gamma-Gaussian approach which is the representation
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of t distribution as an infinite mixture of Gaussians by defining auxiliary variable that

is Gamma distributed. The posterior PDF and the auxiliary variable are inferred via

VB approach. In VB-IW algorithm, VB approximations are used to estimate the state

and the unknown measurement noise covariance by choosing Inverse Wishart prior

for measurement noise covariance matrix. Since an outlier can be viewed as a re-

sult of inaccurate noise covariance, VB-IW algorithm can also be tested to handle

outliers. VB-GG and VB-IW algorithms are implemented and simulated for a linear

SSM for five different heavy-tailed measurement noise characteristics and the perfor-

mances are compared. The simulation results show that the performance of VB-IW

can match VB-GG in presence of outliers. Furthermore, by using its ability to esti-

mate effective noise covariance, it can outperform VB-GG in a number of scenarios.

In the last part, multiple-model extensions of VB-GG (IMM-VB-GG) and VB-IW

(IMM-VB-IW) algorithms are derived based on IMM approach. These algorithms

are tested on a simulation for tracking a target moving according to linear multiple-

model SSM for five different heavy-tailed measurement noise characteristics and the

performances are compared. According to simulation results, it is shown that the

multiple-model extension of VB-IW algorithm (IMM-VB-IW) provides robustness

towards outliers for multiple model systems. In addition, it can outperform IMM-

VB-GG algorithm in terms of RMSEs and ARMSEs.

The contributions of this thesis study are the derivation of multiple-model exten-

sion of STF, the comparison of VB-GG and VB-IW algorithms and the derivation

of multiple-model extension of VB-IW algorithm.
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