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ABSTRACT 

 

A BRANCH-AND-BOUND ALGORITHM FOR AIRPORT GATE 

ASSIGNMENT PROBLEM 

 

Alanlı, Kerem 
Master of Science, Industrial Engineering 

Supervisor: Prof. Dr. Meral Azizoğlu 
Co-Supervisor: Assist. Prof. Dr. Özlem Karsu 

 

September 2019, 63 pages 

 

In this study, we consider an airport gate assignment problem that assigns a number 

of aircraft to a set of gates so as to minimize total walking distance travelled by all 

passengers. The aircraft that cannot be assigned to any gate due to overlaps are 

directed to an apron.  The problem is formulated as a mixed-integer nonlinear 

programming model and then it is linearized. A branch-and-bound algorithm that 

employs powerful bounding mechanisms is developed. The results of the 

computational experiment have shown that the mathematical model can handle small 

sized problem instances, while the branch-and-bound solves relatively larger instances 

in reasonable time. 

 

Keywords: Airport Gate Assignment Problem, Mixed Integer Linear Programming, 

Branch-and-Bound Algorithm  
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ÖZ 

 

HAVALİMANI KAPI ATAMA PROBLEMİ İÇİN BİR DAL-SINIR 

ALGORİTMASI 

 

Alanlı, Kerem 
Yüksek Lisans, Endüstri Mühendisliği 

Tez Danışmanı: Prof. Dr. Meral Azizoğlu 
Ortak Tez Danışmanı: Dr. Öğr. Üyesi Özlem Karsu 

 

Eylül 2019, 63 sayfa 

 

Bu tezde, belirli sayıda uçağın bir dizi kapıya atandığı bir havalimanı kapı atama 

problemi ele alınmıştır. Zaman örtüşmelerinden dolayı herhangi bir kapıya 

atanamayan uçaklar aprona yönlendirilmektedir. Problemin amacı, tüm yolcular 

tarafından kat edilen toplam yürüyüş mesafesinin minimizasyonudur. Problem, 

öncelikle bir karışık tam sayılı programlama modeli ile formüle edilmiş, daha sonra 

ise doğrusal duruma getirilmiştir. Güçlü sınırlama mekanizmaları kullanan bir dal-

sınır algoritması geliştirilmiştir. Deneysel çalışmaların sonuçları; matematiksel 

modelin küçük boyutlu problemlerin üstesinden gelebildiğini, ancak dal-sınır 

algoritmasının daha büyük boyutlu problemleri kabul edilebilir süre içerisinde 

çözebildiğini göstermiştir. 

 

Anahtar Kelimeler: Havalimanı Kapı Atama Problemi, Karma Tam Sayılı Doğrusal 

Programlama, Dal-Sınır Algoritması 
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CHAPTER 1  

 

1. INTRODUCTION 

 

Assignment problem deals with finding an allocation of a particular set of tasks, 

activities or people to a set of resources so as to maximize the utility of allocation or 

minimize its cost. Allocation of tasks to people at workplaces, allocation of vehicles 

to service areas, allocation of financial resources to government agencies are some 

examples of assignment problem encountered in real-life.  

Airline operational planning is a very important as much complex area, which is 

widely worked on by operational researchers. To find efficient and effective ways to 

handle airline operations, the managers and operation planners rely on some 

assignment problems like crew assignment problem, fleet assignment problem and 

gate assignment problem. 

In this thesis, we study an airport gate assignment problem (AGAP) that considers the 

allocation of the aircraft to the gates in airports. In this problem, the characteristic 

behavior of an aircraft is as follows:  

1) Aircraft arrives at the airport at specified arrival time. 

2) Aircraft occupies a place (gate) in the airport for a specified amount of time. 

3) Aircraft departs from the airport at specified departure time. 

The AGAP aims to reach a satisfactory solution relative to some pre-defined 

objectives that are dependent on the airline operational planner’s point of view. To the 

best of our knowledge, the earliest study on the field of airport gate assignment 

problems is due to Steuart (1974), where a stochastic model is proposed to find a 

schedule with minimum number of gate positions and estimate the required number 

of gate positions. 
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There are different constraints and preferences that the owner of the AGAP should 

consider depending on the characteristics of the specific setting. Airports are complex 

buildings and there could be significant differences between a major airport and a 

minor airport. One of the main differences is the presence of fixed gates. Major 

airports have fixed gates which allow passengers to board into the aircraft using a jet 

bridge. However, some minor airports have only remote gates so the passengers 

should be transported to the aircraft by a bus or sometimes they should simply walk 

to the aircraft on the apron. Remote gates are also used in major airports, because the 

fixed gates may not be sufficient to handle all aircraft at all times. Utilization of fixed 

gates is more comfortable for the passengers because it is much easier to board into 

the aircraft by just walking through a tunnel in comparison to taking a 5-to-10 minutes 

trip in a very crowded bus and climbing to the aircraft using steep stairs.  

There are two types of passengers in general: 

- Transit passengers, 

- Non-transit passengers. 

Transit passengers are those who arrive at the airport by a flight and depart on another 

flight. Non-transit passengers are those who either arrive at the airport from the city 

and depart with a flight or arrive at the airport by a flight and leave the airport 

afterwards.  

The airports can also be categorized based on the type of flights (and passengers) that 

they serve. Some airports are too small and unbusy so that there are no transit 

passengers. In Turkey, some airports are only available for domestic flights, whereas 

airports in larger cities and touristic areas are “international airports”, hence they can 

serve international flights as well as domestic flights. On the other hand; in some 

smaller countries, there are no domestic flights and the airports are designed only for 

international flights. In airports with both domestic and international flights, the 

international terminal and the domestic terminal are separated because of the 

difference in identity and passport checking procedures before letting passengers into 
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the terminal area. Some metropolitan airports allow towing, which can be simply 

defined as transportation of the aircraft from one place to another in the airport using 

specialized ground vehicles. In such airports, the aircraft can change from its pre-

assigned gate to another if required. As one can see, there could be many different 

dimensions and possibilities in the process of assigning the aircraft to gates and it is 

the planner’s responsibility to determine the best allocation with respect to the 

availabilities of the facilities and restrictions faced in the airport. 

The air transportation traffic has been roughly doubled from the early 1980s to 2006 

(Dorndorf, Drexl, Nikulin & Pesch, 2007) and according to International Air 

Transport Association (2019), average yearly increase in the number of airline 

passengers is 5.85% between the years 2006 and 2017. As the air traffic grows and 

the operational environment changes throughout the years, needs of airport operators 

and airline companies have evolved. Thus, many different objectives have been 

considered in the AGAP most commonly used of which are stated by Dorndorf et al. 

(2007) as follows: 

- Minimization of the number of ungated (unassigned) aircraft, 

- Maximization of preferences/utility of allocation of certain aircraft to specific 

gates, 

- Minimization of total passenger walking distance through the airport, 

- Minimization of the deviation from the original or a reference schedule, 

- Minimization of the towing costs. 

Minimization of the number of ungated aircraft is one of the most commonly discussed 

objectives in the AGAP studies. It aims to maximize the number of aircraft that are 

assigned to fixed gates in order to provide a comfortable access for the passengers. In 

some cases, this objective can be interpreted as maximization of the number of aircraft 

hosted in an airport if the airport lacks space to handle all scheduled flights.  

Maximization of the preferences is discussed more in the recent literature. 

Maximization of the expected number of visitors to the shops and maximization of the 
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profitability of the shops are two examples of this objective. Such objectives may not 

be relevant for smaller airports that lack non-critical facilities; they are mostly used 

for larger airports and hubs. A hub can be briefly described as a very busy airport that 

is mostly used for connection purposes. Hubs host many passengers from all around 

the world. As a result, they are also home to shopping facilities of a large variety. In 

such airports, some specific aircraft may be preferred to be assigned to specific gates 

due to the profitability concerns. For instance, the aircraft of the countries where 

alcoholic drinks are forbidden, are not assigned to the gates that are close to the alcohol 

drink shops. 

Minimization of total passenger walking distance is the mostly considered objective 

in the field. (Aktel, Yagmahan, Özcan, Yenisey & Sansarcı, 2017). It is also an 

important objective for the passengers’ comfort level. Walking distances are directly 

related to the distances between gates and the distances from the gates to the common 

areas such as luggage claim area, airport entrance and airport exit. Metropolitan 

airports are usually quite large buildings, so it may take a significant amount of time 

and effort for a passenger to travel from the aircraft to luggage claim area or another 

aircraft.  

Minimization of the deviation from the original schedule is considered in cases where 

unexpected delays occur and the original schedule becomes infeasible. Delays may 

cause discomfort among passengers and increase in assignment costs because towing 

operations and increased usage of remote gates might be required. Hence, sticking to 

the original schedule as much as possible favors both the airline operators and the 

passengers.  

Minimization of the towing cost may be an important concern due to the high costs of 

towing services. 

There are some other objectives considered in the AGAP as stated by Aktel et al. 

(2017) as follows: 
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- Minimization of gate idle time, 

- Minimization of waiting time, 

- Minimization of total connection time, 

- Minimization of baggage transport distance, 

- Minimization of the total duration of ungated flights, 

- Minimization of the number of conflicts, 

- Minimization of buffer times. 

Our AGAP takes minimization of total passenger walking distance as the objective. 

We first formulate the problem as a nonlinear mathematical model and then provide 

its linearized version. We then design a branch-and-bound algorithm involving 

powerful bounding schemes.  
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CHAPTER 2  

 

2. LITERATURE REVIEW 

 

The airport gate assignment problem (AGAP) is a widely studied problem in the 

operational research literature thanks to its practical importance. A detailed survey on 

the topic is presented by Dorndorf et al. (2007). AGAP is proven to be NP-hard 

(Obata, 1979). 

Cheng, Ho & Kwan (2012) classified the AGAP variants into two categories with 

respect to formulation: static AGAP and stochastic & robust AGAP. In the static 

AGAP, a deterministic model is formulated, typically with the objectives of 

minimization of waiting time, ungated flights or total walking distance. Stochastic and 

robust AGAP are formulated taking into account stochastic aspects such as flight 

delays or disruptions. Commonly used objectives in the stochastic AGAP are 

minimization of idle time, gate conflicts and flight delays. 

Another classification of the studies in the literature can be made with respect to the 

solution methodology used (Cheng et al. 2012). The AGAP solution methodologies 

can be categorized into three: expert system approaches, exact solution approaches 

and heuristic approaches.  

Expert systems can be defined as software systems that aim to simulate the decision-

making process of human experts. A database which contains rules obtained from 

human knowledge is given to the software for suggesting solutions. Some studies that 

propose expert systems for solving the airport gate assignment problem are conducted 

by Brazile & Swigger’s (1988) work, Gosling’s (1990) work, Srihari & 

Muthukrishnan’s (1991) work and Su & Srihari’s (1993) work. 

Attributing to the complexity of the problem, the heuristics are more commonly used 

than exact algorithms. Yet, there are also several exact algorithms presented in the 
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literature. We first review the studies with exact algorithms, then we continue with 

studies that propose heuristics. 

2.1. Studies with Exact Algorithms 

One of the earliest studies on the airport gate assignment problem was Babić, 

Teodorović & Tošić’s work (1984), where the average walking distance covered by 

the arriving and departing passengers is minimized. They assumed that there are no 

transit passengers and the flight schedule is such that one airplane could always be 

assigned to an unoccupied gate. They proposed a depth-first Branch-and-Bound 

(B&B) algorithm along with a lower bound (LB) that underestimates walking distance 

of upcoming passengers. The computational experiments on instances with 9 aircraft 

and 5 gates have shown that using the lower bound significantly improves the 

performance of the algorithm. The optimum solution is found to be significantly better 

than random allocation of the airplanes to the gates. 

Bihr (1990) considered a special case of the AGAP where the departure gates are fixed 

and formulated a classical assignment model to assign arriving flights to gates so as 

to minimize the walking distance of the passengers. 

Mangoubi & Mathaisel (1985) proposed a greedy heuristic and an LP relaxation for 

solving the total walking distance minimizing AGAP. They assumed that a passenger 

arriving at a gate would be equally likely to board his next flight at any gate; hence 

used expected walking distances through a uniform distribution for transit passengers, 

which simplifies the problem. The LP relaxation of the resulting integer programming 

problem provided an integer feasible solution in their case study; however, the authors 

note that the matrix is not totally unimodular and a branch and bound approach would 

be needed if the relaxation fails to return an integer feasible solution. They used real 

time data acquired from Toronto International Airport (with 138 aircraft and 20 gates) 

and showed that the actual assignment is significantly worse than the optimum 

(obtained by the integer solution of the LP relaxation). The proposed heuristic was 

successful, reaching a feasible solution with an acceptable optimality gap in a very 
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short time, whereas the LP solution took significantly longer time. The most 

successful method was the LP relaxation with the heuristic solution being used as an 

initial feasible solution for the LP problem. This method reached optimal solution in 

nearly the same computation time as that of the greedy heuristic. 

Bolat (1999) proposed a branch-and-bound algorithm and a heuristic called branch-

and-trim for solving the robust gate assignment problem. The objective is to minimize 

the difference between the maximum and minimum slack times. They performed 

computational experiments to compare two different branching rules for the B&B and 

reported that the choice of the strategy affects the performance. They also observed 

that the solution time of the B&B algorithm decreases as the gate utilization levels 

increase. The branch-and-trim heuristic is reported to be quite effective, reaching good 

solutions in very short time. Computational studies performed using data from Riyadh 

International Airport have shown that the heuristic significantly outperforms the 

current procedure in terms of the number of ungated aircraft and number of towing 

operations required. 

Yu, Zhang & Lau (2016) focused on the robustness issue in AGAP. They proposed 

three different mathematical models and four different heuristics to solve the robust 

AGAP. The objectives considered in the study were minimization of the expected 

conflict time between schedules (for robustness), minimization of towing costs and 

minimization of distance covered by transit passengers. They developed three 

mathematical models: a network flow model with a quadratic objective function and 

two mixed integer programming (MIP) models with linearized objective functions. 

They proposed four different heuristics and compared their performance relative to 

the CPLEX branch-and-cut scheme. Their experimental results on problem instances 

with up to 30 flights and 5 gates have shown that one MIP model is far superior to the 

network flow model with quadratic objective in terms of efficiency. They also have 

shown that exact quadratic expressions are clearly better than approximate ones that 

use the average distance assuming a uniform distribution for the experience of transit 

passengers. 
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2.2. Heuristics 

Haghani & Chen (1998) formulated the AGAP as a binary integer quadratic 

assignment problem. They proposed a heuristic algorithm for solving the AGAP to 

minimize total walking distance. Their computational results indicate that the 

algorithm provides high quality solutions. 

Yan & Huo (2001) formulated the problem as a bi-objective mixed 0-1 integer model 

where the objectives are minimization of total passenger walking distance and 

minimization of total passenger waiting time. They converted the problem into a single 

objective problem that minimizes a weighted sum of the two objectives. They used 

column generation, B&B and the simplex method to solve the resulting problem 

efficiently. Computational results of a case study in a Taiwanese airport show that the 

method is useful and provides significant improvement in airport decision-making. 

Yan, Shieh & Chen (2002) proposed a simulation framework with flexible buffer 

times so as to absorb the stochastic delays in real-time assignments. They formulated 

the problem as in Mangoubi & Mathaisel (1985), taking minimization of total 

passenger walking distance as the objective. They proposed two greedy heuristics that 

sort the flights with respect to some rule and then assign the flights sequentially to the 

nearest gate. The first variant sorts the flights with respect to the number of passengers 

while the second one sorts them based on the arrival times. Their computational results 

using the real data from Chiang Kai-Shek Airport have shown that the proposed 

simulation framework could be useful for airport authorities. 

Xu & Bailey (2001) formulated the problem as a mixed 0-1 quadratic integer model 

and then reformulated it as a mixed 0-1 integer linear programming program. Their 

objective is the minimization of total passenger connection time. They proposed a tabu 

search algorithm for solution. They generated test data for five consecutive days with 

different passenger origin-destination parameters. They showed the benefits of 

making daily assignments based on the new passengers’ origin and destination data 

over using static assignment, which does not consider passenger connection times. 
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Their computational results indicated that the presented metaheuristic has clear 

advantage over the static assignment with the average saving of 24.70%. They also 

compared the proposed metaheuristic with mathematical model solutions in small 

instances with 12, 15 aircraft - 3 gates and 20 aircraft - 5 gates. For the test problems, 

the heuristic could find optimal solutions in less than 0.1 seconds whereas CPLEX 

could not reach optimal solutions in reasonable time for the larger test instances with 

20 aircraft and 5 gates. 

Ding, Lim, Rodrigues & Zhu (2005) proposed 4 heuristic algorithms for solving the 

AGAP. The first one is a greedy algorithm which finds the minimum number of 

aircraft assigned to remote gates. The second algorithm proposed in the study is a 

simulated annealing heuristic. The third algorithm is an interval exchange tabu search 

(TS) algorithm where the moves introduced in simulated annealing are implemented 

in a TS based algorithm. The final algorithm presented is a hybrid algorithm, which is 

a combination of their simulated annealing (SA) and interval exchange TS algorithms. 

The experimental results indicated that SA is more successful than TS in smaller sized 

instances, whereas the interval exchange TS is more successful in larger sized 

instances. Even though SA outperforms TS in terms of the CPU time, no clear 

superiority of one method over the other is found.  However, the proposed hybrid 

algorithm finds optimal solutions in nearly all of the small size instances (15-25 

aircraft and 3-6 gates) and reaches better solutions than SA and TS algorithms in large 

size instances (100-640 aircraft and 16-52 gates). Therefore, the study concludes with 

the superiority of the hybrid algorithm. 

Cheng et al. (2012) compared four metaheuristics that are previously proposed in other 

studies. They used the genetic algorithm from Bolat (2001), tabu search algorithm 

from Xu & Bailey (2001), simulated annealing and hybrid tabu search + simulated 

annealing algorithm from Ding et al. (2005). They modeled the AGAP to minimize 

total walking distance and modified the algorithms. Their computational results have 
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shown that hybrid algorithm is the best among all metaheuristics, whereas the tabu 

search algorithm is the best performer among the classical metaheuristics. 

Genç, Erol, Eksin, Berber & Güleryüz (2012) combined a stochastic approach with a 

Big Bang – Big Crunch algorithm to solve the AGAP that maximizes the utilization 

times of the fixed gates. They used a heuristic called ground time maximization 

algorithm to find a reasonable initial solution and then used the stochastic approach to 

improve their solution. Their experiments based on the real data from İstanbul Atatürk 

Airport have shown  the effectiveness of the proposed algorithm. 

Şeker & Noyan (2012) proposed new stochastic optimization models for the AGAP 

and compared the performances of the models. For practical concerns, they 

implemented a tabu search heuristic since they found that CPLEX could not even 

construct a branch-and-bound tree. 

Marinelli, Dell’Orco & Sassanelli (2015) proposed a Bee Colony Optimization 

algorithm to solve the AGAP. Their aims were to minimize total walking distance and 

minimize number of aircraft assigned to apron. They used the real data obtained from 

Milano Malpensa Airport. Their computational results and a multi-criteria analysis 

have shown that the assignment obtained through the proposed algorithm is better than 

the actual assignment. 

A recent study considering minimization of total walking distance and number of 

ungated flights as objectives is done by Aktel et al. (2017). They proposed and 

compared two metaheuristic algorithms. The first algorithm is a tabu search algorithm 

where the minimization of the total walking distance is used as a fitness function to 

determine the best neighbor. Another variant of the tabu search heuristic is also 

proposed, in which the fitness function is used to or not to accept a tabu move. The 

second algorithm proposed is simulated annealing, which is quite similar to the one 

presented in Ding et al. (2005). The authors compared their three proposed algorithms 

to the greedy algorithm proposed by Ding et al. (2005). The experiments are conducted 
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using 6 randomly generated problem instances of different sizes (100-520 aircraft and 

16-44 gates). The experimental results have shown that all proposed algorithms are 

able to provide acceptable solutions for large-scale problems in reasonable time. All 

three algorithms proposed in this study have performed significantly better than the 

greedy approach by Ding et al. (2005). Simulated annealing heuristic was the best 

performer for three problems, tabu search with probabilistic approach was the best 

performer for one problem and tabu search with fitness approach was the best 

performer for the remaining two problems. Therefore, no clear superiority is found. 

Kim, Feron & Clarke (2013) proposed a new AGAP model where the objectives are 

minimization of passenger transit time and minimization of weighted aircraft taxi 

time. Firstly, they formulated the problem as a quadratic assignment problem then 

reformulated it as a linear mixed 0-1 integer problem. A good but not exact solution 

could be reached using B&B, which is terminated after 30 minutes due to practical 

reasons, and a tabu search algorithm. 

Hu & Di Paolo (2009) proposed a genetic algorithm with uniform crossover to solve 

the multi-objective AGAP. Their objectives were minimization of total walking 

distance, minimization of total baggage distance and minimization of total passenger 

waiting time. Weights are used to combine three objectives into one objective. 

Contrary to the most proposed genetic algorithms in the literature, the authors used 

relative positions of the aircraft instead of using the absolute positions while building 

chromosomes. Simulation and computational experiments have proven the 

effectiveness of the proposed algorithm. 

Mokhtarimousavi, Talebi & Asgari (2018) proposed a sorting genetic algorithm for 

the multi-objective AGAP. They considered three objectives: minimization of total 

walking distance, minimization of taxiway conflicts and minimization of costs related 

to towing operations and undesired assignments. The proposed algorithm was 

compared to some other previously proposed algorithms and it is found competitive 

in terms of number of solutions, elapsed time and diversity. 
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Deng, Sun, Zhao, Li & Wang (2018) considered a multi-objective AGAP and 

proposed an improved ant colony algorithm. Their objectives were minimization of 

idle time variance, minimization of total walking distance and minimization of aircraft 

assigned to apron. They used real time data obtained from Guangzhou Baiyun Airport. 

They compared their proposed algorithm to two different ant colony algorithms and 

the results have shown that the proposed algorithm could find better solutions at an 

expense of higher computation time. 

Daş (2017) considered the AGAP with the objective of maximizing the number of 

passengers whose gates are close to shopping facilities and minimizing the total 

walking distance. Three mathematical models are proposed and a two-phase local 

search and Pareto local search integration algorithm are suggested. 

Yu, Zhang & Lau (2017) proposed an adaptive large neighborhood search algorithm 

to solve the AGAP. Their objectives were the same as their previous study: robustness, 

towing and comfort of transfer passengers. (Yu et al. 2016) They compared their 

algorithm to the tabu search heuristic proposed in Ding et al. (2005), as both 

algorithms use local search. Their computational experiments have shown the 

superiority of the adaptive large neighborhood search algorithm over the tabu search. 

Jiang, Zeng & Luo (2013) considered airline fairness as one of their objectives. They 

separately calculated average walking distances of the passengers of each airline and 

proposed a multi-objective model for the AGAP with two objectives: minimization of 

total passenger walking distance and minimization of the maximum ratio of average 

walking distance of passengers of an airline to average passenger walking distance 

over all airlines. They used Lingo software to find a feasible solution and optimal 

solutions. Their computational results have shown that their solutions are better than 

the random allocation. 

In this study, we consider the AGAP, in which the total passenger walking distance is 

minimized. To the best of our knowledge, the closest work in the literature is by 
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Mangoubi & Mathaisel (1985), who also minimize passenger walking distance. 

However, they assume that a transit passenger arriving at a gate would be equally 

likely to board his next flight at any gate; hence used expected walking distances 

through a uniform distribution for transit passengers, which simplifies the problem. 

We relax this assumption and consider the actual distances covered by transit 

passengers. We formulate the problem as a quadratic assignment problem with overlap 

constraint and then linearize the quadratic term and propose a linear programming 

formulation (See Pentico (2007) and Loiola, de Abreu, Boaventura-Netto, Hahn & 

Querido (2007) for reviews on assignment problems and quadratic assignment 

problems, respectively. See also Bouras, Ghaleb, Suryahatmaja & Salem (2014), and 

the references therein, for a list of studies that consider quadratic programming 

formulations for the AGAP).  

Other studies that formulate the AGAP as a quadratic assignment problem are Drexl 

& Nikulin (2008) and Haghani & Chen (1998). Drexl & Nikulin (2008) consider a 

multi-objective formulation, which minimizes total passenger walking distances, 

maximizes the gate preferences and minimizes the number of ungated flights. Their 

formulation involves a quadratic objective and quadratic constraints. They, however, 

do not consider an exact solution approach and suggest Pareto simulated annealing for 

finding approximate Pareto solutions. Haghani & Chen (1998) also minimize total 

passenger walking distance and hence formulate a quadratic assignment problem. 

They then propose an integer linear programming reformulation and develop a 

heuristic algorithm for solving the problem while we propose an exact solution 

approach. 
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CHAPTER 3  

 

3. PROBLEM DEFINITION 

 

We study an airport gate assignment problem where n aircraft have to be assigned to 

m fixed gates and a remote gate (apron).  The gates are already laid out with specified 

distances in between.  

The aircraft are either associated to the domestic flights or international ones. Each 

aircraft has a schedule defined by its arrival time and departure time specified by the 

known flight schedule and has a specified set of passengers.  

The passengers are either transit passengers departing from other aircraft or non-transit 

passengers that enter to and exit from the airport using the same point.  

We make the following additional assumptions about the airport facilities and 

properties of passengers: 

- No towing is allowed. 

- Aircraft behavior is as follows: 

o Firstly, aircraft arrives at the airport at the arrival time and immediately 

starts occupying its pre-assigned gate. 

o Aircraft continues to occupy the gate until the departure time. 

o Finally, at the departure time, aircraft immediately stops occupying the 

gate and leaves the airport. 

- There are fixed gates in domestic and international terminals.  

- There is only one remote gate in the airport that serves both terminals. 

- The remote gate is extremely far from all other gates and the airport exit. 

- Fixed gates can only handle one aircraft at a time, whereas the remote gate has 

unlimited capacity. Since the remote gate serves both terminals, there are no 

unassigned aircraft at any time. 
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- Transit passengers who will depart the airport from the same gate as they 

arrived cover zero distance. 

Our aim is to minimize the total distance travelled by all passengers which can be 

expressed as sum of distance covered by non-transit passengers and transit passengers 

(entrance-to- gate + gate-to-exit + gate-to-gate) as illustrated by the following figure: 

 

Figure 3.1. Illustration of Objective Function 

In Section 3.1 we introduce our notation and give the nonlinear mathematical model 

and in Section 3.2 we discuss its linearization. We introduce an illustrative example 

in Section 3.3. 

3.1. Nonlinear Mathematical Model 

We assume that all parameters are known and not subject to any change, i.e., the 

system is deterministic and static. 

The sets and parameters related to the aircraft are as follows: 

𝐼: set of all aircraft  

𝑛: total number of the aircraft (i.e., the cardinality of the set 𝐼, |𝐼|) 

𝐼𝐷: set of all aircraft for domestic flights 

𝐼𝐼: set of all aircraft for international flights  
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𝑝𝑖𝑗: number of transit passengers between aircraft 𝑖 and aircraft 𝑗 (∀𝑖, ∀𝑗 ∈ 𝐼) 

𝑒𝑛𝑖: number of passengers coming from the entrance for aircraft 𝑖 (∀𝑖 ∈ 𝐼) 

𝑒𝑥𝑖: number of passengers leaving the airport after aircraft 𝑖 (∀𝑖 ∈ 𝐼) 

𝑎𝑖: arrival time of aircraft 𝑖 (∀𝑖 ∈ 𝐼) 

𝑑𝑖: departure time of aircraft 𝑖 (∀𝑖 ∈ 𝐼) 

 

Assume a chronological ordering of all arrival and departure times.  Let {𝑎𝑑1, 𝑎𝑑2, 

…., 𝑎𝑑𝑅} be the associated sorted sequence with duplications removed and let 

 

𝑐𝑜𝑚𝑝𝑖𝑟 = {1, 𝑖𝑓 𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡 𝑖 𝑖𝑠 𝑖𝑛 𝑡ℎ𝑒 𝑎𝑖𝑟𝑝𝑜𝑟𝑡 𝑎𝑡 𝑖𝑛𝑡𝑒𝑟𝑣𝑎𝑙 [𝑎𝑑𝑟 , 𝑎𝑑𝑟+1) 
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                                       

    

(∀𝑖 ∈ 𝐼, ∀𝑟 ∈ {1, 𝑅-1}) 

 

The sets and parameters related to gates are as follows: 

𝐽: set of all gates 

𝐽𝐷: set of all gates at the domestic terminal (i.e., domestic fixed gates and remote gate) 

𝐽𝐼: set of all gates at the international terminal (i.e. international fixed gates + remote)  

𝑚: total number of fixed gates (i.e., |𝐽| - 1, (𝑚+1)th gate is the remote gate) 

𝑑𝑘𝑙: distance between gates 𝑘 and 𝑙 (∀𝑘, ∀𝑙 ∈ 𝐽) 

𝑒𝑑𝑘: distance between airport entrance/exit point and gate 𝑘 (∀𝑘 ∈ 𝐽) 

The decision variable is as follows: 

𝑥𝑖𝑘   =  {1, 𝑖𝑓 𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡 𝑖 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑔𝑎𝑡𝑒 𝑘                        
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                                        

(∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐽) 
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We consider minimization of total passenger walking distance in the airport. To 

discourage assignments to apron we use very long distances between any gate and 

apron.  We also assume that the distance between entrance/exit point and the apron is 

too long.   

The nonlinear mathematical formulation of the objective function is stated below: 

𝑚𝑖𝑛 𝑍 = ∑ ∑ ∑ ∑ 𝑝𝑖𝑗𝑑𝑘𝑙𝑥𝑖𝑘𝑥𝑗𝑙 
𝑚+1
𝑙=1

𝑛
𝑗=𝑖+1

𝑚+1
𝑘=1

𝑛−1
𝑖=1 +  ∑ ∑ (𝑒𝑛𝑖 + 𝑒𝑥𝑖) 𝑒𝑑𝑘 𝑥𝑖𝑘

𝑚+1 
𝑘=1

𝑛
𝑖=1   

The summation function is basically made of two terms. The first term corresponds to 

the total distance covered by the transit passengers. The distance covered by the transit 

passengers relies on two assignment decisions, making its function nonlinear. The 

second term corresponds to the total distance covered by the non-transit passengers.  

The constraint sets are as follows: 

∑ 𝑥𝑖𝑘𝑘∈𝐽𝐷
= 1          (∀𝑖 ∈ 𝐼𝐷)       (1a) 

∑ 𝑥𝑖𝑘𝑘∈𝐽𝐼
 = 1           (∀𝑖 ∈ 𝐼𝐼)                  (1b) 

∑ 𝑐𝑜𝑚𝑝𝑖𝑟𝑥𝑖𝑘 ≤ 1𝑛
𝑖=1   (∀𝑘 ∈ (𝐽 \ {(𝑚+1)}),  𝑟 = 1, …, 𝑅-1)    (2) 

𝑥𝑖𝑘 ∈ {0, 1}       (∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐽)        (3) 

Constraint sets (1a) and (1b) ensure the assignment of every aircraft to exactly one 

gate in its respective terminal, either remote or fixed. Constraint set (2) guarantees that 

there are no overlapping assignments in fixed gates. An overlapping assignment can 

be simply defined as an infeasible assignment of two different aircraft whose time 

intervals spent in the airport overlap to the same gate. Constraint set (3) ensures that 

the decision variable is binary for all 𝑖 ∈ 𝐼 and 𝑘 ∈ 𝐽. 

3.2. Linear Mathematical Model 

We now present a linear programming formulation of the airport gate assignment 

problem. We introduce a new decision variable as:  
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𝑦𝑖𝑗𝑘𝑙 = {
1, 𝑖𝑓 𝑋𝑖𝑘 𝑎𝑛𝑑 𝑋𝑗𝑙 𝑎𝑟𝑒 𝑏𝑜𝑡ℎ 𝑒𝑞𝑢𝑎𝑙 𝑡𝑜 1

0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                             
  (∀𝑖, ∀𝑗 ∈ 𝐼; ∀𝑘, ∀𝑙 ∈ 𝐽) 

The linearized objective function becomes: 

𝑚𝑖𝑛 𝑍 = ∑ ∑ ∑ ∑ 𝑝𝑖𝑗

𝑚+1

𝑙=1

𝑑𝑘𝑙

𝑛

𝑗=𝑖+1

𝑦𝑖𝑗𝑘𝑙

𝑚+1

𝑘=1

𝑛−1

𝑖=1

+ ∑ ∑ (𝑒𝑛𝑖 +  𝑒𝑥𝑖) 𝑒𝑑𝑘 𝑥𝑖𝑘

𝑚+1 

𝑘=1

𝑛

𝑖=1

 

We introduce the following two new constraint sets:  

𝑦𝑖𝑗𝑘𝑙  ≥  𝑥𝑖𝑘 + 𝑥𝑗𝑙 – 1 (∀𝑖, ∀𝑗 ∈ 𝐼; ∀𝑘, ∀𝑙 ∈ 𝐽 and 𝑖 ≠ 𝑗)     

𝑦𝑖𝑗𝑘𝑙  ≥ 0  (∀𝑖, ∀𝑗 ∈ 𝐼; ∀𝑘, ∀𝑙 ∈ 𝐽) 

Note that 𝑦𝑖𝑗𝑘𝑙 would take value 1 only when both 𝑥𝑖𝑘 and 𝑥𝑗𝑙 are assigned to 1, as 

there are penalized with positive coefficients in the following linearized objective 

function: 

𝑚𝑖𝑛 𝑍 = ∑ ∑ ∑ ∑ 𝑝𝑖𝑗

𝑚+1

𝑙=1

𝑑𝑘𝑙

𝑛

𝑗=𝑖+1

𝑦𝑖𝑗𝑘𝑙

𝑚+1

𝑘=1

𝑛−1

𝑖=1

+ ∑ ∑ (𝑒𝑛𝑖 +  𝑒𝑥𝑖) 𝑒𝑑𝑘 𝑥𝑖𝑘

𝑚+1 

𝑘=1

𝑛

𝑖=1

 

The constraint sets of the mixed integer linear programming model are as stated below: 

∑ 𝑥𝑖𝑘𝑘∈𝐽𝐷
= 1          (∀𝑖 ∈ 𝐼𝐷)       (1a) 

∑ 𝑥𝑖𝑘𝑘∈𝐽𝐼
 = 1           (∀𝑖 ∈ 𝐼𝐼)                  (1b) 

∑ 𝑐𝑜𝑚𝑝𝑖𝑟𝑥𝑖𝑘 = 1𝑛
𝑖=1      (∀𝑘 ∈ (𝐽 \ {(𝑚+1)}),  𝑟 = 1, …, 𝑅-1)    (2) 

𝑥𝑖𝑘 ∈ {0, 1}   (∀𝑖 ∈ 𝐼, ∀𝑘 ∈ 𝐽)        (3) 

𝑦𝑖𝑗𝑘𝑙  ≥  𝑥𝑖𝑘 + 𝑥𝑗𝑙 – 1 (∀𝑖, ∀𝑗 ∈ 𝐼; ∀𝑘, ∀𝑙 ∈ 𝐽 and 𝑖 ≠ 𝑗)                (4) 

𝑦𝑖𝑗𝑘𝑙  ≥ 0  (∀𝑖, ∀𝑗 ∈ 𝐼; ∀𝑘, ∀𝑙 ∈ 𝐽)                (5) 
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3.3. Complexity of the Problem 

Obata (1979) shows that the gate assignment problem is NP-hard in the strong sense. 

Thus, the size of the search grows exponentially with the increases in the problem size. 

In our models, we use 8 parameters that are tabulated in Table 3.1. 

Table 3.1. Numbers of Parameters in Nonlinear and Linear Models 

Parameter Number 

𝒏 1 
𝒎 1 
𝒅𝒌𝒍 (𝑚 + 1)2 
𝒑𝒊𝒋 𝑛2 

𝒆𝒏𝒊 𝑛 

𝒆𝒙𝒊 𝑛 

𝒆𝒅𝒌 𝑚 + 1 

𝒄𝒐𝒎𝒑𝒊𝒓 𝑛 x 𝑅 

Total 𝒏 (𝒏 + 𝟐 + 𝑹) + 

(𝒎 + 𝟐)(𝒎 + 𝟏) +  𝟐 

 

The number of decision variables in nonlinear and linear models are tabulated below: 

Table 3.2. Number of Decision Variables in Nonlinear Model 

Decision Variable Number 

𝒙𝒊𝒌 𝑛 x (𝑚 + 1) 

Total 𝒏 𝐱 (𝒎 + 𝟏) 
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Table 3.3. Number of Decision Variables in Linear Model 

Decision Variable Number 

𝒙𝒊𝒌 𝑛 x (𝑚 + 1) 

𝒚𝒊𝒋𝒌𝒍 𝑛2 x (𝑚 + 1)2 

Total 𝒏 (𝒎 + 𝟏) 𝐱 

(𝒏 (𝒎 + 𝟏) + 𝟏) 

 

The numbers of constraint sets in nonlinear and linear models are as follows: 

Table 3.4. Number of Constraints in Nonlinear Model 

Constraint Set Number 

1a |𝐼𝐷| 
1b |𝐼𝐼| 
2 𝑚 x 𝑅 
3 𝑛 x (𝑚 + 1) 
Total |𝑰𝑫| + |𝑰𝑰| +  𝒎 𝐱 𝑹 + 

𝒏 𝐱 (𝒎 + 𝟏)  
 

Table 3.5. Number of Constraints in Linear Model 

Constraint Set Number 

1a |𝐼𝐷| 
1b |𝐼𝐼| 
2 𝑚 x 𝑅 

3 𝑛 (𝑚 + 1) 

4 𝑛 (𝑛 − 1) x  
(𝑚 + 1) (𝑚 + 1) 

5 𝑛2 (𝑚 + 1)2 

Total (𝒎 + 𝟏)𝟐 𝒏𝟐 + 
(𝒎 + 𝟏)𝟐 𝐱 (𝒏 − 𝟏) 𝐱 𝒏

+ (𝒎 + 𝟏) 𝐱 𝒏
+ |𝑰𝑫| + |𝑰𝑰|
+ 𝒎 𝐱 𝑹   
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3.4. An Example Problem 

In this section, we present an example airport gate assignment problem where 𝑛 = 10, 

𝑚 = 5 (+ remote gate).  

In order to find a feasible solution, no more data than the information of arrival and 

departure times is required. The flight schedule and the sets of overlaps for each 

aircraft is as follows: 

Table 3.6. Domestic and International Aircraft in the Example Problem 

Type of Travel Aircraft 

Domestic 1, 3, 5, 7, 9 
International 2, 4, 6, 8, 10 

 

Table 3.7. Domestic and International Gates in the Example Problem 

Terminals Gates 

Domestic 1, 3, 5, Remote 
International 2, 4, Remote 

 

Table 3.8. Flight Schedule and Sets of Overlaps in the Example Problem 

Index of 

 Aircraft (#) 

Arrival 

Time (min) 

Departure  

Time (min) 

Overlapping 

Aircraft 

1              4 56 2, 3 
2                                29 80 1, 3, 4 
3 43 84 1, 2, 4, 5 
4 58 91 2, 3, 5 
5 83 130 3, 4, 6 
6 127 165 5 
7 206 260 8, 9 
8 233 282 7, 9 
9 239 270 7, 8 
10 299 352 none 
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Using the given data, a feasible assignment is as follows: 

 

Figure 3.2. Illustration of a Feasible Solution of the Example Problem 

To find the optimal solution, number of transit and non-transit passengers, distances 

between gates and distances from gates to the airport entrance are needed. Number of 

transit passengers between aircraft are as illustrated below: 

Table 3.9. Number of Transit Passengers Between Aircraft in the Example Problem 

Aircraft 1 2 3 4 5 6 7 8 9 10 

1 26 11 6 5 2 9 17 26 29 14 
2 11 9 27 15 28 3 26 8 2 22 
3 6 27 0 11 12 15 10 14 7 7 
4 5 15 11 29 3 26 16 13 5 2 
5 2 28 12 3 21 2 22 22 2 14 
6 9 3 15 26 2 19 5 7 21 12 
7 17 26 10 16 22 5 1 18 12 24 
8 26 8 14 13 22 7 18 13 5 1 
9 29 2 7 5 2 21 12 5 1 15 
10 14 22 7 2 14 12 24 1 15 20 
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Number of non-transit passengers in each aircraft is as follows: 

Table 3.10. Number of Non-Transit Passengers in the Aircraft in the Example Problem 

Aircraft 1 2 3 4 5 6 7 8 9 10 

Passengers 60 47 89 31 60 55 43 19 26 60 
 

Distances between gates and the airport entrance and exit point are as follows: 

Table 3.11. Distances from Gates to Airport Entrance & Exit in the Example Problem 

Gates 1 2 3 4 5 Remote 

Distance 34 69 71 83 95 9999 
 

Distances between gates are as illustrated below: 

Table 3.12. Distances between Gates in the Example Problem 

Gates 1 2 3 4 5 Remote 

1 0 177 40 76 124 9999 
2 177 0 162 150 56 9999 
3 40 162 0 27 48 9999 
4 76 150 27 0 148 9999 
5 124 56 48 148 0 9999 
Remote 9999 9999 9999 9999 9999 9999 

 

The optimal solution of the problem is assigning the aircraft 3 and 7 to Gate 1, the 

aircraft 1, 5 and 9 to Gate 3, the aircraft 4 to Gate 4 and the aircraft 2, 6, 8 and 10 to 

Gate 5. No aircraft are assigned to Gate 2 and the apron. An illustration of the optimal 

solution is as follows: 
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Figure 3.3. Illustration of the Optimal Solution of the Example Problem 

 

 

 

 

 





 

 
 

29 
 

CHAPTER 4  

 

4. BRANCH-AND-BOUND ALGORITHM 

 

The results of our initial experiments have shown that our mathematical model could 

handle on only small-sized instances. This gives rise to a need for an implicit 

enumeration technique, like a branch-and-bound algorithm for finding optimal 

solutions for medium and large-sized instances. 

We propose a branch-and-bound algorithm for an implicit enumeration of all feasible 

solutions. The algorithm uses an efficient branching scheme, lower bounds and an 

upper bound, each of which is discussed below. 

4.1. Branching Scheme 

As a pre-processing, we index the gates in nondecreasing order of their closeness to 

the airport entrance & exit point. Accordingly, gate 1 is the closest gate and gate 𝑚+1, 

i.e. remote gate, is the farthest gate, to the airport entrance & exit point. Moreover, the 

aircraft are indexed by their arrival times to the airport. Accordingly, aircraft 1 has the 

earliest arrival time and aircraft 𝑛 is the latest arriving one. 

Level 𝑖 of the branch-and-bound tree represents the assignment of aircraft 𝑖. Node 𝑘 

at level 𝑖 represents the assignment of gate 𝑘 to aircraft 𝑖. Hence, the branch-and-

bound tree has at most 𝑛 levels and each level has at most 𝑚+1 nodes. The nodes 

representing the infeasible assignments are not created. Level 0 represents the root 

node with no assignments. 

Our branch-and-bound algorithm employs a depth-first strategy. At any level, it 

selects the lowest index unexplored node and goes to the succeeding levels. Hence, 

the first assignment is always gate 1 and the next assignment is gate 1 if aircraft 1 and 

2 are non-overlapping and gate 2 if they do overlap. 
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Figure 4.1 illustrates the branch-and-bound tree for 𝑛 = 2 aircraft and 𝑚 = 2 gates. We 

assume that both aircraft serve domestic flights and they do overlap. Node A 

represents the remote gate (apron). 

 

Figure 4.1. A Branch-and-Bound Tree for 𝑛 = 2 and 𝑚 = 2 

In Figure 4.1 at level 2, node 2 is infeasible as the aircraft are overlapping, hence it is 

not created. Yellow nodes and red arcs indicate the selected gates and path, 

respectively. The selection is gates 2 and 1, for aircraft 1 and 2, respectively. 

Now consider an instance with 𝑛 = 3 aircraft serving domestic flights and 𝑚 = 2 gates. 

The following tree illustrates all possible branchings when all aircraft are overlapping. 

 

Figure 4.2. A Branch-and-Bound Tree for 𝑛 = 3 All Overlapping Aircraft and 𝑚 = 2 
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As stated, the search starts with aircraft 1 and gate 1. After the first assignment is done, 

the first three feasible assignments are shown in Figures 4.3, 4.4 and 4.5. We use 

notation (𝑖, 𝑘) to denote the assignment of aircraft 𝑖 to gate 𝑘. 

 

Figure 4.3. A Branch-and-Bound Tree Representing 1st Assignment After (1, 1) 

 

Figure 4.4. A Branch-and-Bound Tree Representing 2nd Assignment After (1, 1) 



 

 
 

32 
 

 

Figure 4.5. A Branch-and-Bound Tree Representing 3rd Assignment After (1, 1) 

All feasible solutions are enumerated similarly, and the optimal assignment set is 

found. The enumeration is implicit as the nonpromising assignments are eliminated 

via the lower bounds, which are discussed next. 

4.2. Lower Bounds 

To increase the efficiency of the search process, we calculate a lower bound after each 

feasible aircraft assignment.  

Note that our objective function has two components: one for non-transit passengers 

and one for transit passengers. Considering this nature, we develop two separate lower 

bounds. We first discuss the lower bound for the root node and then its extensions to 

the partial solutions. 

4.2.1. Non-Transit Passengers Walking Distance Lower Bound 

The distance that would be covered by all non-transit passengers is the number of non-

transit passengers of aircraft 𝑖 times the distance between the gate of aircraft 𝑖 and the 

airport entrance & exit point. The distance of the gate of aircraft 𝑖 is a decision that 
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could be underestimated by the distance of gate 1 to airport entrance & exit point as 

gate 1 is always the closest gate due to our indexing. Hence a valid lower bound is; 

∑ 𝑛𝑡𝑖  x 𝑒𝑑1 = 

𝑛

𝑖=1

𝑒𝑑1 x ∑ 𝑛𝑡𝑖 = 

𝑛

𝑖=1

𝑒𝑑1 x 𝑁𝑇 

where; 

𝑛𝑡𝑖: total number of non-transit passengers in aircraft 𝑖 (∀𝑖 ∈ 𝐼) 

𝑛𝑡𝑖  = 𝑒𝑛𝑖  + 𝑒𝑥𝑖   (∀𝑖 ∈ 𝐼) 

𝑁𝑇: total number of non-transit passengers in all aircraft 

𝑁𝑇 =  ∑ 𝑛𝑡𝑖  

𝑛

𝑖=1

 

This lower bound can be improved by considering the maximum number of non-

transit passengers that can be assigned to gate 1.  The maximum number is found 

through a longest path algorithm where there are connections between two non-

overlapping aircraft and the arc weights are represented by the number of non-transit 

passengers. The arc weight from aircraft 𝑖 to aircraft 𝑗 is 𝑛𝑡𝑖. The following network 

depicts the flows through any gate. Note that as the nodes are ordered, the network is 

acyclic. 

 

Figure 4.6. A Generalized Network of Non-Transit Passengers 
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The above network has 𝑛+1 arcs departing from node 0, one to each aircraft and one 

to terminal node 𝑛+1. There are 𝑛+1 arcs arriving to node (𝑛+1), each from one 

aircraft and one from the source node (node 0). The longest path between node 0 and 

node (𝑛+1) gives the maximum number of passengers that can be feasibly assigned 

(without any overlaps) to any one of the gates, hence to gate 1. 

Consider an instance with 𝑛 = 5 aircraft that serve domestic flights. The data are 

tabulated as follows: 

Table 4.1. Numbers of Non-Transit Passengers in the Aircraft in Example LP 

Aircraft Number of Non-Transit Passengers 

1 15 
2 25 
3 20 
4 15 
5 15 

 

Table 4.2. Lists of Overlapping Aircraft for Each Aircraft in Example LP 

Aircraft Overlapping Aircraft 

1 2, 3 
2 1, 3, 4, 5 
3 1, 2, 4, 5 
4 2, 3 
5 2, 3 

 

The corresponding network is as follows: 
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Figure 4.7. A Network of Passengers at the Instance Problem 

The longest path is 0 → 1 → 4 → 5 → 6 and 𝑇𝐷 is its length, hence the maximum 

number of passengers that can served by one gate.  We assume 𝑇𝐷 passengers are 

assigned to gate 1 and the rest are assigned to the second closest gate to the airport 

entrance & exit point, hence gate 2, and get the following expression: 

𝐿𝐵𝑁𝑇 = 𝑇𝐷 ∗ 𝑒𝑑1 + (𝑁𝑇 − 𝑇𝐷) 𝑒𝑑2 

𝐿𝐵𝑁𝑇 is found for domestic and international aircraft separately and their sum is taken. 

For any level 𝑠 where the first 𝑠 aircraft are assigned, we find the longest path 

considering the (𝑛 − 𝑠) unassigned aircraft. Let 𝑇𝐷𝑠 be the length of the longest path 

for unassigned aircraft at level 𝑠.The corresponding lower bound is as follows: 

𝐿𝐵𝑁𝑇 = 𝑇𝐷𝑠 𝑒𝑑1 + ( ∑ 𝑛𝑡𝑖 −  𝑇𝐷𝑠) 𝑒𝑑2

𝑛

𝑖=𝑠+1

 

The realized walking distance 𝑅𝐶𝑁𝑇 is as follows:  

𝑅𝐶𝑁𝑇 =  ∑ ∑ 𝑛𝑡𝑖  𝑒𝑑𝑘 𝑥𝑖𝑘

𝑚+1

𝑘=1

𝑠

𝑖=1
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Hence, the overall lower bound for non-transit passengers walking distance is 

calculated as follows: 

𝐿𝐵𝑁𝑇 +  𝑅𝐶𝑁𝑇 

We write the longest path algorithm for a generic network with 𝑛+1 nodes. For 

domestic flights the corresponding network will have 𝑛𝐷+1 nodes (indexed from 1 to 

𝑛𝐷+1, where 𝑛𝐷 is the number of domestically serving aircraft considered), while for 

international for international flights it will have 𝑛𝐼+1 nodes, (indexed from 1 to 𝑛𝐼+1, 

where 𝑛𝐼 is the number of internationally serving aircraft considered). 

𝑚𝑎𝑥𝑇𝑖: longest path value from node 𝑖 to the end node 𝑛+1 

Let 𝑁𝑂𝑖 be the set of non-overlapping aircraft for aircraft 𝑖(including dummy aircraft 

𝑛+1) 

The algorithm is based on the following recursive equation: 

𝑚𝑎𝑥𝑇𝑖 = max
𝑗≥𝑖: 𝑗 ∈ 𝑁𝑂𝑖

𝑛𝑡𝑖 + 𝑚𝑎𝑥𝑇𝑗 

Stepwise description of the algorithm is as follows: 

 

Step 0. 𝑚𝑎𝑥𝑇𝑛+1 = 0  

Step 1. 

for (𝑖 = 𝑛, 𝑖 ≥ 0, 𝑖 = 𝑖 − 1) { 

𝑚𝑎𝑥𝑇𝑖 = 0 

 for (𝑗 = 𝑖 + 1, 𝑗 ≤ 𝑛 + 1, 𝑗 = 𝑗 + 1) { 

 if (𝑗 ∈ 𝑁𝑂𝑖 and 𝑛𝑡𝑖 +  𝑚𝑎𝑥𝑇𝑗 > 𝑚𝑎𝑥𝑇𝑖) { 

𝑚𝑎𝑥𝑇𝑖 =  𝑛𝑡𝑖 +  𝑚𝑎𝑥𝑇𝑗} // end if 

} // end for 𝑗 
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} // end for 𝑖 

Step 2. Return 𝑚𝑎𝑥𝑇𝑖 values. 

 

4.2.2. Transit Passengers Walking Distance Lower Bound 

We now explain the transit passenger walking distance lower bound calculations. We 

first discuss the calculations at level 0 and then at an arbitrary level 𝑠 > 0.  

At Level 0: At level 0, when all aircraft are unassigned, the lower bound for the 

distance travelled by all transfer passengers is found as follows: 

Case 1. The aircraft (𝑖, 𝑗) are not overlapping. 

In that case, any non-overlapping aircraft can be assigned to the same gate with 

distance 0.  

Case 2. The aircraft (𝑖, 𝑗) are overlapping. 

Overlapping aircraft (𝑖, 𝑗) should be assigned to different gates. The minimum distance 

of travel will be the shortest distance between all gate pairs, i.e. min
(𝑘,𝑙)

{𝑑𝑘𝑙}. The lower 

bound for the travel distance between the aircraft (𝑖, 𝑗) is  

𝑝𝑖𝑗 x min
(𝑘,𝑙)

{𝑑𝑘𝑙} 

Therefore, the overall lower bound is; 

𝐿𝐵𝑇 =  ∑ ∑ 𝑜𝑖𝑗 𝑝𝑖𝑗
𝑛
𝑗=𝑖+1

𝑛−1
𝑖=1 min

(𝑘,𝑙)
{𝑑𝑘𝑙}  (∀𝑘, ∀𝑙 ∈ 𝐽) 

where 𝑜𝑖𝑗 =  {
1, 𝑖𝑓 𝑎𝑖𝑟𝑐𝑟𝑎𝑓𝑡𝑠 𝑖 𝑎𝑛𝑑 𝑗 𝑎𝑟𝑒 𝑜𝑣𝑒𝑟𝑙𝑎𝑝𝑝𝑖𝑛𝑔
0, 𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                                                    

 

At Level 𝒔 > 0: At any level of branch-and-bound tree, 𝐿𝐵𝑇 is extended, considering 

the assigned and not yet assigned aircraft pairs. For level 𝑠 ∈ 𝐼, we consider the 

following three cases: 
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Case 1. 𝑖, 𝑗 ≤ 𝑠, they are both assigned. The cost of assignment is the realized travel 

distance of transit passengers, 𝑅𝐶𝑇, where; 

𝑅𝐶𝑇 =  ∑ ∑ ∑ ∑ 𝑝𝑖𝑗 𝑑𝑘𝑙  𝑥𝑖𝑘 𝑥𝑗𝑙

𝑚+1

𝑙=1

𝑚+1

𝑘=1

𝑠

𝑗=𝑖+1

𝑠−1

𝑖=1

 

For the other cases, we find eligible sets for each unassigned aircraft 𝑖 using the gates 

of the assigned aircraft that overlap with aircraft 𝑖. A gate is said to be eligible for 

aircraft 𝑖 if none of its overlapping aircraft have yet been assigned to that gate. We let 

𝑒(𝑖) be the set of eligible gates for aircraft 𝑖. Note that at the root node when all the 

gates are empty, 𝑒(𝑖) includes all gates. Once an assignment to gate 𝑘 is made by an 

overlapping aircraft with 𝑖, then 𝑒(𝑖) is updated as {𝑒(𝑖) \ 𝑘}. 

Case 2. 𝑖 ≤ 𝑠, 𝑗 > 𝑠, i.e., 𝑖 is assigned, 𝑗 is not yet assigned.  

Let 𝑔𝑖 be the gate that aircraft 𝑖 is assigned. There are two cases to be considered based 

on whether 𝑖 and 𝑗 are overlapping. 

Case 2.1. 𝑖 and 𝑗 are non-overlapping. 

The minimum distance is zero, as 𝑗 can be assigned to 𝑔𝑖.  

Lower bound contribution, 𝐿𝐵𝑇𝑖𝑗, is zero.   

Case 2.2. 𝑖 and 𝑗 are overlapping  

The minimum distance of travel is min
𝑘≠𝑔𝑖

   k ϵ 𝑒(𝑗)

{ 𝑑𝑔𝑖,𝑘}.  

The lower bound on the realized cost is as follows:  

𝐿𝐵𝑇𝑖𝑗 = 𝑝𝑖𝑗  x min
𝑘≠𝑔𝑖

 k ϵ 𝑒(𝑗) 

{ 𝑑𝑔𝑖,𝑘} 

Case 3.   𝑖 > 𝑠, 𝑗 > 𝑠, i.e., 𝑖 and 𝑗 are both unassigned. 𝐿𝐵𝑇𝑖𝑗 is calculated as follows: 



 

 
 

39 
 

𝐿𝐵𝑇𝑖𝑗 = 𝑝𝑖𝑗  x min
𝑘 ∈ 𝑒(𝑖)

𝑙 ∈ 𝑒(𝑗)

{𝑑𝑘𝑙} 

Note that Case 1 produces realized walking distance, Case 2 produces a lower bound 

using realized assignments and Case 3 produces a lower bound for not-yet-made 

assignments. Therefore, the overall lower bound is the sum of Case 2 and Case 3 lower 

bounds, i.e.; 

𝐿𝐵𝑇 =  ∑ ∑ 𝐿𝐵𝑇𝑖𝑗

𝑛

𝑗=𝑖+1

𝑛−1

𝑖=1

 

Any partial solution for which the following relation holds cannot lead to a unique 

optimal solution: 

𝑈𝐵: the best known objective value 

𝐿𝐵𝑃 =  𝐿𝐵𝑇 +  𝑅𝐶𝑇 +  𝐿𝐵𝑁𝑇 +  𝑅𝐶𝑁𝑇 ≥ 𝑈𝐵 

In our implementation we apply the lower bounds in a sequel. We first find the realized 

travel distances and fathom the partial solution if the following relation holds: 

𝑅𝐶𝑇 +  𝑅𝐶𝑁𝑇 ≥ 𝑈𝐵 

If not, the partial solution may lead to an optimal solution. We then calculate the lower 

bounds in sequel. Firstly, we calculate 𝐿𝐵𝑁𝑇 and check whether the following relation 

holds: 

𝑅𝐶𝑇 +  𝑅𝐶𝑁𝑇 +  𝐿𝐵𝑁𝑇 ≥ 𝑈𝐵 

If realized travel distances combined with  𝐿𝐵𝑁𝑇 cannot eliminate the node, then we 

compute 𝐿𝐵𝑇. Note that we are proceeding from easier to compute bound to a more 

difficult one in order to increase the speed of elimination. Figure 4.8 below illustrates 

the hierarchy of our application: 
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Figure 4.8. The Hierarchy of Using Lower Bounds 

If the lower bound at a partial solution is outweighed by the current best known upper 

bound, we fathom the node and proceed to the next one. If all nodes at a level are 

eliminated by the upper bound, we backtrack to the previous level. 

The upper bound is first found by a heuristic procedure discussed next and it is updated 

whenever a complete assignment with a better objective function value is reached. The 

upper bound solution at termination is the optimal solution. 

4.3. Initial Upper Bound 

Our branch-and-bound algorithm starts with an upper bound. We separate the 

domestic terminal gate assignments and the international terminal gate assignments 
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and find the upper bounds separately. The sum of these upper bounds gives the global 

upper bound which is used to start the branch-and-bound algorithm.  

Our upper bounding procedure decomposes the problem into subproblems. Each 

subproblem represents an assignment to a particular gate 𝑘. We start with gate 1 and 

terminate whenever all gates are scheduled, or all aircraft are assigned.  

Subproblem 1 considers all aircraft and solves a longest path problem for gate 1. The 

longest path problem is the same as the one defined for lower bound for non-transit 

passengers except the arc weights. The arc weights between the aircraft 𝑖 and 𝑗 are the 

number of transit passengers between these two aircraft plus the number of non-transit 

passengers arriving at and departing by aircraft 𝑖. Arc weights between the root node 

and aircraft 𝑖 are zero and arc weight between aircraft 𝑖 and the dummy end node is 

just the number of non-transit passengers arriving at and departing by aircraft 𝑖. Below 

is the associated longest path network: 

 

Figure 4.9. Example Network for Upper Bound Evaluation 

The length of the longest path from node 0 to node 𝑛+1 gives the number of transit 

passengers whose arrival and departure aircraft are assigned to be same gate once the 

non-transit passengers are ignored. Maximizing the length of the path would minimize 

travel by transit passengers. We also count the number of non-transit passengers as 

their travel distance should also be shortened. 
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After the aircraft are assigned to gate 1, we update the aircraft set and again solve a 

longest path problem with the reduced aircraft set for gate 2. Recall that gate 2 is the 

second closest gate to airport entrance & exit point and should receive higher priority 

for assignment due to non-transit passengers. We continue for gate 3 and so on, till 

the assignment schedule is complete. Upper bound is the objective function of the 

resulting schedule. 

Below is the stepwise description of our upper bound heuristic: 

Step 0. 𝑁: set of aircraft, set 𝑘 = 1. 

Step 1. Solve the longest path problem for gate 𝑘 with set 𝑁 with arc weights 𝑛𝑡𝑖 +

 𝑝𝑖𝑗 between aircraft 𝑖 and 𝑗, 0 between node 0 and aircraft 𝑖 and 𝑡𝑖 between aircraft 𝑖 

and node 𝑛+1. 

Step 2. Let 𝑆𝑘 be the set of aircraft appearing on the longest path. Set 𝑁 = 𝑁  \  𝑆𝑘. If 

𝑁 = ∅ or 𝑘 = 𝑚, go to Step 3. Else, set 𝑘 = 𝑘 + 1 and go to Step 1. 

Step 3. Upper bound schedule is formed by 𝑆𝑘 (set of aircraft at gate 𝑘). 𝑈𝐵 is the 

objective function of the schedule. 

We illustrate the upper bound heuristic via a 5-aircraft and 2-fixed gate example with 

the following data: 

Table 4.3. Overlapping Aircraft for Each Aircraft in Example for UB Heuristic 

Aircraft Overlapping Aircraft 

1 2, 3 
2 1, 3, 4, 5 
3 1, 2, 4, 5 
4 2, 3 
5 2, 3 
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Table 4.4. Non-Transit Passengers in Each Aircraft in Example for UB Heuristic 

Aircraft Number of Non-Transit Passengers 

1 15 
2 40 
3 45 
4 15 
5 15 

 

Table 4.5. Transit Passengers Between Aircraft in Example for UB Heuristic 

Aircraft 1 2 3 4 5 

1 5 15 25 10 15 
2 15 10 10 20 5 
3 25 10 5 10 30 
4 10 20 10 10 15 
5 15 5 30 15 10 

 

Table 4.6. Distances Between Gates in Example for UB Heuristic 

Distance 1 2 3 (Apron) 

1 0 50 9999 
2 50 0 9999 
3 9999 9999 9999 

 

Table 4.7. Distances Between Gates and Entrance in Example for UB Heuristic 

Gate Distance to Entrance & Exit 

1 50 
2 100 
3 (Apron) 9999 

 

The longest path network is as follows: 



 

 
 

44 
 

 

Figure 4.10. Longest Path for Upper Bound Heuristic Example 

The longest path to the end node is 0 → 1 → 4 → 5 → 6 with length 70. On the path, 

the aircraft 1, 4 and 5 are assigned to gate 1 which is the closest to the airport entrance 

& exit point. The network of unassigned aircraft is as follows: 

 

Figure 4.11. Example Network After an Iteration at LP Algorithm for Upper Bound 

The longest path is 0 → 3 → 6 for gate 2.  The third longest path is 0 → 2 → 6 for 

apron. Therefore, aircraft 3 is assigned to gate 2 and aircraft 2 is assigned to apron. 

The total distance associated with this assignment is an upper bound that is found as 

1059895. 
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CHAPTER 5  

 

5. COMPUTATIONAL RESULTS 

 

To test the performance of the mathematical model and branch and bound algorithm, 

we conducted computational experiments on randomly generated instances. We first 

describe the data generation scheme. Then, we discuss the results of the mathematical 

model and branch and bound algorithm. 

5.1. Data Generation 

We randomly generated instances of different sizes using a random number generator 

on Java.  

We use Ankara Esenboğa Airport for the layout data, i.e., the distances between pairs 

of fixed gates and distances between fixed gates and the airport entrance & exit point. 

All distances are estimated using public satellite images of the airport building. Due 

to intense investigation process and additional control points, we assume that all gates 

located in the international terminal are farther from the airport entrance & exit point 

compared to the gates in the domestic terminal. Moreover, we assume that the distance 

between an international gate and a domestic gate is significantly longer than two gates 

located in the same terminal. The remote gate is assumed to be located extremely far 

away from all fixed gates; therefore, a big-M number is assigned to every distance 

parameter it is associated with.  

In our test instances, we consider three different layouts, i.e., number of fixed gates 

(𝑚): 5, 7 and 10. Data for each case (layout) are as follows: 

Case 1. 𝑚 = 5, 𝐽𝐷 = {1, 2, 3, 6}, 𝐽𝐼 = {4, 5, 6}  

{𝑒𝑑𝑘} = {50, 100, 150, 300, 350, M}  
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Table 5.1. Distance Matrix of Gates (𝑚 = 5) 

Distance 1 2 3 4 5 Remote 

1 0 50 100 275 325 M 
2 50 0 50 325 375 M 
3 100 50 0 375 425 M 
4 275 325 375 0 50 M 
5 325 375 425 50 0 M 
Remote M M M M M M 

 

Case 2. 𝑚 = 7, 𝐽𝐷 = {1, 2, 3, 4, 8}, 𝐽𝐼 = {5, 6, 7, 8}  

{𝑒𝑑𝑘} = {50, 100, 150, 200, 300, 350, 400, M} 

Table 5.2. Distance Matrix of Gates (𝑚 = 7) 

Distance 1 2 3 4 5 6 7 Remote 

1 0 50 100 150 275 325 375 M 
2 50 0 50 100 325 375 425 M 
3 100 50 0 50 375 425 475 M 
4 150 100 50 0 425 475 525 M 
5 275 325 375 425 0 50 100 M 
6 325 375 425 475 50 0 50 M 
7 375 425 475 525 100 50 0 M 
Remote M M M M M M M M 

 

Case 3. 𝑚 = 10, 𝐽𝐷 = {1, 2, 3, 4, 5, 11}, 𝐽𝐼 = {6, 7, 8, 9, 10, 11}  

{𝑒𝑑𝑘} = {50, 100, 150, 200, 250, 300, 350, 400, 450, 500, M} 
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Table 5.3. Distance Matrix of Gates (𝑚 = 10) 

Distance 1 2 3 4 5 6 7 8 9 10 Remote 

1 0 50 100 150 200 275 325 375 425 475 M 
2 50 0 50 100 150 325 375 425 475 525 M 
3 100 50 0 50 100 375 425 475 525 575 M 
4 150 100 50 0 50 425 475 525 575 625 M 
5 200 150 100 50 0 475 525 575 625 675 M 
6 275 325 375 425 475 0 50 100 150 200 M 
7 325 375 425 475 525 50 0 50 100 150 M 
8 375 425 475 525 575 100 50 0 50 100 M 
9 425 475 525 575 625 150 100 50 0 50 M 
10 475 525 575 625 675 200 150 100 50 0 M 
Remote M M M M M M M M M M M 

 

For each 𝑚 value, we created instances by varying the number of aircraft 𝑛. The 

combinations we used are as in Table 5.4. We categorized these instances as small, 

medium and large sized instances. We generate 10 problem instances for each (𝑛, 𝑚) 

combination. 

Table 5.4. 𝑚, 𝑛 Values of the Test Instances 

Small-sized 

𝑚 𝑛 

Medium sized 

𝑚 𝑛 

Large-sized 

𝑚 𝑛 

5 
10 5 25 5 30 
15 7 20 7 30 
20 25 

10 
25 

7 10 10 15  
15 20  

 

The other parameters are generated using discrete uniform distributions (𝐷𝑈) as 

follows:  

- Number of transit passengers between aircraft 𝑖 and 𝑗 (𝑝𝑖𝑗): 𝐷𝑈(0, 200/𝑛). 

- Number of non-transit passengers in aircraft 𝑖 (𝑛𝑡𝑖): 𝐷𝑈(0, 100). 

- Arrival time of an aircraft (𝑎𝑖) (minutes): 𝐷𝑈(0, 300). 

- Duration of stay of an aircraft at the airport (𝑑𝑢𝑟𝑖) (minutes): 30 + 𝐷𝑈(0, 30).  

- Departure time of an aircraft 𝑖 (𝑑𝑖) is set to 𝑎𝑖 + 𝑑𝑢𝑟𝑖. 
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The maximum number of passengers in an aircraft is taken as 300 based on 

information provided on the website of a commercial airline company (Turkish 

Airlines, 2019). We assume that total number of transit passengers does not exceed 

200 and that a transit passenger has the equal probability of connection to all other 

aircraft. We assumed that maximum 50 passengers go from an aircraft to airport exit 

and maximum 50 passengers arrive at airport from outside for the same aircraft. The 

total number of non-transit passengers in an aircraft is calculated by the summation of 

these two, hence it is generated using 𝐷𝑈(0, 100).  

5.2. Computational Results 

In this section we provide the results of our computational experiments. We set a time 

limit of 1 hour for both mathematical model and B&B algorithm. We do not 

experiment on larger instances when at least 3 out of 10 instances cannot be solved in 

one hour for an (𝑛, 𝑚) combination. 

The B&B algorithm is coded in Java and solved by a quad-core (Intel Core i7 2.30 

GHz) computer with 8 GB RAM. All models are solved by CPLEX 12.8.0. The 

solution times are expressed in Central Processing Unit (CPU) seconds. 

We first report on the performance of the proposed lower bound (LB), calculated at 

the root node, in Table 5.5. For each (𝑛, 𝑚) combination, the table shows the number 

of instances that could be solved to optimality by the B&B algorithm within the time 

limit and the average and minimum (worst case) values of percentage of lower bound 

to the optimal value (100 x LB / OPT), calculated over these instances.  
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Table 5.5. Performance of the Proposed LB Calculated at the Root Node 

𝒏 𝒎 # of instances 

solved 

Average LB / 

OPT (%) 

Min LB / 

OPT (%) 

10 

 

5 10 30.932 5.214 
7 10 38.104 32.187 

 

15 

 

5 10 27.501 3.254 
7 10 33.565 7.858 
10 10 33.739 30.633 

 
20 

 

5 10 4.965 2.827 
7 10 26.962 8.741 
10 2 29.712 28.014 

25 

 

5 10 2.689 2.011 
7 10 19.481 9.555 

30 

 

5 8 2.530 2.055 
7 7 7.927 4.399 

35 5 0 - - 
 

It is seen that for most of the (𝑛, 𝑚) combinations, the average percentage values range 

from 27% to 38%. It is also seen from the minimum percentage values that there are 

instances for which the LB/OPT ratio is too low. However, the average values are 

significantly larger than the minimum values, indicating that the instances with too 

poor LB performance are quite few. For example, for 𝑚 = 5, 𝑛 = 15 the average 

percentage is 27.5 despite the minimum percentage of 3.2. 

It is also observed that for fixed 𝑚, the performance of the LB decreases as 𝑛 

increases. This is related to the fact that as 𝑛 increases, the number of flights that 

should be assigned to the apron in the optimal solution increases.  

As the  𝑛

𝑚
  ratio increases further, the performance of the LB deteriorates significantly; 

as seen in the problem instances with 𝑚 = 5, 𝑛 = 20, 25, 30 and 𝑚 = 7, 𝑛 = 30. This is 

again in line with the observation that apron usage affects the performance of the LB 

(average number of flights assigned to the apron was 2.4, 5.3, 6.5 and 2.0 for (20, 5), 

(25, 5), (30, 5) and (30, 7) sets, respectively). 
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We report on the performance of two solution approaches, the mathematical model 

and B&B algorithm, in Table 5.6. We report the average and maximum solution times 

for both approaches and the average and maximum values for the number of nodes in 

the B&B algorithm. We also report the number of instances that could not be solved 

optimally within the time limit of 1 hour (in parentheses, in the columns showing 

maximum CPU Time).  

Table 5.6. Comparison of Two Solution Approaches 

 
n 

 
m 

# of 

instances 

solved 

Mathematical Model Branch-and-Bound Algorithm 

CPU Time (s) CPU Time (s) # of Nodes 

Average Maximum Average Maximum Average Maximum 

10 5 10 0.185 0.225 0.009 0.032 1706 2552 
7 10 0.557 0.623 0.034 0.073 9292 20467 

 

15 

 

5 10 0.448 0.734 0.109 0.548 15900 64221 
7 10 3.386 6.534 1.763 7.190 317998 1395240 
10 10 71.206 223.527 15.014 40.219 2397353 6487742 

 

20 

5 10 2.811 5.717 1.362 3.398 141410 415150 
7 10 67.329 207.807 51.247 105.047 7731576 22071977 
10 2 2289.767 3600 (8) 1593.471 3600 (8) 114750695 130540698 

25 5 10 56.850 263.286 42.521 151.478 4054587 17305083 
7 10 636.931 1781.858 475.718 2772.459 37548958 178956329 

30 5 8 419.582 3600 (1) 458.575 3600 (2) 21702949 100908126 
7 7 1559.631 2568.754 1106.757 3600 (3) 81043582 224083837 

35 5 0  3600 (10)  3600 (10)   
 

The results show that the B&B algorithm outperforms the mathematical model 

approach in almost all problem combinations in terms of the solution time.  For 

relatively small-sized instances (𝑚 = 5, 7; 𝑛 = 10, 15, 20) both approaches provide 

solutions in negligible time, with B&B always being faster. For medium sized 

instances where 𝑚 = 5, 𝑛 = 25; 𝑚 = 7, 𝑛 = 25 and 𝑚 = 10, 𝑛 = 15, the B&B algorithm 

has notably lower solution times than the mathematical model. For example, for 𝑚 = 

10, 𝑛 = 15 combination, even the maximum B&B solution time observed over all 

instances (40.22 seconds) is lower than the average solution time of the mathematical 

model (71.21 seconds).  

For fixed 𝑚 (𝑛), the solution times and the tree size increase as n (m) increases, as 

expected. For larger-sized instances both approaches may fail to return solutions 

within the 1-hour time limit.  In 𝑚 = 10, 𝑛 = 20, the B&B algorithm performs better 
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than the mathematical model since both approaches provide optimal solutions within 

the time limit for the same number of instances while the average solution time of the 

B&B algorithm is lower. When 𝑚 = 5; 𝑛 = 30, the mathematical model seems to 

perform slightly better as it can solve nine instances to optimality while B&B solves 

eight instances. When 𝑚 = 7, 𝑛 = 30 the mathematical model returns optimal solutions 

for all instances within the time limit. Note that the B&B still has notable performance 

in these instances, returning optimal solutions to seven of the ten instances. Overall, 

one can conclude that, the performances of the mathematical model and the B&B 

algorithm are comparable in large-sized instances. 

Note that our branch-and-bound algorithm is capable of solving the instances with up 

to 30 aircraft and 7 gates. For real life problem instances of larger sizes, it can be used 

as a heuristic procedure in the following two ways: 

a. Decomposition Approach 

The problem can be decomposed into problems of small sizes and each subproblem 

can be solved to optimality by the branch-and-bound algorithm. Once the subproblem 

solutions are combined, the resulting overall solution is feasible for the original 

problem. The performance of this solution can be enhanced by some improvement 

procedures. 

b. Truncated branch-and-bound algorithm 

A truncated branch-and-bound algorithm is the one that can be terminated after a 

specified time limit or specified search size, i.e., number of nodes.  One may use our 

algorithm as a truncated branch and bound algorithm with our time limit of 1 hour. To 

see the promise of such a truncated algorithm, we analyze the node at which the 

optimal solution is found, i.e., optimality node. All effort spent after the optimality 

node is for verifying the optimality. 

Table 5.7 reports on the total number of nodes, optimality node and percentage of 

optimality node to the total number of nodes, for all problem combinations. 
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Table 5.7. Number and Percentage of Optimality Nodes for All Combinations 

n m # of 

instances 

solved 

# of nodes Optimality Node Opt Node / Nodes (%) 

Average Maximum Average Maximum Average Maximum 

10 

 

5 10 1706 2552 137 576 7.979 39.588 
7 10 9292 20467 1257 3162 16.222 43.214 

 

15 

5 10 15900 64221 1937 10144 26.432 93.547 
7 10 317998 1395240 17050 47247 14.332 40.648 
10 10 2397353 6487742 205394 561356 9.710 35.371 

 

20 

5 10 141410 415150 19921 126656 18.532 79.601 
7 10 7731576 22071977 1318579 3877668 28.57 94.79 
10 2 114750695 130540698 21566352 35320744 20.478 27.057 

25 

 

5 10 4054587 17305083 303171 704593 15.483 64.384 
7 10 37548958 178956329 9687786 65894125 18.065 54.903 

30 

 

5 8 21702949 100908126 5987785 34955172 16.603 34.641 
7 7 81043582 224083837 8455002 20219714 15.758 48.465 

35 5 0 - - - - - - 
 

As can be observed from the table, the maximum percentages are high, implying that 

for some instances the optimal solution is found close to termination. However, the 

average percentages are low, despite the maximum percentages, for all problem 

combinations. 

As can be observed from the table, the maximum percentages are much higher than 

the averages, implying that for some instances the optimal solution is reached a bit 

before the termination of the branch and bound algorithm. However, the average 

percentages are very low, despite the maximum percentages, for all problem 

combinations. 

Note that when 𝑛 = 10 and 𝑚 = 5, the maximum percentage is 39.59%. Despite this 

high percentage, the average percentage is approximately 8%.  That is on average, the 

optimal solution is reached at the first 8% of the search and 92% of the search is used 

for the verification of the optimal solution. When 𝑛 = 25 and 𝑚 = 5, the maximum 

percentage is 64.38% and the average is 15.48% despite the too high maximum 

performance.  For the largest solvable size, 𝑛 = 30 and 𝑚 = 7, the average performance 

is 15.76%, i.e., still very low. Similar observations hold for other problem 

combinations, the majority of the optimal solutions are found before 15% of the 

search. This can be attributed to the effectiveness of the lower bounds in eliminating 
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non-promising solutions. Hence, our branch-and-bound algorithm with a termination 

limit of 1 hour can be used as a heuristic to find approximate solutions for larger-sized 

instances.  

Moreover, our upper bound at root node delivers an implementable feasible solution. 

We assess the performance of the initial upper bound by its deviation from the optimal 

solution as a percentage of the optimal solution and report the results in Table 5.8. In 

assessing the performance, only the instances residing the same number of aircraft in 

the apron at the optimal solution and upper bound solution are considered. This is due 

to the big-M value used for apron distances that might misevaluate the actual 

deviations. The number of times the upper bound returns the optimal solution is also 

included in the table. The table does not report the CPU times, as the upper bounds 

are found in negligible time. 

Table 5.8. Performance of the Upper Bound (UB) for All Combinations 

n m # total 

instances 

solved 

# of 

times 

UB & 

OPT 

have the 

same # 

of apron  

# of times 

UB 

returns 

the 

optimum 

Avg UB 

Gap (%) 

Max UB 

Gap (%) 

10 5 10 9 2 6.668 28.006 
7 10 10 2 1.885 5.982 

 

15  

5 10 4 2 1.458 5.412 
7 10 10 1 1.894 7.976 
10 10 10 0 14.918 19.385 

 

20 

5 10 5 0 7.007 12.386 
7 10 7 0 2.934 6.389 
10 2 2 0 15.694 17.652 

25 5 10 3 0 13.122 14.405 
7 10 7 0 4.764 14.591 

30 5 8 1 0 27.056 27.056 
7 7 2 0 4.975 6.200 

35 5 0 - - - - 
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Note from the table that all average deviations are below %15 with one exception. The 

exception is for 𝑛 = 30 and 𝑚 = 5 and is due to a single instance that defines both 

average and maximum deviation. The performances are slightly getting worse with 

increases in the problem size. For example, when 𝑛 = 15 and 𝑚 = 5, the average 

deviation is 1.46%, when 𝑛 = 20 and 𝑚 = 5, the average deviation is 7.01% and when 

𝑛 = 25 and 𝑚 = 5, the average deviation increases to 13.22%. Hence, one can conclude 

that the satisfactory performance of the upper bound used by the branch-and-bound 

algorithm may justify its use as a heuristic approach for large-sized problem instances. 
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CHAPTER 6  

 

6. CONCLUSIONS 

 

 

This thesis considers an airport gate assignment problem that assigns the aircraft to 

the gates so as to minimize the total walking distance covered by the passengers 

throughout the airport. We assume that the fixed gates can handle only one aircraft at 

a time and the remote gate, so called apron, has an unlimited capacity. 

We first formulate the problem as a mixed integer nonlinear programming model and 

then linearize it. The resulting mixed integer linear programming model could handle 

small-sized instances; however, not the medium and large-sized instances in our 

termination limit of one hour. To solve larger sized problem instances, we develop a 

branch-and-bound algorithm with powerful lower bounding mechanisms and an initial 

upper bound. 

The results of our computational experiments have revealed the superiority of the 

proposed branch-and-bound algorithm over the mathematical model over all problem 

combinations. The algorithm could return optimal solutions to the instances with up 

to 30 aircraft and 7 gates in our termination limit of one hour. For the problem 

instances of larger sizes, we suggest heuristic algorithms like our initial upper bound 

or truncated versions of our branch-and-bound algorithm.  

To the best of our knowledge, we propose the first optimization algorithm for the total 

walking distance while considering transit passengers of airport gate assignment 

problem. Future research may consider the extension of our approach to the multi-

objective problems like minimizing total walking distance traveled and weighted 

number of aircraft assigned to the apron. 
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