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ABSTRACT 

 

HUMAN ACTION RECOGNITION FOR VARIOUS INPUT 
CHARACTERISTICS USING 3 DIMENSIONAL RESIDUAL NETWORKS 

 

, n 
Master of Science, Electrical and Electronics Engineering 

Supervisor: Prof. Dr.  
 

September 2019, 100 pages 

 

Action recognition using deep neural networks is a far-reaching research area which 

has been commonly utilized in applications such as statistical analysis of human 

behavior, detecting abnormalities using surveillance cameras and robotic systems. 

Previous studies have been performing researches to propose new machine learning 

algorithms and deep network architectures to obtain higher recognition accuracy 

levels. Instead of suggesting a network resulting in small accuracy gain, this thesis 

focuses on evaluating different input characteristics for increasing the learning 

capacity of the networks. To do so, 3-dimensional residual networks are utilized 

because of their effective learning process. Among all the modifications applied on 

the inputs, increasing the sample duration up to 60 frames and masking the RGB pixel 

values with the motion flow between consecutive frames provide high accuracy gains. 

Employing 60 frames instead of 16 frames quadruples the computation time while 

achieving an accuracy increase of 10%. Masking the frames results in 12% recognition 

accuracy gain. Both modifications contribute to the learning process of the network 

by emphasizing the relations between patterns through longer temporal extents and 

guiding the network to focus on the areas where the main action takes place. Obtaining 

significant amounts of accuracy gains by only modifying the input is outstanding. 

Moreover, the recognition accuracy is enhanced even more by pre-training the 
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network on a large scale dataset. The contributions of the results of this thesis are 

worthwhile since the input characteristics yielding high accuracy gains can be used 

for different networks to increase the recognition accuracy. 

 

Keywords: Action Recognition, Motion Flow, Residual Networks, Spatio-temporal  
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CHAPTER 1  

 

1. INTRODUCTION 

 

1.1. Motivation 

Observing an action that is present in the environment and describing the action to the 

extent of our knowledge have been performed involuntarily by all human beings. 

Since humans, by their nature, are capable of learning to interpret the patterns in daily 

life, such as observing a bird moving in t

action recognition is a routine part of our lives. With recent technological 

developments along with studies conducted on artificial intelligence and building 

models for automating data analysis, the idea of performing action recognition by 

machine learning methods has been adopted. 

The task of action recognition is defined as inferring the patterns and contextualized 

information, which identify an action, hidden in video clips by performing analysis 

both spatially and temporally. The desire to use machine learning algorithms for such 

task has arisen from the high availability of videos provided from various sources and 

the need to process them. With the extensive usage of surveillance cameras, people 

[1][2] started to analyze the videos in order to detect suspicious behaviors, theft, 

criminals, and traffic accidents. Moreover, biological studies [3][4] have also made 

use of such algorithms since the visuals belonging to a patient across time are also a 

form of data which gives information about the changes taking place spatially and 

temporally. Here, using action recognition algorithms are also beneficial; since they 

are able to grab and interpret the patterns, algorithms may detect unhealthy situations 

easily. Geographic studies [5] examining the alterati

area are also examples for employing action recognition since the subject data consist 

of spatial changes across time. Robotic systems use video processing which contains 
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processes where the actions the robot observes should be recognized real-time so that 

the robot can act upon the correct instructions. As there is a wide range of applications 

to utilize action recognition approach, people started to come up with algorithms that 

are able to learn the relations between patterns and recognize actions with great 

accuracy.  

People have been performing researches and conducting experiments in order to 

introduce methods that are efficient and able to yield credible results. A method should 

effectively reveal the patterns that carry the information about the on-going action and 

offer low computation time even though it utilizes complex computations. It is 

important to correctly classify the revealed representations of actions because high 

accuracy rates are demanded when the methods are used for substantial applications 

such as detecting abnormalities in a video or during criminal investigations.  

1.2. Problem Statement 

Action recognition from videos is a far-reaching and open-ended field in machine 

vision, which can be used in numerous applications. This thesis specifically focuses 

on human actions contained in short videos such as walking, drumming, and diving. 

The actions may last for a few seconds or can be performed during the whole video. 

Some actions resemble each other which complicates the recognition and results in 

wrong classification. Although action recognition is a specific area on its own, it has 

a significant role in more high-level, critical tasks such as robotics where every 

process is autonomous. Hence, there have been numerous studies regarding action 

recognition, which aim to reach a legitimate accuracy level and offer state-of-the-art 

results. 

The studies have followed one of these approaches; they have either followed a path 

that includes finding out the representations of actions in the videos [6][7] and then 

classifying them by manifested classifiers[8], or they have introduced deep networks 

to merge these two steps in a generic manner as in [9][10]. The studies that were 

conducted in early years applied the first approach to recognize human actions since 
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the networks then were shallow when compared to the networks used now. Also, 

utilizing deep networks for 3-dimensional inputs was not common. Therefore, 

researchers were suggesting hand-crafted representation methods which would be 

collaborating with classifiers. Even though these methods have provided promising 

results for specified tasks, they have disadvantages of not being generic. Deep 

networks have bridged this gap since they are not designed for detecting specific 

patterns and are able to accept various kinds of videos. In other words, a network used 

for detecting horizontal displacements can also be used for detecting vertical 

displacements. However, generally this is not the case for representation algorithms. 

Hence, it is a better choice to employ deep networks for action recognition. 

Designing a network with a high recognition accuracy is challenging. Studies have 

followed different network architectures for this task. They have analyzed spatial and 

temporal components of videos with different network architectures and fused them 

with various techniques as in [11][12][13][14]. In addition to multi-stream 

approaches, a major part of the studies has tackled the videos spatio-temporally 

[15][16][17][18][10] by using 3-dimensional convolutional networks as the videos are 

spatio-temporal by their nature. Also, in [19][20] hybrid networks, where 

convolutional and recurrent neural networks were combined, were suggested. 

Throughout the years they all have reached higher recognition accuracy rates while 

applying different techniques to videos. Most of the studies have made a stride either 

by suggesting a network or modifying the existing networks. Hence, the most recent 

studies have shown minor improvements in accuracy rates. Even though the state-of-

the-art results are legitimate, researchers still put emphasis on the importance of action 

recognition and make an effort to increase the recognition accuracy level by 

conducting experiments. 

1.3. Our Approach and Contribution 

In this work, instead of suggesting a network that results in increase in the recognition 

accuracy level by small amounts, the goal is to focus on the network input and to 
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investigate how the input characteristics affect the recognition accuracy. The reason 

of analyzing input characteristics rather than the network itself is the high availability 

of suggested networks in previous studies. Since the state-of-the-art networks have 

reached a point where taking a major step forward seems challenging, it is a legitimate 

work to pay more attention on the characteristics of the video input. 

After investigating the state-of-the-art methods, deep residual networks (ResNets) 

were found out to provide promising accuracy rates while they increase the learning 

capacity by increasing the flow of the information using its residual connection. There 

are also different versions of ResNets, which have different architectures in residual 

blocks as covered in [21]. However; since processing videos has high computational 

cost, the work in this thesis only focuses on ResNet architecture. Yet, the 

consequences are also applicable to other versions of residual networks and even to 

different network architectures. In other words, though the experiments were 

performed only on ResNet structure, the outcomes were generic since the key concern 

is the input characteristics. 

The network and its parameters are kept constant while the used parameters were 

known to provide an optimal processing from previous studies. The experiments are 

conducted on UCF101 Action Recognition Dataset, which consists of realistic human 

action videos belonging to 101 classes. The experiment sets for studying the impacts 

of input characteristics are fivefold:  

 The frame length of the input video 

 The presence of color information in the video 

 The normalization of pixel values 

 Combined version of the input (RGB only series vs. RGB + flow masked RGB 

series) 

 Content of the input (RGB only series vs. RGBF series vs. flow masked RGB 

only series) 
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Comparisons are performed between interrelated input types and the input 

characteristics set which yielded the best recognition accuracy will be offered. Effects 

of each modification will be analyzed separately. Moreover, the effects of modifying 

the input as mentioned above are different for different action classes; recognition 

levels for some classes increase evidently while for some classes the effects are not 

significant. Hence, an analysis which investigates the impacts of different input 

characteristics on recognition level will be performed class-wise. The accuracies will 

be compared with the networks that are trained from scratch in order to make a fair 

comparison. Lastly, the input characteristics set, yielding the highest accuracy, will be 

applied during fine-tuning the network on UCF101 dataset after pre-training on 

Kinetics dataset. By this way, the comparison with the state-of-the-art will be 

legitimate. 

Another contribution of this thesis is that the modifications applied on input 

characteristics yielding high recognition accuracy gains can also be utilized by 

different networks for increasing the recognition accuracy. Since the modifications are 

not network specific, they can be described as being generic. Adopting the proposed 

modifications for the inputs of different networks helps them to increase their accuracy 

levels by keeping their network architectures as they are. 

1.4. Organization of the Thesis 

Chapter 1 of this thesis contains the motivation for the problem which is followed by 

stating the problem. The approach followed and the contribution to the problem are 

also provided. 

The challenges in action recognition, the terms and concepts to be known are 

introduced in Chapter 2 as background information. The related works regarding 

action recognition are examined in detail. A literature survey of recent approaches and 

methods are also given at the end of this Chapter. 
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Chapter 3 presents the used network and the chosen parameters primarily. The datasets 

used and the evaluation parameters are covered. Then, the five experiment groups 

regarding different input characteristics are introduced and explained in detail. 

Chapter 4 starts with providing all the results corresponding to the experiment groups 

and analyses for each of them. It continues with analyzing the effects of modifications 

on the input in a class-wise sense. Lastly, comparison with the state-of-the-art will be 

presented. 

Possible improvements and future works are discussed in Chapter 5.  

Chapter 6 concludes the thesis by emphasizing the importance of the problem and 

summarizing the work done. 
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CHAPTER 2  

 

2. LITERATURE SURVEY AND RELATED WORK 

 

2.1. Challenges in Action Recognition 

Action recognition is a significant area in machine vision and can be thought of as a 

sophisticated version of image classification. It is the task of classifying the action 

happening in a video by either observing the relation between consecutive frames and 

matching the relation with the most relatable action, or by considering the action in 

the video as a whole and classifying it according to the patterns. Generally, during the 

classification of the actions, short snippets of the videos, namely clips, are considered. 

Still, algorithms are able to assign the correct actions to these short clips most of the 

time. 

The task of action recognition has substantial challenges which affect the performance 

of the algorithms. First of all, it is computationally expensive when compared to image 

classification since images contain 1 frame of information whereas algorithms that use 

clips need at least 10 frames to produce a reasonable result. Moreover, apart from 

spatial information contained in a frame, clips also have temporal information about 

the motion. In order the algorithms to reveal the hidden information in clips, they need 

much greater number of parameters which result in high computation time. Secondly, 

variations in a specific type of action or resemblance between different actions 

complicate the process of classification. Variation in a specific type of action means 

that there are different ways  an action 

of moving rapidly howev  of fast running. If the 

human subject in the video runs slowly, this action should still be classified as 

 different actions causes an action to be classified 

incorrectly. For example, in short snippets of time front crawl swimming and 
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breaststroke swimming may look similar. As Varol, G. points out in [18]

videos into short temporal intervals is likely to destroy such patterns making 

obstruct an action to be recognized correctly. There are pre-processing methods in 

order to eliminate noise. However, the viewpoint of the camera may mislead an 

algorithm and result in incorrect classification of an action. 

2.2. Spatio-Temporal 

- -temporal data is a series of 

spatial data vary through time. They are dependent on both space and time. Weather 

patterns [22], moving-object data [23], biological data [24] are some examples of such 

type of data. Videos are most common expressions of spatio-temporal data since they 

contain 2-dimensional spatial information and 1-dimensional temporal information. 

Spatio-temporal analysis processes this kind of data to find out hidden patterns that 

relate spatial information to temporal information. 

A human action is a form of 3-dimensional space-time representation. One of the most 

preferred techniques in action recognition from videos is spatio-temporal analysis 

since spatial data (frames) are collected across time [25]. An action has a spatial 

component that may be recognized only from a single frame and a temporal 

component which carries the main information of motion flow belonging to that 

action. 

2.3. Optical Flow 

Various methods do not only use RGB frame information from the videos, but also 

the optical flow between consecutive frames. Optical flow is the motion vector 

(horizontal and vertical) at each pixel between frames due to brightness variations 

[26]. The main pattern of the motion is presented by computing the optical flow. A 

widely used optical flow algorithm, Brox Optical Flow [27], is given in detail. 
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Brox flow is based on three assumptions, which are; Brightness Constancy 

Assumption, Gradient Constancy Assumption and Discontinuity-Preserving Spatio-

Temporal Smoothness Constraint. It is stated that non-linearization manner was 

favored instead of linearization in order to grab large displacements of pixels between 

consecutive frames correctly. Also, coarse-to-fine warping methodology was adopted 

in their algorithm. 

The Grey Value Constancy Assumption, in other words Brightness Constancy 

Assumption, is provided in (2.1) and it basically states that the gray value of a pixel at 

location (x, y) at time t is equal to the value of the same pixel which has a displacement 

of u units in x-direction and v units in y direction at time t+1. 

   (2.1) 

The same relation can also be stated as in (2.2); however, it is only valid for the cases 

where the changes in the image are linear and in the direction of displacements. Here, 

subscripted I values stand for partial derivatives of I values in the specified direction. 

    (2.2) 

However, since Brox et al. aimed to correctly compute optical flow, they used the non-

linearized version of Grey Value Constancy which is provided in (2.1). 

(2.1) turned out to be sensitive for small variations in gray values of pixels. In order 

to tolerate slight changes, they focused on spatial gradients and came up with Gradient 

Constancy Assumption. It is given in (2.3), where . 

  (2.3) 

Throughout the constancy assumptions given above, the impacts of neighboring pixels 

we

gradient vanishes somewhere, or if only the flow in normal direction to the gradient 

flow field logic was embraced. 
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As the spatial displacements of pixels may be larger than one pixel between 

consecutive frames, the minimization algorithm could find a local minimum of the 

energy function, which will be described below, and be trapped there while trying to 

find a solution. Hence, a multi-scale approach was adopted; algorithm starts with 

solving a coarser (smoothed) version of input. The solution of coarser version is used 

as an initialization point for finer versions. By this way, global minimum is reached 

effectively. 

Let be the pixel at position (x, y) at time t to be processed and 

its displacement in x and y directions at time t+1. Then, deviations from Grey 

Value Constancy and Gradient Constancy Assumptions in an image can be calculated 

as an energy term as in (2.4). 

 (2.4) 

is a weight parameter between two constancy assumptions. For an equation as in 

(2.4), outliers mislead the solution. Hence, an increasing function of 

was introduced which is concave and ensures 

as 0.001. (2.4) becomes (2.5). 

 (2.5) 

For considering smoothness constraint, (2.6) was defined where , 

the spatio-temporal gradient term. 

   (2.6) 

The final energy function to be minimized in order to compute the optical flow vector 

was provided is a positive regularization term. 

     (2.7) 
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2.4. Related Work 

Over time various techniques and algorithms were suggested and compete with each 

other in order to reach a high accuracy level of recognizing human actions in videos. 

There are two main approaches to process the video data and classify the partaking 

action. The first one is Representation and Classification Approach, which extracts the 

features with traditional methods and completes the task by using classifier algorithms 

[28]. The second one is Deep Architectures Approach, which utilizes artificial neural 

networks and offers more complex, sophisticated and generic methods. 

2.4.1. Representation and Classification Approach 

People have used combinations of representation and classification techniques in order 

to recognize specific actions from an input video. This approach is based on 

representing an action as feature vectors and obtaining the correct label by analyzing 

the vectors with classifiers, unlike deep networks which merge representing and 

classifying tasks [29]. Since this thesis focuses on deep networks for action 

recognition, this approach will not be examined in detail. 

2.4.1.1. Representation 

Representation algorithms focus on how an action is formed throughout the 

consecutive frames of a video and express the subject action in a form of feature 

vectors. By doing so, hand-crafted methods were used [30], which means the methods 

are task-specific or action-specific such that the parameters used in these methods are 

pre-defined [31]. Hand-crafted methods may result in correct representations; 

however, they are time consuming to optimize and come up with incorrect 

representations when they are exposed to different types of tasks. Especially, action 

recognition is a challenging task since same human actions appear in different forms, 

tion. 

information of human actions,  the 
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action as feature vectors as [29] stated. They either deal with the subject of action with 

a holistic approach, by focusing on entire subject while being exposed to noise; or 

with local regions which tend to have the essential information about the action. 

Motion Energy Image (MEI) and Motion History Image (MHI) [32] are examples of 

holistic representation approach since they focus on expressing the action information 

from the silhouettes in the input. They aim to find out how the motion appears and 

where the motion takes place. Also, Motion History Image (MHI) was extended to 

Motion History Volume (MHV) in [33] in order to eliminate the sensitivity to 

viewpoint. 

Methods that follow local representation approach use the informative areas and detect 

the motion in space-time regions. Detection is followed by extraction of the motion 

features present in the corresponding areas. The pioneering idea was to focus on 

interest points which was suggested by the method Space-Time Interest Points (STIPs) 

[34]. Large motion changes were detected by Gaussian kernels [35]. Space-time 

extended Harris corner detector [36], Gaussian kernel, Gabor filter [37], Hessian 

matrix [6] are examples of techniques to find the interest points. After the detection, 

the motion information had to be extracted there. Optical flows and gradients are 

examples of such information. Histogram of Optical Flow (HOF) [7] and Histogram 

of Oriented Gradient (HOG) [38] were used for representing motion trajectories. 

2.4.1.2. Classification  

When representation phase is completed, the features are subjected to classifiers for 

the task to be completed. The classifiers should be trained with action classes in order 

to learn and distinguish the boundaries between classes. 

One of the most preferred methods is to use hidden Markov models (HMM) which 

can be described as a sequential approach [39]. The video is processed as a sequence 

of frames which carry temporal information. Sequential state models are used to define 

actions such that specific sets of transitions between states classify actions. 
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Conditional Random Fields (CRF) [40] and structured Support Vector Machines 

(SSVM) [41] are also examples of sequential approaches. 

Direct classification is also widely used in order to encode the motion information 

from feature vectors. Support Vector Machines (SVM) [8] and k-Nearest Neighbor 

(k-NN) [42] classifiers are the most common one for this approach. Also, there is bag-

of-visual-words model, which is an extended version of bag-of-words model used for 

gradients and optical flows around interest points [43]. It focuses on key points and 

descriptor features, in other words visual words, to define an action. These words are 

computed by using Fisher vector [44] or k-means clustering [45] and represented as 

frequency histograms. SVMs can be used to classify these words. 

2.4.2. Deep Architectures Approach 

Since Representation and Classification Approach mostly consists of hand-crafted 

methods, the usage of them requires specialties in the field and great effort. 

Additionally, these methods are generally task-specific or dataset-specific and do not 

guarantee the same performance when they are utilized in different tasks or datasets. 

Hence, they suffer from not being generic [46]. 

With prevalent usage of artificial neural networks, increased availability of 

computational power and expertise that researchers develop through years, deep 

networks are enhanced and used for such purposes. Deep architectures are said to be 

preferable to hand-crafted algorithms since they learn the hidden representations, 

automatically extract features and yield a better accuracy performance. Moreover, 

they are generic such that a network may be used both for classification of animals 

and classification of leaves. There is no need to specify the pattern of the subject like 

traditional methods do. 

For the task of action recognition, Deep Architectures Approach has 3 main strategies. 

The first strategy is to separate spatial and temporal information into multi streams 

and then fuse them. The second one uses the 3-dimensional input as a whole in a 
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spatio-temporal manner. The last one consists of hybrid networks which make use of 

CNNs and LSTMs together. 

2.4.2.1. Multi-Stream Networks 

2.4.2.1.1. Fusion 

Karpathy et al. came up with different fusion models in [11] by asking the question 

o

resolution CNN was used in order to decrease the runtime. The network had a context 

stream, which processes the whole frame in a lower resolution; and a fovea stream, 

which focuses on the center of the high resolution frame in order to detect the motion 

information. First, they used the network for single frame as reference. They suggested 

3 fusion models. Early fusion takes 10 consecutive frames as input and they are fused 

at the beginning of the network. Late fusion takes 2 frames, which are 15 frames apart, 

and uses 2 separate network towers. They are fused at the end of the networks. Slow 

fusion is a balanced mix between Early and Late fusion models. It processes 10 

consecutive frames as Early fusion model; however, they are fused with a temporal 

extent of 4 frames with stride 2. Hence, the 10 consecutive frames are fused 

progressively. Karpathy et al. described this behavior in [11]  layers get 

access to progressively more global information in both spatial and temporal 

provided in Figure 2.1. Their work showed that these 

fusion architectures do not have crucial effects on the performance; but Slow fusion 

model reaches a better accuracy level among the models. 
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Figure 2.1. Fusion strategies suggested in [11] 

 

2.4.2.1.2. Two-Stream Architecture 

In [12] Simonyan and Zisserman suggested the most common two-stream 

architecture, which isolates the spatial and temporal sections of the video. The two 

streams are processed in two different ConvNet architectures and then fused by a late 

fusion model. 

To do so, RGB frames (still video frames) are used for spatial stream. In order to 

investigate the effect of pre-training, first they used the RGB frames of UCF101 [47] 

dataset to train the network from scratch; then pre-trained on ImageNet ILSVRC 2012 

[48] + fine-tuned on UCF-101; finally, pre-trained on ImageNet ILSVRC 2012 + only 

trained the last (classification) layer. They showed that pre-training has an inevitable 

effect on increasing the accuracy of the network. 

For temporal stream, optical flows are computed by Brox flow [27]. They used optical 

flow stacking for 1, 5 and 10 frames and trajectory stacking for 10 frames. They 

conclude that optical flow stacking for 10 frames achieves the best performance and 

also temporal ConvNet out-performs spatial ConvNet. 

Finally, they examined how to fuse the two streams; by averaging the softmax scores 

or by using a multi-class linear SVM [8] classifier. Their resultant network contains 

-trained on ILSVRC, with the last layer trained on UCF or HMDB. 

The temporal net was trained on UCF and HMDB using multi-task learning, and the 
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input was computed using uni-directional optical flow stacking with mean subtraction. 

described in [12]. The increase in the accuracy with the usage of optical flow was 

emphasized by the authors. 

2.4.2.1.3. Two-Stream Network Fusion 

Feichtenhofer took off where Simonyan and Zisserman left and investigated where to 

fuse the spatial and temporal networks in [13]. Instead of fusing the two streams by 

their softmax scores with late fusion, the convolutional layers belonging two streams 

can be fused at network level. Because, when the streams are fused at the end, the 

pixel-wise relations and patterns between the spatial streams and temporal stream 

cannot be learned efficiently. The fusion should be performed on the networks rather 

than the classification scores. 

3 questions should be answered: how to fuse the networks spatially, where to fuse the 

networks, and how to fuse the networks temporally? For the first question; fusion by 

summation, maximizing, concatenation, convolution and bilinear (outer product) were 

performed. Sum fusion took place in the softmax layer, the others took place in 

RELU5 layer. The best performance was achieved by convolutional fusion; however, 

fusion by summation (which was commonly used) also achieved a good accuracy rate. 

For the second question, performing the fusion after both RELU5 and FC8 layers 

resulted in a high accuracy level. The first fusion creates a spatiotemporal structure by 

using the spatial and temporal streams. The second fusion takes place between the 

composed spatiotemporal stream and on-going spatial stream as shown in Figure 2.2. 

Not truncating the spatial stream enhanced the performance. For the last question, 3D 

convolution followed by 3D pooling yielded the best accuracy. 
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Figure 2.2. Layers where fusion is applied by [13] 

 

2.4.2.1.4. Temporal Segment Networks 

In [14] L. Wang et al. were in a search for an effective ConvNet architecture which 

adopts the principle of long-range temporal processing. They suggested the idea that 

since consecutive frames are highly redundant, they carry similar information. Hence, 

there is no need to sample the frames densely. Instead, sparse temporal sampling will 

result in better recognition of the action in the video; because sparse temporal 

sampling focuses on the whole video rather than consecutive frames. As seen in Figure 

2.3, the video is divided into K equal parts, a single frame for spatial ConvNet and a 

short snippet of frames for temporal ConvNet are used randomly for each of the K 

parts. K many spatial ConvNets and temporal ConvNets are fed into spatial and 

temporal segmental consensuses. Then they are fused to form the final class scores. 

The network is called as Temporal Segment Networks. 
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Figure 2.3. Temporal Segment Networks [14] 

 

Moreover, they used enhanced input modalities in order to enhance the performance. 

In addition to RGB frames for spatial ConvNet, RGB difference frames are used. Also, 

optical flow frames were warped in order to compensate the camera motion. They 

compared the network performances when different modalities and combination of 

the modalities were used and reached the best accuracy level by combining optical 

flow, warped optical flow and RGB frames. 

They also evaluated the performance of the chosen consensus function by using max 

pooling, average pooling and weighted average functions. For the two-stream 

structure, average pooling acquired the highest accuracy rate. 

2.4.2.2. Spatio-Temporal Networks 

2.4.2.2.1. Deep 3-Dimensional ConvNet + SVM 

In [16] D. Tran et al. stated that 2D ConvNets were inadequate capturing the motion 

information contained in the frames; hence, 3D ConvNets would be more efficient in 

using the temporal relations. Their main point was using 3-dimensional convolutional 

kernels. 3-dimensional kernels result in volume instead of an image; so, they are able 

to preserve the temporal patterns during convolution. Fusion models that use 2-

dimensional convolutions lose the temporal signal, resulting in lower recognition 

accuracies. 
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In order to find the appropriate kernel, they performed experiments for the time 

dimension of kernel, the depth. The first approach was to keep the depth constant in 

all the convolutional layers. Accuracy was measured for 4 networks with kernel depths 

1, 3, 5, 7. Kernel depth 1 was equivalent to a 2-dimensional kernel. This work showed 

that using 3x3x3 had the best performance. The second experiment aimed varying 

temporal lengths; one network with increasing depth in layers (3-3-5-5-7) and one 

with decreasing depth in layers (7-5-5-3-3).  Keeping the depth constant yielded better 

accuracy levels. 

Their proposed network (C3D) was used as a feature extractor and should be combined 

with a classifier, such as a multi-class SVM. C3D revealed the appearance information 

by using the first frames and was able to focus on the motion flow in the following 

frames. They performed evaluation on UCF101 dataset while training in three ways; 

C3D trained on I380K (an internal dataset), C3D trained on Sports-1M [11], C3D 

trained on I380K and fine-tuned on Sports-1M. They concluded that using 3-

dimensional convolutions provided a significant increase in the accuracy and fine-

tuning had a positive effect on the accuracy. 

2.4.2.2.2. Two-Stream Inflated 3D ConvNet 

In [9] Carreira et al. proposed that current methods could be used by modifying them 

and utilizing them on a new, extensive dataset called Kinetics [49]. Their starting point 

was inflating 2-dimensional ConvNets. As it can be seen in Figure 2.4 a-c, current 

models until then were combination of ConvNets and LSTMs [50], 3-dimensional 

ConvNets that use the input spatio-temporally, two-stream architectures with 

ConvNets. Their two suggestions are provided in Figure 2.4 d-e; the two-stream 

architecture in Figure 2.4 c can be used for consecutive frames which is followed by 

3D ConvNet (Figure 2.4 d), or using consecutive frames as inputs to two-stream 

networks and convolving them with 3D ConvNets instead of 2D ConvNets (Figure 

2.4 e). 
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Figure 2.4. a, b, c: Network architectures suggested before Inflated 3D Networks. d, e: Network 
architectures using inflation [9]  

 

In other words, the proposed network inflated the kernels and pooling of 2-

dimensional state-of-the-art architectures into 3-dimensions. They showed that 

utilizing Inflated 3D models after pre-training them on Kinetics [49] dataset enhanced 

the state-of-the-art results. They made use of inception modules [51] and TV-L1 

algorithm [52] for optical flow input of the temporal stream. Their work was important 

since they suggested an architecture by re-using existing ones. 

2.4.2.2.3. Pseudo-3D 

In [17] ecycle off-the-shelf 2D networks for a 

n of the large learning capacity of Residual Networks 

(ResNets) [53]. The residual structure of a block in ResNets is shown in Figure 2.5 a. 

learning framework b

filters on spatial domain (equivalent 

could be used in a parallel or cascaded manner and called as Pseudo-3D blocks. 

The variants were threefold: P3D-A performs 1x3x3 2D spatial convolution cascaded 

with 3x1x1 1D temporal convolution (Figure 2.5 b), P3D-B performs 1x3x3 2D spatial 

and 3x1x1 temporal convolution in parallel (Figure 2.5 c), P3D-C performs 3x1x1 1D 
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temporal convolution in parallel with concatenation of 1x3x3 2D spatial and 3x1x1 

1D temporal convolution (Figure 2.5 d). 

 

 

Figure 2.5. a: Residual block. b: P3D-A residual block. c: P3D-B residual block. d: P3D-C residual 
block. [17] 

  

When the modified bottleneck block structures were replaced with original ones in 

ResNet and compared with recognition accuracy levels, it was shown that P3D-A 

performed best among them. Their final network consisted of the concatenation of 

P3D-A + P3D-B + P3D-C as a bottleneck block and this block was replaced with 

original ones in ResNet architecture. 

2.4.2.2.4. Long-Term Temporal Convolutions 

It is suggested that recent convolutional neural networks process videos for short 

intervals of time and this situation drops the network performance and prevents the 

network to recognize action correctly in [18]. Distinct human actions last several 

seconds as well as the repetitive ones; hence, it is not the best idea to focus on only 10 

consecutive frames to label an action. Temporal characteristic patterns are embedded 

in long-term structures. Therefore, their suggested network is called as Long-term 

Temporal Convolutions (LTC). 

They performed 3 studies for determining the network properties and finding out the 

impacts of frame length, temporal and spatial input resolutions and input modalities. 
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First, they compared the network performance by inputting 16 frames and 60 frames 

and found out that 60 frames network had better accuracy rate. Then, they varied the 

temporal resolution of input between 20, 40, 60, 80 and 100 frame lengths. In the 

meantime, they varied the spatial resolution of input between 58x58 (low resolution) 

and 71x71 (high resolution). Their comparison resulted in high resolution input having 

higher accuracy rates than low resolution input for all frame lengths. They also showed 

tha

the gain of increased spatial resolution is lower for networks with long temporal 

[18] as shown in Figure 2.6. Finally, they used raw RGB values (3-channel) 

and optical flow values using Brox flow [27] (2-channel) as inputs. They compared 

RGB, optical flow and combination of them (by averaging). The best result was 

achieved by Flow+RGB as expected, which is followed by Flow and then RGB. 

Their comments were as follows: as frame length increases, classification of 25 classes 

showed full increment whereas none of them showed full decrement. They gave an 

example of two actions which could be confused by networks which do not focus on 

long- ng, but 

they diverge from each other in latter frames. Using larger number of frame lengths is 

effective in discriminating such actions. Last point they emphasized was focusing on 

longer temporal extents may not affect the accuracy for short actions; however, 

considering short temporal extents may mislead the network for long-lasting actions 

and result in incorrect classification. 
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Figure 2.6. Recognition accuracy results of [18] for varying frame lengths, spatial resolution and 
input type 

 

2.4.2.2.5. Deep 3-Dimensional Residual ConvNet 

Tran et al. suggested in [54] the usage of Residual Networks instead of ConvNets, 

which they proposed before in [16], resulted in higher recognition accuracy levels. 

First, they listed the difficulties of action recognition task. Since videos have large 

amounts of data, usage of 3-dimensional ConvNets result in high computation time 

and inadequacy of memory. Also, there are lots of benchmarks that are used in action 

recognition, detection, representation tasks; hence, it is difficult to design a video 

classification architecture and compare with existing ones. The pre-processing of the 

input, sampling rates, what type of convolutions to perform, the depth of the network 

and modeling the temporal structure are all need to be answered. They conducted 

experiments to answer all these questions on UCF101 dataset. They also pointed out 



 

 
 

24 
 

that UCF101 was not a large dataset and over-fitting occurred; however, single 

changes in the architecture could be observed easily. 

They fixed the frame length to 4 and tried to find the adequate network, which is 

simplified 3D-ResNet18. Then the appropriate temporal stride was selected from the 

set {1, 2, 4, 8, 16, 32}. Here, stride 1 corresponds to consecutive 4 frames whereas 

stride 32 corresponds to equally scattered 4 frames spanning 128 frames. The accuracy 

rates showed that strides between 2  4 were appropriate. Then, spatial input 

resolutions were tried as 224x224, 112x112 and 56x56; 112x112 resolution was found 

to be ideal for ensuring accuracy as well as not increasing the computational 

complexity. Another experiment was for the type of convolutions; mixed 3D-2D 

convolutions (starting with 3D convolutions and continuing with 2D convolutions), 

2.5D ConvNets (1xdxd convolutions and 3x1x1 convolutions) or fully 3D 

convolutions? As expected, using only 3D convolutions improved the accuracy more. 

The last parameter to choose was the depth of the ResNet. Out of depths 10, 16, 18, 

26 and 34, ResNet18 achieved the highest accuracy. 

2.4.2.3. Hybrid Networks 

Hybrid networks make use of different deep networks by concatenating them in order 

to achieve a higher accuracy rate. The following hybrid networks both suggested using 

Recurrent Neural Networks [55], specifically Long Short Term Memory (LSTM) [50], 

after Convolutional Neural Networks. 

2.4.2.3.1. Long-Term Recurrent Convolutional Networks 

It is argued that for assignments involving processing sequences, it is better to employ 

models which assume a fixed spatio-temporal receptive field or simple temporal 

[19]. They emphasized the positive impact of using variable length inputs for large-
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scale learning tasks. Their main point was making use of Recurrent Neural Networks 

 

The proposed network architecture inputs variable length visual sequence; after 

extracting the visual features by Convolutional Neural Networks, they are fed to 

LSTM units for sequence learning and finally variable length predictions are formed 

as shown in Figure 2.7. In other words, the input frames are subject to feature 

transformation and a sequence of visual input features are formed. In each of the 

LSTM structures; an output and an updated hidden state element are formed by an 

input and a previous hidden state element. By this way, LSTM units have control over 

the whole input. Finally, a distribution is predicted by using softmax function on the 

LSTM outputs. This process requires sequential running because of its structure. 

 

 

Figure 2.7. Long-Term Recurrent Convolutional Network [19] 

 

They used this architecture for action recognition (sequential input, fixed output), 

image description (fixed input, sequential output), and video description (sequential 

input, sequential output). For action recognition, T input units, T ConvNets, a single 
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layer of LSTMs were employed; where T was selected as 16 frames. Even though they 

specified the value of T, they indicated that T could be larger, and the network is able 

to learn complex sequences thanks to its architecture. 

2.4.2.3.2. Feature Pooling vs LSTM 

In [20] Ng et al. were in a search of deep networks for processing videos through 

larger periods of time, unlike other works until then. Previous methods, generally, 

processed video frames with Convolutional Neural Networks as still images and 

averaged the predicted values at video level. They stated that this technique resulted 

in not discriminating between classes because of processing incomplete information. 

In order to perform correct classification, the videos should be learned globally and 

the whole temporal relationship between frames should be focused on. Their work was 

in twofold: evaluating different pooling methods for temporal features and modeling 

the input video as a sequence of frames by using Recurrent Neural Networks. 

Because of high computational complexity caused by 3-dimensional convolutional 

filters applied to the video, Ng et al. did not focus on implicit motion features. They 

also adopted a processing speed of 1 frame per second, causing the lack of implicit 

motion. Hence, they used explicit motion information which appeared as optical flow 

images. They computed optical flow for consecutive frames using TV-L1 algorithm 

[52]. 

For feature pooling, CNNs were used for each frame and the resultants were combined 

by various pooling strategies at frame-level instead of video-level. The attempted 

pooling methods are shown in Figure 2.8. They experimented to find the best state to 

locate the temporal pooling layer, which performs max pooling. Their experiment 

showed that Conv Pooling reached the highest accuracy and Time-Domain 

Convolution had the lowest accuracy; hence, employing a single time-domain layer 

had no beneficial effect on accuracy. The ideal performance was reached by 

processing 120 frames of video, approximately 2 minutes. 
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Their second suggestion was to use Recurrent Neural Networks; aiming an 

architecture based on LSTM layers which act as memory cells that can store the 

relations between frames, allowing modifications. By this way, long-range temporal 

correlations could be revealed. Deep Video LSTM architecture, which consists of 

CNNs for each frame, followed by five layers of stacked LSTMs and softmax layers 

for each time step, is provided in Figure 2.9. 

 

Figure 2.8. Applied pooling methods by [20] 
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Figure 2.9. Deep Video LSTM network architecture suggested in [20] 

 

Conv Pooling of 120 frames and LSTM with 30 frames resulted in close accuracy 

rates. However, their work suggested that in order to benefit the optical flow 

phisticated sequence processing 

[20]. 

2.5. Different Input Modalities in the Sense of Optical Flow 

Some networks use optical flow information in addition to RGB frames to maintain 

better operation while classifying the input videos. Networks adopting two-stream 

approach [11][12][14] have utilized motion flow as 2-dimensional input for each 

frame. For this purpose, optical flow between consecutive frames are computed which 

consist of optical flow values in x direction and optical flow values in y direction. 

They have made use of these raw flow values by setting the range to 0 to 255 in order 

to use the same range for RGB and flow frames.  

Lately, networks are in a search of different usages of flow information. [56] observed 

the effects of five different flow modalities while calculating the flow using OpenCV 

Farneback Dense Optical Flow [57]. They used magnitude of optical flow normalized 
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to the range (0,255), angles of directions of flow in the range of (0,180), Color Wheel 

representation where color represents the direction while intensity represents the 

magnitude of flow, direct flow vectors and scaled magnitude of optical flow. The most 

successful modalities were obtained by scaled magnitude and normalized magnitude 

modalities.  

In [58], using RGB frames only, flow frames only, RGB+flow frames by fusion and 

RGBF frames were compared. The magnitudes of the flow were computed for every 

pixel and the range was set to (0,1) which was followed by masking the RGB values 

by the flow values resulting in RGBF frames. It was concluded that masking the RGB 

values with flow achieved higher accuracy rates than RGB only and flow only frames. 

[59] also evaluated different forms of flow information. Two approaches using 

different compositions were compared; the flow information was either concatenated 

with RGB frames or flow information and RGB information were fused. For 

concatenation, three different forms were used. First one consisted magnitude of flow 

information in 1 channel. Second one used magnitude and direction of flow 

information in 2 channels. Last one utilized flow in Color Wheel format in 3 channels. 

Among three modalities, the magnitude of flow yielded highest accuracy level. For 

fusing the two streams, flow information was either represented as Color Wheel 

format in 3 channels or 3 layers of magnitude of flow information were used. Color 

Wheel resulted in highest accuracy; however, it resulted in high computation time. 

These studies have shown that when flow information is used as different formats 

rather than raw x and y flow vectors, the operations of the networks are enhanced. 

2.6. Literature Survey 

As mentioned in Section 2.4.2 the suggested approaches using deep networks for 

action recognition are threefold: multi-stream networks, hybrid networks that benefit 

combining different deep architectures and networks that process spatio-temporal 

input as a whole. 
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Karpathy et al. proposed different fusion techniques (early, late and slow) in [11] and 

slow fusion was found out to be performing best among them. Following fusion 

strategy, Simonyan and Zisserman [12] suggested processing spatial and temporal 

components of a 3-dimensional input independently by 2-dimensional convolutional 

neural networks, which was pursued by fusion of these streams. They also analyzed 

both streams and emphasized the positive effect of pre-training the spatial networks 

on recognition accuracy. Then, in [13] Feichtenhofer et al. continued the fusion 

strategy but suggested fusing networks at an early convolutional layer level rather than 

fusing their classification scores at softmax layer. In addition to examining where to 

fuse the networks such that the highest accuracy can be reached, they also studied how 

to fuse the networks spatially and temporally. Moreover, they suggested multiplier 

networks [60] that allow appearance and motion streams to interact and spatio-

temporal residual networks [61] whose residual connections were between the spatial 

and temporal components. These studies showed the impact of interrelations between 

these streams. Temporal Segment Networks were proposed by Wang et al. [14], which 

adopted the idea that sparse temporal sampling would supply more useful information 

than dense sampling since consecutive frames convey similar motion information. 

They also considered the effect of input modalities such as pure RGB frames, RGB 

difference, optical flow and warped optical flow. These studies showed the effect of 

fusing streams correctly and choosing appropriate input types improved recognition 

accuracy. 

In the meantime, hybrid networks were started to be considered such that the outputs 

of the convolutional neural networks were inputted to recurrent neural network, 

specifically LSTM [50], units. Although such combined networks had high 

computation time, this strategy was reasonable since actions have temporal 

dependency between consecutive frames. LSTM units allowed the information 

contributing the action to be passed forward and the unnecessary information to be 

eliminated. In [19] Donahue et al. proposed such network as Long-Term Recurrent 
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Neural Network. Also, Ng et al. made use of hybrid networks while examining the 

most beneficial strategy for feature pooling in [20]. 

The last approach was using 3-dimensional convolutional kernels for spatio-temporal 

inputs which could be said to out-perform two-stream networks using 2-dimensional 

kernels. To start with, in [15] Ji et al. suggested using 3D kernels in convolutional 

layers were more beneficial than 2D kernels and this strategy allowed extracting 

spatial and temporal information which was legitimate for action recognition. Then, 

Tran et al. [16] introduced a 3-dimensional convolutional network, C3D, which was 

accepted as a reference network and study for all 3D networks proposed henceforth. 

Their study also compared various kernel sizes and showed that 3x3x3 kernel reached 

the best performance. In [18] Varol et al. accepted the success of 3D networks and 

focused on the length of temporal convolutions. Their key point was temporal patterns 

were embedded in long-term structures; hence, expanding temporal length would 

improve accuracy. They supported this idea by their experiments on varying the 

temporal length while considering the effect of spatial and temporal resolution of the 

input. They also showed the impact of using optical flow as input. Later, current 2D 

methods were re-evaluated by Carreira et al. in [9] with an approach of inflation. They 

basically expanded the filters and pooling kernels which were used in 2D methods into 

3D. Their work was important by means of re-using the existing networks and 

analyzing them. A different approach, called as Pseudo-3D Residual Network (P3D), 

was introduced in [17] and based on re-evaluating the structure of residual blocks. 

P3D approach involved 3 versions of employing spatial, temporal kernels and their 

residuals. They finalize their work by concatenating all 3 versions to achieve the best 

accuracy. Following that, Hara et al. utilized 3-dimensional residual networks and 

found out that they were effective for action recognition tasks when trained on large-

scale video datasets in [10]. Meanwhile, Tran et al. also used ResNets in [54] and 

performed experiments in order to choose the network structure that reached the best 

performance. To do so, they focused on the depth of the ResNet, the type of 

convolutions to perform, the stride during convolutions and the crop size of the input. 
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After the success of ResNets in large-scale video datasets, Hara et al. suggested 

observing the effect of the depth of Basic ResNet architecture and employing different 

structures for ResNet blocks such as Bottleneck, Pre-act, ResNeXt and DenseNet in 

[21]. Their work showed that the best accuracy was achieved by using ResNeXt-101. 
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CHAPTER 3  

 

3. EXPERIMENTAL SETUP 

 

3.1. Purpose 

The focus of this thesis is investigating the effects of different input characteristics on 

the human action recognition accuracy rate and establishing the action classes which 

benefit from the modified inputs. Proposing a set of specified input characteristics 

which leads to an increase in the accuracy rate is the ancillary goal of the study. Also, 

comparison with the state-of-the-art methods is provided. 

To completely focus on the results caused by the modified inputs, a network is selected 

for this task and its parameters are kept constant such that the alterations in recognition 

rate can be directly associated with the applied modifications. By this way, a 

controlled test environment would be guaranteed, and it would be convenient to 

observe the effects independently. To do so, among standing-out networks suggested 

in previous studies, an extended version of residual networks (ResNet) is endorsed 

because of its high learning capacity. The parameters such as learning rate and 

optimizers to be used are also kept constant. A detailed examination of ResNets and 

the selected parameters will be defined in Section 3.2 as well as the specifications of 

the training environment. 

The experiments are performed on UCF101 Action Recognition Dataset which 

consists of videos belonging to 101 human action categories. Even though it is a small 

dataset, it is used as one of the standard benchmarks for action recognition tasks. In 

recent years, a comprehensive large scale dataset, called as Kinetics, was introduced. 

The latest studies have also reported the recognition results of their networks on this 

dataset. Kinetics dataset is more convenient than its alternatives in many aspects. As 

a final task of the thesis, according to the results of the experiments performed on 



 

 
 

34 
 

UCF101 dataset, the parameters of the network are fine-tuned after pre-training on 

Kinetics dataset. The datasets will be examined in detail in Section 3.3. 

In order to demonstrate the performance of a network, some evaluation metrics should 

be defined. In action recognition tasks, these metrics are specified as the loss and the 

accuracy of the networks during training and validation. Also, for testing the networks, 

top-1 and top-5 accuracies are used in this work. These metrics will be covered in 

Section 3.4. 

Five experiment groups are formed in compliance with the modifications applied to 

the input videos. These modifications are made for evaluating the necessity of color 

information and the normalization of the input frames, the effect of using longer 

duration of videos, the impact of combining different types of input and the influence 

of the presence of optical flow information between consecutive frames. Different 

input characteristics yield different recognition rates as they have an inevitable effect 

on how the network learns and adapts its parameters. The presentation of the input to 

the network is as crucial as the network architecture itself. Hence, the experiment 

groups are formed in order to observe the impacts of different input characteristics on 

the operation of the network. These groups will be introduced in Section 3.5. 

3.2. The Network 

3.2.1. Residual Networks 

3.2.1.1. 2-Dimensional Residual Network  

Deep learning algorithms are based on the idea that higher representations of patterns 

can be reached by utilizing a hierarchy of layers. Therefore, to reach a high accuracy 

level, studies tend to increase the hierarchical compositions through deep networks. 

However, as the networks go deeper only by increasing the number of layers, some 

difficulties have arisen.  

First of all, degradation is a crucial problem for deep networks. It means that the 

accuracy of the networks converges to a level and becomes saturated which is 
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followed by a rapid degradation. The presence of degradation shows that optimizing 

that network and approximating its non-linear functions are not easy.  The solution 

still consists of deeper layers; however, it is indicated in [53] that the added layers 

should have shortcut connection. Hence, they suggested a residual block architecture 

with identity mapping as shortcut connections.  

 

 

Figure 3.1. Basic residual block [53] 

 

Figure 3.1 shows the basic residual block. The input of the network is denoted as x; 2 

weight layers with RELU layer in between represent the function F(x). The weight 

layers are denoted by W1 and W2. With the identity mapping used as a shortcut 

put before the last RELU function is 

given by (3.1). 

 (3.1) 

Their hypothesis is that if complicated functions can be approximated by multiple non-

linear layers in a network, then residual functions can also be approximated 

accordingly. H(x) is the original mapping function which is hard to optimize whereas 

, the residual mapping, is easier to optimize. Learning F(x) by 
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employing residual blocks is preferred to learning F(x) with a simple deep network 

which may cause degradation. These identity connections do not add extra parameters 

and computational complexity nearly stays the same. Hence, networks adopting such 

residual blocks can be trained end-to-end and perform back-propagation.  

Moreover, since each layer does not need the information only from the previous one, 

the information from the layers that are stacked on top of it can be propagated by 

utilizing residual blocks. In other words, inputs of lower layers are forwarded to deeper 

layers in the form of shaped information instead of abstract information. Thus, the 

operation of the network is favorable to increase the accuracy. 

The suggested 2-dimensional Residual Network (ResNet) for 34 layers in [53] is 

shown in Figure 3.2. After each convolutional layer, batch normalization is used.  
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Figure 3.2. ResNet-34 network architecture [53] 
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3.2.1.2. 3-Dimensional Residual Network  

As residual networks have shown success in image recognition tasks by learning the 

hidden representations effectively and reaching a high accuracy rate, their operation 

has gained recognition. Hence, as studied in [10] and [54], 2-dimensional residual 

networks used for image recognition can be extended to 3-dimensional residual 

networks used for action recognition. This idea has been adopted quickly since 

ResNets have manifested themselves and modifying them for 3-dimensional tasks has 

been almost effortless.  

In order to utilize ResNets for 3-dimensional tasks, a third dimension is added to all 

kernels, pooling and convolutional layers. The advantage of using residual blocks is 

still valid since the residual structure of the network is preserved.  

2-dimensional ResNets are modified by: 

 Changing the input size from 224 x 224 to (temporal length) x 112 x 112 

 Replacing the 7 x 7 convolutional kernel in conv1 layer with 7 x 7 x 7 

 Performing the down-sampling in conv1 layer as 1 x 2 x 2; in other words, 

down-sampling the input only in spatial domain 

 Performing the down-sampling in conv3, conv4, and conv5 layers as 2 x 2 x 

2; in other words, down-sampling is performed both spatially and temporally 

 Changing all the convolutional kernels from d x d to 3 x d x d 

The resultant network architecture is provided in Table 3.1 which contains the layers, 

input and output sizes of 3-dimensional Residual Network for 34 layers. The 

dimensions are provided for a network taking 16 frames of RGB input and classifying 

n of 

e 

provided as C x T x W x H; where C is number of channels, T is temporal (frame) 

length, W is width and H is height. 



 

 
 

39 
 

The network in Table 3.1 is used throughout the thesis. The varied parameters are the 

frame length (16 in Table 3.1) and the number of input channels (3 in Table 3.1). 

 

Table 3.1. Network architecture for 3-dimensional residual network (34 layers) 

Layer 
Name 

Input Dimensions Layer Details Output Dimensions 

  
 

 

    

   

   

   

   

  
 

 

 

3.2.2. Specifications of the Training, Validation and Test Environment 

The trainings, validations and tests are performed on Ubuntu 16.04 using PyTorch and 

its libraries. The GPU is NVIDIA GeForce GTX1050. The networks are trained for 

150 epochs and a batch size of 16 samples for all the experiment groups except for 



 

 
 

40 
 

one where the frame length is set to 60 frames. Since the size is large for the GPU, the 

batch size is set to 8. 

During training and validating the 3-dimensional ResNet, cross-entropy loss and 

accuracy of the output are used for measuring the performance of the network. Cross-

entropy loss will be covered in Section 3.3.  

As the gradients of the cross-entropy loss are back-propagated during training, 

Stochastic Gradient Descent (SGD) optimizer is used. SGD is useful since the 

parameters are updated in an iterative manner and converge in a fast fashion. SGD 

updates the model parameters using the gradients and the learning rate in order to 

follows:  

 Initial learning rate is set to 0.1 and divided by 10 whenever the validation loss 

saturates 

 Weight decay is set to 0.001 in order to prevent the weights to grow too fast 

 Momentum and dampening are set to 0.9 for a proper optimization 

In training process, a clip with frame length T is generated randomly from each video 

in every epoch. To do so, a temporal duration is selected randomly and T frames 

around it are inputted to the network as a clip. In other words, for each video, only one 

clip with length T is used. The frames are spatially cropped at one of the random 

positions: top left, top right, bottom left, bottom right, center. The width and height 

are set to 112 x 112 pixels. Frames are flipped horizontally with a probability of 50%. 

During validation, again cross-entropy loss is used; however, back-propagation does 

not take place. Hence, optimizers are not used. In validation, 3 clips with length T are 

used. These clips are generated by dividing the video in 3 equal parts. The frames are 

spatially cropped at the center; the width and height are set to 112 x 112 pixels. 



 

 
 

41 
 

For testing the network, all frames in videos are used by dividing them into clips with 

frame length T. For the clips having less than T frames, the video is looped. The frames 

are cropped at the center and the sizes are set to 112 x 112 pixels.  

3.3. Evaluation Parameters 

For training the network, cross-entropy loss and accuracy are used as evaluation 

metrics. Cross-entropy loss is defined as in (3.2) where  is the network output before 

softmax, class is the ground truth and summation over j consists of all classes. The 

incorrect classification increases the loss in high amounts; hence, it is an effective loss 

calculation.  

 

   (3.2) 

The accuracy is calculated as the ratio of correct classifications over batch size. 

For testing the network, the scores of all classes after softmax layer belonging to clips 

of a video are summed, sorted descending and top 10 classes having maximum scores 

are assigned to that video with their scores. Then, test accuracy is calculated by 

checking whether the correct class label is contained in top k suggestions. In this work, 

top-1 and top-5 accuracies are calculated. 

3.4. The Datasets 

3.4.1. UCF101 Dataset  

UCF101 Dataset provided in [47] has 101 human action classes as its name suggests. 

The videos are collected from Youtube so the videos are user uploaded. This results 

in unconstrained videos since the background is uncluttered and there exists camera 

motion. During the collection of the videos, the ones that seem irrelevant are manually 

detected and not used for the dataset.  
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There are 25 groups of clips for each action class and each group has a number of clips 

between 4 and 7. In total, there are 13320 videos that last for 1600 minutes. Average 

clip length is 7.21 seconds. All clips have a frame rate of 25 fps and a resolution of 

320 x 240. 

The actions can be divided into 5 categories which are; Human - Object Interaction, 

Body - Motion Only, Human - Human Interaction, Playing Musical Instruments, and 

Sports. Examples of frames belonging to 6 human action classes are provided in 

Figure 3.3. 

 

 

Figure 3.3. Examples for 6 action classes [47] 

 

During training and validation, UCF101 Split 1 is used as stated in [62] in order to 

perform a comparison between state-of-the-art methods. Split 1 has 9537 clips for 

training and 3783 clips for validation.  

When UCF101 Dataset was suggested, it was twice larger than the largest dataset used 

then. Hence, most of the studies have been conducted on UCF101 and it has become 
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a standard benchmark for action recognition tasks. However, for 3-dimensional 

ResNet, UCF101 causes over-fitting when training deep networks from scratch since 

it is not large enough. Even though the network overfits, the alterations in the 

recognition accuracy rate, which are caused by modifying the input, are still 

observable. By this way, the alterations can be directly associated with the changes in 

the input. 

3.4.2. Kinetics Dataset 

Kinetics Dataset was suggested in [49] because of the lack of a large dataset with 

variations for action classes. Standard benchmarks such as UCF101 are not efficient 

as the networks go deeper. Kinetics set is a more challenging benchmark when 

compared to its alternatives and large enough to train deep networks from scratch 

without over-fitting.  

Kinetics videos are collected from Youtube and has 400 human action classes. Each 

class has at least 400 clips from different videos and last 10 seconds on average. Since 

the videos are user uploaded, the speed of the actions, posture, camera framing, 

viewpoint vary. Moreover, camera shake, shadows, illumination variations exist. 

Also, the frame rate of the clips and the resolutions are not fixed; hence, Kinetics has 

a great variety in the videos. 

Currently, there are 300k videos and they are divided into three parts: 250  1000 

videos per class for training, 50 videos per class for validation and 100 videos per 

class for testing.  

In this work, it was aimed to perform the trainings on Kinetics dataset. However, 

because of its large capacity and really high computation time, this idea fell through. 

The trainings and evaluations are performed on UCF101 as stated in 3.4.1. In [10], the 

trained parameters of ResNet-34 on Kinetics Dataset were shared. Hence, they are 

used for pre-training the network which is followed by fine-tuning on UCF101 Dataset 

according to the modifications made on the input as this work suggests. 
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3.5. Experiment Groups 

Input characteristics of videos are as important as the deep network architecture itself. 

Input characteristics include the sample duration, color information (whether the 

frames have RGB values or grayscale values), the normalization of the pixels of 

frames, the inclusion of optical flow between consecutive frames, and the content of 

the clips. These modifications have various impact on the action recognition rate. In 

order to analyze the effects of such modifications, 5 experiment groups are specified 

with interrelated modifications. 

3.5.1. EG 1: Frame Length 

Most studies used few frames to input the deep networks. However, majority of human 

actions span over longer extents. By their nature, consecutive frames are related to 

each other and as a result, an action is defined. The temporal evolution of patterns 

specifies the action with the presence of the flow information. Supposing that only 10 

frames are considered, an action could not be recognized completely.  

 in all of its frames; 

however, long jump consists of running in most of its earlier frames and the last ones 

carry the action of jumping. Considering few frames may mislead the network and 

end up in incorrect classification such that both actions may be c  

The characteristic patterns may be lost easily if short intervals are focused on. 

Therefore, it is a legitimate idea to perform long-term convolutions to extract the 

hidden information. Longer temporal extents are expected to increase the recognition 

accuracy. However, it is nonsense to input the whole video since it increases 

computational cost much more that in increases the accuracy. 

In this work, for observing the effect of sample duration, frame lengths of the input 

clips are varied. Three trainings sets are formed with sample durations of 16, 30 and 

60 frames. During these trainings; RGB-only frames are used without normalization. 

Examples of RGB frames are provided in Figure 3.4. 
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Figure 3.4. RGB fram  

 

3.5.2. EG 2: Color Information 

The videos in UCF101 dataset have frames in color, RGB. Even though the main 

component that forms the actions is the optical flow between frames, the color 

information contained in frames contributes to the recognition of the actions.  

It is obvious that using RGB frames as input gives a higher accuracy level than using 

grayscale frames as input. However, the critical question is that: how much difference 

exists between the accuracy rates when RGB input and grayscale input are used?  

RGB inputs have 3 channels whereas grayscale inputs have only 1 channel. Since deep 

networks used in action recognition have high computational cost, the decrement in 

the number of input channels may lower the computation time.  

The second question arises here: if the decrease in accuracy when grayscale inputs are 

used instead of RGB inputs is in small amounts, will it compensate the loss by 

decreasing the number of parameters (and computation time)? In other words, 

decreasing the number of parameters, hence the computation time, results in a penalty 

of decrease in accuracy rate by small amounts. For some applications, using grayscale 

inputs would be preferable. In order to analyze such modifications, the grayscale 

inputs used to train the network are provided in Figure 3.5. The inputs have sample 

duration of 16 frames. 
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Figure 3.5.  

 

3.5.3. EG 3: Normalization of the Frames 

The frames in the dataset have their pixel values between 0 and 255. Some approaches 

suggest that normalizing pixel values result in better operation of the network and 

better accuracy rates. The main idea is to prevent the different behaviors of learning 

rate caused by multiplication with varying pixel values between 0 and 255. 

Normalization consists of mean extraction and division by standard deviation for each 

of the channels (red, green, blue). 

For observing the effect of normalized inputs, three input types are used. The first one 

is the original, not normalized inputs which have the pixel values between 0 and 255 

for each channel. For the second input type, the aim is to obtain a Gaussian distribution 

of pixel values. In other words, for each channel, the mean of the pixel values is 

calculated and extracted from the original ones to obtain a zero-mean distribution. 

Also, the standard deviations for each channel are calculated and the original values 

are divided by them to obtain a unit-variance distribution. For the last input type, the 

original pixel values are divided by 255; hence, their values are between 0 and 1. 

The inputs have sample duration of 16 frames. 

3.5.4. EG 4: Combination of Different Input Types 

One of the proposed ideas in this thesis is that optical flow between consecutive frames 

provides the real relation between patterns that constitute the action. Hence, when the 

optical flow information is also presented to the network as well as the RGB 

information, the accuracy rate is expected to increase.  
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In this experiment group, the aim is to compare an input sequence that consists of 

RGB-

 frames are still RGB; however, they are 

masked according to the optical flow. The following steps are followed for 

constituting the combined input. 

1. Brox optical flow are computed as in [27]. The result consists of optical flow 

in x and y dimensions between consecutive frames for every pixel ( ). 

2. The magnitude of optical flow for every pixel is computed by (3.3).  

  (3.3) 

3. Magnitude values are converted to mask values as in (3.4). By this way the 

range for mask values is set to [0, 1]. 

  (3.4) 

4. RGB pixel values for 3 channels are multiplicated by mask values separately. 

Flow masked RGB sequence is obtained at this step. 

5. In order to obtain combined input; RGB frames are selected for the frames 

with odd numbers and flow masked RGB frames are selected for the frames 

with even numbers. 

The mask values are between 0 and 1; they take values proportional to the magnitude 

of the optical flow. If the optical flow value is 0 for a pixel, it indicates that there is no 

motion. Hence, it is reasonable to mask that pixel by multiplying zero.  

As a preliminary work before evaluating an input sequence which consists of only 

flow masked RGB frames, a combination of RGB and flow masked RGB sequence is 

formed. The combined input is a transition state between RGB-only and flow masked 

RGB-only input types. This experiment evaluates the usage of such transition 

sequence as input as well as observes the effects of having an input with varying 

characteristics at every frame. Example frames for the combined sequence are 

provided in Figure 3.6. The inputs have sample duration of 30 frames. 
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Figure 3.6.  

 

3.5.5. EG 5: Content of the Input 

Since optical flow information is expected to increase the recognition capacity of the 

network, the last group determines how to include the optical flow. There are three 

training sets to perform a comparison. First one inputs RGB-only frames. Second 

training set consists of flow masked RGB-only frames. This sequence is formed by 

following the steps 1  4 mentioned in Section 3.5.4. The third sequence contains flow 

information in a different form, which is called as RGBF. RGBF uses the optical flow 

as a fourth channel of the input. Steps 1  3 are followed and instead of multiplying 

the mask values with RGB pixels, the mask values are stored in a fourth dimension. 

RGBF causes a small increase in the number of parameters. However, flow 

information is present to enhance the operation of the network. As it turns out, there 

is an image format called as RGBA where A stands for transparency parameter, alpha. 

Alpha being 0 means complete transparency whereas alpha being 1 means complete 

transparency. If a pixel has a flow value close to 0, this means there is no motion. 

Hence, the pixel would be transparent. This is analogous to masking the pixels with 

no motion by multiplying 0.  

Example frames for flow masked RGB frames and RGBF frames are provided in 

Figure 3.7 and Figure 3.8 respectively. The inputs have sample duration of 16 frames. 
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Figure 3.7.  

 

 

Figure 3.8.  
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CHAPTER 4  

 

4. RESULTS AND ANALYSIS 

 

4.1. Results and Class-wise Analysis of Experiment Groups 

This section examines the results of interrelated modifications made on input 

characteristics according to the experiment groups. Each modification is compared 

with a reference input characteristic, which is RGB-only frames without 

normalization. 4 of the groups use RGB-only frames for 16 frames and 1 of them uses 

RGB-only frames for 30 frames as reference. The alterations in validation accuracies, 

top-1 and top-5 values for test are considered. The effects are interpreted according to 

the applied modification. Then, the alterations are analyzed in a class-wise manner 

rather than focusing on overall results. This analysis includes: 

 Number of classes with increased top-1 accuracy 

 Maximum amount of increase in class-wise top-1 accuracy 

 The analysis of the classes which benefit from the modification (Why are these 

classes affected much? Which similar action class caused misclassification?) 

 Examination of classes with 0 recognition accuracy before the modifications 

are applied and the impact of the modifications 

Last but not least, the arguments of the experiment groups are stated one by one. 

Finally, all results of the experiment groups are provided as a whole with their 

numbers of parameters and approximate computation times. 

4.1.1. EG 1: Frame Length 

Frame length is a crucial parameter for deep networks performing action recognition 

task because human actions generally last for few seconds. The patterns constituting 

the action should be interpreted effectively such that they provide correct classification 
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of the action. In order to achieve higher accuracy rates, longer temporal extents should 

lengths of input. As a reference, 16-framed input is used. Two networks with inputs 

30 and 60 frames are utilized to examine the effect. For 60 frames, the computation 

time is high; hence, 60-framed network is trained for 80 epochs whereas 16 and 30-

framed networks are trained for 150 epochs. The graph of validation accuracies and 

comparison of test accuracies of three networks are provided in Figure 4.1 and Table 

4.1 respectively. 

 

 

Figure 4.1. Validation accuracies for varying input frame lengths 

 

Table 4.1. Top-1 and top-5 test accuracies for varying input frame lengths 

Network Top-1 (%) Top-5 (%) 
16-framed 47.58 72.51 

30-framed 52.18 76.69 

60-framed 57.92 80.68 
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Maximum recognition accuracy values reached by 16, 30, 60-framed networks are 

45.57%, 48.79% and 54.25% respectively for validation. It is obvious that increasing 

the temporal length by doubling the input frame length results in 5% gain in accuracy. 

Among three networks, 60-framed network achieves the highest test accuracy of 

57.92% even though it is trained for a smaller number of epochs.  

The reason for the increase is that when few frames are focused on, actions may look 

similar. One of the discriminative properties between similar actions is the temporal 

duration. Longer temporal extents have an inevitable success of characterizing actions. 

This situation is valid for human eyes. By observing only few frames of an action, 

humans also misclassify because of lack of information. This deficiency may easily 

be overcome by increasing the present information by focusing on longer extents. 

Moreover, since frames are related to each other, one can benefit using larger sample 

durations in high amounts.  

The results indicate that the frame length may be larger to gain more accuracy; 

however, in this work, 60 frames are selected as the maximum number of frames 

regarding the high computation time. The computation times will be covered at the 

end of this Section.. 

When the top-1 test accuracy rates of each class are examined, 77 and 79 of 101 classes 

have their accuracies increased when 30-framed and 60-framed networks are utilized. 

The maximum amounts of accuracy increase are 36.59% and 63.33% for 30-framed 

and 60-framed networks respectively. These quantitative results support focusing on 

longer temporal extents as most of the classes benefit from the applied modification.  

By increasing the frame length from 16 to 30, 2 of the classes have amounts of increase 

more than 30

misclassified are examined, most of them 

somersaults and tumbles are performed on a balance board. When 16 frames are used 
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to classify the videos, it is highly possible to misclassify the actions since they are 

almost same for a short snippet of time. Processing the input for longer extents of time 

enhance the accuracy rate by eliminating such confusions. Some of the 

may look similar for few frames since they both consist of similar human postures; a 

reaching out human subject. However, the directions of the actions are the opposite; 

downwards. Increasing frame length clarifies such classifications by carrying more 

information about the direction of the motion. 

4 of the classes have an accuracy rate of 0 for 16-framed network; these are: 

frame length to 30 does not help the network 

since they both include a stationary background and only the fingers of the human 

subject are moving. For the 16-framed network, these two actions are almost same. 

However, 30-

two moving hands instead of one and generally the human subject moves in small 

reaching out each other with hand contacts in both classes. 30-framed network can 

detect the details that 16-framed network cannot; two actions are different by means 

of the displacements occurred and human postures. For the 

th 

mall 

movements. Increasing the temporal length to 30 frames is not enough for the network 

to interpret the human subject positioned as upside down.  

The classes with accuracy gain more than 30% when 60 frames are used as input are 
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-framed and 60-framed 

networks; s

number of correct classifications is also 5 for 16-framed network. For short snippets 

of time two actions look similar as they include upward motion; however, using 60 

frames distinguishes these actions from each other and increase the accuracy rate of 

o 80%. Another outstandi

Among 

-framed network 

may easily confuse. Focusing on the characteristics of these styles for longer extents 

enhances the ac

43 classes, only 4 of them are classified correctly while 15 of them are labeled as 

 are performed on human 

faces, the differences may not be observed in few frames. The motion becomes evident 

when 60 frames are used.  

For the actions having 0 accuracy rates for 16-framed network, all of them have their 

accuracies increased by 60-framed network. While 30 frames are inadequate for 

recogniz -framed network increases its accuracy to 14.29% by 

2.94%; hence, it can be said that increasing temporal length is irrelevant for 

recognizing this action. 

The actions which have their accuracy levels increased more than 30% are provided 

for 30-framed and 60-framed networks in Table 4.2 and Table 4.3 respectively. The 

corresponding accuracy levels, the increase in the accuracy, the number of videos that 

each class has, the number of videos that are correctly classified and the action classes 

causing confusion the most are also provided. 
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Table 4.2. Class-wise analysis for 30-framed network 

Class 

Top-1 
(%) for 

16 
frames 

Top-1 
(%) for 

30 
frames 

Amount 
of 

increase 

Correctly 
labeled 

(16 
frames) 

Correctly 
labeled 

(30 
frames) 

Mostly 
confused 
with (16 
frames) 

RockClimbing
Indoor 

46.34 82.93 36.59 19 / 41 34 / 41 CliffDiving 

FloorGymnast
ics 

44.44 75.00 30.56 16 / 36 27 / 36 
BalanceBea

m 
 

Table 4.3. Class-wise analysis for 60-framed network 

Class 

Top-1 
(%) for 

16 
frames 

Top-1 
(%) for 

60 
frames 

Amount 
of 

increase 

Correctly 
labeled 

(16 
frames) 

Correctly 
labeled 

(60 
frames) 

Mostly 
confused 
with (16 
frames) 

PushUps 16.67 80.00 63.33 5 / 30 24 / 30 
CleanAndJer

k 

JumpRope 13.16 71.05 57.89 5 / 38 27 / 38 

MoppingFlo
or/ 

VolleyballS
piking 

PlayingGuitar 13.95 62.79 48.84 6 / 43 27 / 43 PlayingFlute 

FrontCrawl 35.14 78.38 43.24 13 / 37 29 / 37 BreastStroke 

TaiChi 21.43 60.71 39.29 6 / 28 17 / 28 Fencing 

PlayingTabla 51.61 90.32 38.71 16 / 31 28 / 31 
PlayingVioli

n 

SalsaSpin 0.00 37.21 37.21 0 / 43 16 / 43 
SumoWrestl

ing 

PlayingDaf 0.00 31.71 31.71 0 / 41 13 / 41 PlayingFlute 

FloorGymnast
ics 

44.44 75.00 30.56 16 / 36 27 / 36 
BalanceBea

m 

ShavingBeard 9.30 39.53 30.23 4 / 43 17 / 43 
ApplyEyeM

akeup 
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while decreasing 24 of them. Utilizing 60 frames increases the recognition of 79 

classes and decreases 22 of them. Since the number of classes with increased accuracy 

and their increment amounts are larger than the number of classes with decreased 

accuracy and their decrement amounts, the overall accuracy rate increases when 

longer temporal extents are focused on. Overall accuracy gains of 4.55% and 10.18% 

are observed when 30 and 60 frames are used respectively. 

The computation times corresponding to 16, 30 and 60 framed networks are provided 

in Table 4.4 with frame lengths, number of epochs, number of channels and batch 

sizes used during training. The training computation times are obtained after all the 

between the training time and the frame length. As frame length is doubled, the 

training time is also doubled. For 60 frames, halving the batch size and the number of 

epochs cancel each other; therefore, it takes nearly two times to use 60 frames instead 

of 30. For the testing time, the time per sample is provided. Unlike the training times, 

the relation is not linear. However, as number of frames increase, the test time per 

sample clip also increases as expected. The computation times are not affected by the 

number of parameters since the number of channels are same for all networks. 

 

Table 4.4. Training and testing computation times for varying input frame lengths 

Network 
Frame 
length 

# epochs # channels 
Training 

batch 
size 

Training 
time 

(hours) 

Testing time 
per sample 

(msec) 
16-framed 16 150 3 16 112.5 210.5 

30-framed 30 150 3 16 225 330 

60-framed 60 80 3 8 480 739.25 

 

Argument of EG 1: Increasing frame length of the input videos enhance the human 

action recognition rate by great amounts since the patterns characterizing the action 
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are interpreted more effectively when longer temporal extents are utilized. The best 

result is achieved by 60-framed network. 

4.1.2. EG 2: Color Information 

The second experiment group investigates the effect of removing the color information 

from the input and evaluates whether the decrease in accuracy level is negligible since 

grayscale input decreases the computation time by reducing the number of parameters. 

In other words, there is a tradeoff between a decrease in accuracy in small amounts 

and the number of parameters the network uses.  

It is foreseeable that the recognition accuracy decreases when grayscale input is used 

instead of RGB because the information is reduced. However, since actions are 

characterized mostly by the temporal relations between frames, the foresight is that 

the accuracy will not be affected in great amounts if the color information is 

disregarded. In the meantime, since grayscale input requires 1 channel instead of 3 

channels as RGB input does, the number of parameters would be less when compared 

to the case where RGB input is used. Less number of parameters mean less 

computational complexity and less computation time. Since processing videos is 

expensive by means of time, decreasing computation time is useful. 

Two 16-framed networks having RGB and grayscale inputs are trained for 150 epochs. 

The computation times corresponding to RGB and grayscale networks are provided in 

Table 4.5 with number of parameters, number of channels and batch sizes used during 

training. The training computation times are obtained after all the epochs are 

completed. Since grayscale input uses 1 channel instead of 3, using grayscale input 

decreases the number of parameters by 43904 while the training computation time 

decreases by 17.78%. The testing time per sample is also decreased by 14.73%. It can 

be clearly stated that using grayscale input decreases the computation times for 

training and testing.  
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Table 4.5. Training and testing computation times for RGB and grayscale networks 

Network # parameters # channels 
Training 
batch size 

Training 
time (hours) 

Testing time per 
sample (msec) 

RGB 63,565,349 3 16 112.5 210.5 

Grayscale 63,521,445 1 16 92.5 179.5 
 

Grayscale input requires 1 channel instead of 3 only at the first layer. Since it is aimed 

to preserve the 3-dimensional ResNet architecture throughout the work, number of 

channels in higher layers are kept constant. Hence, the decrease in number of 

parameters is limited by the first layer only. It is possible to decrease the number of 

parameters even more; however, this experiment group only modifies the input layer.  

The graph showing the validation accuracies and comparison of test accuracies of 

networks are provided in Figure 4.2 and Table 4.6 respectively.  

 

 

Figure 4.2. Validation accuracies for varying color information 
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Table 4.6. Top-1 and top-5 test accuracies for varying color information 

Network Top-1 (%) Top-5 (%) 
RGB 47.58 72.51 

Grayscale 46.23 73.33 
 

The maximum validation accuracy levels reached by RGB and grayscale networks are 

e in favor of RGB input 

as expected. The top-1 test accuracy also states that the network is more successful 

when recognizing actions from RGB input instead of grayscale input. However, for 

top-5 test accuracy, grayscale input achieves higher than RGB input. This result 

indicates that although RGB input contributes to the recognition more, accuracy rates 

obtained by utilizing grayscale input are not that bad since they are close.  

When the overall accuracy and the computation time are evaluated together, it is 

preferable to use grayscale input. Yet, the main concern of the experiments is top-1 

test accuracy rather than computation time. Therefore, for the rest of the experiments, 

RGB input is used instead of grayscale. 

The class-wise analysis performed on top-1 test accuracy results indicates that 50 out 

of 101 action classes are more recognizable with grayscale input and the highest 

increase in accuracy is 37.21%. Being an unexpected success, the recognition 

accuracies of 5 classes increase more than 30%. T

recognition is increased by 34.09%. The reason for the confusion is that when the lips 

focuses on the lips even though the on-going action takes place in the eye area. Since 

network does not consider the lips as background, it classifies the video as 

-up 

are similar. By eliminating the color information, the difference between the actions 
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led as 

e network using RGB input. Since two actions have green background 

as billiard table and tennis table, those actions get mistaken with each other. Lack of 

color in the input frames helps the network to correctly classify them. Another 

example is that 10 of 

are classified correctly. In videos of both actions, the hands are outstanding causing 

the network to focus on that area. When the hands become uncolored by the grayscale 

input, the network 

37.21%.  

Using grayscale input increases 3 out of 4 action classes that have 0 accuracy for RGB 

n rate up to 11.43%, which is close to 60-framed 

accuracy of 12.20%. 

The actions which have their accuracy levels increased more than 30% are provided 

in Table 4.7 for the network using grayscale videos as. The accuracy levels for RGB 

and grayscale inputs, the increase in the accuracy, the number of videos that each class 

has, the number of videos that are correctly classified and the action classes causing 

confusion the most are also provided. 
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Table 4.7. Class-wise analysis for grayscale input 

Class 

Top-1 
(%) for 
RGB 
input 

Top-1 
(%) for 

gray 
input 

Amount 
of 

increase 

Correctly 
labeled 
(RGB 
input) 

Correctly 
labeled 
(gray 
input) 

Mostly 
confused with 
(RGB input) 

Typing 9.30 46.51 37.21 4 / 43 20 / 43 
CleanAndJer
k / Haircut 

ApplyEyeMak
eup 

47.73 81.82 34.09 21 / 44 36 / 44 
ApplyLipstic

k 
TableTennisS

hot 
51.28 82.05 30.77 20 / 39 32 / 39 

Billiards / 
Hammering 

CricketShot 4.08 34.69 30.61 2 / 49 17 / 49 
SoccerPenalt

y 

SalsaSpin 0.00 30.23 30.23 0 / 43 13 / 43 
SumoWrestli

ng 
 

While 50 of 101 classes have their accuracies increased, 51 of them have their 

accuracies decreased. The advantages and disadvantages of grayscale input are nip 

and tuck as it can be interpreted from the overall accuracy since the recognition rate 

remains almost the same. 

 Argument of EG 2: Using grayscale inputs instead of RGB inputs decreases the 

computation time by decreasing the number of parameters that the network 

approximates while causing a decrease in accuracy by small amounts. As the main 

concern is the recognition accuracy rather than the computation time, RGB inputs are 

used for the rest of the experiments. 

4.1.3. EG 3: Normalization of the Frames 

The pixel values of the frames constituting the videos are in the range of 0  255 for 

Red, Green and Blue channels. By their nature, convolutional neural networks have 

their parameters as convolutional kernels which are multiplied by the pixel values of 

the input. Hence, standardizing the input values is a good effort to increase the 

accuracy. The explanation for applying such method is that when the inputs have 



 

 
 

63 
 

varying ranges of values, the network behaves biased in the favor of the inputs with 

large values. In other words, as the convolutional kernels are multiplied with the input 

values, they are approximated towards the inputs with larger values. This effect may 

be advantageous or disadvantageous. If the network is not on the right track for inputs 

with wide range of values, the learning process gets complicated. Hence, the effect is 

more intense than expected. Therefore, normalization aims to increase the accuracy 

and speed up the training process by bringing the values of the input on the same scale 

and decreasing variance. Even though standardizing the input is useful, it comes with 

a risk of disregarding useful information. If the disregarded information is irrelevant 

for the task, it is effective to get rid of such information. However, if it is crucial for 

the task, then the learning process suffers from such modification.  

Even though the input values (the range of the pixel values) are not different from 

each other in great amounts, normalization may still be useful for increasing the 

recognition capacity of the network. For this experiment, 3 input types are utilized. 

First one has no normalization for the input values; hence, the pixel values are in range 

of (0, 255). Second input type aims a Gaussian distribution for the pixel values. In 

other words, the pixel values are distributed by following a zero mean, unit variance 

fashion. To do so, for every channel, mean and deviation values are calculated for 

UCF101 dataset. These are provided in Table 4.8. The mean values are subtracted 

from corresponding channels and the resultant values are divided by the relevant 

deviation values. The new pixel value ranges are also provided in Table 4.8. For the 

last input type, the pixel values are divided by 255 in order to specify the range as (0, 

1). 
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Table 4.8. Mean and standard deviation values for every channel for the videos in UCF101, new 

ranges of pixel values after the normalization 

Channels Mean values Standard deviation values New ranges of pixels 
Red 90.68 59.02 -1.54, 2.78 

Green 98.04 59.91 -1.63, 2.62 

Blue 101.91 61.42 -1.65, 2.49 
 

The networks are trained with the three input types for 150 epochs and 16 frames are 

used as frame lengths of the inputs. The graph of validation accuracies and comparison 

of test accuracies of three networks are provided in Figure 4.3 and Table 4.9 

respectively. 

 

 

Figure 4.3. Validation accuracies for varying normalization methods 
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Table 4.9. Top-1 and top-5 test accuracies for varying normalization methods 

Network Top-1 (%) Top-5 (%) 
No normalization 47.58 72.51 

Zero mean unit variance 
normalization 

47.05 71.40 

Division by 255 46.00 70.71 
 

As it can be seen in Figure 4.3, normalizing the pixel values do not enhance the 

validation accuracy for neither obtaining a Gaussian distribution nor dividing the 

values by 255. In fact, the accuracy rate of Gaussian distributed pixels competes with 

The reason behind these results is that the pixel values of the frames are already 

comparable with each other; hence, normalizing these values do not have any boosting 

effect on the network. Though standardizing betters the operation of the networks for 

most input types, it is unnecessary for such tasks that use images as inputs as it can be 

interpreted from the test results provided in Table 4.9. The accuracy rates are close to 

each other; but the highest rates are achieved without performing normalization. 

The class-wise analysis shows that subtracting the mean and dividing by deviation 

increases the test accuracies of 56 of the 101 action classes while the maximum 

increase is 28.57%. Dividing the pixel values by 255 causes only 50 of 101 classes to 

increase the accuracies and maximum change is 23.53%. None of the classes have 

their accuracies increased more than 30% as it can be predicted the overall test 

accuracies.  

For the classes with 0 recognition accuracy when not normalized inputs are used, none 

of the normalization techniques result in a significant 

class when division by 255 method is used. Its accuracy reaches to 16.28%. 

Using Gaussian normalization increases the accuracy rates of 56 classes and decreases 

45 of them while division by 255 increases the accuracy rates of 50 classes and 
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decreases 51 of them. As the class-wise analysis suggests, normalization does not 

rates cancel each other, resulting in 0.49% and 1.63% decrease in recognition levels. 

The networks are trained for 150 epochs and the training computation times are 

obtained after all the epochs are completed. Since the number of epochs, frame 

lengths, numbers of channels, batch sizes and numbers of parameters are same for the 

three networks, the computation times for training and testing are almost the same. 

These values are provided in Table 4.10. 

 

Table 4.10. Training and testing computation times for varying normalization methods 

Network 
Training batch 

size 
Training time 

(hours) 
Testing time per 
sample (msec) 

No normalization 16 112.5 210.5 

Zero mean unit variance 
normalization 

16 112.5 219.8 

Division by 255 16 112.5 208.6 
 

Argument of EG 3: Normalizing the pixel values of the input videos do not have any 

boosting effect on the recognition accuracy rates since the pixel values are already in 

close ranges to each other, none of the action classes benefit from the application of 

normalization. As standardizing the pixel values turns out to be unnecessary, 

normalization is not performed for the rest of the trainings. 

4.1.4. EG 4: Combination of Different Input Types 

Computing optical flow between consecutive input frames and making use of such 

information is useful for action recognition tasks since most of the information 

defining an action is contained in the motion flow rather than the stationary 

background information. Even though 3-dimensional deep networks reveal the flow 
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between patterns during 3-dimensional convolutions, offering the optical flow to the 

network as input boosts the recognition accuracy.  

Originated from this idea, optical flow between consecutive frames are calculated as 

covered in Section 3.5.4. The aim is to provide the calculated flow together with the 

RGB information instead of having two streams with RGB and flow information. To 

do so, RGB frames are masked with values altering between 0 and 1, proportional to 

the magnitude of optical flow in x and y directions.  

Before having an input sequence with flow masked RGB-only frames, this experiment 

group evaluates having a combined sequence as input. By this way, both effects of 

utilizing a combined sequence (having RGB and flow masked RGB frames in turns) 

and adopting an input characteristic with alterations are observed.  

The networks are trained for 150 epochs with two input sequences having 30 frames. 

The graph of validation accuracies and comparison of test accuracies of RGB-framed 

and combined networks are provided in Figure 4.4 and Table 4.11 respectively. 

 

 

Figure 4.4. Validation accuracies for combining different input types 
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Table 4.11. Top-1 and top-5 test accuracies for combining different input types 

Network Top-1 (%) Top-5 (%) 
RGB 52.18 76.69 

RGB + flow masked RGB 53.24 75.84 
 

When the validation accuracies of two networks are examined in detail, although they 

seem to have very close values in Figure 4.4, the combined sequence has its maximum 

value 1% higher than the RGB-only sequence has. The same case is valid for the top-

1 test accuracies provided in Table 4.11. However, the results are opposite for the top-

5 test accuracies.  

One might argue that using flow information has almost no effect on the action 

recognition accuracy; still, the key-point here is that the flow information is appearing 

in every other frame. In other words, the motion flow is present in an input frame, and 

disappears in the next one. It may be said that having an input characteristic having 

such alterations cause neither an increase nor a decrease in the resultant recognition 

accuracy. However, when the operation of the network is focused on, the outcomes 

are different. 

Providing the optical flow information together with the RGB frames should enhance 

the accuracy rate since the most useful information about an action is contained in the 

flow. The results for combined sequence are actually slightly higher than the original 

one. In this case, the final verdict would be: even though the optical flow information 

present in the RGB frames attempts to increase the learning capacity of the network 

and the recognition accuracy, the network suffers from processing an input 

characteristic with high alterations such that the recognition accuracy remains almost 

the same.  

This inference is supported by the class-wise analysis results. 64 of 101 classes have 

their accuracies increased but none of them have reached an increase more than 30% 

when combined sequence for 30 frames are used instead of RGB-only sequence for 
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30 frames. Most of the classes are more recognizable by the network while suffering 

from the penalty caused by having an altering input characteristic. The maximum 

increase in accuracy is 24.24%, which is not outstanding. The varying presence of the 

optical flow information between consecutive frames has a bad effect on the 

recognition rate since this situation prevents the network to make use the flow 

information.  Therefore, utilizing such combined input have no contribution to the 

overall accuracy.  

For the 30-framed RGB-only network, there are two classes with 0 recognition 

k has no increase in the accuracy; but it 

benefits the half-time present optical flow information and increases the accuracy rate 

 

Using an altering input with flow information present in every other frame increases 

the recognition of 64 classes while decreasing 37 of them. Since utilizing an altering 

input is not an effective way to recognize the classes accurately, the overall accuracy 

remains nearly the same. 

The networks are trained for 150 epochs and the training computation times are 

obtained after all the epochs are completed. Since the number of epochs, frame 

lengths, numbers of channels, batch sizes and numbers of parameters are same for 

both networks, the computation times for training and testing are almost the same. 

These values are provided in Table 4.12. 

 

Table 4.12. Training and testing computation times for combining different input types 

Network 
Training 
batch size 

Training time 
(hours) 

Testing time per 
sample (msec) 

RGB 16 225 330 

RGB + flow masked RGB 16 225 348.9 
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Argument of EG 4: Having a combined input of RGB-only and flow masked RGB-

only frames tend to increase the recognition capacity of the network by making use of 

the occasionally present optical flow information while suffering from the altering 

input characteristic, which results in no improvement for the overall recognition 

accuracy. In order to benefit from the optical flow information, the flow should be 

present for all frames and/or in different forms. 

4.1.5. EG 5: Content of the Input 

As stated in Se

present for every frame in the video. Experiment group 5 aims to evaluate the effect 

of flow information together with RGB information on the accuracy rate. For this 

purpose, optical flow is adopted in two different ways. First, the calculated Brox flow 

between consecutive frames is added as a fourth channel to red, green and blue 

channels for all frames. The constructed input sequence is called as RGBF. This 

method modifies the RGB frames such that the pixels without motion becomes 

transparent whereas the pixels having the maximum amount of motion are preserved. 

The pixels with motion values in between gain transparency inversely proportional to 

the flow values. Hence, the outstanding patterns are the ones which have the highest 

flow. The other method to include flow information is to mask all of the RGB frames 

with the calculated flow values. By this way, when the magnitude of the flow value is 

0, the corresponding pixel values are multiplied with 0 and appear in black. If the flow 

is maximum at a pixel by having a value of 1, the corresponding pixel value remains 

the same. All pixels are masked with a value between 0 and 1 proportional to the 

magnitude of the flow. Again, this method makes sure that the attention of the network 

is on the areas where the action takes place rather than the background with irrelevant 

information. 

In order to perform a comparison, RGB input is used. 16 frames are used to evaluate 

the impact of the different contents of the input within the scope of flow information. 

Three networks are trained for 150 epochs. The graph of validation accuracies and 
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comparison of test accuracies of networks using RGB, RGBF and flow masked RGB 

frames are provided in Figure 4.5 and Table 4.13 respectively. 

 

 

Figure 4.5. Validation accuracies for different usages of motion flow 

 

Table 4.13. Top-1 and top-5 test accuracies for different usages of motion flow 

Network Top-1 (%) Top-5 (%) 
RGB 47.58 72.51 

RGBF 53.26 79.04 

Flow masked RGB 59.90 84.01 
 

As it can be seen in Figure 4.5, when the flow information is presented to the network, 

the learning capacity and the validation accuracy levels increase. For RGB input, the 

validation accuracy is 45.57%, RGBF and flow masked RGB inputs reach 47.34% and 

50.29% respectively. The boosting effect of flow information is more observable in 

the test accuracies. Including flow as RGBF format provides 5.68% accuracy gain 



 

 
 

72 
 

whereas utilizing masked frames provides 12.32% accuracy gain by reaching to an 

overall accuracy level of 59.90%. Among all the experiment groups, flow masked 

RGB input results in the maximum increase of the recognition accuracy. This 

observation is not unexpected because actions are formed by temporal relations and 

performing a satisfactory recognition is possible by interpreting the flow information 

with the patterns present in the frames. Integrating the flow information to the RGB 

frames and presenting the modified frames to the network as input is helpful for the 

recognition task more than expected. 

Even though the outstanding performance is achieved by masked inputs, the results 

belonging to RGBF inputs are also promising. However, as the values in Table 4.13 

suggests, RGBF inputs do not enhance the usage of flow information as effective as 

flow masked RGB inputs do. Moreover, as using RGBF inputs increases the channels 

from 3 to 4, it causes increase in number of parameters and computation time. Hence, 

masked inputs are obviously preferable to RGBF inputs. 

The class-wise analysis results are as follows: when RGBF frames are used instead of 

RGB frames, 60 of 101 action classes have their accuracies increased and the 

maximum increase is 55.81%. Masking the RGB f

accuracy levels while the highest increase is 68.29%. This is also the highest amount 

of increase for a class when all modifications in 5 experiment groups are considered. 

Moreover, the numbers of classes with accuracy gain more than 30% are 11 and 18 

for the RGBF and masked inputs respectively. Again, by increasing the accuracy 

levels of 18 classes more than 30%, masking the RGB frames by corresponding flow 

values achieves the best performance among all the applied modifications. 

When the effect of using RGBF frames is examined in detail for the classes with more 

videos of that class, only 2 of them are correctly labeled by the network with RGB 

fr
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and the human subject hits the ball using 

is carried out by the foot of the human subject. Since the camera angle is wide, two 

actions resemble each other for the network. When the flow information is present, 

the network succeeds 

improvement 

moving. But the flow information helps the network to realize that in 

videos one hand is located at the body of the guitar with fingers moving and the other 

hand slides through the neck. These movements of hands differ the action from 

of 53.57%. 

The videos are mislabeled with mostl

ears as a form of exercise with 

gentle and demanding movements. The different characteristics of these actions 

become clear to the network when flow between consecutive frames are introduced.  

All of the actions which have 0 recognition accuracy for RGB input have their 

accuracie

the presence of flow information helps the network distinguish the action from 

follow are different and this difference is realized when RGBF input is used. 

This is important because none of the modifications applied to the input characteristic 

yield an accuracy gain more than 2.94%. The recognition accuracy is either 0 or 2.94 

for all modifications since they are all unsuccessful in characterizing 

s are more convenient for this task. Even 

though the recognition rate is still low, one might argue that flow information is 

required in order to recognize a challenging action class such as 
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The class-wise analysis of the recognition rates for the networks with RGB and flow 

masked RGB frames shows that for 18 classes, the accuracies increase more than 30%. 

This result states that masked frames have the highest performance in enhancing the 

recognition capacity of the network. Introducing the flow information to the network 

in the form of masks applied to RGB frames is the most efficient modification for both 

the overall recognition and class-

 by the network with RGB 

frames. Actually, these actions are different in many aspects. The only resembling 

features are the bars present in the videos and the action taking place indoors. 

l bars while a 

lying hum

the movements of two actions is different. In order the network to perform a successful 

recognition, flow information is used and the accuracy is increased up to 93.75%. 

Another exam n of 55.26%. It is mostly 

jumping. Masking the RGB frames helps the network to understand the repetitive 

jump

interesting action class since almost all modified inputs which do not use motion flow 

cause decrease in the accuracy rate. On the contrary, masked inputs yield an accuracy 

gain of 59.09% which is, again, emphasizing the positive influence of making use of 

flow information. Another outstanding class-

Almost none of the modifications, except masked input, increase the recognition of 

this class more than 2.86%. Among 35 videos, only 1 of them is correctly classified 

by RGB frames. The remaining 34 videos are labeled among 28 classes, which 

indicates that neither the modifications are succe

nor they confuse the action with another one in an obvious way. Increasing the frame 

length does not contribute to the recognition by any amounts while including flow 

information in RGBF format even decreases the recognition to 0. In order to 

characterize the action, flow information appearing as masks is required because of its 
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accuracy gain of 34.29%. This result qualifies masking the frames with flow values as 

the best method to achieve higher recognition rates. 

For the classes with 0 recognition for RGB frames

RGBF frames result in. This supports the idea that flow information is beneficial for 

recognizing s  accuracy rate of 

17.14%, which is one of the highest improvements for this class. The videos of 

increase that using masked input achieves. 

Classes gain accuracy more than 30% for RGBF and masked frames are provided in 

Table 4.14 and Table 4.15 respectively with corresponding accuracy levels, the 

increase in the accuracy, the number of videos that each class has, the number of 

videos that are correctly classified and the action classes causing confusion the most.  

 

Table 4.14. Class-wise analysis for RGBF input 

Class 

Top-1 
(%) for 
RGB 
input 

Top-1 
(%) for 
RGBF 
input 

Amount 
of 

increase 

Correctly 
labeled 
(RGB 
input) 

Correctly 
labeled 
(RGBF 
input) 

Mostly 
confused 

with (RGB 
input) 

PlayingGuitar 13.95 69.77 55.81 6 / 43 24 / 43 PlayingFlute 

TaiChi 21.43 75.00 53.57 6 / 28 21 / 28 Fencing 

PlayingDaf 0.00 46.34 46.34 0 / 41 19 / 41 PlayingFlute 

ShavingBeard 9.30 51.16 41.86 4 / 43 22 / 43 
ApplyEyeM

akeup 

PlayingCello 18.18 56.82 38.64 8 / 44 25 / 44 PlayingFlute 

SalsaSpin 0.00 37.21 37.21 0 / 43 16 / 43 
SumoWrestl

ing 

PommelHorse 34.29 68.57 34.29 12 / 35 24 / 35 ParallelBars 

CricketShot 4.08 36.73 32.65 2 / 49 16 / 49 
SoccerPenalt

y 
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Table-4.14.-(continued) 

PlayingPiano 64.29 96.43 32.14 18 / 28 27 / 28 
Drumming / 
PlayingFlute 

PlayingDhol 4.08 34.69 30.61 2 / 49 17 / 49 
HandStand

Walking 

CleanAndJerk 39.39 69.70 30.30 13 / 33 23 / 33 
BaseballPitc

h / 
ParallelBars 

 

Table 4.15. Class-wise analysis for flow masked RGB input 

Class 

Top-1 
(%) for 
RGB 
input 

Top-1 
(%) for 
masked 
input 

Amount 
of 

increase 

Correctly 
labeled 
(RGB 
input) 

Correctly 
labeled 
(masked 
input) 

Mostly 
confused 

with (RGB 
input) 

PlayingDaf 0.00 68.29 68.29 0 / 41 28 / 41 PlayingFlute 

PlayingCello 18.18 77.27 59.09 8 / 44 34 / 44 PlayingFlute 

PlayingGuitar 13.95 72.09 58.14 6 / 43 31 / 43 PlayingFlute 

SoccerJugglin
g 

30.77 87.18 56.41 12 / 39 34 / 39 
ThrowDiscu

s 

JumpRope 13.16 68.42 55.26 5 / 38 26 / 38 

MoppingFlo
or / 

VolleyballSp
iking 

ShavingBeard 9.30 55.81 46.51 4 / 43 24 / 43 
ApplyEyeM

akeup 

JumpingJack 35.14 81.08 45.95 13 / 37 30 / 37 
HandStandP

ushups 

PommelHorse 34.29 80.00 45.71 12 / 35 28 / 35 ParallelBars 

PushUps 16.67 60.00 43.33 5 / 30 18 / 30 
CleanAndJer

k 

TaiChi 21.43 64.29 42.86 6 / 28 18 / 28 Fencing 

PlayingDhol 4.08 46.94 42.86 2 / 49 23 / 49 
HandStand
Walking 

BodyWeightS
quats 

26.67 66.67 40.00 8 / 30 20 / 30 
JumpRope / 
TrampolineJ

umping 
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Table-4.15.-(continued) 

CleanAndJerk 39.39 78.79 39.39 13 / 33 26 / 33 
BaseballPitc

h / 
ParallelBars 

SalsaSpin 0.00 37.21 37.21 0 / 43 16 / 43 
SumoWrestli

ng 

BenchPress 58.33 93.75 35.42 28 / 48 45 / 48 ParallelBars 

YoYo 2.86 37.14 34.29 1 / 35 13 / 35 
JugglingBall

s 

JugglingBalls 30.00 62.50 32.50 12 / 40 25 / 40 SkyDiving 

WritingOnBoa
rd 

57.78 88.89 31.11 26 / 45 40 / 45 
CleanAndJer

k / 
TennisSwing 

 

RGBF input increases the accuracy rates of 60 classes while decreasing 41 of them. 

Since including the flow information is useful for recognizing actions, the overall 

accuracy is not affected much by the decreasing class accuracies and increases by 

5.40%. Flow masked RGB input provides improved recognition for 73 classes while 

decreasing the accuracies of 28 classes. However, masking the frames according to 

the motion flow contributes to the operation of the network in high amounts such that 

the overall accuracy increases by 11.67%. The observed increase by masking the RGB 

values with magnitudes of motion flow is consistent with the results of [56][58][59]. 

The networks are trained for 150 epochs and the training computation times are 

obtained after all the epochs are completed. The computation times corresponding to 

RGB, RGBF and flow masked RGB networks are provided in Table 4.16 with number 

of parameters, number of channels and batch sizes used during training. As the results 

suggest, since the number of channels and parameters are higher for RGBF network, 

its training and testing times are higher than the two networks. RGB and flow masked 

RGB networks have approximately same computation times as expected. Because the 

frame lengths and number of epochs are same for all three networks, they do not affect 

the computation times. 
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Table 4.16. Training and testing computation times for different usages of motion flow 

Network # parameters # channels 
Training 
batch size 

Training 
time 

(hours) 

Testing time 
per sample 

(msec) 
RGB 63,565,349 3 16 112.5 210.5 

RGBF 63,587,301 4 16 122.5 319.2 

Flow masked 
RGB 

63,565,349 3 16 112.5 226.3 

 

Argument of EG 5: Using flow information between consecutive frames together 

with the RGB frames results in remarkable increase in both the overall and class-wise 

recognition accuracies since the actions are defined mostly by the flow relations 

present through time rather than the stationary background information. Introducing 

the flow information as masks applied on RGB frames achieves better recognition 

rates and higher learning capacity when compared to the RGBF frame format. For 

recognizing challenging action classes and distinguishing similar actions from each 

other, flow information is required as the gain amounts acquired by utilizing masked 

frames are outstanding. 

4.1.6. Overall Comparison of the Networks 

In order to observe the effects of the modifications applied to the input characteristics 

of the networks, 9 different network settings are formed. Each of them aims to evaluate 

different kinds of modifications such as frame length of the input, or normalization of 

the values. The aim is to separate the modifications such that the alterations in the 

output of the networks can be directly associated to the applied characteristic.  

To do so, 9 networks are shared by 5 experiment groups. Within each group, only one 

of the properties are changed to obtain a controlled environment. In other words, the 

properties which is irrelevant with the purpose of the experiment are kept constant. 

The only exception is that for network using 60 frames as input, the number of epochs 
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and the batch size differ because of the computation time and the capacity of the 

training environment.  

In Table 4.17, the properties for the networks and the observed values are provided all 

together. The networks and the corresponding experiment groups are as follows:  

EG 1  {RGB_16, RGB_30, RGB_60},  

EG 2  {RGB_16, GRAY_16},  

EG 3  {RGB_16, GAUSSIAN_16, NORM_16},  

EG 4  {RGB_30, COMBINED_30},  

EG 5  {RGB_16, RGBF_16, MASKED_16} 

The network properties are given as input type, normalization, batch size, # of epochs, 

and sample duration. The observed values are # of parameters the networks use for 

learning, training times (in hours), testing times per sample (in msec), the accuracy 

values after training, validation and test processes. 

The least number of parameters and computation time is observed for grayscale 

frames; however, the accuracy rates are not promising. The normalized networks have 

the same computation time as most of the networks using 16 frames; yet, their 

accuracy values are also low. Even though the approximate computation times 

increase going from RGB_16 to RGB_30 and RGB_60, the recognition rates also 

increase by 5% and 10%. Therefore, the increasing computation time acts as a penalty 

in exchange for accuracy gain. Combined input does not yield a significant increase 

in accuracy when compared to RGB_30. RGBF_16 has a remarkable amount of 

increase in the accuracy while the corresponding computation time is slightly higher. 

Among all the networks, MASKED_16 has the maximum amount of recognition gain 

(12%) while having the same number of parameters as the basis network, RGB_16. 

Comparing all the results listed in Table 4.17, MASKED_16 achieves the highest 

recognition accuracy while keeping the complexity as it is.  
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Table 4.17. Properties and results of all networks 
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4.1.7. Proposed Input Characteristics Set 

When the arguments of the experiment groups are evaluated, the results can be 

concluded as follows: 

 EG 1: Increasing frame length of input results in remarkable increase in the 

accuracy while causing high computation times. Since the main concern is the 

recognition accuracy, 60 frames should be used as input. 

 EG 2: The lack of color information causes a slight decrease in accuracy while 

lowering the computation time. As the computation time is irrelevant for this 

thesis, RGB frames should be used. 

 EG 3: Since the pixel values of the frames are already comparable with each other, 

normalization has no contribution for the accuracy level. Therefore, there is no 

need to perform normalization. 

 EG 4: Occasionally present flow information prevents the network to increase its 

learning capacity. The flow information should be present for all frames. 

 EG 5: Both RGBF and masked frames contribute to the accuracy; however, 

masked frames are more successful in recognizing actions. The flow information 

should appear as mask values applied on the RGB frames. 

As a final argument; using flow masked RGB frames while setting the sample 

durations to 60 frames would result in a higher recognition accuracy level. Both 

characteristics yield increases between 10-12%. When these modifications are applied 

acity 

of the network.  

4.2. The Effect of Pre-training 

When training a network from scratch, the weights are initialized randomly. 

Throughout the epochs, a loss term is calculated. The aim is to minimize the loss and 

while doing so, the weights are optimized. By this way the errors and 

misclassifications are lessened because the weights are said to be learning the patterns. 



 

 
 

82 
 

When the network with trained weights is utilized for a different task or on a different 

dataset, instead of training the network from scratch one more time, it is preferred to 

use the trained weights. In other words, the weights of second training are initialized 

by the weights of first training. This type of initialization helps the network converge 

to its minimum loss value fast. Because the relations between patterns are already 

realized by t ing is called as pre-training. 

Moreover, during the second training, since the main features are learned, the weights 

of earlier layers can be freezed and optimization can be performed on only the later 

laye  is called as fine-tuning. Most 

studies prefer pre-training their proposed networks because it increases the accuracy 

in large amounts. Furthermore, small datasets benefit from pre-training on larger 

datasets to a great extent as the effect of over-fitting caused by the insufficient size of 

the dataset is eliminated by initializing weights according to pre-trained values. 

The main dataset used in this work, UCF101, is a small dataset for a deep network 

such as ResNet. It causes over-fitting because of the insufficient numbers of samples 

for each class. However, it is still possible to perform experiments on such small 

dataset. As the results of the experiment groups are concluded, the remaining aim is 

to increase the accuracy even further. Therefore, the pre-trained weights on Kinetics 

Dataset using 3-dimensional ResNet-34 provided by [21] are used to fine-tune the 

networks with suggested input characteristics in this thesis. The pre-trained weights 

are obtained by using RGB-only input. 

To observe the boosting effect of pre-training; firstly, the reference network which 

uses 16 RGB frames is used. The fine-tuning is performed on only the last 

convolutional layer and the fully-connected layer. The corresponding accuracy values 

are provided in Table 4.18. The top-1 test accuracy rate when the network is trained 

from scratch is 47.58% while the value increases up to 86.92% after fine-tuning. The 

increase is obvious and the advantage of using pre-trained weights is in large amounts 

as stated. 
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Table 4.18. Test accuracy results for fine-tuned networks 

Network Fine-tuned layers 

Top-1 
test acc 
before 
FT (%) 

Top-1 
test acc 
after FT 

(%) 

Top-5 
test acc 
after FT 

(%) 

RGB_16 Last convolutional + fully-connected 47.58 86.92 97.78 

MASKED_16 Last convolutional + fully-connected 59.90 62.12 84.69 

MASKED_16 All layers 59.90 77.29 93.47 

MASKED_60 All layers - 79.01 93.52 
 

The same fine-tuning is applied to 16 frames of flow masked RGB frames. However, 

the increase is not as large as it is obtained for RGB input. Because, the pre-trained 

weights are optimized using RGB inputs. Hence, fine-tuning only the last layers does 

not have a significant effect on accuracy when the input characteristic is under such 

change. Therefore, 16 frames of flow masked RGB inputs are fine-tuned by 

optimizing the weights of all layers. The increase in the recognition rate is remarkable. 

When the network is trained from scratch, it reaches an accuracy level of 59.90%. 

However, by making use of pre-trained weights, the accuracy increases up to 77.29%, 

which constitutes an increase of 17.39%. The gain introduced by the pre-trained 

weights is inevitable. 

Finally, since the suggested input characteristic in this work is using 60 frames of flow 

masked RGB, fine-tuning all layers of such network is performed. An accuracy rate 

of 79.01% is achieved, which is the highest among them. As it can be interpreted from 

the results, pre-training increases the performance in large amounts and should be 

performed as almost all of the previous studies do. 

For all the fine-tunings, an initial learning rate of 0.001 and a weight decay of 0.00001 

are used. The networks are fine-tuned for 150 epochs except for the last one because 

of its high computation time. The last network is trained for 110 epochs. 

 



 

 
 

84 
 

4.3. Comparison with the State-of-the-art 

In order to be legitimate and provide fair comparisons, two types of comparisons with 

the state-of-the-are results are performed. First, the accuracy results obtained from the 

experiment groups which result in remarkable accuracy gains are compared with the 

results of the networks from previous studies which are trained from scratch on 

UCF101 dataset. In the second comparison, the fine-tuned result of flow masked RGB 

input for 60 frames is compared with the state-of-the-art results.  

The comparison regarding networks that are trained from scratch is provided in Table 

4.19. After the modifications are applied on the input characteristics, the accuracy 

rates of the networks are higher than most of the methods. However, LTC network 

using flow as input and TSN network have higher recognition values than the ones 

suggested in this work. LTC consist of space-time convolutions that can interpret the 

patterns successfully. TSN network owes its high recognition accuracy to the idea of 

focusing on the whole video. Among the networks suggested in this work, using flow 

masked RGB frames achieves the best recognition accuracy. Its value is fairly well to 

the state-of-the-art results. 

  

Table 4.19. Comparison of state-of-the-art methods on UCF101 dataset (scratch) 

Method Test accuracy on UCF101 
Slow Fusion Network [11] 41.30 % 

ResNet-18 [21] 42.40 % 

C3D + SVM [16] 44.00 % 

Res3D [54] (baseline) 45.90 % 

Two-stream CNN [12] 56.40 % 

Flow masked RGB input (16 frames) 59.90 % 

LTCFlow (16 frames) [18] 78.70 % 

LTCFlow (60 frames) [18] 80.50 % 

TSN [14] 82.90 % 
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The ResNet-34 network used in this thesis is based on Res3D [54]; hence, the ResNet-

34 architectures are compared with each other and the original Res3D [54] in Table 

4.20. The baseline network, Res3D [54], uses 16 frames as input. The results show 

that increasing the frame length to 30 and 60 provides accuracy gains of 6.28% and 

12%. Modifying the input by increasing the temporal extent achieves better results 

from the baseline network. RGBF frames achieve 7.36% higher accuracy level than 

the baseline network does. The network with the highest accuracy rate is the one using 

flow masked RGB frames which overcomes the baseline network by 14%. 

  

Table 4.20. Comparison with the baseline network (Res3D [54]) 

Method Test accuracy on UCF101 
Res3D [54] (16 frames) (baseline) 45.90 % 

RGB input (30 frames) 52.18 % 

RGB input (60 frames) 57.92 % 

RGBF input (16 frames) 53.26 % 

Flow masked RGB input (16 frames) 59.90 % 
 

Since most of the networks in the literature adopt the idea of pre-training, the 

comparison in Table 4.21 is necessary. The effect of pre-training is obvious since the 

accuracies are increased by at least 17 %. Still, the recognition results are lower when 

compared to the state-of-the-art methods. Especially, two-stream I3D reaches the 

highest performance of 98% after pre-training on both ImageNet and Kinetics. Even 

though the results of flow masked RGB network pre-trained on Kinetics are not as 

high as the state-of-the-art methods, the boosting effects of including flow information 

by masking the RGB frames and increasing the temporal extent to 60 frames are seen 

in Table 4.21. Pre-training on a large scale dataset such as Kinetics increases the 

accuracy as it does to other methods. However, since during pre-training the frames 

are RGB and during fine-tuning the frames are masked with flow values, the gain in 
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the accuracy is not as high as other methods. If the pre-training is performed on flow 

masked RGB frames, the accuracy is expected to increase even more.  

 

Table 4.21. Comparison of state-of-the-art methods on UCF101 dataset 

Method 
Test accuracy 
on UCF101 

Slow Fusion Network (top 3 layers fine-tuned) [11] 65.40 % 

C3D (3 nets) + linear SVM (pre-trained on I380K and fine-tuned 
on Sports-1M) [16] 

85.20 % 

Res3D (pre-trained on Sports-1M) [54] 85.80 % 

ResNet-34 (pre-trained on Kinetics) [21] 87.70 % 

Two-stream CNN (pre-trained on ILSVRC, SVM fusion) [12] 88.00 % 

P3D ResNet (152 layers pre-trained on Sports-1M) [17] 88.60 % 

ResNeXt-101 (pre-trained on Kinetics) [21] 90.70 % 

LTCFlow+RGB (RGB pre-trained on Sports-1M) [18] 91.70 % 

Asymmetric 3D-CNN (RGB+RGBF+IDT) (pre-trained on 
FCVID) [58] 

92.60 % 

TSN (BN-Inception with 3 modalities) [14] 94.20 % 

Two-stream I3D (pre-trained on ImageNet and Kinetics) [9] 98.00 % 

ResNet-34 architectures in this thesis 

Flow masked RGB input (16 frames, pre-trained on Kinetics with 
RGB inputs) 

77.29 % 

Flow masked RGB input (60 frames, pre-trained on Kinetics with 
RGB inputs) 

79.01 % 

 

4.4. Application on SqueezeNet 

The results of the experiment groups show that using 60 frames instead of 16 and 

masking the RGB frames with the magnitude of motion flow between consecutive 

frames boost the recognition performance of 3-dimensional Residual Networks. They 

contribute to the learning process of the network by guiding the network to focus on 

the areas where the actual motion takes place. Moreover, the actions are characterized 
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in a more efficient way because of the longer temporal extents. In order to emphasize 

the beneficial work of such input characteristics, the same logic is applied on a 

different network.  

SqueezeNet [63] is a model which has less parameters than AlexNet has while 

achieving the same performance on images. In [64], 3-dimensional version of 

SqueezeNet, 3D-SqueezeNet, is implemented such that it can be used on videos in a 

spatio-temporal manner.  

In order to examine the effects of using an input characteristic as proposed in this 

thesis, two networks with same parameters are trained. The first network is trained 

with RGB frames with a sample duration of 16 and the second network is trained with 

flow masked RGB frames with a sample duration of 60. Both networks are initialized 

with a learning rate of 0.1 and trained for 80 epochs. The top-1 test accuracy for the 

network with 16 RGB frames is 53.56% while top-1 test accuracy for the network with 

60 flow masked RGB frames is 61.86%. As it can be interpreted from these accuracy 

rates, utilizing masked frames and increasing the temporal extent have significant 

improvement on the operation of the network. 
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CHAPTER 5  

 

5. FUTURE WORK 

 

The aim of this thesis is to observe the effects of modification applied on the input 

characteristics of the 3-dimensional Residual Network on the recognition accuracy 

level for the task of human action recognition. As the results of the experiment groups 

suggest, there are two main ideas that result in high amounts of increase in the 

accuracy. One of them is increasing the temporal extent of the input whereas the other 

one adopts using the flow information between consecutive frames as mask values to 

RGB frames. These modification yield accuracy gain. Furthermore, by pre-training 

the network on a large scale dataset, the accuracy is increased even more.  

There are some possible future works in order to contribute the recognition further. 

During the pre-training and fine-tuning processes, different input characteristics are 

used. Pre-training the network with RGB inputs on Kinetics dataset and fine-tuning 

the weights with flow masked RGB inputs on UCF101 dataset prevent the process to 

reach its full potential. Although the accuracy increases by great amounts, it may reach 

higher values when same input characteristics are used. Because of the high 

computation time of the network trained on Kinetics, the training is not performed in 

this work. Instead, the trained weights shared by [21] are used. By this way, the time 

is spent for focusing on observing the effects of different input characteristics. Hence, 

as a possible improvement, the network should be trained on Kinetics dataset using 

60 frames of flow masked RGB inputs, and then fine-tuned on UCF101 dataset. 

The experiments and observations are performed on UCF101 dataset using 3-

dimensional ResNets. These settings are adequate to evaluate the characteristics. 

However, the arguments of the experiments are applicable for different networks, 

different datasets, and even different tasks. As a future work, the ideas adopted in this 
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thesis may be applied to the networks suggested in previous studies. The networks 

reaching state-of-the-art results may even increase their recognition accuracy rates 

when they utilize the suggested input characteristics in this thesis. Therefore, higher 

accuracy levels may be obtained when the modifications are applied to input frames 

while using state-of-the-art methods. 
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CHAPTER 6  

 

6. CONCLUSION 

 

Action recognition is a far-reaching and challenging task which is used in various 

fields from collecting statistics to crime detection. Throughout the years, action 

recognition has taken place in daily lives, technological studies and mostly become 

the target of machine learning researches. In previous studies, countless algorithms 

were suggested in order to recognize patterns to interpret the on-going actions. They 

have aimed to represent the hidden relations defining the actions and classify the 

representations using classifiers. However, these methods were hand-crafted; 

therefore, these kinds of algorithms have shown success within certain limits. Also, 

these algorithms were not generic since they were optimized for specific kinds of data. 

Therefore, studies were in search for more generic, fast computing and effective 

methods. After the outbreak of deep neural networks, they have become widely-used 

for action recognition tasks. Their success has been remarkable since they have 

required less amounts of effort while reached higher levels of accuracy. 

Deep networks are preferred because of their high learning capacities and 

interpretation of hidden relations between patterns in an implicit way. Over time, there 

are different kinds of networks suggested for reaching the state-of-the-art results such 

as two-stream networks using spatial and temporal information separately, 3-

dimensional convolutional neural networks which process the input in a spatio-

temporal manner. As computational power improves and networks go deeper, higher 

levels of recognition are achieved. At this point, there are a great number of networks 

with remarkable performances such that suggesting a new network increases the state-

of-the-art results in small amounts. Therefore, this thesis aims to explore different 

input characteristics yielding accuracy gain instead of suggesting a different network 

architecture with a slight increase in accuracy. 
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For this purpose, modifications regarding different characteristics are applied on 

inputs and the effects are observed within experiment groups. While doing so, 3-

dimensional residual networks are used because of their increased learning capacity. 

With the experiment groups, the following modifications are studied: different frame 

lengths (16, 30, 60), presence of color information (RGB, grayscale), different 

normalization methods (no normalization, zero mean unit variance normalization, 

division by 255 normalization), different combinations of inputs (RGB-only, RGB 

and flow masked RGB combination), different contents of inputs (RGB, RGBF, flow 

masked RGB). All modifications are evaluated separately and analyzed in a class-wise 

sense. The input characteristics yielding significant accuracy increase are studied in 

detail by investigating which kinds of actions benefit the applied modification. Also, 

there were some classes with 0 recognition accuracy. During class-wise analysis, these 

are also examined. 

The results of the experiments for observing the effects on top-1 test accuracy levels 

ting 

the patterns also increases. Even though the computation times are higher, the 

accuracy gains are remarkable such that 5% and 10% for 30 and 60-framed networks 

when compared to 16-framed network. The main reason of such increase is that 

actions are formed by patterns which are highly related to each other temporally. 

Focusing on longer temporal extents contributes the network to reveal the actions 

more effectively. Using grayscale frames instead of RGB results in a slight decrease 

in recognition level while decreasing the computation time. However, the main 

concern of the thesis is the recognition performance rather than the computation time, 

it is unnecessary to use grayscale frames. When it comes to normalization, the best 

result is achieved without normalization. Because the frame values of the videos are 

already in the same scale (0  255), normalization does not contribute to the operation 

of the network. Combining RGB frames with flow masked RGB frames is expected 

to increase the accuracy because the flow information is introduced. However, this is 

not the case because varying the presence of flow information complicates the learning 
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process. Occasionally present motion flow prevents the network to reach high 

accuracy levels by making use of the flow information. This experiment concludes 

with the idea that either the flow information should be present in all frames or it 

should appear in a different form. Therefore, the last experiment introduces the flow 

as a fourth dimension to RGB frames (RGBF). This kind of input results in 6% 

increase in accuracy. This amount is fairly well; still, it is not sufficient. As a last 

modification, RGB values of each frame in videos are masked with optical flow values 

between consecutive frames. This modification achieves the highest accuracy gain. 

The increase is 12%, resulting in a recognition level of 59.90%. Since optical flow 

carries the main information used to describe the actions and disregard irrelevant 

information, masking the RGB pixel values with magnitudes of flow values is an 

effective method for action recognition. Making use of flow masked RGB frames 

with 0 recognition accuracy benefit the masked inputs since they have the most 

accuracy gain with the presence of motion flow. As a final argument regarding all the 

experiments performed for investigating the input characteristics, using flow masked 

RGB inputs and setting the frame length to 60 result in the highest accuracy. 

As the studies in the literature improve thei by adopting the idea 

of pre-training the networks on large-scale datasets, the same concept is applied. 

However, since training the network on such dataset causes really high computation 

time, the pre-trained values on ResNet-34 which are provided by [21] are used. These 

values are obtained for RGB input. When the pre-trained values are fine-tuned for 

flow masked RGB input using 16 frames, the accuracy rate increases from 59.90% to 

77.29%. Moreover, if the fine-tuning is applied for flow masked RGB input using 60 

frames, the recognition reaches to 79.01%. Because the optimization of the weights is 

initialized from learned parameters instead of random ones, the accuracies are 

increased in great amounts. The networks benefit from pre-training and reach higher 

levels of recognition. 
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When the networks with modified inputs, which are trained from scratch, are 

compared with state-of-the-art methods, they reach accuracy levels of almost 60%. 

This result shows improvements among most of the methods while remaining lower 

than some. The comparison of the pre-trained networks shows that using modified 

inputs for 3-dimensional ResNet-34 during fine-tuning reaches higher recognition 

levels while not performing as well as the state-of-the-art results. Although the 

accuracy increases in great amounts, the full learning capacity may not be reached 

since the frames used for pre-training are not masked. As a future work, the pre-

training may be performed for flow masked RGB inputs, which is expected to result 

in higher accuracy levels. 

After evaluating different input characteristics, this thesis proposes that increasing the 

frame lengths while masking the RGB frames with motion flow values contributes to 

the recognition of human actions in great amounts. Because actions are described by 

temporal relations, interpreting the patterns obtained from longer temporal extents and 

focusing on the segments which contribute the action mostly result in increased 

recognition capacity. As a final improvement, when the weights are initialized from 

pre-trained values, the recognition accuracy increases ever more. 
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