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ABSTRACT

A SURVEY ON CRYPTOGRAPHIC PROTOCOLS USING PAIRING-BASED
CRYPTOGRAPHY

Fetvacı, Şeyma

M.S., Department of Cryptography

Supervisor : Assoc. Prof. Dr. Murat Cenk

September 2019, 30 pages

With the thousands of works on pairing-based cryptography, the purpose of using
pairings in the protocols/schemes have changed. Before, they were used just to attack
the systems. Nowadays, they have been used to design such new cryptosystems that
there were no applicable methods before for these protocols like Joux’s key agreement
scheme. The main purpose of this thesis is to analyze how some of these protocols
use pairings-based cryptography in their schemes and what they achieve with these
schemes. We further share some notes that should be borne in mind while establishing
new protocols.

Keywords: pairing-based cryptography, bilinear map, identity-based encryption, key
agreement
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ÖZ

EŞLEŞTİRME TABANLI ŞİFRELEME KULLANAN KRİPTOGRAFİK
PROTOKOLLER ÜZERİNE BİR ARAŞTIRMA

Fetvacı, Şeyma

Yüksek Lisans, Kriptografi Bölümü

Tez Yöneticisi : Doç. Dr. Murat Cenk

Eylül 2019, 30 sayfa

Eşleme tabanlı şifreleme üzerine yapılan binlerce çalışma sonucunda, protokollerde
eşlemenin kullanılma amacı değişmiştir. Önceden sadece sistemlere saldırmak için
kullanılan eşlemeler; günümüzde ise, yeni şifreleme sistemleri tasarlarken kullanı-
lıyolar. Hatta Joux anahtar anlaşma şeması gibi protokollerin bazılarını uygulamak
önceden imkansızdı. Bu tezin temel amacı, bu protokollerin bazılarının eşleşmelere
dayalı kriptografiyi programlarında nasıl kullandıklarını ve bu programlarla neler ba-
şardıklarını analiz etmektir. Güvenlik açısından yeni protokoller oluştururken akılda
tutulması gereken bazı notları daha da paylaşıyoruz.

Anahtar Kelimeler: eşleme tabanlı kriptografi, doğrusal gönderim, kimlik-bazlı şifre-
leme, anahtar anlaşması
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CHAPTER 1

INTRODUCTION

Identity-Based cryptosystems allow any couple of participants to interact safely with

each other and check each other’s signatures without exchanging public or private

keys, without maintaining any key directories or using any third party services. In

this system, with no need of any certificate, a person’s identity can be used as public

key such as an email address. Hence, if one user needs to comminicate with someone,

s/he can use the email address of the other person directly since the public keys are

decided in advance with the unique information.

After the first ID-Based cryptosystem of Shamir and some applications like identity-

based encryption, searchable encryption, attribute-based encryption, short signatures

were proposed, the interest in pairings in cryptography has been sharply increasing.

With the thousands of works on this area, pairings where any pair of points on elliptic

curves are mapped into finite fields were started to be used not just to attack the cryp-

tosystems but also to design whole new protocols and schemes that were infeasible to

apply before, such as IBE [5] and Joux’s key agreement scheme [16]. With the use of

pairings, finite fields are now large enough to make the cryptographic hard problems

difficult to be computed as well as they are small enough to make the computations

efficient on them.

In this analysis, we have investigated some of the cryptographic protocols that benefit

from the pairings. Before that, to understand the process of the protocols, you will

be given some mathematical backgrounds in Chapter 2. First, you will be provided

the basics of elliptic curve over finite fields. Then, we will state what the bilinear

map is, its types and properties. Later, we will show some security related hard
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problems. Since this analysis is about pairings, the basic cryptographic concepts such

as public key encryption, key exchange protocols and digital signatures are assumed

to be familiar. For further information about these concepts, you may read [17].

Weil and Tate Pairing are the most used two pairings. After giving the basics of these

essentials pairings in Chapter 2, we will concentrate on some cryptographic schemes

that make use of these pairings in Chapter 3. This chapter will include three main

sections: Encryption, Signature, Key Agreement. We will give two examples per each

section. In the encryption section, we will talk about Identity-Based Encryption(IBE)

and Public Key Encryption with Keyword Search(PEKS). IBE allows the sender to

make sure that s/he uses the authentic copy of the receiver’s private key like an email

address. PEKS allow the user to search for encypted keyword and while doing the

search, it doesn’t jeopardize the safety of the original data. And then, in the signature

section, we will move on to the Boneh, Lynn and Shacham’s(BLS) Short Signature

Scheme. As it is understood from the name, by using BLS signature scheme, the

receiver can certify the authenticity. This scheme is also used for the aggragetion of

signatures which will be also mentioned. Finally, in the last section, key agreement,

we will focus on Joux’s One Round 3-Party Key Agreement and Extending Joux’s

Protocol to Multi Party Key Agreement.

Among all these protocols, no matter what they are used for, the security is one of the

important challenges. In pairing-based cryptosystems, the security is based on how

much difficult to compute various computationally hard problems associated with a

particular one: Discrete Logarithm Problem which they will be stated in Chapter 2.

Like a butterfly effect, every choice made during the building process of protocols

has an impact on the security level. To reach the desired security level, for each

possible pairing, elliptic curve, embedding degree, the complexity of the operations

over the finite field, and so on, the security level should be found and stated. Later, the

protocols should be continued with the best choice among them. In literature, there

are already some commonly wrong use of pairings that may end up with security

breaches. You will see some notes why one should be careful about these choices

while setting pairings in Chapter 4.

In this thesis, our aim is to analyze how protocols use pairing-based cryptography in

2



their schemes and what they achieve with these schemes. In this respect, we examine

some of the most valuable schemes regarding encryption, signature and key agree-

ment. We further share some notes that should be borne in mind while establishing

new protocols for the sake of security.
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CHAPTER 2

PRELIMINARIES

You will be first given some mathematical backgrounds related to the protocols using

pairings. We will mostly concentrate on Bilinear Maps, in other words, pairings, since

its properties provide a great easiness in protocols. Then, we will continue with how

pairings is(or should be) used in cryptography and what hard problems it depends on

for the security.

2.1 Elliptic Curves over Finite Fields

For cryptographic use, while defining the elliptic curves, they are considered over

finite fields instead of real numbers. Now, we will see the basic construction of the

elliptic curves over finite fields[15].

Definition 2.1. An elliptic curve over Zp, where p > 3, is the pair set (x, y) ∈ Zp
which appeases the Weierstrass equation

y2 ≡ x3 + ax+ b mod p (2.1)

along with an imaginary point of infinity O where a, b ∈ Zp and 4a3 + 27b2 6= 0

mod p holds.

Group Law for an ellpitic curve E over F

• Identity: Q+∞ =∞+Q = Q for all Q ∈ E(F )

• Negatives: If Q = (x, y) ∈ E(F ), then Q + (−Q) = ∞ where −Q denoting

(x,−y) is another point in E(F ) and the negative of Q.
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• Point Addition: Assume Q = (x1, y1) ∈ E(F ), P = (x2, y2) ∈ E(F ) and

Q 6= ±P . Then, Q+ P = (x3, y3) where

x3 =
(
y2−y1
x2−x1

)2

− x1 − x2 and y3 =
(
y2−y1
x2−x1

)
(x1 − x3)− y1

• Point Doubling: Assume Q = (x1, y1) ∈ E(F ) and Q 6= −Q. Then, 2Q =

(x3, y3) where

x3 =
(

3x12+a
2y1

)2

− 2x1 and y3 =
(

3x12+a
2y1

)
(x1 − x3)− y1

2.2 Bilinear Map

Definition 2.2. Let G1 and G2 be two additive groups, and GT be a multiplicative

group of prime order q. Assuming P1 is a generator of G1 and P2 is a generator of

G2, we consider ê is a bilinear map or pairing as follows:

ê : G1 × G2 → GT (2.2)

where the bilinear maps have three useful properties:

1. Bilinearity: ∀P1 ∈ G1 and P2 ∈ G2, ∀a, b ∈ Z∗
q ,

ê(aP1, bP2) = ê(P1, P2)ab

2. Non-degeneracy: We need to make sure that nothing maps to identity:

∀P1 ∈ G1, ∀P2 ∈ G2, P1 6= 0 and P2 6= 0,

< ê(P1, P2) > = GT meaning that ê(P1, P2) generates GT

In other words:

P1 6= 0 and P2 6= 0⇒ ê(P1, P2) 6= 1

3. Computability: ê can be executable efficiently.

Weil and Tate pairings are two of pairings where these properties hold for an elliptic

curve group G1 and a finite field G2. [20].

Considering the design of pairing-based protocols with respect to the particular re-

quirements, there are mainly 4 types of bilinear maps. [18]
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• Type-1: In this case, G1 = G2 and for the elements of G1, there are no short

representations.

• Type-2: In this case, G1 6= G2 and φ : G1 → G2 is an efficiently computable

homomorphism where there is no way of efficient secure hashing to the ele-

ments of G2.

• Type-3: For this case, G1 6= G2 and there is no efficiently computable homo-

morphism φ : G2 → G1

• Type-4: In this case, G1 6= G2 and an homomorphism φ : G1 → G2 can be

efficiently computable just like in Type-2; however, in this case, there exists

an efficient secure hashing to to a group element. Because of its inefficiency,

Type-4 is not usually used in protocols.

Figure 2.1: Properties of types of bilinear maps [13]

The pairings where G1 = G2 are said to be symmetric pairings. If not, they are called

assymmetric pairings.

2.3 Security-Related Problems

In cryptography, there are some hard problems that are used for the security purpose

while designing the protocols. The harder to solve these problems, the harder to find

a breach to attack the protocols. Now, you will be provided some definitions as an

instance of these problems [10].
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Definition 2.3. Assume that G is a group. Given h ∈ G such that gx = h, finding

x which is a hard problem is known as Discrete Logarithm problem (DLP). In other

words, given P1 and P2, where P1 is the generator of the groupG, such that P2 = xP1,

finding x is a DLP.

The difficulty of some computationally hard problems related to the DLP provides

the security of certain utilizations of bilinear pairings[18].

You can find some examples of these hard problems below. For the definitions, as-

sume that ê is a bilinear pairing on (G1 ×G2, GT ).

Definition 2.4. Given the element P1 and the values kP1, lP1 for some k, l ∈ Z∗
q ,

computing ê(P1, P1)kl is a bilinear Diffie-Hellman problem (BDHP).

Definition 2.5. Given the values P1, kP1, lP1 and mP1 for some k, l,m ∈ Z∗
q , com-

puting ê(P1, P1)klm is a bilinear Computational Diffie-Hellman problem (BCDHP).

Definition 2.6. Given the values P1, kP1, lP1 and mP1, determining if ê(P1, P1)m =

ê(P1, P1)kl is a bilinear Decisional Diffie-Hellman problem (BDDHP).

Definition 2.7. Given the values P1, kP1, lP1,mP1 and r for some k, l,m, r ∈ Z∗
q and

a one way hash function H : G2 → Z∗
q , determining if r = H(ê(P1, P1)klm)modq is

a bilinear Decisional Hash Diffie-Hellman problem (BDHDHP).

We will also talk about how these problems affects the security of the protocols in

Chapter 4.

2.4 Using of Pairings in Cryptography

Earlier, pairings were used to reduce DLP over an elliptic curve to DLP over a finite

field. In this way, one can attack the problems as a subexponential index calculus

attack. However, with the advance works on pairings, now, they are used to design

protocols by using hard problems and choosing the points where finite fields are suf-

ficiently large enough.
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2.5 Pairings Used In Cryptography

The most known and used pairings in cryptography are Weil and Tate pairings. In

this analaysis, we will just give the main idea behind them to make the connections

among the protocols more smooth with these pairings.

2.5.1 The Weil Pairing

Weil Pairing is the first one who described the first pairing on elliptic curves. Al-

though it is not directly used in the cryptography, the most used pairings, Tate pairing

or its variants, uses the weil pairing [11]. Here is the basis of the Weil pairing.

Theorem 2.1. Consider E as an elliptic curve defined over a finite field K, r ≥ 2 an

integer prime to the characteristic of K, and P and Q two points of r-torsion on E.

Then,

êW,r = (−1)r ∗ fr,P (Q)

fr,P (P )
(2.3)

is well defined when P 6= Q and P,Q 6= 0E . One can extend the application to the

domain E[r] × E[r] by requring that êW,r(P, 0E) = êW,r(0E, P ) = êW,r(P, P ) = 1.

Furthermore, the application êW,r : E[r] × E[r] 7→ µr obtained in this way is a

pairing, called the Weil Pairing. The pairing êW,r is alternative, which means that

êW,r(P,Q) = êW,r(Q,P )−1.

For proof, see [[22], Section III.8] or Section 3.4.3.

Please not that the Weil pairing is defined over any fieldK where r is its characteristic

prime and the values are in µr ⊂ K̄. However, it is considered as K = Fq with a

prime number q and embedding degree k such that the smallest field containing µr is

Fkq .

2.5.2 The Tate Pairing

Tate defined the Tate pairing in [23]. Assume K = Fq, like in the Weil pairing, with

a prime q and the embedding degree k corresponding to r.

9



Theorem 2.2. Consider E as an elliptic curve where r is a prime number dividing

the number of E(Fq), and P ∈ E[r](Fkq) is a point of r-torsion defined over Fkq and

Q ∈ E(Fkq) is a point of elliptic curve described over Fkq . And let R be any point in

E(Fkq) where {R,Q+R} ∩ {P, 0E} = 0. Then,

êT,r(P,Q) =
fr,P (Q+R)

fr,P (R)

qk−1
r

(2.4)

is well defined and independent to R.

Moreover, the application

E[r](Fkq)× E(Fkq)/rE(Fkq)→ µr

(P,Q) 7→ êT,r(P,Q).
(2.5)

is a pairing, called the Tate Pairing.

For the proof the theorem, please see [12]. And also please see [11] to understand the

usage of Weil and Tate Pairings in cryptography for the applications of the protocols.
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CHAPTER 3

CRYPTOGRAPHIC PROTOCOLS USING PAIRING-BASED

CRYPTOGRAPHY

In this chapter, we concentrate on some of the significant cryptographic applications

depending on two known bilinear pairings, Weil and Tate Pairings, in three different

parts. In the first part, we describe two of the important encryption schemes, namely

ID-based Encryption and Public Key Encryption with keyword Search. In the second

part, we continue with one of the significant signature schemes Boneh, Lynn and

Shacham Short Signature Scheme and how it is used for the aggregation of signatures.

In the last part, we first focus on the key agreement protocols Joux’s One Round 3-

Party Key Agreement Scheme and then focus on a related one, namely Extending

Joux’s Protocol to Multi Party Key Agreement.

3.1 Part I: Encryption

The secrecy of a message has been important to us since the beginning of the life.

From the individuals to the companies or governments during the history, there are so

many things that are needed to be kept secret. To be able to this, we need to encrypt

these messages. In this part, we will see two encryption schemes that use pairing

based cryptography while encryting the messages.
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3.1.1 Identity-Based Encryption

When Bob wants to send a secured message to Alice by using public-key encryption,

he does the process using Alice’s public key. Then, when Alice wants to decrypt the

message, she uses her corresponding private key. In this process, Bob has to be sure

of using authentic copy of Alice’s private key. Otherwise, a hostile could get in their

way, persuade Bob to use attacker’s public key and thereby the attacker could decrypt

Bob’s message that was meant to be sent to Alice. [20]

To decrease the inherent problems of managing certificates, in 1984, Adi Shamir pro-

posed that the public keys of the recepients should contain the identifying informa-

tion, such as an email address. Now, Bob could send a secure message to Alice

without the prior setup of a trusted third party, TTP. He even sends the message even

before Alice generates a key pair.

The first practical IBE scheme was offered by Boneh and Franklin in 2001. The

scheme utilizes a bilinear pairing ê on (G1, GT ) by using symmetric pairings. [5]

Figure 3.1: How IBE works. [5]
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Setup, Extract, Encrypt and Decrypt are the 4 random algorithms that specify the IBE

scheme. Now, let’s look at them shortly.

Setup

• uses the symmetric bilinear mapping ê : G1 × G1 → G2 and P as a generator.

• chooses a secret key s system-wide.

• sets a corresponding system-wide public key Ppub = sP .

Extract

• takes the parameters from Setup, chooses a public identity A ∈ {0, 1}∗ and

outputs a private key dA. By using this algorithm, a private key is extracted

from the provided public key.

Encrypt

• By using the parameters above, the aim here is to encrpyt a messagem to public

key A.

Enc(Ppub, A,m) = 〈rP,m⊕H2(grA)〉, r ∈R Z∗
q

gA = ê(QA, Ppub)

QA = H1(A)

H1 : {0, 1}∗ 7→ G1, a random oracle

H2 : G2 7→ {0, 1}∗, a random oracle

13



Decrypt

• The aim of this algoritm is to decrypt c = (u, v). The secret key mentioned in

Setup is given to the holder of A as dA = sQA where QA = H1(A). Then,

Dec(u, v, dA) = v ⊕H2(ê(dA, u))

= v ⊕H2(ê(sH1(A), rP ))

= v ⊕H2(ê(H1(A), P )rs)

= v ⊕H2(ê(QA, sP )r)

= v ⊕H2(ê(QA, Ppub)
r)

= v ⊕H2(grA)

= (m⊕H2(grA))⊕H2(grA)

= m

(3.1)

The security of this scheme is based on the difficulty of BDHP.

Ran Canetti and Ron Rivest [8] assumed that this scheme can be made CCA2_secure

with Fujisaki-Okamoto construction.

CCA2_secure means that the algorithm is secure against an adaptive chosen cipher-

text attack where the attackers can make their choices of the plaintexts to the decryp-

tion algorithm that relies on the earlier chosen ciphertext queries. [2]

3.1.2 Public Key Encryption with keyword Search

Assume that the user Alice wants to read her emails from different devices such as

laptop, desktop, pager, etc. Alice’s mail gateway is expected to direct an email to

the corresponding machine depending on the email keywords. For example, when

an email containing keyword "crucial" is sent to Alice by Bob, the email should be

directed to her pager. Or when an email containing keyword "dinner" is sent to her, the

email should be directed to her desktop so that she can read it later. So, the expected

thing here is that each email should include a few of keywords such as words on

subject lines or even the email address of the sender.
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Let’s say Bob sends an ciphered email to Alice by using her public key where the

email and the related keywords are encrypted. This makes it impossible for the email

gateway to see the keywords and direct them to the correct devices. The goal in this

protocol is to give Alice an option where she can give the gateway the ability to test

if "crucial" is included in the email as a keyword; however, while testing this, the

gateway cannot learn anything else from the encrypted email. Now, we will see how

this works.

First, Bob uses a standard public key system, encrypts his message and appends a

Public-Key Encryption with keyword Search (PEKS) per keyword to the ciphertext

[4]. In other words, for message M and keywords K1, ..., Km, Bob sends

EApub
(M) || PEKS(ApubK1) || ... || PEKS(Apub, Km)

where Alice’s public key is denoted by Apub and EApub
(M) is the ciphertext. This

way, PEKS enables Alice to give the gateway a cretain trapdoor TK . Given

PEKS(Apub, K
′
) and EApub

(M), the gateway can test if K = K
′ . As noticed, there

is no communication between Bob and Alice in this process.

The scheme in [4] consists of 4 algorithms, namely: KeyGen, PEKS, Trapdoor and

Test. And it is built as a non-interactive searchable encryption. They use ê : G1 ×
G1 → G2 which is a bilinear map and H1 : {0, 1}∗ → G1 and H2 : G2 → {0, 1}logp

which are hash functions.

KeyGen

• The given security variable decides the size of G1 and G2, namely p. After a

random δ ∈ Z∗
p and a generator g of G1 are picked by the algorithm, it outputs

Apub = [g, h = gδ] and Apriv = δ.

PEKS(Apub, K)

• The algorithm calculates t = ê(H1(K), hr) ∈ G2 for a random r ∈ Z∗
p where

PEKS(Apub, K) = [gr, H2(t)] is the output.
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Trapdoor(Apriv, K)

• outputs TK = H1(K)δ ∈ G1.

Test((Apub, S, TK)

• Let S = [A,B]. Check if H2(ê(TK , A)) = B. If it holds, outputs "YES";

otherwise, outputs "NO".

This system, in the random oracle model, is stated semantically secure against a cho-

sen keyword attack. And it is also a non-interactive searchable encryption scheme.

The BDHP that we mentioned in Chapter 1 provides the security of this system.

Boneh et al give another construction on this encryption technique, which is less

efficient, called a limited system based on general trapdoor permutation [4], which

will not be mentioned on this survey.

3.2 Part II: Signature

When a person is requested a handly-operated key in the signature, keeping the sig-

nature short is desirable. Or in schemes with restricted bandwidth, short digital sig-

natures are preferred. RSA and DSA are the two most frequently used signature

schemes. If users use 1024-bit modulus, the length is 1024 bits long for RSA signa-

ture while the length of DSA signatures is 320 bits long. Still, they are too long to

enter the key manually. The BLS scheme with a signature length of about 160 bits

achieves approximately the same level of security as in the DSA scheme. [7]

3.2.1 Boneh, Lynn and Shacham (BLS) Short Signature Scheme

The BLS scheme utilizes bilinear mapping for the verification process and operates in

any group where Decisional DiffiHellman Problem is easy but Computational Diffie-

Hellman is hard. These groups are called "Gap Groups". Thereby, it is provably

secure.
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The scheme consists of 3 functions, Key Generation, Signing, Verification, and uses

H1 : {0, 1}∗ 7→ G1 which is a full-domain hash function and it is considered as a

random oracle. Now, let’s see the basic idea behind the short signatures. [6]

Key Generation

• Under a Co-GDH setup, picks a random integer x R←− Zq as a secret key, and

calculates v = gx and takes it as public key.

Signing

• Given x, first calculates h = H(m) where h ∈ G1 and a message m ∈ {0, 1},
and then the signature σ = hx.

Verification

• Given v, the signature σ, calculates h = H(m) where m is the message, and

justifies that ê(σ, g) = ê(h, v).

The BLS scheme also makes the aggregation of signatures available. Here is the

scheme for the Bilinear Aggregate Signatures [6]:

Key Generation

• Under the help of Co-GDH setup, for a specific participant, takes a random

integer

x
R←− Zq as a secret key, and calculates v = gx and takes it as public key.

Signing

• For a particular user, given x, first calculates h = H(m) where h ∈ G1 and a

message m ∈ {0, 1}, and then the signature σ = hx.

Verification

• Given v, a message m, the signature σ, calculates h = H(m) and justifies that

ê(σ, g) = ê(h, v).
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Aggregation

• Assign each user an index i for 1 < i < k where k = |U | for the aggregating

subset of users U . Each user ui ∈ U computes a signature σi ∈ G1 for every

message mi ∈ {0, 1} where all mi’s are their choice and all distinct. And

computes the aggregate signature as σ =
∏k

i=1 σi.

Aggregate Verification

• Given the public keys vi’s, messages mi’s, the aggregate signature σ for all

participants ui ∈ U , to justify the aggregate signature,

– makes sure of the messages mi’s are all separated from each other. Oth-

erwise, reject; and

– computes hi = H(mi) for 1 < i < k and accepts if ê(σ, g) =
∏k

i=1 ê(hi, vi).

To design the protocols for threshold, multisignature and blind signatures, one can

also use the BLS Signature Scheme. [3]

3.3 Part III: Key Agreement

One of the basic cryptographic primitives is key agreement. When one needs to se-

curely exchange some data over with someone, they first need to create a shared key.

And they need to make sure its security even over an unsecure channel in case of

intercepting by an adversary who want to access the message.

3.3.1 Joux’s One Round 3-Party Key Agreement Scheme

To solve such problem, Diffie-Hellman protocol is an efficient way of setting a com-

mon secret key among the participants. There are some findings of setting a common

secret key between more than two users; however, they all require at least two round

of communication. Joux [16] showed us how to implement one round tripartite key

aggreement protocol by using bilinear mappings, namely Well and Tate pairings. In

this part, we will examine this protocol.

18



Tha aim here is to build an analog of the Diffie–Hellman protocol among three par-

ticipants, A, B and C, which consists of only one round communication and end up

with a common secret KABC .

Figure 3.2: One Round 3-Party Key Agreement Protocol [16]

Let ê : G1 × G1 → G2 and P as a generator of G1. And The participants Alice,

Bob and Chris have their own secrets a, b, c ∈ Z∗
q , respectively. Then, the scheme is

as follows:

• Alice calculates aP and broadcast it to both Bob and Chris

Bob calculates bP and broadcast it to both Alice and Chris

Chris calculates cP and broadcast it to both Alice and Bob.

Please remember that these above broadcastings are done in one round of par-

allel message exchanges.

• By using bilinear mapping,

Alice calculates ê(bP, cP )a = ê(P, P )abc

Bob calculates ê(aP, cP )b = ê(P, P )abc

Chris calculates ê(aP, bP )c = ê(P, P )abc

Please remember that these calculations are computed in parallel. And now, all

the participants obtain the same key Kabc = ê(P, P )abc ∈ G2.

For this Diffie-Hellman based key agreement protocol, the security relies on the

difficulty of the DLP on the chosen elliptic curve and in the finite field F . The

elliptic curve choice is also important for the security.
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3.3.2 Extending Joux’s Protocol to Multi Party Key Agreement

In this protocol, Barua et al [1] uses ternary three structure, tree based group key

agreement and combines them with Joux’s protocol which is mentioned above. In

Joux’s algorithms, he uses two participants and three participants who want to create

a common shared key. Barua uses this idea and instead of using only two or three

participants, he uses two and three groups, namely CombineThree and CombineTwo

as Diffie-Hellman key agreement protocol. There are two versions of the protocols:

authenticated and unauthenticated key agreement. In the schemes below, the boxed

parts are only for authenticated agreement protocol and the rest is valid for both ver-

sions.

CombineThree(V [1, 2, 3], v[1, 2, 3])

Consider V [1, 2, 3] as three users set and v[1, 2, 3] as their private keys, respectively.

Also, let Rep(Vi) be the representer of the user set V [1, 2, 3] where i ∈ {1, 2, 3}.

• Rep(Vi) computes Pi = viP for each i ∈ {1, 2, 3}.

• and for the authenticated version, also computes TRep(Vi) = Ĥ(Pi)vRep(Vi)+viPi

• Rep(Vi) sends Pi and TRep(Vi) to all members of both Vi and Vk for {j, k} =

{1, 2, 3}\i.

Then,

• for {j, k} = {1, 2, 3}\i, each member of Vi verifies

ê(TRep(Vj) + TRep(Vk), P ) =

ê(Ĥ(Pj)QRep(Vj) + Ĥ(Pk)QRep(Vk), Ppub)ê(Pj, Pj)ê(Pk, Pk)

and calculates H(ê(Pj, Pk)
vi).

In CombineThree protocol,H(e(P, P )v1v2v3) is the common agreed key of three users

sets.
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CombineTwo(V [1, 2], v[1, 2])

Similarly to CombineThree, consider V [1, 2] as two users set and v[1, 2] as their pri-

vate keys respectively. Also, let Rep(Vi) be the representer of the user set V [1, 2]

where i ∈ {1, 2}.

• Rep(Vi) computes Pi = viP for each i ∈ {1, 2}.

• and for the authenticated version, also computes

TRep(Vi) = Ĥ(Pi)SRep(Vi)+viPi

• Rep(V1) generates a random v̄ ∈ Z∗
q and delivers v̄P

and T̄Rep(V1) = Ĥ(v̄P )SRep(V1) + v̄2P to other users.

every member of V1 and V2, apart from Rep(V1), checks:

ê(T̄Rep(V1), P ) = ê(Ĥ(v̄P )QRep(V1), Ppub)ê(v̄P, v̄P )

• Rep(V1) delivers P1, TRep(V1) to every member of V2.

Rep(V2) delivers P2, TRep(V2) to every member of V1.

• every member of V1 checks

ê(TRep(V2), P ) = ê(Ĥ(P2)QRep(V2), Ppub)ê(P2, P2) and com-

putes H(ê(P2, v̄P )v1)

• every member of V2 checks

ê(TRep(V1), P ) = ê(Ĥ(P1)QRep(V1), Ppub)ê(P1, P1) and com-

putes H(ê(P1, v̄P )v2)

In CombineTwo protocol, H(e(P, P )v1v2v̄) is the common agreed key of the user sets

of two.
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CHAPTER 4

IMPORTANT NOTES ON PAIRINGS

While proposing a cryptographic scheme/ protocol, there are some pioneer questions

that come to mind. What advantages does it have? What provides the security? Or

to what kind of attacks can it be vulnarable? What should we do to keep it on the

desired security level? In this chapter, you will see some notes that have been already

said about these questions.

4.1 Advantages of Pairings

Basically, the pairings are classified into two types regarding protocols:

• They are used to construct the methods which can also be constructed by using

other techniques. In this way, the aim is to gain efficiency.

• They are used to construct the methods which there are no other techniques to

construct.

4.2 Using the Right Pairing Type

As we stated in the Preliminaries chapter, there are four types of bilinear mappings.

Among these types, using the Type-1 bilinear maps (namely symmetric pairings)

shows fatal security issues for the cryptographic protocols since it makes easier to

attack the protocols. Nonetheless, there are still some protocols using Type-1 by
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converting them into Type-3 with the help of automated tools, or in a same way, us-

ing Type-2 by converting them into Type-3. Instead of using these automated tools,

to reach the desired security level and efficiency, it is recommended to use directly

Type-3 while designing protocols. [18]

Although these protocols are not mentioned in this thesis, one, who wonders how

type-1 and type-2 are used, can look at the schemes in the articles [14], [19] and [9].

These are some examples of wrong usage of bilinear mappings types.

4.3 Choosing the right Elliptic Curves

When implementing cryptographic protocols, the security is considered to be contin-

gent on some cryptographic hard problems. However, while building a scheme, the

intractability of these hard problems can be reduced. MOV(Menezes, Okamoto and

Vanstone) [21] and FR(Frey and Ruch) reduction [12] are two examples for this case.

They use bilinearity of the pairing to reduce. The basic idea of MOV reduction is as

follows:

Let ê be a Weil Pairing and n be the order of P , a point on an elliptic curve. And let

Q be a point of order n such that there is no m where Q = mP , meaning P and Q

are lineraly independent to each other.

Then, one can compute ê(P,Q) and ê(xP,Q) = ê(P,Q)x which are now both ele-

ments of an finite field. In this way, the DLP on elliptic curves are reduced the DLP

on finite fields which makes subexponential attacks possible such as MOV attacks 1.

To avoid this attack, instead of using elliptic curves with small embedding degrees,

standardized safe curves should be used. The embedding degree is denoted by k and

it is defined as follows:

Definition 4.1. Let E be an elliptic curve defined over Fq, and let P ∈ E(Fq) be

a point with gcd(n, q) = 1 where the order of P is prime n. Then, the embedding

degree of 〈P 〉 is the smallest positive integer k such that n|qk − 1.

1 https://crypto.stanford.edu/pbc/notes/elliptic/movattack.html
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In other words, the difficulty of DLP in Fqk depends on choosing the embedding

degree sufficiently large enough. The possibility of the known subexponential attacks

for solving DLP in finite fields arises if the embedding degree k is chosen small. [20]

Also, we don’t know which elliptic curves are secure. There are many weak elliptic

curves. Choosing a random curve would also increase the risk for the security which

is not wanted. Under these circumstances, since generating a new elliptic requires

lots of works and accomplishing it rightly is difficult, it is recommended to use the

standard curves.

For the Joux’s key agreement scheme [16], it is recommended that p should be a 152

bits prime for k = 2, supersingular case.

4.4 Using Practisable Security Assumptions

Before starting to design cryptographic protocols, the security assumptions should be

made very clear about the security levels. Like a butterfly effect, every choice made

during the process has an impact on the security level. To reach the desired security

level, for each possible pairing, elliptic curve, embedding degree, the complexity of

the operations over the finite field, and so on, the security level should be found and

stated. Later, the protocols should be continued with the best choice among them.
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CHAPTER 5

CONCLUSION

In this thesis, we have seen some of the cryptographic protocols using pairings. It is

quite amazing how far the usage of pairings have changed in the history of cryptogra-

phy. Its usage area has moved up from attacking the protocols to designing new and

efficient ones. To understand how pairings are used, we have seen the basic schemes

of some pioneer protocols according to their usage area from encryption to signature

and key agreement. Regarding how pairings are used in these systems, how much

they are helpful and even in some cases how they are inalienable for the systems,

we should focus on this area more than ever. That’s why we believe that the interest

in pairings will continue to grow even larger. We have also given some background

related to pairings. As it is seen in the last chapter, to completely understand pairings

and use them correctly are very crucial for security. For future work, we can

• analyze the complexitiy of the protocols using pairings and try to find new ways

to lower them.

• examine the stantardized elliptic curves and try to find new elliptic curves that

should be safe to use in pairing-based cryptography.
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