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ABSTRACT 

 

TWO DIMENSIONAL CUTTING STOCK PROBLEM WITH MULTIPLE 

STOCK SIZES 

 

Ayasandır, Umutcan 

Master of Science, Industrial Engineering 

Supervisor: Prof. Dr. Meral Azizoğlu 

 

September 2019, 94 pages 

 

In this study, we consider a two dimensional cutting stock problem with multiple stock 

sizes and two stage guillotine cuts. Our objective is to maximize the difference 

between total revenue over all items and total cost over all used panels.  

We propose two mathematical models and discuss their relative performances. We 

enhance the performances of the models by incorporating the properties of optimal 

solution that we derive.  

The results of our computational study have revealed the satisfactory performance of 

one of our models with optimal properties for medium sized problem instances. We 

develop decomposition-based heuristics that produce high quality solutions in 

reasonable time.  

 

 

Keywords: Cutting Stock Problem, Mathematical Models, Decomposition Methods  
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ÖZ 

 

İKİ BOYUTLU STOK KESME PROBLEMİ 

 

Ayasandır, Umutcan 

Yüksek Lisans, Endüstri Mühendisliği 

Tez Danışmanı: Prof. Dr. Meral Azizoğlu 

 

Eylül 2019, 94 sayfa 

 

Bu çalışmada, iki boyutlu çoklu stok büyüklüklerinin iki aşamalı giyotin kesim 

problemi ele alınmıştır. Amacımız, kesilen ürünlerden elde edilen toplam gelir ile 

kullanılan panellerdeki toplam maliyet arasındaki farkı ençoklamak olarak 

belirlenmiştir. 

Problemin çözümü için iki matematiksel model önerilmiş ve performansları 

değerlendirilmiştir. Her iki modelin performansı da elde edilen en iyi çözüm 

özelliklerini kullanarak arttırılmıştır. Literatürden alınan örnek problemler üzerinde 

yapılan sayısal çalışmalar, modellerimizden birinin orta büyüklükte problem 

boyutlarında tatmin edici sonuçlar verdiğini ortaya koymuştur. Ayrıştırma tabanlı 

sezgisel algoritmalar geliştirilerek makul sürede yüksek kaliteli çözümler elde 

edilmiştir. 

 

Anahtar Kelimeler: Stok Kesme Problemi, Matematiksel Modeller, Ayrıştırma 

Algoritmaları 
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CHAPTER 1  

 

1. INTRODUCTION 

 

Cutting stock problems obtain a set of small items from a set of large items with 

defined geometric dimensions of the items. The items may have one, two, three or 

more than three dimensions. In this study, we consider two-dimensional cutting stock 

problem that cuts a set of rectangular items from a set of rectangular stocks that are 

available in multiple dimensions.  

Two basic types of cutting stock problems are studied according to the assignment 

type that defines the objective. The types are referred to as output maximization or 

input minimization. Output maximization problems assign a set of items with 

specified demands to a set of large items that may not be sufficient to cover all 

demand. So the problem is to obtain maximum number (or weighted number) of small 

items from the available large items. Input minimization problems, on the other hand, 

decides on the minimum number (or weighted) of large items so as to cover all 

demand. Minimization of panel costs is an input minimizing, maximization of total 

revenue on the other hand is an output maximizing concern.  

In the literature the studies are either input minimization or output maximization type. 

Cutting stock problems and bin-packing problems are famous examples of input 

minimization type. Knapsack problems are different from both, because the total 

weight of the items placed on large objects is maximized. In this study, we consider 

the net revenue, i.e. profit, problem that maximizes the difference between the total 

revenue brought by all cut items and the total cost incurred by all used panels. Hence 

our problem has both input maximization and output minimization concerns.  

One can use number of small items to categorize the literature in cutting problems. In 

bin packing problems, all item types are packed only once while in cutting stock 
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problems several items of each type are cut. In other words, bin-packing problem is a 

special case of cutting stock problem where demand of each item type is one. In this 

study, number of small items of each type is arbitrary, but not limited to one.   

The small items may have rigid orientation such that their widths and their lengths 

should fit those of the large objects. Some small items may be rotated so that they may 

be placed with 90 degree change. Also, there may be some restrictions in cutting 

process coming from industrial applications, such as guillotine cutting constraints. In 

this study, we basically consider rigid, i.e., non rotatable items in guillotine cutting 

environment and discuss the extensions to the rotatable items case.  

Two-dimensional cutting stock problem is a strongly NP-hard problem (Macedo et. 

al., 2008) and has many practical application areas. The application areas reported in 

the literature include but are not limited to the paper industry, wood industry and glass 

industry.  

Our motivating example is a marble industry where stock large objects are available 

in limited number, different dimensions and quality that affect their costs. They do 

have many customers asking many different rectangular items for different prices and 

some of their final products may be composed of small cut items in the company. Each 

item has a demand above which production is forbidden and each produced, i.e. cut 

item, brings a defined revenue which might also convey information about the prestige 

of the customer in company’s view.  The revenues of the small items depend on the 

customer orders, delivery times and dimensions of the items. For some specified time 

period they want to maximize total profit without exceeding panel availabilities and 

customer demand. Due to the fact that the dimensions of the items cut depend on the 

special request of the customer, it is reasonable to limit number of items cut by the 

customer demand.  

The journey of this study originates from this practical problem. We develop two 

mathematical models, one of which is extended from the literature.    
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We enhance the efficiency of the models by recognizing the properties of optimal 

solution. 

The results of our computational study have revealed that our mathematical model can 

handle only medium sized problems with not so high demand quantities. To handle 

larger sized problem instances we develop several heuristic procedures and observe 

their satisfactory performance in terms of both speed and closeness to the optimal 

solutions.  

The rest of the thesis is organized as follows. In Chapter 2, we give the review of the 

studies in the literature. In Chapter 3, we define our problem and discuss the 

alternative solution approaches. We give the results of our numerical study for each 

of the solution approaches in Chapter 4.  Chapter 5 discusses the details of our 

application to the marble company.  Chapter 6 concludes the study by pointing out 

main findings and discussing the possible research directions.  
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CHAPTER 2  

 

2. LITERATURE REVIEW 

 

2.1. Literature on Cutting and Packing Problems 

Cutting stock problem (CSP) is first introduced by Gilmore and Gomory (1961). The 

authors first dealt with one-dimensional cutting stock problem and then extended the 

problem for two and more dimensions (Gilmore and Gomory, 1965). Since then, 

different variants and extensions of the CSP are handled in the literature. To classify 

the researches and publications properly, Dyckhoff (1990) introduced a typology for 

cutting and packing problems.  

Cutting problems basically refer to the problems where small items are obtained by 

cutting large objects, like in CSP. Packing problems refer to the problems where small 

items are assigned and placed large objects, like bin packing (BPP) and knapsack 

problems. The difference mainly in the naming, coming from the aim of the problem 

but the solution approaches and the variants of the problems are similar.  

Dyckhoff (1990) categorized the problem with respect to dimensionality, kind of 

assignment, assortment of large objects and assortment of small items. The number of 

publications related with the problem has increased after Dyckhoff’s study, that can 

be attributed the interest it raised. Wascher et. al. (2007) proposed an improved 

typology that uses Dyckhoff’s typology as a baseline to introduce their ideas and 

modifications. They also proposed new names for the criteria and problem types. 

Wascher et. al. (2007) divided the problem types into three as basic, intermediate and 

refined problem types. Kind of assignment and assortment of small items criteria 

define the basic problem types while the assortment of large objects criterion defines 

the intermediate problem types. Finally, refined problem types are defined with 

respect to the number of dimensions.  
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In this section, we concentrate on a narrower area of the literature, two dimensional 

cutting and packing problems. One may refer to the review papers for the classification 

of one-dimensional problems. Coffman et. al. (2013) classified the literature on 

approximation algorithms for bin packing problem. In terms of exact methods, Valerio 

and Carvalho (2002) compared the LP model formulations for one-dimensional BPP 

and CSP.  Martinovic et. al. (2018) reviewed and compared the available modelling 

approaches in the literature for one-dimensional cutting stock problem. Also, Delorme 

et. al.’s (2016) paper gives the review of important mathematical formulations and 

exact solution methods in the last fifty years. 

2.2. Literature on Two Dimensional Cutting and Packing Problem 

In this section, we first review the related studies on the exact methods and then the 

non-exact ones.  

2.2.1. Exact Methods 

Fekete et. al. (2007) dealt with the orthogonal packing problem. In the problem, there 

are rectangular small items and one large rectangular object. The aim is to place small 

items into the large object. They used graph theoretical characterizations of 

assignments of items to the objects. By using these characterizations, the feasible 

assignments are evaluated as a group, not one by one, that shares same characteristics. 

A successful branch and bound algorithm is implemented thanks to the good bounds 

obtained.  

Clautiaux et. al. (2008) proposed a new constraint based scheduling model to the same 

problem. They used the model in branch and bound scheme together with the new 

techniques to improve the solution approach. The approach generally outperforms the 

methods in the literature but for some instances Fekete et. al.’s (2007) method 

performs better.  

Alvares-Valdez et. al. (2008) studied “strip packing problem”, where the width of 

large object is fixed but the length of each strip is infinite. The objective is to minimize 
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the length of the large object while assigning the small items to this object. The authors 

proposed branch and bound algorithm for the problem. In branching scheme, they used 

bounds obtained from the LP relaxation of integer formulation model. Also, they 

reduced the branching tree by exploiting some dominance relations and bounds 

obtained by geometric considerations. The solution approach is effective in general, 

but there are some difficulties to solve the problem instances with small items. 

Boschetti and Montaletti (2010) followed similar approach and proposed new lower 

and upper bounds to use in branch and bound algorithms. The proposed upper bounds 

are found by constructive heuristics and the lower bounds are found by relaxations of 

different mathematical formulations of the problem. The authors also proposed some 

reduction techniques. Their solutions are better in most of the instances.  

Martello and Vigo (1998) proposed branch and bound algorithm to solve two-

dimensional bin packing problem (2DBPP). Unlike the strip packing and orthogonal 

packing problems, there are generally infinite number of large objects in bin packing 

problems and aim is to minimize the number of bins used. For the branch and bound 

algorithm, they compute bounds by using the dimensions of the items, and one-

dimensional version of the problem. At the outer branching tree, the item is assigned 

to a large object (bin) and a feasible assignment is tried to be found. At inner branching 

tree, the existence of feasible packing is questioned. The study was the first attempt to 

solve the bin packing problem by an exact method. The authors were able to find a 

solution to the problems with -up to- 120 items, by this method.  

Lodi et. al. (2004) proposed a formulation with polynomial number of variables and 

constraints for bin packing problem. They proposed the model for the problems where 

the items have to be packed by levels. This restriction is motivated by industry 

capabilities, such as guillotine cutting. According to the authors, by using the LP 

relaxation objective of the proposed model in standard branch and bound package, 

414 of 500 instances are solved to optimality within 5 minutes. Also, the model itself 

can be solved by a commercial MIP solver.  
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Pisinger and Sigurd (2007) used Dantzig-Wolfe decomposition based column 

generation method to solve the 2DBPP. The subproblem in the decomposition scheme 

is responsible for the assignment of items to the single large object. The solution 

approach is effective because the infeasibilities in subproblem returns back to the 

master problem as valid inequalities. Lower bounds computed by delayed column 

generation are superior or the same as the existing bounds in the literature. Optimal 

solutions can be obtained for the problems with –up to- 100 items. Guillotine cutting 

constraints can easily be accommodated in subproblem, so they obtained solutions for 

2DBPP with guillotine constraints.   

Macedo et. al. (2010) formulated the two dimensional problem as a minimum flow 

problem extending its one dimensional version. In the formulation, each cutting 

pattern corresponds to a path and positions in the large objects correspond to vertices. 

Model is compared the other models in the literature in terms of linear relaxations and 

proved to be stronger. The authors solved the model by commercial MIP solver in 

their solution approach. As the model has a pseudo-polynomial number of constraints 

and variables, the solutions are obtained in reasonable times.  

Silva et. al. (2010) proposed an integer-programming model that uses possible residual 

large objects as parameters. The model performs well for the case when the 

dimensions of the items are not much smaller than the dimensions of the panels. Small 

items create more residual panels so the size of the model is increased. However, the 

model size is not affected by the demand of the items. Therefore the model is capable 

to solve many real world instances in reasonable times. Only in 29 of 672 instances of 

4 real world problem, the model could not reach the optimal solution in two hours.  

Pisinger and Sigurd (2005) studied 2DBPP with variable bin sizes (2DVSBPP) and 

proposed the first exact algorithm. They used Dantzig-Wolfe decomposition for the 

integer-linear formulation of the problem to find lower bounds for their branch and 

price algorithm. However, they showed that the algorithm could handle only small 

sized instances.  
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Furini and Malaguti (2013) studied the cutting stock problem with multiple stock size. 

They extended the Lodi et. al.’s (2004) model to multiple stock size case and 

duplicated the items with respect to their demands. They used some modelling 

techniques in order to reduce symmetries coming with the duplication. They also 

extend Silva et al.’s (2010) model to the multiple stock size case. Finally, they 

included different sized large objects in Gilmore and Gomory’s exponential size 

model and solved the model by using branch and price techniques. Comparison of 

those three models suggests that the superiority of one model over any other is instant 

dependent. Models proposed are all suitable for the industries where guillotine-cutting 

restrictions are applied.  

Guillotine cutting restrictions are available in some other studies as well. Dolatabadi 

et. al. (2012) studied two dimensional guillotine knapsack problem where only one 

type of large object is available. They implemented recursive algorithm that constructs 

maximum guillotine assignment to a large object. Bekrar et. al. (2010) included 

guillotine constraints for strip packing problem. Amossen and Pisinger (2010) studied 

multi-dimensional guillotine bin packing problem. They proposed a constructive 

algorithm for guillotine and non-guillotine cutting based on constraint programming. 

Fleszar (2016) studied stage unrestricted guillotine cutting problem for one large stock 

and multiple items. The item rotations are also considered in the study.  

2.2.2. Non-Exact Methods 

There are plenty of heuristic approaches for cutting and packing problems. We only 

survey the studies on the two dimensional cutting and packing problems with multi 

sized large objects, stocks or bins. In terms of non-exact solution approaches to those, 

Riehme et. al. (1996) studied the problem for extremely varying demands between 

items. In such case, they proposed to decompose the problem into two by first solving 

the problem for high demand items and then solving the residual problem. Their 

“stripe approach” is found advantageous compared to the other known methods in 

those years. 
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Alvares-Valdez et. al. (2002) developed and compared the heuristic methods to solve 

two-dimensional cutting stock problems. They analyzed column generation based 

heuristic algorithm, where the subproblem is solved by dynamic programming, 

constructive algorithm, tabu search algorithm or GRASP algorithm. They concluded 

that the dynamic programming gives better results than the local search heuristics. 

Cintra et. al. (2008) studied the problem both for different bin sizes and single bin size. 

The proposed solution approach is based on column generation and columns are 

generated by a dynamic programming based algorithm. Optimal or quasi optimal 

solutions are obtained for the test instances in reasonable times.  

Furini et. al. (2012) studied two-dimensional two-staged guillotine cutting problem. 

They proposed column generation based heuristic algorithm. The subproblem of the 

column generation algorithm is solved by dynamic programming based heuristic 

algorithm. They did computational experiments for both item rotations are allowed 

and not allowed cases. It is asserted that the proposed algorithm is superior than the 

algorithms available in the literature.  

Alvarez Valdes et. al. (2013) developed GRASP/Path Relinking algorithm for the 

problem. The study is one of the first papers that implements path relinking to cutting 

and packing problems. Computational experiments revealed the algorithm produces 

promising results. The algorithm could easily be modified for the rotated counterparts 

of items.   

Wei et. al. (2013) proposed a goal driven heuristic approach and suggested multiple 

binary search on objective value. For a given interval, the algorithm packs the items 

by tabu search algorithm. Then some post improvement procedure is implemented on 

the solution found. The performance of goal driven approach outperforms all existing 

heuristic algorithms.   

Hong et. al. (2014) studied two-dimensional variable sized bin packing problem with 

guillotine constraint. Rotations of items can optionally be included in the problem. 
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The authors proposed hybrid meta heuristic algorithm. Their algorithm outperforms 

the existing algorithms. 

The most closely related study to ours is that of Furini and Malaguti (2013). They 

consider two-dimensional two stage cutting stock problem with guillotine cuts like 

ours. The differences are due to objective function used and the approaches used to 

find implementable solutions.   
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CHAPTER 3  

 

3. PROBLEM DEFINITION & SOLUTION APPROACHES 

 

3.1. Problem Statement 

Two dimensional cutting stock problem (2DCSP) assigns a set of small rectangular 

items to a set of larger rectangular stocks, so called panels. In this study, we consider 

a 2DCSP with the following assumptions: 

Panels are cut parallel to the sides of the stock, and cross the stock from one side to 

another, i.e. guillotine cuts are used. Two stage cuts are used in such a way that the 

rectangular bars obtained through the guillotine cuts are further cut in parallel to obtain 

the exact shape.  

The following figure depicts the difference between two stage guillotine cuts and non 

guillotine cuts.  

 

Figure 3.1 2-stage guillotine cuts and non guillotine cut (Non guillotine cuts on the 

right) 

There are m panel types. Panel type h is characterized by its cost 𝐶ℎ and available 

number 𝑛𝑢𝑚ℎ. 

There are n types of items. Item type j is characterized by its revenue 𝑟𝑗 and 

requirement 𝑑𝑗. 
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The dimensions of panel h are specified by the length 𝐿ℎ and width 𝑊ℎ. Those of item 

j are characterized as 𝑙𝑗  and 𝑤𝑗.  

All parameters are known with certainty and are not subject to any change, i.e., the 

system is deterministic and static. 

Our aim is to assign the items to the panels so as to maximize the total profit. We 

define the profit as the difference between the total revenue via all items and total cost 

incurred by used panels.  

The problem is constrained version of the two-dimensional rectangular multiple stock 

size cutting stock problem according to the typology by Wascher et. al (2007) and is 

strongly NP-hard (see Furini and Malaguti, 2013).  

3.2. Solution Approaches 

We studied the problem from a marble industry in Turkey where cutting decisions are 

made based on the customer orders. The input of the cutting process, panels, is also 

provided according to a plan, based on those customer orders. Panels are obtained 

from three dimensional huge stone blocks and the process takes considerable time. 

The delivery times of the customer orders on the other hand, are not that long. Hence, 

one should deal with the orders particularly using available resources of the company.  

In our study, we assume that the number of panels of each type is limited and the 

demand figures are upper bounds on the amount of items cut.  Limiting the number of 

cuts by demand is reasonable assumption for the industry because there is no guarantee 

that the items with same dimensions would be ordered in the near future.  Also, by 

cutting the items above their demand, the decision maker loses the opportunity to use 

the available resources for the future demand of different items.  

In the company, the available number of panels may not be sufficient to satisfy all 

demand. Accordingly, a promising solution would favor more profitable items and 
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more economical panel types without exceeding the item demands and panel 

availabilities.  

Furini and Malaguti (2013) studied a very similar problem for the minimum total panel 

cost objective. They assume that the availability of panel types is unlimited, hence all 

demand can be satisfied with unlimited panel purchases. The demand is given as a 

lower bound and higher values of production above demand would be justified.   

We first modified Furini and Malaguti’s (2013) model to handle maximum profit 

objective, demand lower limits and availability upper limits.  We refer the resulting 

model as Model 1.   

3.2.1. Model 1 

Furini and Malaguti’s (2013) model is an extension of a formulation proposed by Lodi 

et. al. (2004) for two-dimensional bin packing problem. The two-stage guillotine 

cutting restriction divides the panel into levels.  The basic idea behind this model is to 

partition the assignments of items to panels into two, namely the ones that initialize 

each level and the ones that assigned to levels, excluding the first items of levels. 

Levels are the strips that are obtained after the first horizontal guillotine cut on the 

panel. Figure 3.2 depicts the levels in 2D guillotine cutting example.  

 

Figure 3.2 Representation of Levels in 2D Guillotine Cutting  

The decision variables for the assignment of additional items (the ones other than the 

first item) to a level are defined only for the smaller or equal width items than the first 

item. The very first necessity of the approach is the ordered set of item types. The item 
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types are sorted with respect to their non-increasing order of widths. For each item, a 

possible level is defined and for each level, decision variables are defined for possible 

assignments. Therefore, possible levels/strips are defined as many as total demand. To 

construct the relation between the panels and levels in formulation, each level assigned 

to a panel would be assigned as the “name” of the panel used. By this way, the item 

number in the left upper corner would be the name of the panel used.      

We use the following notation as in Furini and Malaguti (2013) .  

Indices  

𝑖, 𝑘 : index for items or level/shelf/strip or panels. (if item i initializes a level, then 

name/number of that level is also i. If level k initializes a panel, i.e. the level is the 

first 

of all levels assigned to that panel, then the name/number of the panel is also k. 

{1….ñ} where ñ : total number of items = ∑ 𝑑𝑗
𝑛
𝑗=1  

𝑗 : index for item types {1…n} 

h : index for panel types  

Parameters  

𝑑𝑗 : demand of item type j 

𝛼𝑗 : possible levels that item j can be cut in. 𝛼𝑗 =  ∑ 𝑑𝑠
𝑗
𝑠=1  (By the structure of the 

model, the first item in a level must have the largest width) 

𝛽𝑘 : the very first item type (not item, item type) in level k. 𝛽𝑘 = min{𝑟 ∶  1 ≤ 𝑟 ≤ 𝑛, 

 𝛼𝑟 ≥ 𝑘} In any level k, the item types in range [𝛽𝑘, 𝑛] can be cut.  

In short, α values relate item types to item/level name/numbers, β values relate panel 

and level numbers to item types.  
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𝐶ℎ : cost of using a panel type h.  

𝑊ℎ : width of a panel type h. 

𝐿ℎ: length of a panel type h. 

𝑙𝑗 : length of an item 

𝑤𝑗 : width of an item 

We additionally define the following parameters: 

𝑟𝑗 : revenue of item type j.  

𝑛𝑢𝑚ℎ: total number of available panels of type h.  

To define rotation of items, we introduce the following parameters: 

𝑟𝑜𝑡𝑗 : Decision maker can change lengths with widths and define a new item. If such 

a case occurs, i.e. a new item is created as a rotated counterpart of some other item, 

then the value for 𝑟𝑜𝑡𝑗=1, stating j is a rotated counterpart of some other item. 

𝑟𝑜𝑡_0𝑗 If the item is rotated item which is created by decision maker, then 𝑟𝑜𝑡_0𝑗  

gives the index of the original item.  

𝑟𝑜𝑡_1𝑗 gives the index of rotated counterpart of item j.  

Decision Variables 

𝑦𝑖ℎ : binary decision variable that represents if level i is assigned to a panel type h or 

not. i ∈ {1… ñ} and h ∈ {1… m} 

𝑥𝑖𝑗ℎ : integer decision variable that represents the number of items of type j packed 

into level i in a panel of class h. i ∈ {1… ñ-1},  h ∈ {1… m},  j ∈ {𝛽𝑖… ñ}.  

𝑞𝑘ℎ : binary decision variable that takes value of 1 if panel k is a member of panel h 

class. (This DV also shows that there is a level k that initializes a panel, so the 
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name/number of the panel is k. This DV further shows that item k is the very first item 

in the panel k of class h. (Item k is located on the left upper corner of the panel if this 

DV is 1) k ∈ {1… ñ} and h ∈ {1… m} 

𝑧𝑘𝑖ℎ : From DV q, we can detect one level that is assigned to a panel (the one that 

initializes the panel). For the other levels that are also assigned to panel k, we use DV 

z. This DV takes value 1 if level i is allocated to panel k of class h. k ∈ {1… ñ-1}, h 

∈ {1… m}, i ∈ {k… ñ}. 

Figure 3.3 shows the assignments of items to a panel and the associated decision 

variables for an example instance with four items and following specifications: 

Table 3.1 Item Specification of the Example 

Item Type 
(j)  

Demand   𝛼𝑗   i 𝛽𝑖  

1 4 4   1-4 1 

2 3 7   5-7 2 

3 5 12   8-12 3 

4 8 20   13-20 4 

 

Suppose we have assignments of the items to a panel of type 1 as in the left side of 

Figure 3.3. Then, the decision variables may take the values as in the right side of 

Figure 3.3. Note that different q and z variables can take value of 1. For example, for 

the assignments in Figure 3.3 one of the 𝑞𝑖,1 can take value of 1, as long as i is between 

5 and 7. Similarly, different 𝑧𝑘,𝑖,1 values can take value of 1, as long as the i values are 

compatible with the 𝛼𝑗 of each item type. (i ∈ [8,12] for the second level and i ∈ [13,20] 

for the third level) 
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Figure 3.3 Sample Representation of Assignments and Decision Variables in Model 1 

The constraint set taken from Furini and Malaguti (2013) is stated below: 

Constraints 

(1) Demand Constraint: The total number of item j cut should satisfy the demand. x 

variables count the number of items of type j assigned to levels excluding the first 

items of levels, while y variables count the levels that have item j as the first item.  

∑ ∑ 𝑥𝑖𝑗ℎ

𝛼𝑗

𝑖=1ℎ

+  ∑ ∑ 𝑦𝑖ℎ

𝛼𝑗

𝑖=𝛼𝑗−1+1ℎ

 ≥  𝑑𝑗                  ∀ 𝑗 ∈ {1 … 𝑛}                         (1)     

 

(2) Maximum length constraints: Total length of items assigned to a level should be 

less than or equal to the length of the panel.  

∑ 𝑥𝑖𝑗ℎ ∗

𝑛

𝑗=𝛽𝑖

  𝑙𝑗   ≤  (𝐿ℎ −   𝑙𝛽𝑖
) ∗  𝑦𝑖ℎ   ∀i ∈ {1 … ñ − 1} and h ∈ {1 … 𝑚}     (2)      

(3) Total width constraints: Sum of widths of items that initializes levels in a panel 

should less than or equal to the width of that panel type.  

∑ 𝑧𝑘𝑖ℎ ∗

ñ

𝑖=𝑘+1

  𝑤𝛽𝑖
  ≤ (𝑊ℎ −   𝑤𝛽𝑘

) ∗  𝑞𝑘ℎ   ∀ k ∈  {1 … ñ − 1}, h ∈ {1 … 𝑚}  (3)   
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(4) Panel-level relationship constraints: If there is a level i defined, then it should be 

assigned to a panel or should initialize a panel.  

∑ 𝑧𝑘𝑖ℎ

i−1

𝑘=1

  +  𝑞𝑖ℎ  =     𝑦𝑖ℎ           ∀ i ∈  {1 … ñ}   and h ∈ {1 … 𝑚}                       (4) 

We modify the model of Furini and Malaguti (2013) so as to include the rotatable 

items.  

In our problem, total number of real items and the rotated counterparts cut should be 

less than or equal to the demand of that item. Number of items that initialize the levels 

and number of items assigned on those levels constitutes the total number of items cut.  

(5) Demand Constraint  

If  𝑟𝑜𝑡𝑗 = 0: 

∑ ∑ 𝑥𝑖𝑗ℎ

𝛼𝑗

𝑖=1ℎ

+ ∑ ∑ 𝑥𝑖𝑟𝑜𝑡_1𝑗ℎ

𝛼𝑟𝑜𝑡_1𝑗

𝑖=1ℎ

+  ∑ ∑ 𝑦𝑖ℎ

𝛼𝑟𝑜𝑡_1𝑗

𝑖=𝛼𝑟𝑜𝑡_1𝑗−1
+1ℎ

 + ∑ ∑ 𝑦𝑖ℎ

𝛼𝑗

𝑖=𝛼𝑗−1+1ℎ

≤  𝑑𝑗    ∀𝑗 

We introduce the panel availability constraint as  

∑ 𝑞𝑘ℎ

ñ

𝑘=1

    ≤   𝑛𝑢𝑚ℎ            h ∈ {1 … 𝑚}                                                                      (6) 

Total number of panels used of a type cannot exceed the total available number of 

panels of the same type.  

Our objective function includes the total net revenue, i.e. profit.  

      (7) Objective Function 

𝑚𝑎𝑥( 𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 −  𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡) 
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𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑣𝑒𝑛𝑢𝑒  =  ∑ ∑ ∑ 𝑟𝑗 ∗ 𝑥𝑖𝑗ℎ

𝑛

𝑗=𝛽𝑖

ñ−1

𝑖=1ℎ

+ ∑ ∑ 𝑦𝑖ℎ ∗  𝑟𝛽𝑖

ñ

𝑖=1ℎ

 

 

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡  =  ∑ ∑ 𝑞𝑘ℎ ∗ 

ñ

𝑘=1ℎ

𝑐ℎ 

 

Model 1 is efficient only when the demands of the items, thereby ñ is low.  Even for 

small sized problem instances with high demand ñ may become so high, thereby 

inflating the number of decision variables.  Recognizing this drawback as mentioned 

in Furini and Malaguti (2013), we introduce Model 2 that is discussed next. We 

defined fittable strips for each panels and maximum number of panels that can be used, 

in place of fittable strip and feasible panel for each item. We keep the idea of partition 

in the formulation.  

3.2.2. Model 2 

Model 2 defines fittable strips for each panel and maximum number of panels that can 

be used, in place of fittable strips and feasible panels for each item.  The idea of 

partitioning is kept and three sets (in place of four) of decision variables are used.  The  

reduction is due to the decision variable set that relates the levels to the panels and 

panel types.  The number of those decision variables is ñ × ñ × 𝑛𝑢𝑚ℎ in Model 1, 

can be very big when the item demands are high.   

We also derive some properties to define fittable strips for each panel and maximum 

number of panels that can be used to cut all items.  To find the maximum number 

panels, we propose the following procedure: 
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Procedure 

Step 1.  Let J the set of items in their non-increasing order of widths. Let panel k be a 

single panel of type h and 𝑎𝑗 be the number of items of type j placed on panel k.  

The levels represent the number of levels assigned to panel k 

let k = 0, levels = 0.  

Starting from the first item of set J, the levels of panel k are created by the following 

rule: 

for j in J: 

while 𝑎𝑗 ≤  𝑑𝑗  and ∑ ∑ 𝑤𝑗

𝑎𝑗

𝑖=1𝑗∊𝐽

≥ 𝑊ℎ 

add one item j to panel k, 𝑎𝑗 = 𝑎𝑗 + 1 

Update demands as 𝑑′𝑗 = 𝑑𝑗 − 𝑎𝑗 

Update number of levels, levels= levels +1 

 𝐿𝑙𝑒𝑣𝑒𝑙𝑠 =  𝐿ℎ − 𝑙𝑗 

Step 2 Let D’ be the updated demand vector and let J’ be the set of items in their non-

decreasing order of widths.  

Starting from the first item of J’, the levels are filled by items using the following rule: 

for i in levels: 

for j in J’: 

while 𝑎𝑗 ≤  𝑑′𝑗  and ∑ ∑ 𝑙𝑗

𝑎𝑗

𝑖=1𝑗∊𝐽′

≥ 𝐿𝑖 

add one item j to panel k, 𝑎𝑗 = 𝑎𝑗 + 1 
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Update demands as 𝑑′𝑗 = 𝑑𝑗 − 𝑎𝑗 

Step 3. levels = 0, k=k+1 

If 𝑘 ≥ 𝑛𝑢𝑚ℎ   or D’ is empty, stop. 𝑛𝑢𝑚ℎ = 𝑘 

Otherwise, go to step 1. 

In step 1, the non-increasing width ordered items are taken as the first items of the 

levels.  The demands of the items are updated and in Step 2, the items are assigned to 

those predefined levels. In each step, demands are updated and updated demand set 

D’ is used thereafter.  Feasibility is guaranteed as the widths are always greater than 

or equal to the widths of items in set D’.  The iterations are continued until the number 

of panels used reaches the number of available panels for type h, or until demand set 

D’ becomes empty.  If the iteration count reaches the number of available panels, then 

there is no reduction in the number of available panels. Otherwise, the number of 

available panel of type h is updated as all demand can be satisfied with fewer panels 

than the original value.  

To define fittable strips for each panel instead of defining strips for each item, we 

calculate upper bound of levels for item type j in panel type h, 𝑈𝐵𝐿𝑒𝑣𝑒𝑙𝑗ℎ: 

𝑈𝐵𝐿𝑒𝑣𝑒𝑙𝑗ℎ = 𝑚𝑖𝑛 {𝑑𝑗ℎ, ⌊
𝑊ℎ

𝑤𝑗
⌋}  𝑤ℎ𝑒𝑟𝑒  

𝑑𝑗ℎ = min {𝑑𝑗 , ⌊
𝑊ℎ

𝑤𝑗
⌋ ∗ ⌊

𝐿ℎ

𝑙𝑗
⌋} 

This new formulation requires the following sets of decision variables, where indices 

i and j represent item types, h represents panel types and k represents panels. 

𝑞𝑘 : represents if panel k is used or not. k ∊ {1…. ∑ 𝑛𝑢𝑚ℎℎ }  

 for each panel type h, 𝛼ℎ =  ∑ 𝑛𝑢𝑚𝑠
ℎ
𝑠=1  and  
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for each panel, 𝛽𝑘 = min{𝑟 ∶  1 ≤ 𝑟 ≤ ℎ,  𝛼𝑟 ≥ 𝑘} is defined. 

𝑧𝑖𝑚𝑘: binary variables which take value of 1 if item i initializes a level in panel k, 

where i  ∊ {1, …, n} ,  k ∊ {1, …, ∑ 𝑛𝑢𝑚ℎℎ } and m ∊ {1, …, 𝑈𝐵𝐿𝑒𝑣𝑒𝑙𝑖 𝛽𝑘
}. m is the 

level index of item i in panel k. 

𝑥𝑗𝑖𝑚𝑘: is the integer decision variables that represent the number of item type j that is 

assigned to level (i,m,k) where i and j  ∊ {1, …,n}, k ∊ {1, …, ∑ 𝑛𝑢𝑚ℎℎ } and m ∊ {1, 

…,𝑈𝐵𝐿𝑒𝑣𝑒𝑙𝑖 𝛽𝑘
}, if 𝑤𝑗 ≤ 𝑤𝑖, i.e., the variable is only defined when item j can be 

assigned to level i, where the width of the level is greater than or equal to width of 

item j.  

Figure 3.4 shows the assignments of items to a panel and the decision variables for 

that assignment.  

 

Figure 3.4 Sample Representation of Assignments and Decision Variables in Model 1 

Note that the q variables are independent of the first level of each panel. They are 

limited with the available amount of panels and 𝑞𝑘 takes value of 1 if k’th panel of 

type h is used.  

Model 2 is defined by the following constraint sets and objective function. 

Constraints  

    ∑ 𝑥𝑗𝑖𝑚𝑘 ∗ 𝑙𝑗
𝑗

+ 𝑧𝑖𝑚𝑘 ∗ 𝑙𝑖 ≤ 𝑧𝑖𝑚𝑘𝐿𝛽𝑘
  ∀ (𝑖, 𝑚, 𝑘)                                            (8)  
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    ∑ 𝑧𝑖𝑚𝑘 ∗ 𝑤𝑖

𝑖,𝑚

≤ 𝑞𝑘𝑊𝛽𝑘
    ∀ 𝑘                                                                              (9) 

   ∑ 𝑥𝑗𝑖𝑚𝑘

𝑖,𝑚,𝑘

+ ∑ 𝑧𝑗𝑚𝑘

𝑚,𝑘

≤ 𝑑𝑗    ∀ 𝑗                                                                          (10)  

Objective Function  

max ∑ 𝑥𝑗𝑖𝑚𝑘 ∗ 𝑟𝑗

𝑗,𝑖,𝑚,𝑘

+ ∑ 𝑧𝑖𝑚𝑘 ∗ 𝑟𝑖

𝑖

− ∑ 𝑐𝛽𝑘
𝑞𝑘

𝑘

                                        (11) 

 

Constraint set (8) ensures that the total length of items assigned to a level cannot 

exceed the length of that panel. Constraint set (9) avoids the assignments whose total 

width exceeds the width of the panel. Constraint set (10) states that the each item cut 

is limited by its demand. Objective function maximizes total profit over all items and 

all panels.  

We do not need a constraint set that relates panel types to panels and levels in the 

panels (as constraint set (4) of Model 1).  Moreover, we do not include available 

number of panels constraint set, as this constraint is implicitly used in defining the 

panel set. 

Comparing Model 1, we get good reductions in number of decision variables. 

Parametric comparison of number of decision variables in Model 1 and Model 2 can 

be seen in Table 3.2. 
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Table 3.2 Parametric Comparison of Number of Decision Variables 

Model 1 Model 2 

Sets of 

DVs 
# of DVs 

Sets of 

DVs 
# of Decision Variables 

𝑥𝑖𝑗ℎ ñ × n × p 𝑥𝑗𝑖𝑚𝑘 ∑ min {𝑑𝑗 , ⌊
𝑊ℎ

𝑤𝑗
⌋} × 𝑛2 × 𝑛𝑢𝑚ℎ

ℎ

 

𝑦𝑖ℎ ñ × p  𝑧𝑖𝑚𝑘 ∑ min {𝑑𝑖, ⌊
𝑊ℎ

𝑤𝑖
⌋} × 𝑛 × 𝑛𝑢𝑚ℎ

ℎ

 

𝑞𝑘ℎ ñ × p  𝑞𝑘 ∑ 𝑛𝑢𝑚ℎ

ℎ

 

𝑧𝑘𝑖ℎ ñ × ñ × p     

Total ñp(n+ñ+2) Total ∑ 𝑛𝑢𝑚ℎ( min {𝑑𝑗 , ⌊
𝑊ℎ

𝑤𝑗

⌋} 𝑛 +𝑛2 min {𝑑𝑗 , ⌊
𝑊ℎ

𝑤𝑗

⌋} +1)

ℎ

 

 

3.3. Properties of Optimal Solution 

In this section, we propose some properties of optimal solutions and discuss their 

incorporations to the mathematical models.  

Our properties are of two types: 

1. Dominance  

2. Update the parameters (demand and supply quantities) 

3.3.1. Dominance Properties  

We first define item and panel domination concepts. Based on our definitions we 

present the theorems that state the effects of the dominance properties on the solution. 
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3.3.1.1. Item Domination 

Rotation case: Item i dominates item j when either 

    𝑟𝑖 ≥ 𝑟𝑗 ,   𝑤𝑗  ≥ 𝑤𝑖,   𝑙𝑗 ≥ 𝑙𝑖     or       𝑟𝑖 ≥ 𝑟𝑗 ,   𝑤𝑗 ≥ 𝑙𝑖,   𝑙𝑗 ≥ 𝑤𝑖.  

No rotation case: Item i dominates item j if  𝑟𝑖 ≥ 𝑟𝑗 ,   𝑤𝑗 ≥ 𝑤𝑖,   𝑙𝑗 ≥  𝑙𝑖. 

Figure 3.5 illustrates item domination where revenue of item 2 is greater: 

 

Figure 3.5 Item Domination Representation 

In the figure, item 2 dominates item 1, because the width and length of item 2 is 

smaller and its revenue is higher. 

Theorem 1: If item i dominates item j then the following condition holds:  

If the amount of item i cut is less than its demand di then the amount of item j cut is 

zero.  

Proof: Assume a solution in which xi <  di and  xj > 0, i.e., a solution that contradicts 

with the condition of the theorem. Replacing one unit of item i by one unit of item j 

improves the objective function by  ri −  rj units. The improvements can be continued 

and by unit replacements of item i and item j, till  xi reaches to its upper limit of  di or  

xj reaches to its lower limit of zero, whichever is earlier. Hence a solution in which  
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xi <  di and  xj > 0, i.e., that contradicts with the condition of the theorem cannot be 

optimal.  

Item Domination Property for Model 1 

We incorporate the item domination condition to Model 1 through the following 

binary variable  

gj = 1  if  item j is cut;   0 otherwise 

We modify the demand constraints for all pairs of dominating item i and dominated 

item j. Note that the level index “i” is changed with “m”, to avoid confusion. 

  ∑ ∑ 𝑥𝑚𝑖ℎ

𝛼𝑗

𝑚=1ℎ

+ ∑ ∑ 𝑥𝑚𝑟𝑜𝑡_1𝑖ℎ

𝛼𝑟𝑜𝑡_1𝑖

𝑚=1ℎ

+ ∑ ∑ 𝑦𝑚ℎ

𝛼𝑟𝑜𝑡_1𝑖

𝑚=𝛼𝑟𝑜𝑡_1𝑖−1
+1ℎ

+ ∑ ∑ 𝑦𝑚ℎ

𝛼𝑖

𝑚=𝛼𝑖−1+1ℎ

≥ 𝑑𝑖𝑔𝑗     (12) 

∑ ∑ 𝑥𝑚𝑗ℎ

𝛼𝑗

𝑚=1ℎ

+ ∑ ∑ 𝑥𝑚𝑟𝑜𝑡_1𝑗ℎ

𝛼𝑟𝑜𝑡_1𝑗

𝑚=1ℎ

+ ∑ ∑ 𝑦𝑚ℎ

𝛼𝑟𝑜𝑡_1𝑗

𝑚=𝛼𝑟𝑜𝑡_1𝑗−1
+1ℎ

+ ∑ ∑ 𝑦𝑚ℎ

𝛼𝑗

𝑚=𝛼𝑗−1+1ℎ

≤  𝑑𝑗𝑔𝑗    (13)  

To avoid binary variables, one may use a weaker application of item domination in 

Model 1.  

If 𝑑𝑗 ≤ 𝑑𝑖 then the amount of item i cut must be greater than or equal to the amount 

of item j cut in the optimal solution.  If 𝑑𝑗 > 𝑑𝑖 then the difference between the amount 

of item j and item i must be smaller than or equal to the difference in the demand 

values of these items.  Two new constraint sets can be introduced to Model 1 as: 

𝐼𝑓 𝑑𝑗 ≤ 𝑑𝑖 ∶  𝑐𝑢𝑡𝑖 ≥ 𝑐𝑢𝑡𝑗   

𝐼𝑓𝑑𝑗 > 𝑑𝑖 ∶  𝑐𝑢𝑡𝑗 −  𝑐𝑢𝑡𝑖 ≤  𝑑𝑗 − 𝑑𝑖  

where 𝑐𝑢𝑡𝑖 (𝑐𝑢𝑡𝑗) is the amount of item i (item j) cut. 
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Item Domination Property for Model 2 

We incorporate item domination property to Model 2 as follows if item j dominates 

item p. 

∑ 𝑥𝑗𝑖𝑚𝑘

𝑖,𝑚,𝑘

+ ∑ 𝑧𝑗𝑚𝑘

𝑚,𝑘

≥ 𝑑𝑗𝑔𝑝                (14) 

    ∑ 𝑥𝑝𝑖𝑚𝑘

𝑖,𝑚,𝑘

+ ∑ 𝑧𝑝𝑚𝑘

𝑚,𝑘

≤ 𝑑𝑝𝑔𝑝            (15)     

To avoid binary variables, one may use a weaker application of item domination in 

Model 2. 

𝐼𝑓 𝑑𝑝 ≤ 𝑑𝑗 ∶  𝑐𝑢𝑡𝑗 ≥ 𝑐𝑢𝑡𝑝  

𝐼𝑓𝑑𝑝 > 𝑑𝑗 ∶  𝑐𝑢𝑡𝑝 − 𝑐𝑢𝑡𝑗 ≤  𝑑𝑝 − 𝑑𝑗   

where 𝑐𝑢𝑡𝑝 (𝑐𝑢𝑡𝑗) is the amount of item p (item j) cut. 

Example 

Suppose that we have two panel types with the following parameters: 

𝑊1 = 125   𝐿1= 100  𝐶1 = 300  𝑛𝑢𝑚1 = 3 

𝑊2= 90  𝐿2= 90   𝐶2 = 310  𝑛𝑢𝑚2 = 2 

We have four item types with the following parameters:   

𝑤1 = 40  𝑙1= 50   𝑟1= 40   𝑑1= 15 

𝑤2= 30  𝑙2= 40   𝑟2= 50   𝑑2= 15 

𝑤3= 50  𝑙3= 50   𝑟3= 45   𝑑3= 15 

𝑤4= 35   𝑙4 = 30   𝑟4= 55   𝑑4= 15 
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When rotations are not allowed, item 2 dominates item 1 and item 3. Item 4 also 

dominates item 1 and item 3. There is no dominance relation between item 2 and item 

4.  When rotations are allowed, item 4 also dominates item 2.  

The example verifies that with rotations more dominance conditions could be 

established. 

When the demands of all item types are the same one can argue that in the optimal 

solution the following relations hold: 

𝑥2 ≥  𝑥1 and 𝑥2 ≥  𝑥3   

𝑥4 ≥  𝑥1 and 𝑥4 ≥  𝑥3  

If rotations are allowed: 

𝑥4 ≥  𝑥2 

If the amount of dominating item 4 cut would be greater than the amount of dominated 

item 2 cut, then the objective function may be improved by 5 units, by replacing item 

2 with item 4. Same interpretation is valid for all dominating items i with 𝑥𝑖 ≤  𝑑𝑖. 𝑔1 

and 𝑔3 are defined for dominated item types. Then the following constraints hold:  

𝑥2 ≥ 𝑑2𝑔1  and    𝑥1 ≤ 𝑑1𝑔1   for dominating item 2 and dominated item 1  

𝑥2 ≥ 𝑑2𝑔3   and   𝑥3 ≤ 𝑑3𝑔3    for dominating item 2 and dominated item 3   

𝑥4 ≥ 𝑑4𝑔1    and   𝑥1 ≤ 𝑑1𝑔1    for dominating item 4 and dominated item 1  

𝑥4 ≥ 𝑑4𝑔3   and    𝑥3 ≤ 𝑑3𝑔3    for dominating item 4 and dominated item 3   

𝑥4 ≥ 𝑑4𝑔2    and   𝑥2 ≤ 𝑑2𝑔2    also hold if rotations are allowed.   

3.3.1.2. Panel Domination 

Panel r dominates panel s if  Cs ≥ Cr,   Wr ≥ Ws,   Lr ≥ Ls 
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Figure 3.6 illustrates panel domination where cost of panel 1 is smaller: 

 

Figure 3.6 Panel Domination Representation 

Panel 1 dominates panel 2 because it has lower cost with higher area( W1 ≥ W2,   L1 ≥

L2). 

Theorem 2: If panel r dominates panel s then the following condition holds: 

If the number of used panel r is less than its available amount then no panel of type s 

is used.  

Proof: Assume a solution in which yr <  numr and ys > 0 i.e., a solution that 

contradicts with the condition of the theorem. Replacing one piece of panel r with one 

piece of panel s improves the objective function by Cs −  Cr units. The improvements 

can be realized one by one replacements of panel r and panel s, till yr reaches to its 

available amount or ys reduces to zero. Hence a solution in which yr <  numr and 

ys > 0  i.e., contradicts with the condition of the theorem, cannot be optimal.  

Panel Domination Property for Model 1 

We incorporate the following constraint to explain panel domination condition.  

𝑛𝑢𝑚𝑟 −   ∑ 𝑞𝑘𝑟

𝑘

≤  𝑛𝑢𝑚𝑟(1 − 𝑞𝑡𝑠)  ∀ 𝑡 = 1 … . 𝑇𝐷(𝑠) 𝑤ℎ𝑒𝑟𝑒 𝑇𝐷(𝑠) =  ∑ 𝑑𝑗𝑠

𝑗

 (16)  

𝑑𝑗𝑠 is the demand of item type j defined for a panel type s, which will be explained in  

Section 3.4.2. 
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Panel Domination Property for Model 2 

If panel r dominates panel s, the following constraint is introduced to Model 2: 

𝑛𝑢𝑚𝑟 −   ∑ 𝑞𝑘

𝛼𝑟

𝑘=𝛼𝑟−1+1

≤  𝑛𝑢𝑚𝑟(1 −  𝑞𝑡)     𝑡 ∈  {𝛼𝑠−1 + 1 … 𝛼𝑠}                 (17) 

Example 

Recall the example given for item domination. The panel parameters are defined as: 

𝑊1 = 125   𝐿1= 100  𝐶1 = 300  𝑛𝑢𝑚1 = 3 

𝑊2= 90  𝐿2= 90   𝐶2 = 310  𝑛𝑢𝑚2 = 2 

Recognize that the panel 1 has larger in both dimensions, while its cost is smaller. 

Hence, panel 1 dominates panel 2.  

Suppose that in a solution, all panels of type 2 are used whereas only two panels of 

type 1 are used. The assignments on panel type 2 are always feasible for panel type 1 

as it has larger dimensions. Therefore, changing the panel types of the assignments 

increases the revenue by (𝐶2 − 𝐶1 = 310-300) 10 units. Hence, the solution cannot be 

feasible if the number of type 1 panels, 𝑦1, is smaller than 𝑛𝑢𝑚1 and number of type 

2 panels used, 𝑦2, is greater than 0.  

Also, by changing panel type 1 with panel type 2, one can gain space to cut more 

items. In the example, if panel 2 was fully utilized and then changed with panel 1, one 

can define a new level with width 35 and length 100 and can cut three units of items 

4 with additional revenue of 165 (55x3) units. 

To incorporate those in the formulation, one can use the following constraints, where 

𝑞𝑟𝑚 is the binary variable that represents the usage of panel m of type r. 

𝑛𝑢𝑚1 – 𝑦1 ≤  𝑛𝑢𝑚1(1 − 𝑞21) 
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𝑛𝑢𝑚1 – 𝑦1 ≤  𝑛𝑢𝑚1(1 − 𝑞22)  

3.3.2. Updating the Parameters 

We try to reduce the demand and availability amounts from their specified values 𝑑𝑗 

and 𝑛𝑢𝑚ℎ. Our reduction procedures have two effects on the model. First the model 

is defined relative to tighter parameter values. Second, those updates might lead to the 

reduction in the problem size by eliminating some non-promising items and / or non-

promising panels. 

3.3.2.1. Reduction in the Demand Values 

We define the demand figures relative to panel type h (panel dependent demand) and 

let 𝑑𝑗ℎ = maximum amount of item j that can be cut from panel h.   

i. No rotation case 

We create z variables for limited items, but not all items and all panels.  

For the item domain of z variable, we use min {𝑑𝑗 , 𝑛𝑢𝑚ℎ ⌊
𝑊ℎ

𝑤𝑗
⌋}, 

(𝑛𝑢𝑚ℎ ⌊
𝑊ℎ

𝑤𝑗
⌋ is the maximum number of levels of j that can be assigned to 

panel type h) instead of 𝑑𝑗 and get fair reduction in the number of z 

variables. 

We also update the demands for panels. The maximum amount of item j 

that can be cut from one panel of type h is ⌊
𝑊ℎ

𝑤𝑗
⌋ ⌊

𝐿ℎ

𝑙𝑗
⌋.  Hence at most 

𝑛𝑢𝑚ℎ ⌊
𝑊ℎ

𝑤𝑗
⌋ ⌊

𝐿ℎ

𝑙𝑗
⌋ units of item j can be cut from all panels of type h.  

This follows 𝑑𝑗ℎ = min {𝑑𝑗 , 𝑛𝑢𝑚ℎ ⌊
𝑊ℎ

𝑤𝑗
⌋ ⌊

𝐿ℎ

𝑙𝑗
⌋} as the production above 

demand is forbidden.  

 

The following example illustrates the computation of 𝑑𝑗ℎ values for no rotation case. 



 

 

 

34 

 

Example 

Recall the example for item domination with the following parameters: 

𝑤1 = 40  𝑙1= 50   𝑟1= 40   𝑑1= 15 

𝑤2= 30  𝑙2= 40   𝑟2= 50   𝑑2= 15 

𝑤3= 50  𝑙3= 50   𝑟3= 45   𝑑3= 15 

𝑤4= 35   𝑙4 = 30   𝑟4= 55   𝑑4= 15 

The panels have the following properties: 

𝑊1 = 125   𝐿1= 100  𝐶1 = 300  𝑛𝑢𝑚1 = 3 

𝑊2= 90  𝐿2= 90   𝐶2 = 310  𝑛𝑢𝑚2 = 2 

 

𝑑11 = min {𝑑1, 𝑛𝑢𝑚ℎ ⌊
𝑊1

𝑤1
⌋ ⌊

𝐿1

𝑙1
⌋} =  min {15, 3 ⌊

125

40
⌋ ⌊

100

50
⌋} = 15 

𝑑12 = min {𝑑1, 𝑛𝑢𝑚ℎ ⌊
𝑊2

𝑤1
⌋ ⌊

𝐿2

𝑙1
⌋} =  min {15, 2 ⌊

90

40
⌋ ⌊

90

50
⌋}  = 4  

𝑑21 = min {𝑑2, 𝑛𝑢𝑚ℎ ⌊
𝑊1

𝑤2
⌋ ⌊

𝐿1

𝑙2
⌋} =  min {15, 3 ⌊

125

30
⌋ ⌊

100

40
⌋} = 15 

𝑑22 = min {𝑑2, 𝑛𝑢𝑚ℎ ⌊
𝑊2

𝑤2
⌋ ⌊

𝐿2

𝑙2
⌋} = min {15, 2 ⌊

90

30
⌋ ⌊

90

40
⌋} =   12 

𝑑31 = min {𝑑3, 𝑛𝑢𝑚ℎ ⌊
𝑊1

𝑤3
⌋ ⌊

𝐿1

𝑙3
⌋} =  min {15, 3 ⌊

125

50
⌋ ⌊

100

50
⌋} = 12 

𝑑32 = min {𝑑3, 𝑛𝑢𝑚ℎ ⌊
𝑊2

𝑤3
⌋ ⌊

𝐿2

𝑙3
⌋} =  min {15, 2 ⌊

90

50
⌋ ⌊

90

50
⌋} = 2 

𝑑41 = min {𝑑4, 𝑛𝑢𝑚ℎ ⌊
𝑊1

𝑤4
⌋ ⌊

𝐿1

𝑙4
⌋} =  min {15,   3 ⌊

125

35
⌋ ⌊

100

30
⌋} = 15 

𝑑42 = min {𝑑4, 𝑛𝑢𝑚ℎ ⌊
𝑊2

𝑤4
⌋ ⌊

𝐿2

𝑙4
⌋} =  min {15,     2 ⌊

90

35
⌋ ⌊

90

30
⌋} = 12  
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ii. Rotation Case 

Once rotation is allowed, for the item domain of z variable, we use 

min {𝑑𝑗 , 𝑛𝑢𝑚ℎ ⌊
𝑊𝑊ℎ

min {𝑙𝑗,𝑤𝑗}
⌋}, in place of 𝑑𝑗. 

The maximum amount of item j that can be cut from all panels of type h is 

𝑛𝑢𝑚ℎ ⌊
𝑊ℎ𝐿ℎ

𝑙𝑗𝑤𝑗
⌋ .  

This follows,  𝑑𝑗ℎ = min{𝑑𝑗, 𝑛𝑢𝑚ℎ ⌊
𝑊ℎ𝐿ℎ

𝑙𝑗𝑤𝑗
⌋} 

The following example illustrates the computation of 𝑑𝑗ℎvalues for rotation case. 

Example 

For the same example where the items can be rotated,  

𝑑11 = min {𝑑1, 𝑛𝑢𝑚1 ⌊
𝑊1𝐿1

𝑤1𝑙1
⌋} =  min {15, 3 ⌊

12500

2000
⌋} = 15 

𝑑12 = min {𝑑1, 𝑛𝑢𝑚2 ⌊
𝑊2𝐿2

𝑤1𝑙1
⌋} =  min {15, 2 ⌊

8100

2000
⌋}  = 8  

𝑑21 = min {𝑑2, 𝑛𝑢𝑚1 ⌊
𝑊1𝐿1

𝑤2𝑙2
⌋} =  min {15, 3 ⌊

12500

1200
⌋} = 15 

𝑑22 = min {𝑑2, 𝑛𝑢𝑚2 ⌊
𝑊2𝐿2

𝑤2𝑙2
⌋} = min {15, 2 ⌊

8100

1200
⌋} =   12 

𝑑31 = min {𝑑3, 𝑛𝑢𝑚1 ⌊
𝑊1𝐿1

𝑤3𝑙3
⌋} =  min {15, 3 ⌊

12500

2500
⌋} = 15 

𝑑32 = min {𝑑3, 𝑛𝑢𝑚2 ⌊
𝑊2𝐿2

𝑤3𝑙3
⌋} =  min {15, 2 ⌊

8100

2500
⌋} = 6 

𝑑41 = min {𝑑4, 𝑛𝑢𝑚1 ⌊
𝑊1𝐿1

𝑤4𝑙4
⌋} =  min {15,   3 ⌊

12500

1050
⌋} = 15 

𝑑42 = min {𝑑4, 𝑛𝑢𝑚2 ⌊
𝑊2𝐿2

𝑤4𝑙4
⌋} =  min {15,   2 ⌊

8100

1050
⌋} = 14  

 

In either case, we try to improve, hence reduce 𝑑𝑗ℎ values by considering the revenue 

brought by item j and cost incurred by panel h.  
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We find the maximum amount that can be cut from one panel of type h in any optimal 

solution, as follows: 

If 𝑘𝑗ℎ units of item j are cut from panel h then an upper bound on the maximum profit 

via panel h is  

𝑘𝑗ℎ𝑟𝑗 + 𝑟𝑚𝑎𝑥 ⌊
𝑊ℎ𝐿ℎ − 𝑘𝑗ℎ𝑤𝑗𝑙𝑗

𝑚𝑖𝑛𝑖{𝑙𝑖𝑤𝑖}
⌋ 

The above expression is an upper bound as the maximum revenue is assumed together 

with minimum area for the area freed by item j.  

 

We say 𝑘𝑗ℎ is an upper bound on the number of units of item j that can be cut from 

panel h if  

𝑘𝑗ℎ𝑟𝑗 + 𝑟𝑚𝑎𝑥 ⌊
𝑊ℎ𝐿ℎ − 𝑘𝑗ℎ𝑤𝑗𝑙𝑗

𝑚𝑖𝑛𝑖{𝑙𝑖𝑤𝑖}
⌋ > 𝐶ℎ 𝑎𝑛𝑑  

 

(𝑘𝑗ℎ + 1)𝑟𝑗 + 𝑟𝑚𝑎𝑥 ⌊
𝑊𝑊ℎ𝐿𝐿ℎ − (𝑘𝑗ℎ + 1)𝑤𝑗𝑙𝑗

𝑚𝑖𝑛𝑖{𝑙𝑖𝑤𝑖}
⌋ ≤ 𝐶ℎ 

And update 𝑑𝑗ℎ as follows  

𝑑𝑗ℎ = min {𝑑𝑗ℎ, 𝑘𝑗ℎ𝑛𝑢𝑚ℎ} 

If 𝑘𝑗ℎ, thereby 𝑑𝑗ℎ, is zero then we do not assign any item of type j to panel h. If 𝑘𝑗ℎ = 

0 for all h, i.e. ∑  𝑘𝑗ℎℎ = 0 then we eliminate item j.  

 

Assume S = {j |  ∑  𝑘𝑗ℎℎ = 0 } then we eliminate all items in S, update the item set 

and reduce the number of items to N -|S|. 

 

We update 𝑑𝑗ℎ = min {𝑑𝑗ℎ, 𝑑𝑗} in all appropriate places. 

 

The following example illustrates the 𝑑𝑗ℎupdates. 
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Example 

Recall the example for the item domination. To calculate 𝑘𝑗ℎ we follow an iterative 

process. Starting from 𝑘𝑗ℎ = 0 we calculate 𝑟𝑚𝑎𝑥 ⌊
𝑊ℎ𝐿ℎ−𝑘𝑗ℎ𝑤𝑗𝑙𝑗

𝑚𝑖𝑛𝑖{𝑙𝑖𝑤𝑖}
⌋ until it becomes 

smaller than or equal to 𝐶ℎ. We take item 3 to show the updates on panel based 

demands. 

Suppose 𝑘31 = 0 as a starting point. Calculate 

𝑘𝑗ℎ𝑟𝑗 + 𝑟𝑚𝑎𝑥 ⌊
𝑊ℎ𝐿ℎ − 𝑘𝑗ℎ𝑤𝑗𝑙𝑗

𝑚𝑖𝑛𝑖{𝑙𝑖𝑤𝑖}
⌋ = 55 ⌊

12500

1050
⌋ = 605 >  𝐶ℎ = 300  

(𝑘𝑗ℎ + 1)𝑟𝑗 + 𝑟𝑚𝑎𝑥 ⌊
𝑊ℎ𝐿ℎ − (𝑘𝑗ℎ + 1)𝑤𝑗𝑙𝑗

𝑚𝑖𝑛𝑖{𝑙𝑖𝑤𝑖}
⌋ = 45 + 55 ⌊

12500 − 2500

1050
⌋

= 45 + 495 = 540 >  𝐶ℎ = 300  

Increase 𝑘31by 1 and calculate  

(𝑘𝑗ℎ + 1)𝑟𝑗 + 𝑟𝑚𝑎𝑥 ⌊
𝑊ℎ𝐿ℎ − (𝑘𝑗ℎ + 1)𝑤𝑗𝑙𝑗

𝑚𝑖𝑛𝑖{𝑙𝑖𝑤𝑖}
⌋ = 45𝑥2 + 55 ⌊

12500 − 5000

1050
⌋

= 90 + 385 = 475 >  𝐶ℎ = 300  

Continue increasing 𝑘31by 1 as the procedure has not reached the critical point yet. 

(𝑘𝑗ℎ + 1)𝑟𝑗 + 𝑟𝑚𝑎𝑥 ⌊
𝑊ℎ𝐿ℎ − (𝑘𝑗ℎ + 1)𝑤𝑗𝑙𝑗

𝑚𝑖𝑛𝑖{𝑙𝑖𝑤𝑖}
⌋ = 45𝑥3 + 55 ⌊

12500 − 7500

1050
⌋

= 135 + 220 = 355 >  𝐶ℎ = 300  

(𝑘𝑗ℎ + 1)𝑟𝑗 + 𝑟𝑚𝑎𝑥 ⌊
𝑊ℎ𝐿ℎ − (𝑘𝑗ℎ + 1)𝑤𝑗𝑙𝑗

𝑚𝑖𝑛𝑖{𝑙𝑖𝑤𝑖}
⌋ = 45𝑥4 + 55 ⌊

12500 − 10000

1050
⌋

= 180 + 110 = 290 < 𝐶ℎ = 300  

Cutting four units of item 3 from the panel type 1 is not profitable. Therefore, 𝑘31 =

3.  
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𝑑𝑗ℎ = min {𝑑𝑗ℎ, 𝑘𝑗ℎ𝑛𝑢𝑚ℎ} 

For the problem where rotations allowed: 

𝑑31 = min{15, 9} = 9 

For the problem where rotations are not allowed: 

𝑑31 = min{12,9} = 9 

Same procedure is implemented to find 𝑘32. Suppose 𝑘32 = 0 as a starting point. 

Calculate, 

𝑘𝑗ℎ𝑟𝑗 + 𝑟𝑚𝑎𝑥 ⌊
𝑊ℎ𝐿ℎ − 𝑘𝑗ℎ𝑤𝑗𝑙𝑗

𝑚𝑖𝑛𝑖{𝑙𝑖𝑤𝑖}
⌋ = 55 ⌊

8100

1050
⌋ = 385 >  𝐶ℎ = 310  

 

(𝑘𝑗ℎ + 1)𝑟𝑗 + 𝑟𝑚𝑎𝑥 ⌊
𝑊ℎ𝐿ℎ − (𝑘𝑗ℎ + 1)𝑤𝑗𝑙𝑗

𝑚𝑖𝑛𝑖{𝑙𝑖𝑤𝑖}
⌋ = 45 + 55 ⌊

8100 − 2500

1050
⌋

= 45 +  275 = 320 ≥  𝐶ℎ = 310  

Increase𝑘32 by 1, i.e., set 𝑘32 = 1. Calculate 

(𝑘𝑗ℎ + 1)𝑟𝑗 + 𝑟𝑚𝑎𝑥 ⌊
𝑊ℎ𝐿ℎ − (𝑘𝑗ℎ + 1)𝑤𝑗𝑙𝑗

𝑚𝑖𝑛𝑖{𝑙𝑖𝑤𝑖}
⌋ = 55 ⌊

8100 − 5000

1050
⌋ = 90 +  110

= 200 <  𝐶ℎ = 310  

Hence, 𝑘32= 1. 

𝑑𝑗ℎ = min {𝑑𝑗ℎ, 𝑘𝑗ℎ𝑛𝑢𝑚ℎ} 

For the problem where rotations allowed: 

𝑑32 = min{6, 2} = 2 

For the problem where rotations are not allowed: 

𝑑𝑗ℎ = min{2,2} = 2 
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We define the demand constraint relative to panel types and keep the original demand 

constraint if ∑  𝑑𝑗ℎℎ >  𝑑𝑗  . Hence, if ∑  𝑑𝑗ℎℎ >  𝑑𝑗  the demand constraint below 

should be in the formulation. 

∑ ∑ 𝑥𝑖𝑗ℎ

𝛼𝑗

𝑖=1ℎ

+ ∑ ∑ 𝑥𝑖𝑟𝑜𝑡_1𝑗ℎ

𝛼𝑟𝑜𝑡_1𝑗

𝑖=1ℎ

+  ∑ ∑ 𝑦𝑖ℎ

𝛼𝑟𝑜𝑡_1𝑗

𝑖=𝛼𝑟𝑜𝑡_1𝑗−1
+1ℎ

+ ∑ ∑ 𝑦𝑖ℎ

𝛼𝑗

𝑖=𝛼𝑗−1+1ℎ

≤  𝑑𝑗    ∀𝑗 

Define 𝛼𝑗ℎ =  ∑ 𝑑𝑠ℎ
𝑗
𝑠=1  

Define 𝛽𝑘ℎ = min{𝑟 ∶  1 ≤ 𝑟 ≤ 𝑛,  𝛼𝑟ℎ ≥ 𝑘}  

If 𝑑𝑗ℎ < 𝑑𝑗, 

∑ 𝑥𝑖𝑗ℎ

𝛼𝑗ℎ

𝑖=1

+ ∑ 𝑥𝑖𝑟𝑜𝑡_1𝑗ℎ

𝛼𝑟𝑜𝑡_1𝑗ℎ

𝑖=1

+  ∑ 𝑦𝑖ℎ

𝛼𝑟𝑜𝑡_1𝑗ℎ

𝑖=𝛼𝑟𝑜𝑡_1𝑗−1ℎ+1

 + ∑ 𝑦𝑖ℎ

𝛼𝑗ℎ

𝑖=𝛼𝑗−1ℎ+1

  ≤  𝑑𝑗ℎ   ∀ ℎ 𝑎𝑛𝑑 𝑗 

For item 3 of the example, we let 𝑥3ℎ be the total items cut in both rotated and not 

rotated way from panel type h. 

Then, the following constraints hold: 

𝑥31 ≤ 𝑑31  = 9  

𝑥32 ≤ 𝑑32  = 2  

3.3.2.2. Reductions in the Number of Panels, 𝒏𝒖𝒎𝒉 

Recall that 𝑛𝑢𝑚ℎ is the available number of panels of type h. We reduce 𝑛𝑢𝑚ℎ by 

considering the fact that some of the panels may not be used up to their available 

amount.  In doing so, we define 𝑀𝑖ℎ as an upper bound on the number of panels to be 

used to produce all units of item i. Accordingly,  

𝑀𝑖ℎ =  ⌈
𝑑𝑖

⌊
𝑊ℎ

𝑤𝑖
⌋ ⌊

𝐿ℎ

𝑙𝑖
⌋
⌉ 

is the maximum number of panels of type h needed to produce all units of item i.  
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When rotations are allowed,  

𝑀𝑖ℎ =  ⌈
𝑑𝑖

⌊
𝑊ℎ𝐿ℎ

𝑙𝑖𝑤𝑖
⌋
⌉ 

 

From panel domination, we know that panel h is used only when all panels of 

dominating panel types are used. Let 𝐷ℎ be the set of panels that dominate panel h. 

This follows if ∑ 𝑛𝑢𝑚ℎ𝑟∈𝐷ℎ
 panels are used, then panel h could be used.  Hence the 

number of panels of type h needed over the existing dominating ones is 

max {0, ∑ 𝑀𝑖ℎ − ∑ 𝑛𝑢𝑚𝑟𝑟∈𝐷ℎ𝑖 } and 𝑛𝑢𝑚ℎ   is updated as: 

𝑛𝑢𝑚ℎ  =  𝑚𝑖𝑛{𝑚𝑎𝑥 {0, ∑ 𝑀𝑖ℎ − ∑ 𝑛𝑢𝑚𝑟

𝑟∈𝐷ℎ𝑖

} , 𝑛𝑢𝑚ℎ} 

 

The following example illustrates the 𝑛𝑢𝑚ℎupdates. 

 

Example 

Recall the example for item domination.  Suppose we have another panel type with 

the W = L = 90 and C = 320. Thus, the panel set becomes: 

𝑊1 = 125   𝐿1= 100  𝐶1 = 300  𝑛𝑢𝑚1 = 3 

𝑊2= 90  𝐿2= 90   𝐶2 = 310  𝑛𝑢𝑚2 = 2 

𝑊3= 90  𝐿3= 90   𝐶3 = 320  𝑛𝑢𝑚3 = 30 

Recognize that the new panel type is dominated by the first two types. 

For the case when rotations are not allowed, 𝑀𝑖ℎvalues are calculated as follows: 

𝑀13 =  ⌈
𝑑1

⌊
𝑊3

𝑤1
⌋ ⌊

𝐿3

𝑙1
⌋
⌉ =  ⌈

15

⌊
90
40⌋ ⌊

90
50

⌋
⌉ = 8  
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𝑀23 =  ⌈
𝑑2

⌊
𝑊3

𝑤2
⌋ ⌊

𝐿3

𝑙2
⌋
⌉ =  ⌈

15

⌊
90
30⌋ ⌊

90
40⌋

⌉ = 3 

𝑀33 =  ⌈
𝑑3

⌊
𝑊3

𝑤3
⌋ ⌊

𝐿3

𝑙3
⌋
⌉ =  ⌈

15

⌊
90
50

⌋ ⌊
90
50

⌋
⌉ = 15 

𝑀43 =  ⌈
𝑑4

⌊
𝑊3

𝑤4
⌋ ⌊

𝐿3

𝑙4
⌋
⌉ =  ⌈

15

⌊
90
35

⌋ ⌊
90
30⌋

⌉ = 3 

𝑛𝑢𝑚3  =  𝑚𝑖𝑛{𝑚𝑎𝑥 {0, ∑ 𝑀𝑖3 − ∑ 𝑛𝑢𝑚𝑟

𝑟∈𝐷3𝑖

} , 𝑛𝑢𝑚3} 

𝑛𝑢𝑚3  =  𝑚𝑖𝑛{𝑚𝑎𝑥{0, (8 + 3 + 15 + 3) − (3 + 2)}, 30} 

𝑛𝑢𝑚3  = 24 

 

If rotations are allowed, M values are calculated as 𝑀13 = 4 𝑀23 =3 𝑀33 = 5  𝑀43 = 

3. Then,  

𝑛𝑢𝑚3  =  𝑚𝑖𝑛{𝑚𝑎𝑥{0, (4 + 3 + 5 + 3) − (3 + 2)}, 30} 

𝑛𝑢𝑚3  = 10 

 

We improve 𝑛𝑢𝑚ℎ   by considering the profit brought by any feasible solution, say 𝑍𝐵 . 

𝑍𝐵 can be found through a simple heuristic rule or a decision maker might have faced 

with a similar instance before so that she/he some idea about the total profit. 

One upper bound on the total revenue is  ∑ 𝑑𝑗 ∗ 𝑟𝑗𝑗 where all items are cut. This 

follows  

 

∑ 𝑑𝑗 ∗ 𝑟𝑗

𝑗

− 𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑛𝑒𝑙 𝐶𝑜𝑠𝑡 ≥  𝑍𝐵 
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𝐼𝑓 ∑ 𝑛𝑢𝑚𝑟 ∗ 𝐶𝑟

𝑟∈𝐷ℎ

≥ ∑ 𝑑𝑗 ∗ 𝑟𝑗

𝑗

− 𝑍𝐵 

then panel h is eliminated. This is due to the fact that panel h could be used if all 

dominating panels are cut, and all dominating panels when cut cannot lead to a 

solution that beats 𝑍𝐵. 

𝐼𝑓 ∑ 𝑛𝑢𝑚𝑟 ∗ 𝐶𝑟

𝑟∈𝐷ℎ

< ∑ 𝑑𝑗 ∗ 𝑟𝑗

𝑗

− 𝑍𝐵 

then the following holds 

∑ 𝑛𝑢𝑚𝑟 ∗ 𝐶𝑟

𝑟∈𝐷ℎ

+ 𝑡𝐶ℎ ≤ ∑ 𝑑𝑗 ∗ 𝑟𝑗

𝑗

− 𝑍𝐵 

Hence, upper bound on number of panels of type h is found by the following equation: 

      

𝑛𝑢𝑚ℎ = ⌊
∑ 𝑑𝑗 ∗ 𝑟𝑗𝑗 − 𝑍𝐵 − ∑ 𝑛𝑢𝑚𝑟𝐶𝑟𝑟∈𝐷ℎ

𝐶ℎ
⌋ 

We use updated 𝑛𝑢𝑚ℎ in defining 𝑑𝑗ℎ and stating the following constraint.  

∑ 𝑞𝑘ℎ

ñ

𝑘=1

    ≤   𝑛𝑢𝑚ℎ 

 

The following example illustrates the 𝑛𝑢𝑚ℎupdates. 

 

Example 

The upper bound for the problem is calculated as follows: 

∑ 𝑑𝑗 ∗ 𝑟𝑗

𝑗

= 15 ∗ 40 +  15 ∗ 50 + 15 ∗ 45 + 15 ∗ 55 = 2850  

Recall that panel type 3 is dominated by both panel 1 and panel 2. Hence, 𝐷3 = {1,2}  

∑ 𝑛𝑢𝑚𝑟 ∗ 𝐶𝑟

𝑟∈𝐷ℎ

= 3 × 300 + 2 × 310 = 1520 
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Suppose that decision maker somehow knows the cutting assignments that leads to a 

profit of 500. If this value would be smaller than or equal to 1520, then we know that 

using panel type 3 would produce worse assignments. However, panel 3 can be used 

for the example problem to some level. We find this level by: 

𝑛𝑢𝑚ℎ = ⌊
∑ 𝑑𝑗 ∗ 𝑟𝑗𝑗 − 𝑍𝐵 − ∑ 𝑛𝑢𝑚𝑟𝐶𝑟𝑟𝜀𝐷ℎ

𝐶ℎ
⌋ 

𝑛𝑢𝑚3 = ⌊
2850 − 500 − 1520

320
⌋ 

𝑛𝑢𝑚3 = 2 

We eliminate panel h if 𝑛𝑢𝑚ℎ reduces to zero. Moreover we eliminate panel h if the 

condition stated by the following theorem holds.  

Theorem 3: In an optimal solution panel h will not be used if the following condition 

holds: 

max{𝑟𝑖} 𝑚𝑖𝑛 {⌊
𝑊ℎ𝐿ℎ

𝑚𝑖𝑛𝑗{𝑤𝑗𝑙𝑗}
  ⌋ , ⌊

𝑊ℎ

𝑚𝑖𝑛𝑗{𝑤𝑗}
⌋ ⌊

𝐿ℎ

𝑚𝑖𝑛𝑗{𝑙𝑗}
⌋} ≤ 𝐶ℎ 

Proof: An upper bound on the number of type h panel 

𝑚𝑖𝑛 {⌊
𝑊ℎ𝐿ℎ

𝑚𝑖𝑛𝑗{𝑤𝑗𝑙𝑗}
  ⌋ , ⌊

𝑊ℎ

𝑚𝑖𝑛𝑗{𝑤𝑗}
⌋ ⌊

𝐿ℎ

𝑚𝑖𝑛𝑗{𝑙𝑗}
⌋}  

Hence, max{𝑟𝑖} 𝑚𝑖𝑛 {⌊
𝑊ℎ𝐿ℎ

𝑚𝑖𝑛𝑗{𝑤𝑗𝑙𝑗}
  ⌋ , ⌊

𝑊ℎ

𝑚𝑖𝑛𝑗{𝑤𝑗}
⌋ ⌊

𝐿ℎ

𝑚𝑖𝑛𝑗{𝑙𝑗}
⌋} is an upper bound on the 

revenue that can be generated via a single panel of type h. If this revenue is no more 

than 𝐶ℎ then panel h will never be used as its cost outweighs the maximum revenue 

that it could generate.  
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Theorem 4: In an optimal solution panel h will not be used if the items are rotatable 

and the following condition holds: 

max{𝑟𝑖} 𝑚𝑖𝑛 {⌊
𝑊ℎ𝐿ℎ

𝑚𝑖𝑛𝑗{𝑤𝑗𝑙𝑗}
  ⌋ , ⌊

𝑊ℎ

𝑚𝑖𝑛𝑗{𝑤𝑗, 𝑙𝑗}
⌋ ⌊

𝐿ℎ

𝑚𝑖𝑛𝑗{𝑤𝑗, 𝑙𝑗}
⌋} ≤ 𝐶ℎ 

Proof: The proof is omitted as it directly follows that of Theorem 3. 

The following example illustrates the application of the Theorem 3 and 4. 

Example 

Consider the example for item domination.  The upper bound on the number of type 

3 panel is found as follows: 

If rotations are possible: 

𝑚𝑖𝑛 {⌊
8100

1050
  ⌋ , ⌊

90

30
⌋ ⌊

90

30
⌋} =  min{7,9}  =  7 

If rotations are not allowed: 

𝑚𝑖𝑛 {⌊
8100

1050
  ⌋ , ⌊

90

30
⌋ ⌊

90

30
⌋} = min{7,9} = 7 

Hence, the upper bound on the revenue would be 7×max{𝑟𝑖}=7×55=385 for item 

rotations allowed case. For non-rotated items, the upper bound on the revenue is also 

7×max{𝑟𝑖}= 385. Panel type 3, which is dominated by both panel type 1 and panel 

type 2 cannot be eliminated.  

3.4. Further Improvements in Model 2 

We recognize some properties of the optimal solution and propose some pre-

processing procedures and valid inequalities for our models. In this section, we will 

briefly discuss on the new valid inequalities proposed for Model 2. Also, a reduction 

technique in the number of decision variables x is presented. 
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3.4.1. Ordering Constraints 

Margot (2010) states that “An  integer  linear  program  (ILP)  is symmetric if  its  

variables  can  be  permuted without changing the structure of the problem.” The 

symmetry elimination strategy of Model 1 was defining partition the items into two, 

ones that initialize the levels, and the ones that are assigned to levels. Same strategy 

is kept in Model 2 as well. We accommodate further symmetry elimination strategies 

in Model 2.  

Recall that in Model 2, we define panel decision variables for each panel type as many 

as their available quantities.  

 For each panel type h, 𝛼ℎ =  ∑ 𝑛𝑢𝑚𝑠
ℎ
𝑠=1  and  

For each panel, 𝛽𝑘 = min{𝑟 ∶  1 ≤ 𝑟 ≤ ℎ,  𝛼𝑟 ≥ 𝑘} is defined. 

Theorem 5: For a panel type h, there exists an optimal solution in which  

𝑞𝑘 ≥ 𝑞𝑘+1      ∀ 𝑘  ∈  {𝛼ℎ−1 + 1 … 𝛼ℎ} 

Proof: Suppose that in the optimal solution, the proposed constraint is violated, i.e. 

𝑞𝑘+1 > 𝑞𝑘 . It implies that some of the panels of type h are not used. Due to the fact 

that each  𝑘 ∈  {𝛼ℎ−1 + 1 … 𝛼ℎ} represents same panel type, changing panel k+1 with 

k is possible and does not change the optimal solution. Hence, via the constraint, the 

symmetric solutions, are eliminated, but not the optimal solution.   

Recall that in our new formulation, we defined fittable strips for each panel. The 

maximum number of levels/strips for a panel is defined dependent on both item and 

panel type and can be find as: 

𝑈𝐵𝐿𝑒𝑣𝑒𝑙𝑗ℎ = 𝑚𝑖𝑛 {𝑑𝑗ℎ, ⌊
𝑊ℎ

𝑤𝑗
⌋} 
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Theorem 6: For a panel type h, there exists an optimal solution in which 

𝑧𝑖𝑚𝑘 ≥ 𝑧𝑖(𝑚+1)𝑘      ∀ 𝑖, 𝑘 𝑎𝑛𝑑  𝑚 ∈  {1, … , 𝑈𝐵𝐿𝑒𝑣𝑒𝑙𝑖 𝛽𝑘
 } 

Proof: Suppose that in the optimal solution, the proposed constraint is violated, i.e. 

𝑧𝑖(𝑚+1)𝑘 > 𝑧𝑖𝑚𝑘 . It implies that some of the possible strips of item i is not used. Due 

to the fact that each  𝑚 ∈  {1, … , 𝑈𝐵𝐿𝑒𝑣𝑒𝑙𝑖 𝛽𝑘
} represents levels with same 

characteristics, i.e. all of them are initialized by item i, changing level m+1 with m is 

possible and does not change the optimal solution. Hence, by including the constraint, 

one can only eliminate some symmetric solutions, not the optimal solution.   

3.4.2. Reduction in x Variables 

Recall that z variables represent the levels while the x variables represent the 

assignments to those levels. We define x variables only if the width of the item is 

smaller than or equal to the width of the level.  Luckily, Model 2 gives room to more 

improvements.  

Recall 𝐿ℎ is the length of the panel and 𝑙𝑗 is the length of the item. If ⌊(𝐿ℎ − 𝑙𝑖)/𝑙𝑗⌋ <

1, then it is not necessary to define a decision variable for the assignment of item j to 

level i as there would be no integer solution. Recognizing this, when the length of item 

j and the first item of the level exceed the capacity of the panel, the decision variable 

is not defined. 

3.5. Improved Models in Summary 

Both improved models benefit from the presolving techniques that we suggest in 

Properties of Optimal Solutions. Constraint sets and the objective functions are 

presented below to clarify the differences between them.  

The performances of the proposed strong and weak inequalities for Item Domination 

are analyzed on benchmark problem instances. In majority of the instances, the 

addition of extra binary variables is not justified by the amount of improvement that 
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the strong item elimination property brings. Hence, we decide not to include strong 

inequalities in our improved models.  Moreover, the weak inequalities do not lead to 

any reduction, so we did not include them as well.   

For the sake of completeness, we give the improved versions of Model 1 and Model 

2. 

Improved Model 1  

max ∑ ∑ ∑ 𝑟𝑗 ∗ 𝑥𝑖𝑗ℎ

𝑛

𝑗=𝛽𝑖

ñ−1

𝑖=1ℎ

+ ∑ ∑ 𝑦𝑖ℎ ∗  𝑟𝛽𝑖

ñ

𝑖=1ℎ

− ∑ ∑ 𝑞𝑘ℎ ∗ 

ñ

𝑘=1ℎ

𝑐ℎ                   (18) 

    ∑ ∑ 𝑥𝑖𝑗ℎ

𝛼𝑗

𝑖=1ℎ

 + ∑ ∑ 𝑦𝑖ℎ

𝛼𝑗

𝑖=𝛼𝑗−1+1ℎ

≤  𝑑𝑗    ∀𝑗                                               (19)  

if ∑  𝑑𝑗ℎℎ >  𝑑𝑗   

     ∑ ∑ 𝑥𝑖𝑗ℎ

𝛼𝑗

𝑖=1ℎ

+ ∑ ∑ 𝑦𝑖ℎ

𝛼𝑗

𝑖=𝛼𝑗−1+1ℎ

≤  𝑑𝑗    ∀𝑗                                              (20) 

If 𝑑𝑗ℎ ≤ 𝑑𝑗, 

    ∑ 𝑥𝑖𝑗ℎ

𝛼𝑗ℎ

𝑖=1

+ ∑ 𝑦𝑖ℎ

𝛼𝑗ℎ

𝑖=𝛼𝑗−1ℎ+1

  ≤  𝑑𝑗ℎ   ∀ ℎ 𝑎𝑛𝑑 𝑗                                        (21) 

   𝑛𝑢𝑚𝑟 −   ∑ 𝑞𝑘𝑟

𝑘

≤  𝑛𝑢𝑚𝑟(1 − 𝑞𝑡𝑠)    ∀ 𝑡                                          (22) 

   ∑ 𝑞𝑘ℎ

ñ

𝑘=1

    ≤   𝑛𝑢𝑚ℎ                                                                                   (23) 
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Improved Model 2  

max ∑ 𝑥𝑗𝑖𝑚𝑘 ∗ 𝑟𝑗

𝑗,𝑖,𝑚,𝑘

+ ∑ 𝑧𝑖𝑚𝑘 ∗ 𝑟𝑖

𝑖

− ∑ 𝑐𝛽𝑘
𝑞𝑘

𝑘

                                                       (24) 

  ∑ 𝑥𝑗𝑖𝑚𝑘 ∗ 𝑙𝑗
𝑗

+ 𝑧𝑖𝑚𝑘 ∗ 𝑙𝑖 ≤ 𝑧𝑖𝑚𝑘𝐿𝛽𝑘
      ∀ (𝑖, 𝑚, 𝑘)                                     (25)  

   ∑ 𝑧𝑖𝑚𝑘 ∗ 𝑤𝑖

𝑖,𝑚

≤ 𝑞𝑘𝑊𝛽𝑘
    ∀ 𝑘                                                                          (26) 

  ∑ 𝑥𝑗𝑖𝑚𝑘

𝑖,𝑚,𝑘

+ ∑ 𝑧𝑗𝑚𝑘

𝑚,𝑘

≤ 𝑑𝑗    ∀ 𝑗                                                                      (27)  

    𝑛𝑢𝑚𝑟 − ∑ 𝑞𝑘

𝛼𝑟

𝑘=𝛼𝑟−1+1

≤  𝑛𝑢𝑚𝑟(1 −  𝑞𝑡)     𝑡 ∈  {𝛼𝑠−1 + 1 … 𝛼𝑠}         (28) 

    𝑧𝑖𝑚𝑘 ≥ 𝑧𝑖(𝑚+1)𝑘      ∀ 𝑖, 𝑘 𝑎𝑛𝑑  𝑚                                                                 (29) 

   𝑞𝑘 ≥ 𝑞𝑘+1                ∀ 𝑘                                                                                  (30) 

 

3.6. Heuristics 

The satisfactory behavior of the mathematical model for the small sized instances has 

motivated us to use it to solve large sized instances. In doing so, we decompose the 

problem into small sub-problems and solve each problem optimally by improved 

Model 2.   Improved Model 2 is selected due to its notably better performance over 

Model 1.  Basically, we propose two types of decomposition: 

1) Panel Type Decomposition 

2) Panel Unit Decomposition  

In panel type decomposition approach, we order the panels according to their cost/area 

values. Note that our objective maximizes total profit thereby asking for cheaper 
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panels and higher units of item cut. Therefore cheaper panels with larger area (to 

accommodate many more item cuts) are preferable. To take both cost and area 

concerns into account, we give priority to the panel type having smallest cost/area and 

then second smallest and so on. We terminate whenever if all panel types or all items 

are cut. Below is the stepwise description of the panel type based decomposition 

algorithm.  

3.6.1. Algorithm Panel Type Based Decomposition 

Step 0 - Order the panel types according to their non-decreasing order of cost/area 

values, i.e.  

𝐶1

𝐴1
≤  

𝐶2

𝐴2
≤

𝐶3

𝐴3
≤ ⋯ ≤

𝐶𝑚

𝐴𝑚
 

where, m = number of panel types, 𝐴𝑟 is the area of panel type r, and 𝐶𝑟 is the cost 

of panel type r.  

Set r = 1 and z = 0. 

N is the set of all items 

Step 1 - Solve Improved Model 2 for panel type r with 𝑛𝑢𝑚𝑟 panels and with set N.  

Let  𝑆𝑟𝑘 be the set of items in the 𝑘𝑡ℎ panel of type r.  

𝑍𝐻 be the profit of the solution  

𝑍𝐻 = 𝑍𝐻 + 𝑍𝑟  

𝑛𝑢𝑚𝑟 =  𝑂𝑛𝑢𝑚𝑟
 

N = N / ⋃ 𝑆𝑟𝑘𝑘  
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Step 2 - Improvement Step  

Starting from the least costly unassigned panel types (among the panels 

r+1,….m) if there exists one type such that 𝐶𝑠 < 𝐶𝑟 (thereby 𝐴𝑠 < 𝐴𝑟) and could 

accommodate all items in 𝑆𝑟𝑘 for any individual panel k then assign all items 

in 𝑆𝑟𝑘 to one panel of s and let  

𝑛𝑢𝑚𝑟 =  𝑛𝑢𝑚𝑟 + 1 

𝑛𝑢𝑚𝑠 =  𝑛𝑢𝑚𝑠 − 1 

𝑍𝐻 = 𝑍𝐻 + 𝐶𝑟 − 𝐶𝑠 

Continue with Step 2 until no transfers are possible.  

If 𝑛𝑢𝑚𝑟 ≥ 1 and N is not empty, then go to Step 1. 

Step 3 : If N is empty or r = m, stop. Otherwise, 

r = r + 1 and go to Step 1. 

In the improvement step, we improve the solution if any other cheaper panel type 

could be used without sacrificing from the total revenue.  If such a panel type exists 

we empty the already used panel with not yet used panel, and resolve for the already 

used panel with the not yet cut items.  

The example below illustrates the execution of the algorithm.  

Example 

Suppose that we have three panel types with the following parameters: 
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𝑊1 = 104   𝐿1 = 100  𝐶1 = 70  𝑛𝑢𝑚1 = 2 

𝑊2  = 80  𝐿2  = 80  𝐶2  = 50  𝑛𝑢𝑚2 = 2 

𝑊3 = 100  𝐿3 = 100  𝐶3  = 75  𝑛𝑢𝑚3  = 2 

We have three item types with the following parameters:   

𝑤1 = 54  𝑙1  = 50  𝑟1 = 40   𝑑1 = 20 

𝑤2  = 25  𝑙2 = 25   𝑟2  = 11  𝑑2 = 32 

𝑤3 = 40  𝑙3 = 40   𝑟3 = 45   𝑑3 = 8 

 

Step - 0 Panels are ordered by their cost/area values. 

70

10400
≤  

75

10100
≤

50

6400
 

 The order of panels is Panel 1 – Panel 3 – Panel 2. 

Step – 1 Solving Improved Model 2 for two panels of type 1 gives optimal assignments 

to the panels are as shown below.  The grey area is the residual area on the panels.  

Item 

3  

Item 

3  
  

 

Item 

3  

Item 

3  
  

Item 

3  

Item 

3  
  

 

Item 

3  

Item 

3  
  

             
 

𝑍𝐻 = 𝑍𝐻 + 8 × 45 − 2 × 70 = 220 

Step 2 – The total length and the total width of the assignments are both 80, which 

could  fit  to a panel of type 2 having lower cost.   
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𝑛𝑢𝑚1 =  𝑛𝑢𝑚𝑟 + 2 = 2 

𝑛𝑢𝑚𝑠 =  𝑛𝑢𝑚𝑠 − 2 = 0 

𝑍𝐻 = 220 + 2 × 20 = 260 

 Algorithm backs to Step 1 as 𝑛𝑢𝑚1 ≥ 1. 

Step 1 - Resolving for the panel type 1 gives the following solution: 

Item 

2 
Item 2  Item 2  Item 2 

 
Item 2 Item 2  Item 2  Item 2 

Item 

2 
Item 2  Item 2  Item 2 

 
Item 2 Item 2  Item 2  Item 2 

Item 

2 
Item 2  Item 2  Item 2 

 
Item 2 Item 2  Item 2  Item 2 

Item 

2 
Item 2  Item 2  Item 2 

 
Item 2 Item 2  Item 2  Item 2 

 

𝑍𝐻 = 260 + 32 × 11 − 2 × 70 = 472   

Step 2 is skipped as there is no smaller cost alternative to panel 1, other than 

panel 2 and panel 2  is no more available.  

Step 1 -  Solving for panel type 3 (the second panel type in the ordered list) for two 

panels (𝑛𝑢𝑚3 = 2), the assignments obtained in each of the iterations are as follows: 

Item 

1 

Item 

1  

      
 

𝑍𝐻 = 472 + 2 × (2 × 40 − 75) = 482   

There are no alternative panel type left, hence, the algorithm terminates.  
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The objective function value is 482. If the improvement step had not implemented, 

then the algorithm would give an objective function of 422. 

Algorithm panel type decomposition somewhat dispels the exponential nature of the 

problem by solving relatively small subproblems. We observe that the model may 

have computational troubles when the number of panels of a considered type is high. 

Based on this observation we proposed another decomposition based algorithm that 

decomposes the problem into panel units, but not panel types. Algorithm panel type 

decomposition might consider up to m subproblems whereas unit based 

decomposition might have to deal with ∑ 𝑛𝑢𝑚𝑟
𝑚
𝑟=1  subproblems. The number of 

subproblems are considerably higher, however much easier to solve, as each 

subproblem of panel r uses 𝑛𝑢𝑚𝑟 = 1. 

Below is the stepwise description of the unit based decomposition algorithm.  

3.6.2. Algorithm Panel Unit Based Decomposition 

Step 0 -  Order the panel units according to their nondecreasing order of cost/area 

values, i.e. 

𝐶1

𝐴1
≤  

𝐶2

𝐴2
≤

𝐶3

𝐴3
≤ ⋯ ≤

𝐶𝑝

𝐴𝑠
 

where, m = number of panel types, 𝑝 = ∑ 𝑛𝑢𝑚𝑟
𝑚
𝑟=1 , 𝐴𝑘 is the area of panel 

unit k, 𝐶𝑘 is the cost of panel unit k and r represents panel types.  

Set k = 1, r = 1 and z = 0  

N = set of all items  

Step 1 -  Solve improved  model 2 for panel k and set N. Let 𝑆𝑘 be the set of items in 

the solution and 𝑍𝑘 be the profit of the solution. 

𝑍𝐻 = 𝑍𝐻 + 𝑍𝑘 
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N = N / 𝑆𝑘 

If 𝑆𝑘 = ∅, then  

 k =  ∑ 𝑛𝑢𝑚𝑠
𝑟
𝑠=1  

 r = r + 1 

Step 2 – If there exists another panel t such that t > k and 𝐶𝑡 < 𝐶𝑟 and could 

accommodate all items in 𝑆𝑘, then empty panel r by transferring the items in set 𝑆𝑘 to 

panel t. If there are more than one t, then select the one having smallest cost.  If panel 

k is emptied and 𝑁 ≠ ∅,  

𝑍𝐻 = 𝑍𝐻 + 𝐶𝑘 − 𝐶𝑡 

 Remove panel t from further considerations and go to Step 1. 

Step 3 – If N is empty, or k = s, then stop. Otherwise, 

  k = k + 1,  

If k > ∑ 𝑛𝑢𝑚𝑟
𝑠=1 𝑠

, then  

r = r + 1  

Go to Step 1. 

We propose another decomposition based algorithm, which can be regarded as a slight 

variant of Algorithm Unit Based Decomposition. The main structure of the Algorithm 

Unit Based Decomposition is kept, except that the panels are ordered according to 

their cost values and the assignments that can be done only one panel type are 

prioritized. To clarify the prioritization, assume there are two panel types, r and s 

where 𝐶𝑟 < 𝐶𝑠. The algorithm starts with panels of type r. Assume also that 𝐿𝑠 < 𝐿𝑟 
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and 𝑊𝑠 < 𝑊𝑟, hence there are some assignments which can only be done to panel type 

r.  

Let 𝑋𝑟 represents the total length of assignments of a level and 𝑌𝑟 represents the total 

width of assignments of a panel. To prioritize the assignments specific to panel r, the 

constraint sets below are introduced to the model: 

𝑋𝑟 ≥  𝐿𝑠 + 0.1  (31) 

𝑌𝑟 ≥  𝑊𝑠 + 0.1  (32) 

In doing so, the panel specific assignments are selected as long as possible so as to 

maximize the usage of marginal benefit -larger area- of a panel type. When it is not 

possible, i.e., model with constraints (31) and (32) could not find a solution, any 

assignment is accepted.  

Algorithm Modified Unit Based Decomposition skips the improvement step as the 

assignments done to a panel is infeasible for the other panels as long as possible. When 

it is feasible for the other panel types, i.e. there are no panel specific assignments left, 

the exchange would bring negative or zero profit, as the Algorithm use the panels in 

the order of non-increasing cost.   

Below is the stepwise description of the unit based decomposition algorithm.  

3.6.3. Algorithm Modified Panel Unit Based Decomposition 

Step 0 -  Order the panel units according to their non-decreasing order of cost values, 

i.e. 

𝐶1 ≤ 𝐶2 ≤ 𝐶3 ≤ ⋯ ≤  𝐶𝑠 

where, m = number of panel types, 𝑠 = ∑ 𝑛𝑢𝑚𝑟
𝑚
𝑟=1  and 𝐶𝑘 is the cost of panel 

k and r represents panel types.  
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Set k = 1, r =1 and z = 0 

N = set of all items  

Step 1 – Solve the Improved Model 2  with the following constraints for panel k and 

set N.  

Let panel k is from type r and 𝐿𝑠 be the panel with maximum length in the set 

having smaller length than panel type r. Similarly, let 𝑊𝑠 be the panel with 

maximum width in the set having smaller width than panel type r.  We add 

following constraints to the model: 

(33)  ∑ 𝑥𝑗𝑖𝑚𝑘 ∗ 𝑙𝑗
𝑗

+ 𝑧𝑖𝑚𝑘 ∗ 𝑙𝑖 ≥ 𝑧𝑖𝑚𝑘𝐿𝑠  ∀ (𝑖, 𝑚)  

(34)  ∑ 𝑧𝑖𝑚𝑘 ∗ 𝑤𝑖

𝑖,𝑚

≥ 𝑞𝑘𝑊𝑠     

Note that if panel k has the minimum length, the first constraint drops. If it has 

the minimum width, then the second constraint drops.  

Let 𝑆𝑘 be the set of items in the solution and 𝑍𝑘 be the profit of the solution. 

𝑍𝐻 = 𝑍𝐻 + 𝑍𝑘 

N = N / 𝑆𝑘 

If 𝑆𝑘 ≠ ∅, skip Step 2 and go to Step 3. 

Step 2 – Relax the constraints (33) and (34) and solve the improved Model 2.  

 𝑍𝐻 = 𝑍𝐻 + 𝑍𝑘 

N = N / 𝑆𝑘 

If 𝑆𝑘 = ∅ and N ≠ ∅, then  
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 k = ∑ 𝑛𝑢𝑚𝑟
𝑠=1 𝑠

+ 1 

 r = r + 1 

 Go to Step 1. 

If 𝑆𝑘 ≠ ∅ and N ≠ ∅: 

If k+1> ∑ 𝑛𝑢𝑚𝑟
𝑠=1 𝑠

, then  

k = k + 1 

r = r + 1 and go to Step 1. 

Else,  

 k = k + 1 and go to Step 2. 

Step 3 – If N is empty, or k = s, then stop. Otherwise, 

 k = k + 1,  

If k > ∑ 𝑛𝑢𝑚𝑟
𝑠=1 𝑠

, then  

r = r + 1  

 Go to Step 1.  

The starting point of the algorithm, i.e., the assignments to the first panel, may change 

the solution significantly.  We see through experimentation that starting with the 

second best solution for the first panel type may increase the overall performance of 

the algorithm. As the solution times are small, solving the algorithm by two different 

starting points can well be justified. One can avoid the best solution for the first panel 

in the second run of the algorithm.  
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Example 

Recall the same example.  

Step 0 – Panels are ordered according to their costs. The order of the panels: 

 Panel 2 – Panel 1 – Panel 3 

Step 1 – Solve the improved model 2 for a single panel of type 2. 𝐿2 and 𝑊2 are the 

minimum values of the lengths and widths, respectively. Hence, there are no panel 

specific assignments.  

Improved model 2 is solved two times and each time the following assignments 

are returned: 

Item 3 Item 3 

Item 3 Item 3 

 𝑍𝐻 and N are updated.  

 At the end of second run, 𝑍𝐻 = 260, 𝐷1 = 20 𝐷2 = 32 𝐷3 = 0   

 r = r + 1 = 2 

 k = 3 

The algorithm continues to solve the Improved Model 2 for k = 3 which is of 

type 1. Panel type 2 was considered, so panel types 3 and 1 are compared. 

𝑊1 = 104 > 𝑊3 = 100, and 𝐿1 = 100 = 𝐿3 = 100. Hence, the algorithm 

prioritizes the assignments which have total width of 𝑊 > 𝑊3 by introducing 

the constraint below: 

 ∑ 𝑧𝑖𝑚3 ∗ 𝑤𝑖

𝑖,𝑚

≥ 100 + 1     
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For the first panel of type 1, the following assignment is obtained: 

Item 1 Item 1 

Item 2 Item 2 Item 2 Item 2 

Item 2 Item 2 Item 2 Item 2 

𝑍𝐻 = 260 + 168 − 70 = 358,  

𝐷1 = 18 𝐷2 = 24 𝐷3 = 0   

There is no need to relax the constraint as a feasible assignment is reached. 

When solving for the second panel of type 1, the same assignments are reached. 

𝑍𝐻 = 358 + 168 − 70 = 456,  

𝐷1 = 16 𝐷2 = 16 𝐷3 = 0 

Step 3 –  k = 4+1 = 5 and algorithm continues with Step 1.  

Step 1 –  Panel type 3 is the only panel left, there is no need to force the model to do 

panel specific assignments.  

 When solving for a panel of type 3, we get the following assignments. 

Item 2 Item 2  Item 2  Item 2 
  

Item 2 Item 2  Item 2  Item 2 
  

Item 2 Item 2  Item 2  Item 2 
  

Item 2 Item 2  Item 2  Item 2 
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𝑍𝐻 = 456 + 176 − 75 = 557,  

𝐷1 = 16 𝐷2 = 0 𝐷3 = 0 

Improved Model 2  for k+1 of type 3 returns the following assignments: 

Item 1 Item 1 

        

        

𝐷1 = 14 𝐷2 = 0 𝐷3 = 0 

𝑍𝐻 = 557 + 80 − 75 = 562 

Step 3 – There are no panel left, so algorithm terminates.  

Heuristic 1 uses Algorithm Panel Based Decomposition.  Heuristic 2 runs Algorithm 

Unit Based Decomposition and Modified Algorithm Unit Based Decomposition and 

takes the best solution. 
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CHAPTER 4  

 

4. COMPUTATIONAL EXPERIMENTS 

 

In this chapter, we discuss the computational experiments that are designed to evaluate 

the performances of our mathematical models and heuristic algorithms. To solve all 

models, we use a non-commercial solver SCIP version 6.0.1.  The number of threads 

is set to the default value of the solver.  For the heuristic algorithms and pre-solving 

operations of the model, we use Python 3.6 as programming language.  The 

experiment is conducted on a computer with Intel i7-6700HQ CPU at 2.6 GHz and 8 

GB RAM memory.  

The performance of SCIP 6.0.0 is tested on benchmark instances by Mittelmann 

(2018). The summary of the results can be seen in Table 4.1. SCIPS and SCIPC  differ 

by their LP Solver. SCIPS uses SoPlex as LP solver, while SCIPC uses CPLEX. When 

the number of threads is more than one, SCIP is named as Fiber SCIP and abbreviated 

as FSCIP in the table. For different threads, the number of instances solved, unscaled 

and scaled CPU times of different solvers are given in Table 4.1. The scaled CPU 

times are obtained by equating the fastest solver performance to 1 and the others’ 

proportional to it. Although we used SCIP 6.0.1, we present the performance of older 

version because the latest available study we could reach concerns the SCIP 6.0.0.     
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Table 4.1 The Summary of Performance Comparison of SCIP and Other Solvers 

1 thr CBC CPLEX GUROBI SCIPC SCIPS XPRESS MATLAB SAS 

unscaled 1639 72.2 41.6 239 330 83.1 3002 121 

scaled 39 1.74 1 5.75 7.94 2.00 72.2 2.90 

solved 53 87 87 83 76 86 32 84 

4 thr CBC CPLEX FSCIPC FSCIPS GUROBI XPRESS MIPCL SAS 

unscaled 843 36.4 240 294 24.2 40.3 177 72.6 

scaled 34.8 1.5 9.9 12.1 1 1.66 7.29 3.00 

solved 66 86 80 79 87 87 84 85 

12 thr CBC CPLEX FSCIPC FSCIPS GUROBI XPRESS MIPCL SAS 

unscaled 668 37.5 247 328 25.2 39.5 165 85.4 

scaled 27 1.49 9.8 13.0 1 1.57 6.53 3.39 

Solved 69 87 78 76 87 87 82 82 

 

In Section 4.1, we report on the instance features and data generation. In Section 4.2.1 

and Section 4.2.2 we test the effects of improvement mechanisms on Model 1 and 

Model 2, respectively.  We compare the performances of Model 1 and Model 2 in 

Section 4.2.3.  Finally, in Section 4.2.4 we discuss the performances of the heuristic 

algorithms relative to the best available solutions. 

4.1. Instance Features and Data Generation 

We use 42 instances taken from the literature and that are available online as in Furini 

and Malaguti (2013). The first 12 instances are originally for the bin-packing problem 

by Cintra et. al. (2008). Uniform integer demand between 0 and 100 and three types 

of panels with dimensions (L,W), (1.2L, 0.8W) and (1.1L, 0.9W) are used in these 

instances. 

The other 30 instances are proposed by Hifi and Roucairol (2001) for two dimensional 

knapsack problem. These include demand figures.  

The maximum and minimum item widths (wmax and wmin) and item lengths (lmax 

and lmin) and maximum and minimum panel width  and length (W and L) together 
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with the number of item types(n) and total demand (ñ) for all 42  instances are given 

in Table 4.2.  

Table 4.2 Features of the Problem Instances 

Instance 

No 
n  ñ lmax lmin wmax wmin Lmax Lmin  Wmax Wmin  

1 10 669 167 66 184 86 300 275 225 200 

2 20 982 168 18 186 68 300 275 225 200 

3 30 1489 176 63 186 71 300 275 225 200 

4 50 2751 184 62 179 63 300 275 225 200 

5 10 645 364 132 356 145 600 550 450 400 

6 20 1064 355 132 372 134 600 550 450 400 

7 30 1626 365 129 374 147 600 550 450 400 

8 50 2363 362 131 374 127 600 550 450 400 

9 10 590 673 292 688 341 1200 1100 900 800 

10 20 830 730 269 742 260 1200 1100 900 800 

11 30 1298 674 266 745 274 1200 1100 900 800 

12 50 2081 746 254 723 269 1200 1100 900 800 

13 20 62 33 9 43 11 60 55 54 48 

14 20 53 33 12 42 14 72 66 54 48 

15 20 46 35 15 43 14 84 77 72 64 

16 20 35 33 9 43 11 108 99 63 56 

17 20 45 69 13 63 12 158 145 90 80 

18 30 63 69 13 63 12 158 145 90 80 

19 10 19 31 11 31 9 74 68 49 44 

20 10 18 20 1 14 2 24 22 18 16 

21 30 65 69 18 63 12 156 143 117 104 

22 35 75 57 19 54 18 156 143 117 104 

23 35 90 96 31 112 35 180 165 157 140 

24 25 82 58 20 80 28 120 110 112 100 

25 25 67 78 25 66 21 150 137 94 84 

26 35 63 93 34 104 34 174 159 148 132 

27 40 96 170 59 130 45 320 293 186 165 

28 35 75 57 19 59 18 156 143 117 104 

29 10 51 54 15 65 13 152 139 88 78 

30 10 32 54 15 65 13 152 139 88 78 

31 22 60 109 35 101 38 303 278 219 195 
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Table 4.2 (cont’d).  

32 40 90 108 33 135 38 315 289 216 192 

33 10 18 20 1 14 2 58 53 18 16 

34 35 76 31 10 43 10 78 71 68 60 

35 5 18 54 18 65 13 152 139 88 78 

36 10 23 55 9 39 4 84 77 36 32 

37 10 24 47 13 27 4 84 77 36 32 

38 30 78 31 10 43 10 66 60 76 68 

39 20 50 44 14 49 16 118 108 89 79 

40 20 62 43 11 33 9 84 77 36 32 

41 10 23 31 9 35 7 48 44 63 56 

42 20 62 33 9 43 11 48 44 63 56 

 

We generate some other parameters: the revenues of items, costs of panels and 

available number of panels.  

We set the revenues using the areas of items from discrete uniform distribution as: 

𝑟𝑗 = 𝑈 [max (10,
𝑙𝑗×𝑤𝑗

10,000
), (100,

𝑙𝑗×𝑤𝑗

100
)]  

According to the above scheme, the revenues of the items are somewhat area 

dependent. When the areas are small, the revenues are generated between 10 and 100, 

regardless of their areas.  For big items, the areas do define the revenues.  The selected 

constants 100 and 10,000 are compatible with the item areas and revenues observed 

in the marble company.   

The panel costs are generated from discrete uniform distribution as follows: 

𝐶ℎ = 𝑈 [
𝐴ℎ

𝐴1
  ×𝑚𝑎𝑥𝑖{𝑟𝑖}, 

𝐴ℎ

𝐴1
  ×2×𝑚𝑎𝑥𝑖{𝑟𝑖}] 

where 𝑚𝑎𝑥𝑖{𝑟𝑖} is the maximum revenue over all items and 𝐴ℎ is the area of panel h. 
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According to the above scheme, even for the item with maximum revenue, cutting 

only one item from a panel is avoided.  In our interpretation, cutting one item from a 

panel, that would be trimming.  We also avoid too high panel costs, by putting an 

upper limit of  2 x maximum revenue of items. Areas are important factor in setting 

the cost of a panel. Therefore, for each panel we set a coefficient that is proportional 

to its area.  The smallest area is taken as a baseline and coefficient  
𝐴ℎ

𝐴1
  is used for panel 

h.   

To set available number 𝑛𝑢𝑚ℎ to each panel type, we use the objective function values 

(the total area used by the assigned items) of the solutions in Furini and Malaguti 

(2013).  We divide the total area (obj) to the smallest panel area and get an 

overestimate on the total number of panels used in their solutions.  Using this 

overestimate  ⌈
𝑂𝑏𝑗

𝐴1
⌉ , we set  𝑛𝑢𝑚ℎ to one panel type as follows: 

𝑛𝑢𝑚ℎ =⌈
𝑂𝑏𝑗

𝑚×𝐴1
⌉ 

𝑛𝑢𝑚ℎ values of a particular instance are the same for all panel types.   

We set the number of different panel types to 2 and 3.   

4.2. Analysis of the Results  

We evaluate the performance of the mathematical models by their CPU times. We put 

a time limit of 7200 seconds for the execution of all models and report on the number 

of instances solved to optimality (out of 42 instances) within this limit. Moreover we 

give the total number of integer decision variables for each instance.   

In our preliminary tests, for both models, we observe that in majority of the instances, 

the addition of extra binary variables is not justified by the amount of improvement 

that the item elimination property brings. Hence, we decided not to include the item 

elimination property in our runs.  
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4.2.1. Performance of Model 1 and Its Improved Version 

In this section, we discuss the performance of Model 1 and its improved version and 

report the results in Table 4.3.  

Table 4.3 Performance of Model 1 and its Improved Version 

Instance Features 
3 Panel Types   2 Panel Types 

Model 1  
Improved  

Model 1 
Model 1  

Improved  

Model 1 

Instance 

No 
N ñ 

Number 

of 

integer 

DVs 

CPU 

Time 

Number 

of 

integer 

DVs 

CPU 

Time 

Number 

of 

integer 

DVs 

CPU 

Time 

Number 

of 

integer 

DVs 

CPU 

Time 

1 10 669 688638 32 619194 14 459092 12 412796 14 

5 10 645 639429 7200 548669 7200 426286 863 338146 563 

10 20 830 1066842 443 1011453 259 711228 233 674302 242 

13 20 62 8238 14 8238 16 5492 12 5492 14 

14 20 53 6147 3008 4632 1185 4098 328 2916 175 

15 20 46 4971 79 3100 62 3314 34 1912 20 

16 20 35 3189 652 2203 69 2126 32 1440 7 

17 20 45 4686 3197 3237 1948 3124 94 1972 39 

18 30 63 9153 7200 6629 7200 6102 2663 4087 522 

19 10 19 969 2 798 3 646 7 532 7 

20 10 18 915 13 753 6 610 3 502 5 

24 25 82 13431 7200 7492 7200 8954 656 4518 106 

26 35 63 9663 7200 8575 7200 6442 414 5549 357 

30 10 32 2274 28 1650 16 1516 7 1100 8 

33 10 18 915 21 753 7 610 7 502 6 

35 5 18 774 4 435 1 516 1 290 3 

36 10 23 1389 2 499 1 926 0 293 1 

37 10 24 1470 185 799 8 980 1 496 1 

39 20 50 5718 7200 4414 7200 3812 878 2826 727 

40 20 62 8343 377 8015 703 5562 38 5234 35 

41 10 23 1323 23 1059 7 882 3 684 3 

42 20 62 8238 7200 5492 7200 5492 2 5492 2 

When there are three panel types, Model 1 and its improved version could solve 16 

out of 42 instances to optimality.  We observe that the improvement mechanisms had 

enhanced the efficiency of the model in 13 instances.  In the two instances, the 

performances are almost similar;  Model 1 runs less than two seconds earlier than its 
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improved version which can be attributed to the time difference in the model 

construction phase of the formulations. The only instance that the original formulation 

significantly dominates the formulation with improvements is Instance 40.  We see 

that the difference in number of the decision variables is small. When the instance is 

analyzed, we find that the panel specific demands are all equal to the original item 

demand.  Hence no dominance relation between the panels could be established. 

Shortly, improvement strategies had not worked for the instance, the extra effort spent 

to test them increased the CPU time.  This may be due to the change in the structure 

of the parameter and constraint sets.  

When there are only two panel types, Improved Model 1 dominates Model 1 in terms 

of CPU time in all instances once too small differences are ignored.  Both models 

could find the optimal solution in 22 out of 42 instances in two hours.  

Table 4.4 reports on the average performances of Model 1 and improved version over 

all 42 instances.  The average CPU times also include the instances that cannot be 

solved in 7200 seconds.  Number of unsolved instances out of 42, average number of 

decision variables and the average CPU times of the instances solved by both models 

are also reported. 

Table 4.4 Overall Performance Measures for Model 1 and Improved Model 1 

 

 

3 Panel Types  2 Panel Types   

Model 1  
Improved 

Model 1 
Model 1  

Improved 

Model 1 

Average CPU Time 4649.5 4559.64 3578.2 3496.6 

Average CPU Time of the 

Instances Solved by Both 

Models 

505 269.1 285.7 129.9 

Number of Unsolved Instances 26 26 20 20 

Average Number of Integer 

Decision Variables Solved by 

Both Models 

112568  104176  75355  66867.3  
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As can be observed from the table, the problems with 3 panel types are harder to solve 

than those with 2 panel types due to higher number decision variables that add burden 

to the solutions of the mathematical models. 

4.2.2. Performance of Model 2 and Its Improved Version 

The performance results of Model 2 and its improved version are presented in Table 

4.5. When there are three panel types, Model 2 can solve 19 out of 42 instances while 

its improved version solves 26 of them. Seven additional instances are solved to 

optimality thanks to the effects of improvement techniques. Excluding a few instances 

with small differences, Improved Model 2 reached optimal solutions faster than Model 

2.  For the instances that both models could solve, the average CPU times are 1029 

and 116 seconds, for Model 1 and its improved version, respectively. That means the 

improvement techniques lead to about 88% reduction in CPU times over the solved 

instances. 

When there are two panel types, Model 2 could solve 22 instances, where Improved 

Model 2 could solve 32 of them in two hours. Improvements are effective on the CPU 

times of the solutions, i.e., improved model dominates the other in almost all instances.  
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Table 4.5 Performance of Model 2 and its Improved Version 

Instance Features 

3 Panel Types  

  

2 Panel Types  

 

Model 2 
Improved  

Model 2 
Model 2 

Improved  

Model 2 

Instance 

No 
N ñ 

Number 

of DVs 

CPU 

Time 

Number 

of DVs 

CPU 

Time 

Number 

of DVs 

CPU 

Time 

Number 

of DVs 

CPU 

Time 

1 10 669 16146 14 13884 14 10608 2 9438 4 

5 10 645 17172 7200 10746 383 9936 8 7182 27 

7 30 1626 278308 7200 179088 7200 179088 7200 146288 1139 

10 20 830 75055 56 41735 56 47685 13 31195 11 

13 20 62 3644 442 6000 50 2380 82 2112 18 

14 20 53 1790 357 3516 73 1150 295 1150 40 

15 20 46 1113 6 2226 2 697 6 697 2 

16 20 35 880 14 1760 15 578 6 578 2 

17 20 45 1156 248 2288 28 721 1 721 6 

18 30 63 2353 6893 2341 129 1486 45 1486 10 

19 10 19 291 0 291 0 194 1 194 1 

20 10 18 303 0 190 0 202 0 137 1 

21 30 65 2755 7200 2734 636 1757 7200 1757 154 

22 35 75 3848 7200 2493 7200 2493 7200 2493 421 

24 25 82 2626 892 2566 144 1636 23 1628 19 

25 25 67 3088 7200 2946 1772 2020 7200 1974 318 

26 35 63 4892 4470 4320 1082 3102 186 2900 52 

28 35 75 3775 7200 3775 6411 2423 7200 2423 557 

29 10 51 591 7200 591 23 378 7200 378 16 

30 10 32 459 2 459 1 306 1 306 1 

31 22 60 1784 7200 1784 407 1164 395 1164 19 

32 40 90 4907 7200 3171 7200 3171 2234 3171 103 

33 10 18 303 1 303 2 202 1 202 0 

34 35 76 6468 7200 4082 7200 4082 7200 4082 713 

35 5 18 126 0 126 0 84 0 84 0 

36 10 23 216 1 199 0 128 0 120 0 

37 10 24 319 4 302 2 200 1 193 0 

38 30 78 5384 7200 3360 7200 3360 7200 3342 1894 

39 20 50 1515 7200 1515 199 981 172 981 23 

40 20 62 3635 6168 3395 355 2355 652 2290 77 

41 10 23 377 0 335 0 244 1 231 0 

42 20 62 6072 7200 2970 7200 3834 7200 2154 29 
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Table 4.6 reports on the average performances of Model 2 and improved version over 

all 42 instances.  The average CPU times also include the instances that cannot be 

solved in 7200 seconds.  Number of unsolved instances out of 42, average number of 

decision variables and the average CPU times of the instances solved by both models 

are also reported. 

Table 4.6 Overall Performance Measures for Model 2 and Improved Model 2 

 

3 Panel Types  2 Panel Types   

Model 2 
Improved 

Model 2 
Model 2  

Improved 

Model 2 

Average CPU Time 4408.8 3046.7 3355.4 1849 

Average CPU Time of the 

Instances Solved by Both Models 
1029.9 102.8 179.4 18.1 

Number of Unsolved Instances 23 16 19 10 

Average Number of Integer 

Decision Variables Solved by 

Both Models 

 6088.6 4538.7  3878.7 2963.5  

 

As in Model 1, in Model 2 and its improved version the instances with 3 panel types 

are harder to solve than those with 2 panel types due to the  higher number decision 

variables. 

4.2.3. Comparison of Improved Model 1 and Improved Model 2 

We compare the improved versions of both formulations. The performance measures 

of the formulations are presented in Table 4.7. One can see the significant difference 

between the number of decision variables as Model 1 uses decision variables for each 

unit of item, but not item type.  That reduces symmetry in the model while increasing 

its complexity. The decision variables of Model 2  is defined for each panel unit so 

more efficient reductions can be done, as the number of panels is much less than total 

demand. Model 2 uses fittable items for panel units and reduces the symmetry by 

introducing symmetry breaking inequalities.   
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As expected,  our experiments reveal significantly better performance of Model 2 in 

terms of CPU times.  

When there are three panel types, Model 2 solves an additional 10 instances over the 

ones solved by Model 1. Average CPU time of the solved instances by Model 1 is 269 

seconds. For the same instances, Model 2 runs in 37.4 seconds on average.  Improved 

Model 2 provides better CPU times over all instances with one exception. 

For two panel types, similar observations are made.  Summary of the performance 

measures of both models are given in Table 4.7. 
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Table 4.7 Comparison of Improved Model 1 and Improved Model 2 

Instance 

Features 

3 Panel Types  2 Panel Types  

Improved 

Model 1 

Improved 

Model 2 

Improved 

Model 1 

Improved 

Model 2 

Instance 

No 
N ñ 

Number 

of DVs 

CPU 

Time 

Number 

of DVs 

CPU 

Time 

Number 

of DVs 

CPU 

Time 

Number 

of DVs 

CPU 

Time 

1 10 669 619194 14 13884 14 412796 14 9438 4 

5 10 645 548669 7200 10746 383 338146 563 7182 27 

7 30 1626 4049469 7200 179088 7200 2699646 7200 146288 1139 

10 20 830 1011453 259 41735 56 674302 242 31195 11 

13 20 62 8238 16 6000 50 5492 14 2112 18 

14 20 53 4632 1185 3516 73 2916 175 1150 40 

15 20 46 3100 62 2226 2 1912 20 697 2 

16 20 35 2203 69 1760 15 1440 7 578 2 

17 20 45 3237 1948 2288 28 1972 39 721 6 

18 30 63 6629 7200 2341 129 4087 522 1486 10 

19 10 19 798 3 291 0 532 7 194 1 

20 10 18 753 6 190 0 502 5 137 1 

21 30 65 8245 7200 2734 636 5212 7200 1757 154 

22 35 75 10998 7200 2493 7200 7074 7200 2493 421 

24 25 82 7492 7200 2566 144 4518 106 1628 19 

25 25 67  8312 7200 2946 1772 5393 7200 1974 318 

26 35 63 8575 7200 4320 1082 5549 357 2900 52 

28 35 75  10795 7200 3775 6411 6872 7200 2423 557 

29 10 51  2423 7200 591 23 1517 7200 378 16 

30 10 32 1650 16 459 1 1100 8 306 1 

31 22 60 6096 7200 1784 407 3949 7200 1164 19 

32 40 90  14006 7200 3171 7200 8977 7200 3171 103 

33 10 18 753 7 303 2 502 6 202 0 

34 35 76  12270 7200 4082 7200 7867 7200 4082 713 

35 5 18 435 1 126 0 290 3 84 0 

36 10 23 499 1 199 0 293 1 120 0 

37 10 24 799 8 302 2 496 1 193 0 

38 30 78  11993 7200 3360 7200 7692 7200 3342 1894 

39 20 50 4414 7200 1515 199 2826 727 981 23 

40 20 62 8015 703 3395 355 5234 35 2290 77 

41 10 23 1059 7 335 0 684 3 231 0 

42 20 62 5492 7200 2970 7200 5492 2 2154 29 
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Table 4.8 reports on the average performances of improved Model 1 and improved 

Model 2 over all 42 instances.  The average CPU times also include the instances that 

cannot be solved in 7200 seconds.  Number of unsolved instances out of 42, average 

number of decision variables and the average CPU times of the instances solved by 

both models are also reported. 

Table 4.8 Overall Performance Measures for Improved Model 1 and Improved Model 2 

 

3 Panel Types  2 Panel Types 

Improved 

Model 1 

Improved 

Model 2 

Improved 

Model 1 

Improve

d Model 

2 

Average CPU Time 4559.6 3023.4 3496.5 1849 

Average CPU Time of the Instances 

Solved by Both Models 
269.1 37.4 129.9 14.7 

Number of Unsolved Instances 26 16 20 10 

Average Number of Integer Decision 

Variables Solved by Both Models 
104176 4813.063 66867.32 2999.05 

 

Table 4.8 reveals that improved Model 2 solves much more instances in considerably 

less CPU time. Hence it is used to solve the subproblems defined in our heuristic 

algorithms. 

4.2.4. Computational Results for Heuristic Algorithms  

In this section, we give the results of panel type based decomposition and panel unit 

based decomposition heuristics results and report the results in Table 4.9. 

Panel type based decomposition heuristic is referred as Heuristic 1 in Table 4.9.  The 

table resides the CPU times and the performance values.  For panel unit based 

decomposition heuristics, the best results of the two algorithms, original and the 

modified one, are referred to as Heuristic 2.  Modified Panel Unit Based 

Decomposition Algorithm is solved with two different starting points, and the best 

result is taken as the solution.  
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To avoid long solution times, we set an optimality gap of 1% of the model solutions 

in Heuristic 1.  The performances of the heuristics are measured by their CPU times 

and its objective function value as a ratio of the best known objective function value 

(we simply refer to this ratio as performance).  Best known objective function value 

is the optimal objective function value if optimal solution is available,  if not it is the 

lower bound value returned at the termination limit by any model (Model 1 or Model 

2).  If  even no lower bound is returned by the mathematical models, performance 

entries are left blank in the table.  The instances that could be solved only when there 

are 2 panel types available are marked as one star next to the instance number. If the 

instance was solved to optimality for the two cases, i.e., 3 panel types available and 2 

panel types available, it is marked with two stars. If there is no optimal solution 

available for both cases, the instance number is not marked.   

Table 4.9 Results of Heuristic Algorithms 

Instance 

No 

3 panel types   2  panel types  

CPU Time Performance  CPU Time Performance  

Heuristic 

1  

Heuristic 

2 

Heuristic 

1 

Heuristic 

2  

Heuristic 

1  

Heuristic 

2 

Heuristic 

1 

Heuristic 

2  

1** 6 8 100% 100% 3 2 100% 100% 

2 690 98 88% 89% 379 48 98% 95% 

3 1852 125 96% 106% 1848 62 85% 89% 

4 7200 488 - - 3778 143 - - 

5** 147 11 99% 97% 4 4 100% 73% 

6 1889 76 97% 98% 1809 44 100% 100% 

7* 1843 115 - - 524 7 100% 100% 

8 3708 1378 - - 2180 1141 104% 145% 

9 2 26 72% 87% 7 12 100% 99% 

10** 35 18 100% 100% 11 1 100% 100% 

11 605 43 113%  113% 1938 29 123% 124% 

12 7200  511 - - 7200 88 - - 

13** 42 8 98% 95% 16 4 100% 94% 

14** 1 8 88% 86% 1 3 97% 93% 

15** 2 19 95% 95% 1 5 93% 94% 

16** 3 39 93% 97% 2 9 95% 95% 

17** 2 32 93% 95% 1 8 92% 94% 
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Table 4.9 (Cont’d). 

18** 1 42 97% 97% 4 15 95% 95% 

19** 0 6 100% 100% 0 3 100% 100% 

20** 0 3 96% 86% 0 1 94% 95% 

21** 11 198 96% 96% 16 173 95% 95% 

22* 20 575 97% 98% 2 142 99% 94% 

23 48 46 95% 96% 32 19 96% 94% 

24** 3 18 90% 94% 1 4 96% 96% 

25** 5 28 92% 94% 8 10 98% 96% 

26** 11 48 91% 91% 4 16 100% 98% 

27 19 69 85% 95% 50 36 94% 95% 

28** 20 222 97% 96% 21 113 99% 99% 

29** 2 23 99% 99% 1 10 100% 100% 

30** 2 31 100% 100% 2 25 84% 85% 

31** 2 28 97% 97% 5 23 96% 96% 

32* 26 198 94% 96% 7 47 97% 98% 

33** 1 6 100% 100% 0 3 100% 100% 

34* 30 73 96% 95% 17 24 95% 95% 

35** 0 2 100% 100% 0 1 100% 100% 

36** 0 2 77% 76% 0 1 100% 100% 

37** 0 2 94% 90% 0 1 100% 100% 

38* 20 58 89% 91% 39 19 98% 96% 

39** 5 62 95% 95% 7 39 92% 92% 

40** 2 9 97% 91% 12 5 90% 88% 

41** 0 3 94% 100% 0 2 100% 100% 

42* 20 6 95% 91% 6 3 98% 89% 

 

When there are three panel types, Heuristic 1 can solve 40 out of 42 instances in our 

time limit of 7200 seconds. The average CPU time over the solved instances is 277 

seconds. All instances can be solved with Heuristic Algorithm 2 in 7200 seconds with 

an average CPU time of 113 seconds. In 19 out of 42 instances, Heuristic 2 

outperforms Heuristic 1, while in 12 out of 42 instances Heuristic 1 gives better 

results.  For 11 instances, both algorithms return the same solutions.  
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When there are two panel types, performance and CPU times of the heuristics are 

improved as expected. The solution times are decreased while the results become 

closer to the best available solutions.  

Table 4.10 summarizes the performance measures of the heuristic algorithms.  

Table 4.10 Overall Performances of the Heuristic Algorithms 

 
3 panel types  2 panel types  

  
Heuristic 1  Heuristic 2 Heuristic 1  Heuristic 2 

Average CPU Time 606,5 113 556 56 

Maximum CPU Time 7200 1378 7200 1141 

Average Performance 94% 95% 95% 97% 

Minimum Performance 77% 76% 84% 73% 

Number of Unsolved 

Instances 
2 0 2 0 

Number of Instances that 

the Heuristic Gives Better 

Results* 

23 30 23 31 

*including the ties 

The average CPU time of Heuristic 2 is much better than that of Heuristic 1.  However, 

the algorithms are not much different in terms of their closeness to the optimal 

solutions.  The average CPU time of Heuristic 1 is about 10 times higher while 

Heuristic 2 performs better in terms of objective function value on average.  In vast 

majority of the instances, Heuristic 2  returns better objective function values.  

Minimum, i.e., worst case performances of the algorithms are close.  Heuristic 2 can 

solve all instances in less than 1400 seconds, while Heuristic 1 cannot solve 2 of the 

instances in two hours.   
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CHAPTER 5  

 

5. APPLICATION TO SILKAR MINING INCORPORATION 

 

This study is originated from an industrial project conducted in Silkar Mining 

Corporation. The corporation was established in 1994 at Bilecik to serve in natural 

stone sector under the AKDO brand.  

Silkar Corporation leads to its sector by offering variety of marble, granite and 

ceramics products. The company not only has domestic customers in service and 

manufacturing sector in Turkey but also serves to more than 35 countries including 

United States, Far East, Europe and North Africa.  For the more detailed information 

about the company we refer the reader to the company’s website www.silkar.com. 

The main raw materials are marble, granite or ceramic and enter to the factory from 

their natural sources in the forms of blocks as shown in Figure 5.1. 

 

Figure 5.1 The main raw materials – marble blocks 

http://www.silkar.com/
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These blocks are then refined so as to obtain proper three dimensional blocks. The 

proper dimensional blocks are then cut layer by layer to get a number of two 

dimensional objects. The blocks are cut at specified heights, usually equal heights. 

The cut two dimensional objects with required length and width are referred as panels. 

The number of cuts made on block h is the number of panels of type h,  that is 𝑛𝑢𝑚ℎ 

according to our notation. The two dimensions of panel h are length 𝐿ℎ and width  𝑊ℎ.   

Figure 5.2 shows the panels of two dimensions that are obtained from three 

dimensional blocks. 

 

Figure 5.2 A two dimensional panel 

In addition to the two dimensional data 𝐿ℎ and 𝑊ℎ, the panels are specified by the cost 

data 𝐶ℎ. 𝐶ℎ is the cost of obtaining a single panel of type h and is a function of its area 

𝐿ℎ×𝑊ℎ and its quality level.  A larger area panel may have lower cost if it has lower 

quality grade.    

The small objects, so called items, are obtained from the panels of limited availability. 

All those small items have customers that ask several of them to form their final 

products. 

Figure 5.3 shows a small cut item with specified length and width and the placement 

of those small items for the final product of floor coverings.  
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Figure 5.3 A small item and final products  

Note from the above figure that the processed item is a small piece and many of these 

small pieces together form the final product like all floor covering of an international 

hotel. The customer, say hotel purchasing manager, had placed an offer for all the 

building floor coverings. The floor coverings are made up hundreds of small 

rectangular (or square)   pieces, hence hundreds of units of small items are cut from 

the panels. 

Each item has a specified demand projected from the final product specifications. As 

any order is for a specific customer, the amount cut above its requirement is forbidden, 

i.e., the total cut of any item can never be greater than its demand.  

The revenues of items depend on the area of the small item, its quality and prestige of 

the customer. 

For any specified period, the company wants to maximize the total profit (total 

revenue brought by the small items-total cost incurred by used panel) without 

exceeding the item demand and panel availability.  

To solve the real life instances observed in the company, we propose Decomposition 

Heuristic 2 as it provides high quality solutions in reasonable solution times.  

A real illustrative instance has 2 customer types. Customer 1 places an order to get 

289 pieces which can be grouped into 16 different item types. To cut these pieces, the 
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company can use 12 different panel types. The order of customer 2 is for 482 items of 

16 different item types. These pieces can be cut from 14 different panel types.   

Table 5.1 gives the features of the customer orders.  Table 5.2 tabulates the data for 

the available panel types.  

Due to the quality restrictions of the orders, the first 12 panel types can be used for 

customer 1, while the rest is used for customer 2 demands.  

The technological data (dimensions, demands, availabilities) are directly taken from 

the company. The cost data (item revenues and panel costs) are generated according 

to our data generation scheme discussed in Chapter 4. 

Table 5.1 Item Data of Customer Orders 

Customer 1 - Items    Customer 2 – Items 

Item Type W L d r  Item Type W L d r 

Customer 1 Item 1 59.5 79 14 39    Customer 2 Item 1 68.5 99 14 81   
Customer 1 Item 2 59.5 113 50 63    Customer 2 Item 2 68.5 90 7 48   

Customer 1 Item 3 59.5 108.7 7 60    Customer 2 Item 3 60 61.8 9 88   

Customer 1 Item 4 37.5 59.5 28 70    Customer 2 Item 4 58.3 75 120 16   
Customer 1 Item 5 35 30 10 54    Customer 2 Item 5 58.3 74 197 91   

Customer 1 Item 6 35 59.5 7 83    Customer 2 Item 6 58.3 98 24 85   

Customer 1 Item 7 30 79 30 77    Customer 2 Item 7 42.6 59.5 14 10   
Customer 1 Item 8 30 30 5 74    Customer 2 Item 8 30 99 14 73   

Customer 1 Item 9 30 59.5 7 64    Customer 2 Item 9 30 87 8 25   
Customer 1 Item 10 30 113 10 81    Customer 2 Item 10 30 83 8 56   
Customer 1 Item 11 30 37.5 4 60    Customer 2 Item 11 24.3 30 7 44   
Customer 1 Item 12 30 108.7 5 44    Customer 2 Item 12 24.3 59.5 28 87   
Customer 1 Item 13 20 30 50 37    Customer 2 Item 13 24.3 87 8 18   

Customer 1 Item 14 20 59.6 30 69    Customer 2 Item 14 24.3 83 8 14   
Customer 1 Item 15 20 30 4 27    Customer 2 Item 15 20 87 8 76   

Customer 1 Item 16 20 59.5 28 88    Customer 2 Item 16 20 83 8 93   
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Table 5.2 Panel Data 

Panels 

Panel Type W L #    C 

1 130 205 2 111 

2 135 165 1 176 

3 135 210 8 199 

4 135 250 4 210 

5 140 270 1 215 

6 140 280 5 269 

7 150 270 1 266 

8 150 285 1 346 

9 155 280 3 307 

10 155 290 10 373 

11 170 240 1 522 

12 170 240 14 533 

13 120 203 40 124 

14 108 171 52 161 

15 138 157 56 160 

16 140 242 57 195 

17 190 240 58 331 

18 127 234 58 334 

19 124 167 64 300 

20 116 277 64 301 

21 160 282 65 312 

22 147 230 66 439 

23 100 150 68 387 

24 129 182 68 503 

25 157 208 72 590 

26 150 214 74 552 

 

The decomposition heuristic 2  gives the following feasible assignments to each  

individual panel.  

The assignments of customer 1 orders are given in the following page.  
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Panel Type 2 Assignments 

 

Panel 1 

Level 1:      Item 4    Item 4    Item 4    Item 4     

Level 2:      Item 4    Item 4    Item 4    Item 4     

Level 3:      Item 7    Item 7    Item 7     

Level 4:      Item 7    Item 7    Item 7  

 

Panel 2 

Level 1:      Item 7    Item 7     

Level 2:      Item 10    Item 12     

Level 3:      Item 10    Item 12     

Level 4:      Item 12    Item 12 

 

Panel 3 

Level 1:      Item 2    Item 2     

Level 2:      Item 2    Item 2   

 

Panel 4 

Level 1:      Item 2    Item 2     

Level 2:      Item 2    Item 2 

 

 

Panel Type 3 Assignments 

 

Panel 1 

Level 1:      Item 5     Item 5      Item 5      Item 5      Item 5      Item 6     

Level 2:      Item 13    Item 13    Item 13    Item 13    Item 13    Item 14     

Level 3:      Item 13    Item 13    Item 13    Item 13    Item 13    Item 13  Item 13     

Level 4:      Item 14    Item 13    Item 13    Item 13    Item 13    Item 13     

Level 5:      Item 14    Item 13    Item 13    Item 13    Item 13    Item 13     

Level 6:      Item 15    Item 14    Item 14    Item 14     

 

Panel 2 

Level 1:      Item 6      Item 6      Item 6     

Level 2:      Item 13    Item 14    Item 14    Item 14     

Level 3:      Item 14    Item 14    Item 14     

Level 4:      Item 14    Item 14    Item 14     

Level 5:      Item 15    Item 14    Item 14    Item 14     

Level 6:      Item 15    Item 14    Item 14    Item 14   

 

Panel 3 

Level 1:      Item 6       Item 6      Item 6     

Level 2:      Item 7     Item 9     Item 9     
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Level 3:      Item 7     Item 9      Item 14     

Level 4:      Item 14    Item 14    Item 14     

Level 5:      Item 14    Item 14    Item 14    

 

Panel 4 

Level 1:      Item 4    Item 4    Item 7     

Level 2:      Item 4    Item 4    Item 7     

Level 3:      Item 9    Item 7    Item 9     

Level 4:      Item 9    Item 7    Item 9   

 

Panel 5 

Level 1:      Item 4    Item 4    Item 7     

Level 2:      Item 4    Item 4    Item 7     

Level 3:      Item 10    Item 7     

Level 4:      Item 10    Item 7 

 

Panel 6 

Level 1:      Item 4    Item 4    Item 7     

Level 2:      Item 4     Item 4    Item 7     

Level 3:      Item 10    Item 7     

Level 4:      Item 10    Item 7 

 

 

Panel 7 

Level 1:      Item 4    Item 4    Item 7     

Level 2:      Item 4    Item 4    Item 7     

Level 3:      Item 7    Item 10     

Level 4:      Item 7    Item 10 

 

 

Panel 8 

Level 1:      Item 4    Item 4    Item 7     

Level 2:      Item 4    Item 4    Item 7     

Level 3:      Item 7    Item 10     

Level 4:      Item 7    Item 10   

 

 

Panel Type 4 Assignments 

 

Panel 1 

Level 1:      Item 1    Item 1    Item 2     

Level 2:      Item 1    Item 1    Item 2 
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Panel Type 5 Assignments 

 

Panel 1 

Level 1:      Item 1    Item 1    Item 3     

Level 2:      Item 1    Item 1    Item 3     

 

 

Panel Type 6 Assignments 

 

Panel 1 

Level 1:      Item 5      Item 5      Item 5      Item 5      Item 5     

Level 2:      Item 13    Item 13    Item 13    Item 13    Item 13     

Level 3:      Item 13    Item 13    Item 13    Item 16     

Level 4:      Item 14    Item 13    Item 13    Item 13     

Level 5:      Item 16    Item 13    Item 13    Item 13     

Level 6:      Item 16    Item 13    Item 13    Item 13 

 

 

Panel Type 9 Assignments 

 

Panel 1 

Level 1:      Item 3    Item 1    Item 1     

Level 2:      Item 3    Item 1    Item 1     

Level 3:      Item 12 

 

 

Panel Type 12 Assignments 

 

Panel 1 

Level 1:      Item 8    Item 8    Item 8    Item 8    Item 8    Item 11     

Level 2:      Item 13    Item 13    Item 16    Item 16     

Level 3:      Item 13    Item 13    Item 16    Item 16     

Level 4:      Item 15    Item 13    Item 16    Item 16     

Level 5:      Item 16    Item 16    Item 16     

Level 6:      Item 16    Item 16    Item 16   

 

Panel 2 

Level 1:      Item 11    Item 11    Item 11    Item 13    Item 16     

Level 2:      Item 13    Item 13    Item 16    Item 16     

Level 3:      Item 13    Item 13    Item 16    Item 16     

Level 4:      Item 14    Item 16    Item 16     

Level 5:      Item 16    Item 16    Item 16     

Level 6:      Item 16    Item 16    Item 16 
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The assignments of customer 2 orders are given below. 

 

Panel Type 13 Assignments 

 

Panel 1 

Level 1:      Item 10    Item 12    Item 12     

Level 2:      Item 11    Item 11    Item 12    Item 16     

Level 3:      Item 12    Item 11    Item 11    Item 16     

Level 4:      Item 15    Item 16     

Level 5:      Item 16    Item 16     

 

Panel 2 

Level 1:      Item 10    Item 12    Item 12     

Level 2:      Item 11    Item 11    Item 12    Item 12     

Level 3:      Item 12    Item 12    Item 12     

Level 4:      Item 15    Item 16     

Level 5:      Item 16    Item 16     

 

Panel 3 

Level 1:      Item 11    Item 12    Item 12     

Level 2:      Item 12    Item 12    Item 12     

Level 3:      Item 13    Item 12     

Level 4:      Item 14    Item 12    Item 12     

Level 5:      Item 15    Item 15     

 

Panel 4 

Level 1:      Item 8    Item 12     

Level 2:      Item 10    Item 12    Item 12     

Level 3:      Item 12    Item 12    Item 12     

Level 4:      Item 14    Item 12    Item 12     

 

Panel 5 

Level 1:      Item 8    Item 8     

Level 2:      Item 10    Item 15     

Level 3:      Item 12    Item 15     

Level 4:      Item 15    Item 15     

 

Panel 6 

Level 1:      Item 3    Item 3    Item 5     

Level 2:      Item 8    Item 8     

Level 3:      Item 10    Item 8     
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Panel 7 

Level 1:      Item 3    Item 3    Item 5     

Level 2:      Item 8    Item 8     

Level 3:      Item 10    Item 8     

 

Panel 8 

Level 1:      Item 3    Item 3    Item 5     

Level 2:      Item 8    Item 8     

Level 3:      Item 10    Item 8     

 

Panel 9 

Level 1:      Item 3    Item 3    Item 5     

Level 2:      Item 9    Item 8     

Level 3:      Item 10    Item 8     

 

Panel 10 

Level 1:      Item 3    Item 5    Item 7     

Level 2:      Item 5    Item 5     

 

Panels 11-34 

Level 1:      Item 5    Item 5     

Level 2:      Item 6    Item 5     

 

Panels 35-40 

Level 1:      Item 4    Item 5     

Level 2:      Item 5    Item 5     

 

 

Panel Type 15 Assignments  

 

Panels 1-25 

Level 1:      Item 5    Item 5     

Level 2:      Item 5    Item 5     

 

Panels 26-32 

Level 1:      Item 1     

Level 2:      Item 1     

 

Panel Type 16 Assignments 

 

Panel 1 

Level 1:      Item 2    Item 2    Item 7     

Level 2:      Item 2    Item 2    Item 7     
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Panel 2 

Level 1:      Item 2    Item 2    Item 7     

Level 2:      Item 9    Item 9     

Level 3:      Item 9    Item 9     

 

Panel 3 

Level 1:      Item 9    Item 13     

Level 2:      Item 9    Item 9     

Level 3:      Item 13    Item 13     

Level 4:      Item 13    Item 13     

Level 5:      Item 14    Item 13  

 

For customer 1, a total of 18 panels are used to cut 244 items.  The objective function 

value of the solution is calculated as: 

Total cost of panels used =  3580  

Total revenue gained by items cut  =  15,309  

Total profit =  15,309 – 3580 = 11,729  

 

For customer 2, a total of 75 panels are used to cut 387 items.  The objective function 

value of the solution is calculated as: 

Total cost of panels used =  10,665  

Total revenue gained by items cut  =  28,251 

Total profit =  28,251– 10,665  = 17,586 
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CHAPTER 6  

 

6. CONCLUSIONS 

 

In this study, we consider a two stage two dimensional cutting stock problem with 

multiple stock sizes. We consider both rotatable and non-rotatable items of specified 

demand.  

We develop two mathematical models one of which is modified from a similar study 

in the literature. We give some optimality conditions and valid inequalities to enhance 

the efficiency of the models.  

We also propose decomposition based heuristic procedures that decompose the 

problem into subproblems according to the panel types and individual panels and solve 

the subproblems by the best mathematical model we propose.  

The results of our computational study have revealed that the model that we develop 

from scratch outperforms the one extended from the literature. We could find optimal 

solutions to the problem of size 20 items and 3 panels in two hours. We observe that 

the number of panel types, number of panels, number of item types and the demand 

figures are significant parameters that affect the speed of the achieving optimal 

solutions.  

We find that our decomposition based heuristics could handle large sized instances 

with up to 50 items and 3 panels in two hours and produce solutions that have profits 

that are very close to the optimal values.  

Future research may consider the development of optimization algorithms that make 

more efficient use of decomposition idea, like Benders’ decomposition methods.  
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The multi criteria extensions of our model may also be worth-studying.  We consider 

a linear combination of two performance measures: total revenue generated by the 

customer orders and total cost incurred by the panel costs. A multi criteria study might 

look for the trade-offs between total revenue and total cost or number of panels used. 
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