

TWO DIMENSIONAL CUTTING STOCK PROBLEM WITH MULTIPLE

STOCK SIZES

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

 UMUTCAN AYASANDIR

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

INDUSTRIAL ENGINEERING

SEPTEMBER 2019

Approval of the thesis:

TWO DIMENSIONAL CUTTING STOCK PROBLEM WITH MULTIPLE

STOCK SIZES

submitted by UMUTCAN AYASANDIR in partial fulfillment of the requirements

for the degree of Master of Science in Industrial Engineering Department, Middle

East Technical University by,

Prof. Dr. Halil Kalıpçılar

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Yasemin Serin

Head of Department, Industrial Engineering

Prof. Dr. Meral Azizoğlu

Supervisor, Industrial Engineering, METU

Examining Committee Members:

Assist. Prof. Dr. Özgen Karaer

Industrial Engineering, METU

Prof. Dr. Meral Azizoğlu

Industrial Engineering, METU

Assist. Prof. Dr. Sakine Batun

Industrial Engineering, METU

Assist. Prof. Dr. Melih Çelik

Industrial Engineering, METU

Assist. Prof. Dr. Özlem Karsu

Industrial Engineering, Bilkent University

Date: 06.09.2019

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name, Surname:

Signature:

 Umutcan Ayasandır

v

ABSTRACT

TWO DIMENSIONAL CUTTING STOCK PROBLEM WITH MULTIPLE

STOCK SIZES

Ayasandır, Umutcan

Master of Science, Industrial Engineering

Supervisor: Prof. Dr. Meral Azizoğlu

September 2019, 94 pages

In this study, we consider a two dimensional cutting stock problem with multiple stock

sizes and two stage guillotine cuts. Our objective is to maximize the difference

between total revenue over all items and total cost over all used panels.

We propose two mathematical models and discuss their relative performances. We

enhance the performances of the models by incorporating the properties of optimal

solution that we derive.

The results of our computational study have revealed the satisfactory performance of

one of our models with optimal properties for medium sized problem instances. We

develop decomposition-based heuristics that produce high quality solutions in

reasonable time.

Keywords: Cutting Stock Problem, Mathematical Models, Decomposition Methods

vi

ÖZ

İKİ BOYUTLU STOK KESME PROBLEMİ

Ayasandır, Umutcan

Yüksek Lisans, Endüstri Mühendisliği

Tez Danışmanı: Prof. Dr. Meral Azizoğlu

Eylül 2019, 94 sayfa

Bu çalışmada, iki boyutlu çoklu stok büyüklüklerinin iki aşamalı giyotin kesim

problemi ele alınmıştır. Amacımız, kesilen ürünlerden elde edilen toplam gelir ile

kullanılan panellerdeki toplam maliyet arasındaki farkı ençoklamak olarak

belirlenmiştir.

Problemin çözümü için iki matematiksel model önerilmiş ve performansları

değerlendirilmiştir. Her iki modelin performansı da elde edilen en iyi çözüm

özelliklerini kullanarak arttırılmıştır. Literatürden alınan örnek problemler üzerinde

yapılan sayısal çalışmalar, modellerimizden birinin orta büyüklükte problem

boyutlarında tatmin edici sonuçlar verdiğini ortaya koymuştur. Ayrıştırma tabanlı

sezgisel algoritmalar geliştirilerek makul sürede yüksek kaliteli çözümler elde

edilmiştir.

Anahtar Kelimeler: Stok Kesme Problemi, Matematiksel Modeller, Ayrıştırma

Algoritmaları

vii

To my family

viii

ACKNOWLEDGEMENTS

Above all, I would like to thank my supervisor Prof. Meral Azizoglu. Her kind, helpful

and professional attitude makes all things easier. She motivated me whenever I need

help and support. The deep knowledge she has on her area of expertise makes her

approach the problems in confident and decisive manner, that I impressed a lot. I

learned from her in every phase and aspect of the study, so I feel very lucky to have

the privilege to work with her.

I would like to thank Prof. Murat Köksalan for his contributions and support

throughout the study and providing a pleasant working environment. I am grateful to

Erdoğan Akbulak who brought an industrial problem to academy. He gave me an

opportunity to study on a real-world problem by establishing, funding and supporting

the research project. I would also like to express my sincere appreciation to Levent

Parıldar and all Silkar Marble Incorporation employees who put effort to this project.

I cannot express my gratitude enough to my family. My dear father Burhan Ayasandır

is always there to support me. I never felt alone and helpless because he always tries

to do the best for me. My dear mother Nezihe Ayasandır makes all things beautiful

with her existence, she is my friend, teacher and supporter who I love so much. I am

very lucky to have my thoughtful and caring sister Ecem Arığ. My life would be

difficult without her sincere love, support, and deep friendship. I would like to express

my deepest feelings of love to the one who brought beauty to my life. I am thankful

and blessed to have my beloved wife Feyza Ayasandır. I feel treasured to meet her, to

love her and to get married with her.

I would like to thank my friend Ali Kaan Sungur to help me with his knowledge on

computer sciences. I am grateful to Nail Karabay for being a very good roommate and

friend. I appreciate Mustafa Muhammet Öztürk who put effort in motivating me to

study on my thesis. Ersin Telemeci was my companion in the journey of this thesis

and I am grateful for his very good friendship and support.

ix

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ…. ... vi

ACKNOWLEDGEMENTS ... viii

TABLE OF CONTENTS ... ix

LIST OF TABLES ... xi

LIST OF FIGURES .. xii

CHAPTERS

1. INTRODUCTION .. 1

2. LITERATURE REVIEW ... 5

2.1. Literature on Cutting and Packing Problems... 5

2.2. Literature on Two Dimensional Cutting and Packing Problem 6

2.2.1. Exact Methods .. 6

2.2.2. Non-Exact Methods .. 9

3. PROBLEM DEFINITION & SOLUTION APPROACHES 13

3.1. Problem Statement .. 13

3.2. Solution Approaches ... 14

3.2.1. Model 1 ... 15

3.2.2. Model 2 ... 21

3.3. Properties of Optimal Solution .. 26

3.3.1. Dominance Properties ... 26

3.3.1.1. Item Domination .. 27

3.3.1.2. Panel Domination ... 30

x

3.3.2. Updating the Parameters .. 33

3.3.2.1. Reduction in the Demand Values .. 33

3.3.2.2. Reductions in the Number of Panels, 𝒏𝒖𝒎𝒉 39

3.4. Further Improvements in Model 2 .. 44

3.4.1. Ordering Constraints .. 45

3.4.2. Reduction in x Variables .. 46

3.5. Improved Models in Summary ... 46

3.6. Heuristics .. 48

3.6.1. Algorithm Panel Type Based Decomposition .. 49

3.6.2. Algorithm Panel Unit Based Decomposition ... 53

3.6.3. Algorithm Modified Panel Unit Based Decomposition 55

4. COMPUTATIONAL EXPERIMENTS ... 61

4.1. Instance Features and Data Generation ... 62

4.2. Analysis of the Results .. 65

4.2.1. Performance of Model 1 and Its Improved Version 66

4.2.2. Performance of Model 2 and Its Improved Version 68

4.2.3. Comparison of Improved Model 1 and Improved Model 2 70

4.2.4. Computational Results for Heuristic Algorithms 73

5. APPLICATION TO SILKAR MINING INCORPORATION 77

6. CONCLUSIONS .. 89

REFERENCES .. 91

xi

LIST OF TABLES

TABLES

Table 3.1 Item Specification of the Example ... 18

Table 3.2 Parametric Comparison of Number of Decision Variables 26

Table 4.1 The Summary of Performance Comparison of SCIP and Other Solvers ... 62

Table 4.2 Features of the Problem Instances ... 63

Table 4.3 Performance of Model 1 and its Improved Version 66

Table 4.4 Overall Performance Measures for Model 1 and Improved Model 1 67

Table 4.5 Performance of Model 2 and its Improved Version 69

Table 4.6 Overall Performance Measures for Model 2 and Improved Model 2 70

Table 4.7 Comparison of Improved Model 1 and Improved Model 2 72

Table 4.8 Overall Performances for Improved Model 1& Improved Model 2 73

Table 4.9 Results of Heuristic Algorithms ... 74

Table 4.10 Overall Performances of the Heuristic Algorithms.................................. 76

Table 5.1 Item Data of Customer Orders ... 80

Table 5.2 Panel Data .. 81

xii

LIST OF FIGURES

FIGURES

Figure 3.1 2-stage guillotine cuts and non guillotine cut... 13

Figure 3.2 Representation of Levels in 2D Guillotine Cutting 15

Figure 3.3 Sample Representation of Assignments and DVs in Model 1 19

Figure 3.4 Sample Representation of Assignments and DVs in Model 1 24

Figure 3.5 Item Domination Representation ... 27

Figure 3.6 Panel Domination Representation .. 31

Figure 5.1 The main raw materials – marble blocks ... 77

Figure 5.2 A two dimensional panel .. 78

Figure 5.3 A small item and final products ... 79

xiii

1

CHAPTER 1

1. INTRODUCTION

Cutting stock problems obtain a set of small items from a set of large items with

defined geometric dimensions of the items. The items may have one, two, three or

more than three dimensions. In this study, we consider two-dimensional cutting stock

problem that cuts a set of rectangular items from a set of rectangular stocks that are

available in multiple dimensions.

Two basic types of cutting stock problems are studied according to the assignment

type that defines the objective. The types are referred to as output maximization or

input minimization. Output maximization problems assign a set of items with

specified demands to a set of large items that may not be sufficient to cover all

demand. So the problem is to obtain maximum number (or weighted number) of small

items from the available large items. Input minimization problems, on the other hand,

decides on the minimum number (or weighted) of large items so as to cover all

demand. Minimization of panel costs is an input minimizing, maximization of total

revenue on the other hand is an output maximizing concern.

In the literature the studies are either input minimization or output maximization type.

Cutting stock problems and bin-packing problems are famous examples of input

minimization type. Knapsack problems are different from both, because the total

weight of the items placed on large objects is maximized. In this study, we consider

the net revenue, i.e. profit, problem that maximizes the difference between the total

revenue brought by all cut items and the total cost incurred by all used panels. Hence

our problem has both input maximization and output minimization concerns.

One can use number of small items to categorize the literature in cutting problems. In

bin packing problems, all item types are packed only once while in cutting stock

2

problems several items of each type are cut. In other words, bin-packing problem is a

special case of cutting stock problem where demand of each item type is one. In this

study, number of small items of each type is arbitrary, but not limited to one.

The small items may have rigid orientation such that their widths and their lengths

should fit those of the large objects. Some small items may be rotated so that they may

be placed with 90 degree change. Also, there may be some restrictions in cutting

process coming from industrial applications, such as guillotine cutting constraints. In

this study, we basically consider rigid, i.e., non rotatable items in guillotine cutting

environment and discuss the extensions to the rotatable items case.

Two-dimensional cutting stock problem is a strongly NP-hard problem (Macedo et.

al., 2008) and has many practical application areas. The application areas reported in

the literature include but are not limited to the paper industry, wood industry and glass

industry.

Our motivating example is a marble industry where stock large objects are available

in limited number, different dimensions and quality that affect their costs. They do

have many customers asking many different rectangular items for different prices and

some of their final products may be composed of small cut items in the company. Each

item has a demand above which production is forbidden and each produced, i.e. cut

item, brings a defined revenue which might also convey information about the prestige

of the customer in company’s view. The revenues of the small items depend on the

customer orders, delivery times and dimensions of the items. For some specified time

period they want to maximize total profit without exceeding panel availabilities and

customer demand. Due to the fact that the dimensions of the items cut depend on the

special request of the customer, it is reasonable to limit number of items cut by the

customer demand.

The journey of this study originates from this practical problem. We develop two

mathematical models, one of which is extended from the literature.

3

We enhance the efficiency of the models by recognizing the properties of optimal

solution.

The results of our computational study have revealed that our mathematical model can

handle only medium sized problems with not so high demand quantities. To handle

larger sized problem instances we develop several heuristic procedures and observe

their satisfactory performance in terms of both speed and closeness to the optimal

solutions.

The rest of the thesis is organized as follows. In Chapter 2, we give the review of the

studies in the literature. In Chapter 3, we define our problem and discuss the

alternative solution approaches. We give the results of our numerical study for each

of the solution approaches in Chapter 4. Chapter 5 discusses the details of our

application to the marble company. Chapter 6 concludes the study by pointing out

main findings and discussing the possible research directions.

4

5

CHAPTER 2

2. LITERATURE REVIEW

2.1. Literature on Cutting and Packing Problems

Cutting stock problem (CSP) is first introduced by Gilmore and Gomory (1961). The

authors first dealt with one-dimensional cutting stock problem and then extended the

problem for two and more dimensions (Gilmore and Gomory, 1965). Since then,

different variants and extensions of the CSP are handled in the literature. To classify

the researches and publications properly, Dyckhoff (1990) introduced a typology for

cutting and packing problems.

Cutting problems basically refer to the problems where small items are obtained by

cutting large objects, like in CSP. Packing problems refer to the problems where small

items are assigned and placed large objects, like bin packing (BPP) and knapsack

problems. The difference mainly in the naming, coming from the aim of the problem

but the solution approaches and the variants of the problems are similar.

Dyckhoff (1990) categorized the problem with respect to dimensionality, kind of

assignment, assortment of large objects and assortment of small items. The number of

publications related with the problem has increased after Dyckhoff’s study, that can

be attributed the interest it raised. Wascher et. al. (2007) proposed an improved

typology that uses Dyckhoff’s typology as a baseline to introduce their ideas and

modifications. They also proposed new names for the criteria and problem types.

Wascher et. al. (2007) divided the problem types into three as basic, intermediate and

refined problem types. Kind of assignment and assortment of small items criteria

define the basic problem types while the assortment of large objects criterion defines

the intermediate problem types. Finally, refined problem types are defined with

respect to the number of dimensions.

6

In this section, we concentrate on a narrower area of the literature, two dimensional

cutting and packing problems. One may refer to the review papers for the classification

of one-dimensional problems. Coffman et. al. (2013) classified the literature on

approximation algorithms for bin packing problem. In terms of exact methods, Valerio

and Carvalho (2002) compared the LP model formulations for one-dimensional BPP

and CSP. Martinovic et. al. (2018) reviewed and compared the available modelling

approaches in the literature for one-dimensional cutting stock problem. Also, Delorme

et. al.’s (2016) paper gives the review of important mathematical formulations and

exact solution methods in the last fifty years.

2.2. Literature on Two Dimensional Cutting and Packing Problem

In this section, we first review the related studies on the exact methods and then the

non-exact ones.

2.2.1. Exact Methods

Fekete et. al. (2007) dealt with the orthogonal packing problem. In the problem, there

are rectangular small items and one large rectangular object. The aim is to place small

items into the large object. They used graph theoretical characterizations of

assignments of items to the objects. By using these characterizations, the feasible

assignments are evaluated as a group, not one by one, that shares same characteristics.

A successful branch and bound algorithm is implemented thanks to the good bounds

obtained.

Clautiaux et. al. (2008) proposed a new constraint based scheduling model to the same

problem. They used the model in branch and bound scheme together with the new

techniques to improve the solution approach. The approach generally outperforms the

methods in the literature but for some instances Fekete et. al.’s (2007) method

performs better.

Alvares-Valdez et. al. (2008) studied “strip packing problem”, where the width of

large object is fixed but the length of each strip is infinite. The objective is to minimize

7

the length of the large object while assigning the small items to this object. The authors

proposed branch and bound algorithm for the problem. In branching scheme, they used

bounds obtained from the LP relaxation of integer formulation model. Also, they

reduced the branching tree by exploiting some dominance relations and bounds

obtained by geometric considerations. The solution approach is effective in general,

but there are some difficulties to solve the problem instances with small items.

Boschetti and Montaletti (2010) followed similar approach and proposed new lower

and upper bounds to use in branch and bound algorithms. The proposed upper bounds

are found by constructive heuristics and the lower bounds are found by relaxations of

different mathematical formulations of the problem. The authors also proposed some

reduction techniques. Their solutions are better in most of the instances.

Martello and Vigo (1998) proposed branch and bound algorithm to solve two-

dimensional bin packing problem (2DBPP). Unlike the strip packing and orthogonal

packing problems, there are generally infinite number of large objects in bin packing

problems and aim is to minimize the number of bins used. For the branch and bound

algorithm, they compute bounds by using the dimensions of the items, and one-

dimensional version of the problem. At the outer branching tree, the item is assigned

to a large object (bin) and a feasible assignment is tried to be found. At inner branching

tree, the existence of feasible packing is questioned. The study was the first attempt to

solve the bin packing problem by an exact method. The authors were able to find a

solution to the problems with -up to- 120 items, by this method.

Lodi et. al. (2004) proposed a formulation with polynomial number of variables and

constraints for bin packing problem. They proposed the model for the problems where

the items have to be packed by levels. This restriction is motivated by industry

capabilities, such as guillotine cutting. According to the authors, by using the LP

relaxation objective of the proposed model in standard branch and bound package,

414 of 500 instances are solved to optimality within 5 minutes. Also, the model itself

can be solved by a commercial MIP solver.

8

Pisinger and Sigurd (2007) used Dantzig-Wolfe decomposition based column

generation method to solve the 2DBPP. The subproblem in the decomposition scheme

is responsible for the assignment of items to the single large object. The solution

approach is effective because the infeasibilities in subproblem returns back to the

master problem as valid inequalities. Lower bounds computed by delayed column

generation are superior or the same as the existing bounds in the literature. Optimal

solutions can be obtained for the problems with –up to- 100 items. Guillotine cutting

constraints can easily be accommodated in subproblem, so they obtained solutions for

2DBPP with guillotine constraints.

Macedo et. al. (2010) formulated the two dimensional problem as a minimum flow

problem extending its one dimensional version. In the formulation, each cutting

pattern corresponds to a path and positions in the large objects correspond to vertices.

Model is compared the other models in the literature in terms of linear relaxations and

proved to be stronger. The authors solved the model by commercial MIP solver in

their solution approach. As the model has a pseudo-polynomial number of constraints

and variables, the solutions are obtained in reasonable times.

Silva et. al. (2010) proposed an integer-programming model that uses possible residual

large objects as parameters. The model performs well for the case when the

dimensions of the items are not much smaller than the dimensions of the panels. Small

items create more residual panels so the size of the model is increased. However, the

model size is not affected by the demand of the items. Therefore the model is capable

to solve many real world instances in reasonable times. Only in 29 of 672 instances of

4 real world problem, the model could not reach the optimal solution in two hours.

Pisinger and Sigurd (2005) studied 2DBPP with variable bin sizes (2DVSBPP) and

proposed the first exact algorithm. They used Dantzig-Wolfe decomposition for the

integer-linear formulation of the problem to find lower bounds for their branch and

price algorithm. However, they showed that the algorithm could handle only small

sized instances.

9

Furini and Malaguti (2013) studied the cutting stock problem with multiple stock size.

They extended the Lodi et. al.’s (2004) model to multiple stock size case and

duplicated the items with respect to their demands. They used some modelling

techniques in order to reduce symmetries coming with the duplication. They also

extend Silva et al.’s (2010) model to the multiple stock size case. Finally, they

included different sized large objects in Gilmore and Gomory’s exponential size

model and solved the model by using branch and price techniques. Comparison of

those three models suggests that the superiority of one model over any other is instant

dependent. Models proposed are all suitable for the industries where guillotine-cutting

restrictions are applied.

Guillotine cutting restrictions are available in some other studies as well. Dolatabadi

et. al. (2012) studied two dimensional guillotine knapsack problem where only one

type of large object is available. They implemented recursive algorithm that constructs

maximum guillotine assignment to a large object. Bekrar et. al. (2010) included

guillotine constraints for strip packing problem. Amossen and Pisinger (2010) studied

multi-dimensional guillotine bin packing problem. They proposed a constructive

algorithm for guillotine and non-guillotine cutting based on constraint programming.

Fleszar (2016) studied stage unrestricted guillotine cutting problem for one large stock

and multiple items. The item rotations are also considered in the study.

2.2.2. Non-Exact Methods

There are plenty of heuristic approaches for cutting and packing problems. We only

survey the studies on the two dimensional cutting and packing problems with multi

sized large objects, stocks or bins. In terms of non-exact solution approaches to those,

Riehme et. al. (1996) studied the problem for extremely varying demands between

items. In such case, they proposed to decompose the problem into two by first solving

the problem for high demand items and then solving the residual problem. Their

“stripe approach” is found advantageous compared to the other known methods in

those years.

10

Alvares-Valdez et. al. (2002) developed and compared the heuristic methods to solve

two-dimensional cutting stock problems. They analyzed column generation based

heuristic algorithm, where the subproblem is solved by dynamic programming,

constructive algorithm, tabu search algorithm or GRASP algorithm. They concluded

that the dynamic programming gives better results than the local search heuristics.

Cintra et. al. (2008) studied the problem both for different bin sizes and single bin size.

The proposed solution approach is based on column generation and columns are

generated by a dynamic programming based algorithm. Optimal or quasi optimal

solutions are obtained for the test instances in reasonable times.

Furini et. al. (2012) studied two-dimensional two-staged guillotine cutting problem.

They proposed column generation based heuristic algorithm. The subproblem of the

column generation algorithm is solved by dynamic programming based heuristic

algorithm. They did computational experiments for both item rotations are allowed

and not allowed cases. It is asserted that the proposed algorithm is superior than the

algorithms available in the literature.

Alvarez Valdes et. al. (2013) developed GRASP/Path Relinking algorithm for the

problem. The study is one of the first papers that implements path relinking to cutting

and packing problems. Computational experiments revealed the algorithm produces

promising results. The algorithm could easily be modified for the rotated counterparts

of items.

Wei et. al. (2013) proposed a goal driven heuristic approach and suggested multiple

binary search on objective value. For a given interval, the algorithm packs the items

by tabu search algorithm. Then some post improvement procedure is implemented on

the solution found. The performance of goal driven approach outperforms all existing

heuristic algorithms.

Hong et. al. (2014) studied two-dimensional variable sized bin packing problem with

guillotine constraint. Rotations of items can optionally be included in the problem.

11

The authors proposed hybrid meta heuristic algorithm. Their algorithm outperforms

the existing algorithms.

The most closely related study to ours is that of Furini and Malaguti (2013). They

consider two-dimensional two stage cutting stock problem with guillotine cuts like

ours. The differences are due to objective function used and the approaches used to

find implementable solutions.

12

13

CHAPTER 3

3. PROBLEM DEFINITION & SOLUTION APPROACHES

3.1. Problem Statement

Two dimensional cutting stock problem (2DCSP) assigns a set of small rectangular

items to a set of larger rectangular stocks, so called panels. In this study, we consider

a 2DCSP with the following assumptions:

Panels are cut parallel to the sides of the stock, and cross the stock from one side to

another, i.e. guillotine cuts are used. Two stage cuts are used in such a way that the

rectangular bars obtained through the guillotine cuts are further cut in parallel to obtain

the exact shape.

The following figure depicts the difference between two stage guillotine cuts and non

guillotine cuts.

Figure 3.1 2-stage guillotine cuts and non guillotine cut (Non guillotine cuts on the

right)

There are m panel types. Panel type h is characterized by its cost 𝐶ℎ and available

number 𝑛𝑢𝑚ℎ.

There are n types of items. Item type j is characterized by its revenue 𝑟𝑗 and

requirement 𝑑𝑗.

14

The dimensions of panel h are specified by the length 𝐿ℎ and width 𝑊ℎ. Those of item

j are characterized as 𝑙𝑗 and 𝑤𝑗.

All parameters are known with certainty and are not subject to any change, i.e., the

system is deterministic and static.

Our aim is to assign the items to the panels so as to maximize the total profit. We

define the profit as the difference between the total revenue via all items and total cost

incurred by used panels.

The problem is constrained version of the two-dimensional rectangular multiple stock

size cutting stock problem according to the typology by Wascher et. al (2007) and is

strongly NP-hard (see Furini and Malaguti, 2013).

3.2. Solution Approaches

We studied the problem from a marble industry in Turkey where cutting decisions are

made based on the customer orders. The input of the cutting process, panels, is also

provided according to a plan, based on those customer orders. Panels are obtained

from three dimensional huge stone blocks and the process takes considerable time.

The delivery times of the customer orders on the other hand, are not that long. Hence,

one should deal with the orders particularly using available resources of the company.

In our study, we assume that the number of panels of each type is limited and the

demand figures are upper bounds on the amount of items cut. Limiting the number of

cuts by demand is reasonable assumption for the industry because there is no guarantee

that the items with same dimensions would be ordered in the near future. Also, by

cutting the items above their demand, the decision maker loses the opportunity to use

the available resources for the future demand of different items.

In the company, the available number of panels may not be sufficient to satisfy all

demand. Accordingly, a promising solution would favor more profitable items and

15

more economical panel types without exceeding the item demands and panel

availabilities.

Furini and Malaguti (2013) studied a very similar problem for the minimum total panel

cost objective. They assume that the availability of panel types is unlimited, hence all

demand can be satisfied with unlimited panel purchases. The demand is given as a

lower bound and higher values of production above demand would be justified.

We first modified Furini and Malaguti’s (2013) model to handle maximum profit

objective, demand lower limits and availability upper limits. We refer the resulting

model as Model 1.

3.2.1. Model 1

Furini and Malaguti’s (2013) model is an extension of a formulation proposed by Lodi

et. al. (2004) for two-dimensional bin packing problem. The two-stage guillotine

cutting restriction divides the panel into levels. The basic idea behind this model is to

partition the assignments of items to panels into two, namely the ones that initialize

each level and the ones that assigned to levels, excluding the first items of levels.

Levels are the strips that are obtained after the first horizontal guillotine cut on the

panel. Figure 3.2 depicts the levels in 2D guillotine cutting example.

Figure 3.2 Representation of Levels in 2D Guillotine Cutting

The decision variables for the assignment of additional items (the ones other than the

first item) to a level are defined only for the smaller or equal width items than the first

item. The very first necessity of the approach is the ordered set of item types. The item

16

types are sorted with respect to their non-increasing order of widths. For each item, a

possible level is defined and for each level, decision variables are defined for possible

assignments. Therefore, possible levels/strips are defined as many as total demand. To

construct the relation between the panels and levels in formulation, each level assigned

to a panel would be assigned as the “name” of the panel used. By this way, the item

number in the left upper corner would be the name of the panel used.

We use the following notation as in Furini and Malaguti (2013) .

Indices

𝑖, 𝑘 : index for items or level/shelf/strip or panels. (if item i initializes a level, then

name/number of that level is also i. If level k initializes a panel, i.e. the level is the

first

of all levels assigned to that panel, then the name/number of the panel is also k.

{1….ñ} where ñ : total number of items = ∑ 𝑑𝑗
𝑛
𝑗=1

𝑗 : index for item types {1…n}

h : index for panel types

Parameters

𝑑𝑗 : demand of item type j

𝛼𝑗 : possible levels that item j can be cut in. 𝛼𝑗 = ∑ 𝑑𝑠
𝑗
𝑠=1 (By the structure of the

model, the first item in a level must have the largest width)

𝛽𝑘 : the very first item type (not item, item type) in level k. 𝛽𝑘 = min{𝑟 ∶ 1 ≤ 𝑟 ≤ 𝑛,

 𝛼𝑟 ≥ 𝑘} In any level k, the item types in range [𝛽𝑘, 𝑛] can be cut.

In short, α values relate item types to item/level name/numbers, β values relate panel

and level numbers to item types.

17

𝐶ℎ : cost of using a panel type h.

𝑊ℎ : width of a panel type h.

𝐿ℎ: length of a panel type h.

𝑙𝑗 : length of an item

𝑤𝑗 : width of an item

We additionally define the following parameters:

𝑟𝑗 : revenue of item type j.

𝑛𝑢𝑚ℎ: total number of available panels of type h.

To define rotation of items, we introduce the following parameters:

𝑟𝑜𝑡𝑗 : Decision maker can change lengths with widths and define a new item. If such

a case occurs, i.e. a new item is created as a rotated counterpart of some other item,

then the value for 𝑟𝑜𝑡𝑗=1, stating j is a rotated counterpart of some other item.

𝑟𝑜𝑡_0𝑗 If the item is rotated item which is created by decision maker, then 𝑟𝑜𝑡_0𝑗

gives the index of the original item.

𝑟𝑜𝑡_1𝑗 gives the index of rotated counterpart of item j.

Decision Variables

𝑦𝑖ℎ : binary decision variable that represents if level i is assigned to a panel type h or

not. i ∈ {1… ñ} and h ∈ {1… m}

𝑥𝑖𝑗ℎ : integer decision variable that represents the number of items of type j packed

into level i in a panel of class h. i ∈ {1… ñ-1}, h ∈ {1… m}, j ∈ {𝛽𝑖… ñ}.

𝑞𝑘ℎ : binary decision variable that takes value of 1 if panel k is a member of panel h

class. (This DV also shows that there is a level k that initializes a panel, so the

18

name/number of the panel is k. This DV further shows that item k is the very first item

in the panel k of class h. (Item k is located on the left upper corner of the panel if this

DV is 1) k ∈ {1… ñ} and h ∈ {1… m}

𝑧𝑘𝑖ℎ : From DV q, we can detect one level that is assigned to a panel (the one that

initializes the panel). For the other levels that are also assigned to panel k, we use DV

z. This DV takes value 1 if level i is allocated to panel k of class h. k ∈ {1… ñ-1}, h

∈ {1… m}, i ∈ {k… ñ}.

Figure 3.3 shows the assignments of items to a panel and the associated decision

variables for an example instance with four items and following specifications:

Table 3.1 Item Specification of the Example

Item Type
(j)

Demand 𝛼𝑗 i 𝛽𝑖

1 4 4 1-4 1

2 3 7 5-7 2

3 5 12 8-12 3

4 8 20 13-20 4

Suppose we have assignments of the items to a panel of type 1 as in the left side of

Figure 3.3. Then, the decision variables may take the values as in the right side of

Figure 3.3. Note that different q and z variables can take value of 1. For example, for

the assignments in Figure 3.3 one of the 𝑞𝑖,1 can take value of 1, as long as i is between

5 and 7. Similarly, different 𝑧𝑘,𝑖,1 values can take value of 1, as long as the i values are

compatible with the 𝛼𝑗 of each item type. (i ∈ [8,12] for the second level and i ∈ [13,20]

for the third level)

19

Figure 3.3 Sample Representation of Assignments and Decision Variables in Model 1

The constraint set taken from Furini and Malaguti (2013) is stated below:

Constraints

(1) Demand Constraint: The total number of item j cut should satisfy the demand. x

variables count the number of items of type j assigned to levels excluding the first

items of levels, while y variables count the levels that have item j as the first item.

∑ ∑ 𝑥𝑖𝑗ℎ

𝛼𝑗

𝑖=1ℎ

+ ∑ ∑ 𝑦𝑖ℎ

𝛼𝑗

𝑖=𝛼𝑗−1+1ℎ

 ≥ 𝑑𝑗 ∀ 𝑗 ∈ {1 … 𝑛} (1)

(2) Maximum length constraints: Total length of items assigned to a level should be

less than or equal to the length of the panel.

∑ 𝑥𝑖𝑗ℎ ∗

𝑛

𝑗=𝛽𝑖

 𝑙𝑗 ≤ (𝐿ℎ − 𝑙𝛽𝑖
) ∗ 𝑦𝑖ℎ ∀i ∈ {1 … ñ − 1} and h ∈ {1 … 𝑚} (2)

(3) Total width constraints: Sum of widths of items that initializes levels in a panel

should less than or equal to the width of that panel type.

∑ 𝑧𝑘𝑖ℎ ∗

ñ

𝑖=𝑘+1

 𝑤𝛽𝑖
 ≤ (𝑊ℎ − 𝑤𝛽𝑘

) ∗ 𝑞𝑘ℎ ∀ k ∈ {1 … ñ − 1}, h ∈ {1 … 𝑚} (3)

20

(4) Panel-level relationship constraints: If there is a level i defined, then it should be

assigned to a panel or should initialize a panel.

∑ 𝑧𝑘𝑖ℎ

i−1

𝑘=1

 + 𝑞𝑖ℎ = 𝑦𝑖ℎ ∀ i ∈ {1 … ñ} and h ∈ {1 … 𝑚} (4)

We modify the model of Furini and Malaguti (2013) so as to include the rotatable

items.

In our problem, total number of real items and the rotated counterparts cut should be

less than or equal to the demand of that item. Number of items that initialize the levels

and number of items assigned on those levels constitutes the total number of items cut.

(5) Demand Constraint

If 𝑟𝑜𝑡𝑗 = 0:

∑ ∑ 𝑥𝑖𝑗ℎ

𝛼𝑗

𝑖=1ℎ

+ ∑ ∑ 𝑥𝑖𝑟𝑜𝑡_1𝑗ℎ

𝛼𝑟𝑜𝑡_1𝑗

𝑖=1ℎ

+ ∑ ∑ 𝑦𝑖ℎ

𝛼𝑟𝑜𝑡_1𝑗

𝑖=𝛼𝑟𝑜𝑡_1𝑗−1
+1ℎ

 + ∑ ∑ 𝑦𝑖ℎ

𝛼𝑗

𝑖=𝛼𝑗−1+1ℎ

≤ 𝑑𝑗 ∀𝑗

We introduce the panel availability constraint as

∑ 𝑞𝑘ℎ

ñ

𝑘=1

 ≤ 𝑛𝑢𝑚ℎ h ∈ {1 … 𝑚} (6)

Total number of panels used of a type cannot exceed the total available number of

panels of the same type.

Our objective function includes the total net revenue, i.e. profit.

 (7) Objective Function

𝑚𝑎𝑥(𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 − 𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡)

21

𝑇𝑜𝑡𝑎𝑙 𝑅𝑒𝑣𝑒𝑛𝑢𝑒 = ∑ ∑ ∑ 𝑟𝑗 ∗ 𝑥𝑖𝑗ℎ

𝑛

𝑗=𝛽𝑖

ñ−1

𝑖=1ℎ

+ ∑ ∑ 𝑦𝑖ℎ ∗ 𝑟𝛽𝑖

ñ

𝑖=1ℎ

𝑇𝑜𝑡𝑎𝑙 𝐶𝑜𝑠𝑡 = ∑ ∑ 𝑞𝑘ℎ ∗

ñ

𝑘=1ℎ

𝑐ℎ

Model 1 is efficient only when the demands of the items, thereby ñ is low. Even for

small sized problem instances with high demand ñ may become so high, thereby

inflating the number of decision variables. Recognizing this drawback as mentioned

in Furini and Malaguti (2013), we introduce Model 2 that is discussed next. We

defined fittable strips for each panels and maximum number of panels that can be used,

in place of fittable strip and feasible panel for each item. We keep the idea of partition

in the formulation.

3.2.2. Model 2

Model 2 defines fittable strips for each panel and maximum number of panels that can

be used, in place of fittable strips and feasible panels for each item. The idea of

partitioning is kept and three sets (in place of four) of decision variables are used. The

reduction is due to the decision variable set that relates the levels to the panels and

panel types. The number of those decision variables is ñ × ñ × 𝑛𝑢𝑚ℎ in Model 1,

can be very big when the item demands are high.

We also derive some properties to define fittable strips for each panel and maximum

number of panels that can be used to cut all items. To find the maximum number

panels, we propose the following procedure:

22

Procedure

Step 1. Let J the set of items in their non-increasing order of widths. Let panel k be a

single panel of type h and 𝑎𝑗 be the number of items of type j placed on panel k.

The levels represent the number of levels assigned to panel k

let k = 0, levels = 0.

Starting from the first item of set J, the levels of panel k are created by the following

rule:

for j in J:

while 𝑎𝑗 ≤ 𝑑𝑗 and ∑ ∑ 𝑤𝑗

𝑎𝑗

𝑖=1𝑗∊𝐽

≥ 𝑊ℎ

add one item j to panel k, 𝑎𝑗 = 𝑎𝑗 + 1

Update demands as 𝑑′𝑗 = 𝑑𝑗 − 𝑎𝑗

Update number of levels, levels= levels +1

 𝐿𝑙𝑒𝑣𝑒𝑙𝑠 = 𝐿ℎ − 𝑙𝑗

Step 2 Let D’ be the updated demand vector and let J’ be the set of items in their non-

decreasing order of widths.

Starting from the first item of J’, the levels are filled by items using the following rule:

for i in levels:

for j in J’:

while 𝑎𝑗 ≤ 𝑑′𝑗 and ∑ ∑ 𝑙𝑗

𝑎𝑗

𝑖=1𝑗∊𝐽′

≥ 𝐿𝑖

add one item j to panel k, 𝑎𝑗 = 𝑎𝑗 + 1

23

Update demands as 𝑑′𝑗 = 𝑑𝑗 − 𝑎𝑗

Step 3. levels = 0, k=k+1

If 𝑘 ≥ 𝑛𝑢𝑚ℎ or D’ is empty, stop. 𝑛𝑢𝑚ℎ = 𝑘

Otherwise, go to step 1.

In step 1, the non-increasing width ordered items are taken as the first items of the

levels. The demands of the items are updated and in Step 2, the items are assigned to

those predefined levels. In each step, demands are updated and updated demand set

D’ is used thereafter. Feasibility is guaranteed as the widths are always greater than

or equal to the widths of items in set D’. The iterations are continued until the number

of panels used reaches the number of available panels for type h, or until demand set

D’ becomes empty. If the iteration count reaches the number of available panels, then

there is no reduction in the number of available panels. Otherwise, the number of

available panel of type h is updated as all demand can be satisfied with fewer panels

than the original value.

To define fittable strips for each panel instead of defining strips for each item, we

calculate upper bound of levels for item type j in panel type h, 𝑈𝐵𝐿𝑒𝑣𝑒𝑙𝑗ℎ:

𝑈𝐵𝐿𝑒𝑣𝑒𝑙𝑗ℎ = 𝑚𝑖𝑛 {𝑑𝑗ℎ, ⌊
𝑊ℎ

𝑤𝑗
⌋} 𝑤ℎ𝑒𝑟𝑒

𝑑𝑗ℎ = min {𝑑𝑗 , ⌊
𝑊ℎ

𝑤𝑗
⌋ ∗ ⌊

𝐿ℎ

𝑙𝑗
⌋}

This new formulation requires the following sets of decision variables, where indices

i and j represent item types, h represents panel types and k represents panels.

𝑞𝑘 : represents if panel k is used or not. k ∊ {1…. ∑ 𝑛𝑢𝑚ℎℎ }

 for each panel type h, 𝛼ℎ = ∑ 𝑛𝑢𝑚𝑠
ℎ
𝑠=1 and

24

for each panel, 𝛽𝑘 = min{𝑟 ∶ 1 ≤ 𝑟 ≤ ℎ, 𝛼𝑟 ≥ 𝑘} is defined.

𝑧𝑖𝑚𝑘: binary variables which take value of 1 if item i initializes a level in panel k,

where i ∊ {1, …, n} , k ∊ {1, …, ∑ 𝑛𝑢𝑚ℎℎ } and m ∊ {1, …, 𝑈𝐵𝐿𝑒𝑣𝑒𝑙𝑖 𝛽𝑘
}. m is the

level index of item i in panel k.

𝑥𝑗𝑖𝑚𝑘: is the integer decision variables that represent the number of item type j that is

assigned to level (i,m,k) where i and j ∊ {1, …,n}, k ∊ {1, …, ∑ 𝑛𝑢𝑚ℎℎ } and m ∊ {1,

…,𝑈𝐵𝐿𝑒𝑣𝑒𝑙𝑖 𝛽𝑘
}, if 𝑤𝑗 ≤ 𝑤𝑖, i.e., the variable is only defined when item j can be

assigned to level i, where the width of the level is greater than or equal to width of

item j.

Figure 3.4 shows the assignments of items to a panel and the decision variables for

that assignment.

Figure 3.4 Sample Representation of Assignments and Decision Variables in Model 1

Note that the q variables are independent of the first level of each panel. They are

limited with the available amount of panels and 𝑞𝑘 takes value of 1 if k’th panel of

type h is used.

Model 2 is defined by the following constraint sets and objective function.

Constraints

 ∑ 𝑥𝑗𝑖𝑚𝑘 ∗ 𝑙𝑗
𝑗

+ 𝑧𝑖𝑚𝑘 ∗ 𝑙𝑖 ≤ 𝑧𝑖𝑚𝑘𝐿𝛽𝑘
 ∀ (𝑖, 𝑚, 𝑘) (8)

25

 ∑ 𝑧𝑖𝑚𝑘 ∗ 𝑤𝑖

𝑖,𝑚

≤ 𝑞𝑘𝑊𝛽𝑘
 ∀ 𝑘 (9)

 ∑ 𝑥𝑗𝑖𝑚𝑘

𝑖,𝑚,𝑘

+ ∑ 𝑧𝑗𝑚𝑘

𝑚,𝑘

≤ 𝑑𝑗 ∀ 𝑗 (10)

Objective Function

max ∑ 𝑥𝑗𝑖𝑚𝑘 ∗ 𝑟𝑗

𝑗,𝑖,𝑚,𝑘

+ ∑ 𝑧𝑖𝑚𝑘 ∗ 𝑟𝑖

𝑖

− ∑ 𝑐𝛽𝑘
𝑞𝑘

𝑘

 (11)

Constraint set (8) ensures that the total length of items assigned to a level cannot

exceed the length of that panel. Constraint set (9) avoids the assignments whose total

width exceeds the width of the panel. Constraint set (10) states that the each item cut

is limited by its demand. Objective function maximizes total profit over all items and

all panels.

We do not need a constraint set that relates panel types to panels and levels in the

panels (as constraint set (4) of Model 1). Moreover, we do not include available

number of panels constraint set, as this constraint is implicitly used in defining the

panel set.

Comparing Model 1, we get good reductions in number of decision variables.

Parametric comparison of number of decision variables in Model 1 and Model 2 can

be seen in Table 3.2.

26

Table 3.2 Parametric Comparison of Number of Decision Variables

Model 1 Model 2

Sets of

DVs
of DVs

Sets of

DVs
of Decision Variables

𝑥𝑖𝑗ℎ ñ × n × p 𝑥𝑗𝑖𝑚𝑘 ∑ min {𝑑𝑗 , ⌊
𝑊ℎ

𝑤𝑗
⌋} × 𝑛2 × 𝑛𝑢𝑚ℎ

ℎ

𝑦𝑖ℎ ñ × p 𝑧𝑖𝑚𝑘 ∑ min {𝑑𝑖, ⌊
𝑊ℎ

𝑤𝑖
⌋} × 𝑛 × 𝑛𝑢𝑚ℎ

ℎ

𝑞𝑘ℎ ñ × p 𝑞𝑘 ∑ 𝑛𝑢𝑚ℎ

ℎ

𝑧𝑘𝑖ℎ ñ × ñ × p

Total ñp(n+ñ+2) Total ∑ 𝑛𝑢𝑚ℎ(min {𝑑𝑗 , ⌊
𝑊ℎ

𝑤𝑗

⌋} 𝑛 +𝑛2 min {𝑑𝑗 , ⌊
𝑊ℎ

𝑤𝑗

⌋} +1)

ℎ

3.3. Properties of Optimal Solution

In this section, we propose some properties of optimal solutions and discuss their

incorporations to the mathematical models.

Our properties are of two types:

1. Dominance

2. Update the parameters (demand and supply quantities)

3.3.1. Dominance Properties

We first define item and panel domination concepts. Based on our definitions we

present the theorems that state the effects of the dominance properties on the solution.

27

3.3.1.1. Item Domination

Rotation case: Item i dominates item j when either

 𝑟𝑖 ≥ 𝑟𝑗 , 𝑤𝑗 ≥ 𝑤𝑖, 𝑙𝑗 ≥ 𝑙𝑖 or 𝑟𝑖 ≥ 𝑟𝑗 , 𝑤𝑗 ≥ 𝑙𝑖, 𝑙𝑗 ≥ 𝑤𝑖.

No rotation case: Item i dominates item j if 𝑟𝑖 ≥ 𝑟𝑗 , 𝑤𝑗 ≥ 𝑤𝑖, 𝑙𝑗 ≥ 𝑙𝑖.

Figure 3.5 illustrates item domination where revenue of item 2 is greater:

Figure 3.5 Item Domination Representation

In the figure, item 2 dominates item 1, because the width and length of item 2 is

smaller and its revenue is higher.

Theorem 1: If item i dominates item j then the following condition holds:

If the amount of item i cut is less than its demand di then the amount of item j cut is

zero.

Proof: Assume a solution in which xi < di and xj > 0, i.e., a solution that contradicts

with the condition of the theorem. Replacing one unit of item i by one unit of item j

improves the objective function by ri − rj units. The improvements can be continued

and by unit replacements of item i and item j, till xi reaches to its upper limit of di or

xj reaches to its lower limit of zero, whichever is earlier. Hence a solution in which

28

xi < di and xj > 0, i.e., that contradicts with the condition of the theorem cannot be

optimal.

Item Domination Property for Model 1

We incorporate the item domination condition to Model 1 through the following

binary variable

gj = 1 if item j is cut; 0 otherwise

We modify the demand constraints for all pairs of dominating item i and dominated

item j. Note that the level index “i” is changed with “m”, to avoid confusion.

 ∑ ∑ 𝑥𝑚𝑖ℎ

𝛼𝑗

𝑚=1ℎ

+ ∑ ∑ 𝑥𝑚𝑟𝑜𝑡_1𝑖ℎ

𝛼𝑟𝑜𝑡_1𝑖

𝑚=1ℎ

+ ∑ ∑ 𝑦𝑚ℎ

𝛼𝑟𝑜𝑡_1𝑖

𝑚=𝛼𝑟𝑜𝑡_1𝑖−1
+1ℎ

+ ∑ ∑ 𝑦𝑚ℎ

𝛼𝑖

𝑚=𝛼𝑖−1+1ℎ

≥ 𝑑𝑖𝑔𝑗 (12)

∑ ∑ 𝑥𝑚𝑗ℎ

𝛼𝑗

𝑚=1ℎ

+ ∑ ∑ 𝑥𝑚𝑟𝑜𝑡_1𝑗ℎ

𝛼𝑟𝑜𝑡_1𝑗

𝑚=1ℎ

+ ∑ ∑ 𝑦𝑚ℎ

𝛼𝑟𝑜𝑡_1𝑗

𝑚=𝛼𝑟𝑜𝑡_1𝑗−1
+1ℎ

+ ∑ ∑ 𝑦𝑚ℎ

𝛼𝑗

𝑚=𝛼𝑗−1+1ℎ

≤ 𝑑𝑗𝑔𝑗 (13)

To avoid binary variables, one may use a weaker application of item domination in

Model 1.

If 𝑑𝑗 ≤ 𝑑𝑖 then the amount of item i cut must be greater than or equal to the amount

of item j cut in the optimal solution. If 𝑑𝑗 > 𝑑𝑖 then the difference between the amount

of item j and item i must be smaller than or equal to the difference in the demand

values of these items. Two new constraint sets can be introduced to Model 1 as:

𝐼𝑓 𝑑𝑗 ≤ 𝑑𝑖 ∶ 𝑐𝑢𝑡𝑖 ≥ 𝑐𝑢𝑡𝑗

𝐼𝑓𝑑𝑗 > 𝑑𝑖 ∶ 𝑐𝑢𝑡𝑗 − 𝑐𝑢𝑡𝑖 ≤ 𝑑𝑗 − 𝑑𝑖

where 𝑐𝑢𝑡𝑖 (𝑐𝑢𝑡𝑗) is the amount of item i (item j) cut.

29

Item Domination Property for Model 2

We incorporate item domination property to Model 2 as follows if item j dominates

item p.

∑ 𝑥𝑗𝑖𝑚𝑘

𝑖,𝑚,𝑘

+ ∑ 𝑧𝑗𝑚𝑘

𝑚,𝑘

≥ 𝑑𝑗𝑔𝑝 (14)

 ∑ 𝑥𝑝𝑖𝑚𝑘

𝑖,𝑚,𝑘

+ ∑ 𝑧𝑝𝑚𝑘

𝑚,𝑘

≤ 𝑑𝑝𝑔𝑝 (15)

To avoid binary variables, one may use a weaker application of item domination in

Model 2.

𝐼𝑓 𝑑𝑝 ≤ 𝑑𝑗 ∶ 𝑐𝑢𝑡𝑗 ≥ 𝑐𝑢𝑡𝑝

𝐼𝑓𝑑𝑝 > 𝑑𝑗 ∶ 𝑐𝑢𝑡𝑝 − 𝑐𝑢𝑡𝑗 ≤ 𝑑𝑝 − 𝑑𝑗

where 𝑐𝑢𝑡𝑝 (𝑐𝑢𝑡𝑗) is the amount of item p (item j) cut.

Example

Suppose that we have two panel types with the following parameters:

𝑊1 = 125 𝐿1= 100 𝐶1 = 300 𝑛𝑢𝑚1 = 3

𝑊2= 90 𝐿2= 90 𝐶2 = 310 𝑛𝑢𝑚2 = 2

We have four item types with the following parameters:

𝑤1 = 40 𝑙1= 50 𝑟1= 40 𝑑1= 15

𝑤2= 30 𝑙2= 40 𝑟2= 50 𝑑2= 15

𝑤3= 50 𝑙3= 50 𝑟3= 45 𝑑3= 15

𝑤4= 35 𝑙4 = 30 𝑟4= 55 𝑑4= 15

30

When rotations are not allowed, item 2 dominates item 1 and item 3. Item 4 also

dominates item 1 and item 3. There is no dominance relation between item 2 and item

4. When rotations are allowed, item 4 also dominates item 2.

The example verifies that with rotations more dominance conditions could be

established.

When the demands of all item types are the same one can argue that in the optimal

solution the following relations hold:

𝑥2 ≥ 𝑥1 and 𝑥2 ≥ 𝑥3

𝑥4 ≥ 𝑥1 and 𝑥4 ≥ 𝑥3

If rotations are allowed:

𝑥4 ≥ 𝑥2

If the amount of dominating item 4 cut would be greater than the amount of dominated

item 2 cut, then the objective function may be improved by 5 units, by replacing item

2 with item 4. Same interpretation is valid for all dominating items i with 𝑥𝑖 ≤ 𝑑𝑖. 𝑔1

and 𝑔3 are defined for dominated item types. Then the following constraints hold:

𝑥2 ≥ 𝑑2𝑔1 and 𝑥1 ≤ 𝑑1𝑔1 for dominating item 2 and dominated item 1

𝑥2 ≥ 𝑑2𝑔3 and 𝑥3 ≤ 𝑑3𝑔3 for dominating item 2 and dominated item 3

𝑥4 ≥ 𝑑4𝑔1 and 𝑥1 ≤ 𝑑1𝑔1 for dominating item 4 and dominated item 1

𝑥4 ≥ 𝑑4𝑔3 and 𝑥3 ≤ 𝑑3𝑔3 for dominating item 4 and dominated item 3

𝑥4 ≥ 𝑑4𝑔2 and 𝑥2 ≤ 𝑑2𝑔2 also hold if rotations are allowed.

3.3.1.2. Panel Domination

Panel r dominates panel s if Cs ≥ Cr, Wr ≥ Ws, Lr ≥ Ls

31

Figure 3.6 illustrates panel domination where cost of panel 1 is smaller:

Figure 3.6 Panel Domination Representation

Panel 1 dominates panel 2 because it has lower cost with higher area(W1 ≥ W2, L1 ≥

L2).

Theorem 2: If panel r dominates panel s then the following condition holds:

If the number of used panel r is less than its available amount then no panel of type s

is used.

Proof: Assume a solution in which yr < numr and ys > 0 i.e., a solution that

contradicts with the condition of the theorem. Replacing one piece of panel r with one

piece of panel s improves the objective function by Cs − Cr units. The improvements

can be realized one by one replacements of panel r and panel s, till yr reaches to its

available amount or ys reduces to zero. Hence a solution in which yr < numr and

ys > 0 i.e., contradicts with the condition of the theorem, cannot be optimal.

Panel Domination Property for Model 1

We incorporate the following constraint to explain panel domination condition.

𝑛𝑢𝑚𝑟 − ∑ 𝑞𝑘𝑟

𝑘

≤ 𝑛𝑢𝑚𝑟(1 − 𝑞𝑡𝑠) ∀ 𝑡 = 1 … . 𝑇𝐷(𝑠) 𝑤ℎ𝑒𝑟𝑒 𝑇𝐷(𝑠) = ∑ 𝑑𝑗𝑠

𝑗

 (16)

𝑑𝑗𝑠 is the demand of item type j defined for a panel type s, which will be explained in

Section 3.4.2.

32

Panel Domination Property for Model 2

If panel r dominates panel s, the following constraint is introduced to Model 2:

𝑛𝑢𝑚𝑟 − ∑ 𝑞𝑘

𝛼𝑟

𝑘=𝛼𝑟−1+1

≤ 𝑛𝑢𝑚𝑟(1 − 𝑞𝑡) 𝑡 ∈ {𝛼𝑠−1 + 1 … 𝛼𝑠} (17)

Example

Recall the example given for item domination. The panel parameters are defined as:

𝑊1 = 125 𝐿1= 100 𝐶1 = 300 𝑛𝑢𝑚1 = 3

𝑊2= 90 𝐿2= 90 𝐶2 = 310 𝑛𝑢𝑚2 = 2

Recognize that the panel 1 has larger in both dimensions, while its cost is smaller.

Hence, panel 1 dominates panel 2.

Suppose that in a solution, all panels of type 2 are used whereas only two panels of

type 1 are used. The assignments on panel type 2 are always feasible for panel type 1

as it has larger dimensions. Therefore, changing the panel types of the assignments

increases the revenue by (𝐶2 − 𝐶1 = 310-300) 10 units. Hence, the solution cannot be

feasible if the number of type 1 panels, 𝑦1, is smaller than 𝑛𝑢𝑚1 and number of type

2 panels used, 𝑦2, is greater than 0.

Also, by changing panel type 1 with panel type 2, one can gain space to cut more

items. In the example, if panel 2 was fully utilized and then changed with panel 1, one

can define a new level with width 35 and length 100 and can cut three units of items

4 with additional revenue of 165 (55x3) units.

To incorporate those in the formulation, one can use the following constraints, where

𝑞𝑟𝑚 is the binary variable that represents the usage of panel m of type r.

𝑛𝑢𝑚1 – 𝑦1 ≤ 𝑛𝑢𝑚1(1 − 𝑞21)

33

𝑛𝑢𝑚1 – 𝑦1 ≤ 𝑛𝑢𝑚1(1 − 𝑞22)

3.3.2. Updating the Parameters

We try to reduce the demand and availability amounts from their specified values 𝑑𝑗

and 𝑛𝑢𝑚ℎ. Our reduction procedures have two effects on the model. First the model

is defined relative to tighter parameter values. Second, those updates might lead to the

reduction in the problem size by eliminating some non-promising items and / or non-

promising panels.

3.3.2.1. Reduction in the Demand Values

We define the demand figures relative to panel type h (panel dependent demand) and

let 𝑑𝑗ℎ = maximum amount of item j that can be cut from panel h.

i. No rotation case

We create z variables for limited items, but not all items and all panels.

For the item domain of z variable, we use min {𝑑𝑗 , 𝑛𝑢𝑚ℎ ⌊
𝑊ℎ

𝑤𝑗
⌋},

(𝑛𝑢𝑚ℎ ⌊
𝑊ℎ

𝑤𝑗
⌋ is the maximum number of levels of j that can be assigned to

panel type h) instead of 𝑑𝑗 and get fair reduction in the number of z

variables.

We also update the demands for panels. The maximum amount of item j

that can be cut from one panel of type h is ⌊
𝑊ℎ

𝑤𝑗
⌋ ⌊

𝐿ℎ

𝑙𝑗
⌋. Hence at most

𝑛𝑢𝑚ℎ ⌊
𝑊ℎ

𝑤𝑗
⌋ ⌊

𝐿ℎ

𝑙𝑗
⌋ units of item j can be cut from all panels of type h.

This follows 𝑑𝑗ℎ = min {𝑑𝑗 , 𝑛𝑢𝑚ℎ ⌊
𝑊ℎ

𝑤𝑗
⌋ ⌊

𝐿ℎ

𝑙𝑗
⌋} as the production above

demand is forbidden.

The following example illustrates the computation of 𝑑𝑗ℎ values for no rotation case.

34

Example

Recall the example for item domination with the following parameters:

𝑤1 = 40 𝑙1= 50 𝑟1= 40 𝑑1= 15

𝑤2= 30 𝑙2= 40 𝑟2= 50 𝑑2= 15

𝑤3= 50 𝑙3= 50 𝑟3= 45 𝑑3= 15

𝑤4= 35 𝑙4 = 30 𝑟4= 55 𝑑4= 15

The panels have the following properties:

𝑊1 = 125 𝐿1= 100 𝐶1 = 300 𝑛𝑢𝑚1 = 3

𝑊2= 90 𝐿2= 90 𝐶2 = 310 𝑛𝑢𝑚2 = 2

𝑑11 = min {𝑑1, 𝑛𝑢𝑚ℎ ⌊
𝑊1

𝑤1
⌋ ⌊

𝐿1

𝑙1
⌋} = min {15, 3 ⌊

125

40
⌋ ⌊

100

50
⌋} = 15

𝑑12 = min {𝑑1, 𝑛𝑢𝑚ℎ ⌊
𝑊2

𝑤1
⌋ ⌊

𝐿2

𝑙1
⌋} = min {15, 2 ⌊

90

40
⌋ ⌊

90

50
⌋} = 4

𝑑21 = min {𝑑2, 𝑛𝑢𝑚ℎ ⌊
𝑊1

𝑤2
⌋ ⌊

𝐿1

𝑙2
⌋} = min {15, 3 ⌊

125

30
⌋ ⌊

100

40
⌋} = 15

𝑑22 = min {𝑑2, 𝑛𝑢𝑚ℎ ⌊
𝑊2

𝑤2
⌋ ⌊

𝐿2

𝑙2
⌋} = min {15, 2 ⌊

90

30
⌋ ⌊

90

40
⌋} = 12

𝑑31 = min {𝑑3, 𝑛𝑢𝑚ℎ ⌊
𝑊1

𝑤3
⌋ ⌊

𝐿1

𝑙3
⌋} = min {15, 3 ⌊

125

50
⌋ ⌊

100

50
⌋} = 12

𝑑32 = min {𝑑3, 𝑛𝑢𝑚ℎ ⌊
𝑊2

𝑤3
⌋ ⌊

𝐿2

𝑙3
⌋} = min {15, 2 ⌊

90

50
⌋ ⌊

90

50
⌋} = 2

𝑑41 = min {𝑑4, 𝑛𝑢𝑚ℎ ⌊
𝑊1

𝑤4
⌋ ⌊

𝐿1

𝑙4
⌋} = min {15, 3 ⌊

125

35
⌋ ⌊

100

30
⌋} = 15

𝑑42 = min {𝑑4, 𝑛𝑢𝑚ℎ ⌊
𝑊2

𝑤4
⌋ ⌊

𝐿2

𝑙4
⌋} = min {15, 2 ⌊

90

35
⌋ ⌊

90

30
⌋} = 12

35

ii. Rotation Case

Once rotation is allowed, for the item domain of z variable, we use

min {𝑑𝑗 , 𝑛𝑢𝑚ℎ ⌊
𝑊𝑊ℎ

min {𝑙𝑗,𝑤𝑗}
⌋}, in place of 𝑑𝑗.

The maximum amount of item j that can be cut from all panels of type h is

𝑛𝑢𝑚ℎ ⌊
𝑊ℎ𝐿ℎ

𝑙𝑗𝑤𝑗
⌋ .

This follows, 𝑑𝑗ℎ = min{𝑑𝑗, 𝑛𝑢𝑚ℎ ⌊
𝑊ℎ𝐿ℎ

𝑙𝑗𝑤𝑗
⌋}

The following example illustrates the computation of 𝑑𝑗ℎvalues for rotation case.

Example

For the same example where the items can be rotated,

𝑑11 = min {𝑑1, 𝑛𝑢𝑚1 ⌊
𝑊1𝐿1

𝑤1𝑙1
⌋} = min {15, 3 ⌊

12500

2000
⌋} = 15

𝑑12 = min {𝑑1, 𝑛𝑢𝑚2 ⌊
𝑊2𝐿2

𝑤1𝑙1
⌋} = min {15, 2 ⌊

8100

2000
⌋} = 8

𝑑21 = min {𝑑2, 𝑛𝑢𝑚1 ⌊
𝑊1𝐿1

𝑤2𝑙2
⌋} = min {15, 3 ⌊

12500

1200
⌋} = 15

𝑑22 = min {𝑑2, 𝑛𝑢𝑚2 ⌊
𝑊2𝐿2

𝑤2𝑙2
⌋} = min {15, 2 ⌊

8100

1200
⌋} = 12

𝑑31 = min {𝑑3, 𝑛𝑢𝑚1 ⌊
𝑊1𝐿1

𝑤3𝑙3
⌋} = min {15, 3 ⌊

12500

2500
⌋} = 15

𝑑32 = min {𝑑3, 𝑛𝑢𝑚2 ⌊
𝑊2𝐿2

𝑤3𝑙3
⌋} = min {15, 2 ⌊

8100

2500
⌋} = 6

𝑑41 = min {𝑑4, 𝑛𝑢𝑚1 ⌊
𝑊1𝐿1

𝑤4𝑙4
⌋} = min {15, 3 ⌊

12500

1050
⌋} = 15

𝑑42 = min {𝑑4, 𝑛𝑢𝑚2 ⌊
𝑊2𝐿2

𝑤4𝑙4
⌋} = min {15, 2 ⌊

8100

1050
⌋} = 14

In either case, we try to improve, hence reduce 𝑑𝑗ℎ values by considering the revenue

brought by item j and cost incurred by panel h.

36

We find the maximum amount that can be cut from one panel of type h in any optimal

solution, as follows:

If 𝑘𝑗ℎ units of item j are cut from panel h then an upper bound on the maximum profit

via panel h is

𝑘𝑗ℎ𝑟𝑗 + 𝑟𝑚𝑎𝑥 ⌊
𝑊ℎ𝐿ℎ − 𝑘𝑗ℎ𝑤𝑗𝑙𝑗

𝑚𝑖𝑛𝑖{𝑙𝑖𝑤𝑖}
⌋

The above expression is an upper bound as the maximum revenue is assumed together

with minimum area for the area freed by item j.

We say 𝑘𝑗ℎ is an upper bound on the number of units of item j that can be cut from

panel h if

𝑘𝑗ℎ𝑟𝑗 + 𝑟𝑚𝑎𝑥 ⌊
𝑊ℎ𝐿ℎ − 𝑘𝑗ℎ𝑤𝑗𝑙𝑗

𝑚𝑖𝑛𝑖{𝑙𝑖𝑤𝑖}
⌋ > 𝐶ℎ 𝑎𝑛𝑑

(𝑘𝑗ℎ + 1)𝑟𝑗 + 𝑟𝑚𝑎𝑥 ⌊
𝑊𝑊ℎ𝐿𝐿ℎ − (𝑘𝑗ℎ + 1)𝑤𝑗𝑙𝑗

𝑚𝑖𝑛𝑖{𝑙𝑖𝑤𝑖}
⌋ ≤ 𝐶ℎ

And update 𝑑𝑗ℎ as follows

𝑑𝑗ℎ = min {𝑑𝑗ℎ, 𝑘𝑗ℎ𝑛𝑢𝑚ℎ}

If 𝑘𝑗ℎ, thereby 𝑑𝑗ℎ, is zero then we do not assign any item of type j to panel h. If 𝑘𝑗ℎ =

0 for all h, i.e. ∑ 𝑘𝑗ℎℎ = 0 then we eliminate item j.

Assume S = {j | ∑ 𝑘𝑗ℎℎ = 0 } then we eliminate all items in S, update the item set

and reduce the number of items to N -|S|.

We update 𝑑𝑗ℎ = min {𝑑𝑗ℎ, 𝑑𝑗} in all appropriate places.

The following example illustrates the 𝑑𝑗ℎupdates.

37

Example

Recall the example for the item domination. To calculate 𝑘𝑗ℎ we follow an iterative

process. Starting from 𝑘𝑗ℎ = 0 we calculate 𝑟𝑚𝑎𝑥 ⌊
𝑊ℎ𝐿ℎ−𝑘𝑗ℎ𝑤𝑗𝑙𝑗

𝑚𝑖𝑛𝑖{𝑙𝑖𝑤𝑖}
⌋ until it becomes

smaller than or equal to 𝐶ℎ. We take item 3 to show the updates on panel based

demands.

Suppose 𝑘31 = 0 as a starting point. Calculate

𝑘𝑗ℎ𝑟𝑗 + 𝑟𝑚𝑎𝑥 ⌊
𝑊ℎ𝐿ℎ − 𝑘𝑗ℎ𝑤𝑗𝑙𝑗

𝑚𝑖𝑛𝑖{𝑙𝑖𝑤𝑖}
⌋ = 55 ⌊

12500

1050
⌋ = 605 > 𝐶ℎ = 300

(𝑘𝑗ℎ + 1)𝑟𝑗 + 𝑟𝑚𝑎𝑥 ⌊
𝑊ℎ𝐿ℎ − (𝑘𝑗ℎ + 1)𝑤𝑗𝑙𝑗

𝑚𝑖𝑛𝑖{𝑙𝑖𝑤𝑖}
⌋ = 45 + 55 ⌊

12500 − 2500

1050
⌋

= 45 + 495 = 540 > 𝐶ℎ = 300

Increase 𝑘31by 1 and calculate

(𝑘𝑗ℎ + 1)𝑟𝑗 + 𝑟𝑚𝑎𝑥 ⌊
𝑊ℎ𝐿ℎ − (𝑘𝑗ℎ + 1)𝑤𝑗𝑙𝑗

𝑚𝑖𝑛𝑖{𝑙𝑖𝑤𝑖}
⌋ = 45𝑥2 + 55 ⌊

12500 − 5000

1050
⌋

= 90 + 385 = 475 > 𝐶ℎ = 300

Continue increasing 𝑘31by 1 as the procedure has not reached the critical point yet.

(𝑘𝑗ℎ + 1)𝑟𝑗 + 𝑟𝑚𝑎𝑥 ⌊
𝑊ℎ𝐿ℎ − (𝑘𝑗ℎ + 1)𝑤𝑗𝑙𝑗

𝑚𝑖𝑛𝑖{𝑙𝑖𝑤𝑖}
⌋ = 45𝑥3 + 55 ⌊

12500 − 7500

1050
⌋

= 135 + 220 = 355 > 𝐶ℎ = 300

(𝑘𝑗ℎ + 1)𝑟𝑗 + 𝑟𝑚𝑎𝑥 ⌊
𝑊ℎ𝐿ℎ − (𝑘𝑗ℎ + 1)𝑤𝑗𝑙𝑗

𝑚𝑖𝑛𝑖{𝑙𝑖𝑤𝑖}
⌋ = 45𝑥4 + 55 ⌊

12500 − 10000

1050
⌋

= 180 + 110 = 290 < 𝐶ℎ = 300

Cutting four units of item 3 from the panel type 1 is not profitable. Therefore, 𝑘31 =

3.

38

𝑑𝑗ℎ = min {𝑑𝑗ℎ, 𝑘𝑗ℎ𝑛𝑢𝑚ℎ}

For the problem where rotations allowed:

𝑑31 = min{15, 9} = 9

For the problem where rotations are not allowed:

𝑑31 = min{12,9} = 9

Same procedure is implemented to find 𝑘32. Suppose 𝑘32 = 0 as a starting point.

Calculate,

𝑘𝑗ℎ𝑟𝑗 + 𝑟𝑚𝑎𝑥 ⌊
𝑊ℎ𝐿ℎ − 𝑘𝑗ℎ𝑤𝑗𝑙𝑗

𝑚𝑖𝑛𝑖{𝑙𝑖𝑤𝑖}
⌋ = 55 ⌊

8100

1050
⌋ = 385 > 𝐶ℎ = 310

(𝑘𝑗ℎ + 1)𝑟𝑗 + 𝑟𝑚𝑎𝑥 ⌊
𝑊ℎ𝐿ℎ − (𝑘𝑗ℎ + 1)𝑤𝑗𝑙𝑗

𝑚𝑖𝑛𝑖{𝑙𝑖𝑤𝑖}
⌋ = 45 + 55 ⌊

8100 − 2500

1050
⌋

= 45 + 275 = 320 ≥ 𝐶ℎ = 310

Increase𝑘32 by 1, i.e., set 𝑘32 = 1. Calculate

(𝑘𝑗ℎ + 1)𝑟𝑗 + 𝑟𝑚𝑎𝑥 ⌊
𝑊ℎ𝐿ℎ − (𝑘𝑗ℎ + 1)𝑤𝑗𝑙𝑗

𝑚𝑖𝑛𝑖{𝑙𝑖𝑤𝑖}
⌋ = 55 ⌊

8100 − 5000

1050
⌋ = 90 + 110

= 200 < 𝐶ℎ = 310

Hence, 𝑘32= 1.

𝑑𝑗ℎ = min {𝑑𝑗ℎ, 𝑘𝑗ℎ𝑛𝑢𝑚ℎ}

For the problem where rotations allowed:

𝑑32 = min{6, 2} = 2

For the problem where rotations are not allowed:

𝑑𝑗ℎ = min{2,2} = 2

39

We define the demand constraint relative to panel types and keep the original demand

constraint if ∑ 𝑑𝑗ℎℎ > 𝑑𝑗 . Hence, if ∑ 𝑑𝑗ℎℎ > 𝑑𝑗 the demand constraint below

should be in the formulation.

∑ ∑ 𝑥𝑖𝑗ℎ

𝛼𝑗

𝑖=1ℎ

+ ∑ ∑ 𝑥𝑖𝑟𝑜𝑡_1𝑗ℎ

𝛼𝑟𝑜𝑡_1𝑗

𝑖=1ℎ

+ ∑ ∑ 𝑦𝑖ℎ

𝛼𝑟𝑜𝑡_1𝑗

𝑖=𝛼𝑟𝑜𝑡_1𝑗−1
+1ℎ

+ ∑ ∑ 𝑦𝑖ℎ

𝛼𝑗

𝑖=𝛼𝑗−1+1ℎ

≤ 𝑑𝑗 ∀𝑗

Define 𝛼𝑗ℎ = ∑ 𝑑𝑠ℎ
𝑗
𝑠=1

Define 𝛽𝑘ℎ = min{𝑟 ∶ 1 ≤ 𝑟 ≤ 𝑛, 𝛼𝑟ℎ ≥ 𝑘}

If 𝑑𝑗ℎ < 𝑑𝑗,

∑ 𝑥𝑖𝑗ℎ

𝛼𝑗ℎ

𝑖=1

+ ∑ 𝑥𝑖𝑟𝑜𝑡_1𝑗ℎ

𝛼𝑟𝑜𝑡_1𝑗ℎ

𝑖=1

+ ∑ 𝑦𝑖ℎ

𝛼𝑟𝑜𝑡_1𝑗ℎ

𝑖=𝛼𝑟𝑜𝑡_1𝑗−1ℎ+1

 + ∑ 𝑦𝑖ℎ

𝛼𝑗ℎ

𝑖=𝛼𝑗−1ℎ+1

 ≤ 𝑑𝑗ℎ ∀ ℎ 𝑎𝑛𝑑 𝑗

For item 3 of the example, we let 𝑥3ℎ be the total items cut in both rotated and not

rotated way from panel type h.

Then, the following constraints hold:

𝑥31 ≤ 𝑑31 = 9

𝑥32 ≤ 𝑑32 = 2

3.3.2.2. Reductions in the Number of Panels, 𝒏𝒖𝒎𝒉

Recall that 𝑛𝑢𝑚ℎ is the available number of panels of type h. We reduce 𝑛𝑢𝑚ℎ by

considering the fact that some of the panels may not be used up to their available

amount. In doing so, we define 𝑀𝑖ℎ as an upper bound on the number of panels to be

used to produce all units of item i. Accordingly,

𝑀𝑖ℎ = ⌈
𝑑𝑖

⌊
𝑊ℎ

𝑤𝑖
⌋ ⌊

𝐿ℎ

𝑙𝑖
⌋
⌉

is the maximum number of panels of type h needed to produce all units of item i.

40

When rotations are allowed,

𝑀𝑖ℎ = ⌈
𝑑𝑖

⌊
𝑊ℎ𝐿ℎ

𝑙𝑖𝑤𝑖
⌋
⌉

From panel domination, we know that panel h is used only when all panels of

dominating panel types are used. Let 𝐷ℎ be the set of panels that dominate panel h.

This follows if ∑ 𝑛𝑢𝑚ℎ𝑟∈𝐷ℎ
 panels are used, then panel h could be used. Hence the

number of panels of type h needed over the existing dominating ones is

max {0, ∑ 𝑀𝑖ℎ − ∑ 𝑛𝑢𝑚𝑟𝑟∈𝐷ℎ𝑖 } and 𝑛𝑢𝑚ℎ is updated as:

𝑛𝑢𝑚ℎ = 𝑚𝑖𝑛{𝑚𝑎𝑥 {0, ∑ 𝑀𝑖ℎ − ∑ 𝑛𝑢𝑚𝑟

𝑟∈𝐷ℎ𝑖

} , 𝑛𝑢𝑚ℎ}

The following example illustrates the 𝑛𝑢𝑚ℎupdates.

Example

Recall the example for item domination. Suppose we have another panel type with

the W = L = 90 and C = 320. Thus, the panel set becomes:

𝑊1 = 125 𝐿1= 100 𝐶1 = 300 𝑛𝑢𝑚1 = 3

𝑊2= 90 𝐿2= 90 𝐶2 = 310 𝑛𝑢𝑚2 = 2

𝑊3= 90 𝐿3= 90 𝐶3 = 320 𝑛𝑢𝑚3 = 30

Recognize that the new panel type is dominated by the first two types.

For the case when rotations are not allowed, 𝑀𝑖ℎvalues are calculated as follows:

𝑀13 = ⌈
𝑑1

⌊
𝑊3

𝑤1
⌋ ⌊

𝐿3

𝑙1
⌋
⌉ = ⌈

15

⌊
90
40⌋ ⌊

90
50

⌋
⌉ = 8

41

𝑀23 = ⌈
𝑑2

⌊
𝑊3

𝑤2
⌋ ⌊

𝐿3

𝑙2
⌋
⌉ = ⌈

15

⌊
90
30⌋ ⌊

90
40⌋

⌉ = 3

𝑀33 = ⌈
𝑑3

⌊
𝑊3

𝑤3
⌋ ⌊

𝐿3

𝑙3
⌋
⌉ = ⌈

15

⌊
90
50

⌋ ⌊
90
50

⌋
⌉ = 15

𝑀43 = ⌈
𝑑4

⌊
𝑊3

𝑤4
⌋ ⌊

𝐿3

𝑙4
⌋
⌉ = ⌈

15

⌊
90
35

⌋ ⌊
90
30⌋

⌉ = 3

𝑛𝑢𝑚3 = 𝑚𝑖𝑛{𝑚𝑎𝑥 {0, ∑ 𝑀𝑖3 − ∑ 𝑛𝑢𝑚𝑟

𝑟∈𝐷3𝑖

} , 𝑛𝑢𝑚3}

𝑛𝑢𝑚3 = 𝑚𝑖𝑛{𝑚𝑎𝑥{0, (8 + 3 + 15 + 3) − (3 + 2)}, 30}

𝑛𝑢𝑚3 = 24

If rotations are allowed, M values are calculated as 𝑀13 = 4 𝑀23 =3 𝑀33 = 5 𝑀43 =

3. Then,

𝑛𝑢𝑚3 = 𝑚𝑖𝑛{𝑚𝑎𝑥{0, (4 + 3 + 5 + 3) − (3 + 2)}, 30}

𝑛𝑢𝑚3 = 10

We improve 𝑛𝑢𝑚ℎ by considering the profit brought by any feasible solution, say 𝑍𝐵 .

𝑍𝐵 can be found through a simple heuristic rule or a decision maker might have faced

with a similar instance before so that she/he some idea about the total profit.

One upper bound on the total revenue is ∑ 𝑑𝑗 ∗ 𝑟𝑗𝑗 where all items are cut. This

follows

∑ 𝑑𝑗 ∗ 𝑟𝑗

𝑗

− 𝑇𝑜𝑡𝑎𝑙 𝑃𝑎𝑛𝑒𝑙 𝐶𝑜𝑠𝑡 ≥ 𝑍𝐵

42

𝐼𝑓 ∑ 𝑛𝑢𝑚𝑟 ∗ 𝐶𝑟

𝑟∈𝐷ℎ

≥ ∑ 𝑑𝑗 ∗ 𝑟𝑗

𝑗

− 𝑍𝐵

then panel h is eliminated. This is due to the fact that panel h could be used if all

dominating panels are cut, and all dominating panels when cut cannot lead to a

solution that beats 𝑍𝐵.

𝐼𝑓 ∑ 𝑛𝑢𝑚𝑟 ∗ 𝐶𝑟

𝑟∈𝐷ℎ

< ∑ 𝑑𝑗 ∗ 𝑟𝑗

𝑗

− 𝑍𝐵

then the following holds

∑ 𝑛𝑢𝑚𝑟 ∗ 𝐶𝑟

𝑟∈𝐷ℎ

+ 𝑡𝐶ℎ ≤ ∑ 𝑑𝑗 ∗ 𝑟𝑗

𝑗

− 𝑍𝐵

Hence, upper bound on number of panels of type h is found by the following equation:

𝑛𝑢𝑚ℎ = ⌊
∑ 𝑑𝑗 ∗ 𝑟𝑗𝑗 − 𝑍𝐵 − ∑ 𝑛𝑢𝑚𝑟𝐶𝑟𝑟∈𝐷ℎ

𝐶ℎ
⌋

We use updated 𝑛𝑢𝑚ℎ in defining 𝑑𝑗ℎ and stating the following constraint.

∑ 𝑞𝑘ℎ

ñ

𝑘=1

 ≤ 𝑛𝑢𝑚ℎ

The following example illustrates the 𝑛𝑢𝑚ℎupdates.

Example

The upper bound for the problem is calculated as follows:

∑ 𝑑𝑗 ∗ 𝑟𝑗

𝑗

= 15 ∗ 40 + 15 ∗ 50 + 15 ∗ 45 + 15 ∗ 55 = 2850

Recall that panel type 3 is dominated by both panel 1 and panel 2. Hence, 𝐷3 = {1,2}

∑ 𝑛𝑢𝑚𝑟 ∗ 𝐶𝑟

𝑟∈𝐷ℎ

= 3 × 300 + 2 × 310 = 1520

43

Suppose that decision maker somehow knows the cutting assignments that leads to a

profit of 500. If this value would be smaller than or equal to 1520, then we know that

using panel type 3 would produce worse assignments. However, panel 3 can be used

for the example problem to some level. We find this level by:

𝑛𝑢𝑚ℎ = ⌊
∑ 𝑑𝑗 ∗ 𝑟𝑗𝑗 − 𝑍𝐵 − ∑ 𝑛𝑢𝑚𝑟𝐶𝑟𝑟𝜀𝐷ℎ

𝐶ℎ
⌋

𝑛𝑢𝑚3 = ⌊
2850 − 500 − 1520

320
⌋

𝑛𝑢𝑚3 = 2

We eliminate panel h if 𝑛𝑢𝑚ℎ reduces to zero. Moreover we eliminate panel h if the

condition stated by the following theorem holds.

Theorem 3: In an optimal solution panel h will not be used if the following condition

holds:

max{𝑟𝑖} 𝑚𝑖𝑛 {⌊
𝑊ℎ𝐿ℎ

𝑚𝑖𝑛𝑗{𝑤𝑗𝑙𝑗}
 ⌋ , ⌊

𝑊ℎ

𝑚𝑖𝑛𝑗{𝑤𝑗}
⌋ ⌊

𝐿ℎ

𝑚𝑖𝑛𝑗{𝑙𝑗}
⌋} ≤ 𝐶ℎ

Proof: An upper bound on the number of type h panel

𝑚𝑖𝑛 {⌊
𝑊ℎ𝐿ℎ

𝑚𝑖𝑛𝑗{𝑤𝑗𝑙𝑗}
 ⌋ , ⌊

𝑊ℎ

𝑚𝑖𝑛𝑗{𝑤𝑗}
⌋ ⌊

𝐿ℎ

𝑚𝑖𝑛𝑗{𝑙𝑗}
⌋}

Hence, max{𝑟𝑖} 𝑚𝑖𝑛 {⌊
𝑊ℎ𝐿ℎ

𝑚𝑖𝑛𝑗{𝑤𝑗𝑙𝑗}
 ⌋ , ⌊

𝑊ℎ

𝑚𝑖𝑛𝑗{𝑤𝑗}
⌋ ⌊

𝐿ℎ

𝑚𝑖𝑛𝑗{𝑙𝑗}
⌋} is an upper bound on the

revenue that can be generated via a single panel of type h. If this revenue is no more

than 𝐶ℎ then panel h will never be used as its cost outweighs the maximum revenue

that it could generate.

44

Theorem 4: In an optimal solution panel h will not be used if the items are rotatable

and the following condition holds:

max{𝑟𝑖} 𝑚𝑖𝑛 {⌊
𝑊ℎ𝐿ℎ

𝑚𝑖𝑛𝑗{𝑤𝑗𝑙𝑗}
 ⌋ , ⌊

𝑊ℎ

𝑚𝑖𝑛𝑗{𝑤𝑗, 𝑙𝑗}
⌋ ⌊

𝐿ℎ

𝑚𝑖𝑛𝑗{𝑤𝑗, 𝑙𝑗}
⌋} ≤ 𝐶ℎ

Proof: The proof is omitted as it directly follows that of Theorem 3.

The following example illustrates the application of the Theorem 3 and 4.

Example

Consider the example for item domination. The upper bound on the number of type

3 panel is found as follows:

If rotations are possible:

𝑚𝑖𝑛 {⌊
8100

1050
 ⌋ , ⌊

90

30
⌋ ⌊

90

30
⌋} = min{7,9} = 7

If rotations are not allowed:

𝑚𝑖𝑛 {⌊
8100

1050
 ⌋ , ⌊

90

30
⌋ ⌊

90

30
⌋} = min{7,9} = 7

Hence, the upper bound on the revenue would be 7×max{𝑟𝑖}=7×55=385 for item

rotations allowed case. For non-rotated items, the upper bound on the revenue is also

7×max{𝑟𝑖}= 385. Panel type 3, which is dominated by both panel type 1 and panel

type 2 cannot be eliminated.

3.4. Further Improvements in Model 2

We recognize some properties of the optimal solution and propose some pre-

processing procedures and valid inequalities for our models. In this section, we will

briefly discuss on the new valid inequalities proposed for Model 2. Also, a reduction

technique in the number of decision variables x is presented.

45

3.4.1. Ordering Constraints

Margot (2010) states that “An integer linear program (ILP) is symmetric if its

variables can be permuted without changing the structure of the problem.” The

symmetry elimination strategy of Model 1 was defining partition the items into two,

ones that initialize the levels, and the ones that are assigned to levels. Same strategy

is kept in Model 2 as well. We accommodate further symmetry elimination strategies

in Model 2.

Recall that in Model 2, we define panel decision variables for each panel type as many

as their available quantities.

 For each panel type h, 𝛼ℎ = ∑ 𝑛𝑢𝑚𝑠
ℎ
𝑠=1 and

For each panel, 𝛽𝑘 = min{𝑟 ∶ 1 ≤ 𝑟 ≤ ℎ, 𝛼𝑟 ≥ 𝑘} is defined.

Theorem 5: For a panel type h, there exists an optimal solution in which

𝑞𝑘 ≥ 𝑞𝑘+1 ∀ 𝑘 ∈ {𝛼ℎ−1 + 1 … 𝛼ℎ}

Proof: Suppose that in the optimal solution, the proposed constraint is violated, i.e.

𝑞𝑘+1 > 𝑞𝑘 . It implies that some of the panels of type h are not used. Due to the fact

that each 𝑘 ∈ {𝛼ℎ−1 + 1 … 𝛼ℎ} represents same panel type, changing panel k+1 with

k is possible and does not change the optimal solution. Hence, via the constraint, the

symmetric solutions, are eliminated, but not the optimal solution.

Recall that in our new formulation, we defined fittable strips for each panel. The

maximum number of levels/strips for a panel is defined dependent on both item and

panel type and can be find as:

𝑈𝐵𝐿𝑒𝑣𝑒𝑙𝑗ℎ = 𝑚𝑖𝑛 {𝑑𝑗ℎ, ⌊
𝑊ℎ

𝑤𝑗
⌋}

46

Theorem 6: For a panel type h, there exists an optimal solution in which

𝑧𝑖𝑚𝑘 ≥ 𝑧𝑖(𝑚+1)𝑘 ∀ 𝑖, 𝑘 𝑎𝑛𝑑 𝑚 ∈ {1, … , 𝑈𝐵𝐿𝑒𝑣𝑒𝑙𝑖 𝛽𝑘
 }

Proof: Suppose that in the optimal solution, the proposed constraint is violated, i.e.

𝑧𝑖(𝑚+1)𝑘 > 𝑧𝑖𝑚𝑘 . It implies that some of the possible strips of item i is not used. Due

to the fact that each 𝑚 ∈ {1, … , 𝑈𝐵𝐿𝑒𝑣𝑒𝑙𝑖 𝛽𝑘
} represents levels with same

characteristics, i.e. all of them are initialized by item i, changing level m+1 with m is

possible and does not change the optimal solution. Hence, by including the constraint,

one can only eliminate some symmetric solutions, not the optimal solution.

3.4.2. Reduction in x Variables

Recall that z variables represent the levels while the x variables represent the

assignments to those levels. We define x variables only if the width of the item is

smaller than or equal to the width of the level. Luckily, Model 2 gives room to more

improvements.

Recall 𝐿ℎ is the length of the panel and 𝑙𝑗 is the length of the item. If ⌊(𝐿ℎ − 𝑙𝑖)/𝑙𝑗⌋ <

1, then it is not necessary to define a decision variable for the assignment of item j to

level i as there would be no integer solution. Recognizing this, when the length of item

j and the first item of the level exceed the capacity of the panel, the decision variable

is not defined.

3.5. Improved Models in Summary

Both improved models benefit from the presolving techniques that we suggest in

Properties of Optimal Solutions. Constraint sets and the objective functions are

presented below to clarify the differences between them.

The performances of the proposed strong and weak inequalities for Item Domination

are analyzed on benchmark problem instances. In majority of the instances, the

addition of extra binary variables is not justified by the amount of improvement that

47

the strong item elimination property brings. Hence, we decide not to include strong

inequalities in our improved models. Moreover, the weak inequalities do not lead to

any reduction, so we did not include them as well.

For the sake of completeness, we give the improved versions of Model 1 and Model

2.

Improved Model 1

max ∑ ∑ ∑ 𝑟𝑗 ∗ 𝑥𝑖𝑗ℎ

𝑛

𝑗=𝛽𝑖

ñ−1

𝑖=1ℎ

+ ∑ ∑ 𝑦𝑖ℎ ∗ 𝑟𝛽𝑖

ñ

𝑖=1ℎ

− ∑ ∑ 𝑞𝑘ℎ ∗

ñ

𝑘=1ℎ

𝑐ℎ (18)

 ∑ ∑ 𝑥𝑖𝑗ℎ

𝛼𝑗

𝑖=1ℎ

 + ∑ ∑ 𝑦𝑖ℎ

𝛼𝑗

𝑖=𝛼𝑗−1+1ℎ

≤ 𝑑𝑗 ∀𝑗 (19)

if ∑ 𝑑𝑗ℎℎ > 𝑑𝑗

 ∑ ∑ 𝑥𝑖𝑗ℎ

𝛼𝑗

𝑖=1ℎ

+ ∑ ∑ 𝑦𝑖ℎ

𝛼𝑗

𝑖=𝛼𝑗−1+1ℎ

≤ 𝑑𝑗 ∀𝑗 (20)

If 𝑑𝑗ℎ ≤ 𝑑𝑗,

 ∑ 𝑥𝑖𝑗ℎ

𝛼𝑗ℎ

𝑖=1

+ ∑ 𝑦𝑖ℎ

𝛼𝑗ℎ

𝑖=𝛼𝑗−1ℎ+1

 ≤ 𝑑𝑗ℎ ∀ ℎ 𝑎𝑛𝑑 𝑗 (21)

 𝑛𝑢𝑚𝑟 − ∑ 𝑞𝑘𝑟

𝑘

≤ 𝑛𝑢𝑚𝑟(1 − 𝑞𝑡𝑠) ∀ 𝑡 (22)

 ∑ 𝑞𝑘ℎ

ñ

𝑘=1

 ≤ 𝑛𝑢𝑚ℎ (23)

48

Improved Model 2

max ∑ 𝑥𝑗𝑖𝑚𝑘 ∗ 𝑟𝑗

𝑗,𝑖,𝑚,𝑘

+ ∑ 𝑧𝑖𝑚𝑘 ∗ 𝑟𝑖

𝑖

− ∑ 𝑐𝛽𝑘
𝑞𝑘

𝑘

 (24)

 ∑ 𝑥𝑗𝑖𝑚𝑘 ∗ 𝑙𝑗
𝑗

+ 𝑧𝑖𝑚𝑘 ∗ 𝑙𝑖 ≤ 𝑧𝑖𝑚𝑘𝐿𝛽𝑘
 ∀ (𝑖, 𝑚, 𝑘) (25)

 ∑ 𝑧𝑖𝑚𝑘 ∗ 𝑤𝑖

𝑖,𝑚

≤ 𝑞𝑘𝑊𝛽𝑘
 ∀ 𝑘 (26)

 ∑ 𝑥𝑗𝑖𝑚𝑘

𝑖,𝑚,𝑘

+ ∑ 𝑧𝑗𝑚𝑘

𝑚,𝑘

≤ 𝑑𝑗 ∀ 𝑗 (27)

 𝑛𝑢𝑚𝑟 − ∑ 𝑞𝑘

𝛼𝑟

𝑘=𝛼𝑟−1+1

≤ 𝑛𝑢𝑚𝑟(1 − 𝑞𝑡) 𝑡 ∈ {𝛼𝑠−1 + 1 … 𝛼𝑠} (28)

 𝑧𝑖𝑚𝑘 ≥ 𝑧𝑖(𝑚+1)𝑘 ∀ 𝑖, 𝑘 𝑎𝑛𝑑 𝑚 (29)

 𝑞𝑘 ≥ 𝑞𝑘+1 ∀ 𝑘 (30)

3.6. Heuristics

The satisfactory behavior of the mathematical model for the small sized instances has

motivated us to use it to solve large sized instances. In doing so, we decompose the

problem into small sub-problems and solve each problem optimally by improved

Model 2. Improved Model 2 is selected due to its notably better performance over

Model 1. Basically, we propose two types of decomposition:

1) Panel Type Decomposition

2) Panel Unit Decomposition

In panel type decomposition approach, we order the panels according to their cost/area

values. Note that our objective maximizes total profit thereby asking for cheaper

49

panels and higher units of item cut. Therefore cheaper panels with larger area (to

accommodate many more item cuts) are preferable. To take both cost and area

concerns into account, we give priority to the panel type having smallest cost/area and

then second smallest and so on. We terminate whenever if all panel types or all items

are cut. Below is the stepwise description of the panel type based decomposition

algorithm.

3.6.1. Algorithm Panel Type Based Decomposition

Step 0 - Order the panel types according to their non-decreasing order of cost/area

values, i.e.

𝐶1

𝐴1
≤

𝐶2

𝐴2
≤

𝐶3

𝐴3
≤ ⋯ ≤

𝐶𝑚

𝐴𝑚

where, m = number of panel types, 𝐴𝑟 is the area of panel type r, and 𝐶𝑟 is the cost

of panel type r.

Set r = 1 and z = 0.

N is the set of all items

Step 1 - Solve Improved Model 2 for panel type r with 𝑛𝑢𝑚𝑟 panels and with set N.

Let 𝑆𝑟𝑘 be the set of items in the 𝑘𝑡ℎ panel of type r.

𝑍𝐻 be the profit of the solution

𝑍𝐻 = 𝑍𝐻 + 𝑍𝑟

𝑛𝑢𝑚𝑟 = 𝑂𝑛𝑢𝑚𝑟

N = N / ⋃ 𝑆𝑟𝑘𝑘

50

Step 2 - Improvement Step

Starting from the least costly unassigned panel types (among the panels

r+1,….m) if there exists one type such that 𝐶𝑠 < 𝐶𝑟 (thereby 𝐴𝑠 < 𝐴𝑟) and could

accommodate all items in 𝑆𝑟𝑘 for any individual panel k then assign all items

in 𝑆𝑟𝑘 to one panel of s and let

𝑛𝑢𝑚𝑟 = 𝑛𝑢𝑚𝑟 + 1

𝑛𝑢𝑚𝑠 = 𝑛𝑢𝑚𝑠 − 1

𝑍𝐻 = 𝑍𝐻 + 𝐶𝑟 − 𝐶𝑠

Continue with Step 2 until no transfers are possible.

If 𝑛𝑢𝑚𝑟 ≥ 1 and N is not empty, then go to Step 1.

Step 3 : If N is empty or r = m, stop. Otherwise,

r = r + 1 and go to Step 1.

In the improvement step, we improve the solution if any other cheaper panel type

could be used without sacrificing from the total revenue. If such a panel type exists

we empty the already used panel with not yet used panel, and resolve for the already

used panel with the not yet cut items.

The example below illustrates the execution of the algorithm.

Example

Suppose that we have three panel types with the following parameters:

51

𝑊1 = 104 𝐿1 = 100 𝐶1 = 70 𝑛𝑢𝑚1 = 2

𝑊2 = 80 𝐿2 = 80 𝐶2 = 50 𝑛𝑢𝑚2 = 2

𝑊3 = 100 𝐿3 = 100 𝐶3 = 75 𝑛𝑢𝑚3 = 2

We have three item types with the following parameters:

𝑤1 = 54 𝑙1 = 50 𝑟1 = 40 𝑑1 = 20

𝑤2 = 25 𝑙2 = 25 𝑟2 = 11 𝑑2 = 32

𝑤3 = 40 𝑙3 = 40 𝑟3 = 45 𝑑3 = 8

Step - 0 Panels are ordered by their cost/area values.

70

10400
≤

75

10100
≤

50

6400

 The order of panels is Panel 1 – Panel 3 – Panel 2.

Step – 1 Solving Improved Model 2 for two panels of type 1 gives optimal assignments

to the panels are as shown below. The grey area is the residual area on the panels.

Item

3

Item

3

Item

3

Item

3

Item

3

Item

3

Item

3

Item

3

𝑍𝐻 = 𝑍𝐻 + 8 × 45 − 2 × 70 = 220

Step 2 – The total length and the total width of the assignments are both 80, which

could fit to a panel of type 2 having lower cost.

52

𝑛𝑢𝑚1 = 𝑛𝑢𝑚𝑟 + 2 = 2

𝑛𝑢𝑚𝑠 = 𝑛𝑢𝑚𝑠 − 2 = 0

𝑍𝐻 = 220 + 2 × 20 = 260

 Algorithm backs to Step 1 as 𝑛𝑢𝑚1 ≥ 1.

Step 1 - Resolving for the panel type 1 gives the following solution:

Item

2
Item 2 Item 2 Item 2

Item 2 Item 2 Item 2 Item 2

Item

2
Item 2 Item 2 Item 2

Item 2 Item 2 Item 2 Item 2

Item

2
Item 2 Item 2 Item 2

Item 2 Item 2 Item 2 Item 2

Item

2
Item 2 Item 2 Item 2

Item 2 Item 2 Item 2 Item 2

𝑍𝐻 = 260 + 32 × 11 − 2 × 70 = 472

Step 2 is skipped as there is no smaller cost alternative to panel 1, other than

panel 2 and panel 2 is no more available.

Step 1 - Solving for panel type 3 (the second panel type in the ordered list) for two

panels (𝑛𝑢𝑚3 = 2), the assignments obtained in each of the iterations are as follows:

Item

1

Item

1

𝑍𝐻 = 472 + 2 × (2 × 40 − 75) = 482

There are no alternative panel type left, hence, the algorithm terminates.

53

The objective function value is 482. If the improvement step had not implemented,

then the algorithm would give an objective function of 422.

Algorithm panel type decomposition somewhat dispels the exponential nature of the

problem by solving relatively small subproblems. We observe that the model may

have computational troubles when the number of panels of a considered type is high.

Based on this observation we proposed another decomposition based algorithm that

decomposes the problem into panel units, but not panel types. Algorithm panel type

decomposition might consider up to m subproblems whereas unit based

decomposition might have to deal with ∑ 𝑛𝑢𝑚𝑟
𝑚
𝑟=1 subproblems. The number of

subproblems are considerably higher, however much easier to solve, as each

subproblem of panel r uses 𝑛𝑢𝑚𝑟 = 1.

Below is the stepwise description of the unit based decomposition algorithm.

3.6.2. Algorithm Panel Unit Based Decomposition

Step 0 - Order the panel units according to their nondecreasing order of cost/area

values, i.e.

𝐶1

𝐴1
≤

𝐶2

𝐴2
≤

𝐶3

𝐴3
≤ ⋯ ≤

𝐶𝑝

𝐴𝑠

where, m = number of panel types, 𝑝 = ∑ 𝑛𝑢𝑚𝑟
𝑚
𝑟=1 , 𝐴𝑘 is the area of panel

unit k, 𝐶𝑘 is the cost of panel unit k and r represents panel types.

Set k = 1, r = 1 and z = 0

N = set of all items

Step 1 - Solve improved model 2 for panel k and set N. Let 𝑆𝑘 be the set of items in

the solution and 𝑍𝑘 be the profit of the solution.

𝑍𝐻 = 𝑍𝐻 + 𝑍𝑘

54

N = N / 𝑆𝑘

If 𝑆𝑘 = ∅, then

 k = ∑ 𝑛𝑢𝑚𝑠
𝑟
𝑠=1

 r = r + 1

Step 2 – If there exists another panel t such that t > k and 𝐶𝑡 < 𝐶𝑟 and could

accommodate all items in 𝑆𝑘, then empty panel r by transferring the items in set 𝑆𝑘 to

panel t. If there are more than one t, then select the one having smallest cost. If panel

k is emptied and 𝑁 ≠ ∅,

𝑍𝐻 = 𝑍𝐻 + 𝐶𝑘 − 𝐶𝑡

 Remove panel t from further considerations and go to Step 1.

Step 3 – If N is empty, or k = s, then stop. Otherwise,

 k = k + 1,

If k > ∑ 𝑛𝑢𝑚𝑟
𝑠=1 𝑠

, then

r = r + 1

Go to Step 1.

We propose another decomposition based algorithm, which can be regarded as a slight

variant of Algorithm Unit Based Decomposition. The main structure of the Algorithm

Unit Based Decomposition is kept, except that the panels are ordered according to

their cost values and the assignments that can be done only one panel type are

prioritized. To clarify the prioritization, assume there are two panel types, r and s

where 𝐶𝑟 < 𝐶𝑠. The algorithm starts with panels of type r. Assume also that 𝐿𝑠 < 𝐿𝑟

55

and 𝑊𝑠 < 𝑊𝑟, hence there are some assignments which can only be done to panel type

r.

Let 𝑋𝑟 represents the total length of assignments of a level and 𝑌𝑟 represents the total

width of assignments of a panel. To prioritize the assignments specific to panel r, the

constraint sets below are introduced to the model:

𝑋𝑟 ≥ 𝐿𝑠 + 0.1 (31)

𝑌𝑟 ≥ 𝑊𝑠 + 0.1 (32)

In doing so, the panel specific assignments are selected as long as possible so as to

maximize the usage of marginal benefit -larger area- of a panel type. When it is not

possible, i.e., model with constraints (31) and (32) could not find a solution, any

assignment is accepted.

Algorithm Modified Unit Based Decomposition skips the improvement step as the

assignments done to a panel is infeasible for the other panels as long as possible. When

it is feasible for the other panel types, i.e. there are no panel specific assignments left,

the exchange would bring negative or zero profit, as the Algorithm use the panels in

the order of non-increasing cost.

Below is the stepwise description of the unit based decomposition algorithm.

3.6.3. Algorithm Modified Panel Unit Based Decomposition

Step 0 - Order the panel units according to their non-decreasing order of cost values,

i.e.

𝐶1 ≤ 𝐶2 ≤ 𝐶3 ≤ ⋯ ≤ 𝐶𝑠

where, m = number of panel types, 𝑠 = ∑ 𝑛𝑢𝑚𝑟
𝑚
𝑟=1 and 𝐶𝑘 is the cost of panel

k and r represents panel types.

56

Set k = 1, r =1 and z = 0

N = set of all items

Step 1 – Solve the Improved Model 2 with the following constraints for panel k and

set N.

Let panel k is from type r and 𝐿𝑠 be the panel with maximum length in the set

having smaller length than panel type r. Similarly, let 𝑊𝑠 be the panel with

maximum width in the set having smaller width than panel type r. We add

following constraints to the model:

(33) ∑ 𝑥𝑗𝑖𝑚𝑘 ∗ 𝑙𝑗
𝑗

+ 𝑧𝑖𝑚𝑘 ∗ 𝑙𝑖 ≥ 𝑧𝑖𝑚𝑘𝐿𝑠 ∀ (𝑖, 𝑚)

(34) ∑ 𝑧𝑖𝑚𝑘 ∗ 𝑤𝑖

𝑖,𝑚

≥ 𝑞𝑘𝑊𝑠

Note that if panel k has the minimum length, the first constraint drops. If it has

the minimum width, then the second constraint drops.

Let 𝑆𝑘 be the set of items in the solution and 𝑍𝑘 be the profit of the solution.

𝑍𝐻 = 𝑍𝐻 + 𝑍𝑘

N = N / 𝑆𝑘

If 𝑆𝑘 ≠ ∅, skip Step 2 and go to Step 3.

Step 2 – Relax the constraints (33) and (34) and solve the improved Model 2.

 𝑍𝐻 = 𝑍𝐻 + 𝑍𝑘

N = N / 𝑆𝑘

If 𝑆𝑘 = ∅ and N ≠ ∅, then

57

 k = ∑ 𝑛𝑢𝑚𝑟
𝑠=1 𝑠

+ 1

 r = r + 1

 Go to Step 1.

If 𝑆𝑘 ≠ ∅ and N ≠ ∅:

If k+1> ∑ 𝑛𝑢𝑚𝑟
𝑠=1 𝑠

, then

k = k + 1

r = r + 1 and go to Step 1.

Else,

 k = k + 1 and go to Step 2.

Step 3 – If N is empty, or k = s, then stop. Otherwise,

 k = k + 1,

If k > ∑ 𝑛𝑢𝑚𝑟
𝑠=1 𝑠

, then

r = r + 1

 Go to Step 1.

The starting point of the algorithm, i.e., the assignments to the first panel, may change

the solution significantly. We see through experimentation that starting with the

second best solution for the first panel type may increase the overall performance of

the algorithm. As the solution times are small, solving the algorithm by two different

starting points can well be justified. One can avoid the best solution for the first panel

in the second run of the algorithm.

58

Example

Recall the same example.

Step 0 – Panels are ordered according to their costs. The order of the panels:

 Panel 2 – Panel 1 – Panel 3

Step 1 – Solve the improved model 2 for a single panel of type 2. 𝐿2 and 𝑊2 are the

minimum values of the lengths and widths, respectively. Hence, there are no panel

specific assignments.

Improved model 2 is solved two times and each time the following assignments

are returned:

Item 3 Item 3

Item 3 Item 3

 𝑍𝐻 and N are updated.

 At the end of second run, 𝑍𝐻 = 260, 𝐷1 = 20 𝐷2 = 32 𝐷3 = 0

 r = r + 1 = 2

 k = 3

The algorithm continues to solve the Improved Model 2 for k = 3 which is of

type 1. Panel type 2 was considered, so panel types 3 and 1 are compared.

𝑊1 = 104 > 𝑊3 = 100, and 𝐿1 = 100 = 𝐿3 = 100. Hence, the algorithm

prioritizes the assignments which have total width of 𝑊 > 𝑊3 by introducing

the constraint below:

 ∑ 𝑧𝑖𝑚3 ∗ 𝑤𝑖

𝑖,𝑚

≥ 100 + 1

59

For the first panel of type 1, the following assignment is obtained:

Item 1 Item 1

Item 2 Item 2 Item 2 Item 2

Item 2 Item 2 Item 2 Item 2

𝑍𝐻 = 260 + 168 − 70 = 358,

𝐷1 = 18 𝐷2 = 24 𝐷3 = 0

There is no need to relax the constraint as a feasible assignment is reached.

When solving for the second panel of type 1, the same assignments are reached.

𝑍𝐻 = 358 + 168 − 70 = 456,

𝐷1 = 16 𝐷2 = 16 𝐷3 = 0

Step 3 – k = 4+1 = 5 and algorithm continues with Step 1.

Step 1 – Panel type 3 is the only panel left, there is no need to force the model to do

panel specific assignments.

 When solving for a panel of type 3, we get the following assignments.

Item 2 Item 2 Item 2 Item 2

Item 2 Item 2 Item 2 Item 2

Item 2 Item 2 Item 2 Item 2

Item 2 Item 2 Item 2 Item 2

60

𝑍𝐻 = 456 + 176 − 75 = 557,

𝐷1 = 16 𝐷2 = 0 𝐷3 = 0

Improved Model 2 for k+1 of type 3 returns the following assignments:

Item 1 Item 1

𝐷1 = 14 𝐷2 = 0 𝐷3 = 0

𝑍𝐻 = 557 + 80 − 75 = 562

Step 3 – There are no panel left, so algorithm terminates.

Heuristic 1 uses Algorithm Panel Based Decomposition. Heuristic 2 runs Algorithm

Unit Based Decomposition and Modified Algorithm Unit Based Decomposition and

takes the best solution.

61

CHAPTER 4

4. COMPUTATIONAL EXPERIMENTS

In this chapter, we discuss the computational experiments that are designed to evaluate

the performances of our mathematical models and heuristic algorithms. To solve all

models, we use a non-commercial solver SCIP version 6.0.1. The number of threads

is set to the default value of the solver. For the heuristic algorithms and pre-solving

operations of the model, we use Python 3.6 as programming language. The

experiment is conducted on a computer with Intel i7-6700HQ CPU at 2.6 GHz and 8

GB RAM memory.

The performance of SCIP 6.0.0 is tested on benchmark instances by Mittelmann

(2018). The summary of the results can be seen in Table 4.1. SCIPS and SCIPC differ

by their LP Solver. SCIPS uses SoPlex as LP solver, while SCIPC uses CPLEX. When

the number of threads is more than one, SCIP is named as Fiber SCIP and abbreviated

as FSCIP in the table. For different threads, the number of instances solved, unscaled

and scaled CPU times of different solvers are given in Table 4.1. The scaled CPU

times are obtained by equating the fastest solver performance to 1 and the others’

proportional to it. Although we used SCIP 6.0.1, we present the performance of older

version because the latest available study we could reach concerns the SCIP 6.0.0.

62

Table 4.1 The Summary of Performance Comparison of SCIP and Other Solvers

1 thr CBC CPLEX GUROBI SCIPC SCIPS XPRESS MATLAB SAS

unscaled 1639 72.2 41.6 239 330 83.1 3002 121

scaled 39 1.74 1 5.75 7.94 2.00 72.2 2.90

solved 53 87 87 83 76 86 32 84

4 thr CBC CPLEX FSCIPC FSCIPS GUROBI XPRESS MIPCL SAS

unscaled 843 36.4 240 294 24.2 40.3 177 72.6

scaled 34.8 1.5 9.9 12.1 1 1.66 7.29 3.00

solved 66 86 80 79 87 87 84 85

12 thr CBC CPLEX FSCIPC FSCIPS GUROBI XPRESS MIPCL SAS

unscaled 668 37.5 247 328 25.2 39.5 165 85.4

scaled 27 1.49 9.8 13.0 1 1.57 6.53 3.39

Solved 69 87 78 76 87 87 82 82

In Section 4.1, we report on the instance features and data generation. In Section 4.2.1

and Section 4.2.2 we test the effects of improvement mechanisms on Model 1 and

Model 2, respectively. We compare the performances of Model 1 and Model 2 in

Section 4.2.3. Finally, in Section 4.2.4 we discuss the performances of the heuristic

algorithms relative to the best available solutions.

4.1. Instance Features and Data Generation

We use 42 instances taken from the literature and that are available online as in Furini

and Malaguti (2013). The first 12 instances are originally for the bin-packing problem

by Cintra et. al. (2008). Uniform integer demand between 0 and 100 and three types

of panels with dimensions (L,W), (1.2L, 0.8W) and (1.1L, 0.9W) are used in these

instances.

The other 30 instances are proposed by Hifi and Roucairol (2001) for two dimensional

knapsack problem. These include demand figures.

The maximum and minimum item widths (wmax and wmin) and item lengths (lmax

and lmin) and maximum and minimum panel width and length (W and L) together

63

with the number of item types(n) and total demand (ñ) for all 42 instances are given

in Table 4.2.

Table 4.2 Features of the Problem Instances

Instance

No
n ñ lmax lmin wmax wmin Lmax Lmin Wmax Wmin

1 10 669 167 66 184 86 300 275 225 200

2 20 982 168 18 186 68 300 275 225 200

3 30 1489 176 63 186 71 300 275 225 200

4 50 2751 184 62 179 63 300 275 225 200

5 10 645 364 132 356 145 600 550 450 400

6 20 1064 355 132 372 134 600 550 450 400

7 30 1626 365 129 374 147 600 550 450 400

8 50 2363 362 131 374 127 600 550 450 400

9 10 590 673 292 688 341 1200 1100 900 800

10 20 830 730 269 742 260 1200 1100 900 800

11 30 1298 674 266 745 274 1200 1100 900 800

12 50 2081 746 254 723 269 1200 1100 900 800

13 20 62 33 9 43 11 60 55 54 48

14 20 53 33 12 42 14 72 66 54 48

15 20 46 35 15 43 14 84 77 72 64

16 20 35 33 9 43 11 108 99 63 56

17 20 45 69 13 63 12 158 145 90 80

18 30 63 69 13 63 12 158 145 90 80

19 10 19 31 11 31 9 74 68 49 44

20 10 18 20 1 14 2 24 22 18 16

21 30 65 69 18 63 12 156 143 117 104

22 35 75 57 19 54 18 156 143 117 104

23 35 90 96 31 112 35 180 165 157 140

24 25 82 58 20 80 28 120 110 112 100

25 25 67 78 25 66 21 150 137 94 84

26 35 63 93 34 104 34 174 159 148 132

27 40 96 170 59 130 45 320 293 186 165

28 35 75 57 19 59 18 156 143 117 104

29 10 51 54 15 65 13 152 139 88 78

30 10 32 54 15 65 13 152 139 88 78

31 22 60 109 35 101 38 303 278 219 195

64

Table 4.2 (cont’d).

32 40 90 108 33 135 38 315 289 216 192

33 10 18 20 1 14 2 58 53 18 16

34 35 76 31 10 43 10 78 71 68 60

35 5 18 54 18 65 13 152 139 88 78

36 10 23 55 9 39 4 84 77 36 32

37 10 24 47 13 27 4 84 77 36 32

38 30 78 31 10 43 10 66 60 76 68

39 20 50 44 14 49 16 118 108 89 79

40 20 62 43 11 33 9 84 77 36 32

41 10 23 31 9 35 7 48 44 63 56

42 20 62 33 9 43 11 48 44 63 56

We generate some other parameters: the revenues of items, costs of panels and

available number of panels.

We set the revenues using the areas of items from discrete uniform distribution as:

𝑟𝑗 = 𝑈 [max (10,
𝑙𝑗×𝑤𝑗

10,000
), (100,

𝑙𝑗×𝑤𝑗

100
)]

According to the above scheme, the revenues of the items are somewhat area

dependent. When the areas are small, the revenues are generated between 10 and 100,

regardless of their areas. For big items, the areas do define the revenues. The selected

constants 100 and 10,000 are compatible with the item areas and revenues observed

in the marble company.

The panel costs are generated from discrete uniform distribution as follows:

𝐶ℎ = 𝑈 [
𝐴ℎ

𝐴1
 ×𝑚𝑎𝑥𝑖{𝑟𝑖},

𝐴ℎ

𝐴1
 ×2×𝑚𝑎𝑥𝑖{𝑟𝑖}]

where 𝑚𝑎𝑥𝑖{𝑟𝑖} is the maximum revenue over all items and 𝐴ℎ is the area of panel h.

65

According to the above scheme, even for the item with maximum revenue, cutting

only one item from a panel is avoided. In our interpretation, cutting one item from a

panel, that would be trimming. We also avoid too high panel costs, by putting an

upper limit of 2 x maximum revenue of items. Areas are important factor in setting

the cost of a panel. Therefore, for each panel we set a coefficient that is proportional

to its area. The smallest area is taken as a baseline and coefficient
𝐴ℎ

𝐴1
 is used for panel

h.

To set available number 𝑛𝑢𝑚ℎ to each panel type, we use the objective function values

(the total area used by the assigned items) of the solutions in Furini and Malaguti

(2013). We divide the total area (obj) to the smallest panel area and get an

overestimate on the total number of panels used in their solutions. Using this

overestimate ⌈
𝑂𝑏𝑗

𝐴1
⌉ , we set 𝑛𝑢𝑚ℎ to one panel type as follows:

𝑛𝑢𝑚ℎ =⌈
𝑂𝑏𝑗

𝑚×𝐴1
⌉

𝑛𝑢𝑚ℎ values of a particular instance are the same for all panel types.

We set the number of different panel types to 2 and 3.

4.2. Analysis of the Results

We evaluate the performance of the mathematical models by their CPU times. We put

a time limit of 7200 seconds for the execution of all models and report on the number

of instances solved to optimality (out of 42 instances) within this limit. Moreover we

give the total number of integer decision variables for each instance.

In our preliminary tests, for both models, we observe that in majority of the instances,

the addition of extra binary variables is not justified by the amount of improvement

that the item elimination property brings. Hence, we decided not to include the item

elimination property in our runs.

66

4.2.1. Performance of Model 1 and Its Improved Version

In this section, we discuss the performance of Model 1 and its improved version and

report the results in Table 4.3.

Table 4.3 Performance of Model 1 and its Improved Version

Instance Features
3 Panel Types 2 Panel Types

Model 1
Improved

Model 1
Model 1

Improved

Model 1

Instance

No
N ñ

Number

of

integer

DVs

CPU

Time

Number

of

integer

DVs

CPU

Time

Number

of

integer

DVs

CPU

Time

Number

of

integer

DVs

CPU

Time

1 10 669 688638 32 619194 14 459092 12 412796 14

5 10 645 639429 7200 548669 7200 426286 863 338146 563

10 20 830 1066842 443 1011453 259 711228 233 674302 242

13 20 62 8238 14 8238 16 5492 12 5492 14

14 20 53 6147 3008 4632 1185 4098 328 2916 175

15 20 46 4971 79 3100 62 3314 34 1912 20

16 20 35 3189 652 2203 69 2126 32 1440 7

17 20 45 4686 3197 3237 1948 3124 94 1972 39

18 30 63 9153 7200 6629 7200 6102 2663 4087 522

19 10 19 969 2 798 3 646 7 532 7

20 10 18 915 13 753 6 610 3 502 5

24 25 82 13431 7200 7492 7200 8954 656 4518 106

26 35 63 9663 7200 8575 7200 6442 414 5549 357

30 10 32 2274 28 1650 16 1516 7 1100 8

33 10 18 915 21 753 7 610 7 502 6

35 5 18 774 4 435 1 516 1 290 3

36 10 23 1389 2 499 1 926 0 293 1

37 10 24 1470 185 799 8 980 1 496 1

39 20 50 5718 7200 4414 7200 3812 878 2826 727

40 20 62 8343 377 8015 703 5562 38 5234 35

41 10 23 1323 23 1059 7 882 3 684 3

42 20 62 8238 7200 5492 7200 5492 2 5492 2

When there are three panel types, Model 1 and its improved version could solve 16

out of 42 instances to optimality. We observe that the improvement mechanisms had

enhanced the efficiency of the model in 13 instances. In the two instances, the

performances are almost similar; Model 1 runs less than two seconds earlier than its

67

improved version which can be attributed to the time difference in the model

construction phase of the formulations. The only instance that the original formulation

significantly dominates the formulation with improvements is Instance 40. We see

that the difference in number of the decision variables is small. When the instance is

analyzed, we find that the panel specific demands are all equal to the original item

demand. Hence no dominance relation between the panels could be established.

Shortly, improvement strategies had not worked for the instance, the extra effort spent

to test them increased the CPU time. This may be due to the change in the structure

of the parameter and constraint sets.

When there are only two panel types, Improved Model 1 dominates Model 1 in terms

of CPU time in all instances once too small differences are ignored. Both models

could find the optimal solution in 22 out of 42 instances in two hours.

Table 4.4 reports on the average performances of Model 1 and improved version over

all 42 instances. The average CPU times also include the instances that cannot be

solved in 7200 seconds. Number of unsolved instances out of 42, average number of

decision variables and the average CPU times of the instances solved by both models

are also reported.

Table 4.4 Overall Performance Measures for Model 1 and Improved Model 1

3 Panel Types 2 Panel Types

Model 1
Improved

Model 1
Model 1

Improved

Model 1

Average CPU Time 4649.5 4559.64 3578.2 3496.6

Average CPU Time of the

Instances Solved by Both

Models

505 269.1 285.7 129.9

Number of Unsolved Instances 26 26 20 20

Average Number of Integer

Decision Variables Solved by

Both Models

112568 104176 75355 66867.3

68

As can be observed from the table, the problems with 3 panel types are harder to solve

than those with 2 panel types due to higher number decision variables that add burden

to the solutions of the mathematical models.

4.2.2. Performance of Model 2 and Its Improved Version

The performance results of Model 2 and its improved version are presented in Table

4.5. When there are three panel types, Model 2 can solve 19 out of 42 instances while

its improved version solves 26 of them. Seven additional instances are solved to

optimality thanks to the effects of improvement techniques. Excluding a few instances

with small differences, Improved Model 2 reached optimal solutions faster than Model

2. For the instances that both models could solve, the average CPU times are 1029

and 116 seconds, for Model 1 and its improved version, respectively. That means the

improvement techniques lead to about 88% reduction in CPU times over the solved

instances.

When there are two panel types, Model 2 could solve 22 instances, where Improved

Model 2 could solve 32 of them in two hours. Improvements are effective on the CPU

times of the solutions, i.e., improved model dominates the other in almost all instances.

69

Table 4.5 Performance of Model 2 and its Improved Version

Instance Features

3 Panel Types

2 Panel Types

Model 2
Improved

Model 2
Model 2

Improved

Model 2

Instance

No
N ñ

Number

of DVs

CPU

Time

Number

of DVs

CPU

Time

Number

of DVs

CPU

Time

Number

of DVs

CPU

Time

1 10 669 16146 14 13884 14 10608 2 9438 4

5 10 645 17172 7200 10746 383 9936 8 7182 27

7 30 1626 278308 7200 179088 7200 179088 7200 146288 1139

10 20 830 75055 56 41735 56 47685 13 31195 11

13 20 62 3644 442 6000 50 2380 82 2112 18

14 20 53 1790 357 3516 73 1150 295 1150 40

15 20 46 1113 6 2226 2 697 6 697 2

16 20 35 880 14 1760 15 578 6 578 2

17 20 45 1156 248 2288 28 721 1 721 6

18 30 63 2353 6893 2341 129 1486 45 1486 10

19 10 19 291 0 291 0 194 1 194 1

20 10 18 303 0 190 0 202 0 137 1

21 30 65 2755 7200 2734 636 1757 7200 1757 154

22 35 75 3848 7200 2493 7200 2493 7200 2493 421

24 25 82 2626 892 2566 144 1636 23 1628 19

25 25 67 3088 7200 2946 1772 2020 7200 1974 318

26 35 63 4892 4470 4320 1082 3102 186 2900 52

28 35 75 3775 7200 3775 6411 2423 7200 2423 557

29 10 51 591 7200 591 23 378 7200 378 16

30 10 32 459 2 459 1 306 1 306 1

31 22 60 1784 7200 1784 407 1164 395 1164 19

32 40 90 4907 7200 3171 7200 3171 2234 3171 103

33 10 18 303 1 303 2 202 1 202 0

34 35 76 6468 7200 4082 7200 4082 7200 4082 713

35 5 18 126 0 126 0 84 0 84 0

36 10 23 216 1 199 0 128 0 120 0

37 10 24 319 4 302 2 200 1 193 0

38 30 78 5384 7200 3360 7200 3360 7200 3342 1894

39 20 50 1515 7200 1515 199 981 172 981 23

40 20 62 3635 6168 3395 355 2355 652 2290 77

41 10 23 377 0 335 0 244 1 231 0

42 20 62 6072 7200 2970 7200 3834 7200 2154 29

70

Table 4.6 reports on the average performances of Model 2 and improved version over

all 42 instances. The average CPU times also include the instances that cannot be

solved in 7200 seconds. Number of unsolved instances out of 42, average number of

decision variables and the average CPU times of the instances solved by both models

are also reported.

Table 4.6 Overall Performance Measures for Model 2 and Improved Model 2

3 Panel Types 2 Panel Types

Model 2
Improved

Model 2
Model 2

Improved

Model 2

Average CPU Time 4408.8 3046.7 3355.4 1849

Average CPU Time of the

Instances Solved by Both Models
1029.9 102.8 179.4 18.1

Number of Unsolved Instances 23 16 19 10

Average Number of Integer

Decision Variables Solved by

Both Models

 6088.6 4538.7 3878.7 2963.5

As in Model 1, in Model 2 and its improved version the instances with 3 panel types

are harder to solve than those with 2 panel types due to the higher number decision

variables.

4.2.3. Comparison of Improved Model 1 and Improved Model 2

We compare the improved versions of both formulations. The performance measures

of the formulations are presented in Table 4.7. One can see the significant difference

between the number of decision variables as Model 1 uses decision variables for each

unit of item, but not item type. That reduces symmetry in the model while increasing

its complexity. The decision variables of Model 2 is defined for each panel unit so

more efficient reductions can be done, as the number of panels is much less than total

demand. Model 2 uses fittable items for panel units and reduces the symmetry by

introducing symmetry breaking inequalities.

71

As expected, our experiments reveal significantly better performance of Model 2 in

terms of CPU times.

When there are three panel types, Model 2 solves an additional 10 instances over the

ones solved by Model 1. Average CPU time of the solved instances by Model 1 is 269

seconds. For the same instances, Model 2 runs in 37.4 seconds on average. Improved

Model 2 provides better CPU times over all instances with one exception.

For two panel types, similar observations are made. Summary of the performance

measures of both models are given in Table 4.7.

72

Table 4.7 Comparison of Improved Model 1 and Improved Model 2

Instance

Features

3 Panel Types 2 Panel Types

Improved

Model 1

Improved

Model 2

Improved

Model 1

Improved

Model 2

Instance

No
N ñ

Number

of DVs

CPU

Time

Number

of DVs

CPU

Time

Number

of DVs

CPU

Time

Number

of DVs

CPU

Time

1 10 669 619194 14 13884 14 412796 14 9438 4

5 10 645 548669 7200 10746 383 338146 563 7182 27

7 30 1626 4049469 7200 179088 7200 2699646 7200 146288 1139

10 20 830 1011453 259 41735 56 674302 242 31195 11

13 20 62 8238 16 6000 50 5492 14 2112 18

14 20 53 4632 1185 3516 73 2916 175 1150 40

15 20 46 3100 62 2226 2 1912 20 697 2

16 20 35 2203 69 1760 15 1440 7 578 2

17 20 45 3237 1948 2288 28 1972 39 721 6

18 30 63 6629 7200 2341 129 4087 522 1486 10

19 10 19 798 3 291 0 532 7 194 1

20 10 18 753 6 190 0 502 5 137 1

21 30 65 8245 7200 2734 636 5212 7200 1757 154

22 35 75 10998 7200 2493 7200 7074 7200 2493 421

24 25 82 7492 7200 2566 144 4518 106 1628 19

25 25 67 8312 7200 2946 1772 5393 7200 1974 318

26 35 63 8575 7200 4320 1082 5549 357 2900 52

28 35 75 10795 7200 3775 6411 6872 7200 2423 557

29 10 51 2423 7200 591 23 1517 7200 378 16

30 10 32 1650 16 459 1 1100 8 306 1

31 22 60 6096 7200 1784 407 3949 7200 1164 19

32 40 90 14006 7200 3171 7200 8977 7200 3171 103

33 10 18 753 7 303 2 502 6 202 0

34 35 76 12270 7200 4082 7200 7867 7200 4082 713

35 5 18 435 1 126 0 290 3 84 0

36 10 23 499 1 199 0 293 1 120 0

37 10 24 799 8 302 2 496 1 193 0

38 30 78 11993 7200 3360 7200 7692 7200 3342 1894

39 20 50 4414 7200 1515 199 2826 727 981 23

40 20 62 8015 703 3395 355 5234 35 2290 77

41 10 23 1059 7 335 0 684 3 231 0

42 20 62 5492 7200 2970 7200 5492 2 2154 29

73

Table 4.8 reports on the average performances of improved Model 1 and improved

Model 2 over all 42 instances. The average CPU times also include the instances that

cannot be solved in 7200 seconds. Number of unsolved instances out of 42, average

number of decision variables and the average CPU times of the instances solved by

both models are also reported.

Table 4.8 Overall Performance Measures for Improved Model 1 and Improved Model 2

3 Panel Types 2 Panel Types

Improved

Model 1

Improved

Model 2

Improved

Model 1

Improve

d Model

2

Average CPU Time 4559.6 3023.4 3496.5 1849

Average CPU Time of the Instances

Solved by Both Models
269.1 37.4 129.9 14.7

Number of Unsolved Instances 26 16 20 10

Average Number of Integer Decision

Variables Solved by Both Models
104176 4813.063 66867.32 2999.05

Table 4.8 reveals that improved Model 2 solves much more instances in considerably

less CPU time. Hence it is used to solve the subproblems defined in our heuristic

algorithms.

4.2.4. Computational Results for Heuristic Algorithms

In this section, we give the results of panel type based decomposition and panel unit

based decomposition heuristics results and report the results in Table 4.9.

Panel type based decomposition heuristic is referred as Heuristic 1 in Table 4.9. The

table resides the CPU times and the performance values. For panel unit based

decomposition heuristics, the best results of the two algorithms, original and the

modified one, are referred to as Heuristic 2. Modified Panel Unit Based

Decomposition Algorithm is solved with two different starting points, and the best

result is taken as the solution.

74

To avoid long solution times, we set an optimality gap of 1% of the model solutions

in Heuristic 1. The performances of the heuristics are measured by their CPU times

and its objective function value as a ratio of the best known objective function value

(we simply refer to this ratio as performance). Best known objective function value

is the optimal objective function value if optimal solution is available, if not it is the

lower bound value returned at the termination limit by any model (Model 1 or Model

2). If even no lower bound is returned by the mathematical models, performance

entries are left blank in the table. The instances that could be solved only when there

are 2 panel types available are marked as one star next to the instance number. If the

instance was solved to optimality for the two cases, i.e., 3 panel types available and 2

panel types available, it is marked with two stars. If there is no optimal solution

available for both cases, the instance number is not marked.

Table 4.9 Results of Heuristic Algorithms

Instance

No

3 panel types 2 panel types

CPU Time Performance CPU Time Performance

Heuristic

1

Heuristic

2

Heuristic

1

Heuristic

2

Heuristic

1

Heuristic

2

Heuristic

1

Heuristic

2

1** 6 8 100% 100% 3 2 100% 100%

2 690 98 88% 89% 379 48 98% 95%

3 1852 125 96% 106% 1848 62 85% 89%

4 7200 488 - - 3778 143 - -

5** 147 11 99% 97% 4 4 100% 73%

6 1889 76 97% 98% 1809 44 100% 100%

7* 1843 115 - - 524 7 100% 100%

8 3708 1378 - - 2180 1141 104% 145%

9 2 26 72% 87% 7 12 100% 99%

10** 35 18 100% 100% 11 1 100% 100%

11 605 43 113% 113% 1938 29 123% 124%

12 7200 511 - - 7200 88 - -

13** 42 8 98% 95% 16 4 100% 94%

14** 1 8 88% 86% 1 3 97% 93%

15** 2 19 95% 95% 1 5 93% 94%

16** 3 39 93% 97% 2 9 95% 95%

17** 2 32 93% 95% 1 8 92% 94%

75

Table 4.9 (Cont’d).

18** 1 42 97% 97% 4 15 95% 95%

19** 0 6 100% 100% 0 3 100% 100%

20** 0 3 96% 86% 0 1 94% 95%

21** 11 198 96% 96% 16 173 95% 95%

22* 20 575 97% 98% 2 142 99% 94%

23 48 46 95% 96% 32 19 96% 94%

24** 3 18 90% 94% 1 4 96% 96%

25** 5 28 92% 94% 8 10 98% 96%

26** 11 48 91% 91% 4 16 100% 98%

27 19 69 85% 95% 50 36 94% 95%

28** 20 222 97% 96% 21 113 99% 99%

29** 2 23 99% 99% 1 10 100% 100%

30** 2 31 100% 100% 2 25 84% 85%

31** 2 28 97% 97% 5 23 96% 96%

32* 26 198 94% 96% 7 47 97% 98%

33** 1 6 100% 100% 0 3 100% 100%

34* 30 73 96% 95% 17 24 95% 95%

35** 0 2 100% 100% 0 1 100% 100%

36** 0 2 77% 76% 0 1 100% 100%

37** 0 2 94% 90% 0 1 100% 100%

38* 20 58 89% 91% 39 19 98% 96%

39** 5 62 95% 95% 7 39 92% 92%

40** 2 9 97% 91% 12 5 90% 88%

41** 0 3 94% 100% 0 2 100% 100%

42* 20 6 95% 91% 6 3 98% 89%

When there are three panel types, Heuristic 1 can solve 40 out of 42 instances in our

time limit of 7200 seconds. The average CPU time over the solved instances is 277

seconds. All instances can be solved with Heuristic Algorithm 2 in 7200 seconds with

an average CPU time of 113 seconds. In 19 out of 42 instances, Heuristic 2

outperforms Heuristic 1, while in 12 out of 42 instances Heuristic 1 gives better

results. For 11 instances, both algorithms return the same solutions.

76

When there are two panel types, performance and CPU times of the heuristics are

improved as expected. The solution times are decreased while the results become

closer to the best available solutions.

Table 4.10 summarizes the performance measures of the heuristic algorithms.

Table 4.10 Overall Performances of the Heuristic Algorithms

3 panel types 2 panel types

Heuristic 1 Heuristic 2 Heuristic 1 Heuristic 2

Average CPU Time 606,5 113 556 56

Maximum CPU Time 7200 1378 7200 1141

Average Performance 94% 95% 95% 97%

Minimum Performance 77% 76% 84% 73%

Number of Unsolved

Instances
2 0 2 0

Number of Instances that

the Heuristic Gives Better

Results*

23 30 23 31

*including the ties

The average CPU time of Heuristic 2 is much better than that of Heuristic 1. However,

the algorithms are not much different in terms of their closeness to the optimal

solutions. The average CPU time of Heuristic 1 is about 10 times higher while

Heuristic 2 performs better in terms of objective function value on average. In vast

majority of the instances, Heuristic 2 returns better objective function values.

Minimum, i.e., worst case performances of the algorithms are close. Heuristic 2 can

solve all instances in less than 1400 seconds, while Heuristic 1 cannot solve 2 of the

instances in two hours.

77

CHAPTER 5

5. APPLICATION TO SILKAR MINING INCORPORATION

This study is originated from an industrial project conducted in Silkar Mining

Corporation. The corporation was established in 1994 at Bilecik to serve in natural

stone sector under the AKDO brand.

Silkar Corporation leads to its sector by offering variety of marble, granite and

ceramics products. The company not only has domestic customers in service and

manufacturing sector in Turkey but also serves to more than 35 countries including

United States, Far East, Europe and North Africa. For the more detailed information

about the company we refer the reader to the company’s website www.silkar.com.

The main raw materials are marble, granite or ceramic and enter to the factory from

their natural sources in the forms of blocks as shown in Figure 5.1.

Figure 5.1 The main raw materials – marble blocks

http://www.silkar.com/

78

These blocks are then refined so as to obtain proper three dimensional blocks. The

proper dimensional blocks are then cut layer by layer to get a number of two

dimensional objects. The blocks are cut at specified heights, usually equal heights.

The cut two dimensional objects with required length and width are referred as panels.

The number of cuts made on block h is the number of panels of type h, that is 𝑛𝑢𝑚ℎ

according to our notation. The two dimensions of panel h are length 𝐿ℎ and width 𝑊ℎ.

Figure 5.2 shows the panels of two dimensions that are obtained from three

dimensional blocks.

Figure 5.2 A two dimensional panel

In addition to the two dimensional data 𝐿ℎ and 𝑊ℎ, the panels are specified by the cost

data 𝐶ℎ. 𝐶ℎ is the cost of obtaining a single panel of type h and is a function of its area

𝐿ℎ×𝑊ℎ and its quality level. A larger area panel may have lower cost if it has lower

quality grade.

The small objects, so called items, are obtained from the panels of limited availability.

All those small items have customers that ask several of them to form their final

products.

Figure 5.3 shows a small cut item with specified length and width and the placement

of those small items for the final product of floor coverings.

79

Figure 5.3 A small item and final products

Note from the above figure that the processed item is a small piece and many of these

small pieces together form the final product like all floor covering of an international

hotel. The customer, say hotel purchasing manager, had placed an offer for all the

building floor coverings. The floor coverings are made up hundreds of small

rectangular (or square) pieces, hence hundreds of units of small items are cut from

the panels.

Each item has a specified demand projected from the final product specifications. As

any order is for a specific customer, the amount cut above its requirement is forbidden,

i.e., the total cut of any item can never be greater than its demand.

The revenues of items depend on the area of the small item, its quality and prestige of

the customer.

For any specified period, the company wants to maximize the total profit (total

revenue brought by the small items-total cost incurred by used panel) without

exceeding the item demand and panel availability.

To solve the real life instances observed in the company, we propose Decomposition

Heuristic 2 as it provides high quality solutions in reasonable solution times.

A real illustrative instance has 2 customer types. Customer 1 places an order to get

289 pieces which can be grouped into 16 different item types. To cut these pieces, the

80

company can use 12 different panel types. The order of customer 2 is for 482 items of

16 different item types. These pieces can be cut from 14 different panel types.

Table 5.1 gives the features of the customer orders. Table 5.2 tabulates the data for

the available panel types.

Due to the quality restrictions of the orders, the first 12 panel types can be used for

customer 1, while the rest is used for customer 2 demands.

The technological data (dimensions, demands, availabilities) are directly taken from

the company. The cost data (item revenues and panel costs) are generated according

to our data generation scheme discussed in Chapter 4.

Table 5.1 Item Data of Customer Orders

Customer 1 - Items Customer 2 – Items

Item Type W L d r Item Type W L d r

Customer 1 Item 1 59.5 79 14 39 Customer 2 Item 1 68.5 99 14 81
Customer 1 Item 2 59.5 113 50 63 Customer 2 Item 2 68.5 90 7 48

Customer 1 Item 3 59.5 108.7 7 60 Customer 2 Item 3 60 61.8 9 88

Customer 1 Item 4 37.5 59.5 28 70 Customer 2 Item 4 58.3 75 120 16
Customer 1 Item 5 35 30 10 54 Customer 2 Item 5 58.3 74 197 91

Customer 1 Item 6 35 59.5 7 83 Customer 2 Item 6 58.3 98 24 85

Customer 1 Item 7 30 79 30 77 Customer 2 Item 7 42.6 59.5 14 10
Customer 1 Item 8 30 30 5 74 Customer 2 Item 8 30 99 14 73

Customer 1 Item 9 30 59.5 7 64 Customer 2 Item 9 30 87 8 25
Customer 1 Item 10 30 113 10 81 Customer 2 Item 10 30 83 8 56
Customer 1 Item 11 30 37.5 4 60 Customer 2 Item 11 24.3 30 7 44
Customer 1 Item 12 30 108.7 5 44 Customer 2 Item 12 24.3 59.5 28 87
Customer 1 Item 13 20 30 50 37 Customer 2 Item 13 24.3 87 8 18

Customer 1 Item 14 20 59.6 30 69 Customer 2 Item 14 24.3 83 8 14
Customer 1 Item 15 20 30 4 27 Customer 2 Item 15 20 87 8 76

Customer 1 Item 16 20 59.5 28 88 Customer 2 Item 16 20 83 8 93

81

Table 5.2 Panel Data

Panels

Panel Type W L # C

1 130 205 2 111

2 135 165 1 176

3 135 210 8 199

4 135 250 4 210

5 140 270 1 215

6 140 280 5 269

7 150 270 1 266

8 150 285 1 346

9 155 280 3 307

10 155 290 10 373

11 170 240 1 522

12 170 240 14 533

13 120 203 40 124

14 108 171 52 161

15 138 157 56 160

16 140 242 57 195

17 190 240 58 331

18 127 234 58 334

19 124 167 64 300

20 116 277 64 301

21 160 282 65 312

22 147 230 66 439

23 100 150 68 387

24 129 182 68 503

25 157 208 72 590

26 150 214 74 552

The decomposition heuristic 2 gives the following feasible assignments to each

individual panel.

The assignments of customer 1 orders are given in the following page.

82

Panel Type 2 Assignments

Panel 1

Level 1: Item 4 Item 4 Item 4 Item 4

Level 2: Item 4 Item 4 Item 4 Item 4

Level 3: Item 7 Item 7 Item 7

Level 4: Item 7 Item 7 Item 7

Panel 2

Level 1: Item 7 Item 7

Level 2: Item 10 Item 12

Level 3: Item 10 Item 12

Level 4: Item 12 Item 12

Panel 3

Level 1: Item 2 Item 2

Level 2: Item 2 Item 2

Panel 4

Level 1: Item 2 Item 2

Level 2: Item 2 Item 2

Panel Type 3 Assignments

Panel 1

Level 1: Item 5 Item 5 Item 5 Item 5 Item 5 Item 6

Level 2: Item 13 Item 13 Item 13 Item 13 Item 13 Item 14

Level 3: Item 13 Item 13 Item 13 Item 13 Item 13 Item 13 Item 13

Level 4: Item 14 Item 13 Item 13 Item 13 Item 13 Item 13

Level 5: Item 14 Item 13 Item 13 Item 13 Item 13 Item 13

Level 6: Item 15 Item 14 Item 14 Item 14

Panel 2

Level 1: Item 6 Item 6 Item 6

Level 2: Item 13 Item 14 Item 14 Item 14

Level 3: Item 14 Item 14 Item 14

Level 4: Item 14 Item 14 Item 14

Level 5: Item 15 Item 14 Item 14 Item 14

Level 6: Item 15 Item 14 Item 14 Item 14

Panel 3

Level 1: Item 6 Item 6 Item 6

Level 2: Item 7 Item 9 Item 9

83

Level 3: Item 7 Item 9 Item 14

Level 4: Item 14 Item 14 Item 14

Level 5: Item 14 Item 14 Item 14

Panel 4

Level 1: Item 4 Item 4 Item 7

Level 2: Item 4 Item 4 Item 7

Level 3: Item 9 Item 7 Item 9

Level 4: Item 9 Item 7 Item 9

Panel 5

Level 1: Item 4 Item 4 Item 7

Level 2: Item 4 Item 4 Item 7

Level 3: Item 10 Item 7

Level 4: Item 10 Item 7

Panel 6

Level 1: Item 4 Item 4 Item 7

Level 2: Item 4 Item 4 Item 7

Level 3: Item 10 Item 7

Level 4: Item 10 Item 7

Panel 7

Level 1: Item 4 Item 4 Item 7

Level 2: Item 4 Item 4 Item 7

Level 3: Item 7 Item 10

Level 4: Item 7 Item 10

Panel 8

Level 1: Item 4 Item 4 Item 7

Level 2: Item 4 Item 4 Item 7

Level 3: Item 7 Item 10

Level 4: Item 7 Item 10

Panel Type 4 Assignments

Panel 1

Level 1: Item 1 Item 1 Item 2

Level 2: Item 1 Item 1 Item 2

84

Panel Type 5 Assignments

Panel 1

Level 1: Item 1 Item 1 Item 3

Level 2: Item 1 Item 1 Item 3

Panel Type 6 Assignments

Panel 1

Level 1: Item 5 Item 5 Item 5 Item 5 Item 5

Level 2: Item 13 Item 13 Item 13 Item 13 Item 13

Level 3: Item 13 Item 13 Item 13 Item 16

Level 4: Item 14 Item 13 Item 13 Item 13

Level 5: Item 16 Item 13 Item 13 Item 13

Level 6: Item 16 Item 13 Item 13 Item 13

Panel Type 9 Assignments

Panel 1

Level 1: Item 3 Item 1 Item 1

Level 2: Item 3 Item 1 Item 1

Level 3: Item 12

Panel Type 12 Assignments

Panel 1

Level 1: Item 8 Item 8 Item 8 Item 8 Item 8 Item 11

Level 2: Item 13 Item 13 Item 16 Item 16

Level 3: Item 13 Item 13 Item 16 Item 16

Level 4: Item 15 Item 13 Item 16 Item 16

Level 5: Item 16 Item 16 Item 16

Level 6: Item 16 Item 16 Item 16

Panel 2

Level 1: Item 11 Item 11 Item 11 Item 13 Item 16

Level 2: Item 13 Item 13 Item 16 Item 16

Level 3: Item 13 Item 13 Item 16 Item 16

Level 4: Item 14 Item 16 Item 16

Level 5: Item 16 Item 16 Item 16

Level 6: Item 16 Item 16 Item 16

85

The assignments of customer 2 orders are given below.

Panel Type 13 Assignments

Panel 1

Level 1: Item 10 Item 12 Item 12

Level 2: Item 11 Item 11 Item 12 Item 16

Level 3: Item 12 Item 11 Item 11 Item 16

Level 4: Item 15 Item 16

Level 5: Item 16 Item 16

Panel 2

Level 1: Item 10 Item 12 Item 12

Level 2: Item 11 Item 11 Item 12 Item 12

Level 3: Item 12 Item 12 Item 12

Level 4: Item 15 Item 16

Level 5: Item 16 Item 16

Panel 3

Level 1: Item 11 Item 12 Item 12

Level 2: Item 12 Item 12 Item 12

Level 3: Item 13 Item 12

Level 4: Item 14 Item 12 Item 12

Level 5: Item 15 Item 15

Panel 4

Level 1: Item 8 Item 12

Level 2: Item 10 Item 12 Item 12

Level 3: Item 12 Item 12 Item 12

Level 4: Item 14 Item 12 Item 12

Panel 5

Level 1: Item 8 Item 8

Level 2: Item 10 Item 15

Level 3: Item 12 Item 15

Level 4: Item 15 Item 15

Panel 6

Level 1: Item 3 Item 3 Item 5

Level 2: Item 8 Item 8

Level 3: Item 10 Item 8

86

Panel 7

Level 1: Item 3 Item 3 Item 5

Level 2: Item 8 Item 8

Level 3: Item 10 Item 8

Panel 8

Level 1: Item 3 Item 3 Item 5

Level 2: Item 8 Item 8

Level 3: Item 10 Item 8

Panel 9

Level 1: Item 3 Item 3 Item 5

Level 2: Item 9 Item 8

Level 3: Item 10 Item 8

Panel 10

Level 1: Item 3 Item 5 Item 7

Level 2: Item 5 Item 5

Panels 11-34

Level 1: Item 5 Item 5

Level 2: Item 6 Item 5

Panels 35-40

Level 1: Item 4 Item 5

Level 2: Item 5 Item 5

Panel Type 15 Assignments

Panels 1-25

Level 1: Item 5 Item 5

Level 2: Item 5 Item 5

Panels 26-32

Level 1: Item 1

Level 2: Item 1

Panel Type 16 Assignments

Panel 1

Level 1: Item 2 Item 2 Item 7

Level 2: Item 2 Item 2 Item 7

87

Panel 2

Level 1: Item 2 Item 2 Item 7

Level 2: Item 9 Item 9

Level 3: Item 9 Item 9

Panel 3

Level 1: Item 9 Item 13

Level 2: Item 9 Item 9

Level 3: Item 13 Item 13

Level 4: Item 13 Item 13

Level 5: Item 14 Item 13

For customer 1, a total of 18 panels are used to cut 244 items. The objective function

value of the solution is calculated as:

Total cost of panels used = 3580

Total revenue gained by items cut = 15,309

Total profit = 15,309 – 3580 = 11,729

For customer 2, a total of 75 panels are used to cut 387 items. The objective function

value of the solution is calculated as:

Total cost of panels used = 10,665

Total revenue gained by items cut = 28,251

Total profit = 28,251– 10,665 = 17,586

88

89

CHAPTER 6

6. CONCLUSIONS

In this study, we consider a two stage two dimensional cutting stock problem with

multiple stock sizes. We consider both rotatable and non-rotatable items of specified

demand.

We develop two mathematical models one of which is modified from a similar study

in the literature. We give some optimality conditions and valid inequalities to enhance

the efficiency of the models.

We also propose decomposition based heuristic procedures that decompose the

problem into subproblems according to the panel types and individual panels and solve

the subproblems by the best mathematical model we propose.

The results of our computational study have revealed that the model that we develop

from scratch outperforms the one extended from the literature. We could find optimal

solutions to the problem of size 20 items and 3 panels in two hours. We observe that

the number of panel types, number of panels, number of item types and the demand

figures are significant parameters that affect the speed of the achieving optimal

solutions.

We find that our decomposition based heuristics could handle large sized instances

with up to 50 items and 3 panels in two hours and produce solutions that have profits

that are very close to the optimal values.

Future research may consider the development of optimization algorithms that make

more efficient use of decomposition idea, like Benders’ decomposition methods.

90

The multi criteria extensions of our model may also be worth-studying. We consider

a linear combination of two performance measures: total revenue generated by the

customer orders and total cost incurred by the panel costs. A multi criteria study might

look for the trade-offs between total revenue and total cost or number of panels used.

91

REFERENCES

Alvarez-Valdes, R., Parajon, A., & Tamarit, J. M. (2002). A computational study of

LP-based heuristic algorithms for two-dimensional guillotine cutting stock problems.

OR Spectrum, 24(2), 179-192.

Alvarez-Valdés, R., Parreño, F., & Tamarit, J. M. (2008). Reactive GRASP for the

strip-packing problem. Computers & Operations Research, 35(4), 1065-1083.

Alvarez-Valdés, R., Parreño, F., & Tamarit, J. M. (2013). A GRASP/Path relinking

algorithm for two-and three-dimensional multiple bin-size bin packing problems.

Computers & Operations Research, 40(12), 3081-3090.

Amossen, R. R., & Pisinger, D. (2010). Multi-dimensional bin packing problems with

guillotine constraints. Computers & Operations Research, 37(11), 1999-2006.

Bekrar, A., Kacem, I., & Chu, C., (2007). A comparative study of exact algorithms

for the two dimensional strip packing problem. J. Ind. Syst. Eng., 1(2), 151–170.

Boschetti, M. A., & Montaletti, L. (2010). An exact algorithm for the two-dimensional

strip-packing problem. Operations Research, 58(6), 1774-1791.

Cintra, G. F., Miyazawa, F. K., Wakabayashi, Y., & Xavier, E. C. (2008). Algorithms

for two-dimensional cutting stock and strip packing problems using dynamic

programming and column generation. European Journal of Operational Research,

191(1), 61-85.

Clautiaux, F., Jouglet, A., Carlier, J., & Moukrim, A. (2008). A new constraint

programming approach for the orthogonal packing problem. Computers & Operations

Research, 35(3), 944-959.

92

Coffman Jr, E. G., Csirik, J., Galambos, G., Martello, S., & Vigo, D. (2013). Bin

packing approximation algorithms: survey and classification. Handbook of

combinatorial optimization, 455-531.

De Carvalho, J. V. (2002). LP models for bin packing and cutting stock problems.

European Journal of Operational Research, 141(2), 253-273.

Delorme, M., Iori, M., & Martello, S. (2016). Bin packing and cutting stock problems:

Mathematical models and exact algorithms. European Journal of Operational

Research, 255(1), 1-20.

Dolatabadi, M., Lodi, A., & Monaci, M. (2012). Exact algorithms for the two-

dimensional guillotine knapsack. Computers & Operations Research, 39(1), 48-53.

Dyckhoff, H. (1990). A typology of cutting and packing problems. European Journal

of Operational Research, 44(2), 145-159.

Fekete, S. P., Schepers, J., & Van der Veen, J. C. (2007). An exact algorithm for

higher-dimensional orthogonal packing. Operations Research, 55(3), 569-587.

Fleszar, K. (2016). An exact algorithm for the two-dimensional stage-unrestricted

guillotine cutting/packing decision problem. INFORMS Journal on Computing, 28(4),

703-720.

Furini, F., & Malaguti, E. (2013). Models for the two-dimensional two-stage cutting

stock problem with multiple stock size. Computers & Operations Research, 40(8),

1953-1962.

Furini, F., Malaguti, E., Durán, R. M., Persiani, A., & Toth, P. (2012). A column

generation heuristic for the two-dimensional two-staged guillotine cutting stock

problem with multiple stock size. European Journal of Operational Research, 218(1),

251-260.

93

Gilmore, P. C., & Gomory, R. E. (1961). A linear programming approach to the

cutting-stock problem. Operations research, 9(6), 849-859.

Gilmore, P. C., & Gomory, R. E. (1963). A linear programming approach to the

cutting stock problem—Part II. Operations research, 11(6), 863-888.

Gleixner, A., Bastubbe, M., Eifler, L., Gally, T., Gamrath, G., P., Gottwald, R. L., ...

& Müller, B. (2018). The SCIP optimization suite 6.0.

Hong, S., Zhang, D., Lau, H. C., Zeng, X., & Si, Y. W. (2014). A hybrid heuristic

algorithm for the 2D variable-sized bin packing problem. European Journal of

Operational Research, 238(1), 95-103.

Lodi, A., Martello, S., & Vigo, D. (2004). Models and bounds for two-dimensional

level packing problems. Journal of Combinatorial Optimization, 8(3), 363-379.

Macedo, R., Alves, C., & De Carvalho, J. V. (2010). Arc-flow model for the two-

dimensional guillotine cutting stock problem. Computers & Operations Research,

37(6), 991-1001.

Margot, F. (2010). Symmetry in integer linear programming. In 50 Years of Integer

Programming 1958-2008 (pp. 647-686). Springer, Berlin, Heidelberg.

Martello, S., & Vigo, D. (1998). Exact solution of the two-dimensional finite bin

packing problem. Management science, 44(3), 388-399.

Martinovic, J., Scheithauer, G., & de Carvalho, J. V. (2018). A comparative study of

the arcflow model and the one-cut model for one-dimensional cutting stock problems.

European Journal of Operational Research, 266(2), 458-471.

Mittelman, H. D. (2018). Latest Benchmark Results. INFORMS Annual Conference,

Phoenix, AZ, USA.

94

Pisinger, D., & Sigurd, M. (2005). The two-dimensional bin packing problem with

variable bin sizes and costs. Discrete Optimization, 2(2), 154-167.

Pisinger, D., & Sigurd, M. (2007). Using decomposition techniques and constraint

programming for solving the two-dimensional bin-packing problem. INFORMS

Journal on Computing, 19(1), 36-51.

Riehme, J., Scheithauer, G., & Terno, J. (1996). The solution of two-stage guillotine

cutting stock problems having extremely varying order demands. European Journal

of Operational Research, 91(3), 543-552.

Silva, E., Alvelos, F., & de Carvalho, J. V. (2010). An integer programming model

for two-and three-stage two-dimensional cutting stock problems. European Journal

of Operational Research, 205(3), 699-708.

Wäscher, G., Haußner, H., & Schumann, H. (2007). An improved typology of cutting

and packing problems. European Journal of Operational research, 183(3), 1109-

1130.

Wei, L., Oon, W. C., Zhu, W., & Lim, A. (2013). A goal-driven approach to the 2D

bin packing and variable-sized bin packing problems. European Journal of

Operational Research, 224(1), 110-121.

95

