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ABSTRACT

ADVANCED METHODS FOR RESULT AND SCORE CACHING IN WEB
SEARCH ENGINES

Yafay, Erman

M.S., Department of Computer Engineering

Supervisor: Assoc. Prof. Dr. İsmail Sengör Altıngövde

Sep 2019, 51 pages

Search engines employ caching techniques in main memory to improve system effi-

ciency and scalability. In this thesis, we focus on improving the cache performance

for web search engines and present two main contributions in this direction. Firstly,

we investigate the impact of the sample size for frequency statistics for most popular

cache eviction strategies in the literature, and show that cache performance improves

with larger samples, i.e., by storing the frequencies of all (or, most of) the queries

seen by the search engine. By adopting a previous approach from the literature, we

mitigate the cost of storing a large history of frequencies by using a Counting Bloom

Filter based data structure that is able to store frequency statistics in a compact man-

ner, while still providing comparable cache performance to keeping all frequencies

in a raw manner. Secondly, we propose a new cache type for systems that employ

dynamic pruning strategies (e.g. WAND or BMW) for query processing. We store

the k-th highest result score for a query at the index nodes as a static cache. When-

ever a result cache miss occurs at the broker, we use k-th score of the subsets of the

original query as an initial threshold value for dynamic pruning. Our method reduces
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the query processing time by increasing the number of documents skipped and, to our

knowledge, it is unique in the sense that it can improve processing times for compul-

sory result cache misses and singleton queries.

Keywords: Search Engine, Cache, Efficiency
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ÖZ

WEB ARAMA MOTORU SONUÇ VE SKOR ÖNBELLEKLERİ İÇİN İLERİ
YÖNTEMLER

Yafay, Erman

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. İsmail Sengör Altıngövde

2019 , 51 sayfa

Arama motorları, önbellekleme yöntemlerini sistem verimliliği ve ölçeklendirilebilir-

liği artırmak üzere ana bellek üzerinde sıklıkla kullanır. Bu çalışmanın kapsamı, web

arama motoru önbellek performansını iyileştirmeye yönelik olup, katkıları iki ana kı-

sımda incelenebilir. Öncelikle, sorgu geçmişi frekansı örneklerinin hepsinin (ya da bir

çoğunun) literatürde önde gelen önbellek yöntemlerinde tahliye için bir sinyal olarak

kullanıldığında önbellek performansının arttığını göstermekteyiz. Bellekte kullanılan

uzun sorgu geçmişinin kaplayacağı büyük bellek alanının, daha önceki çalısmalarda

da kullanılan, Counting Bloom Filter tabanlı veri yapıları kullanarak kompakt bir şe-

kilde saklanabileceğini ve frekans değerlerini olduğu şekilde saklayan yöntemlerle

eşdeğer önbellek performansı elde edilebileceğini göstermekteyiz. İkincil olarak, di-

namik budama yöntemleri (WAND, BMW gibi) kullanan arama sistemleri için yeni

bir önbellek tipi öneriyoruz. Bu önbellekte bir sorgunun k. yüksek sonuç skorunu,

sonuç önbelleğine ilaveten saklamaktayız. Herhangi bir sonuç önbellek kaybı oluştu-

ğunda, sorgunun alt kümelerinin k. sıradaki skorunu sorgu işleme sürecinde başlangıç

eşik değeri olarak kullanıyoruz. Bu yöntem ile sorgu işleme sürelerini daha fazla do-
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küman budayarak azaltıyoruz, ve bilgimiz dahilinde, yöntemimiz zorunlu sonuç ön-

bellek kayıpları ve bir kez gözlemlenen sorguların işleme zamanını azaltabilen eşsiz

bir önbellek tipi.

Anahtar Kelimeler: Arama Motoru, Önbellek, Verimlilik
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CHAPTER 1

INTRODUCTION

1.1 Motivation

Large scale search engines accommodate hundreds of data centers all over the globe

that are operational 7/24. Indeed, the maintenance costs for such systems are in the

scale of millions of dollars. Therefore, even minor improvements over computation or

storage requirements can provide substantial financial and environmental benefits. On

the other hand, considering the current retrieval time of web search engines, which

are in the order of couple of hundred milliseconds, faster retrieval is an important

aspect to attract new users in a highly competitive market.

A typical web search engine processes queries and generates result sets in a decreas-

ing fashion of interest to the user i.e., results are ranked by the similarity of the

documents to the query. To cope with the large web documents which are in the or-

der of billions, search engines work in a distributed manner. This way, not only the

system throughput can be increased by parallel execution, but also the index of the

collection can fit into the disks of multiple machines for faster access. Such horizontal

scaling has shown to be promising for web search engines, since in theory, it can scale

infinitely by just adding more commodity computers to the clusters, whereas a single

but more advanced machine usually does not offer a reasonable price-performance

ratio or maybe does not even exist.

The Web pages, or more generally, the documents that comprise the collection are

first processed to create an index, for faster retrieval (see Fig. 3.1), then the index is

partitioned i.e., sharded across several index nodes. On top of the index nodes, the

brokers serve to redirect queries (possibly also pre-processing them; such as query ex-
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pansion) to index nodes where each node processes the query with its own portion of

the index and computes top-k partial results that are ranked via TF-IDF like retrieval

functions. Next, these results are sent back to the brokers where they are merged and

ranked again by more sophisticated machine learned models to obtain the final result

set. Obviously, the initial retrieval and ranking stage finds relevant documents among

millions and thus is more efficient compared to ranking stages at the brokers. But

still, a huge portion of the query processing time is spent at the index nodes where

the initial matching occurs.

Caching is one of the methods that is extensively employed in web search engines to

reduce retrieval times. Search engines use caching techniques in different layers of

the system e.g. brokers, index nodes etc. and with various content such as HTML

result snippets and posting lists [1]. Typically, the former one resides at the broker

nodes since they are ready-to-serve content i.e., no additional processing is required

whereas the latter one, is used to reduce processing times by forming an intermedi-

ate result. Indeed, not all of the queries can benefit from a cache since only 56% of

queries repeat [10]. The rest are singletons i.e., occur only a single time and practi-

cally cannot be cached. Therefore, search systems developed methods to maximize

their benefit from caches, either or together by proposing methods of different cache

types or cache replacement policies [2, 3, 4].

1.2 Contributions and Thesis Outline

In this thesis, we focus on caching in search engines and propose methods to improve

caching techniques both in terms of space and time. First, in Chap. 2, we focus on

result caches and show that keeping the entire frequency history would yield signifi-

cant improvements over the hit rate; unlike the previous work where it has been only

experimented with either none or a short frequency history. We then show and adapt

a previously proposed compact storage scheme, namely the Tiny [5, 6] to mitigate the

cost of storing such large cache metadata by modeling the storage requirements for

various well-known cache eviction policies. To make our contribution more concrete,

we extend the saved space by both a result and a doc-id cache; and show that our sav-

ings are meaningful for both of them. Yet we show that the additional doc-id cache
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can further exploit the gained space compared to its result counterpart in a cost-based

evaluation setup.

Secondly, Chap 3 presents some preliminary concepts in information retrieval such

as the inverted index, ranking and query processing. We provide rigorous algorithms

for query processing both in Chap 3 and Appendix A, as well as explain dynamic

pruning strategies. Next, we introduce our idea of the score cache to be placed at

the index nodes. Score cache is cheap, as it only requires a space of 1% compared

to a typical result cache. It stores the k-th highest score for a query and the score

can be exploited to speed up query processing for systems that use dynamic pruning

strategies. We acknowledge that real-life systems already employ a result cache that

answers queries with virtually no cost. Thus, we use score cache only when the query

is not resident in the result cache and use the score to obtain a lower-bound for the

initial threshold of dynamic pruning strategies using subsets of the to-be-processed

query. Since, generating all of the subsets would be expensive, we propose heuristics

that offer high probability of being a cache hit and also yield tighter lower-bounds

for score threshold. This way, we further increase the number of documents skipped

and reduce processing times. Our idea is unique as a caching application such that

it offers improvements for compulsory cache misses (queries occurring for the first

time) and singleton queries in which a typical result cache offers no benefits.

Finally, we conclude this thesis in Chap 4 while discussing future research directions.

The work described in Chap 2 and Chap 3 were published in:

• E. Yafay and I. S. Altingovde. "On the Impact of Storing Query Frequency His-

tory for Search Engine Result Caching." European Conference on Information

Retrieval., ECIR 2019, (pp. 155-162). Springer, Cham., 2019.

• E. Yafay and I. S. Altingovde. "Caching Scores for Faster Query Processing

with Dynamic Pruning in Search Engines." Conference on Information and

Knowledge Management, CIKM 2019, ACM, 2019.

respectively.
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CHAPTER 2

IMPACT OF QUERY FREQUENCY HISTORY

2.1 Introduction

Large-scale search engines extensively employ caching of query results in main mem-

ory to improve system efficiency and scalability [7, 8, 9, 10]. As in many other do-

mains, frequency of past data items (or, requests) is a strong signal to decide on the

items to be evicted from the query result caches of search engines, and used on its

own in the well-known eviction policy Least Frequently Used (LFU) or combined

with other signals, like item recency and size, in other policies [11].

In this chapter, our contributions are three-fold: First, we investigate the impact

of storing a large query frequency history versus just keeping the frequency of the

queries that are in the cache. We show that keeping the entire history (i.e., frequency

of all seen queries by the search engine) may improve the cache performance (i.e., hit

ratios) for the policies that employ frequency as a signal for eviction. While similar

findings have been shown for other caching applications (e.g., see [5]), as far as we

know, this issue has not been explored in depth for result caching in search engines.

Secondly, we adopt a recently proposed storage scheme for exactly this purpose, i.e.,

storing past request frequencies in a compact manner for caching, to our application

domain. The latter scheme, referred to as Tiny here, can store the query frequency

history by using Simple and Counting Bloom Filters (CBFs) [5]. Our experiments

reveal that the storage space for query history can be significantly reduced while cache

performance still remains comparable to storing the entire query history. This is an

important finding as the number of queries submitted to search engines has reached

to very large numbers and storing an (almost) full history may have very demanding
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memory storage requirements.

As our third contribution, we investigate the performance gains when the saved mem-

ory space (using the Tiny approach) is further exploited to cache additional query

results. To this end, we consider not only storing query results in HTML format (i.e.,

top-k results’ URLs and snippets), but also adopt techniques that allow storing just

the document identifiers for certain query results [1, 3]. For this latter case, we evalu-

ate the cache performance in terms of the query processing cost, and show that using

the saved space to store identifiers yields significant gains. To our best knowledge, no

earlier work conducted such an exhaustive analysis for search result caching where

compact schemes are employed for storing query frequency history, and our findings

here shed light on the potential gains in terms of storage space, hit-rate and even query

processing cost, all of which would be worthwhile in practical search systems.

Through Sec. 2.2 to Sec. 2.4, we layout the foundational information about BFs,

sketches and finally review the Tiny storage scheme as proposed in [5]. Sec. 2.5

presents our exhaustive experimental evaluation and finally Sec. 3.5 concludes this

chapter.

2.2 Bloom Filters

Bloom Filters (BFs) [12] are probabilistic data structures that allow querying the ex-

istence of an item ai in a setA = {a1, a2, . . . , an} of length n. Each element ai can be

inserted to the BF by applying k distinct hash functions and computing bit positions

h1 (ai) , h2 (ai) , . . . hk (ai) each within range [0,m) where the bits at these positions

are set to 1. Similarly, to query the existence of an element ai the bits at the same

positions are read and if any of the them are equal to 0 then it is certain that ai /∈ A.

Otherwise, we conclude that ai ∈ A with a probability of false positive since some

or all of the bit positions can be set due to hash collisions. Figure 2.1 visualizes the

insertion operation to the BF. Unlike the set data structure (usually implemented with

hash tables or balanced trees) which requires, at least, keeping each element in mem-

ory, a BF merely needs a bit vector to be allocated. Hence, for systems that are scarce

in memory and are tolerant to false positives; Bloom Filters are compact alternatives.

6



1 1 0 1 · · · 0 0 1 0

h1 (q) h2 (q) · · · hk (q)

m-bit vector

Figure 2.1: Setting bits at calculated hash positions for an element q.

In order to fully benefit from BFs, one should keep the probability of false positives

(Pfp) to a minimum. Using a BF of length m and k distinct hash functions, the

probability of a certain bit to remain 0 after the insertion of n elements is P0 =(
1− 1

m

)kn and thus the probability of all hash functions to collide i.e., a false positive

to occur is given in Equation 21.

Pfp = (1− P0)
k (21)

Therefore, to minimize Pfp the optimal number for k becomes ln 2× m
n

which shows

that for a large m it is feasible to use more hash functions. On the other hand, a too

large number for k would significantly increase the number of bits set i.e., the density

of the filter and thus reduce P0 which would yield an increase in Pfp. Additionally,

Bloom Filters are analyzed more in detail [13, 14] and recently has been proposed to

used as an alternative for inverted indices [15].

2.3 Approximation Sketches

Approximation Sketches (sketches for short) use similar techniques to BFs such as

hashing, but their purpose is to approximate count of occurences (or frequencies) of

keys ai from a data stream S = (a1, a2, . . . , an). Again, sketches are probabilistic

data structures that offer compact representation of frequency values. Systems that

are dealing with large streams but have limited resources can benefit from sketches as

we show in Section 2.5, how we adapted a special purpose sketch called Tiny in the

context of SE caching.
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2.3.1 Count-min Sketch

The most classical example of a sketch is the count-min sketch [16] that only supports

incrementing the frequency value fi corresponding to the key ai. Unlike the simple

BF, rather than allocating a single vector, count-min sketches allocate a matrix M of

size (k, w) where each cell contains a fixed width counter. Each row of the matrix M

is reserved for a hash function hj where j ∈ [1, k] and hj ∈ [0, w). Consequently,

when a key at is observed at time t in S, we compute all hj and increment the fre-

quency values at Mj−1,hj . Similarly, to estimate the frequency value, the minimum of

the cells i.e. minjMj−1,hj is used as the answer, since values that are larger than the

minimum are hash collisions and thus guaranteed to be overestimations. By choosing

the minimum value, count-min sketch minimizes the estimation error. Note that it

is not possible for a count-min sketch to count lower frequencies for keys than their

actual value.

2.4 Mitigating Saturation of Sketches

In most large scale applications such as SE’s, the length of the input data stream is

unknown and possibly quite large. Over time, most of the counters in the sketch are

incremented (increasing the bit density) and the number of hash collisions increase,

resulting in an high error rate. In such scenarios we say that the sketch is saturated.

As a solution, it could be feasible to just zeroize all of the counters in the sketch after

some fixed number of increment operations. However, it is likely that, the information

related to recent or active keys are still important and can have adverse effects on

the system performance if they are completely omitted. To overcome this issue, we

briefly explain techniques and data structures that avoid or entirely negate saturation

by selectively resetting or decrementing counters. Main idea of these methods focus

on exploiting the phenomenon of temporal locality (keys that are occurring for short

period of times) and/or the heavy tailed distributions of web data streams where most

of the keys appear only once (singletons) or just a few times (Zipf distribution [17]).

In their general structure, these methods divide the input stream into parts called the

window W , and accumulate keys which are in that range. Afterwards, bit density of

8



sketch0 sketch1 sketchm−1. . .

(a) Initial sketch ordering

sketch0 sketch1 sketchm−1 sketch0. . .

(b) After l elements, sketch0 is inserted into the back while sketch1’s counter are all reset.

Figure 2.2: m identical sketches are in a queue where the head sketch is drawn in red

to indicate that l elements are being inserted to it only.

the sketch is reduced by resetting and / or reducing counters.

2.4.1 Bit Marking

Bit marking allocates a bit vector B such that its elements correspond to the each

counter in the sketch. Initially all bits in B are set to 0. While incrementing coun-

ters, corresponding bits in B are also set. At the end of the current window (after

processing W elements from the stream), counters which their bits remain unset are

set to 0 so that keys that are inactive for the period can be removed. Obviously, bits

in B are also set to 0 at the end of the window to detect the inactive keys of the next

window. This way, inactive keys and singletons which make up a big portion of the

input stream are removed.

Dimitropoulos et al. [18] show that although this method reduces the saturation it

does not halt it. Inactive and singleton keys would eventually collide into the bucket

of active keys and remain in the sketch, saturating it over time.

2.4.2 Sliding Window

In this approach m identical sketches are being allocated in a queue. The input data

stream is divided into segments of length l where W = l×m. While processing each

segment, keys are inserted only into the head of the queue. At the end of a segment,
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the head is popped and inserted to the back while the new head sketch’s counters are

all set to 0. This way, window of length W is slid over the stream where at every l’th

processed element the least recently active keys’ counters are decremented. Figure

2.2 summarizes the process of using m sketches in turn to avoid saturation.

Estimation of frequencies are done by summing up the frequency values from all m

sketches. Since all of the sketches are identical, only a single computation of hash

positions are sufficient for the estimation whereas, it still requires m × k memory

accesses and m additions where k is the number of hash functions. Therefore, a large

number for m simulates a better sliding window while increasing the time it takes to

make estimates. Parameter configuration and further analysis are given by the original

authors in more detail [18].

2.4.3 Tiny Storage Scheme

Einziger et al. introduced TinyLFU [5], a caching admission policy that proposed the

use of a sketch data structure, referred as Tiny, that is specially designed for caching

applications that use LFU eviction policy. At its core, Tiny consists of a simple Count-

ing Bloom Filter (CBF) to keep track of the frequencies. Similar to count-min sketch

(2.3.1), a CBF allocates fixed width counters to summarize the input stream in which

the counters are flattened i.e., allocated on a vector, compared to that of a matrix.

Although the estimation of frequencies are the same i.e., the minimum counter’s

value is returned; CBF’s use Minimal Increment to accumulate its counters where

only the minimum of the counters are incremented to further delay the saturation.

For instance, if counters at hash positions are {2, 2, 3}, Minimal Increment increases

only the minimum counters i.e., 2’s. Therefore, new counters would be {3, 3, 3}
respectively.

Additional to the CBF, Tiny allocates a simple BF called the doorkeeper. The purpose

of the additional storage is to capture the singleton keys in the doorkeeper, before

submitting them to the CBF. In other words, counters of a corresponding key are

only incremented in the CBF if they already exist in the doorkeeper. Therefore, one

method Tiny uses to mitigate saturation is by capturing singleton keys; which for our

purposes, make up to 44% [10] of web search engine query logs. Figure 2.3 illustrates
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Figure 2.3: An illustration of the Tiny storage scheme.

the CBF and the doorkeeper.

Another method is called the reset; where Tiny accommodates a counter called the

window counter that keep tracks of the number of keys processed. When it reaches

W , counters in the CBF as well as the window counter itself are divided by 2 and bits

of the doorkeeper are all set to 0. This way, similar to the Sliding Window (2.4.2),

counters are reduced to both overcome saturation and adapt to the changes imposed

by temporal locality.

2.4.3.1 Space Optimizations

Doorkeeper does not only serve to reduce approximation error, but also reduce space

requirements by allowing Tiny to allocate fewer full counters in the CBF which are

larger in size per bucket. Another space optimization is specific to caching applica-

tions and it is based on the observation that for a cache size of C and a window size

of W , a key ai ∈ A would be reserved a slot in the cache if it satisfies the predicate

f (ai) ≥ W
C

where f (.) is a function in A → N that approximates the frequencies

from set A. For instance, intuitively, assume we have W = 6 and C = 2; if a key

occurs 3 times, it already guarantees to be in the cache. No other key from the re-

maining stream can obtain a high enough frequency to discard it (it can be only equal

to it which guarantees the other slot). Therefore, Tiny only requires to count up to W
C

,

and noticing that doorkeeper is able to count up to 1, full counters in the CBF can be

capped to W
C
−1. As a result, unlike the naive approach where each counter is capped

to W , Tiny require log2
(
W
C
− 1

)
bits. We give the required number of bits to allocate
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the Tiny in Equation 22 where n is the number of full counters and d is the width of

the doorkeeper. Note that typically d > n and Equation 22 omits the required space

by the window counter since its cost would be negligible in large scale web search

engines where d and n are relatively larger and thus are the dominating factors.

d+ n× log2

(
W

C
− 1

)
(22)

Due to its small storage requirements and optimizations that fit our needs for SE result

caching, we configure and adapt Tiny to our needs and describe it in the following

sections. As a side note, we experimented with TinyLFU’s ( [5]) admission policy

where a key is only admitted to the cache if its estimated frequency is larger than the

victim’s, and observed no differences to the eviction only scenario; where the victim

is always evicted in terms of hit-ratio. Therefore, we only use the Tiny storage scheme

as an approximation sketch for different eviction policies.

2.5 Experimental evaluation

Our experiments firstly focus on result caches that use single signal eviction policies.

We measure the cache performance by hit-ratio (or hit-rate) which measures the ratio

of queries (or items in general) served from the cache i.e., the hits to the total number

of queries including misses which are queries that are missing from the cache and has

to be processed.

We aim to find answers to following questions:

• What are the gains of storing the entire frequency history (both in raw (Pure

LFU) and compact manner (Tiny LFU)) in hit-ratio?

• Does the adapted Tiny storage model reduce storage costs without surpassing

the benefits of keeping the entire frequency history?

• Is the saved space is meaningful i.e., can it be exploited to further increase

cache performance by either extending the result cache or employing an addi-

tional doc-id cache?
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Table 2.1: Parameters

Parameter Value Parameter Value (bytes)

Number of distinct queries (U ) ≈ 6.7 M Size of a pointer (P ) 4

Ranking per posting (Pr) 200 ns Size of an int I (long int L) 4 (8)

Decompression per posting (Pd) 100 ns Avg. size of a query (AvgQ) 16.5

Snippet computation per byte (Ps) 100 ns Avg. size of a doc (davg) 16384

2.5.1 Query log and simulation

AOL query log [19] is a chronologically ordered query log that is submitted by real

users to the AOL search engine. The entire log contains ≈ 17 million queries. We

use first 10 million as a training set and the remaining part (≈ 7 million) is used for

testing where the first 10% of it warm-ups the cache.

Note that, the training set is only useful to accumulate past query frequencies for the

caching policies that employ the frequency as a signal (i.e., LFU [11] and GDSF [20]);

however, it is not directly exploited to fill the cache, as there is a separate warm-up

set. Since the LRU eviction policy does not require any training i.e., the frequencies

are not used during the eviction stage, the training set is not used at all.

2.5.2 Results for Single-Signal Caching Policies

We begin with describing two well-known cache eviction policies, namely, LRU and

LFU. Additionally, our implementation details and memory models for aforemen-

tioned policies are presented briefly. These policies are single-signal, in the sense

that they either use query recency or frequency as an indicator for eviction, respec-

tively. Single-signal policies are rather simpler to implement compared to their multi

counterparts.

2.5.2.1 Least Recently Used (LRU)

LRU eviction policy always chooses the least recently accessed item as the victim

and evicts it from the cache whenever the cache is full. We used a doubly-linked list
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Table 2.2: Memory space cost of LRU, LFU, and GDSF variants.

Policy Memory Cost Formula (bytes)

Pure (Metadata) Mpure U × (AvgQ+ I)

Tiny (Metadata) M tiny (c)
(
6W + 3W × log2

(
W
c
− 1

))
/8

LRU Mlru (c) c× (AvgQ+ 3P )

In-memory LFU M inmem
lfu (c) c× (AvgQ+ 6P + I)

Pure LFU Mpure
lfu (c) M inmem

lfu (c) +Mpure

Tiny LFU M tiny
lfu (c) M inmem

lfu (c) +M tiny (c)

In-memory GDSF-K M inmem
gdsf (c) c× (AvgQ+ 6P + L+ I) + L

Pure GDSF-K Mpure
gdsf (c) M inmem

gdsf (c)− c× I +Mpure

Tiny GDSF-K M tiny
gdsf (c) M inmem

gdsf (c)− c× I +M tiny (c)

to keep the access order of queries from least recently accessed to the most where the

head of the list is the victim. In order to query the existence of items, a hash-table is

used as a mapping from query strings to pointers to the linked-list nodes. Based on

the parameters given in Table 2.1, we provide the worst-case space requirements for

our LRU implementation in Table 2.2.

2.5.2.2 Least Frequently Used (LFU)

LFU chooses the least frequent item to be the victim and similarly it is evicted when

the cache is full. Usually, there are two ways for storing the frequency. Frequencies

can be either tracked through history (as in Pure and Tiny LFU) or only for the cached

items i.e., the In-memory LFU. Similar to LRU, a list of doubly-linked lists keep

the order of nodes but for an efficient eviction these lists are connected with special

frequency nodes (cf. [21] for details). Worst-case space requirements occur when the

number of frequency nodes are equal to the cached items (and hence, we have the

storage cost component 6P in Table 2.1). The second LFU variant, Pure LFU, keeps

the full frequency history of queries in raw format and thus requires a hash table that

maps query strings into frequencies (incurring the storage cost of Mpure) in addition

to the cost of storing the aforementioned linked lists of typical LFU.
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Figure 2.4: Hit-rates for LRU and LFU variants (In-memory, Pure and Tiny).

The Tiny LFU variant is the implementation that employs the Tiny storage scheme

that is described in Section 2.4.3 for query history. In our setup, we allocate 6W

bits to doorkeeper and 3W full counters (where W denotes the window size and is

in range [8M, 16M ] in our experiments) and use 4 hash functions to minimize the

false positive errors [13] (and thus obtain M tiny as in Table 2.1). For both Pure and

Tiny LFU, during warm-up and testing, frequency statistics are updated as queries are

streamed.

Figure 2.4 shows the hit-rates of single signal caching algorithms with respect to the

cache size. Pure LFU improves the hit-ratio compared to In-memory LFU and LRU,

especially for small cache sizes. This answers our first question; keeping the full

history improves LFU performance. This is an important finding, because although

some earlier works mentioned using a larger query history than the memory size for

LFU in search engine result caching (e.g., [4]), there was no experimental evidence,

as we provide here. More crucially, we see that Pure and Tiny LFU perform almost

the same (i.e., the curves in Figure 2.4 overlap) indicating that using the compact

storage scheme (and hence, less precise frequency values) in the latter case do not

reduce the cache performance.
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Table 2.3: Performance of LFU and GDSF-K variants, C: cache size,M: metadata

(query history) size (in MBs),R: result cache size (in MBs),H: hit-rate.

C R

LFU GDSF-K

Pure Tiny In-memory Pure Tiny

H M/R H M/R H M/R H M/R H M/R

100K 244.1 0.436 0.56 0.437 0.15 0.422 0.02 0.451 0.56 0.457 0.12

200K 488.3 0.479 0.29 0.479 0.08 0.46 0.02 0.498 0.29 0.498 0.11

300K 732.4 0.502 0.20 0.501 0.08 0.483 0.02 0.518 0.2 0.518 0.08

400K 976.6 0.516 0.15 0.516 0.06 0.497 0.02 0.529 0.15 0.529 0.07

500K 1220.7 0.527 0.13 0.526 0.05 0.508 0.02 0.536 0.13 0.536 0.05

Next, we report the ratio of the storage for metadata,M , (i.e., size of the query history

stored in plain format or using the Tiny scheme) to that for the actual content of the

result cache, R. For a given cache that can store C queries, the cache (content) size R

is computed asR = C × k × S. We set k = 10 (since a typical result cache includes

top-10 answers) and S = 256 as each query result including document’s title, URL

and snippet may add up to 256 bytes, as in [3]. Obviously, for a fixed cache size,

the denominator R is the same for both Pure and Tiny LFU. Table 2.3 shows that

M/R ratio varies from 0.56 to 0.13 for the smallest and largest values of C, i.e.,

100K and 500K queries, respectively. In contrary, for Tiny LFU, M/R ratio is much

smaller, between 0.15 and 0.05, indicating that Tiny scheme allows considerable gains

in memory space. Note that, this is a finding shown for caching in other application

domains [5] but not for search result caching. To our best knowledge, only [22]

mentioned the possibility of using BFs for storing the query history in result caching,

but their work did not provide any experimental evaluation of this idea, while we

provide an exhaustive analysis in terms of the storage and cache performance metrics.

2.5.3 Results for Multi-Signal Caching Policy

2.5.3.1 Greedy Dual Size Frequency(GDSF)

GDSF [20] offers a good compromise between recency and frequency, as well as

the entry size and cost. We use a variant of GDSF, so called GDSF-K [23], where

the frequency component is weighted by an exponent K to balance for the power-
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Figure 2.5: Hit-rates for GDSF-K variants (In-memory, Pure and Tiny).

law distribution of queries in our setup. GDSF-K evicts the query result i with the

minimum Hi value where Hi = FKi × Ci
Si + L. In this equation, Fi is the frequency

of the query, Ci and Si are size and cost of the query result, respectively. In our

experiments, result size is set to 1, whereas we consider different alternatives for the

cost (as will be discussed later). Lastly, L is the aging factor that is updated to theHi

of the cache victim whenever an item is evicted.

We again have three variants, namely In-memory (frequency information is kept only

for the queries in the cache), Pure (with a raw frequency history) and Tiny. Table 2.2

presents the worst-case memory space usage of these variants.

While experimenting with GDSF-K variants, we first assume that all query costs Ci as

1, and measure the traditional hit-rate. Figure 2.5 reveals that, as before, the variants

using the entire history outperform the In-memory GDSF-K, and furthermore, Pure

and Tiny variants of GDSF-K perform comparably. We also see that GDSF-K formu-

lation that combines both frequency and recency is superior to using each on its own;

i.e., Pure (or, Tiny) GDSF-K outperforms the corresponding case with LFU. Finally,

Tiny again provides considerable memory space gains over Pure GDSF-K, as shown
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in Table 2.3.

To investigate our third research question, i.e., assessing the value of the saved mem-

ory space, we focus on Tiny GDSF-K as the best-performing policy in the previous

experiments. To this end, we first assume the saved space (i.e., the difference of

memory space between Pure and Tiny variants) is also filled with query results, and

measure the hit-rate. This case is denoted as ‘Tiny GDSF-K with Result’ in Table 2.4,

and we see that the hit-rates improve for each cache size (absolute gains being around

1.7% for the smallest cache size in comparison to the hit-rate of Tiny GDSF-K col-

umn, repeated from Table 2.3 for reference).

Furthermore, following the recent trend [23] that suggests using cost-aware caching

policies and evaluating them again in terms of the cost savings –rather than hit rate-,

we also experiment with Tiny GDSF-K using simulated query costs (i.e., in GDSF-K

formula, we now set Ci using such costs). While doing so, as in [3], we consider four

basic cost components: fetching the posting lists from the disk, ranking in memory,

fetching top-k documents from the disk and generating snippets. Since modern search

engines are known to store most of their data in memory or SSDs, here we focus on

the ranking and snippet generation components. Formally, we define the former one

as; Crank = |Is| × (Pd + Pr) and the latter one; Csnip = 10× davg × Ps, where Is is

the shortest posting list of terms in query q (representing the conjunctive processing

in the search engine, as typical) and Pd, Pr, Ps and davg are defined in Table 2.1 based

on [3]. Posting list length of each query term is obtained from an index over the

well-known Clueweb-2009 Part B collection.

In this case, our evaluation metric is the savings in query processing cost, Cs. To

compute Cs, we obtain the cost of running a query stream over a system with a given

type of cache divided by that of a system with no cache (where the cost of a query is

simply the sum of Crank and Csnip), and subtract the latter ratio from 1.

In Table 2.4, we see that exploiting the saved space as a result cache further improves

cost savings of Tiny GDSF-K; e.g., for a cache of 100K results, the cost savings

increase from 0.698 to 0.710 (the former value, cost savings of the Tiny GDSF-K, is

computed as a baseline).
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Table 2.4: Cost saving, Cs, when saved space (by Tiny) is reserved for extending the

result cache (Tiny GDSF-K w. Result) and implementing a docID cache. H: hit-rate.

C
Tiny GDSF-K Tiny GDSF-K w. Result Tiny GDSF-K w. Doc-ID

H Cs H Cs Cs
100K 0.457 0.698 0.474 0.710 0.740

200K 0.498 0.724 0.504 0.728 0.744

300K 0.518 0.734 0.521 0.736 0.746

400K 0.529 0.739 0.53 0.740 0.747

500K 0.536 0.742 0.537 0.743 0.748

Note that, recent studies in the literature propose using hybrid result caches, i.e.,

some part of the cache stores only doc-IDs of the query results [1, 3]. In this case,

if the cache-hit is for the latter part, there will be still Csnip cost, but much more

expensive Crank will be avoided. Therefore, as a final experiment, we explore what

happens if the memory space saved by Tiny is reserved as a doc-ID cache, while the

original cache capacity, as in previous experiments, store the query results in HTML

format (i.e., top-k results’ URLs and snippets). With this hybrid cache, we employ

the Second Chance algorithm that is basically intended to keep the doc-ID results of

a query for a longer time even its HTML version is evicted from the cache (please

refer to [3] for details).

Our findings for the latter experiment are presented in Table 2.4 with column denoted

as “Tiny GDSF-K with Doc-ID". We see that in terms of cost savings, there is an

absolute improvement of up to 3% (note that, since the cache includes both HTML

and docID results, hit-rate is meaningless, and not reported here). Furthermore, by

reserving this saved space as a Doc-ID cache, the cost saving in case of a 100K cache

is as good as that of a 500K result cache. These final experiments answer our third

research question: the memory space saving using Tiny can yield non-negligible gains

in terms of both hit-rate and query processing cost, especially for small and moderate

size caches.
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2.6 Conclusion

In this chapter, we introduced BFs and BF-like data structures such as sketches, then

described Tiny storage scheme and our configuration of it. We couple Tiny with well-

known cache eviction policies and our exhaustive experiments reveal that i) Storing

the entire query frequency history yields better hit-rate which was only proposed but

not experimentally supported by previous work, ii) Tiny successfully reduces memory

space for the history, and iii) The space saving is valuable, as it can be exploited to

yield non-negligible gains in hit-rate and query processing cost can be further reduced

when the gained spaced is used for an additional doc-ID cache.
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CHAPTER 3

THE SCORE CACHE

3.1 Introduction

Modern Web search engines adopt a two-stage ranking strategy to process top-k

queries [24]. The first stage typically employs an inverted index and ad hoc scor-

ing functions (such as BM25) to generate a small set of candidate documents, while

the second stage re-ranks these candidates using machine-learned models.

To cope with the huge index size and demanding requirements for throughput and

response time [25], search engines distribute the index across several nodes, so that

each node processes the query on its own portion of the index, in parallel. Still, the

overall query processing cost is likely to be dominated by the first stage retrieval,

where traversing and scoring the large number of documents in the posting lists take

place [25, 24]. To speed up the latter stage, various dynamic pruning (aka., early

termination) strategies are proposed in the literature (e.g., [26]). These strategies

aim to skip scoring certain documents in the posting lists to improve the processing

efficiency. A rank-safe pruning strategy guarantees exactly the same result as the

exhaustive processing of the query, while unsafe strategies may sacrifice effectiveness

in return for higher efficiency.

In this chapter, we focus on two such strategies, namely, WAND (Weak-AND) [26]

and its successor, BMW (Block-Max WAND) [26], and their application in a rank-

safe scenario for (ranked) disjunctive queries (as in [26, 27]). In a nutshell, both

strategies assume that the maximum possible score contribution (e.g., using BM25)

for each term (either over the entire posting list [26], or the blocks of a list [26]) is

pre-computed. During query processing, they keep track of the k·th highest score so
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far, the threshold. If a document’s estimated score (based on the upper-bound scores

of query terms) cannot exceed the threshold, the document is skipped; otherwise, its

actual score is computed to see whether it can get into the current top-k list. WAND

and BMW employ intelligent pivoting strategies that can jump to the first document

with an estimated score that exceeds the threshold, rather than checking each docu-

ment in the lists.

We propose to improve the performance of WAND and BMW strategies by exploiting

an orthogonal technique, namely, caching. A search engine employs various types of

caches at different layers of its architecture [1]. Result caches including the final

SERPs for queries are located at the broker nodes [7, 2, 3], while caches with posting

lists are located at the index nodes [2, 28].

As our first contribution in this chapter, we introduce a new cache type to be located

at the index nodes, i.e., the score cache, which will store the score of the k·th result of

a query computed at each node. The significance and novelty of our approach lies in

exploiting cached scores for previously unseen queries. For the queries seen before,

the answer will be provided from the result cache in the broker with virtually no cost,

as usual. In contrary, for a query that is not found in the result cache and forwarded

to the index nodes, we generate its subsets and probe the score cache to locate those

that are cached. The scores of these subset queries are exploited to obtain a lower-

bound for the score threshold, which is fed to the dynamic pruning strategy, to allow

skipping more documents.

Since considering all subsets of a query can cause additional run-time overhead, as

our second contribution, we introduce several heuristics to obtain the score threshold

efficiently. These heuristics aim to generate subsets of a query that are most likely to

be cached, using the features such as the query length. In our simulations, we fill the

result and score caches using 1.8M distinct queries, and measure the performance for

around 50K test queries that are result cache misses. In comparison to recent works

that evaluate WAND and BMW [27, 29], our test query set is at least an order of

magnitude larger. Furthermore, our evaluations provide realistic/practical insights on

the query processing costs with dynamic pruning, as we take into account the impact

of the other system components, such as the filtering effect of result caches at the
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broker nodes.

Our experiments reveal that using the score thresholds obtained by our heuristics,

query processing cost at a node can be reduced by up to 8.6% (and further reductions

are possible when our heuristics are combined with a previously proposed strategy).

The space overhead for storing scores (per node) is reasonable; i.e., around only 1%

for a typical top-10 result cache. We also show that using this space in favor of a larger

result cache may not always improve the efficiency (see Sec. 3.4 for experimental

evidence). This is because there is an experimental upper-bound for the hit-ratio

of a search engine’s result cache, which is around 50% (as 44% of a query stream

is made up of singleton queries, which are submitted only once, and there are also

compulsory misses [2]). Indeed, we believe that the latter point is crucial to make

our contributions worthwhile for practical systems: Our approach would improve the

efficiency for the singleton queries (as well as compulsory misses) that can never

benefit from a result cache, even if the latter is infinitely large.

In the next section, we review background and related studies. Sec. 3.3 describes the

score cache and associated heuristics for query processing. In Sec. 3.4, we provide

experimental results and conclude.

3.2 Background and Related Work

3.2.1 Inverted Index & Query Processing

A document-ordered inverted index is composed of two main parts: First part contains

the terms that all together create the lexicon of the document collection. Each term is

paired up with a pointer which points to the second part of the inverted index i.e., the

postings lists. Posting lists are lists that contain document identifiers (doc-ids) in an

ascending order only if the document contains the corresponding term. Each doc-id in

the postings lists can contain additional information such as the term frequency that is

used in the ranking stage. Inverted index layout enable various types of optimizations

to be applied over the index in terms of both space and time. Figure 3.1 illustrates an

inverted index where each term-document frequency (df) pair and its corresponding
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Figure 3.1: A Simple Inverted Index

< engine, 5 >

< search, 16 >

< queries, 11 >

(< d2, 1 >,< d3, 2 >,< d5, 3 >,< d8, 4 >,< d13, 2 >)

(< d2, 1 >,< d8, 4 >,< d13, 2 >, . . .)

(< d4, 1 >,< d8, 2 >,< d11, 3 >, . . .)

...

...

Lexicon

postings list is shown with an edge between. Postings lists are ordered pairs of doc-ids

and term frequencies.

Query processing can be divided into two regarding the creation of the query result

set. Conjunctive (a.k.a, AND) processing requires that; for a document to be in the

result set it has to exist in the all of the terms’ postings lists. For instance, in Fig-

ure 3.1, if we would process query q = {search, engine, queries} the result set

would include only documents {d8}, discarding any other document since they are

not included in all terms of q. Conversely, disjunctive (a.k.a OR) processing requires

only a single term to exist in any of the posting lists of q. Using the previous example

we would obtain the result set {d2, d3, d4, d5, d8, d11, d13}. Typically, conjunctive pro-

cessing can be more efficient by skipping many documents without computing scores,

since a document has to be in the all of the postings lists to be scored. However, for

a query that has many terms, the length of the result set might not be sufficient to

retrieve k documents due to most of the documents being eliminated in consecutive

intersection of posting lists. Therefore, disjunctive processing is a viable option al-

though being less efficient compared to the conjunctive alternative, especially for long

queries i.e., queries with many terms.

Another way to categorize query processing is by the processing order of terms.

Again the index can be traversed in two ways, either term-at-a-time (TaaT) or document-

at-a-time (DaaT) manner. In this thesis, we focus on the latter case. DaaT approach

fetches the postings lists of all the terms in the query, and traverses these lists in par-

allel by maintaining pointers to the each document in the postings list whereas TaaT

processes a single posting list before moving on to the other and thus requires an ad-
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ditional accumulator array to keep partial scores of documents. Appendix A supplies

algorithms for possible different strategies for ranked retrieval over an inverted index.

In ranked disjunctive processing (aka., Ranked-OR) using a retrieval model like BM25,

a score is computed for each document in each list, i.e., as if merging the lists by

doc-ids. Note that, in DaaT, a document is fully scored before moving the next doc-

ument; hence, it is efficient to maintain a top-k min-heap during query processing,

see Algorithm 2 for an example pseudocode. If a document’s score is larger than

the k·th document’s score in the heap, the latter is extracted from the heap and the

newly scored document is inserted; otherwise, the document is simply discarded, see

Algorithm 1 for a pseudocode that adds doc-id, score pairs to the heap.

Algorithm 1 Inserting a doc-id δ to a k-size min-heap together with its score σ
function HEAP-INSERT(H, δ, σ, k)

if |H| = k then

(τ, θ)← TOP(H) . Top doc-id and its score which is the heap threshold

if σ > θ then

POP(H) . Remove doc-id with minimum score

INSERT(H, δ, σ)
end if

else

INSERT(H, δ, σ)
end if

end function

3.2.2 Index Pruning

In order to speed up the query processing, the documents that wouldn’t make it into

the top-k can be skipped i.e., not computed a score. Index pruning methods are usu-

ally applied in two different stages; index creation (static pruning) or query processing

(dynamic pruning). Static pruning techniques remove documents from postings lists

entirely during index creation and thus also reduce the size of the index, optimizing

for both space and time. Conversely, dynamic pruning techniques may increase the

size of the index by keeping maximum scores that can be contributed by a term of en-
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Algorithm 2 Ranked-OR in a DaaT manner
function RANKED-OR(Q, I, k) . Parameters query, index and the number of

doc’s to retrieve

τ ← |Q|
for t = 1 to τ do

Lt ← IQt . Initialize postings lists

Pt ← 1 . List pointers initialized to first elements

end for

H ← HEAP()

while ∃t ∈ [1, τ ] ,Pt ≤ |Lt| do . Loop until all postings lists are exhausted

µ← min{DOCID(Lt,Pt) | t ∈ [1, τ ]}
σ ← 0 . Score of µ

for t← 1 to τ do . Compute the score

γ ← Lt,Pt
if DOCID(γ) = µ then

ψ ← WEIGHT(γ)

σ ← σ + SCORE(ψ, I,Qt) . Accumulate partial scores

Pt ← Pt + 1 . Advance list pointer to next doc

end if

end for

HEAP-INSERT(H, µ, σ, k) . See Algorithm 1

end while

return CREATE_ANSWERS(H)
end function
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tire postings lists and/or for chunks of the postings lists. However, it can be difficult

to determine which documents to statically prune from the index independent of the

queries. Here, our ideas apply to dynamic pruning strategies and we provide results

for two well-known approaches i.e., WAND and BMW, for faster DaaT processing

in a rank-safe scenario for Ranked-OR retrieval. We summarize WAND and BMW,

as follows (see [27] for a performance comparison of these strategies):

3.2.2.1 WAND

In this algorithm, for each posting list, the maximum possible score, Ut, that can be

contributed by its postings (based on an additive retrieval model, like BM25) is pre-

computed and stored. During query processing with Ranked-OR, each document is

scored as usual, until there are k documents in the heap. After this point, in each

round, the posting lists are sorted in ascending order of doc-ids that are pointed to,

i.e., to be processed next. The Ut scores of the lists are summed until the sum exceeds

the threshold, i.e., the k·th score in the heap. The document pointed in the last list

(that contributed to the sum) is selected as the pivot, i.e., this is the first document

that has a potential to get into the heap. Thus, all lists move their pointers to the pivot

document, so that the true score of the document can be computed and compared

against the heap threshold. Algorithm 3 summarizes this procedure to give an idea.

3.2.2.2 BMW

Instead of using a single (and possibly large) Ut for the entire list as in WAND, BMW

partitions the posting list into blocks and computes an upper-bound score for each

block. Due to this modification, the pivot selection and skipping becomes slightly

more complicated. In return, BMW computes a tighter bound on the estimated score

of a document, and hence, can skip larger number of documents by skipping entire

blocks, or documents within blocks without actual score computation.
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Algorithm 3 WAND Algorithm
function WAND(Q, I, k) . Parameters query, index and the number of doc’s to retrieve

τ ← |Q|

for t = 1 to τ do

Lt ← IQt . Initialize postings lists

Ut ← MAX-SCORE(IQt , k) . Initialize maximum scores for each term

Pt ← 1 . List pointers initialized to first elements

end for

θ ← 0 . Initialize heap threshold

H ← HEAP()

while ∃t ∈ [1, τ ] ,Pt ≤ |Lt| do . Loop until all postings lists are exhausted

φ← 0, λ← 0, ρ← 0 . Initialize sum of max term scores, pivot term and pivot doc-id

S ← arg sort (Lt,Pt , t ∈ [1, τ ]) . Argument sort by ascending doc-id’s

for all t ∈ S do

φ← φ+ Ut . Accumulate maximum scores

if φ > θ then

λ← t . Set pivot term

ρ← DOCID(Lt,Pt) . Set pivot doc-id

break

end if

end for

if λ = 0 then

break . When pivot term is 0 no doc-id can enter heap

end if

α← true . Initialize flag to check all doc-ids equal to pivot doc-id

for all t ∈ S do

if t = λ then

break

end if

while DOCID(Lt,Pt) < ρ do

Pt ← Pt + 1 . Advance pointers until equal or greater doc-id

end while

α← DOCID(Lt,Pt) = ρ . Update α if current doc-id is equal to pivot

end for

if α then

Compute score σ for ρ as usual

HEAP-INSERT(H, σ, ρ, k)

Update θ to heap minimum

end if

end while

return CREATE_ANSWERS(H)

end function
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3.2.3 Term-score (TS) Strategy

One of the closest approaches to our work proposes pre-computing the k·th highest

score for each term, and storing them in the index [30, 29]. While processing a

query q = {t1, . . . , tk}, the score threshold is set to the maximum of these term

scores (TS), i.e., threshold (q) = max(TS(t1), TS(t2), . . . , TS(tk)). Although there

are similarities, our approach differs from the latter in two critical ways. First, by

leveraging a score cache, we propose a dynamic setting: As the k·th score values for

the cached queries can be computed on the fly (when the query is first submitted),

there is no need for pre-computing and maintaining the term scores. That is, in our

approach, if the scoring model of the search engine is changed, it is adequate to flush

the cache, and new scores will accumulate in the cache as queries arrive, as typical. In

contrary, storing term-score values in the index will require re-scoring all the posting

lists. A second and more crucial difference is that, by caching scores for multi-term

queries, it is possible to obtain tighter lower-bounds for the score threshold of an

unseen query. In Sec. 3.4, we first justify the latter intuition (see Table 3.1) and also

experiment with a hybrid strategy that combines the TS approach with ours.

3.2.4 Predicting the Threshold Score

In a recent work, Petri et al. [31] proposed predicting a lowerbound threshold for

each query to speed up the query processing in a similar manner to ours. To make

predictions, the index has to be extended to keep additional feature information such

as k-th highest score and the inverse document frequency (IDF). If the prediction is

larger than the actual threshold i.e., an over-prediction for the threshold yields an

unsafe-ranked retrieval. To overcome this problem authors detect the over-prediction

during the query processing, and recalculate the threshold in a more conservative

manner. Indeed, this process requires the query to be processed again and too many

repetitions can easily shadow the benefits of obtaining a lowerbound threshold. Nev-

ertheless, they report similar improvements to ours compared to the TS strategy which

is explained in Sec. 3.2.3. However, their improvements are only limited to BMW

unlike ours; where we show that our query processing gains are significant for both

WAND and BMW and are easily applicable to other dynamic pruning strategies.
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Finally, in a complementary work to ours, Fontoura et al. [32] proposes to compute

the score threshold using only few terms (i.e., those with short lists) of a given query,

and then continue processing with the remaining terms and computed threshold. In

contrary, we exploit the score thresholds for previously seen queries, but do not make

any document scoring to obtain them. In a sense, their approach is intra-query while

ours is inter-query; and experimenting with a hybrid approach seems as a promising

future direction.

3.2.5 Caching in Search Engines

A result cache is typically located at the broker nodes of a search engine, and stores

top-k results as SERPs (i.e., with titles, URLs and snippets for each document [7, 2])

and/or in terms of the doc-ids [7, 1, 3] (Note that, in [1], the latter, a result cache

including docIDs, is called as a score cache; while we also prefer to call our cache

the same, we clearly mean something different.). Posting lists and their intersections

can be cached at index nodes to speed up the ranking process [2, 28].

Caches are broadly categorized as static or dynamic. As the name implies, the content

of a static cache does not change during run time, until the next periodic update. In

contrary, as the new queries arrive, items stored in a dynamic cache are evicted and

new ones are inserted. In the literature, purely static or dynamic caches as well as

their hybrids for aforementioned data types in search engines are exhaustively evalu-

ated(e.g., [7, 2, 1, 3]. However, as far as we know, none of these earlier works propose

to cache the score of k·th query result to accelerate dynamic pruning.

3.3 Score Caching for Dynamic Pruning

We assume a typical distributed search setup (e.g., see [25]) as shown in Fig. 3.2.

When a new (previously unseen) query arrives to a broker node, it forwards the query

to all index nodes. Each index node executes the first-stage ranking (with WAND

or BMW) and obtains its local top-k rankings, that are sent back to the broker. The

broker creates the candidate set, on which second-stage rankers are executed to obtain

the final top-k results. The final ranking is sent to the user, and also stored in the result
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Figure 3.2: Search Engine Architecture with Score Caches

cache at the broker, so that if the same query is re-submitted, it can be answered from

the cache.

We introduce a new cache type, score cache, to be located at the index nodes, as

also shown in Fig. 3.2. For each query processed at an index node n, its score cache

stores the pair <q, s>, i.e., the query string and score of the k·th result of q at n. In this

modified search architecture, for a previously unseen query (i.e., causing a cache-miss

at the broker), our query processing algorithm exploits the score cache as follows.

First, we generate a number of subsets for the query, and by looking up these subsets

in the cache, we determine a lower-bound for the score threshold of dynamic pruning

algorithm.

Example. Assume that the score cache at a particular node includes the entries:

qc1 :(“search engine", s1), qc2 : (“search engine books", s2), qc3 : (“search engine

resources", s3). The new query qn: “search engine books surveys" will cause a cache-

miss for the result cache at the broker (as the result and score caches have the same

keys, i.e., query strings, but with different values). When the query arrives to the

index node, all of its subsets in the score cache are found, i.e., qc1 and qc2. Then, the

score threshold of qn is computed as max(s1, s2). This approach is rank safe, as long

as the same retrieval model is applied for processing the cached and new queries.

Obviously, generating all subsets of a query and probing the cache for each can be

expensive (see Table 3.2), especially for the long queries. Therefore, we propose three

different heuristics to generate a query’s subsets and compute its score threshold.

• Heuristic-1 (HR1) In this heuristic, we exploit the observation that a typical
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score cache is more likely to include frequently asked queries, and frequent

queries are more likely to be shorter (i.e., up to 3 terms), as rare queries (such

as singletons) are typically longer (e.g.,see [3]). Indeed, around %87 of the

queries employed in our experiments are shorter than 5 terms. Thus, our first

heuristic works as follows. Considering our query as a set of terms, we first

generate its 3-term subsets (i.e., sub-queries with exactly three terms) and look

for them in the score cache. If one or more of these subsets are found in the

cache, we set the score threshold to the maximum score of them. If cache

probing fails, i.e., no 3-term subsets of this query are cached, we repeat the

same for 2-term and eventually 1-term subsets. If none of them reside in the

score cache, we initialize the score threshold to 0, which is the typical setup

in WAND or BMW. Note that, we prefer to search the cache starting from the

subsets with more terms, as we expect that a hit for a longer query would yield

a higher threshold, and allow skipping more documents.

• Heuristic-2 (HR2) This heuristic is similar to HR1, but this time we conduct an

exhaustive search of all 3-term, 2-term, and 1-term subsets of a query. That is,

we do not quit searching even when we a find subset with more terms. This is a

more expensive approach, but we aim to catch the cases where a smaller subset

may have a larger score. For instance, consider a query q = {a, b, c} of which

subsets q1 = {a, b} and q2 = {c} are in the score cache, with score values of 6

and 7 respectively. Clearly, if we stop when we find the larger subset, q1, we are

settling for a smaller threshold, while proceeding with smaller subsets yields a

larger threshold.

• Heuristic-3 (HR3) For a query with N terms, one can expect that highest

scores are likely to belong to its largest, i.e., (N − 1)-term, subsets, of course,

if they are found in the cache. This heuristic is expected to run faster than the

previous two heuristics, as its complexity is only O(N) , yet its success will

depend on the cache hit-ratio for the (N − 1)-term subsets.
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3.4 Evaluation

3.4.1 Setup

We used the standard TREC GOV2 collection with ≈ 25M documents. We assumed

that the collection is stored at a single index node, where the query processing takes

place and a score cache is placed. Since query processing would be in parallel across

all nodes, our findings for a single node are representative.

We employed the publicly available WAND and BMW implementation1 that first

calls the ATIRE2 system to build a quantized index for the collection, and then gen-

erates index variants that are compatible to work with WAND and BMW processing

techniques [27]. We modified the latter codes3 so that before actual query process-

ing begins, query subsets were generated using the aforementioned heuristics and

searched in the score cache, which is implemented as a hash table (i.e., an unordered

map in C++). Note that, the latter steps are included while measuring the execution

time for a query, so the reported efficiency figures capture all the time overhead for

our approach.

Following the practice in [27, 29], we used the quantized BM25 scores and kept stop

words both in the index and queries. To obtain the query sets, the well-known AOL

log in time-stamp order is employed. We used 4 million consecutive queries (≈ 1.8M

distinct queries) to fill the static result and score caches4. Next 100K queries (again

in time-stamp order) constitute our test set. Note that, due the presence of a result

cache in our framework, cache-hits are assumed to be answered at the broker; and

we simulated this by simply filtering the test query log, i.e., removing all occurrences

of the training queries (resulting in ≈ 50K queries) from the latter set. Thus, our

evaluation is based only on the result cache misses.

We conducted experiments on a HP Z840 Workstation with two Intel Xeon E5-2630

1 https://github.com/JMMackenzie/Quant-BM-WAND
2 http://www.atire.org
3 https://github.com/yfy-/Quant-BM-WAND
4 While the result cache may be dynamic in practice (and we have such an experiment reported later), dynam-

icity is less mandatory for the score cache: since the latter won’t provide query answers but just lower-bounds for
thresholds, it may be adequate to update it periodically. Hence, we leave the dynamic score caching as a future
work.
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Table 3.1: Median, 99th percentile and mean processing time (ms) of WAND and

BMW for k ∈ {10, 1000}. Original and TS are baselines, Heuristics HR1-3 are

proposed. The best result for each k in each row is shown in boldface. The means

that are statistically significantly different (using paired t-test at 0.05 level) wrt. ORG

and TS are denoted with β and ∗, respectively.

Method Time
ORG TS HR1 HR2 HR3 HR2+TS

10 1000 10 1000 10 1000 10 1000 10 1000 10 1000

WAND

P50 7.2 27.3 6.4 21.4 6.5 21.3 6.5 20.3 6.8 24.2 6.0 19.7

P99 227.7 456.9 223.3 456.1 223.7 451.7 223.7 452.3 225.1 452.8 225.1 453.3

Mean 22.3 58.8 21.5β 55.5β 21.6β 54.8β∗ 21.6β 54.3β∗ 21.9β 56.6β 21.2β∗ 54.2β∗

BMW

P50 6.5 22.4 5.8 17.1 5.8 17.0 5.7 16.2 6.3 19.5 5.5 15.9

P99 178.1 417.7 176.2 416.6 175.9 416.8 175.8 416.6 179.6 418.8 176.1 415.0

Mean 19.1 52.3 18.5β 49.3β 18.5β 48.5β∗ 18.4β∗ 47.8β∗ 19.0β 50.4β 18.3β∗ 47.7β∗

Table 3.2: Mean processing times (ms) for generating all subsets. Processing time

changes are denoted in parentheses compared to ORG.

Method k = 10 k = 1000

WAND 24.0(+7.0%) 58.0(−1.3%)

BMW 21.4(+11.0%) 50.0(−4.3%)

CPU, 128 GB of RAM, 512 GB HP Z Turbo Drive PCIe SSD and 4 TB HDD, running

Ubuntu Linux v14.04.

3.4.2 Efficiency evaluation

In Table 3.1, we present the in-memory execution time statistics (in milliseconds)

for the query processing with the original pruning strategy (i.e., score threshold is

initially set to 0) and with Term-score (TS) strategy [30, 29] vs. processing with our

heuristics based on a score cache, for WAND and BMW. We report mean as well as

median (P50) and tail (namely, 99th percentile) statistics. Table 3.1 shows that the

heuristic HR3, which only checks a small number of subsets, can outperform ORG,

but not the stronger baseline, TS. In contrary, the heuristic HR2, which generates
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and probes a larger number of subsets than others (and hence, more likely to find a

tighter score threshold), is the best performer: It outperforms ORG and TS for WAND

(for k ∈ {10, 1000}) and BMW (for both values of k) in terms of mean processing

time. The gains are more visible for k = 1000, where HR2 cuts the mean processing

time by 7.7% (8.6%) and 2.2% (3.0%) w.r.t. to ORG and TS baselines for WAND

(BMW), respectively. HR2 also outperforms ORG and TS in terms of other statistics

(P50 and P99) especially for BMW, the faster of two pruning methods employed in

our experiments. As an addition to the Table 3.1, we provide mean processing times

for the strategy that generates all subsets (a.k.a ALL) and compare it to the ORG

in Table 3.2. As we claimed before, such an exhaustive search increases processing

times by 7% and 11%, respectively for WAND and BMW when k = 10 and for larger

k, improvements of ALL are still surpassed by our heuristics.

Recall that, our time measurements include the overhead for generating subsets and

probing the cache, which means that these costs are well-compensated by the savings

in time spent for actual scoring. Indeed, we found that the overhead of our HR2 is

only ≈ 10 microseconds, and hence, we do not report these costs separately.

3.4.3 Combining Score-Cache Heuristics with TS

As TS approach [30, 29] can be considered as a special case of our framework (i.e.,

like a cache with only and all terms in the index), combining them seems to be a

promising direction. That is, TS may serve as a last-resort if our heuristics fail to find

any subset in the score cache.

In this case, we obtain two score thresholds, one using our best-performing heuristic

(namely, HR2) and the other one with TS, and choose their maximum to employ in

query processing (as discussed above, overhead is negligible for our heuristics, same

applies also for TS). The last column in Table 3.1 presents this hybrid HR2+TS ap-

proach. As expected, it yields even larger reductions in mean processing time against

both ORG and TS baselines. For instance, in case of k = 1000, the hybrid approach

outperforms ORG (TS) by 7.8% (2.3%) for WAND, and by 8.8% (3.3%) for BMW,

respectively. Note that, as the score cache capacity gets larger, all or most terms of

a query may be found in the cache (as 1-term subsets), in which impact of TS may
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Figure 3.3: Mean processing times by query length for WAND
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Figure 3.4: Mean processing times by query length for BMW
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diminish and our heuristics might be sufficient on their own. We will explore if and

when this case occurs in our future work.

In Figure 3.3 and 3.4, we provide a break-down of the mean execution times by

query length for the original and best-performing HR2+TS approaches for WAND

and BMW, respectively. We see that the performance gains are mostly obtained for

the queries with 3 and 4 terms. For 2-term queries, the room for improvement is not

much when the k = 10 since only single query terms can be exploited to estimate a

threshold. However, when k = 1000 the query processing times are reduced up to

20% and 13% for BMW and WAND. For queries with more than 4 terms, we think

that further gains are possible with heuristics that are more effective and/or faster in

identifying useful subsets among many candidates. This is left as an exciting future

direction.

Finally, Table 3.3 provides more insight on how our heuristics improve the process-

ing time. For TS, HR2 and HR2+TS, we present how close the score threshold

lower-bound is to the actual k·th score of a query, averaged over all test queries.

For k = 10, TS can obtain a score that is equal to 66% of the correct score, while

HR2 and HR2+TS reach 72% and 78%, respectively. The ratio increases for all three

approaches for larger k, that is possibly because at lower ranks the retrieval scores

might be smaller and/or more stabilized, yielding tighter lower-bounds. Another im-

portant observation from Table 3.3 is that there is still room for improvement, i.e., to

tailor heuristics to obtain even tighter lower-bounds on the score threshold.

3.4.4 Storage space overhead

Assuming that a typical result (URL, title and snippet) takes around 256 bytes, for

k = 10, the space required in a result cache would be 2560 bytes per query [3]. In

contrary, in our score cache, a query string (with 3 terms on the average) and a single

quantized score value would take around 25 bytes, i.e., around 1% of the space for

the result cache (per index node), and seems like a negligible cost for storing even

millions of entries in practice. Anyway, we investigated whether using the score

cache’s space to extend the result cache capacity would yield efficiency gains similar

to ours, and found out that for the setup reported here, such an approach would allow
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Table 3.3: Ratio of the score threshold lower-bound of a query (as found by different

heuristics) to actual k·th score.

k = 10 k = 100 k = 1000

TS 0.66 0.70 0.72

HR2 0.72 0.77 0.81

HR2+TS 0.78 0.81 0.83

storing an additional 25K queries (obtained from the training log) in the result cache.

By running the test queries over this extended result cache (with original WAND or

BMW) , we only observed up to 0.1% gain in mean processing time in comparison to

ORG figures shown in Table 1. That is, extending the result cache is not as useful as

the proposed score cache.

As our analysis above focuses on a single node, an astute reader may ask what hap-

pens if the total storage for the score caches in all nodes is allocated to a result cache?

Obviously, this would yield a huge result cache, but there is a catch: Earlier works

have consistently shown that approximately 44% of a web search query volume is

made up of singleton queries (i.e., asked only once); and taking compulsory misses

into account, hit-ratio is typically bounded by 50%, even for an infinitely large result

cache [2]. That is, increasing result cache size won’t help after this hit-ratio bound is

reached; while our score cache can still improve performance for such singletons and

compulsory misses. To simulate this, we assumed that each distinct test query, once

processed, is inserted into the result cache, which is now assumed to be a dynamic

cache with infinite size. Thus, our measurements on the test query stream includes

processing time of only compulsory misses and singletons. We found that, the best-

performing strategy HR2+TS with WAND (BMW) still improves TS by a relative

0.9% (1.1%), 1.7% (2.2%) and 2.4% (3.2%) for k ∈ {10, 100, 1000}, respectively, in

terms of mean processing time. Note that, these savings in processing time are the

exclusive benefits of the score cache (in return for the storage space used); and cannot

be obtained by a result cache of even infinite size.
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3.5 Conclusion

We show that using a score cache and appropriate heuristics to access the cache, we

can compute score thresholds to improve the performance of dynamic pruning. Our

gains in query processing times, although statistically significant, may seem numeri-

cally small. However, given that WAND and BMW are time-tested efficient process-

ing strategies, they are not trivial to improve; and earlier optimizations applied on top

of them also report actual gains in a similar range, i.e., a few milliseconds [32, 29]

or even microseconds [32]. For search engines with a large query volume, such sav-

ings would be still useful, as they may add up and help improving other performance

metrics (such as throughput) or services.
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CHAPTER 4

CONCLUSIONS

In this thesis, we introduced advanced methods for caching that concentrated on im-

proving the efficiency of retrieval systems, especially useful for that are on the web.

Our contributions focus on different layers of search engine caching, and are benefi-

cial in multiple aspects e.g. both space and time.

Firstly, we focused on the result cache layer that serves the HTML snippets upon

query submission without any additional processing required. We presented both

single and multi signal cache eviction policies in a realistic setup using different cache

sizes and a large query log. Elaborating over the previous work, that is described in

Chap. 2, we showed that keeping the entire query frequency history poses significant

improvements for result cache hit ratio. We then revealed the costs of storing large

data structures for the history, by modeling the memory requirements in which the

model is based on our implementation that reflects real life scenarios. We discussed

ways of reducing storage requirements using BF-like data structures as well as briefly

presented the theory of Bloom Filters and the Tiny storage scheme. Our findings

are important since they are applicable to well-known cache eviction policies and

shown significant improvements in terms of space requirements (up to 78% metadata

storage gains) without adversely effecting the cache performance. For result caching,

we showed that our space savings are meaningful when the result cache is extended;

there is still room for improvement in hit ratio. Lastly, we modeled query processing

costs and suggested that the saved space can be further exploited with an additional

doc-id cache, and showed that the improvements are concrete compared to that of

using the extended result cache.

Next, in Chap. 3 we first presented basic information retrieval techniques such as the
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inverted index and query processing by introducing algorithms of different traversal

techniques in detail. We then described dynamic pruning strategies in which docu-

ments are skipped without computing a score for them by useful pointer advancement

techniques and index layouts. We then proposed an alternative cache layer, namely

the score cache for search engines that employ dynamic pruning strategies. Our ad-

ditional cache stores the k-th score for each query that is already resident in the re-

sult cache. The scores of the subset queries are used as an initial threshold value

upon result cache misses to allow skipping more documents for dynamic pruning e.g.

WAND and BMW. Since generating the of the subsets would take significant time,

we proposed various heuristics to subset generation. For experiments, we used AOL

query log and TREC GOV index for evaluation. Our comprehensive experiments re-

vealed that accommodating the score cache would yield significant time reductions

for both WAND and BMW (up-to 8.6%) which are already optimized algorithms such

that the path to the improvement is narrow. Our experiments are realistic in the sense

that it improves processing times for queries that are already filtered through the result

cache and also, offers improvements for compulsory cache misses.

4.1 Future Work

While our current work only experimented with a static score cache, it is possible to

extend our idea to a dynamic score cache to obtain a higher subset found ratio. Such

en extension can cause an interesting trade-off as dynamic cache eviction policies

introduce an additional overhead such as determining the victim. Therefore, it is

possible that the costs of employing the dynamic cache can easily surpass the benefit

of having it. This deserves further investigation.

To test the robustness of the proposed methods in Chap. 3, our heuristics can be

coupled with additional dynamic pruning algorithms such as the max-score.

As an another test, our ideas can be applied to the rank-unsafe dynamic pruning al-

gorithms to see if there are any additional benefits. Moreover, our heuristics can

be improved to obtain a rank-unsafe score threshold to further increase skipping of

documents. In such a setup our gains can be more concrete.
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Another future direction is the improvement or addition of more complex heuristics

or even machine learned models can be used to generate subsets that are both likely

to be a cache hit and also yield high threshold values.
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APPENDIX A

ADDITIONAL INDEX TRAVERSAL STRATEGIES

A.1 Index Traversal Pseudocodes

Algorithm 4 Ranked-OR in a TaaT manner
function RANKED-OR(Q, I,D, k) . Parameters query, index, document set and

the number of doc’s to retrieve

Ad = 0,∀d ∈ D . Accumulator array for scores

for all t ∈ Q do

for all d ∈ It do

ψ ← WEIGHT(d)

δ ← DOCID(d)

Aδ ← Aδ + SCORE(ψ, I, t)
end for

end for

H ← HEAP()

for i = 1 to |A| do

HEAP-INSERT(H, i,A, k)
end for

return CREATE_ANSWERS(H)
end function
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Algorithm 5 Ranked-AND in a TaaT manner
function RANKED-AND(Q, I,D, k) . Parameters query, index, document set

and the number of doc’s to retrieve

Ad = 0,∀d ∈ D . Accumulator array for scores

Bd = 1,∀d ∈ D . Bit vector to mark disjoint postings

for all t ∈ Q do

λ← 1 . Last candidate doc-id for term t

for all d ∈ It do

δ ← DOCID(d) . Current doc-id

for i← λ to δ − 1 do

Bi ← 0 . Invalidate doc-id’s between last candidate and current

end for

if Bδ = 1 then . Score if previously not invalidated

ψ ← WEIGHT(d)

Aδ ← Aδ + SCORE(ψ, I, t)
end if

λ← δ . Update last candidate doc-id to current

end for

for i← λ+ 1 to |B| do

Bi ← 0 . Invalidate rest

end for

end for

H ← HEAP()

for i← 1 to |A| do

if Bi = 1 then

HEAP-INSERT(H, i,Ai, k)
end if

end for

return CREATE_ANSWERS(H)
end function
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Algorithm 6 Ranked-AND in a DaaT manner
function RANKED-AND(Q, I, k) . Parameters query, index, document set and the number of

doc’s to retrieve

τ ← |Q|

for t = 1 to τ do

Lt ← IQt
. Initialize postings lists

Pt ← 1 . List pointers initialized to first elements

end for

H ← HEAP()

while ∀t ∈ [1, τ ] ,Pt ≤ |Lt| do . Loop until a posting list is exhausted

δ ← DOCID(L1,P1
)

α← true . Flag to check if all doc-ids are equal or not

for t← 2 to τ do

if DOCID(Lt,Pt
) 6= δ then

α← false

break . Break when a doc-id is not equal to δ

end if

end for

if α then . If δ exists in all postings lists

σ ← 0

for t← 1 to τ do . Compute score for δ

ψ ← WEIGHT(Lt,Pt
)

σ ← σ + SCORE(ψ, I,Qt)

Pt ← Pt + 1

end for

HEAP-INSERT(H, δ, σ, k)

else . Advance pointers to the maximum doc-id in pointed by P

µ← max{DOCID(Lt,Pt) | t ∈ [1, τ ]}

for t← 1 to τ do

while DOCID(Lt,Pt
) < µ do

Pt ← Pt + 1

end while

end for

end if

end while

return CREATE_ANSWERS(H)

end function
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