

TYPE-II TRANSFER LINE BALANCING PROBLEM

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

 YASIN ERSIN TELEMECI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

INDUSTRIAL ENGINEERING

SEPTEMBER 2019

Approval of the thesis:

TYPE-II TRANSFER LINE BALANCING PROBLEM

submitted by YASIN ERSIN TELEMECI in partial fulfillment of the requirements

for the degree of Master of Science in Industrial Engineering Department, Middle

East Technical University by,

Prof. Dr. Halil Kalıpçılar

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Yasemin Serin

Head of Department, Industrial Engineering

Prof. Dr. Meral Azizoğlu

Supervisor, Industrial Engineering, METU

Examining Committee Members:

Prof. Dr. Ömer Kırca

Industrial Engineering Dept., METU

Prof. Dr. Meral Azizoğlu

Industrial Engineering, METU

Assoc. Prof. Dr. Serhan Duran

Industrial Engineering Dept., METU

Assist. Prof. Dr. Gülşah Karakaya

Business Administration Dept., METU

Assist. Prof. Dr. Serhat Gül

Industrial Engineering Dept., TEDU

Date: 09.09.2019

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name, Surname:

Signature:

 Yasin Ersin Telemeci

v

ABSTRACT

TYPE-II TRANSFER LINE BALANCING PROBLEM

Telemeci, Yasin Ersin

Master of Science, Industrial Engineering

Supervisor: Prof. Dr. Meral Azizoğlu

September 2019, 45 pages

In this thesis, we consider Type II Transfer Line Balancing that assigns the operation

to the blocks and blocks to the stations so as to maximize the production rate, i.e., to

minimize the cycle time.

A mixed integer programming model is developed and a branch and bound algorithm

is proposed for the exact solutions. The efficiency of the branch and bound algorithm

is enhanced by lower and upper bounding procedures. The computational results have

revealed the satisfactory behavior of the model and branch and bound algorithm on

moderate size problem instances.

Keywords: Transfer Lines, Type-II Transfer Line Balancing, Mathematical Model,

Branch and Bound Algorithm

vi

ÖZ

TİP-2 TRANSFER HATTI DENGELEME PROBLEMİ

Telemeci, Yasin Ersin

Yüksek Lisans, Endüstri Mühendisliği

Tez Danışmanı: Prof. Dr. Meral Azizoğlu

Eylül 2019, 45 sayfa

Bu tezde, operasyonları bloklara, blokları istasyonlara atayarak üretim hızını

ençoklamayı veya çevrim süresini enazlamayı hedefleyen Tip-II Transfer Hattı

Dengeleme Problemini ele aldık.

Kesin çözümlere ulaşmak amacıyla karışık tamsayı programlama modeli ve dal-sınır

algoritması geliştirdik. Dal-sınır algoritmasının verimliliği alt ve üst sınır belirleme

yöntemleri kullanılarak arttırıldı. Deneysel sonuçlar, modelin ve dal-sınır

algoritmasının orta ölçekli problem örneklerinde tatmin edici davranışlarını ortaya

çıkarmıştır.

Anahtar Kelimeler: Transfer Hatları, Tip-II Transfer Hattı Dengeleme, Matematiksel

Model, Dal-Sınır Algoritması

vii

To my family for their endless

support and encouragement…

viii

ACKNOWLEDGEMENTS

First, I wish to thank my supervisor Prof. Dr. Meral Azizoğlu for her valuable

contributions and guidance throughout this study. I am also very thankful for the

support and understanding.

I want to thank my company ASELSAN INC. and my managers for allowing me to

spare time for this study. I am also grateful to my associates for handling my workload.

I would like to send my greetings to my colleagues Umutcan Ayasandır, Nail Karabay,

Fatih Canbaz, Ercan Kablan and many others for their support and encouragement.

ix

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ .. vi

ACKNOWLEDGEMENTS ... viii

TABLE OF CONTENTS ... ix

LIST OF TABLES ... xi

LIST OF FIGURES .. xii

CHAPTERS

1. INTRODUCTION .. 1

2. LITERATURE REVIEW ... 5

2.1. Literature on Type-II Simple Assembly Line Balancing Problem 6

2.2. Literature on Transfer Line Balancing Problem .. 6

3. PROBLEM DEFINITION & SOLUTION APPROACHES 9

3.1. Problem Statement .. 9

3.2. Branch and Bound Algorithm ... 12

3.2.1. Branching Scheme .. 12

3.2.2. Lower Bounds ... 16

3.2.3. Upper Bounds ... 21

4. COMPUTATIONAL EXPERIMENT ... 27

4.1. Data Generation and Performance Measures .. 27

4.2. Preliminary Experiment .. 28

4.3. Main Experiment ... 32

5. CONCLUSIONS .. 41

x

REFERENCES .. 43

xi

LIST OF TABLES

TABLES

Table 1 Operation times, block exclusion and station exclusion relations 14

Table 2 Operation times, precedence relations, block exclusion constraint 18

Table 3 Operation assignments to the blocks ... 19

Table 4 Improved operation assignments to the blocks (step-1)................................ 20

Table 5 Improved operation assignments to the blocks (step-2)................................ 20

Table 6 The effect of operation time distributions, n=15, m=5, no=3, mo=2............ 29

Table 7 The effect of precedence structure on the performance, U[1,20], n=15, m=5,

no=3, mo=2 .. 30

Table 8 The effect of bounding mechanisms on the performance, U[1,20], n=15, m=5,

no=3, mo=2 .. 31

Table 9 The Computational Results, n=15 ... 33

Table 10 The Computational Results, n=20 ... 34

Table 11 The Computational Results, n=25 ... 34

Table 12 The Computational Results, n=20, U[10,20] .. 35

Table 13 The Performance of the Initial Upper Bound.. 36

Table 14 Optimality Node Analysis ... 38

xii

LIST OF FIGURES

FIGURES

Figure 1 A transfer line configuration (excerpted from Dolgui et al. 2006). 1

Figure 2 A precedence diagram ... 14

Figure 3 A representation of the B&B Tree .. 15

1

CHAPTER 1

1. INTRODUCTION

Production lines are characterized by a serially connected workstations that are linked

by a material handling system. They are widely used in manufacturing, particularly in

assembly, systems to produce high quantities of similar products. Transfer lines

(tandem lines) are automated production lines that reside a series of multi-spindle

machines. The multi-spindle machines do have several spindle heads. Each multi-

spindle head has several spindles where each spindle can perform one operation at a

time. The operations assigned to the spindles of any spindle head are integrated in

such a way that their simultaneous processing is possible. This parallel processing is

an important factor that increases the yield of the transfer lines.

Figure 1 is a pictorial representation of the transfer lines.

Figure 1 A transfer line configuration (excerpted from Dolgui et al. 2006).

On the above line, the operations are assigned to the blocks and processed in parallel.

Once the operations of a block are performed, the part moves to the next block. Once

all blocks of a station are performed, the part moves to the next station via automated

handling mechanism.

2

Transfer lines are typically designed for very high levels of a single product type and

they are inevitable to compete in today’s markets that require high quality products,

at high levels with low production times. These lines use high levels of automation

and their efficient utilization is crucial to justify high investment costs of the multi

spindle machines, spindle heads and material handling mechanism that link the

machines and spindle heads.

The design problem for the transfer lines concerns with the determination of the

number of machines (stations), number of spindle heads (blocks per station) and

number of spindles (operations per block). The objective is usually to minimize the

total investment cost.

Having an already installed transfer line, the operational problem is the allocation of

the operations to the blocks and blocks to the stations so as to maximize the production

rate, equivalently minimize the cycle time. The aim is to maximize total yield,

therefore profit, so that the high line installation cost is justified. This operational

problem is referred to as Transfer Line Balancing Problem.

Transfer Line Balancing Problem reduces to the Assembly Line Balancing Problem

in the absence of its special constraints set and when there is a single operation per

block and there is no limit on the number of blocks.

According to the Assembly Line Balancing terminology, the design problem is

analogous to the Type I Assembly Line Balancing problem whereas the operational

problem is analogous to the Type II Assembly Line Balancing problem. We refer to

the operational problem in transfer lines as Type II Transfer Line Balancing Problem

(Type II TLBP).

The research on the TLBP is of recent origin. The first study is due to in Dolgui et al.

(2000) since then many studies have published on some extensions of Type I TLBP.

To the best of our knowledge, there is no reported study on the Type II TLBP.

Recognizing this gap in the literature, we study Type II TLBP and develop a

mathematical model and propose a branch and bound algorithm along with powerful

3

bounding mechanisms. We show the superiority of the algorithm over mixed integer

linear programming model for small sized instances. On the other hand, for the

medium sized instances, the mathematical model performs better. We also observe the

satisfactory performance of the upper bounds, hence their promise for large sized

problem instances.

We organize the rest of the study as follows. In Chapter 2, we review the Type II

Assembly Line Balancing Problem and Type I Transfer Line Balancing Problem. In

Chapter 3, we give the details of the problem environment and present the

mathematical model and the branch and bound algorithm. In Chapter 4, we discuss

the results of our experiment. Chapter 5 concludes the study by giving the main

findings and addressing the future research directions.

5

CHAPTER 2

2. LITERATURE REVIEW

The classical flow line balancing problem concerns the assignment of a set of

operations to workstations without exceeding the cycle time and obeying to the

precedence relations. This problem is referred to as simple assembly line balancing

problem (SALBP) in the literature. The SALBP was introduced in Salveson (1955)

and has been the subject of many researches since then. For the extensive review of

SALBP, one may refer to the studies by Battaia and Dolgui (2013).

The SALB studies are categorized into two types: Type I and Type II problem. Type

I SALB problems aim to minimize the number of workstations for a given cycle time,

whereas Type II SALB problems aim to minimize cycle time for a given number of

workstations. Type I problems set the design of the assembly line by defining the

number of resources used while Type II problems concern the efficient operation of

the line for the already settled flow lines.

The transfer line balancing problem (TLBP) aims the assignment of operations to the

blocks and the assignment of the blocks to the workstations while meeting more

complex precedence relations. Type I TLBP concerns the cost of the configuration

through the number of blocks and number of workstations for a specified cycle time.

Type II TLBP concerns the minimization of the cycle time, thereby maximization of

the production rate for a given number of workstations and the number of operations

per block.

In this study we consider Type II TLBP and focus our literature review on two very

closely studied problem environments: Type II SALBP and Type I TLBP. To the best

of our knowledge, there is no reported study on Type II TLBP.

6

2.1. Literature on Type-II Simple Assembly Line Balancing Problem

In the literature, the SALB-II studies generally benefited from the corresponding

solutions of the SALB-I problems.

Scholl (1994) developed a branch and bound method (B&B) for Type-II SALBP that

use tabu search algorithm for finding initial upper bounds and several lower bounds.

Their branch and bound employs a task-oriented depth-first search strategy.

Klein and Scholl (1996) propose a B&B procedure for Type-II SALBP. That

repeatedly solves the related Type I SALBP by B&B method. Their B&B employs

efficient bounding and dominance rules. They show that their algorithm outperformed

the one proposed by Scholl (1994).

2.2. Literature on Transfer Line Balancing Problem

All studies in TLBP considers Type I problem, i.e., minimizing some function of the

number of stations and blocks.

Dolgui et al. (2000) is the first study that introduced the TLBP. Cost minimization of

opening blocks and stations is considered while satisfying the operational and

technological constraints. Mixed integer program (MIP) and shortest path approach

are suggested as solution methods. MIP model’s precedence relations constraint is

formulated in four different ways. In addition, the initial problem is assimilated to

constrained shortest path problem that gives exact solution.

Dolgui et al. (2005a) suggested two heuristic algorithms based on the COMSOAL

technique that is introduced by Arcus (1996). The first algorithm is named as

Recursive Assignment of Predecessors (RAP) and the second algorithm is named as

First Satisfy Inclusion Constraints (FSIC). (See Guschinskaya et al., 2007) for detailed

information about FSIC.) In both methods, operations are assigned to the blocks in

stations randomly and best assignment is kept. According the RAP algorithm, a

feasible operation is chosen randomly, then, its predecessors and inclusion constraint

7

pairs are assigned. If this operation cannot be assigned to a block, a new block is

formed and if cannot be assigned to a station, a new station is created. The algorithm

controls the station exclusion constraints after the station is filled. Therefore, some

undesirable solutions are generated. The FSIC algorithm focus to eliminate these

infeasible solutions by processing an operation’s inclusion constraint pairs and

unassigned predecessors. The results of their experiment showed that FSIC algorithm

is more effective than the RAP algorithm.

Dolgui et al. (2005b) developed a MIP model and propose mechanisms to reduce its

size. They also introduced decomposition heuristic procedure for large size problems.

The mechanisms for the reduction of the model size is similar to the SALBP study of

Patterson and Albracht (1975) but more complex due to the inclusion and exclusion

constraints. In the decomposition heuristic procedure, the initial set of operations are

partitioned into smaller sets and then these small size sets are separately solved by

using MIP model. Guschinskaya et al. (2005c) provided a hybrid method which is

based on the decompositions of the initial set of operations. FSIC is used for finding

a feasible solution and an assignment path. Then, decomposition is based on the

feasible solution’s assignment path. Each subproblem is solved by the shortest path

approach. Lastly, feasible solution assignment path is updated according to

subproblem’s solutions’ assignment path.

Dolgui et al. (2006) compared the solution methods for the TLBP. These approaches

are MIP, shortest path approach, FSIC, decompositions methods, hybrid method and

aggregate solving. Dolgui et al. (2009) extended the solution methods comparison by

investigating deterministic decomposition based on precedence graphs and heuristic

multi-start decomposition. Heuristic multi-start decomposition method is an

improvement of the hybrid method by applying FSIC many times. (See Guschinskaya

et al. (2008) for detailed information.) In both studies, the approaches are compared

by the problem size (small, medium, large). For the small size instances, the shortest

path method returns better solutions both in terms of computational time and quality

8

of solutions. For medium and large size instances, hybrid and FSIC methods are better

than their competitors.

Dolgui et al. (2009) developed a lower bound (LB) based set partitioning problem and

applied branch and bound algorithm. B&B procedure is proposed whose efficiency is

enhanced by LB and dominance rule. It is close to our B&B solution approach. In fact,

Scholl and Klein (1996) provided the main concepts of B&B for SALBP.

Determination of LB and Upper Bound (UB) is clearly introduced and possible

improvements of these bounds remarked properly. B&B as an implicit enumeration

method detailed by examining fathoming rules, backtracking and efficient selections.

We mostly benefited from the paper in our work’s B&B solution method part.

Dolgui (2010) discussed the new trends and challenges in the TLBP. For fixed and

known demand Dedicated Transfer Lines (DTL) can be used. For diverse and

unknown demand Flexible Transfer Lines (FTL) can be used. Transfer lines are

evolved due to advanced technology and highly competitive markets. Mentioned

transfer lines can become obsolete because of facing large variations and demand

uncertainty. Reconfigurable Transfer Lines (RTL) have been proposed to adapt the

changes in market variations. Some authors imply RTL is more flexible than the FTL.

Reconfiguration and rebalancing of transfer lines foreseen as attractive topic about

this subject.

Dolgui (2013) introduced a procedure on a locally feasible solution so as to reduce

TLBP to the set partitioning problem. Many suggestions are made to reduce the

number of variables and the size of the feasible domain. Their computational results

reveal the superiority of the algorithm to the earlier similar models.

Battaia et al. (2017) considered a joint formulation of process planning and transfer

line design for mixed model production. A mathematical model is proposed tested on

real time industrial problem. Their algorithm could solve the instances with up to six

different parts.

9

CHAPTER 3

3. PROBLEM DEFINITION & SOLUTION APPROACHES

In this chapter we first define the problem and then give the details of the solution

approaches.

3.1. Problem Statement

We assume n operations should be assigned to one of prespecified stations. There are

m stations that are equally equipped and can reside any operation, without exception.

The time that is required to process operation i is ti time units. The operations are first

assigned to the blocks and then the blocks are assigned to the workstations. The

operations are not divisible so that each operation should be assigned to exactly one

block.

Due to the restrictions on the number of spindle heads, we assume each block resides

at most no operations and each station resides at most mo blocks.

There are several types of precedence relations that are grouped as follows:

Immediate Predecessors: Operation j cannot be started if operation i is not complete.

Hence operation i should be assigned to a block that is processed earlier than that of

operation j’s block. We let IPi be the set of immediate predecessors of operation i.

Exclusion Constraints:

Station Exclusion Constraints: Two operations i and j cannot be processed in the same

station. This might be due to the technological capability of stations. The resource that

are required by those operations cannot be placed properly in one station. We let ES

be the set of operation pairs with station exclusion constraints.

10

Block Exclusion Constraints: Two operations i and j cannot be placed to the same

block. Those operations might be so different that they cannot share the same setup.

We let EB be the set of operation pairs with block exclusion constraints.

We further assume that the parameters that define our problems are known with

certainty and not subject to any change. That is the system is deterministic and static.

The parameters and decision variables are denoted as follows.

Parameters:

j operations 1,…,n

q blocks 1,…, 𝑛𝑜

k stations 1,…,m

m fixed number of stations

𝒏𝒐 max number of operations per block

tj operation time of operation j

𝑰𝑷𝒋 set of direct predecessors of operation j

ES a family of subset representing operations to “not” same station

EB a family of subset representing operations to “not” same block

Decision variables:

𝑭𝒒𝒌 = 𝑇𝑖𝑚𝑒 𝑜𝑓 𝑏𝑙𝑜𝑐𝑘 𝑞 𝑖𝑛 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑘

𝑿𝒋𝒒𝒌 = {

1 𝑗 = 1, … , 𝑛
 𝑖𝑓 𝑜𝑝𝑒𝑟𝑎𝑡𝑖𝑜𝑛 𝑗 𝑖𝑠 𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑜 𝑏𝑙𝑜𝑐𝑘 𝑞 𝑖𝑛 𝑠𝑡𝑎𝑡𝑖𝑜𝑛 𝑘 𝑞 = 1, … , 𝑚𝑜
0 𝑘 = 1, … , 𝑚

𝑪𝑻 = 𝐶𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒

We aim to minimize cycle time, CT. CT defines our objective function as

𝑴𝒊𝒏 𝑪𝑻

The constraint set has assignment type constraints, precedence constraints, cycle time

constraints and limits for operations and blocks, each of them are explained below:

11

Assignment Constraints

∑ ∑ 𝑥𝑗𝑞𝑘𝑞𝑘 = 1 ∀𝑗 (1)

Precedence Constraints

∑ ∑ (𝑛𝑘 + 𝑞) ∗ 𝑥𝑗𝑞𝑘𝑞𝑘 + 1 ≤ ∑ ∑ (𝑛𝑘 + 𝑞) ∗ 𝑥𝑖𝑞𝑘𝑞𝑘 ∀𝑖𝜖𝐼𝑃𝑗 , ∀𝑗 (2)

“Not” Same Station Constraints

∑ 𝑥𝑗𝑞𝑘𝑞 + ∑ 𝑥𝑖𝑞𝑘𝑞 ≤ 1 𝑖, 𝑗𝜖𝐸𝑆, ∀𝑘 (3)

“Not” Same Block Constraints

𝑥𝑗𝑞𝑘 + 𝑥𝑖𝑞𝑘 ≤ 1 ∀𝑖, 𝑗𝜖𝐸𝐵, ∀𝑞, 𝑘 (4)

Operation per Block Constraints

∑ 𝑥𝑗𝑞𝑘
𝑗

≤ 𝑛𝑜 ∀𝑞, 𝑘 (5)

Cycle time Constraints

𝐹𝑞𝑘 ≥ 𝑥𝑗𝑞𝑘 ∗ 𝑡𝑗 ∀𝑗, 𝑞, 𝑘 (6)

∑ 𝐹𝑞𝑘𝑞
≤ 𝐶𝑇 ∀𝑘 (7)

Integrality and Sign Constraint

Xjqk = {0, 1} ∀𝑗, 𝑞, 𝑘 (8)

Fqk ≥ 0 ∀𝑞, 𝑘 (9)

Constraint set (1) ensures that each operation is assigned to one and only one block

and one and only one station. Constraint set (2) ensures that each operation can be

assigned only after all preceding operations are completed in earlier block. Constraint

set (3) ensures that operation pairs that have station exclusion limitation are not

assigned to the same station. Constraint set (4) ensures that operation pairs which have

block exclusion limitation are not assigned to the same block. Constraint set (5)

12

ensures that the number of operations assigned to a block cannot exceed its determined

limit. Constraint sets (6) and (7) ensure that block times are identified as the maximum

operation time in the block, station times are calculated with summation of block times

in the station and cycle time is equal to maximum station time. Constraint sets (8) and

(9) represents the binary and sign requirements on decision variables.

3.2. Branch and Bound Algorithm

Attributing to the practical importance of our problem in increasing the production

rate, thereby production time and cost, we aim to find optimal solutions. As an

optimization approach, we select branch and bound algorithm that implicitly

enumerates all feasible solutions by keeping more reasonable memory compared to

our explicit enumeration techniques.

Our B&B algorithm assigns the operations to the blocks and blocks to the workstations

starting from the first block of the first workstation

3.2.1. Branching Scheme

We index the operations according to their nonincreasing order of operation times,

P1≥P2≥...≥Pn

For a partial solution with the first k stations and tth block of station k are opened, not-

yet-assigned operation i is said to be eligible if it satisfies all the following conditions:

i. All its predecessors are assigned to earlier blocks, but not to current block

ii. Operation j is not assigned to current block, if (i,j) 𝜖 EB or operation j is

not assigned to current workstation if (i,j) 𝜖 ES

iii. To avoid duplication of the solutions, i<j if j is already assigned to the

current block

iv. If addition of operation i do not increase the cycle time beyond the upper

bound

13

If no eligible operation exists, then we close the current block. Moreover, when the

block has no number of operations already assigned, we close the block.

According to our indexing, i.e. i>j implies Pi≤Pj, and assignment strategy in a block,

i.e., always to a higher indexed operation, the block cycle time is defined by the first

assigned operation. After the first assignment the block cycle time does not change,

hence, to favor our objective function we never close a block if there exists a fittable

operation.

Once we close a block due to the absence of any eligible operation, we consider two

types of decisions; leading the following types of nodes

• Type I - Open a new block, i.e., (t+1)st block of station k

• Type II – Open a new station, i.e., first block of station k+1

We do not consider Type II nodes if there exists an eligible not-yet-assigned operation

such that

i. The addition does not violate station exclusion constraint

ii. The addition does not increase the station cycle above the cycle time of the

partial solution, i.e., maximum workload among the first k-1 stations, or

the lower bound on the cycle time value. Formally, we let Wkt = workload

of the tth block of station k if ∑ 𝑊𝑘𝑟 + 𝑡𝑗

𝑡

𝑟=1
≤ 𝐿𝐵𝐶𝑇 then we do not close

the workstation, i.e., Type II node is not considered.

We illustrate the branch and bound tree via the following simple example whose

precedence network, operation times and exclusion constraints are given below.

14

Figure 2 A precedence diagram

Note that the operations are already indexed according to the nonincreasing order.

Table 1 Operation times, block exclusion and station exclusion relations

Operation Process Time NOT Same Station NOT Same Block

1 10 4

2 16 6

3 12 6

4 18 1,5,8

5 16 4

6 15 2 3

7 14

8 19 4

9 18 10

10 17 9

Assume n = 10, m=2, no=3, mo=3

Initial levels of branch and bound tree are as follows:

15

Figure 3 A representation of the B&B Tree

We start with an upper bound, i.e., a feasible solution. We update the upper bound

once a feasible solution with a smaller cycle time is found. Moreover, while closing a

workstation we try to find a feasible assignment of the remaining operations with the

hope of reducing the upper bound.

We also find lower bounds while closing the workstations. We fathom the node

whenever the lower bound is no less than the best known upper bound. Always higher

levels are searched and once all nodes are fathomed, we backtrack. This is so called

depth first strategy and is favored due to its low memory requirements.

We now give the detailed explanation of our lower and upper bounding procedures.

16

3.2.2. Lower Bounds

Given the assignments to the blocks and in the absence of the number of blocks per

station requirement, TALB problem reduces to SALB problem. Hence, any lower

bound derived for Type II SALB problem is valid for the TALB problem for a given

block contents. Unfortunately, the block contents are not known, they are decisions.

However, once they are formed by ignoring the constraints of the problem in a proper

way, they can lead to the lower bounds. We now describe the formation of the groups.

Assume the operations are ordered by the Longest Processing Time (LPT) rule, i.e.,

𝑡1 ≥ 𝑡2 ≥. . . ≥ 𝑡𝑛

Note that ⌈
𝑛

𝑛0
⌉ is a lower bound on the number of blocks that any feasible solution may

reside. Assume the optimal solution has Ob blocks and the blocks are ordered by 𝑡𝑏1

∗ ≥

𝑡𝑏2

∗ ≥. . . ≥ 𝑡𝑂𝑏

∗ 𝑤ℎ𝑒𝑟𝑒 𝑂𝑏 ≥ ⌈
𝑛

𝑛0
⌉

Now assume we form blocks by ignoring all precedence relations, but considering the

number of operations per block condition. If the operations of LPT order are put to the

blocks, there will be ⌈
𝑛

𝑛0
⌉ blocks with the following block times:

𝑡𝑏1
= 𝑀𝑎𝑥 {𝑡1, 𝑡2, … , 𝑡𝑛0

} = 𝑡1

𝑡𝑏2
= 𝑀𝑎𝑥 {𝑡𝑛0+1, 𝑡𝑛0+2, … , 𝑡2𝑛0

} = 𝑡𝑛0+1

𝑡𝑏𝑟
= 𝑀𝑎𝑥 {𝑡(𝑟−1)𝑛0+1, 𝑡(𝑟−1)𝑛0+2, … , 𝑡𝑟𝑛0

} = 𝑡(𝑟−1)𝑛0+1

𝑡𝑏
⌈

𝑛
𝑛0

⌉
= 𝑀𝑎𝑥 {𝑡

(⌈
𝑛

𝑛0
⌉−1)𝑛0+1

, 𝑡
(⌈

𝑛

𝑛0
⌉−1)𝑛0+2

, … , 𝑡𝑛} = 𝑡
(⌈

𝑛

𝑛0
⌉−1)𝑛0+1

The relation between 𝑡𝑏𝑟

∗ and 𝑡𝑏𝑟
 is set as follows:

𝑡𝑏1

∗ = 𝑡1 = 𝑡𝑏1

17

𝑡𝑏2

∗ ≥ 𝑡𝑏2

𝑡𝑏𝑟

∗ ≥ 𝑡𝑏𝑟

𝑡𝑏
⌈

𝑛
𝑛0

⌉

∗ ≥ 𝑡𝑏
⌈

𝑛
𝑛0

⌉

This follows if 𝑡𝑏𝑟
′𝑠 are used as block processing times, an optimal solution to the

SALB problem would lead to a lower bound on the optimal solution of TALB

problem. As the SALB Type II is an NP-hard problem, finding such a lower bound

requires an exponential effort. Recognizing this fact, we use two lower bounds

proposed for the SALBP by Klein and Scholl (1996).

The lower bounds are stated below:

1- 𝑚𝑎𝑥 {⌈
∑ 𝑡𝑖

𝑚
⌉ , 𝑚𝑎𝑥𝑖{𝑡𝑖}}

2- 𝑚𝑎𝑥 {∑ 𝑡𝑘𝑚+1−𝑖| 𝑘 = 1, … , ⌊
𝑛−1

𝑚
⌋𝑘

𝑖=0 } 𝑠𝑢𝑐ℎ 𝑡ℎ𝑎𝑡 𝑡𝑖+1 ≥ 𝑡𝑖 𝑖 = 1, … , 𝑛 − 1

We used two lower bounds to define the lower bounds to our TALB problem, using

𝑡𝑏𝑖
 in place of 𝑡𝑖.

Formally,

𝐿𝐵1 = 𝑚𝑎𝑥 {⌈
∑ 𝑡𝑏𝑖

𝑚
𝑟=1

𝑚
⌉ , 𝑡𝑏1

 }

𝐿𝐵2 = 𝑚𝑎𝑥 {∑ 𝑡𝑏𝑘𝑚+1−𝑖
| 𝑘 = 1, … , ⌊

⌈
𝑛

𝑛0
⌉−1

𝑚
⌋𝑘

𝑖=0 }

Example.

• Consider an instance of a TLBP with the following parameters.

n=25, m=3, no=3

18

Table 2 Operation times, precedence relations, block exclusion constraint

Operation
Process

Time

Block

Exclusion
Predecessors Set Successors Set

21 20
3,5,6,7,9,11,12,13,14,1

5,16
22,24,25

8 19 1,3,4,7

12 19 6,7 11
13,14,15,16,17,18,19,20,21,22,

24,25

9 18 10 3,7
10,13,14,15,16,17,18,20,21,22,

23,24,25

4 18 1,3 8,18

10 17 9 1,2,3,5,6,7,9 23,24,25

13 16 2,22 3,7,9,11,12 14,15,16,17,18,20,21,22,24,25

5 16 6,10,21,22,23,24,25

2 16 13 1 10,23,24,25

14 15 3,7,9,11,12,13 15,16,17,18,20,21,22,24,25

6 15 3,12,22 5 10,21,22,23,24,25

22 14 6,13
3,5,7,9,11,12,13,14,15,

16,21

18 14 19
1,3,4,5,7,9,11,12,13,14,

17

7 14 12 3
8,9,10,13,14,15,16,17,18,20,21,

22,23,24,25

15 13 3,7,9,11,12,13,14 16,17,18,21,22,24,25

3 12 6
4,7,8,9,10,13,14,15,16,17,18,20

,21,22,23,24,25

11 12
12,13,14,15,16,17,18,19,20,21,

22,24,25

20 12 25 3,7,9,11,12,13,14,19

19 11 18 11,12 20

23 11 1,24 1,2,3,5,6,7,9,10 24,25

17 11 3,5,7,9,11,12,13,14,15 18

16 10 3,7,9,11,12,13,14,15 21,22,24,25

1 10 23 2,4,8,10,18,23,24,25

19

Table 2 (continued).

24 10 23,25
1,2,3,5,6,7,9,10,11,12,1

3,14,15,16,21,23
25

25 10 20,24
1,2,3,5,6,7,9,10,11,12,1

3,14,15,16,21,23,24

• Assign operations to the groups in non-ascending order of ti’s.

Table 3 Operation assignments to the blocks

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9

21 9 13 14 18 3 19 16 25

8 4 5 6 7 11 23 1

12 10 2 22 15 20 17 24

Total block time is calculated as 126 units. Time per station is rounded up to 42 units

as m=3. Maximum group time, 20 units, is not greater than time per station, therefore

initial LB1 is equal to 42 units.

LB2 is equal to maximum of (𝑡𝑏3
+ 𝑡𝑏4

; 𝑡𝑏7
+𝑡𝑏6

+ 𝑡𝑏5
) which is (31; 37) 37.

Finally, LB1>LB2, then the global LB is 42.

We improved LB1 and LB2 by incorporating block exclusion constraint to further

increase 𝑡𝑏𝑟

′ values. In doing so, for any formed block we checked for the presence of

the block exclusion pairs, starting from the first block. If there is a pair in block 1, we

move the shorter operation to block 2. If there are more than one pair, we shift final

set of the shorter operations of all pairs and shift longest operation in the set to block

2. If any operation is shifted to block 2, we proceed to block 3 and repeat the process

in block 1. If no operation is shifted to block 2 then we repeat the process in block 1

to block 2. In general, if any operation is shifted from block r to r+1 then we proceed

20

to block r+2. If no operation is shifted from block r to r+1 then we look for possibility

of shifting from block r+1 to r+2.

Example (cont.)

• Search for improvements

In group 2, operation 9 and 10 is a block exclusion pair. Operation 10 has smaller

operation time therefore it is shifted to group 3.

Table 4 Improved operation assignments to the blocks (step-1)

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9

21 9 13 14 18 3 19 16 25

8 4 5 6 7 11 23 1

12

2 22 15 20 17 24

 10

In group 4, operation 6 and 22 is a block exclusion pair. Operation 22 has smaller

operation time therefore it is shifted to group 5.

Table 5 Improved operation assignments to the blocks (step-2)

Block 1 Block 2 Block 3 Block 4 Block 5 Block 6 Block 7 Block 8 Block 9

21 9 13 14 18 3 19 16 25

8 4 5 6 7 11 23 1

12

2

15 20 17 24

 10 22

There is no other overlap and the improved LB is calculated as 43 units. (LB1=43,

LB2=37)

21

We let 𝑡𝑏𝑟

′′ be the processing time of block r after including block exclusion constraint

and state the following relation 𝑡𝑏𝑟

′′ ≥ 𝑡𝑏𝑟

′ r = 1, … , �̅� where �̅� is the number of

blocks formed by excluding block exclusion relation. Using 𝑡𝑏𝑟

′′ as block processing

times, we employ the lower bounding procedures of Klein and Scholl (1996) and let

the resulting bounds be 𝐿𝐵3 if the first lower bound of Klein and Scholl (1996) is used

and 𝐿𝐵4 if the second bound of Klein and Scholl (1996) is used.

Note that, 𝐿𝐵3 ≥ 𝐿𝐵1 and 𝐿𝐵4 ≥ 𝐿𝐵2 as 𝑡𝑏𝑟

′′ ≥ 𝑡𝑏𝑟
for all r and the same lower bound

is applied on given blocks, for ‘𝐿𝐵1 and 𝐿𝐵3’ and ‘𝐿𝐵2 and 𝐿𝐵4’

In our branch and bound algorithm, we apply 𝐿𝐵1 and 𝐿𝐵2 first with hope of

eliminating the nodes without a need for more powerful bounds. Hence 𝐿𝐵1 first, 𝐿𝐵2

second are used as filtering mechanisms. If 𝐿𝐵1 < 𝑈𝐵 and 𝐿𝐵2 < 𝑈𝐵 where UB is

the best-known cycle time value, we find 𝐿𝐵3. If 𝐿𝐵3 < 𝑈𝐵 then we find 𝐿𝐵4. If

𝐿𝐵𝑖 ≥ 𝑈𝐵 for any i then we discard the node from further considerations.

3.2.3. Upper Bounds

Our B&B algorithm starts with an initial upper bound that is found through a heuristic

procedure. The heuristic procedure has two steps

Step 1. Construction Step

Step 2. Improvement Step

In construction step, we first form the Longest Processing Time (LPT) list and using

the list we form feasible blocks. A feasible block is the one that has at most no

operations, no block exclusion and no precedence relation pair exists. An operation is

said to be ineligible to a block if its addition does not lead to a feasible group.

22

We start from blocks starting from the first eligible operation of the list and close the

block, whenever no eligible operation exists. We continue with forming blocks till all

operations in the list are assigned to one block.

Let NR denote the number of resulting blocks. We try to assign these NR blocks to

the workstations.

While assigning we aim to balance the workload by even distribution of the blocks to

the workstation. The average number of blocks per workstation is ⌈
𝑁𝑅

𝑚
⌉ and this

average is the target value of our assignments.

In workstation assignments, we treat the blocks as operations. Starting from the first

workstation, we assign the first eligible block to the closest the workstation when there

are ⌈
𝑁𝑅

𝑚
⌉ block assignments. A block is eligible for the current workstation if all

predecessors have appeared in one of the assigned blocks and no violation of station

exclusion limitations.

The construction step ends whenever all blocks are assigned.

The even distribution of the blocks is somewhat favored by equal number of block

assignment per workstation. However equal number may not mean fair distribution of

the workload among the workstations. Recognizing this fact, we perform an

improvement step, in which first block assignment among the workstations are

exchanged and then the operation assignment among the blocks are exchanged.

The exchanges are realized between the block of the most loaded workstation and any

other workstation, if the resulting exchange does not violate feasibility and improves

the cycle time. Any exchange between two blocks is realized at most once. Once no

block pair exchange improves the cycle time, we proceed to non-improving feasible

exchanges till all block pairs are considered. The best cycle time solution is used for

23

operation exchanges. The operation exchanges among the blocks are performed in the

same way with those block exchanges among stations.

Below is the stepwise description of or initial upper bound procedure.

Procedure. Initial feasible solution

Step 1.

• For each block b

• For each operation i (in descending order of operation times)

▪ If ∑ 𝑋𝑖𝑏𝑏 = 0 and operation i has no block exclusion pair on block b

and all predecessors of operation i are assigned and number of

operations in block b < no

❖ Assign operation i to block b (Xib = 1)

▪ End If

• End For

• End For

Step 2.

• For each station k

• For each block b (in descending order of block times)

▪ If ∑ 𝑌𝑏𝑘𝑘 = 0 and block b has no station exclusion pair on station k

and all predecessors of block b are assigned and number of blocks in

station k < mo and number of blocks in station k < ⌈
𝑁𝑅

𝑚
⌉

❖ Assign block b to station k (Ybk = 1)

▪ End If

• End For

• End For

Step 3.

24

For each iteration

❖ Determine the most loaded station (kL)

• For each station k

• For each block b

▪ If Ybk = 1 and YpkL = 1 and time of station k + time block p – time

of block b < station time of most loaded station and no direct or

indirect precedence relation between blocks p & b and changing

the places of blocks p & b do not violate the precedence & station

exclusion constraints and blocks b & p are not changed before

➢ Assign block b to the most loaded station

➢ Assign block p to station k

▪ End If

• End For

• End For

❖ Control that any change is done or not

▪ If no change between blocks is made

➢ Make a change among blocks that worsen the objective value

without violating the precedence and station exclusion constraint.

➢ Store the changed blocks

▪ End If

End For when no more exchanges are available

Step 4.

• For each iteration

❖ Determine the most loaded station (kL)

• For each station k

• For each block b

• For each operation i

25

▪ If Ybk = 1 and YpkL = 1 and Xib = 1 and Xjp = 1 and

operation j has highest operation time in block p and tj>ti

and { (time of station k + tj – ti < station time of most loaded

station and time of block b= ti) or (time of station k + tj –

time of block b < station time of most loaded station and

time of block b = tj) or (time of block b > ti and time of

block b > tj) } and no direct or indirect precedence relation

between operations i & j and changing the places of

operations i & j do not violate the precedence & station

exclusion & block exclusion constraints and operations i &

j are not changed before

➢ Assign operation i to block p assigned in the most

loaded station

➢ Assign operation j to block b assigned in station k

▪ End If

• End For

• End For

• End For

❖ Control that any change is done or not

▪ If no change between operations is made

➢ Make a change among operations that worsen the objective value

without violating the precedence, block and station exclusion

constraint.

➢ Store the changed operations.

▪ End If

End For when no more exchanges are available

26

We employ the above procedure to start the branch and bound algorithm. We update

the upper bound, UB, whenever a complete solution with smaller cycle time is

reached. We make those updates whenever closing a workstation as follows:

We find an upper bound through construction steps of initial upper bound for the

unassigned operations, and the upper bound for the partial solution, 𝑈𝐵𝑝, is

𝑀𝑎𝑥 {𝐶𝑦𝑐𝑙𝑒 𝑡𝑖𝑚𝑒 𝑜𝑓 𝑢𝑛𝑎𝑠𝑠𝑖𝑔𝑛𝑒𝑑 𝑡𝑎𝑠𝑘𝑠, 𝐿𝑜𝑤𝑒𝑟 𝑏𝑜𝑢𝑛𝑑 𝑜𝑓 𝑡ℎ𝑒 𝑝𝑎𝑟𝑡𝑖𝑎𝑙 𝑠𝑜𝑙𝑢𝑡𝑖𝑜𝑛 =

𝐿𝐵𝑝}

If 𝑈𝐵𝑝 < 𝑈𝐵 then we set 𝑈𝐵 = 𝑈𝐵𝑝

If 𝑈𝐵𝑝 = 𝐿𝐵𝑝 then we fathom the node as the best solution from this node has an

objective function value of 𝐿𝐵𝑝 , i.e., one of the optimal solutions emanating from the

node is already available through its upper bound.

27

CHAPTER 4

4. COMPUTATIONAL EXPERIMENT

In this chapter, we discuss the performance of the branch and bound algorithm and the

mathematical model. In Section 4.1, the data generation scheme is introduced. The

performance measures used for evaluating the performance of the B&B algorithm and

mathematical model are reported. In Section 4.2, we report on the preliminary

experiment used to select the parameter values. Section 4.3 discusses the results of the

main experiment.

The models are modeled using GAMS (version 23.9.5) and solved by software

CPLEX 12. The B&B algorithm is coded with C++ programming language. All

experiments are conducted on a computer with INTEL (R) CORE (TM) i7-4770S

CPU @ 3.10 GHz 16.00 GB RAM.

4.1. Data Generation and Performance Measures

Guschinskaya and Dolgui (2006) provide a set of benchmark problems for 25, 50 and

100 operations problems with 4, 5, 10, 15 stations. We modify their networks

according to the selected numbers of immediate predecessors, block and station

exclusion relations. They use operation times between U[10,20]. We try another

distribution U[1,20] and see that the generated instances are harder to solve ones. We

use the following sets of the number of operations per block (no) and the number of

blocks per station (mo)

For preliminary experiment we set n=15, m=5, no=3, mo=2 and in main experiment

we set n=15, 20, 25, 30 and m=4, 6.

28

For each value of n, m, no, mo, we generate and solve 10 problem instances. We use

the following measures to evaluate the performance:

▪ Average and maximum (worst case) operation times expressed in Central

Processing Unit (CPU) seconds (for mathematical model and branch and

bound algorithm)

▪ Average and maximum number of nodes (for branch and bound algorithm)

▪ Average and maximum relative deviation from the optimal solution (for initial

upper bounds)

We set a termination limit of one hour for the execution of both mathematical model

and branch and bound algorithm.

4.2. Preliminary Experiment

We perform a preliminary experiment to see the effects of the parameters (operation

times, precedence structure) and bounding mechanisms (initial upper bound at root

node, upper bound and lower bounds for the partial solutions (nodes)). We base our

main experiment on the results of the preliminary experiment.

We select 15 operations and 5 workstations instances with 2 blocks per station and 3

operations per block.

We test two uniform distributions, four sets of precedence structures and four versions

of B&B algorithm in our preliminary experiment. The abbreviations used to define

the combinations are as stated below:

Set I – Number of Immediate Predecessors (IP) =16

Number of Block Exclusion Relations (BE) = 5

Number of Station Exclusion Relations (SE) = 7

Set II – Number of IPs =18

 Number of BEs = 5

29

 Number of SEs = 7

Set III – Number of IPs =16

 Number of BEs = 5

 Number of SEs = 9

Set IV – Number of IPs =16

 Number of BEs = 7

 Number of SEs = 7

B&B I – B&B algorithm using all bounding mechanisms

B&B II – B&B algorithm using all bounding mechanisms but not upper bounds at

nodes

B&B III – B&B algorithm using all bounding mechanisms but not initial upper bound

B&B IV – B&B algorithm using all bounding mechanisms but not lower bounds

First the effect of operation time distribution is tested on two discrete uniform

distributions: U[1,20] and U[10,20]. U[10,20] is the distribution used in Guschinskaya

and Dolgui (2006) and U[1,20] is considered to see the effect of higher variance.

Table 6 reports the average and worst-case performance results (number of nodes and

CPU time) for B&B I and B&B II, and precedence sets Set I and Set II.

Table 6 The effect of operation time distributions, n=15, m=5, no=3, mo=2

Operation Time Distribution
Number of Nodes CPU Time

Avg Max Avg Max

U[1,20]

B&B I
Set I 999,447 2,534,569 46.22 121.06

Set II 249,137 607,351 12.13 28.25

B&B II
Set I 999,447 2,534,569 30.65 79.66

Set II 249,137 607,351 8.02 18.81

U[10,20]

B&B I
Set I 382,284 1,088,376 16.38 48.83

Set II 221,367 343,263 10.32 15.74

B&B II
Set I 382,284 1,088,376 11.20 31.62

Set II 221,367 343,263 7.00 10.43

30

As can be observed from Table 6 for both versions of the B&B algorithm, and for

selected precedence structures, U[1,20] yields to harder-to-solve instances than

U[10,20]. Note that B&B I solves the instances with U[1,20] in 46.22 and 12.13

seconds on average for Set I and Set II respectively. When U[10,20] is used, the same

combination is used, the respective CPU times reduce to 16.38 and 10.32. With B&B

II, the CPU times are 30.65 seconds and 8.02 seconds when U[1,20] is used, for Set I

and Set II, respectively. The respective CPU times significantly reduce to 11.20

seconds and 7.00 seconds.

This reduction is due to the fact, when the variance is lower that is the operation do

have more similar times, the lower bounds and upper bounds behave better as their

values are expectedly closer to the optimal cycle time value.

In the rest of computational experiments and main experiment, we continue with

harder combination, i.e., U[1,20].

Next, the effect of the precedence relations is analyzed through four sets. Each set is

formed by varying one precedence type while keeping the two others at the same level.

We report the results in Table 7 for all sets through B&B I and B&B II.

Table 7 The effect of precedence structure on the performance, U[1,20], n=15, m=5, no=3, mo=2

Set
Precedence Relation

Algorithm
Number of Nodes CPU Time

IP BE SE Avg Max Avg Max

I 16 5 7
B&B I 999,447 2,534,569 46.22 121.06

B&B II 999,447 2,534,569 30.65 79.66

II 18 5 7
B&B I 249,137 607,351 12.13 28.25

B&B II 249,137 607,351 8.02 18.81

III 16 5 9
B&B I 941,687 2,389,513 42.82 112.01

B&B II 941,687 2,389,513 28.47 74.01

IV 16 7 7
B&B I 964,196 2,465,089 44.07 114.60

B&B II 964,196 2,465,089 29.18 75.52

31

As can be observed form the table, a decrease in one of precedence relations, while

keeping the other relations at the same level, increases the difficulty in attaining

optimal solutions. Note that when number of BEs and SEs are fixed at 5 and 7,

respectively; an increase in number of IPs from 16 to 18, decreases the average CPU

times from 46.22 seconds to 12.13 seconds for B&B I and from 30.65 seconds to 8.02

seconds for B&B II, respectively.

When the number of IPs and number of SEs are set at 16 and 7, respectively, an

increase in number of BEs from 5 to 7, decreases the average CPU times form 46.22

seconds to 44.07 seconds for B&B I. For B&B II, the reduction is from 30.65 seconds

to 29.18 seconds.

When the number of IPs and number of BEs are set at 16 and 5, respectively, an

increase of SEs from 7 to 9, decreases the B&B I CPU times from 46.22 seconds to

42.82 seconds and B&B II CPU times from 30.65 seconds to 28.47 seconds.

Therefore, Table 7 also shows that the effects of number of BEs and SEs are similar,

and the most effective reductions are observed by increasing the number of IPs.

Based on those results, we continue our experiments with two levels of precedence

relations: low and high, in our main runs.

We finally analyze the effects of bounding mechanisms through the defined B&B

algorithms (B&B I, B&B II, B&B III, B&B IV), and report the results in Table 8.

Table 8 The effect of bounding mechanisms on the performance, U[1,20], n=15, m=5, no=3, mo=2

Algorithm Used
Number of Nodes CPU Time

Avg Max Avg Max

B&B I
Set I 999,447 2,534,569 46.22 121.06

Set II 249,137 607,351 12.13 28.25

B&B II
Set I 999,447 2,534,569 30.65 79.66

Set II 249,137 607,351 8.02 18.81

B&B III
Set I 1,021,473 2,560,931 46.86 121.22

Set II 260,641 607,351 12.64 28.63

32

Table 8 (continued).

B&B IV
Set I 33,808,835 59,724,213 645.83 1,101.67

Set II 8,525,927 20,117,919 156.40 340.29

As can be observed form Table 8, the most significant reductions are due to the lower

bounds. For Set I, the average CPU times are reduced to 46.22 seconds from 645.83

seconds, hence several folds, by incorporations the lower bounds. Hence there are

found very effectively in controlling the size of the search. The number of nodes

reduces to 249,137 from 8,525,927 similar results hold for Set II.

The comparison of B&B I and B&B III, shows that the initial upper bound is also

effective in enhancing the efficiency of the search. The number of nodes increases to

1,021,473 from 999,447 and to 260,641 from 249,137 for Set I and Set II respectively

once the initial upper bound is removed. The associated effects on CPU times are from

46.86 seconds to 46.22 seconds and from 12.64 seconds to 12.13 seconds, for Set I

and Set II, respectively. Hence, the effort spent to find the initial upper bounds is less

than the reduction it brings.

The analysis of B&B I and B&B II reveals that using upper bounds at intermediate

nodes has adverse effect on the efficiency. The CPU times increase to 46.22 seconds

from 30.65 seconds for Set I, to 12.13 seconds from 8.02 seconds for Set II. Hence the

extra effort spends in calculating the intermediate upper bounds could not be justified

through the reduction it brings to the nodes.

Based on those results, we decided to use B&B II (B&B with lower bounds and initial

upper bound) in our main experiment.

4.3. Main Experiment

Based on the results of our preliminary experiments, we design an experiment to test

the performance of our mathematical model and branch and bound algorithm. We

generate the operation times from U[1,20] and, hence tackle with harder instances.

33

We set the number of operations to 15, 20, 25. The number of stations is set to 4 and

6. The number of operations per block is set to 2 and 4. The number of blocks per

station is set to 6.

We generate the following two precedence structures.

Set Loose (L) – Number of Immediate Predecessors (IP) = 0.25*
𝑛∗(𝑛−1)

2

Number of Block Exclusion Relations (BE) = 0.15*
𝑛∗(𝑛−1)

2

Number of Station Exclusion Relations (SE) = 0.05*
𝑛∗(𝑛−1)

2

Set Tight (T) – Number of IPs = 0.30*
𝑛∗(𝑛−1)

2

 Number of BEs = 0.20*
𝑛∗(𝑛−1)

2

 Number of SEs = 0.05*
𝑛∗(𝑛−1)

2

We put a termination limit of 1 hour to the execution of both mathematical model and

branch and bound algorithm.

We first analyze the results of the model and B&B algorithm and report the results in

Tables 9, 10 and 11, for n=15, 20 and 25 respectively.

We include the unsolved instances CPU time (3600 sec) to the average CPU time.

Those instances are considered to evaluate the number of nodes.

Table 9 The Computational Results, n=15

m no
Precedence

Structure

Mathematical Model Branch and Bound Algorithm

CPU Time CPU Time Number of Nodes

Avg Max Avg Max Avg Max

4 4 L 10.594 33.34 4.02 12.35 120,638 370,915

6 4 L 24.502 62.28 5.90 17.49 147,119 442,044

4 4 T 7.144 29.55 3.94 9.98 123,100 321,900

6 4 T 29.683 53.77 6.22 15.68 156,063 391,243

34

Table 10 The Computational Results, n=20

m no
Precedence

Structure

Mathematical Model Branch and Bound Algorithm

CPU Time CPU Time Number of Nodes

Avg Max Avg Max Avg Max

4 4 L 5.81 9.10 89.56 258.91 1,534,560 4,514,995

6 4 L 285.19 1,502.67 177.23 797.66 2,301,440 9,777,423

4 4 T 4.90 10.85 304.36 1,003.52 3,492,058 12,365,867

6 4 T 62.78 273.20 589.52 3,600.00 4,928,949 29,842,113

4 2 L 7.22 15.24 33.15 135.03 470,547 2,043,520

6 2 L 525.35 3,600.00 151.63 557.36 1,936,901 6,572,800

4 2 T 5.12 12.49 75.23 283.18 1,082,096 3,971,212

6 2 T 70.49 131.59 253.41 1,597.76 3,221,780 20,597,666

Table 11 The Computational Results, n=25

m no
Precedence

Structure

Mathematical Model Branch and Bound Algorithm

CPU Time CPU Time Number of Nodes

Avg Max Avg Max Avg Max

4 4 L 9.54 27.54 2,200.78 3,600.00 19,540,242 33,166,435

6 4 L 709.48 2,225.11 2,863.78 3,600.00 22,270,762 32,589,921

4 4 T 7.99 24.58 1,552.22 3,600.00 17,082,934 40,060,230

6 4 T 324.78 689.54 2,156.72 3,600.00 19,634,759 34,927,475

The results show that the performance of the mathematical model highly depends on

the increases in the number of operations, and number of stations. Note that when

there are 15 operations, no=4 and mo=6, the increase in number of stations from 4 to

6, increases the average CPU time of the model from 7.14 seconds to 29.68 seconds

i.e., more than 4 times. For this combination, the B&B gives average CPU times of

3.94 seconds and 6.22 seconds for 4 and 6 stations, respectively. That is the increase

is less than 2 times. This shows that the model is more sensitive to the increase in the

problem size parameters, as those parameters directly affect the number of decision

variables.

35

It can be observed from the tables that the number of operations is a significant

parameter that affects the CPU times. This is due to the fact that the depth and width

of the search tree are both defined by the number of operations. Note that, for the

B&B algorithm when m=6, no=4, mo=6, the CPU times and the number of nodes

increase from 5.9 seconds to 177.23 seconds and from 147,119 to 2,301,440

respectively, when N increases from 15 to 20. Those increases are more significant

for higher N, i.e., from 20 to 25.

We also observe the significant effect of the number of operations per block on the

performance of the B&B algorithm. The performance improves as the number of

operations per block decreases. This is due to the fact that the bounds that rely on

relaxed grouping idea consider less operations, produce groups (blocks) that are closer

their actual ones. Note that when N=20, m=4, the average CPU time is 304.36 seconds

and 75.23 seconds, for 4 operations per block and 2 operations per block cases,

respectively.

We observe that the B&B outperforms the mathematical model when there are 15

operations. This superiority holds for all problem combinations.

When there are 20 and 25 operations, the performance of the mathematical model is

better, in most of the problem combinations. For 20 operations we also generate

instances when the operation times from U[10,20] and report the results in Table 12.

Table 12 The Computational Results, n=20, U[10,20]

m no
Precedence

Structure

Mathematical Model Branch and Bound Algorithm

CPU Time CPU Time Number of Nodes

Avg Max Avg Max Avg Max

4 4 L 7.42 16.55 74.64 113.34 1,260,935 1,950,137

6 4 L 380.79 1188.76 91.59 142.26 1,328,559 2,087,455

4 4 T 8.37 39.00 149.69 252.87 2,517,094 4,185,771

6 4 T 206.29 396.41 210.50 337.22 3,130,819 5,042,125

4 2 T 5.78 9.70 56.48 83.48 843,558 1,347,912

6 2 T 194.16 463.77 81.67 135.01 985,754 1,617,522

36

Table 12 (continued).

4 2 L 10.56 28.45 22.30 36.88 310,928 554,869

6 2 L 526.96 1118.64 35.46 74.56 430,279 930,613

We observe from Table 12 that when the operation times are from U[10,20], the

instances could be solved easily with the B&B. We observe the superiority of the B&B

algorithm over the mathematical model for the hardest combinations when there are 6

workstations. Note that when there are 6 workstations the CPU times by the B&B

algorithm are 91.59, 210.5, 81.67 and 35.46 seconds and the respective by the

mathematical model are 380.79, 206.29, 194.16 and 526.96 seconds, respectively.

When N=30 and the operation times are from U[1,20], both model and B&B could

hardly return any solution in one hour.

Our suggestions for instances with more than 25 operations are in three ways:

1. Initial Upper Bounding Procedure

2. Decomposition Based Approaches

3. Truncated Branch and Bound Algorithm

We now investigate the details of each suggestion.

1. Initial Upper Bounding Procedure

We report the average and worst-case relative deviations of the heuristic solution form

the optimal solution in Table 13.

Table 13 The Performance of the Initial Upper Bound

n m no
Precedence

Structure

(UB-OPT)/OPT

Avg Max

15 4 4 T 26.30% 64.71%

15 6 4 T 20.07% 38.89%

15 4 4 L 31.84% 57.58%

37

Table 13 (continued).

15 6 4 L 37.25% 75.00%

20 4 4 T 10.21% 20.00%

20 6 4 T 29.01% 64.71%

20 4 2 T 10.21% 20.00%

20 6 2 T 29.01% 64.71%

20 4 4 L 19.73% 37.21%

20 6 4 L 43.47% 88.00%

20 4 2 L 5.78% 27.50%

20 6 2 L 41.30% 86.67%

25 6 4 T 26.15% 48.57%

25 6 4 L 25.05% 56.67%

As can be observed from Table 13 the relative deviations are mostly below or around

30%. The performances do not deteriorate with increases in problem size like number

of operations, number of stations. These satisfactory performances are achieved in

negligible time. Hence one may improve those solutions and get even higher quality

balances for large sized problem instances.

2. Decomposition Based Approaches

We may decompose the problem into small subproblems and solve each subproblem

to optimality by our B&B algorithm. The precedence network can be used for defining

a subset of operations that would be processed in the first defined number of stations,

to form the first subproblem. Another, subset of operations from the downstream parts

of the network with new set of stations could be another subproblem, and so on.

After solving the subproblems to optimality, the resulting solutions are merged to get

a feasible for the overall line. There may be rooms to improve this solution enroute to

minimizing the cycle time.

3. Truncated Branch and Bound Algorithm

38

Recall that we run the B&B algorithm for one hour and terminate its execution. The

best solution recorded at the termination limit of one hour is at least good as our initial

upper bound.

To evaluate the performance of the truncated B&B algorithm, we record the node at

which the optimal solution is reached for the problems that could be solved in one

hour. After the node optimality, the nodes are evaluated to verify the optimality. The

results are reported in Table 14.

Table 14 Optimality Node Analysis

n m
n

o

Prece

dence

Struct

ure

Number of nodes Optimality Node

Opt.

Node/Number

of nodes

Avg Max Avg Max Avg Max

15 4 4 T 123,100 321,900 29,263 107,237
25.89

%

73.69

%

15 6 4 T 156,063 391,243 44,011 139,260
31.37

%

59.52

%

15 4 4 L 120,638 370,915 56,130 237,584
40.56

%

92.07

%

15 6 4 L 147,119 442,044 62,529 396,743
41.42

%

89.75

%

20 4 4 T 3,492,058 12,365,867 489,354 2,175,790
16.67

%

47.31

%

20 6 4 T 4,928,949 29,842,113 1,074,122 3,549,750
42.81

%

92.71

%

20 4 2 T 1,082,096 3,971,212 213,726 1,166,022
22.36

%

57.32

%

20 6 2 T 3,221,780 20,597,666 579,728 1,613,857
43.09

%

91.18

%

20 4 4 L 1,534,560 4,514,995 417,366 2,704,147
24.78

%

61.09

%

20 6 4 L 2,301,440 9,777,423 954,438 2,290,663
56.55

%

85.61

%

20 4 2 L 470,547 2,043,520 263,816 1,609,440
40.79

%

91.20

%

20 6 2 L 1,936,901 6,572,800 1,058,058 2,392,474
72.66

%

95.74

%

25 4 4 T 17,082,934 40,060,230 8,229,275 24,684,752
50.28

%

81.47

%

25 6 4 T 19,634,759 34,927,475 8,668,262 17,236,805
46.74

%

87.79

%

25 4 4 L 19,540,242 33,166,435 9,087,365 21,315,681
56.87

%

87.05

%

39

Table 14 (continued).

25 6 4 L 22,270,762 32,589,921 7,829,705 17,983,034
41.29

%

79.33

%

The table shows that in worst case the B&B algorithm finds the optimal solutions just

before the terminations. There are some combinations when the maximum optimality

node over total node ratios are even more than 90%, implying that only 10% of the

nodes are used to verify optimality. Despite these high worst case percentages, almost

all average case percentages are lower than 50%. This implies that in majority of the

instances, the optimal solutions are found at very early stages of the B&B algorithm.

Note that when n=20, the average percentage is 40.79%, below 50%, even the worst-

case percentage is 91.2, above 90%.

Similar observations hold for all problem combinations, the optimal solutions are

found in the first half of the search for majority of the instances and close to

termination for some few instances.

Hence, we can use our B&B algorithm with a proper termination limit to get

approximate solutions.

41

CHAPTER 5

5. CONCLUSIONS

In this thesis, we consider Type II Transfer Line Balancing Problem that assigns the

operations to the blocks and blocks to the stations so as to minimize the cycle time.

We formulate the problem as a mixed integer linear program. We propose a branch

and bound algorithm along with efficient lower and upper bounding mechanisms. We

see that the lower bounding mechanisms are very effective in enhancing the efficiency

of the branch and bound algorithm. We find that the heuristic that we propose to get

an initial upper bound for the branch and bound algorithm, can be used as a solution

approach for large sized instances. Our computational experiments have revealed that

both the mathematical model and branch and bound algorithm can solve instances with

up to 25 operations and 6 workstations. To solve the problems of larger sizes, we

propose to branch and bound based solution algorithms: decomposition algorithms

and truncated branch and bound algorithms.

We observe that the number of operations, number of workstations and number of

operations per block are important problem size parameters that affect the difficulty

of attaining optimal solutions. Moreover, the precedence structure and spread of the

operation times are also significant factors that influence the efficiency of the branch

and bound algorithm.

To the best of our knowledge, we present the first study for the Type II TLBP. We

hope our study motivates the future studies for the extensions of our model like

parallel stations, U-shaped stations, mixed models. The rebalancing for the TLBP is

an unexplored area that may attract future researchers.

43

REFERENCES

Arcus, A.L., 1966, COMSOAL: A computer method of sequencing operations for

assembly lines. International Journal of Production Research, 4, 259–277.

Battaia, O., Delorme, X., Dolgui, A., Frederic, G. and Finel, B., 2015, Flow line

balancing problem: A survey. 2015 International Conference on Industrial

Engineering and Systems Management (IESM).

Battaia O. and Dolgui, A., 2013, A taxonomy of line balancing problems and their

solution approaches, International Journal of Production Economics, 142, 259–277.

Battaïa, O., Dolgui, A. and Guschinsky, N., 2016, Heuristics for batch machining at

reconfigurable rotary transfer machines. IFAC-PapersOnLine, 49, 491–496.

Battaïa, O., Dolgui, A. and Guschinsky, N., 2016, Integrated process planning and

system configuration for mixed-model machining on rotary transfer

machine. International Journal of Computer Integrated Manufacturing, 30, 910–925.

Battaïa, O., Gurevsky, E., Makssoud, F. and Dolgui, A., 2012, Equipment location in

machining transfer lines with multi-spindle heads. Journal of Mathematical Modelling

and Algorithms in Operations Research, 12, 117–133.

Dolgui, A., 2009, An approach to transfer line balancing via a special set partitioning

problem. 13th IFAC Symposium on Information Control Problems in Manufacturing.

Dolgui A., Fine B., Guschinsky N., Levin G., and Vernadat F., 2005a, A heuristic

approach for transfer line balancing. Journal of Intelligent Manufacturing, 16, 159–

171.

44

Dolgui, A., Guschinsky, N. and Levin, G., 2000, Approaches to balancing of transfer

line with block of parallel stations, Preprint No. 8, 42 pages, Institute of Engineering

Cybernetics/University of Technology of Troyes, Minsk.

Dolgui, A., Guschinsky, N. and Levin, G., 2005, Transfer line balancing by a

combined approach. IFAC Proceedings Volumes, 38, 277–282.

Dolgui, A., Kovalev, S., Kovalyov, M. Y., Malyutin, S. and Soukhal, A., 2018,

Optimal workforce assignment to operations of a paced assembly line. European

Journal of Operational Research, 264, 200–211.

Essafi, M., Delorme, X., Dolgui, A., and Guschinskaya, O., 2010, A MIP approach

for balancing transfer line with complex industrial constraints. Computers &

Industrial Engineering, 58, 393–400.

Guschinskaya, O. and Dolgui, A., 2006, A comparative evaluation of exact and

heuristic methods for transfer line balancing problem. IFAC Proceedings

Volumes, 39, 413–418.

Guschinskaya, O. and Dolgui, A., 2007, Balancing transfer lines with multi-spindle

machines using grasp. IFAC Proceedings Volumes, 40, 511–516.

Klein, R. and Scholl, A., 1996, Maximizing the production rate in simple assembly

line balancing – A branch and bound procedure, European Journal of Operational

Research, 91, 367–385.

Patterson, J. H. and Albracht, J. J., 1975, Technical Note: Assembly-line balancing:

zero-one programming with fibonacci search. Operations Research, 23, 166–172.

45

Salveson, M., 1955, The assembly line balancing problem, Journal of Industrial

Engineering, 6, 18–25.

Sancı, E. and Azizoğlu, M., 2017, Rebalancing the assembly lines: exact solution

approaches. International Journal of Production Research, 55, 5991–6010.

Scholl, A., 1994, Ein B&B-Verfahren zur abstimmung von fiessbaendern bei

gegebener stationsanzahl, Operations Research Proceedings 1993, Springer-Verlag,

Berlin, 175–181.

Scholl, A. and Klein, R., 1997, SALOME: A bidirectional branch-and-bound

procedure for assembly line balancing, INFORMS Journal on Computing, 9, 319–334.

Scholl, A. and Klein, R., 1999, Balancing assembly lines effectively – A

computational comparison, European Journal of Operational Research, 114, 50–58.

