
IMPROVED KNOWLEDGE DISTILLATION
WITH DYNAMIC NETWORK PRUNING

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

EREN ŞENER
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ABSTRACT

IMPROVED KNOWLEDGE DISTILLATION
WITH DYNAMIC NETWORK PRUNING

Şener, Eren

M.S., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Emre Akbaş

August 2019, 46 pages

Deploying convolutional neural networks to mobile or embedded devices is often pro-

hibited by limited memory and computational resources. This is particularly prob-

lematic for the most successful networks, which tend to be very large and require

long inference times. In the past, many alternative approaches have been developed

for compressing neural networks based on pruning, regularization, quantization or

distillation. In this thesis, we propose the “Knowledge Distillation with Dynamic

Pruning“ (KDDP), which trains a dynamically pruned compact student network un-

der the guidance of a large teacher network. In KDDP, we train the student network

with supervision from the teacher network, while applying L1 regularization on the

neuron activations in a fully-connected layer. Subsequently, we prune inactive neu-

rons. Our method automatically determines the final size of the student model. We

evaluate the compression rate and accuracy of the resulting networks on image clas-

sification datasets, and compare them to results obtained by Knowledge Distillation

(KD). Compared to KD, our method produces better accuracy and more compact

models.
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ÖZ

DİNAMİK AĞ BUDAMA YÖNTEMİYLE GELİŞTİRİLMİŞ
BİLGİ DAMITMA

Şener, Eren

Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Dr. Öğr. Üyesi. Emre Akbaş

Ağustos 2019 , 46 sayfa

Evrişimli sinirsel ağların mobil veya gömülü cihazlara yerleştirilmesi çoğu zaman sı-

nırlı bellek ve hesaplama kaynakları tarafından kısıtlanır. Bu kısıtlama, özellikle çok

büyük olma eğiliminde olan ve uzun çıkarım süreleri gerektiren başarılı ağlar için

önemli bir sorundur. Geçmişte sinir ağlarını sıkıştırmak için budama, düzenlileştirme,

nicemleme veya damıtma temelli birçok alternatif yaklaşım geliştirilmiştir. Bu tez ça-

lışmasında, büyük bir öğretmen ağının rehberliğinde küçük bir öğrenci ağını dinamik

bir şekilde sıkıştırarak eğiten “Dinamik Budama ile Bilgi Damıtma“ (DBBD) yön-

temini öneriyoruz. DBBD’de, öğrenci ağını öğretmen ağının denetiminde eğitirken,

tam bağlantılı bir katmanın nöron aktivasyonlarına L1 düzenlileştirmesi uyguluyoruz.

Daha sonra aktif olmayan nöronları buduyoruz. Metodumuz, öğrenci modelinin son

boyutunu kendisi otomatik olarak belirliyor. Ortaya çıkan ağların görüntü sınıflan-

dırma veri setleri üzerindeki sıkıştırma oranını ve doğruluğunu inceleyip bunları Bilgi

Damıtma (BD) metodundan elde edilen sonuçlarla karşılaştırıyoruz. Yöntemimizi BD

ile karşılaştırdığımızda BD’den daha kompakt ve daha iyi doğruluk derecesine sahip

modeller ürettiğini gözlemliyoruz.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

With the rise of general purpose graphical processing units, their increasing compu-

tational power recently enabled the use of neural networks in a wide range of fields

such as computer vision, speech recognition or machine translation, amongst others.

Human-computer interaction has heavily benefited from the success of the applica-

tion of neural networks in these fields. Similar developments in the mobile phone

industry require the deployment of such applications to mobile or embedded devices.

Although they are very powerful, large neural networks consume high amounts of

energy, storage, and computational resources, which are limited in mobile devices.

Hence, creating small and fast models is crucial.

The central question that motivates the work in this thesis is how much the size limits

of neural networks can be pushed so that one ends up with a compact image classifica-

tion model that still works reasonably well. To achieve this, the first thing that comes

to mind is making a large network smaller by removing redundant structures (we-

ights, neurons, blocks, etc.). LeCunn et al. proposed one of the pioneering network

compression approaches, the Optimal Brain Damage [7] method, which was follo-

wed by many magnitude-based network pruning methods [8, 9]. These approaches

work by removing weights that are close to zero. To be able to prune more structures

and make the models smaller, regularization can be used to enforce sparsity. Han et

al. [1] proposed one of the first regularization-based model compression methods.

Following this work, some other methods [10, 11, 12, 13] that use regularization on

different structures were also proposed. For convolutional networks, researchers have

1



designed novel convolutional filters to save parameters which decrease redundancy

[14, 15, 16]. Research on low-rank factorization methods([17, 18, 19]) tries to find

informative parameters by using matrix or tensor decomposition. Some other works

[20, 21, 22] try to reduce the number of bits that represent each weight.

Some works aim to train a compact network with the guidance of a “cumbersome”

model. In the Knowledge Distillation (KD) method [2] (see Figure 1.1), there is a

large, cumbersome model called the teacher and a much smaller model called the

student. The student is trained to mimic the softmax values of the teacher via a hyper-

parameter called temperature (see Eq. 1.1.1). Typically, neural networks produce pro-

babilities by using a softmax output layer that converts the logits computed for each

class into a probability by comparing with the other logits. In KD, temperature term

helps neural networks to produce soft predictions to train the student network. KD

based methods [23, 24] have good performances on computer vision tasks and have

a big impact on model compression. However, a major disadvantage of KD is having

a fixed size student model during or after training. In this work, we target removing

this disadvantage and having more compact student networks by dynamic pruning

based on neuron activations.

qi =
ezi/T∑
j e

zj/T
, (1.1.1)

where qi denotes the class probability, zi is the logit and T is temperature.

1.2 Proposed Methods and Models

Knowledge Distillation was introduced by Hinton et al. [2] in 2015. The main idea is

to have a cumbersome network called the teacher to supervise the training of a much

smaller network called the student via soft outputs. The aim is to increase the informa-

tion about the target classes by introducing uncertainty into probability distributions.

Since these distributions contain similarity information on different classes, Hinton

et al. further used this similarity information coming from the teacher to correctly

classify a target class intentionally removed from the training set of the student. Af-

ter training, the student correctly classified samples of this class despite never having

2
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Figure 1.1: Illustration of the standard Knowledge Distillation method by Hinton et

al. [2]. In KD, student model is trained with multiobjective loss that is composed of

distillation loss and student loss. Former comes from soft labels, and the latter comes

from hard labels. The student model in KD is given as input and its size does not

change during or after training. However, in our method, we prune fully-connected

layers in the student network with dynamic pruning based on neuron activations to

get a compact model.
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seen in training. Additionally, in order to prevent the teacher’s strong predictions to

dominate the similarity information, softmax logits of the teacher are softened using

a hyper-parameter called temperature denoted as T in Eq. 3.2.1. The algorithm of

KD is as follows: first, a large teacher network is trained for the task. Then, a much

smaller student network is trained using both one-hot vectors of the true labels and

the softened predictions (Eq. 3.2.2) of the teacher network. Thus, the student model

is trained with multiobjective loss that is composed of distillation loss and student

loss. Former is the cross-entropy loss between soft predictions of the student and soft

predictions of the teacher network. Latter is the cross-entropy loss between true labels

and predictions of the student. (see Figure 1.1)

In this thesis, we propose a dynamic network pruning method based on Knowledge

Distillation. During traditional training of KD, we apply L1 regularization on the acti-

vations of the neurons in a selected fully-connected layer in order to impose sparsity.

Then we directly kill neurons with respect to the magnitude of their activations ob-

served in the training set without making any assumption on the weights with respect

to their numerical values. To the best of our knowledge, our compression technique

is the first method that combines KD and regularization in this way. We name our

method as Knowledge Disttilltion with Dynamic Pruning, or KDDP for short. Since

our method can only prune fully-connected layers (and not convolutional layers), its

typical targets are Multilayer Perceptrons (MLP) or CNNs with large fully-connected

(fc) layers.

In this work, we extensively analyze both KD and our proposed method. On Cifar-

10 dataset, we train standard KD networks, vanilla networks which are trained from

scratch without any teacher guidance and our KDDP models. After training these

models, we can conclude that our method performs better than the baselines (KD

and Vanilla networks). Furthermore, we find that setting hyper-parameters is crucial

for KD based methods. Temperature, T , distillation weight, α, and L1 regularization

penalty should be tuned to find a good balance between the model size and the clas-

sification performance. In summary, when the hyper-parameters are chosen carefully,

our method works well.

4



1.3 Contributions and Novelties

Our contributions are as follows:

• We propose a new dynamic compression method based on KD. It dynamically

prunes inactive neurons in selected fully-connected layers from the network.

Our method does not require the final size of the compressed model as input; it

is determined dynamically.

• We experimentally analyze our method and compare against KD. We make ex-

tensive experiments on our hyper-parameters to find meaningful relations with

the accuracy of the compressed model.

• We test our method on the Cifar-10 dataset. We get better accuracies than the

KD method with much fewer parameters.

1.4 The Outline of the Thesis

We first summarize the neural network model compression literature in Chapter 2. We

describe our proposed method and its implementation details in Chapter 3. Then, we

analyze the effectiveness of our approach with experiments performed on the Cifar-10

dataset in Chapter 4, and finally conclude in Chapter 5.
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CHAPTER 2

RELATED WORK AND BACKGROUND

In this chapter, we review the literature on model compression in deep neural net-

works. We split these works into 5 categories (see Table 2.1). We give more detailed

information about the parameter pruning and sharing due to its direct relation to our

method.

2.1 Parameter Pruning and Sharing

Parameter pruning attracted many researchers since the early development of neural

networks due to its effectiveness on reducing model complexity and over-fitting. It is

also shown that pruning redundant parameters from the network improves generali-

zation, which is an important side-effect.

Early works to prune parameters are Optimal Brain Damage [7] (OBD) and Opti-

mal Brain Surgeon [8]. In their work, the authors remove redundant paramaters after

sorting them by their saliencies. Saliency is measured based on the Hessian of the

objective function with respect to parameters. Recently, Srinivas and Babu [9] also

showed how similar neurons, which have similar weight sets, are redundant. Since

Hessian computation is heavy, they propose a more systematic way than OBD and

data-free method to remove them.

Most of the following works to above use sparsity constraints (L0, L1-norm, etc.) in

the optimization problems to obtain redundancy. Researchers use these constraints

on different elements (e.g. weights, blocks, etc.). Han et al. [1] are one of the first

to propose a regularization-based method on model compression. They apply L2 re-

7



Table 2.1: Summary of the approaches in model compression literature.

Description Application on Training Strategy

Parameter Pruning

and Sharing

Find redundant structures

in models and prune them

Convolutional and

fully connected layers

From scratch or

pre-trained model

Knowledge

Distillation

Train a compact network with the

guidance of a cumbersome network

Convolutional and

fully connected layers
Only from scratch

Low-rank

Factorization

Find informative parameters by

using matrix/tensor decomposition

Convolutional and

fully connected layers

From scratch or

pre-trained model

Compact

Convolutional Filters

Design new convolutional filters

to save parameters
Convolutional layers Only from scratch

Quantization and

Binarization

Try to reduce the number of bits

required to represent each weight

Convolutional and

fully connected layers

From scratch or

pre-trained model

gularization during the training phase in order to have near zero-valued parameters.

Then they prune all low-weight connections from the network. The deep compression

method [21] uses the same procedure as Han et al. [1] for removing redundant con-

nections. The authors also add quantization and Huffman coding on top of the pruned

network to have a more compact one.

Recently, redundancy in convolutional networks also has been explored. Lebedev and

Lempitsky [25] apply the idea of Optimal Brain Damage[7] to convolutional filters.

They remove entries of L2,1-norm regularization applied convolution filters, which

are below a threshold, in a group-wise fashion. Similarly, work by Zhou et al. [10]

enforce low-rank constraints on tensors and L2,1-norm regularization on the objec-

tive function during the training stage to achieve compact CNNs with reduced ne-

urons. Another study which uses L2,1-norm is Wen et al. [11]’s work. They apply

regularization to big baseline models to learn more compact CNNs. With their struc-

tured sparsity method, they regularize filters, channels, filter shapes and layer depth

of CNNs. Huang and Wang [26] improve the method of Wen et al. [11] and propose

a more general end-to-end method for network pruning. Their method contains a fac-

tor to scale the outputs of some specific structures (neurons, groups or blocks). They

apply L1-norm sparsity regularization to the scaling factors. Structures having sca-

ling factors below a threshold are removed from the network while training. Unlike

the previous works, Ullrich et al. [27] base their regularization on the soft weight-

sharing method [28]. They compress weights of the pre-trained model into clusters

8



by fitting mixtures of Gaussian models. After retraining the model with new weights

concentrated on the cluster means, they obtain a layer-wise-pruned compact network.

There are also methods which focus on sparsity in batch-normalization (BN) layers.

Liu et al. [12] add a scaling factor after BN layers. L1 regularization is imposed on

these scaling factors during training to automatically identify redundant filters. Then,

they prune channels with near-zero scaling factors. Another recent study [29] uses the

method proposed by Beck and Teboulle [30] to enforce sparsity on the γ-parameter in

BN operator. During training, this method makes some γ values zero and helps these

channels to block sample-wise (for each sample in the training set) information flow.

After the training is completed, they remove these constant-valued channels from the

original network. The study MorphNet [13] uses a combination of three ideas above:

first, an L1-norm-based regularization of the neurons, second, the idea of multipliers

of Howard et al. [31] for reducing the floating point operations and model size, and

third, the paradigm introduced by Han et al. [1] for retraining of the pruned network.

There has also been some research for measuring the redundancy in the networks.

Guo et al. [32] present a feedback mechanism named splicing which re-establishes

mistakenly removed parameters after the pruning operation. With this work, they

show that measuring the redundancy of the parameters is an extremely difficult task.

Researchers use different techniques for measuring redundancy. In [33] L1-norm of

kernels are calculated. After sorting kernels by their L1-norm values, small valued

kernels and corresponding feature maps were pruned. ThiNet [34] does filter-level

pruning based on filter statistics computed from the following layer, not the current

layer. In spite of their success, the compression rate of the filters had to be predefined,

which is another difficult problem for pruning methods. Moreover, He et al. [35] exp-

loit feature maps for redundancy. The authors select the most representative channels

of the feature maps and prune the redundant ones. After pruning, in order not to da-

mage accuracy, they reconstruct the outputs with the remaining channels using linear

least squares.

Recently, several methods proposed to measure the importance of structures. Yu et al.

[36] propose that layer-by-layer network pruning leads to significant reconstruction

error propagation. They introduce a global neuron importance measuring algorithm

9



which uses information at the Final Response Layer (FRL, the second-to-last layer

before classification). The algorithm obtains the importance of all neurons in the ne-

twork with a single backward pass after a feature ranking operation on the FRL.

Subsequently, the trimming of the whole network is performed considering the pru-

ning ratio per layer as a pre-defined hyper-parameter. Prakash et al. [37] propose a

novel inter-filter orthogonality metric for ranking filter importance and a new training

strategy. Their method consists of temporarily dropping (some) of the least important

convolutional filters (ranked by their metric), and reintroducing dropped filters with

new weights. They repeat this process cyclically. With this strategy, they improve

generalization and reduced overlap of learned features. Unlike the traditional deter-

ministic methods, Wang et al. [38] approach pruning weights of convolutional layers

in a probabilistic manner. They specify a pruning probability for each weight group.

At each iteration, these probabilities are updated with the L1 norm as an importance

criterion of each weight group. The pruning is guided by sampling from the pruning

probabilities. He et al. [39] use a novel pruning method instead of norm-based pru-

ning approaches. They calculate the geometric median [40] of the filters within the

same layer, and prune the filter(s) near to the geometric median. In addition to above

works, Dong et al. [41] improve the idea in previous works [7, 8]. Their pruning

method is based on second order derivatives of a layer-wise error function.

There are also some recent and novel compression techniques used for pruning. In

SplitNet[42], the goal is to find a tree-structured network that contains a set or a hi-

erarchy of subnetworks, where the leaf-level subnetworks are associated with a spe-

cific group of classes. Since each group uses a subset of features that are comple-

tely disjoint from the ones used by other groups, the splitting algorithm prunes out

inter-group connections while optimizing the cross entropy loss and the group regu-

larization. At the end, the weight matrix can be explicitly split into block diagonal

matrices to reduce the number of parameters. Similarly, Yang et al. [43] approach the

network compression from energy consumption of the network. They sort layers by

their energy consumption, and pruned weights, which have small magnitudes, of the

layers that consume the most energy first. A very recent work, similar to the work of

Liu et al. [12], Zhao et al. [44] modify the BN layer and add a new parameter called

channel saliency to the BN layer. They try to find approximate gamma distributions
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over these channel saliency parameters. They then remove redundant channels with

mean and variance of their gamma distributions less than predefined thresholds.

2.2 Knowledge Distillation

Knowledge Distillation is a simple way to have compact deep learning models. In this

method, we train a large and cumbersome (teacher) network or an ensemble model

which can extract important features from the data and can produce better predictions.

Then, we train a small (student) network with the guidance of the cumbersome model.

This small network will be able to produce comparable results with its teacher, in

some cases.

In 2006, Caruana et al. [45] approach the idea of knowledge transfer from a different

point of view. Instead of training a neural network on an original small set, they use an

ensemble of base-level classifiers to label a large unlabeled dataset and then train the

network on this much larger dataset. Ba and Caruana[46] propose using an L2 loss on

the logits to mimic the teacher network. Hinton et al. [2] show that a student network

could imitate the soft output of a larger teacher network or ensemble of networks. In

other words, the student model can be trained with the distilled knowledge obtained

from the teacher network.

FitNets et al. [23] are rooted in the knowledge distillation method proposed by Hinton

et al. [2] to produce deep and thin student networks with comparable or better per-

formance than the teacher. They achieve this by training some layers of the student

beforehand with the teacher’s supervision for better initialization. Luo et al. [24],

show that instead of using soft targets in the output layer, the knowledge of the te-

acher can be obtained from the top hidden layer. They use L2 loss while mimicking

the teacher’s feature space. Yim et al. [47] distill knowledge from the teacher by ge-

nerating a matrix from feature maps at each layer. Then, they transfer the knowledge

from teacher to student, which has the same depth as the teacher, by applying L2 loss

to these matrices.

Different from the standard classification tasks, Chen et al. [48] introduce a no-

vel end-to-end trainable framework for multi-class object detection problem through
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knowledge distillation. They propose three ideas: a weighted cross-entropy loss to

prevent the impact of background domination during classification, a teacher boun-

ded regression loss for knowledge distillation to avoid the damage that may arise from

contradiction bounding-box regression outputs of the teacher with the ground truth,

and adaptation layers for hint learning which is proposed by Romero et al. [23].

2.3 Low-rank Factorization

Low-rank factorization methods aim at finding informative parameters by using mat-

rix/tensor decomposition. Denton et al. [17] exploit redundancy present in convo-

lutional filters by deriving approximations to reduce the required computation. They

apply several decomposition methods based on SVD to compress weight matrices. Yu

et al. [49] propose a unified deep compression framework that decomposes weight

matrices into their low-rank and sparse components. They show that their method

helps the models to achieve higher compression rates than models using SVD. Re-

cently, Minnehan and Savakis [19] present a data-driven approach that compresses

both the present layer and inputs of the next layer by projecting them to the same low

dimensional space based on a low-rank projection. In another recent work, Kimet al.

[18] propose novel accuracy metrics to describe the relationship between the accuracy

and complexity of a network. They use these metrics to find the right rank configu-

ration of the whole network which satisfies the compression constraints. Since they

obtain this configuration in a non-iterative and fast way, they move ahead of SVD-

based network compression methods which decide the right rank for every layer of

the network separately.

2.4 Compact Convolutional Filters

Designing new convolutional filters and training models with compact filters is anot-

her way of model compression. Jin et al. [14] create CNNs with 1D filters which are

constructed from 3D convolutional filters. They show that they can do such substitu-

tion without a loss in accuracy and the new CNN provides two times speed-up during

feed-forward pass when it is compared to the baseline model. Fire modules are intro-
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duced in SqueezeNet [15]. This module is composed of a squeeze convolution layer,

which has only 1 × 1 filters, and an expand layer that has a mix of 1 × 1 and 3 × 3

filters. With this module, they presented a CNN architecture that has 50x fewer pa-

rameters than AlexNet[50] and maintains AlexNet-level accuracy on ImageNet [51].

Recently, Li et al. [16] proposed a factorized convolutional filter which consists of

a standard convolution filter and a binary scalar, together with a dot-product operator

between them. After training CNN models with these convolutions, they only keep

filters corresponding to the 1-valued scalars to obtain a compact model.

2.5 Quantization and Binarization

Works related to quantization and binarization try to reduce the number of bits requ-

ired to represent each weight. In BinaryConnect [20] proposes a method for training

a DNN with binary weights ({+1,−1}) during the forward and backward propaga-

tions. This gives a great advantage to specialized deep learning hardware because

many multiply-accumulate operations are replaced with simple accumulations. Hu-

bara et al. [22] proposes a method based on this idea in which they train Binarized

Neural Networks - neural networks with binary weights and activations at run-time.

Zhou et al. [52] presents a method where they convert the weights of a pre-trained

full-precision CNN model into a low-precision one with weights which are constra-

ined to be powers of two or zero. In a recent work, Son et al. [53] proposes a novel

and more structured quantization method. They cluster 3 × 3 kernels and replace re-

dundant ones with their centroids. The final compressed model is represented with a

set of centroids and a corresponding cluster index per each kernel.
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CHAPTER 3

METHOD

In this thesis, we target image classification using convolutional neural networks. We

assume an input set of images, each annotated with a class label. Our goal is to design

an architecture that both includes much fewer parameters than a large network and

can perform comparably.

In this chapter, we present our model architecture and implementation details of our

method.

3.1 Knowledge Distillation

The key challenge in the design of our model is the way of decreasing the number

of parameters in a convolutional neural network while maintaining accuracy as high

as possible. In the Knowledge Distillation (KD) [2] method, the aim is to distill the

knowledge from a teacher network to a student network. The teacher network is much

larger than the student network in methods using KD. As large and deep models

have more capacity than smaller networks, they can extract more features of higher

complexity, and therefore perform better. The motivation is to train the small network

with the help of the large network. If the model used as a teacher generalizes well,

the student model can be trained to generalize in the same way with KD methods.

In our work, we use two convolutional neural networks. Our teacher network is deep

and large, and our student network is shallow and small. With this choice, our goal

is to show that it is possible to transfer knowledge from the large teacher to a much

smaller student network, which is then pruned to an even more compact network.
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3.1.1 Teacher Network

After AlexNet[50] won the ILSVRC[54] image classification challenge in 2012 by

a large margin, creating models with deep layers has gained a lot of attention. First,

VGG[55] explored the capabilities of a network with 19 layers and became the state

of the art by winning the ILSVRC challenge in 2013. The year after GoogLeNet[56]

won the challenge with a network of 22 layers. Finally, Resnet[3] achieved the top

performance with 34, 101 and 152 layered very deep architectures.

Although it sounds trivial to continuously increase the depth of a network for better

performance, it poses a very important problem: increasing the depth of the network

comes at the price of vanishing gradients. In ResNet, the authors successfully solved

this problem by adding identity-mappings to their network.

ResNet and its variants proved their success on many computer vision tasks. As the

core visual processing module, we use a ResNet variant for our teacher model due to

its state-of-the-art performance on the ImageNet challenge. We use ResNet-56 which

has 6.97% error rate on Cifar-10 and 850k parameters, which is sufficient for us to

use it as the teacher.

3.1.2 Student Network

We choose our student network to have a very simple architecture in order to effici-

ently analyze the performance of our method.

Our student network architecture starts with an input layer for 32 × 32 × 3 sized

images. It is followed by a convolutional layer with a kernel size of 7×7 with a stride

of 1, with 64 convolution filters. This result in an output of size 16 × 16 × 64. The

convolutional layer is followed by a Batch Normalization (BN) layer and a non-linear

activation function, ReLU [57]. We later use a max-pooling layer which has a window

size of 3 × 3 with stride 2 that produces an output of size 7 × 7 × 64. This layer is

followed by an identity-block of the ResNet architecture [3]. ResNet’s identity block

is composed of 3 convolutional layers, each followed by a BN and a ReLU layer. The

first and third convolutional layers have a kernel size of 1 × 1, and the middle layer
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Figure 3.1: Student Network overview. The network takes an image and outputs a

class label. It is composed of an input layer followed by a convolutional layer, max

pooling, an identity-block of ResNet[3], average pooling, two fully connected layers,

and a softmax layer. ResNet’s identity block is highlighted with the yellow rectangle.

This layer is composed of three convolutional layers and a skip connection which

adds the input of the identity block and the output of the last convolutional layer in

the identity block. (Best viewed in color.)
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has a kernel size of 3 × 3. The stride of all convolutions of the identity blocks is 1

and the number of filters used in each layer is 64. Before the ReLU layer of the last

convolutional layer inside the residual block, there is a skip connection that allows

the flow of information from the initial layers to the last layers by adding the input of

the identity block and the output of the ReLU layer. The identity-block is followed by

an average pooling layer which outputs a 3× 3× 64-dimensional tensor. This layer is

followed by a fully-connected layer, fc1, and a ReLU layer. Finally, the ReLU layer

is followed by another fully connected layer, fc2, as a bridge to a softmax layer at

the end.

In our experiments, we use three different networks with different neuron counts in

the first fully-connected layer, fc1. We use 50, 100 and 500 neurons for this layer to

explore the effect of the increasing number of neurons. We set the number of neurons

in the second fully-connected layer, fc2, to the number of classes in the classification

task at hand. In Figure 3.1, we present the architecture of our student network visually.

3.2 Method

Knowledge Distillation [2] successfully showed a way of transferring the generali-

zations of a complex model to a much lighter model. Let pt be the softened output

of the teacher network’s softmax layer and zi be the logits of the teacher network.

Furthermore, let p′s be the hard and ps be the soft output of the student network’s

softmax layer and vi be the logits of the student network. Knowledge Distillation is

parameterized by weight α and temperature T . pt, ps and p′s are defined as follows:

pt =
ezi/T∑
j e

zj/T
, ps =

evi/T∑
j e

vj/T
, p′s =

evi∑
j e

vj
, (3.2.1)

The objective function is composed of a weighted average of two loss functions and

is computed as follows, given N training images with ground truth labels yn:

L = α

(
1

N

N∑
n=1

H(pt, ps)

)
+ (1− α)

(
1

N

N∑
n=1

H(yn, p′s)

)
. (3.2.2)
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The first term is the cross-entropyH with the soft targets. It helps the student network

to mimic the teacher’s softened outputs. This term is the building block of KD. The

temperature T in here is used for selecting a suitable set of soft targets from the logits

of the teacher. During training of the student network, it tries to match these soft

targets. The second term is the cross-entropy with the correct labels. The weight α

sets the contribution of these two objective functions, i.e. the weight of distillation.

We experimentally analyze these two hyper-parameters in Chapter 4.

We build our model on the KD [2] method. To decrease the number of neurons further

and explore our limits we apply regularization and pruning methods to our model. We

call our model “Knowledge Distillation with Dynamic Pruning”, or KDDP for short,

as our pruning process changes the number of neurons at the end.

Typically, fully-connected layers contain most of the parameters in a convolutional

neural network (except the fully-convolutional networks [58, 59, 60]). Our proposed

method reduces the number of parameters in the fc-layers of a network by removing

neurons based on their average activations observed on the training set. We use L1

regularization to induce sparsity on the activations of the fc-layers.

In our method, we train our student networks with Eq. 3.2.2 and apply L1 regulariza-

tion to the fully connected layer with the higher amount of neurons, the fc1 layer in

our case (see Table 3.1). Then, for each neuron at fc1, we calculate the activation of

the neuron for all samples in the training set. We take the average of the activations.

If the activation of the neuron is below 10−6, we kill that neuron and delete the cor-

responding weight set in fc2. After testing all neurons at fc1, we retrain the pruned

network with Eq.3.2.2 and without L1 regularization on fc1.

KDDP, Student Network (SN): We present the pseudo-code of our method in Algo-

rithm 1. At the first stage, the network is trained with Eq. 3.2.2 and an L1 regulariza-

tion penalty on the dynamic fc1 layer. After neurons are pruned from the fc1 layer,

the network is trained with Eq. 3.2.2 and without penalty.
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Table 3.1: Student networks differ only in the number of neurons in the fc1 layer.

Percentages in parenthesis indicate the ratio of the parameters in fc1 to the total

number of parameters.

Model
# of neurons

in fc1

# of

parameters at fc1

total # of

parameters

SN50 50 29k (34%) 85k

SN100 100 58k (50%) 114k

SN500 500 289k (83%) 349k

Algorithm 1 Dynamic Model Size Reduction
1: Train KDDP model with L1 reg. on fc1 using Eq.3.2.2

2: Inputs: N training samples (xj, yj)

3: for each neuron ni in fc1 do

4: // calculate the avg. activation

5: oi =
1
N

∑N
j=1ReLu(wi · xj + bi)

6: if oi ≤ 10−6 then

7: // prune low activity neurons

8: Kill the neuron ni and delete the corresponding wi in fc2

9: end if

10: end for

11: Train KDDP model without L1 reg. on fc1 using Eq. 3.2.2
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3.2.1 Baseline methods

We compare our method with the following models.

• Vanilla SN: We train the student network from scratch without any teacher

guidance and regularization penalty. We use this model to find out the baseline

performance of our student networks.

• Vanilla-KD SN: We train student network with Knowledge Distillation [2] at

different temperature values (T ) but without regularization penalty.

3.3 Implementation Details

Teacher Network (TN): We train a ResNet-56 model from scratch. The base learning

rate is set as 10−4 and remained constant through iterations, mini-batch size is 64, and

the optimization algorithm is Adam [61].

Student Networks (SN): We use the same hyper-parameters while training all stu-

dent models. All models are trained from scratch. Weights and biases are initialized

with Xavier’s initialization [62]. Network architectures are implemented via the Ke-

ras framework [63]. Adam [61] is used for training. The learning rate is set to 10−4,

and the mini-batch size is 64. An L1 regularization penalty is applied on fc1 during

the training of the KDDP student networks. The training is stopped early if there is

no improvement in the accuracy on the validation set for 50 epochs.
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CHAPTER 4

EXPERIMENTS

In this chapter, first, we evaluate our method in Section 4.2 by comparing against

other methods and provide extensive experiments on the hyper-parameters in Section

4.3.

4.1 Dataset

Cifar-10 [64]: We use the Cifar-10 dataset in our experiments. It contains 60000

32x32 color images in 10 classes, with 6000 images per class (see example images in

Figure 4.1). There are 50000 training images and 10000 test images. We select 10000

images of the training set as a validation set using a stratified sampling strategy [65].

We report our results after seeing no improvement on the validation set for 50 epochs

during training. To augment data, we only flip images horizontally. We, also, subtract

pixel mean from all images. We use this setup in all experiments.

Figure 4.1: Example images from the Cifar-10 dataset
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4.2 Analysis of Proposed Method

We present our KDDP model’s results in Table 4.1. We use the same teacher logits

in for all experiments (see Eq. 3.2.2). We train our teacher once. We use the same

initial weights for all student network trainings in Table 4.1 with hyper-parameters:

L1 = 1e−4 and α = 0.5. We also train Vanilla SNs and Vanilla-KD SNs for each

model to explore the capacity of these networks and compare with our model.

In Table 4.1, our teacher network has an accuracy of 88.08% with 1.7M parameters on

the test set. This score is much lower than the current state-of-the-art performances,

which is 97.92 [66]. This is because we are using 10K samples of our training set as

validation data to have a solid early stopping criterion. With data augmentation and

40k samples, our teacher does its best. However, we don’t aim to have state-of-the-art

performances on Cifar-10. We want to explore the weaknesses and strengths of our

knowledge distillation method. Thus, the current performance of the teacher network

suffices our expectations.

The Vanilla SN shows 80.48%, 80.75%, 81.28% accuracies on the test set for our net-

works SN50, SN100, SN500, respectively. We can also see that increasing the number

of neurons in the fc1 layer has a positive effect on model performance. However,

this causes an increase in the number of parameters, as well. Compared to the Vanilla

SNs, in Table 4.1, we observe that the Vanilla-KD improves accuracies approximately

by 1% for all models. This improvement tells us that the teacher network does its job

and successfully increases performance.

Our method, KDDP, shows 81.93%, 82.19%, 82.81% accuracies on the test set for our

networks SN50, SN100, SN500, respectively. We observe that our method works better

than Vanilla-KD and improves the accuracies around 0.5% for SN50, SN100, SN500

with 3%, 9%, 40% fewer parameters than their original networks. It removes 10%,

17%, 48% of the parameters at fc1.

We also do further detailed experiments to compare our method against Vanilla-KD

to provide fair comparisons based on the total number of neurons in the network. We

train smaller Vanilla-KD SNs (having the same neuron count at fc1with final KDDP

SNs) using the same weights. We refer to these experiments ’KD’ in Table 4.1 and
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Table 4.1: Results for models SN50, SN100, SN500. Hyper-parameters: L1 penalty=

1e−4, α = 0.5

KD KDDP

T Acc. Acc. Final fc1 size
50

N
eu

ro
ns

2 0.8141 0.8193 45

4 0.8117 0.8123 40

8 0.8050 0.7891 41

12 0.7930 0.7913 38

Model Acc. Params 16 0.7900 0.7902 33

Teacher 0.8808 1,673,738 20 0.7960 0.8011 37

Vanilla SN50 0.8048 85,104 32 0.8030 0.8010 37

Vanilla-KD SN45 0.8145 82,169 64 0.8050 0.8078 37

100 0.8072 0.8088 32

200 0.8007 0.8053 41

1000 0.8065 0.8065 35

5000 0.7947 0.8032 40

10
0

N
eu

ro
ns

2 0.8197 0.8219 83

4 0.8183 0.8156 79

8 0.8083 0.8037 61

12 0.8039 0.7952 59

Model Acc. Params 16 0.7942 0.7922 59

Teacher 0.8808 1,673,738 20 0.7988 0.7978 59

Vanilla SN100 0.8075 114,454 32 0.8055 0.8085 61

Vanilla-KD SN83 0.8146 104,475 64 0.8090 0.8095 59

100 0.8134 0.8077 54

200 0.8074 0.8003 54

1000 0.8066 0.8171 53

5000 0.8104 0.8087 54

50
0

N
eu

ro
ns

2 0.8225 0.8281 264

4 0.8264 0.8186 156

8 0.8206 0.8106 113

12 0.8141 0.8079 118

Model Acc. Params 16 0.8159 0.7952 109

Teacher 0.8808 1,673,738 20 0.8064 0.8003 91

Vanilla SN500 0.8128 349,254 32 0.8062 0.8147 111

Vanilla-KD SN264 0.8267 210,722 64 0.8096 0.8121 109

100 0.8147 0.8114 101

200 0.8088 0.8146 112

1000 0.8069 0.8140 116

5000 0.8097 0.8093 105
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we present our results over different Temperatures and the number of neurons. For

example, we train the Vanilla-KD models with {45, 83, 264} neurons at their fc1

layer for our networks SN50, SN100, SN500, with a Temperature of 2 in the first rows.

We observe that the higher temperatures result in better performances and our method

outperforms the Vanilla-KD models with the same amount of parameters in the fc1

layer.

We conclude that pruning after training with Knowledge Distillation helps in incre-

asing the performance with much fewer parameters.

4.3 Hyper-parameter Analysis

4.3.1 L1 Regularization Penalty Analysis

We use L1 regularization on the activations of fc1 layer neurons to increase spar-

sity. L1 regularization penalizes the absolute value of the activations of the neurons.

We present results for different L1 penalties in Table 4.2. We set α to 0.5 in these

experiments.

We observe that larger values of L1 penalty result in fewer active neurons at the fc1

layer and therefore decreases the performance of the models. For example, when L1

is 1e−3 and T = 32 at KDDP SN100 experiment, the model gets stuck at some local

minima and cannot even reach the vanilla model’s performance. However, when there

are fewer parameters it helps the model to get acceptable performances. For example,

for hyper-parameters L = 1e−3, T = 2, our KDDP SN50 model achieves better

performance than the other SN50 models. We also observe that using smaller values

for L1, e.g. L1 = 1e−5, does not work for our pruning method in all student models.

Therefore,L1 penalty should be tuned to strike a good balance between the model size

and the classification performance. In our experiments, we set the L1 regularization

to 1e−4.
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Table 4.2: Results for models SN50, SN100, SN500. Hyper-parameters: α = 0.5

L1 = 1e−3 L1 = 1e−4 L1 = 1e−5

T Acc. FC1 size Acc. FC1 size Acc. FC1 size

50
N

eu
ro

ns
2 0.8198 15 0.8193 45 0.8162 49

4 0.8054 10 0.8123 40 0.8146 48

8 0.7638 7 0.7891 41 0.7968 47

12 0.7707 7 0.7913 38 0.7918 47

16 0.7761 8 0.7902 33 0.7948 46

20 0.7802 8 0.8011 37 0.7961 47

32 0.7607 5 0.8010 37 0.8049 48

64 0.7776 7 0.8078 37 0.8034 44

100 0.7871 6 0.8088 32 0.8038 49

200 0.7966 7 0.8053 41 0.8077 47

1000 0.7877 8 0.8065 35 0.8078 46

5000 0.7616 5 0.8032 40 0.8069 43

10
0

N
eu

ro
ns

2 0.8132 18 0.8219 83 0.8219 97

4 0.7913 9 0.8156 79 0.8192 93

8 0.7655 7 0.8037 61 0.8099 92

12 0.7931 10 0.7952 59 0.7941 92

16 0.7970 76 0.7922 59 0.7931 92

20 0.7802 7 0.7978 59 0.7935 89

32 0.6900 3 0.8085 61 0.8001 93

64 0.7779 6 0.8095 59 0.8012 91

100 0.7594 4 0.8077 54 0.8121 91

200 0.7800 6 0.8003 54 0.8055 90

1000 0.7609 4 0.8171 53 0.8058 95

5000 0.8063 89 0.8087 54 0.8010 88

50
0

N
eu

ro
ns

2 0.8211 103 0.8281 264 0.8185 467

4 0.8213 330 0.8186 156 0.8196 453

8 0.8175 400 0.8106 113 0.8101 441

12 0.8017 140 0.8079 118 0.8110 432

16 0.8010 235 0.7952 109 0.8089 429

20 0.7991 151 0.8003 91 0.8075 425

32 0.8047 98 0.8147 111 0.8063 425

64 0.8050 17 0.8121 109 0.8025 417

100 0.8040 90 0.8114 101 0.8030 431

200 0.8062 185 0.8146 112 0.8076 423

1000 0.8059 15 0.8140 116 0.8040 425

5000 0.8123 17 0.8093 105 0.8070 423
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4.3.2 α Analysis

α in Eq. 3.2.2 sets the contribution of the two objective functions (i.e. the weight of

distillation). In other words, using bigger α values means giving more importance to

soft targets in the objective function.

We present results for different α values in Table 4.3. We can see that too small and

large α values don’t lead to good performances. α also should be tuned carefully to

have a good balance between the model size and classification performance. In our

experiments, we observe that setting α to 0.5 gives the best results.

4.3.3 T Analysis

Temperature (T ) is a tool to enforce the uncertainty of a teacher network to emerge.

This uncertainty might be used as similarity information between different classes to

enhance the training. There is no formulation for selecting the most effective T ; it is

set empirically. We did a grid search over the temperatures values of [2, 4, 8, 12, 16,

20, 32, 64, 100, 200, 1000, 5000]. If we keep increasing T , at some point, logits will

be saturated and no information will flow from the teacher to the student network. We

present our results in Table 4.3. We can see that when we train the network with 100

neurons solely with the loss coming from the soft targets (the first term in Eq. 3.2.2)

with a temperature of 5000, we get an accuracy of 10%, which is equal to the random

guess for Cifar-10.

In Figure 4.3, we present our results in Table 4.1 in plots to show the trends for

different temperature values to see the unpredictable behavior of T easier. For all

models, the accuracy fluctuates between low and high values as the Temperature is

swept across a wide range. Therefore, we can say that the temperature parameter

should also be tuned carefully.

In another Knowledge Distillation paper [4], this accuracy fluctuation due to T is

also shown on Facial Expression Recognition (FER) datasets, CK+ [5] and Oulu-

Casia [6]. These two datasets are widely used benchmark databases for FER problem.

They contain face images of subjects each having different emotions such as anger,
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Table 4.3: Results for models SN50, SN100, SN500. Hyper-parameters: L1 = 1e−4

α = 0.2 α = 0.5 α = 0.8 α = 1

T Acc FC1 size Acc FC1 size Acc FC1 size Acc FC1 size
50

N
eu

ro
ns

2 0.8046 48 0.8193 45 0.8093 49 0.7955 45

4 0.8003 44 0.8123 40 0.8147 39 0.8034 32

8 0.7987 42 0.7891 41 0.8031 26 0.7967 8

12 0.7945 43 0.7913 38 0.7843 28 0.5061 25

16 0.8093 43 0.7902 33 0.7726 23 0.5844 46

20 0.8081 45 0.8011 37 0.7761 25 0.5882 45

32 0.8058 39 0.8010 37 0.7872 23 0.5101 42

64 0.8060 42 0.8078 37 0.7961 25 0.5850 42

100 0.8021 44 0.8088 32 0.8069 24 0.5835 42

200 0.8057 42 0.8053 41 0.8018 22 0.5526 39

1000 0.8072 44 0.8065 35 0.8088 26 0.6277 40

5000 0.8106 42 0.8032 40 0.8040 26 0.1000 12

10
0

N
eu

ro
ns

2 0.8077 76 0.8219 83 0.8239 87 0.8078 66

4 0.8082 75 0.8156 79 0.8177 69 0.8108 49

8 0.8042 66 0.8037 61 0.8041 33 0.7948 8

12 0.8041 75 0.7952 59 0.7880 30 0.6685 88

16 0.8005 69 0.7922 59 0.7733 26 0.5931 63

20 0.8010 79 0.7978 59 0.7689 31 0.5886 40

32 0.8075 69 0.8085 61 0.7889 25 0.5764 49

64 0.8065 79 0.8095 59 0.7962 33 0.5835 51

100 0.7963 72 0.8077 54 0.7985 33 0.5890 85

200 0.8047 67 0.8003 54 0.8037 29 0.5748 85

1000 0.8039 71 0.8171 53 0.8000 34 0.5864 86

5000 0.8096 75 0.8087 54 0.8073 31 0.1000 14

50
0

N
eu

ro
ns

2 0.8170 247 0.8281 264 0.8255 262 0.8158 212

4 0.8138 205 0.8186 156 0.8215 126 0.8157 57

8 0.8100 204 0.8106 113 0.8133 44 0.6642 407

12 0.8065 177 0.8079 118 0.7863 28 0.5768 256

16 0.8092 181 0.7952 109 0.7872 27 0.5890 319

20 0.8070 187 0.8003 91 0.7734 24 0.5843 397

32 0.8112 184 0.8147 111 0.7925 29 0.6397 123

64 0.8087 178 0.8121 109 0.8017 28 0.6458 394

100 0.8072 183 0.8114 101 0.8068 27 0.7257 389

200 0.8110 189 0.8146 112 0.8085 36 0.6410 135

1000 0.8069 189 0.8140 116 0.8070 36 0.6374 395

5000 0.8116 176 0.8093 105 0.8039 33 0.1001 120
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(a) CK+ (b) Oulu-CASIA

Figure 4.2: Classification performances of the student networks in [4] across different

temperatures on the CK+ [5] (left) and Oulu-CASIA [6] (right) datasets.

disgust, fear, happiness etc. In this work, they use an Inception_v3 [67] model, which

has 21.8M parameters, as the teacher network and several custom architecture student

networks having 900K, 232K, 121K and 65K parameters (Medium-size (M), Small-

size (S), X-Small-size (XS), XX-Small-size (XXS) models respectively). They train

student networks with traditional KD. Their results on above datasets are presented in

Figure 4.2. Again, we can say that accuracy shows similar fluctuations to the method

proposed in this thesis when the temperature is selected across a wide range.

4.3.4 Activity Threshold Analysis

In our method, we directly prune neurons which have an activity smaller than 10−6

(see Algorithm 1). We extensively analyzed different activity threshold values. Re-

sults of SN100 model are presented at Table 4.4. We observe that selection of activity

threshold value is not too critical. For different small values, model trained with our

method gives similar accuracy and compression rates. Since L1 regularization for-

ces the weights to be reduced to zero, we can set a small value to activity threshold

parameter. We use 10−6 as activity threshold in our all experiments.
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Figure 4.3: Plot of results presented in Table 4.1
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Table 4.4: SN100 model results for different activity thresholds. Hyper-parameters:

L1 = 1e−4 and α = 0.5

1e−1 1e−4 1e−6 1e−7

T Acc FC1 size Acc FC1 size Acc FC1 size Acc FC1 size

10
0

N
eu

ro
ns

2 0.8203 85 0.8221 84 0.8219 83 0.8219 87

4 0.8125 74 0.8149 76 0.8156 79 0.8200 71

8 0.7969 55 0.8019 58 0.8037 61 0.7935 55

12 0.7952 54 0.7923 61 0.7952 59 0.7967 58

16 0.7939 60 0.7958 54 0.7922 59 0.7939 58

20 0.7924 61 0.7903 55 0.7978 59 0.7903 59

32 0.8014 54 0.8095 57 0.8085 61 0.8048 52

64 0.8080 59 0.8079 62 0.8095 59 0.8031 54

100 0.8038 56 0.8046 61 0.8077 54 0.8084 57

200 0.8105 60 0.8047 60 0.8003 54 0.8055 57

1000 0.8022 62 0.8029 56 0.8171 53 0.8043 58

5000 0.8049 58 0.8084 57 0.8087 54 0.8074 52

Table 4.5: Results for KD based weight killing methodology of models

SN50, SN100, SN500. Hyper-parameters: L1 = 1e−4, α = 0.5 and weight killing th-

reshold = 1e−6,

50 Neurons 100 Neurons 500 Neurons

T Acc Comp. Ratio Acc Comp. Ratio Acc Comp. Ratio

2 0.8141 0.4725 0.8265 0.4843 0.8322 0.5157

4 0.8102 0.4676 0.8150 0.4838 0.8257 0.5123

8 0.8089 0.4660 0.8060 0.4875 0.8220 0.5228

12 0.7918 0.4661 0.8080 0.4989 0.8094 0.5229

16 0.7955 0.4795 0.8017 0.4957 0.8168 0.5191

20 0.8016 0.4826 0.8095 0.5021 0.8168 0.5204

32 0.8112 0.4865 0.8108 0.4933 0.8134 0.5283

64 0.8071 0.4833 0.8134 0.5030 0.8172 0.5217

100 0.8042 0.4904 0.8163 0.5034 0.8290 0.5249

200 0.8142 0.4822 0.8101 0.5072 0.8257 0.5247

1000 0.8127 0.4946 0.8144 0.4968 0.8204 0.5214

5000 0.8177 0.4961 0.8135 0.5027 0.8190 0.5247

Our Method 0.8193 0.0344 0.8219 0.0871 0.8281 0.3966
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Table 4.6: Results for weight killing methodology [1] applied Vanilla models

SN50, SN100, SN500. Hyper-parameters: L1 = 1e−4 and weight killing threshold

= 1e−6,

50 Neurons 100 Neurons 500 Neurons

Acc Comp. Ratio Acc Comp. Ratio Ratio Comp. Ratio

[1] 0.8130 0.4899 0.8100 0.5029 0.8195 0.5156

Our Method 0.8193 0.0344 0.8219 0.0871 0.8281 0.3966

4.4 Comparison with the Literature

As we stated earlier, our work is the first KD based model compression work. In or-

der to assess the performance of our method, we need to compare with other works

in the literature. Although we do our experiments on Cifar-10 dataset, we cannot

directly compare compression performances with them. Since we use customized ne-

ural networks, we have to implement those methods in order to compare with. We

implemented compression method in [1]. In their work, Han et al. first trains the ne-

twork from scratch without any guidance with L1 regularization on the weights and

then prunes weights below a threshold. We present our results for Vanilla SN models

at Table 4.6. It is clearly seen that although the compression ratio of the method in

[1] is appealing, we do better than this work in terms of accuracy on the test set for

all models. And our method outputs compact neural network models at the end. We

have to code extra structures for training and prediction of the model since killed we-

ights are spread all over the model and our output model has different architecture.

However, in our method, we prune the whole neurons and the compact output model

has the same architecture with the initial one.

Moreover, we did some experiments by adding Han et al. ’s method to our KD based

model compression technique. We changed our neuron pruning strategy with pruning

weights below a threshold from the network. We experimented on our SN50, SN100,

SN500 models and results are presented at Table 4.5 We see that pruning based on

weights gives better performances and better compression ratios. For example, for

SN500 model, we get 83% accuracy with a network having just half of the parameters.

We observe similar situations for the other models too. Therefore, our KD based
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compression method can be improved with different pruning methods.

4.5 Statistical Analysis of the Results

We use Welch’s T-test [68] to measure the significance of our method’s results. We

train our KDDP SN100 models with different initial weights 10 times. We set our

hyper-parameters as L1 = 1e−4, α = 0.5. We present our results Table 4.7. The t-test

is used to determine if there is a significant difference between the means of two sets.

In inferential statistics, it is assumed that dependent variable fits a normal distribution.

When a normal distribution exists, the probability of a particular outcome can be cal-

culated. The level of probability, ρ, we are willing to accept is pre-determined, and

ρ < .05 is a commonly used value. A T-score is calculated using Eq.4.5.1. T-score is

compared to a critical value in the T-Table to see whether the results fall within the

acceptable level of probability. Based on this comparison one can determine whet-

her the difference between the means occurred by chance or the sets have intrinsic

differences.

t =
mean1 −mean2√

var12
n1

+ var12
n2

, (4.5.1)

where n is the samples size and var is the variance.

KDDP & Vanilla Analysis:) We start with assuming a null hypothesis that the mean

of the results of the KDDP is equal to the mean of the results of the Vanilla network.

Then, we calculate the T-score of these sets (classification results) using Eq. 4.5.1. We

get a T-score of 9.91 which is greater than the value in the T-table, 1.812 (one-tail,

alpha=.05, degree of freedom=10). Therefore, it is safe to reject the null hypothesis

that there is no difference between the means of results.

KDDP & Vanilla-KD Analysis:) We follow the same computations for comparing

our KDDP with the Vanilla-KD. We get a T-score of 2.9730 which is greater than

the value in the T-table 1.812 (one-tail, alpha=.05, degree of freedom=10). Therefore,

it is again safe to reject the null hypothesis. We conclude that our KDDP model’s

performance has intrinsic differences from Vanilla and Vanilla-KD results, and they
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Table 4.7: Table presents 11 run results of best performing KDDP SN100 models with

hyper-parameters: L1 = 1e−4, α = 0.5. (Model 0 is the model that we use its results

throughout the paper.)

Model Vanilla Acc. Vanilla-KD Acc. KDDP Acc.

0 0.8075 0.8197 0.8219

1 0.8041 0.8156 0.8226

2 0.8089 0.8182 0.8234

3 0.7975 0.8125 0.8166

4 0.8051 0.8172 0.8183

5 0.8101 0.8167 0.8175

6 0.7998 0.8210 0.8221

7 0.8080 0.8193 0.8212

8 0.8033 0.8163 0.8210

9 0.8098 0.8139 0.8152

10 0.7980 0.8169 0.8233

Mean 0.8047 0.8170 0.8203

Var 1.9522e−5 5.6783e−6 7.5033e−6

KDDP & Vanilla T-Score 9.9177

KDDP & Vanilla-KD T-Score 2.9730

are strong and are not by chance.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis, we target image classification using convolutional neural networks.

Our goal is to design an architecture that both includes much fewer parameters than

a large network and can perform comparably. We propose a new method based on

Knowledge Distillation (KD) [2]. We use L1 regularization on the activities of the ne-

urons in a fully-connected layer and remove the inactive neurons. There is no need to

provide the final size of the student model as input; our method determines it automa-

tically. Our method performs better than the KD with much fewer parameters. After

doing an extensive analysis of our method, we can say that we do better than KD.

In our experiments, we extensively analyze the strengths and weaknesses of our pro-

posed method. In our experiments, we show that KD based methods including ours

are highly hyper-parameters dependent. Temperature, T , and distillation weight, α

selection determine the performance of the trained model. We observe that the accu-

racy fluctuates between low and high values for temperature values selected across a

wide range. Moreover, α constrains us to decide to what extent we should rely on the

teacher network’s logits. However, when the hyper-parameters are chosen carefully,

our method works well. It performs better than the baselines.

In conclusion, our method can be used when there is a need for a much smaller ne-

twork that performs comparably. Moreover, considering the benefits such as compa-

rable accuracy with fewer parameters, one should expect that the hyper-parameter

selection is vital for the performance.

Lastly, we are curious about the potential of our algorithm for model size reduction

for other layers such as convolutional layers in CNNs. We want to explore the effects
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of different pruning strategies in more detail. We also want to explore the applicability

of selecting the hyper-parameters dynamically. We consider these as future work.
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