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Head of Department, Computer Engineering

Assist. Prof. Dr. Emre Akbaş
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ABSTRACT

IMPROVED KNOWLEDGE DISTILLATION
WITH DYNAMIC NETWORK PRUNING

Şener, Eren

M.S., Department of Computer Engineering

Supervisor: Assist. Prof. Dr. Emre Akbaş

August 2019, 46 pages

Deploying convolutional neural networks to mobile or embedded devices is often pro-

hibited by limited memory and computational resources. This is particularly prob-

lematic for the most successful networks, which tend to be very large and require

long inference times. In the past, many alternative approaches have been developed

for compressing neural networks based on pruning, regularization, quantization or

distillation. In this thesis, we propose the “Knowledge Distillation with Dynamic

Pruning“ (KDDP), which trains a dynamically pruned compact student network un-

der the guidance of a large teacher network. In KDDP, we train the student network

with supervision from the teacher network, while applying L1 regularization on the

neuron activations in a fully-connected layer. Subsequently, we prune inactive neu-

rons. Our method automatically determines the final size of the student model. We

evaluate the compression rate and accuracy of the resulting networks on image clas-

sification datasets, and compare them to results obtained by Knowledge Distillation

(KD). Compared to KD, our method produces better accuracy and more compact

models.
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ÖZ

D�INAM �IK A �G BUDAMA YÖNTEM �IYLE GEL �IŞT�IR �ILM �IŞ
B�ILG �I DAMITMA

Şener, Eren

Yüksek Lisans, Bilgisayar Mühendisli�gi Bölümü

Tez Yöneticisi: Dr. Ö�gr. Üyesi. Emre Akbaş

A �gustos 2019 , 46 sayfa

Evrişimli sinirsel a�glar�n mobil veya gömülü cihazlara yerleştirilmesi ço�gu zaman s�-

n�rl� bellek ve hesaplama kaynaklar� taraf�ndan k�s�tlan�r. Bu k�s�tlama, özellikle çok

büyük olma e�giliminde olan ve uzun ç�kar�m süreleri gerektiren başar�l� a�glar için

önemli bir sorundur. Geçmişte sinir a�glar�n� s�k�şt�rmak için budama, düzenlileştirme,

nicemleme veya dam�tma temelli birçok alternatif yaklaş�m geliştirilmiştir. Bu tez ça-

l�şmas�nda, büyük bir ö�gretmen a�g�n�n rehberli�ginde küçük bir ö�grenci a�g�n� dinamik

bir şekilde s�k�şt�rarak e�giten “Dinamik Budama ile Bilgi Dam�tma“ (DBBD) yön-

temini öneriyoruz. DBBD'de, ö�grenci a�g�n� ö�gretmen a�g�n�n denetiminde e�gitirken,

tam ba�glant�l� bir katman�n nöron aktivasyonlar�naL1 düzenlileştirmesi uyguluyoruz.

Daha sonra aktif olmayan nöronlar� buduyoruz. Metodumuz, ö�grenci modelinin son

boyutunu kendisi otomatik olarak belirliyor. Ortaya ç�kan a�glar�n görüntü s�n��an-

d�rma veri setleri üzerindeki s�k�şt�rma oran�n� ve do�grulu�gunu inceleyip bunlar� Bilgi

Dam�tma (BD) metodundan elde edilen sonuçlarla karş�laşt�r�yoruz. Yöntemimizi BD

ile karş�laşt�rd��g�m�zda BD'den daha kompakt ve daha iyi do�gruluk derecesine sahip

modeller üretti�gini gözlemliyoruz.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem De�nition

With the rise of general purpose graphical processing units, their increasing compu-

tational power recently enabled the use of neural networks in a wide range of �elds

such as computer vision, speech recognition or machine translation, amongst others.

Human-computer interaction has heavily bene�ted from the success of the applica-

tion of neural networks in these �elds. Similar developments in the mobile phone

industry require the deployment of such applications to mobile or embedded devices.

Although they are very powerful, large neural networks consume high amounts of

energy, storage, and computational resources, which are limited in mobile devices.

Hence, creating small and fast models is crucial.

The central question that motivates the work in this thesis is how much the size limits

of neural networks can be pushed so that one ends up with a compact image classi�ca-

tion model that still works reasonably well. To achieve this, the �rst thing that comes

to mind is making a large network smaller by removing redundant structures (we-

ights, neurons, blocks, etc.). LeCunnet al. proposed one of the pioneering network

compression approaches, the Optimal Brain Damage [7] method, which was follo-

wed by many magnitude-based network pruning methods [8, 9]. These approaches

work by removing weights that are close to zero. To be able to prune more structures

and make the models smaller, regularization can be used to enforce sparsity. Hanet

al. [1] proposed one of the �rst regularization-based model compression methods.

Following this work, some other methods [10, 11, 12, 13] that use regularization on

different structures were also proposed. For convolutional networks, researchers have

1



designed novel convolutional �lters to save parameters which decrease redundancy

[14, 15, 16]. Research on low-rank factorization methods([17, 18, 19]) tries to �nd

informative parameters by using matrix or tensor decomposition. Some other works

[20, 21, 22] try to reduce the number of bits that represent each weight.

Some works aim to train a compact network with the guidance of a “cumbersome”

model. In the Knowledge Distillation (KD) method [2] (see Figure 1.1), there is a

large, cumbersome model called theteacherand a much smaller model called the

student. The student is trained to mimic the softmax values of the teacher via a hyper-

parameter calledtemperature(see Eq. 1.1.1). Typically, neural networks produce pro-

babilities by using a softmax output layer that converts the logits computed for each

class into a probability by comparing with the other logits. In KD, temperature term

helps neural networks to produce soft predictions to train the student network. KD

based methods [23, 24] have good performances on computer vision tasks and have

a big impact on model compression. However, a major disadvantage of KD is having

a �xed size student model during or after training. In this work, we target removing

this disadvantage and having more compact student networks by dynamic pruning

based on neuron activations.

qi =
ezi =T

P
j ezj =T

; (1.1.1)

whereqi denotes the class probability,zi is the logit andT is temperature.

1.2 Proposed Methods and Models

Knowledge Distillation was introduced by Hintonet al. [2] in 2015. The main idea is

to have a cumbersome network called the teacher to supervise the training of a much

smaller network called the student via soft outputs. The aim is to increase the informa-

tion about the target classes by introducing uncertainty into probability distributions.

Since these distributions contain similarity information on different classes, Hinton

et al. further used this similarity information coming from the teacher to correctly

classify a target class intentionally removed from the training set of the student. Af-

ter training, the student correctly classi�ed samples of this class despite never having

2



Figure 1.1: Illustration of the standard Knowledge Distillation method by Hintonet

al. [2]. In KD, student model is trained with multiobjective loss that is composed of

distillation loss and student loss. Former comes from soft labels, and the latter comes

from hard labels. The student model in KD is given as input and its size does not

change during or after training. However, in our method, we prune fully-connected

layers in the student network with dynamic pruning based on neuron activations to

get a compact model.

3



seen in training. Additionally, in order to prevent the teacher's strong predictions to

dominate the similarity information, softmax logits of the teacher are softened using

a hyper-parameter called temperature denoted asT in Eq. 3.2.1. The algorithm of

KD is as follows: �rst, a large teacher network is trained for the task. Then, a much

smaller student network is trained using both one-hot vectors of the true labels and

the softened predictions (Eq. 3.2.2) of the teacher network. Thus, the student model

is trained with multiobjective loss that is composed of distillation loss and student

loss. Former is the cross-entropy loss between soft predictions of the student and soft

predictions of the teacher network. Latter is the cross-entropy loss between true labels

and predictions of the student. (see Figure 1.1)

In this thesis, we propose a dynamic network pruning method based on Knowledge

Distillation. During traditional training of KD, we applyL1 regularization on the acti-

vations of the neurons in a selected fully-connected layer in order to impose sparsity.

Then we directly kill neurons with respect to the magnitude of their activations ob-

served in the training set without making any assumption on the weights with respect

to their numerical values. To the best of our knowledge, our compression technique

is the �rst method that combines KD and regularization in this way. We name our

method as Knowledge Disttilltion with Dynamic Pruning, or KDDP for short. Since

our method can only prune fully-connected layers (and not convolutional layers), its

typical targets are Multilayer Perceptrons (MLP) or CNNs with large fully-connected

(fc ) layers.

In this work, we extensively analyze both KD and our proposed method. On Cifar-

10 dataset, we train standard KD networks, vanilla networks which are trained from

scratch without any teacher guidance and our KDDP models. After training these

models, we can conclude that our method performs better than the baselines (KD

and Vanilla networks). Furthermore, we �nd that setting hyper-parameters is crucial

for KD based methods. Temperature,T, distillation weight,� , andL1 regularization

penalty should be tuned to �nd a good balance between the model size and the clas-

si�cation performance. In summary, when the hyper-parameters are chosen carefully,

our method works well.

4



1.3 Contributions and Novelties

Our contributions are as follows:

� We propose a new dynamic compression method based on KD. It dynamically

prunes inactive neurons in selected fully-connected layers from the network.

Our method does not require the �nal size of the compressed model as input; it

is determined dynamically.

� We experimentally analyze our method and compare against KD. We make ex-

tensive experiments on our hyper-parameters to �nd meaningful relations with

the accuracy of the compressed model.

� We test our method on the Cifar-10 dataset. We get better accuracies than the

KD method with much fewer parameters.

1.4 The Outline of the Thesis

We �rst summarize the neural network model compression literature in Chapter 2. We

describe our proposed method and its implementation details in Chapter 3. Then, we

analyze the effectiveness of our approach with experiments performed on the Cifar-10

dataset in Chapter 4, and �nally conclude in Chapter 5.
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CHAPTER 2

RELATED WORK AND BACKGROUND

In this chapter, we review the literature on model compression in deep neural net-

works. We split these works into 5 categories (see Table 2.1). We give more detailed

information about the parameter pruning and sharing due to its direct relation to our

method.

2.1 Parameter Pruning and Sharing

Parameter pruning attracted many researchers since the early development of neural

networks due to its effectiveness on reducing model complexity and over-�tting. It is

also shown that pruning redundant parameters from the network improves generali-

zation, which is an important side-effect.

Early works to prune parameters are Optimal Brain Damage [7] (OBD) and Opti-

mal Brain Surgeon [8]. In their work, the authors remove redundant paramaters after

sorting them by their saliencies. Saliency is measured based on the Hessian of the

objective function with respect to parameters. Recently, Srinivas and Babu [9] also

showed how similar neurons, which have similar weight sets, are redundant. Since

Hessian computation is heavy, they propose a more systematic way than OBD and

data-free method to remove them.

Most of the following works to above use sparsity constraints (L0, L1-norm, etc.) in

the optimization problems to obtain redundancy. Researchers use these constraints

on different elements (e.g. weights, blocks, etc.). Hanet al. [1] are one of the �rst

to propose a regularization-based method on model compression. They applyL2 re-

7



Table 2.1: Summary of the approaches in model compression literature.

Description Application on Training Strategy

Parameter Pruning

and Sharing

Find redundant structures

in models and prune them

Convolutional and

fully connected layers

From scratch or

pre-trained model

Knowledge

Distillation

Train a compact network with the

guidance of a cumbersome network

Convolutional and

fully connected layers
Only from scratch

Low-rank

Factorization

Find informative parameters by

using matrix/tensor decomposition

Convolutional and

fully connected layers

From scratch or

pre-trained model

Compact

Convolutional Filters

Design new convolutional �lters

to save parameters
Convolutional layers Only from scratch

Quantization and

Binarization

Try to reduce the number of bits

required to represent each weight

Convolutional and

fully connected layers

From scratch or

pre-trained model

gularization during the training phase in order to have near zero-valued parameters.

Then they prune all low-weight connections from the network. The deep compression

method [21] uses the same procedure as Hanet al. [1] for removing redundant con-

nections. The authors also add quantization and Huffman coding on top of the pruned

network to have a more compact one.

Recently, redundancy in convolutional networks also has been explored. Lebedev and

Lempitsky [25] apply the idea of Optimal Brain Damage[7] to convolutional �lters.

They remove entries ofL2;1-norm regularization applied convolution �lters, which

are below a threshold, in a group-wise fashion. Similarly, work by Zhouet al. [10]

enforce low-rank constraints on tensors andL2;1-norm regularization on the objec-

tive function during the training stage to achieve compact CNNs with reduced ne-

urons. Another study which usesL2;1-norm is Wenet al. [11]'s work. They apply

regularization to big baseline models to learn more compact CNNs. With their struc-

tured sparsity method, they regularize �lters, channels, �lter shapes and layer depth

of CNNs. Huang and Wang [26] improve the method of Wenet al. [11] and propose

a more general end-to-end method for network pruning. Their method contains a fac-

tor to scale the outputs of some speci�c structures (neurons, groups or blocks). They

apply L1-norm sparsity regularization to the scaling factors. Structures having sca-

ling factors below a threshold are removed from the network while training. Unlike

the previous works, Ullrichet al. [27] base their regularization on the soft weight-

sharing method [28]. They compress weights of the pre-trained model into clusters

8



by �tting mixtures of Gaussian models. After retraining the model with new weights

concentrated on the cluster means, they obtain a layer-wise-pruned compact network.

There are also methods which focus on sparsity in batch-normalization (BN) layers.

Liu et al. [12] add a scaling factor after BN layers.L1 regularization is imposed on

these scaling factors during training to automatically identify redundant �lters. Then,

they prune channels with near-zero scaling factors. Another recent study [29] uses the

method proposed by Beck and Teboulle [30] to enforce sparsity on the -parameter in

BN operator. During training, this method makes some values zero and helps these

channels to block sample-wise (for each sample in the training set) information �ow.

After the training is completed, they remove these constant-valued channels from the

original network. The study MorphNet [13] uses a combination of three ideas above:

�rst, an L1-norm-based regularization of the neurons, second, the idea of multipliers

of Howardet al. [31] for reducing the �oating point operations and model size, and

third, the paradigm introduced by Hanet al. [1] for retraining of the pruned network.

There has also been some research for measuring the redundancy in the networks.

Guo et al. [32] present a feedback mechanism named splicing which re-establishes

mistakenly removed parameters after the pruning operation. With this work, they

show that measuring the redundancy of the parameters is an extremely dif�cult task.

Researchers use different techniques for measuring redundancy. In [33]L1-norm of

kernels are calculated. After sorting kernels by theirL1-norm values, small valued

kernels and corresponding feature maps were pruned. ThiNet [34] does �lter-level

pruning based on �lter statistics computed from the following layer, not the current

layer. In spite of their success, the compression rate of the �lters had to be prede�ned,

which is another dif�cult problem for pruning methods. Moreover, Heet al.[35] exp-

loit feature maps for redundancy. The authors select the most representative channels

of the feature maps and prune the redundant ones. After pruning, in order not to da-

mage accuracy, they reconstruct the outputs with the remaining channels using linear

least squares.

Recently, several methods proposed to measure the importance of structures. Yuet al.

[36] propose that layer-by-layer network pruning leads to signi�cant reconstruction

error propagation. They introduce a global neuron importance measuring algorithm

9



which uses information at the Final Response Layer (FRL, the second-to-last layer

before classi�cation). The algorithm obtains the importance of all neurons in the ne-

twork with a single backward pass after a feature ranking operation on the FRL.

Subsequently, the trimming of the whole network is performed considering the pru-

ning ratio per layer as a pre-de�ned hyper-parameter. Prakashet al. [37] propose a

novel inter-�lter orthogonality metric for ranking �lter importance and a new training

strategy. Their method consists of temporarily dropping (some) of the least important

convolutional �lters (ranked by their metric), and reintroducing dropped �lters with

new weights. They repeat this process cyclically. With this strategy, they improve

generalization and reduced overlap of learned features. Unlike the traditional deter-

ministic methods, Wanget al. [38] approach pruning weights of convolutional layers

in a probabilistic manner. They specify a pruning probability for each weight group.

At each iteration, these probabilities are updated with theL1 norm as an importance

criterion of each weight group. The pruning is guided by sampling from the pruning

probabilities. Heet al. [39] use a novel pruning method instead of norm-based pru-

ning approaches. They calculate the geometric median [40] of the �lters within the

same layer, and prune the �lter(s) near to the geometric median. In addition to above

works, Donget al. [41] improve the idea in previous works [7, 8]. Their pruning

method is based on second order derivatives of a layer-wise error function.

There are also some recent and novel compression techniques used for pruning. In

SplitNet[42], the goal is to �nd a tree-structured network that contains a set or a hi-

erarchy of subnetworks, where the leaf-level subnetworks are associated with a spe-

ci�c group of classes. Since each group uses a subset of features that are comple-

tely disjoint from the ones used by other groups, the splitting algorithm prunes out

inter-group connections while optimizing the cross entropy loss and the group regu-

larization. At the end, the weight matrix can be explicitly split into block diagonal

matrices to reduce the number of parameters. Similarly, Yanget al. [43] approach the

network compression from energy consumption of the network. They sort layers by

their energy consumption, and pruned weights, which have small magnitudes, of the

layers that consume the most energy �rst. A very recent work, similar to the work of

Liu et al. [12], Zhaoet al. [44] modify the BN layer and add a new parameter called

channel saliency to the BN layer. They try to �nd approximate gamma distributions
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over these channel saliency parameters. They then remove redundant channels with

mean and variance of their gamma distributions less than prede�ned thresholds.

2.2 Knowledge Distillation

Knowledge Distillation is a simple way to have compact deep learning models. In this

method, we train a large and cumbersome (teacher) network or an ensemble model

which can extract important features from the data and can produce better predictions.

Then, we train a small (student) network with the guidance of the cumbersome model.

This small network will be able to produce comparable results with its teacher, in

some cases.

In 2006, Caruanaet al. [45] approach the idea of knowledge transfer from a different

point of view. Instead of training a neural network on an original small set, they use an

ensemble of base-level classi�ers to label a large unlabeled dataset and then train the

network on this much larger dataset. Ba and Caruana[46] propose using anL2 loss on

the logits to mimic the teacher network. Hintonet al. [2] show that a student network

could imitate the soft output of a larger teacher network or ensemble of networks. In

other words, the student model can be trained with the distilled knowledge obtained

from the teacher network.

FitNetset al. [23] are rooted in the knowledge distillation method proposed by Hinton

et al. [2] to produce deep and thin student networks with comparable or better per-

formance than the teacher. They achieve this by training some layers of the student

beforehand with the teacher's supervision for better initialization. Luoet al. [24],

show that instead of using soft targets in the output layer, the knowledge of the te-

acher can be obtained from the top hidden layer. They useL2 loss while mimicking

the teacher's feature space. Yimet al. [47] distill knowledge from the teacher by ge-

nerating a matrix from feature maps at each layer. Then, they transfer the knowledge

from teacher to student, which has the same depth as the teacher, by applyingL2 loss

to these matrices.

Different from the standard classi�cation tasks, Chenet al. [48] introduce a no-

vel end-to-end trainable framework for multi-class object detection problem through
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knowledge distillation. They propose three ideas: a weighted cross-entropy loss to

prevent the impact of background domination during classi�cation, a teacher boun-

ded regression loss for knowledge distillation to avoid the damage that may arise from

contradiction bounding-box regression outputs of the teacher with the ground truth,

and adaptation layers for hint learning which is proposed by Romeroet al. [23].

2.3 Low-rank Factorization

Low-rank factorization methods aim at �nding informative parameters by using mat-

rix/tensor decomposition. Dentonet al. [17] exploit redundancy present in convo-

lutional �lters by deriving approximations to reduce the required computation. They

apply several decomposition methods based on SVD to compress weight matrices. Yu

et al. [49] propose a uni�ed deep compression framework that decomposes weight

matrices into their low-rank and sparse components. They show that their method

helps the models to achieve higher compression rates than models using SVD. Re-

cently, Minnehan and Savakis [19] present a data-driven approach that compresses

both the present layer and inputs of the next layer by projecting them to the same low

dimensional space based on a low-rank projection. In another recent work, Kimet al.

[18] propose novel accuracy metrics to describe the relationship between the accuracy

and complexity of a network. They use these metrics to �nd the right rank con�gu-

ration of the whole network which satis�es the compression constraints. Since they

obtain this con�guration in a non-iterative and fast way, they move ahead of SVD-

based network compression methods which decide the right rank for every layer of

the network separately.

2.4 Compact Convolutional Filters

Designing new convolutional �lters and training models with compact �lters is anot-

her way of model compression. Jinet al. [14] create CNNs with 1D �lters which are

constructed from 3D convolutional �lters. They show that they can do such substitu-

tion without a loss in accuracy and the new CNN provides two times speed-up during

feed-forward pass when it is compared to the baseline model. Fire modules are intro-
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duced in SqueezeNet [15]. This module is composed of a squeeze convolution layer,

which has only1 � 1 �lters, and an expand layer that has a mix of1 � 1 and3 � 3

�lters. With this module, they presented a CNN architecture that has 50x fewer pa-

rameters than AlexNet[50] and maintains AlexNet-level accuracy on ImageNet [51].

Recently, Liet al. [16] proposed a factorized convolutional �lter which consists of

a standard convolution �lter and a binary scalar, together with a dot-product operator

between them. After training CNN models with these convolutions, they only keep

�lters corresponding to the 1-valued scalars to obtain a compact model.

2.5 Quantization and Binarization

Works related to quantization and binarization try to reduce the number of bits requ-

ired to represent each weight. In BinaryConnect [20] proposes a method for training

a DNN with binary weights (f +1; � 1g) during the forward and backward propaga-

tions. This gives a great advantage to specialized deep learning hardware because

many multiply-accumulate operations are replaced with simple accumulations. Hu-

baraet al. [22] proposes a method based on this idea in which they train Binarized

Neural Networks - neural networks with binary weights and activations at run-time.

Zhouet al. [52] presents a method where they convert the weights of a pre-trained

full-precision CNN model into a low-precision one with weights which are constra-

ined to be powers of two or zero. In a recent work, Sonet al. [53] proposes a novel

and more structured quantization method. They cluster3 � 3 kernels and replace re-

dundant ones with their centroids. The �nal compressed model is represented with a

set of centroids and a corresponding cluster index per each kernel.
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CHAPTER 3

METHOD

In this thesis, we target image classi�cation using convolutional neural networks. We

assume an input set of images, each annotated with a class label. Our goal is to design

an architecture that both includes much fewer parameters than a large network and

can perform comparably.

In this chapter, we present our model architecture and implementation details of our

method.

3.1 Knowledge Distillation

The key challenge in the design of our model is the way of decreasing the number

of parameters in a convolutional neural network while maintaining accuracy as high

as possible. In the Knowledge Distillation (KD) [2] method, the aim is to distill the

knowledge from a teacher network to a student network. The teacher network is much

larger than the student network in methods using KD. As large and deep models

have more capacity than smaller networks, they can extract more features of higher

complexity, and therefore perform better. The motivation is to train the small network

with the help of the large network. If the model used as a teacher generalizes well,

the student model can be trained to generalize in the same way with KD methods.

In our work, we use two convolutional neural networks. Our teacher network is deep

and large, and our student network is shallow and small. With this choice, our goal

is to show that it is possible to transfer knowledge from the large teacher to a much

smaller student network, which is then pruned to an even more compact network.
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3.1.1 Teacher Network

After AlexNet[50] won the ILSVRC[54] image classi�cation challenge in 2012 by

a large margin, creating models with deep layers has gained a lot of attention. First,

VGG[55] explored the capabilities of a network with 19 layers and became the state

of the art by winning the ILSVRC challenge in 2013. The year after GoogLeNet[56]

won the challenge with a network of 22 layers. Finally, Resnet[3] achieved the top

performance with 34, 101 and 152 layered very deep architectures.

Although it sounds trivial to continuously increase the depth of a network for better

performance, it poses a very important problem: increasing the depth of the network

comes at the price of vanishing gradients. In ResNet, the authors successfully solved

this problem by adding identity-mappings to their network.

ResNet and its variants proved their success on many computer vision tasks. As the

core visual processing module, we use a ResNet variant for our teacher model due to

its state-of-the-art performance on the ImageNet challenge. We use ResNet-56 which

has 6.97% error rate on Cifar-10 and 850k parameters, which is suf�cient for us to

use it as the teacher.

3.1.2 Student Network

We choose our student network to have a very simple architecture in order to ef�ci-

ently analyze the performance of our method.

Our student network architecture starts with an input layer for32 � 32 � 3 sized

images. It is followed by a convolutional layer with a kernel size of7� 7 with a stride

of 1, with 64 convolution �lters. This result in an output of size16 � 16 � 64. The

convolutional layer is followed by a Batch Normalization (BN) layer and a non-linear

activation function, ReLU [57]. We later use a max-pooling layer which has a window

size of3 � 3 with stride2 that produces an output of size7 � 7 � 64. This layer is

followed by an identity-block of the ResNet architecture [3]. ResNet's identity block

is composed of 3 convolutional layers, each followed by a BN and a ReLU layer. The

�rst and third convolutional layers have a kernel size of1 � 1, and the middle layer
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Figure 3.1: Student Network overview. The network takes an image and outputs a

class label. It is composed of an input layer followed by a convolutional layer, max

pooling, an identity-block of ResNet[3], average pooling, two fully connected layers,

and a softmax layer. ResNet's identity block is highlighted with the yellow rectangle.

This layer is composed of three convolutional layers and a skip connection which

adds the input of the identity block and the output of the last convolutional layer in

the identity block. (Best viewed in color.)
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has a kernel size of3 � 3. The stride of all convolutions of the identity blocks is1

and the number of �lters used in each layer is 64. Before the ReLU layer of the last

convolutional layer inside the residual block, there is a skip connection that allows

the �ow of information from the initial layers to the last layers by adding the input of

the identity block and the output of the ReLU layer. The identity-block is followed by

an average pooling layer which outputs a3� 3� 64-dimensional tensor. This layer is

followed by a fully-connected layer,fc1 , and a ReLU layer. Finally, the ReLU layer

is followed by another fully connected layer,fc2 , as a bridge to a softmax layer at

the end.

In our experiments, we use three different networks with different neuron counts in

the �rst fully-connected layer,fc1 . We use 50, 100 and 500 neurons for this layer to

explore the effect of the increasing number of neurons. We set the number of neurons

in the second fully-connected layer,fc2 , to the number of classes in the classi�cation

task at hand. In Figure 3.1, we present the architecture of our student network visually.

3.2 Method

Knowledge Distillation [2] successfully showed a way of transferring the generali-

zations of a complex model to a much lighter model. Letpt be the softened output

of the teacher network's softmax layer andzi be the logits of the teacher network.

Furthermore, letp0
s be the hard andps be the soft output of the student network's

softmax layer andvi be the logits of the student network. Knowledge Distillation is

parameterized by weight� and temperatureT. pt , ps andp0
s are de�ned as follows:

pt =
ezi =T

P
j ezj =T

; ps =
evi =T

P
j evj =T

; p0
s =

evi

P
j evj

; (3.2.1)

The objective function is composed of a weighted average of two loss functions and

is computed as follows, givenN training images with ground truth labelsyn :

L = �

 
1
N

NX

n=1

H(pt ; ps)

!

+ (1 � � )

 
1
N

NX

n=1

H(yn ; p0
s)

!

: (3.2.2)
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The �rst term is the cross-entropyH with the soft targets. It helps the student network

to mimic the teacher's softened outputs. This term is the building block of KD. The

temperatureT in here is used for selecting a suitable set of soft targets from the logits

of the teacher. During training of the student network, it tries to match these soft

targets. The second term is the cross-entropy with the correct labels. The weight�

sets the contribution of these two objective functions, i.e. the weight of distillation.

We experimentally analyze these two hyper-parameters in Chapter 4.

We build our model on the KD [2] method. To decrease the number of neurons further

and explore our limits we apply regularization and pruning methods to our model. We

call our model “Knowledge Distillation with Dynamic Pruning”, or KDDP for short,

as our pruning process changes the number of neurons at the end.

Typically, fully-connected layers contain most of the parameters in a convolutional

neural network (except the fully-convolutional networks [58, 59, 60]). Our proposed

method reduces the number of parameters in thefc -layers of a network by removing

neurons based on their average activations observed on the training set. We useL1

regularization to induce sparsity on the activations of thefc -layers.

In our method, we train our student networks with Eq. 3.2.2 and applyL1 regulariza-

tion to the fully connected layer with the higher amount of neurons, thefc1 layer in

our case (see Table 3.1). Then, for each neuron atfc1 , we calculate the activation of

the neuron for all samples in the training set. We take the average of the activations.

If the activation of the neuron is below10� 6, we kill that neuron and delete the cor-

responding weight set infc2 . After testing all neurons atfc1 , we retrain the pruned

network with Eq.3.2.2 and withoutL1 regularization onfc1 .

KDDP, Student Network (SN): We present the pseudo-code of our method in Algo-

rithm 1. At the �rst stage, the network is trained with Eq. 3.2.2 and anL1 regulariza-

tion penalty on the dynamicfc1 layer. After neurons are pruned from thefc1 layer,

the network is trained with Eq. 3.2.2 and without penalty.
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Table 3.1: Student networks differ only in the number of neurons in thefc1 layer.

Percentages in parenthesis indicate the ratio of the parameters infc1 to the total

number of parameters.

Model
# of neurons

in fc1

# of

parameters atfc1

total # of

parameters

SN50 50 29k (34%) 85k

SN100 100 58k (50%) 114k

SN500 500 289k (83%) 349k

Algorithm 1 Dynamic Model Size Reduction

1: Train KDDP model withL1 reg. onfc1 using Eq.3.2.2

2: Inputs: N training samples(x j ; yj )

3: for each neuronni in fc1 do

4: // calculate the avg. activation

5: oi = 1
N

P N
j =1 ReLu(wi � x j + bi )

6: if oi � 10� 6 then

7: // prune low activity neurons

8: Kill the neuronni and delete the correspondingwi in fc2

9: end if

10: end for

11: Train KDDP model withoutL1 reg. onfc1 using Eq. 3.2.2
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3.2.1 Baseline methods

We compare our method with the following models.

� Vanilla SN: We train the student network from scratch without any teacher

guidance and regularization penalty. We use this model to �nd out the baseline

performance of our student networks.

� Vanilla-KD SN: We train student network with Knowledge Distillation [2] at

different temperature values (T) but without regularization penalty.

3.3 Implementation Details

Teacher Network (TN): We train a ResNet-56 model from scratch. The base learning

rate is set as10� 4 and remained constant through iterations, mini-batch size is 64, and

the optimization algorithm is Adam [61].

Student Networks (SN):We use the same hyper-parameters while training all stu-

dent models. All models are trained from scratch. Weights and biases are initialized

with Xavier's initialization [62]. Network architectures are implemented via the Ke-

ras framework [63]. Adam [61] is used for training. The learning rate is set to10� 4,

and the mini-batch size is 64. AnL1 regularization penalty is applied onfc1 during

the training of the KDDP student networks. The training is stopped early if there is

no improvement in the accuracy on the validation set for 50 epochs.

21



22




	ABSTRACT
	ÖZ
	ACKNOWLEDGMENTS
	TABLE OF CONTENTS
	LIST OF TABLES
	LIST OF FIGURES
	LIST OF ABBREVIATIONS
	introduction
	Motivation and Problem Definition
	Proposed Methods and Models
	Contributions and Novelties
	The Outline of the Thesis

	related work and background
	Parameter Pruning and Sharing
	Knowledge Distillation
	Low-rank Factorization
	Compact Convolutional Filters
	Quantization and Binarization

	Method
	Knowledge Distillation
	Teacher Network
	Student Network

	Method
	Baseline methods

	Implementation Details

	Experiments
	Dataset
	Analysis of Proposed Method 
	Hyper-parameter Analysis
	L1 Regularization Penalty Analysis
	 Analysis
	T Analysis
	Activity Threshold Analysis

	Comparison with the Literature
	Statistical Analysis of the Results

	Conclusion and Future Work
	REFERENCES

