

A DEEP REINFORCEMENT LEARNING APPROACH TO NETWORK

INTRUSION DETECTION

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

 HALİM GÖRKEM GÜLMEZ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

COMPUTER ENGINEERING

SEPTEMBER 2019

Approval of the thesis:

A DEEP REINFORCEMENT LEARNING APPROACH TO NETWORK

INTRUSION DETECTION

submitted by HALİM GÖRKEM GÜLMEZ in partial fulfillment of the

requirements for the degree of Master of Science in Computer Engineering

Department, Middle East Technical University by,

Prof. Dr. Halil Kalıpçılar

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün

Head of Department, Computer Engineering

Assist. Prof. Dr. Pelin Angın

Supervisor, Computer Engineering, METU

Examining Committee Members:

Prof. Dr. Sevgi Özkan Yıldırım

Graduate School of Informatics, METU

Assist. Prof. Dr. Pelin Angın

Computer Engineering, METU

Assoc. Prof. Dr. Ahmet Burak Can

Computer Engineering, Hacettepe University

Date: 03.09.2019

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name, Surname:

Signature:

 Halim Görkem Gülmez

v

ABSTRACT

A DEEP REINFORCEMENT LEARNING APPROACH TO NETWORK

INTRUSION DETECTION

Gülmez, Halim Görkem

Master of Science, Computer Engineering

Supervisor: Assist. Prof. Dr. Pelin Angın

September 2019, 64 pages

Intrusion detection is one of the most important problems in today’s world. Every day

new attacks are being used in order to breach the security of systems and signature-

based security systems fail to detect these zero-day attacks. An anomaly-based

intrusion detection system, particularly one that utilizes a machine learning approach,

is needed to effectively handle these kinds of attacks. With the advancements in big

data technologies, storing and handling data became easier, therefore big data

analytics has become an indispensable tool for various tasks. In this thesis, we propose

a framework for detecting intrusions in network systems using big data analytics in

real time. The framework is built on Apache Spark, which runs anomaly detection

algorithms on streaming data after it has been trained offline with the normal behavior

of the system. Two different machine learning solutions have been implemented

separately for comparison: long short-term memory recurrent neural networks and

deep reinforcement learning. Reinforcement learning is built on state and action pairs

with associated positive or negative awards. For the solution in this thesis, alerts on

attacks and non-alerts on normal behavior are positively rewarded to train learning

agents. Reinforcement learning is combined and improved with neural networks by

using them for Q-learning. A variety of intrusion detection datasets from the literature

are used for experimentation, including NSL-KDD, UNSW-NB15 and CICIDS2017.

vi

The deep reinforcement learning solution is emphasized as the better solution based

on the experiment results.

Keywords: Cybersecurity, Long Short-term Memory Recurrent Neural Networks,

Deep Reinforcement Learning, Big Data, Cloud Systems

vii

ÖZ

AĞ SALDIRI TESPİTİNDE DERİN PEKİŞTİRMELİ ÖĞRENME

YAKLAŞIMI

Gülmez, Halim Görkem

Yüksek Lisans, Bilgisayar Mühendisliği

Tez Danışmanı: Doç. Dr. Pelin Angın

Eylül 2019, 64 sayfa

Ağ saldırıların tespiti günümüzdeki en önemli problemlerden biridir. Her gün yeni

ataklar güvenlik sistemlerini delme amacıyla kullanılmaktadır. İmza tabanlı güvenlik

sistemleri bu sıfır-gün ataklarını tespit etmekte başarısız olmaktadır. Anomali tabanlı

bir sistem, özellik bir makine öğrenmesi yaklaşımından faydalanan bir sistem, bu tarz

atakların tespitinde gereklidir. Bu tez ağ sistemlerinin güvenliğinin büyük veri

analitiklerinin gerçek zamanlı kullanılmasıyla sağlanması üzerinedir. Büyük veri

teknolojilerindeki gelişmeler, verinin saklanmasını ve işlenmesini kolaylaştırmıştır,

bu nedenle büyük veri analitikleri birçok amaç için kullanılabilecek bir kaynak haline

gelmiştir. Bu tezde önerilen sistem akan büyük veri kullanarak çalışacaktır. Kullanılan

veri, ağ hakkında güvenlik açısından önemli bilgileri içermektedir. Apache Spark,

verinin işlenmesinde araç olarak kullanılacaktır. Büyük veri işlendikten sonra

çözümün kendini eğiten ve anomalileri yakalayan makine öğrenmesi kısmına

aktarılacaktır. Uzun kısa-dönem hafızalı yinelemeli sinir ağları ve derin pekiştirmeli

öğrenme gibi farklı makine öğrenmesi çözümleri karşılaştırma amacıyla

kullanılmıştır. Pekiştirmeli öğrenme durum ve aksiyon ikilerinin pozitif ya da negatif

ödüllendirilmesi üzerine kurulmuştur. Bu tezde önerilen çözümde, anomali olduğunda

uyarı yapılması ya da normal durumlarda uyarı yapılmaması pozitif olarak

ödüllendirilmiştir. Pekiştirmeli öğrenme, Q-learning’de kullanılmak üzere sinir ağları

ile birleştirilmiş ve geliştirilmiştir. NSL-KDD, UNSW-NB15, CICIDS2017 gibi farklı

veri kümeleriyle deneyler yapılmıştır. Farklı senaryolarla birlikte en iyi çözüm

bulunmaya çalışılmış, detaylıca çözümler test edilmiştir. Deneyler sonucunda, derin

pekiştirmeli öğrenme çözümünün diğer çözüme kıyasla daha iyi sonuç verdiği

vurgulanmıştır.

viii

Anahtar Kelimeler: Sibergüvenlik, Uzun Kısa-Dönem Hafızalı Özyinelemeli Sinir

Ağları, Derin Pekiştirimeli Öğrenme, Büyük Veri, Bulut Sistemler

ix

For my dearest wife Çağda Gizem, and for the best advisor ever existed Pelin Angın.

x

ACKNOWLEDGEMENTS

First, I would like to thank my advisor, Assist. Prof. Dr. Pelin Angın, without whom

this thesis would not happen. Her ideas and perspective always carried me forward. It

was a great pleasure working with her.

I also would like to thank my family, because of their constant support not only

throughout writing this thesis, but also in my life in general. They have motivated me

all the time to accomplish my goals.

Finally, I would like to thank all my colleagues in TechNarts, taking some of the

responsibilities off my shoulders when needed.

xi

TABLE OF CONTENTS

ABSTRACT ... v

ÖZ ... vii

ACKNOWLEDGEMENTS ... x

TABLE OF CONTENTS ... xi

LIST OF TABLES ... xiii

LIST OF FIGURES ... xiv

LIST OF ABBREVIATIONS .. xvi

1. INTRODUCTION .. 1

1.1. Rise of the Big Data .. 1

1.2. Increasing Popularity of Cloud Computing ... 3

1.3. Importance of Detecting Attacks in Real-time .. 4

1.4. Outline ... 5

2. BACKGROUND AND RELATED WORK .. 7

2.1. Intrusion Detection in Cloud Networks ... 7

2.2. Big Data Approaches for IDS ... 8

2.3. Machine Learning Solutions for Intrusion Detection 10

2.4. Deep Reinforcement Learning Solutions in Different Fields 13

3. PROPOSED APPROACH .. 15

3.1. Overview ... 15

3.2. Metric Collection ... 15

3.3. Metric Processing .. 16

3.4. RNN-based Learning for Intrusion Detection ... 19

xii

3.5. Deep Reinforcement Learning Based Intrusion Detection 24

4. EVALUATION .. 31

4.1. Evaluation Metrics .. 31

4.2. Experiments with LSTM-RNN ... 32

4.2.1. Using UNSW-NB15 Dataset .. 32

4.2.2. Using KDD Dataset .. 36

4.2.3. Using NSL-KDD Dataset ... 39

4.2.4. Using CICIDS2017 Dataset ... 40

4.3. Experiments with Deep Reinforcement Learning ... 47

4.3.1. Using NSL-KDD Dataset ... 47

4.3.2. Using UNSW-NB15 Dataset .. 51

4.4. Comparison with Other Solutions ... 53

5. CONCLUSION .. 55

REFERENCES .. 57

A. COMPARISON OF STREAMING DATA FRAMEWORKS 63

xiii

LIST OF TABLES

TABLES

Table 3.1. Process Time Measurements in Streaming Data Simulation 18

Table 3.2. State, Action and Reward Table for RL .. 26

Table 3.3. Deep Q-learning Algorithm .. 26

Table 4.1. Evaluation Metrics, Powers (2011) ... 31

Table 4.2. UNSW-NB15 Features ... 34

Table 4.3. KDD Dataset Features .. 36

Table 4.4. Eleven Important Criteria for IDS Datasets (Sharafaldin, 2018) 41

Table 4.5. Dataset details of CICIDS2017 ... 42

Table 4.6. Comparison of different intrusion detection systems 53

xiv

LIST OF FIGURES

FIGURES

Figure 1.1. Rising Popularity of Big Data (Google Trends, 2019) 2

Figure 3.1. An RNN Loop ... 20

Figure 3.2. An Unrolled RNN Loop .. 20

Figure 3.3. Disconnected dependencies in RNN ... 22

Figure 3.4. Single layered structure of standard RNN ... 22

Figure 3.5. Four layered structure of LSTM-RNN .. 22

Figure 3.6. Activity Chart for DRL Algorithm .. 29

Figure 4.1. End-to-end Working of the LSTM-RNN Solution 32

Figure 4.2. Accuracy vs Sample Size for LSTM-RNN with UNSW-NB15 34

Figure 4.3. Performance results for LSTM-RNN using KDD 38

Figure 4.4. Performance results using full train dataset with different test datasets of

NSL-KDD for LSTM-RNN ... 39

Figure 4.5. Performance results using %20 train dataset with different test datasets of

NSL-KDD for LSTM-RNN ... 40

Figure 4.6. Performance results for Tuesday Dataset of CICIDS2017 43

Figure 4.7. Performance results for Wednesday Dataset of CICIDS2017 44

Figure 4.8. Performance results for Thursday Morning Dataset of CICIDS2017 44

Figure 4.9. Performance results for Friday Morning Dataset of CICIDS2017 45

Figure 4.10. Performance results for Friday Afternoon PortScan Dataset of

CICIDS2017 .. 46

Figure 4.11. Performance results for Friday Afternoon DDoS Dataset of CICIDS2017

 ... 46

Figure 4.12. Performance results of the Whole Dataset (CICIDS2017) 47

Figure 4.13. Precision, Recall and Accuracy values related to iterations in DRL

solution using NSL-KDD .. 48

xv

Figure 4.14. Number of Hidden Neurons Experiment I (Using NSL-KDD) 49

Figure 4.15. Number of Hidden Neurons Experiment II (Using NSL-KDD) 49

Figure 4.16. Number of Hidden Neurons Experiment III (Using NSL-KDD) 50

Figure 4.17. Number of Hidden Neurons Experiment IV (Using NSL-KDD) 50

Figure 4.18. Number of Hidden Neurons Experiment V (Using NSL-KDD) 51

Figure 4.19. Performance results of default test data set of UNSW-NB15 using DRL

 .. 52

Figure 4.20. Performance results of manually picked test data set of UNSW-NB15

using DRL .. 53

Figure A.1. Comparison of Streaming Data Frameworks.. 63

xvi

LIST OF ABBREVIATIONS

API Application Programming Interface

AWS Amazon Web Services

DRL Deep Reinforcement Learning

IDS Intrusion Detection System

KDD Knowledge Discovery and Data Mining

LSTM RNN Long Short-term Memory Recurrent Neural Networks

UNSW ADFA The University of New South Wales Canberra at Australian

 Defence Force Academy

VM Virtual Machine

xvii

1

CHAPTER 1

1. INTRODUCTION

1.1. Rise of the Big Data

Big data has become a popular concept with the technological advances in the past

decade. Before then, it was extremely costly to store the data because acquiring the

needed disk space was not as easy as today. Cloud systems were expensive and not

common, therefore, to store data, companies needed to have their own storage facilities

which required time, space and money, much more than compared with today. Today,

we have unlimited storage, especially provided by cloud services, at our disposal. With

the competition between service providers, the prices of these services are decreasing,

whereas the quality of the services are rising. Moreover, many different frameworks

and tools exist to handle different types of big data. All these advancements have

recently made big data one of the most popular concepts in computer science, which

can be seen in the figure below (Google Trends, 2019).

2

Figure 1.1. Rising Popularity of Big Data (Google Trends, 2019)

The ability to store and process data in large volumes and velocity provides significant

benefits for analyzing network data in real time to detect anomalies that could signal

presence of attacks on the system. In this thesis, a big data analytics approach is

proposed for intrusion detection in networks, based on different machine learning

solutions, namely long short-term memory recurrent neural networks, and deep

reinforcement learning, which are capable of incorporating the temporal behavior of

the system into the anomaly detection task. Since the system is desired to respond in

near real-time, streaming big data from the network is used. Shahrivari (2014) stated

that batch processing needs the batch to load before starting to process, which is not

suitable for our task. As filling a batch might take several hours, building a security

system upon this kind of structure would be a mistake, because most of the attacks will

do their harm in a matter of seconds. Streaming data processing, on the other hand,

works in real-time, and enables real-time queries on the side, too. Therefore, stream

processing has been chosen as the suitable means of processing in our solution.

3

An initial prototype of the proposed system using Apache Spark and the TensorFlow

machine learning framework for both long short-term memory recurrent neural

networks and deep reinforcement learning has been developed and promising results

have been achieved with experiments on large network attack datasets including KDD

Cup (1999), NSL-KDD (Mahbod et al., 2009), CICIDS2017 (2017) and UNSW-NB15

(2015).

1.2. Increasing Popularity of Cloud Computing

In the last decade, networking and virtualization technologies rapidly advanced. These

advancements have made cloud platforms the most popular choice for the data storage

and computing needs of many enterprises. As major cloud service providers offer

reliable platforms, many companies have migrated their infrastructures and systems

to those platforms.

With the increasing popularity of the cloud platforms and their decreasing costs, they

have become one of the main targets of cyberattacks. Similarly, popularity of the

Internet of Things (IoT) paradigm has widened the attack surface for cloud systems

and increased the number of vulnerabilities attackers can exploit. Additionally,

Ibrahim, Hamlyn-Harris, and Grundy (2016) stated that the unique nature of cloud

infrastructures have created new security threats. In the Global Threat Report of

Carbon Black (2019), it is stated that users of Carbon Black’s cloud security solutions

are seeing a total of one million attempted cyberattacks per day.

The vulnerability of cloud platforms to attacks creates a need for security measures to

prevent those attacks or detect them and take action when an attack happens. Although

some of the existing security methods can be applied to cloud systems, new methods

designed truly for the cloud systems would be preferable.

Most of the cloud providers provide monitors for their systems. These monitors track

various metrics of the system, such as CPU utilization, disk I/O’s, memory utilization

etc. API’s for accessing these metrics are provided too, which makes them usable for

custom security solutions.

4

1.3. Importance of Detecting Attacks in Real-time

Online systems, especially cloud systems, are prone to zero-day attacks, which are

malicious activities not observed previously. Even though security mechanisms are

updated quickly, even seconds are important to provide high reliability in such

systems. Hence, a real-time security system, which is not signature-based, is more

suitable for the cloud. The system should be able to detect both old and new attack

methods as fast as possible. As the system will be under new attacks every day, it is

important that the system will easily adapt to those attacks.

In order to create a security system, which adapts to and detects new attacks, machine

learning solutions are required. Machine learning algorithms can in general be

considered under the following categories: supervised learning, unsupervised

learning, semi-supervised learning, and reinforcement learning. Supervised learning

methods can detect new attacks by analyzing old anomalies they are trained with

initially. Unsupervised learning methods will enable the system to handle new attacks

and learn from them. In reinforcement learning, the system learns from past actions

and their consequences. The solutions described in this paper fall under the categories

of supervised learning (long short-term memory recurrent neural networks), and

reinforcement learning (deep reinforcement learning with Q-learning). In this thesis,

both solutions proposed use neural networks. The main difference is that the LSTM-

RNN solution puts neural networks in the center, whereas the DRL solution benefits

from neural networks as a part of its solution. This combination makes the

reinforcement learning solution a hybrid of reinforcement learning and supervised

learning.

At first, LSTM-RNN solution seemed to be effective as it runs on time series data. On

the other hand, the deep reinforcement learning solution was also promising as it was

more suitable to the zero-day attack detection aspect of the problem. Both solutions

are compared using the same datasets in different combinations in order to prove our

initial perspective.

5

1.4. Outline

The remainder of this thesis is organized as follows: Chapter 2 provides an overview

of related work in intrusion detection systems. The chapter is divided into three

subsections about intrusion in cloud networks, big data for IDS, and machine learning

solutions in cybersecurity. Chapter 3 elaborates on the two ML solutions proposed in

this thesis, DRL and LSTM-RNN. Experiments, datasets, and evaluation metrics are

described in Chapter 4. Finally, the thesis is concluded, and future work targets are set

in the conclusion chapter, Chapter 5.

7

CHAPTER 2

2. BACKGROUND AND RELATED WORK

2.1. Intrusion Detection in Cloud Networks

Network intrusion detection has been a well-studied topic with many different

approaches proposed along the years. While some of these solutions can also be

applied in a cloud environment, because of the different characteristics of the cloud

environments and significantly larger network traffic volumes, several new

approaches have been suggested to solve the problem of intrusion detection in the

cloud. In a cloud environment, intrusion detection monitors can be deployed at various

locations. Maiero and Miculan (2011) suggested that with the usage of virtualization

techniques, intrusion detection monitors can be deployed in a guest VM or in virtual

machine monitors. Beyond host or network device monitoring, distributed

collaborative monitoring approaches are also utilized to catch system-wide attacks as

described by Bharadwaja et al. (2010). In these types of solutions, infrastructure

problems need to be solved, since the system must support massive amounts of data

gathered from different monitors and these data must be processed quickly to detect

attacks as soon as possible.

Deshpande et al. (2014) proposed an intrusion detection model for cloud

environments. The model consists of a data logging module, a preprocessing module,

an analysis and decision engine, and a management module. Logs are obtained using

the Linux audit framework. After logs are ready for processing, a k-nearest neighbor

classifier comes into play and decides if there is an anomaly or not. Different than the

solution in this paper, system calls are used for detecting anomalies.

8

2.2. Big Data Approaches for IDS

Enterprises collect terabytes of data related to security. Large enterprises record 10 to

100 billion events daily. These numbers will only increase as the enterprises hire new

staff and use new devices. The situation gets worse as these enterprises start to use

cloud architectures as depicted by Mcdaniel et al. (2013).

Big data analytics is the key to analyze and process this big information. For this

purpose, in 2012, Cloud Security Alliance formed a group called Big Data Working

Group. This group’s (2013) last report “Big Data Analytics for Security Intelligence”

focuses on big data’s role in security. It is foreseen that performing detailed analytics

on the data and getting real-time analysis on them is possible today thanks to Big Data

solutions.

Before the latest advancements, collecting big data was not logical in terms of cost.

Hence the logs and events were being deleted in specific periods. With the help of the

Hadoop framework and new big data tools, deploying big data became easier.

Querying dirty, inconsistent and large-in-volume data was not effective. Now, big data

applications help to clean, prepare and query the big data in an effective way.

It should be noted that data centers will be a target for data thefts. Therefore, their

protection is important. Also, the source of the data and its validity should be checked

while acquiring the big data. Analysis of wrong data will create wrong results.

Furthermore, the results will be observed by people, hence it will be better to visualize

the data; which means improvements in human-computer interaction are needed.

Although big data has changed security understanding in SIEMs (Security Information

and Event Management), it is not the solution for all the problems in security.

Mcdaniel et al. (2013) emphasized that researchers should always continue to find

new methods to prevent attacks. With big data, privacy infringement might be another

issue. Computer scientists need to follow commonly agreed privacy guidelines.

9

Mahmood and Afzal (2013) stated that threat detection and monitoring is the largest

field in security analytics for financial and defense institutions. Big data analytics' help

in this area is that, it can predict and detect malicious or dangerous network traffic

patterns as well as unusual user behaviors. Additionally, it will help unveil sudden

changes -which typically are suspicious incidents- in network servers.

In implementing a big data security analytics solution to a corporation, firstly, a

security analytics business strategy must be prepared. Also, C-level executives must

be aware of the benefits and must understand the technical basis. Corporations should

build a platform in which they can experiment with the data, using big data analytics

tools and techniques. It may also happen to be a necessity to hire experienced

personnel to be consulted in data science related issues. Furthermore, there should be

layers which have to run 24/7. For instance, a network monitoring layer should help

system designers to monitor network streams lively. Also, a live layer for alerting

suspicions will serve ensuring cybersecurity.

Recent works have proposed using big data processing approaches to solve the

problem of intrusion detection in cloud environments. One of these solutions was

introduced by Casas et al. (2017). They ıdeveloped a system called Big-DAMA, which

utilized Apache Spark for both batch data processing and streaming data processing.

Then, they combined their solution with five different supervised machine learning

algorithms.

To detect a possible attack using intrusion detection systems (IDS), Mishra et al.

(2017) stated that basically two techniques can be used: In misuse detection, the IDS

knows about previous attack patterns and tries to catch an attack by comparing the

collected data with previous patterns. In anomaly detection, the IDS does not know

about any previous attacks and tries to find anomalies in the network data, which could

be possible signs of attacks. In recent years, machine learning approaches have been

used successfully for both of these techniques.

10

2.3. Machine Learning Solutions for Intrusion Detection

With the advancements in machine learning in recent years, most of the anomaly-

based intrusion detection systems have started benefiting from machine learning

algorithms. One of the successful solutions, Beehive, was introduced by Yen et al.

(2013). In their solution, they used logs to detect network intrusions. They separated

their features into four categories:

• Destination-Based Features: Connections to uncommon destinations might

indicate suspicious behavior. New destinations are the first destination-based

feature. If a destination has never been contacted in an observation period, it

is new. The problem here is there are lots of new destinations, which belong

to cloud services or popular services. Therefore, a whitelist is used to increase

performance.

• Host-Based Features: Hosts installing new and potentially unauthorized

software indicate suspicious activity. The software configurations on a host are

inferred from the user-agent strings included in HTTP request headers. These

strings include the details of the application making a request. The number of

these new strings might signal a potential threat.

• Policy-Based Features: For a host, the number of blocked, challenged or

consented domains that are contacted by the host are counted.

• Traffic-Based Features: Sudden spikes in a host’s traffic volume might be an

indication of a threat. A spike is defined when a host generates more

connections than a threshold.

By using these four different feature types, they have been able to apply an

unsupervised learning algorithm, k-means clustering, to detect suspicious activities.

Although the Beehive solution is simple yet effective, it does not work in real-time,

whereas the solution described in this paper works near real-time.

Various solutions suggested by different authors use k-means clustering. An example

of such a solution is described by Razaq et al. (2016). The main problem with these

11

solutions is the need of predefining k. Predefining k makes the solution a supervised

one, whereas it would be beneficial to keep it unsupervised when using k-means

clustering.

A combination of k-means clustering and K-Nearest Neighbor was proposed by

Sharifi et al. (2015). They first applied k-means clustering to define clusters and their

centers. The clustering process is applied multiple times in order to achieve the best

structure. Then this structure is used to classify the data using KNN. Their solution is

somewhat similar to Razaq et al. (2016)’s solution. Rather than tweaking k-means like

them, they combined it with KNN. Their overall accuracy was around %90, which

should be improved in order to establish a secure system.

Another combination solution including KNN and decision trees is suggested by

Balogun and Jimoh (2015). This time, decision trees come into play first to create

node information depending on the rules of the resulting decision tree. This

information is added to the original dataset. Finally, KNN does the rest and classifies

the data. Their solution could detect new attacks (attacks not included in the training

set) with remarkable accuracy.

Hariharan et al. (2019) proposed a solution with a similar structure to the one described

in this thesis. They retrieved the data using Elasticsearch (2019). After the retrieval

part, several machine learning algorithms (Isolation Forest, Histogram Based Outlier

Score, Cluster-Based Local Outlier Factor, and k-Means Clustering) are run on the

data. Resulting anomalies are reported to the system administrators. Their solution,

CAMLPAD, had a %95 accuracy, which was promising.

One of the solutions utilizing Support Vector Machines (SVM) was proposed by

Pervez and Farid (2014). Their algorithm was a filtering algorithm tested on the NSL-

KDD dataset for intrusion classification tasks. Although their approach performed

well in training sets, in the test sets it failed to detect network intrusions which the

system had not seen before.

12

Recent years have shown many promising results of applying deep learning methods

to machine learning problems and intrusion detection is not an exception for this case.

Kim and Kim (2016) and also Chuan-long et al. (2017) proposed applying recurrent

neural networks to intrusion detection systems and got very promising results. These

works only show that RNN could be used while detecting anomalies in related data

and they do not propose a complete end-to-end intrusion detection system. The

approach described in this paper differs from these previous approaches in that it

attempts to build a self-healing cloud system through deep learning with recurrent

neural networks, which integrates time dependencies between observations (data

points) in the system into the learning process to provide a more accurate

representation of the attack progression and normal system processes.

Another deep learning solution is proposed by Behera et al. (2018), which is

implemented using convolutional neural networks (CNN). In CNN, there are neurons

with learnable weights and biases. CNN has five types of layers, namely, input layer,

convolution layer, rectified linear unit, pooling layer, output layer. Different than

standard neural networks, the convolution layer uses dot product of weights and local

regions to calculate inputs for the next layer. Rectified linear unit is used for better

gradient propagation and effective processing. The authors had successful results with

their experimentations using the NSL-KDD dataset. Their solution proves the

usability of deep learning for network intrusion detection. The solution proposed in

this thesis combines deep learning with reinforcement learning for creating a system,

which can adapt for zero-day attacks.

There are several solutions using reinforcement learning to detect network intrusions.

Deokar and Hazarnis (2012) used log files for their IDS solution. There are several

types of log files: server-side log files, client-side log files, proxy-side log files,

firewall-side log files, network-side log files, and system-side log files. In their

proposed system, log files are converted to XML files by a Processing Unit (PU).

After that, if a match with a known attack in the knowledge base is found, the attack

gets reported. Otherwise, an association rule database decides whether there might be

13

signs of an attack or not. Finally, rules are updated according to results of this

estimation. This solution, rather than using reinforcement learning as a basis, benefits

from reinforcement learning as a side solution. The approach described in this paper,

on the other hand, puts reinforcement learning in the heart of the solution.

Another solution using reinforcement learning is suggested by Servin and Kudenko

(2008). In their solution, a multi-agent hierarchical architecture has been developed.

Different sensor agents monitor different states of the network and pass short signals

up in the hierarchy. Agents at the higher levels of the hierarchy, therefore, have a better

view of the network. Rather than processing all the information and acting on them,

these agents leave the local information processing to lower level agents. Finally, these

higher-level agents learn whether they should alarm the system admin or not using the

information provided by lower level agents. This multi-agent RL solution works

accurate enough as implied by the authors, though it is not tested using different

datasets. Additionally, the RL solution in this thesis includes a deep learning approach,

which differs from the solution of the authors.

Elderman et al. (2016) applied reinforcement learning in a cyber security simulation

to find out the best strategy for both the defender and attacker sides of a cyber-security

simulation modeled as a Markov game. In their simulation, they tried out different

techniques such as Monte Carlo learning, Q-learning and neural networks.

Experiments held showed that Monte Carlo learning was the most effective one for

both sides of the Markov game. Their work shows that RL can be used with different

techniques for cybersecurity; also, it can be used as an attacking instrument, too.

2.4. Deep Reinforcement Learning Solutions in Different Fields

Deep Reinforcement Learning is being used in many different fields. Although it is

especially common in AI solutions such as robots, game playing agents, there are

various approaches implementing it for distinct purposes. Playing Atari is one of the

classic examples, which is implemented by Mnih et al. (2013). In their solution,

similar to the solution in this thesis, a convolutional neural network is combined with

14

reinforcement learning. They have used a modified Q-learning algorithm to train the

network. Cuayahuitl et al. (2015) implemented a DRL solution for playing a strategic

board game (Settlers of Catan). Their solution had significant success over other

random, rule-based or supervised-based solutions. Giraffe, a chess engine developed

by Lai (2015), implements deep reinforcement learning to play chess. MathDQN,

proposed by Wang et al. (2018), used DRL to solve arithmetic word problems. Again,

similarly, they have used a two-layer feed-forward neural network in order to find out

the potential Q-value.

An example usage of DRL in the field of medicine is suggested by Nemati et al.

(2016). In the solution, DRL has been used for setting medication doses optimally in

order to provide the best treatment for the patients. Likewise, chemical reactions are

optimized with DRL in the solution described by Zhou et al. (2017).

DRL is used in the biology field as mentioned by Mahmud et al. (2018) in their paper.

It is being used to extract features from biological sequence data (DNA, RNA, and

amino acids) and perform predictions on them. Also, it is mentioned that DRL is used

for bioimaging as well for pixel-level, cell-level and tissue-level analyses.

Additionally, it is stated that DRL is implemented in many medical imaging

applications for analyzing medical images obtained from different scans (MRI, CT,

PET etc.).

15

CHAPTER 3

3. PROPOSED APPROACH

3.1. Overview

In this work, we propose an intrusion detection system that works with real-time data

analytics to detect possible attacks and develop a resilience mechanism through deep

learning with recurrent neural networks.

The solution involves the collection of system metrics from the network and near real-

time processing of those metrics using big data analytics to discover anomalies. Metric

collection is done by metric collection agents deployed in related parties like guest

VMs. These data include network packets and other related metrics like VM usage

metrics, HTTP server performance etc. After collection, these metrics are sent as a

stream to a stream processing engine. The stream processing engine gathers the

metrics inside the stream, considering their timestamps and processes these data by

feeding them to a recurrent neural network trained previously. If the network finds an

anomaly in the data, it labels it and triggers an alarm to inform the system

administrators. The details of these steps are given in the following sections.

3.2. Metric Collection

Popular cloud system providers such as AWS share the statistics and state of their

cloud systems through an API. These statistics contain utilization of CPU, RAM,

disks, number of packets/bytes received/transmitted, and many other details about the

current state of the system. In this work, we utilize guest VM agents for metric

collection, since this approach does not depend on the cloud infrastructure and is more

flexible than virtual machine monitor solutions. At the metric collection phase, the

agents collect the required metrics from the guest VM like network flow, basic system

usage metrics such as CPU utilization, disk read/write metrics etc. and usage metrics

16

of applications that can affect the system performance. The metric collection agent

has two components, the producer and the consumer. The producer component gathers

the system and application metrics from the VM using different interfaces. To achieve

this, the producer must have a pluggable architecture that written plug-ins can gather

the metrics from, knowing how to get them. The responsibility of the consumer side

is to gather metric records from the producer and pass them onto the processing phase.

3.3. Metric Processing

Due to the large volume and velocity of the data collected from the systems, big data

processing frameworks are needed to analyze the data. Big data can be processed as

batches or as streams. Deciding which type of processing is needed is up to the task.

Shahrivari (2014) stated that the standard MapReduce model and its implementations

are totally focused on batch processing. Therefore, before any computation starts all

the input data have to be available. Yet, recent applications have more stream-like

demands. Additionally, applications might be needed to run continuously, as in the

example of a query that catches special anomalies from ongoing system events. If we

handle the data as batches, we need to wait for some amount of time to create batches

from the given data. After the data become batch, the processing starts. This

contradicts with our purpose of near real-time detection in this work, as we need to act

in real time in order to prevent or stop attacks before they can harm the cloud system.

Stream processing on the other hand involves handling the data in memory as they

arrive.

Before starting the work, different frameworks (Storm, Spark, Flink) were compared

with each other for handling streaming data. Ellingwood (2016) described the pros

and cons of these frameworks. Storm provides near real-time processing, is scalable,

and fault tolerant. On the other hand, it is not stateful, unless used with Trident – which

increases the latency. Flink has higher throughput than Storm, allows SQL-style

querying, is more high-level, and has machine learning libraries. Flink is a younger

framework, therefore it cannot be said that it has been tested widely. Therefore,

17

tutorials and example solutions are insufficient compared to other frameworks. Spark

is designed for machine learning, caches datasets in memory, and is successful for

varied processing workloads.

In this work, Apache Spark (Apache, 2019) has been used to process the stream data

collected from systems. Spark has advantages like fault-tolerance, in-memory

computation, being faster than similar frameworks, having a wider community,

multiple language support etc. Shahrivari (2014) stated that main memory is at least

50 times faster than hard disk in terms of bandwidth. Latency is, likewise, much lower

when using memory (nanoseconds vs milliseconds). Spark, having in-memory

computing, is crucial for this work. The data that streams from our network are

handled by Spark and served to our algorithm in order to detect possible attacks.

Multiple networks can be watched by using this framework. In similar problems, it is

seen that Spark is one of the most popular choices for streaming big data, like in Gupta

and Rani’s (2018) zero-day malware detection framework.

To support stream processing, many tools are available to specifically handle the

requirements of this process. Tools like Apache Kafka (Apache, 2019) and Amazon

Kinesis (Amazon, 2019) provide great support for handling stream data in a scalable

way. In this solution, Apache Kafka is used to collect the metrics from the guest VM

agents and pipe them to the stream processing engine.

For testing the solutions proposed in this thesis, different datasets have been used. The

data in these datasets are simulated as if they are streaming from a network. This

simulation is performed by involving Apache Spark and Apache Kafka. Apache Kafka

is a distributed streaming platform. It is used for reading and writing streams of data.

Normally, it can be used with different applications, database management systems or

stream processors. In this work, intrusion detection datasets are passed to Kafka to

simulate them as if they are the real source of network data. How Kafka will handle

the datasets is up to configurations. Different configurations were run in order to test

18

the processing power of Spark. The results below are produced by using a part of the

UNSW-NB15 dataset as source data.

Table 3.1. Process Time Measurements in Streaming Data Simulation

Batch Size Sleep Between

Batches in

Seconds

Elapsed Time in

Seconds

Real Elapsed

Time in Seconds

(w/o sleep)

700000 0 5,29 5,29

350000 0,5 8,63 8,13

175000 0,5 12,82 11,32

100000 0,5 19,66 16,66

50000 0,5 34,58 28,08

10000 0,5 153,81 119,31

Although it can be seen in the table that Spark works in real-time with streaming data

in the test with the whole set (700000 records), to replicate a real-life network

situation, additional tests are run by slicing the set with different sizes and passing

them to Kafka, waiting half a second in between. The experiments show that there is

an overhead in preprocess and postprocess parts, which can be improved to minimize

the time difference between tests. In the slowest scenario, the whole set is processed

under two and a half minutes including wait times, which is still acceptable, but

experiments have proven that Spark can handle much larger data flows easily. Spark

provides a monitoring tool, Spark UI, which can be used in order to benchmark the

process. According to benchmark results, configurations can be tweaked in order to

find the most efficient solution related to the network itself. Configurations of

networks with different sizes of data flow can be different, therefore network specific

configurations might be needed.

19

3.4. RNN-based Learning for Intrusion Detection

Signature-based intrusion detection systems rely on detailed information about

previously observed attacks. These approaches fail in the case of cloud systems, which

are open to attacks that might be novel. On the other hand, unsupervised learning

methods enable us to prevent or at least detect changes in the system parameters, i.e.

the normal behavior of the system. By this way, the system will be able to detect

anomalies and will try to prevent if there is an attack going on. In the mean time,

alarms will be created in the system so that if the security system cannot stop the

attack, it will warn the user/owner of the cloud system. This is actually the main

difference from a signature-based intrusion detection system. If this type of system

does not have any information about an attack, it will most likely be missed. On the

other hand, for a system with an unsupervised learning algorithm, even a minor

anomaly might cause the system to detect if something is wrong. When run on isolated

data points/cloud activity logs, unsupervised algorithms may not achieve very high

accuracy due to noise in the data. For instance, observation of a sudden spike in CPU

utilization might signal a possible attack even if it was caused by a legitimate process

and does not persist for a long period, not causing any degradation in the performance

of the system. Precisely for this reason, we need to be able to model the time-based

behavior of the system by considering the data points collectively as a time series

rather than isolated incidents.

Recent advances in deep neural networks have made it an effective tool for many

supervised and unsupervised learning tasks, achieving higher accuracy than

competing approaches. Recurrent neural networks (RNN) are machine learning

models consisting of nodes that are connected to each other. These nodes can

memorize and pass information in a sequence, though they process the data items one

by one. Therefore, they can handle inputs and outputs that are dependent on each other.

As stated in Lipton et al.’s (2015) paper, RNNs have been successful in various tasks

such as image captioning, speech synthesis, time series prediction, video analysis,

controlling a robot, translating natural language and music generation.

20

Normally, there is only one single network layer in a node of a classic RNN. In

conventional neural networks, it is not defined how the network will remember events

of the past to use the information about them in the future. Recurrent neural networks

aim to solve this issue by using the architecture depicted in Figure 3.1:

Figure 3.1. An RNN Loop

As shown in the diagram, the network gets an input x, processes it, and outputs an

output h. The outcome of the process is used in the next step. To make it clear, the

loop is demonstrated in an open form in Figure 3.2:

Figure 3.2. An Unrolled RNN Loop

The equation below represents the network mathematically:

21

ℎ𝑡 = 𝜃(𝑊𝑥𝑡
+ 𝑈ℎ𝑡−1)

Here W stands for the weight matrix, which is multiplied by the input of the current

time. The result is added to the multiplication of the output (hidden state) of the

previous time step and its own hidden state and the hidden state matrix (transition

matrix) U. As Nicholson (2018) describes, these weight matrices are used to define

how much of the information both from the current input and past output will be used

to determine the current output. If they generate an error, it will be used to update the

weights to minimize error. The resulting sum is condensed by the hyperbolic tangent

function 𝜃.

Some examples of this standard RNN architecture include predicting the next

character in a series of letters, picking the next note after a sequence of notes of a song,

deciding where to go when controlling the motion of a robot etc. In our case, we use

RNN in order to predict an intrusion, but we use LSTM-RNN because of the reasons

that will be explained later in this section.

LSTM stands for Long Short-Term Memory. Without it, gradients that are computed

in training might get closer to zero (in case of multiplying values between zero and

one) or overflow (in case of multiplying large values). In other words, as the time

sequences grow, RNN might not connect older inputs to the outputs. LSTM adds

additional gates to the architecture to control the cell state. By this modification,

training over long sequences is not a problem anymore.

22

Figure 3.3. Disconnected dependencies in RNN

In an LSTM-RNN there are four layers, which interact with each other. First of all,

the input is received and copies itself into four. The first one goes into a sigmoid layer.

This layer decides whether the output of the previous layer is needed and should be

used, or it should be thrown away. Then another sigmoid layer decides which values

are going to be updated. A tanh layer generates possible values, which might be

included in the state. These two layers get combined to update the state. Finally,

another sigmoid layer picks what we are going to output from our cell state.

Figure 3.4. Single layered structure of standard RNN

Figure 3.5. Four layered structure of LSTM-RNN

23

In the proposed model, we utilize the LSTM recurrent neural networks (RNN)

algorithm, which is described by Hochreiter and Schmidhuber’s (1997) in detail, to

detect deviations from the normal behavior of the network system under monitoring.

Note that because of the nature of the algorithm, it first needs to learn the normal state

of the system. By processing the normal state, the system will detect anomalies when

metric values that deviate significantly from the normal behavior of the system are

observed. In RNNs, inputs are not independent, every time sequence uses information

from the previous ones. This feature perfectly suits our task, as we cannot directly

specify if there is an anomaly without analyzing the system's state for the time being.

The algorithm receives parameters of the system from Spark and uses those

parameters as a time series input. The parameters indicate the state of the system's

properties for that time series. The algorithm then serves these parameters to its

prediction function. The prediction function tries to find out if there is an anomaly in

the system. For example, if there is an unrealistic peak in the CPU utilization and

number of disk operations and incoming network packets, this might indicate that the

system is under a denial of service attack. From this point, the system can create an

alarm to warn system administrators or initiate a security action.

We have used LSTM-RNN in Tensorflow. LSTM is actually handled by Tensorflow

itself, but we needed to convert some of the fields in data as we could not pass them.

For example, fields like IP addresses, protocol types, service types etc. converted to

data types that LSTM-RNN accepts, as strings are not accepted. After processing of

LSTM-RNN is finished, we check if there was an attack. There was only one output

for our experiment, which is the actual result: whether there was an attack (1) or not

(0). How LSTM-RNN works in general is described by Olah (2015) and explained

below step by step:

1. The first layer gets current input and output of the past time series, then decides

if the previous information is needed now. Actually, this layer can be called

24

the forget layer. h stands for the output of the past, x stands for the current

input, W is the weight of this layer, and b is the bias.

𝑓𝑡 = 𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓)

2. Then we move onto the input layer. This layer is another sigmoid layer, which

decides the values that are going to be updated.

𝑖𝑡 = 𝜎(𝑊𝑖. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖)

3. A hyperbolic tangent layer creates candidate values, which might be included

in the cell state. Cell state is a straight line in our network that flows for the

entire network. LSTM changes information on this state across the road with

the help of the gates.

𝑐𝑑𝑡𝑡 = tanh(𝑊𝑐𝑑𝑡. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐𝑑𝑡)

4. Results of all previous steps are combined in order to create an update to the

cell state.

𝑐𝑡 = 𝑓𝑡 ∗ 𝑐𝑡−1 + 𝑖𝑡 ∗ 𝑐𝑑𝑡𝑡

5. Finally, the output is decided. Naturally, the cell state is used in deciding.

Another sigmoid layer takes part, and its output is multiplied the by cell state

(state will go into tanh first).

ℎ𝑡 = 𝜎(𝑊𝑜. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) ∗ tanh (𝑐𝑡)

We proposed this LSTM-RNN solution for intrusion detection under the name “A Big

Data Analytical Approach to Cloud Intrusion Detection” to CLOUD2018 conference

held in Seattle in June 2018. It is accepted in “Application and Industry Track: Cloud

Data Processing” and presented by Assist. Prof. Dr. Pelin Angın at the conference.

3.5. Deep Reinforcement Learning Based Intrusion Detection

Reinforcement Learning (RL) is a machine learning approach built on rewards and

punishments. RL agents make their decision by checking the state they are in and the

available actions on the present state. Every decision ends up with a reward or

punishment (negative reward). These rewards shape the future decisions.

Reinforcement learning, therefore, is constructed on state-action pairs with resulting

positive or negative rewards in an environment. An agent is connected to its

25

environment with action and recognition in the classic reinforcement-learning model

as stated by Kaelbing et al. (1997). In every step of interaction, the agent gets the

indication of the current state of the environment. After that the agent picks an action,

which generates an output. With every action the state altered, the value of the

alteration is sent to the agent via a scalar reinforcement signal. The agent should

behave and choose actions, which will increase the sum of values of the signal in the

long run. The agent will learn to do this over time by trial and error, guided by various

algorithms.

The agent aims to find a policy in which states and actions are mapped to each other

and maximize the long-run measure of reinforcement. It is expected that the

environment will be non-deterministic, which means taking the same action in the

same state might create different results.

Reinforcement learning differs from supervised learning. The most important

difference is rather than presenting input/output pairs, the agent is informed with the

immediate reward and resulting state after the action; but note that the agent is not

informed about which action would give the best outcome in the long-term. Another

difference is that on-line performance is important, the evaluation of the system is

simultaneous with learning.

Intrusion detection using Deep Reinforcement Learning (DRL), same as LSTM-RNN,

depends on learning, unlike signature-based systems, which makes the system safer

when it meets zero-day attacks. DRL is different from LSTM-RNN: it does not

require a long training session beforehand. This characteristic enables the system to

be ready after training itself in the short term, but still most benefits are seen in the

long term.

In our proposed DRL system, there are two different states and four different actions.

These states, actions and their related rewards and punishments are given in the below

table:

26

Table 3.2. State, Action and Reward Table for RL

State Action Reward

Normal No Alarm +1

Normal Alarm -1

Attack Alarm +1

Attack No Alarm -1

Deep Reinforcement Learning has been used in many different areas, some of which

are mentioned in Chapter 2 of this thesis. Combined with reinforcement learning, deep

neural networks can be useful for many real-life problems. Reinforcement learning

becomes deep reinforcement learning when deep neural networks are used for function

approximation in policy and value functions. In a reinforcement learning algorithm

with Q-learning, the value function is described as below:

𝑄(𝑠, 𝑎) = 𝑟(𝑠) + 𝛾 𝑚𝑎𝑥𝑎′ ∑ 𝑃(𝑠′|𝑠, 𝑎)𝑄(𝑠′, 𝑎′)

𝑠′

This equation is called Bellman Equation. s stands for state, a stands for action, r

represents reward, and P stands for state change possibility. According to the equation,

Q value of a state-action pair equals the sum of the current reward and potential future

Q-values. In short, the exact reward is added to possible rewards. The equation is a

discrete one. On the other hand, in most real-life applications actions and states are

continuous. Therefore, for the value function, an effective function approximation

method is required. Neural networks come into play for this need. In the value

function, every state and Q-value are calculated by using hidden layers of neural

networks in between. The neural networks are trained by using backpropagation. The

algorithm described by Minh et al. (2013) is given below step by step:

Table 3.3. Deep Q-learning Algorithm

Step Detail

1 Initialize replay memory D to capacity N

27

2 Initialize Q-function with random weights

3 for episode = 1, M do

4 Initialize neural network from a random state s

5 for t = 1, T do

6
Find Q-values for all actions using DNN:

𝑎𝑡 = 𝑚𝑎𝑥𝑎𝑄∗(𝑠𝑡, 𝑎; 𝜃)

7
Choose an action at for current state st by using -

greedy exploration

8
Get to the next state st+1 with action at and pick the

related reward rt

9 Store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in D

10
Sample random minibatch of transitions

(𝑠𝑗, 𝑎𝑗, 𝑟𝑗, 𝑠𝑗+1) in D

11

Set 𝑦𝑗 =

{
𝑟𝑗, 𝑓𝑜𝑟 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑠𝑗+1

𝑟𝑗 + 𝛾 𝑚𝑎𝑥𝑎′𝑄(𝑠𝑗+1, 𝑎′; 𝜃), 𝑓𝑜𝑟 𝑛𝑜𝑛𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑠𝑗+1

12 Perform a gradient descent step on (𝑦𝑗 − 𝑄(𝑠𝑗 , 𝑎𝑗; 𝜃))2

13 end for

14 end for

As described in the algorithm, DNN steps in as a part of the RL, and makes it DRL.

In reinforcement learning, future rewards for steps later are not valued as much as

immediate rewards. DNNs completes and enhances Q-functions by taking future

rewards into account when deciding which action to take next. Another benefit of

using DNNs in reinforcement learning is reducing the number of interactions needed

by using sampling, which in the end increases the overall performance and the data

efficiency of the algorithm.

28

Deep reinforcement learning, same as LSTM-RNN, is run through TensorFlow in the

solution. Although TensorFlow is suitable to work with DRL, some alterations on the

inputs are required. Similarly, changes on some of the parameters affect the results.

The unsupervised nature of DRL seemed as the main reason behind the changing

results. This attribute of DRL makes it work in the short-term, though in the short-

term the algorithm seems not to be working quite accurately, as it needs to train itself

both in its neural networks part and in the RL part. Therefore, it becomes similar to

the approach in a supervised algorithm, like LSTM-RNN.

29

Figure 3.6. Activity Chart for DRL Algorithm

31

CHAPTER 4

4. EVALUATION

4.1. Evaluation Metrics

To measure the success of the solution, well-known metrics, namely accuracy,

precision, recall, and F1, will be used. These metrics are defined Powers (2011) and

are described in the table below:

Table 4.1. Evaluation Metrics, Powers (2011)

Name of the Metric Formula

Accuracy 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁. + 𝑇𝑟𝑢𝑒 𝑃. +𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

Precision 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

Recall 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

F1 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙

These metrics have been used for all the datasets. Note that only the labelled dataset

of NSL-KDD in the LSTM-RNN experiment has been analyzed by using multi-class

classification with a confusion matrix, whereas the other datasets have been analyzed

by using binary classification. A confusion matrix is used when there could be two or

more classes in the output. Every row of the matrix represents the predicted class,

whereas every column of the matrix presents the actual class. The number of correct

predictions for a class is seen in the intersection of the said class in the predicted row

32

and the actual column. False predictions are the sum of the other numbers in the same

column. Overall accuracy calculation does not change in the confusion matrix, only

precision and recall slightly change (calculated individually using only False Positive

and False Negative numbers of their related column) as stated by Manliguez (2016).

4.2. Experiments with LSTM-RNN

As mentioned in the previous chapters, Apache Spark was used as the stream

processing engine collecting data from machine instances. The figure below shows

the flow of the data in the developed prototype. Note that the same structure has been

used in Deep Reinforcement Learning version of the system:

Figure 4.1. End-to-end Working of the LSTM-RNN Solution

4.2.1. Using UNSW-NB15 Dataset

Different datasets were used to test the LSTM-RNN solution. The first dataset used

was the “UNSW-NB15” dataset of UNSW ADFA. This dataset seemed well-rounded

as it contained two million logs, with a total of 49 fields per record. The fields in the

dataset, such as IP addresses, ports, protocols, packet details etc., are given below in

detail. Some of the fields needed to be normalized to make them suitable for the

33

LSTM-RNN solution. Likewise, some insignificant fields are discarded from the data.

The records in this dataset were labelled as attack or non-attack.

The data has been simulated to make the system behave as if the data are streaming.

As required by it, a training set is provided for LSTM-RNN, which has been run

through Tensorflow, an open-source machine learning framework. The LSTM-RNN

model on this framework, helps the system to decide whether a record could be an

attack or not.

Different runs were performed on the system, using various sample sizes. In these

tests, train and test samples had the same sizes. The sizes are given in the below chart

with the related accuracy scores. The tests showed that as the sample size went bigger,

the accuracy also got higher. The relation is depicted in the figure below. This result

raised the question: Could an unsupervised algorithm or reinforcement learning

algorithm be more suitable for this kind of task? This question is answered in the

upcoming sections. The accuracy rates were between %87 and %91 on average, and

the highest accuracy was %93.1.

34

Figure 4.2. Accuracy vs Sample Size for LSTM-RNN with UNSW-NB15

Table 4.2. UNSW-NB15 Features

No. Name Type Description

1

srcip nominal Source IP address

2

sport integer Source port number

3

dstip nominal Destination IP address

4

dsport integer Destination port number

35

5

proto nominal Transaction protocol

6

state nominal
Indicates the state and its

dependent protocol

7

dur float Total duration of the record

8

sbytes integer
Source to destination

transaction bytes

9

dbytes integer
Destination to source

transaction bytes

10

sttl integer
Source to destination time to

live value

11

dttl integer
Destination to source time to

live value

12

sloss integer
Source packets retransmitted

or dropped

13

dloss integer
Destination packets

retransmitted or dropped

14

service nominal e.g. http, ftp, smtp...

15

sload float Source bits per second

16

dload float Destination bits per second

36

17

spkts integer
Source to destination packet

count

18

dpkts integer
Destination to source packet

count

…

… … …

29

stime timestamp Record start time

30

ltime timestamp Record last time

…

… … …

49

label binary 0 for normal 1 for attack

4.2.2. Using KDD Dataset

The KDD Cup 1999 Dataset is probably the most famous dataset in the network

security field. It has been used as a go-to benchmark for IDS solutions. Although it is

a 20-year-old dataset, and is missing some of the newest attacks, it is still popular

among researchers. The dataset is quite comprehensive, there are five million records

in it and each record has 41 features. Some of the important features are given in the

below table:

Table 4.3. KDD Dataset Features

No. Name Type Description

37

1

duration

integer Record duration

2

protocol type nominal
Type of the protocol (UDP,

TCP…)

3

service nominal
Destination service (ftp,

telnet…)

4

flag nominal Status of connection

5

source bytes integer
Source to destination

number of bytes

6

destination

bytes
integer

Destination to source

number of bytes

7

land binary

1 when source and

destination addresses are the

same land, 0 else

...

… … …

23

count integer
Number of connections to

the same host

24

srv count integer
Number of connections to

the same service

25

serror rate float
% of connections with SYN

errors

26 srv error rate float
% of connections (service)

with SYN errors

27 rerror rate float
% of connections with REJ

errors

38

28 srv rerror rate float
% of connections (service)

with REJ errors

... … … …

42

label nominal
“normal” for non-attacks,

attack type for attacks

Like the UNSW-NB15 dataset, some features are removed or modified to adapt them

for our LSTM-RNN solution. Results were similar with the said dataset. Although the

F1 score of the best run is promising, we can see that the number of false negatives is

dragging the accuracy lower.

Figure 4.3. Performance results for LSTM-RNN using KDD

As represented in the related figure, the true positive rate among positives is quite

high, but the number of false negatives is considerable, which hurts the accuracy in

the end. Note that %10 percent of the datasets were used for both training (494.022

records) and testing (311.080 records).

39

4.2.3. Using NSL-KDD Dataset

NSL-KDD (n.d.) dataset is an improvement over the KDD Cup 1999 dataset.

Redundant and duplicate records are eliminated in order to prevent bias for learners

and classifiers. Also, the train and test sets are reasonable in terms of the number of

records, which eliminates the need of selecting random portions out of the dataset.

Additionally, it helps make the intrusion detection systems comparable over this

dataset. It should be noted that all the fields are the same as the original dataset. The

only change is the removed records.

In the dataset, different sets are given: Sets with binary labels (anomaly or normal),

sets with attack-type labels and difficulty levels, sets without the hardest cases. The

results are depicted in the figures below. Note that full datasets have been used for the

experiments.

Figure 4.4. Performance results using full train dataset with different test datasets of NSL-KDD for

LSTM-RNN

40

Accuracy slightly reduces when the system gets trained with 20% of the train set of

the NSL-KDD datasets. Results of this experiment can be found in Figure 4.5 below:

Figure 4.5. Performance results using %20 train dataset with different test datasets of NSL-KDD for

LSTM-RNN

4.2.4. Using CICIDS2017 Dataset

As most of the datasets became unreliable and out of date, University of New

Brunswick Canadian Institute for Cybersecurity (n.d.) created a new dataset

containing up-to-date attacks with many features. The dataset is called CICIDS2017.

The dataset includes both CSV and PCAP files of the network traffic. HTTP, HTTPS,

FTP, SSH, e-mail protocols are used in the creation of this dataset. The dataset, in its

CSV files for machine learning purposes, contains 79 features in total. It is stated by

41

Sharafaldin et al. (2018) that the dataset covered eleven criteria given in the below

table; while none of the existing datasets was able to cover all these criteria.

Table 4.4. Eleven Important Criteria for IDS Datasets (Sharafaldin, 2018)

Name of the criteria Detail

Complete Network Configuration A complete network topology with

different network elements and varied

operating systems is used.

Complete Traffic A user profiling agent is used as well

as twelve different machines as victim

in victim network and real attacks

from attack network.

Labelled Dataset Attacks are labelled accordingly.

Complete Interaction Different interactions are covered:

Internet communication,

communication within and between

two different networks on internal

LAN.

Complete Capture All traffic information is captured and

stored.

Available Protocols All commonly used protocols are

available.

Attack Diversity The most common attacks of 2016 are

available in the dataset.

Heterogeneity Network traffic is captured from the

main switch and from all victim

machines.

Feature Set More than 80 network flow features

are included.

MetaData Detailed structure of the attacks is

given in the dataset and explained in

the published paper of the dataset.

42

In creation of this dataset, the network was under the traffic for five days. There are

eight files in total, all the files represent a unique day and network traffic pair. There

are 3119345 records in these files. According to the analysis of Panigrahi and Borah

(2018), the dataset contains %83.34 benign (non-attack) records; the remaining

records are attack records of fourteen different attack types. The authors mentioned

that the high percentage of benign records causes an imbalance and tried to solve this

imbalance relabeling the dataset by merging some of the attack types. Note that this

improvement was not applied to the experiments in this thesis.

Table 4.5. Dataset details of CICIDS2017

Class Labels Number of instances Containing Datasets

Benign 2359087 All days

DoS Hulk 231072 Wednesday

PortScan 158930 Friday Afternoon PortScan

DDoS 41835 Friday Afternoon DDos

DoS GoldenEye 10293 Wednesday

FTP-Patator 7938 Tuesday

SSH-Patator 5897 Tuesday

DoS slowloris 5796 Wednesday

DoS Slowhttptest 5499 Wednesday

Bot 1966 Friday Morning

Web Attack – Brute

Force

1507 Thursday Morning

Web Attack – XSS 652 Thursday Morning

Infiltration 36 Thursday Afternoon

Web Attack – SQL

Injection

21 Thursday Morning

Heartbleed 11 Wednesday

43

As the Monday records only contained benign ones, most of the records (half a

million) in the beginning of this file are skipped. Other than Monday records, the

datasets have been used fully. Records of the other days are used in tests individually,

as they contained completely different attack labels. The results for each day’s

experiment are given in the below figures.

Figure 4.6. Performance results for Tuesday Dataset of CICIDS2017

Precision and F1 scores are quite low compared to higher scores in accuracy. This

result is expected because of the density of benign records. As the number of benign

records is nearly 40 times more than the attack records, the number of false positives

is relatively high, which causes the low scores in precision and F1.

44

Figure 4.7. Performance results for Wednesday Dataset of CICIDS2017

This time, the strange pattern has not emerged as there is a better diversity in the

records. There are nearly 450000 benign records in the Wednesday dataset, whereas

the number of attack records are a little more than 250000. The only problem with this

dataset is the number of Heartbleed attacks. There are only eleven heartbleed attacks,

which is %0.00039 of the whole dataset.

Figure 4.8. Performance results for Thursday Morning Dataset of CICIDS2017

45

The same problem with the Tuesday dataset is seen here. In the Thursday morning

dataset, the density of benign records gets even higher: 80 times more than attack

records. This increase can be seen in the figure as the decrease of precision.

The problem with the dataset becomes critical in the Thursday afternoon file. As there

are only 36 attack records, accuracy is close to %100 whereas precision is close to %0.

This pattern is expected and gets fixed when evaluating the day files as one dataset by

merging them together. Therefore, results for that dataset is not shown here.

Figure 4.9. Performance results for Friday Morning Dataset of CICIDS2017

46

Figure 4.10. Performance results for Friday Afternoon PortScan Dataset of CICIDS2017

Figure 4.11. Performance results for Friday Afternoon DDoS Dataset of CICIDS2017

Friday results are more satisfying as the data is distributed in a balanced manner in the

Friday datasets. A final experiment on the CICIDS2017 dataset by using all files as a

whole produced the result below:

47

Figure 4.12. Performance results of the Whole Dataset (CICIDS2017)

Final results on the CICIDS2017 dataset, with the accuracy close to %96, were

promising. As a future work, the dataset could be tweaked in order to eliminate

imbalances.

4.3. Experiments with Deep Reinforcement Learning

4.3.1. Using NSL-KDD Dataset

The system has been tested in a Gym environment for the NSL-KDD dataset, which

is prepared by Koduvely (2018), using OpenAI’s Gym (OpenAI, 2019). Gym helps to

test and compare reinforcement learning algorithms. Full datasets have been used

during experiments. While doing the experiments, it is seen that increasing the training

cycles of the neural network resulted in better outcomes in terms of accuracy. This, in

fact, converts the unsupervised system into a supervised system in a way. Still, we

have a chance to reuse the trained model later, without the need of training again.

Figure 4.14 below depicts the differences in precision, recall and accuracy related to

the number of training cycles:

48

Figure 4.13. Precision, Recall and Accuracy values related to iterations in DRL solution using NSL-

KDD

The need for using high iterations was obvious even before the last experiment. The

same thing cannot be said when experimenting with the number of hidden nodes.

There are different approaches about finding the suitable number of hidden nodes.

Some trial-error experiments have been held in our case in order to find the best result.

The figures below depict and compare different configurations with each other.

49

Figure 4.14. Number of Hidden Neurons Experiment I (Using NSL-KDD)

In the first experiment, the number of hidden neurons was set as 2/3 of the input layer’s

size. The results were satisfying with an accuracy close to %97.

Figure 4.15. Number of Hidden Neurons Experiment II (Using NSL-KDD)

50

In the second experiment, the number of hidden neurons was set equal to the size of

the input layer. The result was unfruitful with low scores of accuracy and precision.

Figure 4.16. Number of Hidden Neurons Experiment III (Using NSL-KDD)

In the third experiment, hidden neurons were one and a half times of the input layer’s

size. Again, the result was not successful. Recall got lowered, which affected F1 score,

too.

Figure 4.17. Number of Hidden Neurons Experiment IV (Using NSL-KDD)

51

In the next experiment, all scores were balanced. For this one, the number of the

hidden neurons was half the size of the input layer. The result, again, was

unsuccessful.

In the last experiment (V), the square root of the product of the input layer size and

output layer size was used to set the number of hidden neurons. Different from the last

three experiments, the result got better, although the first experiment remained the

best one with its scores. Additionally, the score of the first experiment passed the best

results with the LSTM-RNN solution’s NSL-KDD experiments.

Figure 4.18. Number of Hidden Neurons Experiment V (Using NSL-KDD)

4.3.2. Using UNSW-NB15 Dataset

The same dataset as the first dataset in the LSTM-RNN solution was used in the last

experiments with DRL in this section. Again, after experimenting with different

configurations, the best solution was found as detailed below. Different from the

LSTM-RNN experiment, this time default training and testing sets have been used

initially. The training set has a total of 175341 records, whereas the test set has 82332

52

records. Accuracy was 3 percent better than the LSTM-RNN solution. Results are

given in the Figure 4.20 below.

Figure 4.19. Performance results of default test data set of UNSW-NB15 using DRL

The second experiment was held by using randomly picked training and test data over

the dataset. 100000 records have been picked for both sets. The results have not

changed in this experiment compared to the experiment using default sets.

53

Figure 4.20. Performance results of manually picked test data set of UNSW-NB15 using DRL

4.4. Comparison with Other Solutions

In order to measure the real success of the system, it should be compared with the

other solutions provided by different authors. The table below shows the accuracy of

some novel solutions using the NSL-KDD dataset:

Table 4.6. Comparison of different intrusion detection systems

Solution Accuracy

(%)

Precision

(%)

Recall (%) F1 (%)

Tang et al., 2016

(with 0.0001

learning rate)

91.7 83 75 74

Self-taught Learning

(Niyaz et al., 2015)

88.39 85.44 95.95 75.76

Soft-max

Regression (Niyaz et

al., 2015)

78.06 96.56 63.73 72.14

54

Random Forest

Modeling (Farnaaz

and Jabbar, 2016)

99.67 - - -

RNN-IDS (Chuan-

long et al., 2017)

97.09 - - -

Aljawarneh et al.,

2018

99.81 - - -

Random Tree +

NBTree (Kevric et

al., 2018)

99.53 - - -

Deep Reinforcement

Learning (proposed

in this thesis)

96.72 98.06 96.07 97.04

The comparison shows that although the solution proposed in this thesis performs

better than some novel solutions, it is not the best solution for network intrusion

detection. Therefore, it can be said that there is still room for improvement to decrease

the 3 percent difference from the best solutions.

55

CHAPTER 5

5. CONCLUSION

Thanks to advancements in the big data technologies, big data analytics became one

of the most useful resources in many fields in computer science. As cybersecurity is

crucial in our lives today, using these analytics in security solutions is both inevitable

and beneficial. Additionally, because of the nature of most cybersecurity attacks,

relevant big data can be extracted from the network by fetching traffic data, system

logs etc.

With their increasing popularity in many learning tasks, neural networks are used

frequently as a solution (or part of the solution) to these problems. Likewise, they are

used in the solutions proposed in this thesis, too. In order to handle zero-day attacks,

using a learning mechanism is a must. As nowadays most networks are open to zero-

day threats, a security solution which can detect anomalies, even if those types of

anomalies were never seen before, is a necessity.

The main aim of the thesis is to provide a solution for system security through

detection of possible intrusions by using big data solutions to handle high data flow

as streaming data. Network data is a prime example of streaming big data. Traffic data

is quite large in terms of features and the number of records. In this work, the data is

processed by Apache Spark and passed onto the intrusion detection component of the

solution that utilizes machine learning algorithms. By using two different machine

learning approaches, namely LSTM-RNN and Deep Reinforcement Learning,

anomalies in the network are detected and reported. Both solutions are run with the

help of Tensorflow, a machine learning framework. Neural networks are used in both

solutions. Experiments have been performed using various datasets with the

framework. Diverse configurations have been tried in order to find the optimal

solution. Especially, setting the number of neurons for the hidden layer was essential

to the task. Initially, LSTM-RNN seemed a good candidate for the problem with its

56

nature using time-series. Then, DRL also seemed to be an effective solution as a part

of this intrusion detection system. Therefore, the experiments helped us compare these

two approaches. Different datasets were used for testing the accuracy of the system.

In summary, although there is still room for improvement, accuracy rates in the

experiments were most of the time greater than %90 for both solutions, which was

promising. DRL seemed to be performing slightly better than LSTM-RNN, hence the

DRL solution was found more suitable for the system.

As cloud systems are getting more and more popular every day, a special security

solution for these systems is needed. All service providers have their own monitors

for providing different statistics of their systems, such as network statistics, CPU

status, disk usage etc. For example, Amazon has CloudWatch, Google has

Stackdriver, and all these tools have easy to implement integration methods for

providing system metrics. Therefore, as a future work, a customized system, which

reads these statistics via these monitors and processes them with the big data and

machine learning solutions like the one described in this paper, could be developed.

In summary, an end-to-end intrusion detection system has been developed throughout

the thesis. A big data solution was designed in order to process streaming big data.

Different machine learning solutions were adapted and tested. Promising results have

been achieved after experimenting with different datasets namely, KDD, NSL-KDD,

CICIDS2017, and UNSW-NB15. Cloud systems have been investigated for future

possible improvements and using their own metric providers to create a custom

security system has been determined as a future work direction. Relatedly, a cloud-

specific intrusion detection dataset, not only with traffic data but also including system

metrics such as CPU utilization, memory utilization, disk performance and read

writes, does not exist. Such a dataset could be crucial for designing a purely cloud

oriented security system. Therefore, preparing and publishing such a dataset could be

another future work, and would be an initial step for a cloud-specific solution.

57

REFERENCES

Apache. (2019, August). Apache kafka, a distributed streaming platform. Retrieved

 from https://kafka.apache.org/

Apache. (2019, August). Apache spark, lightning fast unified analytics engine.

 Retrieved from https://kafka.apache.org/

Aljawarneh, S., Aldwairi, M., & Yassein, M. B. (2018). Anomaly-based intrusion

detection system through feature selection analysis and building hybrid

efficient model. Journal of Computational Science, 25, 152–160.

https://doi.org/10.1016/j.jocs.2017.03.006

Amazon. (2019, August). Amazon kinesis. Retrieved from

 https://aws.amazon.com/kinesis

Balogun, A. O., & Jimoh, R. G. (2015). Anomaly intrusion detection using an hybrid

 of decision tree and K-nearest neighbor. Journal of Advances in Scientific

 Research & Applications (JASRA), 2(1), 67-74.

Behera, S., Pradhan, A., & Dash, R. (2018). Deep Neural Network Architecture for

 Anomaly Based Intrusion Detection System. 2018 5th International

 Conference on Signal Processing and Integrated Networks, SPIN 2018, 270–

 274. https://doi.org/10.1109/SPIN.2018.8474162

Bharadwaja, S., Sun, W., Niamat, M., & Shen, F. (2010). Collabra: A xen hypervisor

 based collaborative intrusion detection system. Proceedings - 2011 8th

 International Conference on Information Technology: New Generations,

 ITNG 2011, 695–700. https://doi.org/10.1109/ITNG.2011.123

Carbon Black. (2019). Global Threat Report: The Year of the Next-Gen Cyberattack.

 Retrieved from https://www.carbonblack.com/wp-

 content/uploads/2019/01/carbon-black-global-threat-report-year-of-the-next-

 gen-cyberattack-0119.pdf

Casas, P., Soro, F., Vanerio, J., Settanni, G., D'Alconzo, A. (2017). Network security

 and anomaly detection with big-dama, a big data analytics framework.

 Proceedings of 2017 IEEE 6th International Conference on Cloud Networking

 (CloudNet), 1-7. https://doi.org/10.1109/CloudNet.2017.8071525

Chuan-long, Y., Yue-fei, Z., Jin-long, F., & Xin-zheng, H. (2017). A Deep Learning

 Approach for Intrusion Detection using Recurrent Neural Networks. IEEE

 Access, 5, 1–1. https://doi.org/10.1109/ACCESS.2017.2762418

58

Cloud Security Alliance. (2013). Big Data Analytics for Security Intelligence.

 Retrived from

 https://downloads.cloudsecurityalliance.org/initiatives/bdwg/Big_Data_Anal

 ytics_for_Security_Intelligence.pdf

Cuayáhuitl, H., Keizer, S., & Lemon, O. (2015). Strategic Dialogue Management via

 Deep Reinforcement Learning. 1–10. Retrieved from

 http://arxiv.org/abs/1511.08099

Deokar B., Hazarnis A. (2012). Intrusion Detection System using Log Files and

 Reinforcement Learning. International Journal of Computer Applications,

 45(19), 28–35.

Deshpande, P., Sharma, S. C., Peddoju, S. K., & Junaid, S. (2018). HIDS: A host based

 intrusion detection system for cloud computing environment. International

 Journal of Systems Assurance Engineering and Management, 9(3), 567–576.

 https://doi.org/10.1007/s13198-014-0277-7

Elasticsearch. (2019, August). Elasticsearch. Retrieved from

 https://www.elastic.co

Elderman, R., Pater, L. J. J., Thie, A. S., Drugan, M. M., & Wiering, M. A. (2017).

 Adversarial reinforcement learning in a cyber security simulation. ICAART

 2017- Proceedings of the 9th International Conference on Agents and

 Artificial Intelligence, 2(Icaart), 559–566.

 https://doi.org/10.5220/0006197105590566

Ellingwood, J. (2016, October 28). Hadoop, storm, samza, spark, and flink: big data

 frameworks compared [Blog post]. Retrieved from

 https://www.digitalocean.com/community/tutorials/hadoop-storm-samza-

 spark-and-flink-big-data-frameworks-compared

Farnaaz, N., & Jabbar, M. A. (2016). Random Forest Modeling for Network Intrusion

Detection System. Procedia Computer Science, 89, 213–217.

https://doi.org/10.1016/j.procs.2016.06.047

Google Trends. (2019, August 6). Worldwide popularity of big data. Retrieved from

 https://trends.google.com/trends/explore?date=all&q=big%20data

Gupta, D., & Rani, R. (2018). Big Data Framework for Zero-Day Malware Detection.

 Cybernetics and Systems, 49(2), 103–121.

 https://doi.org/10.1080/01969722.2018.1429835

59

Hariharan, A., Gupta, A., & Pal, T. (2019). CAMLPAD: Cybersecurity Autonomous

 Machine Learning Platform for Anomaly Detection. Retrieved from

 http://arxiv.org/abs/1907.10442

Hochreiter, S., Schmidhuber, J. (1997). Long short-term memory. Neural

 Computation, 9(8), 1735-1780.

Ibrahim, A. S., Hamlyn-Harris, J., & Grundy, J. (2016). Emerging security challenges

 of cloud virtual infrastructure. Retrieved from

 http://arxiv.org/abs/1612.09059

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1997). Live-301-1562-Jair. 1–49.

 Retrieved from http://www.jair.org/media/301/live-301-1562-jair.pdf

KDD. (1999). KDD Cup 1999: Computer network intrusion detection. Retrieved from

 https://www.kdd.org/kdd-cup/view/kdd-cup-1999/Data

Kevric, J., Jukic, S., & Subasi, A. (2017). An effective combining classifier approach

using tree algorithms for network intrusion detection. Neural Computing and

Applications, 28(s1), 1051–1058. https://doi.org/10.1007/s00521-016-2418-1

Kim J., Kim H. (2016). Applying Recurrent Neural Network to Intrusion Detection

 with Hessian Free Optimization. In: Kim H., Choi D. (eds) Information

 Security Applications. WISA 2015. Lecture Notes in Computer Science, vol

 9503. Springer, Cham

Koduvely H. (2018). Github repository, gym-network_intrusion. Retrieved from

 https://github.com/harik68/gym-network_intrusion

Lai, M. (2015). Giraffe: Using Deep Reinforcement Learning to Play Chess.

 (September). Retrieved from http://arxiv.org/abs/1509.01549

Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A Critical Review of Recurrent

 Neural Networks for Sequence Learning. 1–38. Retrieved from

 http://arxiv.org/abs/1506.00019

Mahbod T., Ebrahim B., Wei L., & Ali A. G. 2009. A detailed analysis of the KDD

CUP 99 data set. Proceedings of the Second IEEE international conference on

Computational intelligence for security and defense applications (CISDA'09).

IEEE Press, Piscataway, NJ, USA, 53-58.

Mahmood T., Afzal U. (2013). Security Analytics: Big Data Analytics for

 cybersecurity: A review of trends, techniques and tools. 2013 2nd National

 Conference on Information Assurance (NCIA), Rawalpindi, 2013, pp. 129-

 134. doi: 10.1109/NCIA.2013.6725337

60

Mahmud, M., Kaiser, M. S., Hussain, A., & Vassanelli, S. (2018). Applications of

 Deep Learning and Reinforcement Learning to Biological Data. IEEE

 Transactions on Neural Networks and Learning Systems, 29(6), 2063–2079.

 https://doi.org/10.1109/TNNLS.2018.2790388

Maiero, C., & Miculan, M. (2012). Unobservable Intrusion Detection Based on Call

 Traces in Paravirtualized Systems. Proceedings of the International

 Conference on Security and Cryptography, 300–306.

 https://doi.org/10.5220/0003521003000306

Manliguez, C. (2016). Generalized Confusion Matrix for Multiple Classes

 Generalized Confusion Matrix for Multiple Classes The total numbers of false

 negative (TFN), false positive (TFP), and true negative (TTN) for each

 class i will be calculated based on the Generalized. (November), 6–8.

 https://doi.org/10.13140/RG.2.2.31150.51523

Mcdaniel, P., Smith, S. W., Cárdenas, A. A., Manadhata, P. K., Hp, |, Sreeranga, L.,

 & Rajan, P. (2013). SYSTEMS SECURITY Big Data Analytics for Security.

 (December), 74–76.

Mishra, P., Pilli, E. S., Varadharajan, V., & Tupakula, U. (2017). Intrusion detection

 techniques in cloud environment: A survey. Journal of Network and

 Computer Applications, Vol. 77, pp. 18–47.

 https://doi.org/10.1016/j.jnca.2016.10.015

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., &

 Riedmiller, M. (2013). Playing Atari with Deep Reinforcement Learning. 1–9.

 Retrieved from http://arxiv.org/abs/1312.5602

Nemati, S., Ghassemi, M. M., & Clifford, G. D. (2016). Optimal medication dosing

 from suboptimal clinical examples: A deep reinforcement learning approach.

 Proceedings of the Annual International Conference of the IEEE Engineering

 in Medicine and Biology Society, EMBS, 2016-October, 2978–2981.

 https://doi.org/10.1109/EMBC.2016.7591355

Nicholson, C. (2018). A Beginner's Guide to LSTMs and Recurrent Neural Networks.

 Retrieved from. https://skymind.ai/wiki/lstm

Niyaz, Q., Sun, W., Javaid, A. Y., & Alam, M. (2015). A deep learning approach for

network intrusion detection system. EAI International Conference on Bio-

Inspired Information and Communications Technologies (BICT).

https://doi.org/10.4108/eai.3-12-2015.2262516

61

Olah, C. (2015). Understanding lstm networks. Retrieved from

 http://colah.github.io/posts/2015-08-Understanding-LSTMs/

OpenAI. (2019, August). OpenAI Gym. Retrieved from https://gym.openai.com/

Panigrahi, R., & Borah, S. (2018). A detailed analysis of CICIDS2017 dataset for

 designing Intrusion Detection Systems. International Journal of Engineering

 and Technology (UAE), 7(3.24 Special Issue 24)

Pervez, M. S., & Farid, D. M. (2014). Feature selection and intrusion classification in

 NSL-KDD cup 99 dataset employing SVMs. SKIMA 2014 - 8th International

 Conference on Software, Knowledge, Information Management and

 Applications, 1–6. https://doi.org/10.1109/SKIMA.2014.7083539

Powers, D.M.W. (2011). Evaluation: from Precision, Recall and F-measure to ROC,

 Informedness, Markedness and Correlation. Journal of Machine Learning

 Technologies, 2(1), 37-63

Razaq, A., Tianfield, H., & Barrie, P. (2016). A big data analytics based approach to

 anomaly detection. 2016 IEEE/ACM 3rd International Conference on Big

 Data Computing Applications and Technologies (BDCAT), 187–193.

 https://doi.org/10.1145/3006299.3006317

Servin, A., & Kudenko, D. (2008). Multi-agent reinforcement learning for intrusion

 detection: A case study and evaluation. Frontiers in Artificial Intelligence and

 Applications, 178, 873–874. https://doi.org/10.3233/978-1-58603-891-5-873

Sharafaldin, I., Habibi Lashkari, A., & Ghorbani, A. A. (2018). Toward Generating a

 New Intrusion Detection Dataset and Intrusion Traffic Characterization.

 (Cic), 108–116. https://doi.org/10.5220/0006639801080116

Sharifi, A. M., Amirgholipour, S. K., & Pourebrahimi, A. (2015). Intrusion detection

 based on joint of K-means and KNN. Journal of Convergence Information

 Technology, 10(5), 42

Tang, T. A., Mhamdi, L., McLernon, D., Zaidi, S. A. R., & Ghogho, M. (2016). Deep

learning approach for Network Intrusion Detection in Software Defined

Networking. Proceedings - 2016 International Conference on Wireless

Networks and Mobile Communications, WINCOM 2016: Green

Communications and Networking, 258–263.

https://doi.org/10.1109/WINCOM.2016.7777224

University of New Brunswick Canadian Institute for Cybersecurity. (n.d.). NSL-KDD

 dataset. Retrieved from https://www.unb.ca/cic/datasets/nsl.html

62

University of New Brunswick Canadian Institute for Cybersecurity. (n.d.). Intrusion

 Detection Evaluation Dataset (CICIDS2017) dataset. Retrieved from

 https://www.unb.ca/cic/datasets/ids-2017.html

University of New South Wales Canberra at Australian Defence Force. (2015). The

 UNSW-NB15 dataset. Retrieved from https://www.unsw.adfa.edu.au/unsw-

 canberra-cyber/cybersecurity/ADFA-NB15-Datasets

Wang, L., Zhang, D., Gao, L., Song, J., Guo, L., & Shen, H. T. (2018). MathDQN:

 Solving arithmetic word problems via deep reinforcement learning. 32nd

 AAAI Conference on Artificial Intelligence, AAAI 2018, 5545–5552.

Yen, T., Oprea, A., & Onarlioglu, K. (2013). Beehive: large-scale log analysis for

 detecting suspicious activity in enterprise networks. Proceedings of the 29th

 Annual Computer Security Applications Conference, 199–208.

 https://doi.org/10.1145/2523649.2523670

Zhou, Z., Li, X., & Zare, R. N. (2017). Optimizing Chemical Reactions with Deep

 Reinforcement Learning. ACS Central Science, 3(12), 1337–1344.

 https://doi.org/10.1021/acscentsci.7b00492

63

APPENDIX

A. COMPARISON OF STREAMING DATA FRAMEWORKS

Figure A.1. Comparison of Streaming Data Frameworks

64

