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ABSTRACT 

 

A DEEP REINFORCEMENT LEARNING APPROACH TO NETWORK 

INTRUSION DETECTION 

 

Gülmez, Halim Görkem 

Master of Science, Computer Engineering 

Supervisor: Assist. Prof. Dr. Pelin Angın 

 

September 2019, 64 pages 

 

Intrusion detection is one of the most important problems in today’s world. Every day 

new attacks are being used in order to breach the security of systems and signature-

based security systems fail to detect these zero-day attacks. An anomaly-based 

intrusion detection system, particularly one that utilizes a machine learning approach, 

is needed to effectively handle these kinds of attacks. With the advancements in big 

data technologies, storing and handling data became easier, therefore big data 

analytics has become an indispensable tool for various tasks. In this thesis, we propose 

a framework for detecting intrusions in network systems using big data analytics in 

real time. The framework is built on Apache Spark, which runs anomaly detection 

algorithms on streaming data after it has been trained offline with the normal behavior 

of the system. Two different machine learning solutions have been implemented 

separately for comparison: long short-term memory recurrent neural networks and 

deep reinforcement learning. Reinforcement learning is built on state and action pairs 

with associated positive or negative awards. For the solution in this thesis, alerts on 

attacks and non-alerts on normal behavior are positively rewarded to train learning 

agents. Reinforcement learning is combined and improved with neural networks by 

using them for Q-learning. A variety of intrusion detection datasets from the literature 

are used for experimentation, including NSL-KDD, UNSW-NB15 and CICIDS2017. 
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The deep reinforcement learning solution is emphasized as the better solution based 

on the experiment results. 

Keywords: Cybersecurity, Long Short-term Memory Recurrent Neural Networks, 

Deep Reinforcement Learning, Big Data, Cloud Systems  
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ÖZ 

 

AĞ SALDIRI TESPİTİNDE DERİN PEKİŞTİRMELİ ÖĞRENME 

YAKLAŞIMI 

 

Gülmez, Halim Görkem 

Yüksek Lisans, Bilgisayar Mühendisliği 

Tez Danışmanı: Doç. Dr. Pelin Angın 

 

Eylül 2019, 64 sayfa 

 

Ağ saldırıların tespiti günümüzdeki en önemli problemlerden biridir. Her gün yeni 

ataklar güvenlik sistemlerini delme amacıyla kullanılmaktadır. İmza tabanlı güvenlik 

sistemleri bu sıfır-gün ataklarını tespit etmekte başarısız olmaktadır. Anomali tabanlı 

bir sistem, özellik bir makine öğrenmesi yaklaşımından faydalanan bir sistem, bu tarz 

atakların tespitinde gereklidir. Bu tez ağ sistemlerinin güvenliğinin büyük veri 

analitiklerinin gerçek zamanlı kullanılmasıyla sağlanması üzerinedir. Büyük veri 

teknolojilerindeki gelişmeler, verinin saklanmasını ve işlenmesini kolaylaştırmıştır, 

bu nedenle büyük veri analitikleri birçok amaç için kullanılabilecek bir kaynak haline 

gelmiştir. Bu tezde önerilen sistem akan büyük veri kullanarak çalışacaktır. Kullanılan 

veri, ağ hakkında güvenlik açısından önemli bilgileri içermektedir. Apache Spark, 

verinin işlenmesinde araç olarak kullanılacaktır. Büyük veri işlendikten sonra 

çözümün kendini eğiten ve anomalileri yakalayan makine öğrenmesi kısmına 

aktarılacaktır. Uzun kısa-dönem hafızalı yinelemeli sinir ağları ve derin pekiştirmeli 

öğrenme gibi farklı makine öğrenmesi çözümleri karşılaştırma amacıyla 

kullanılmıştır. Pekiştirmeli öğrenme durum ve aksiyon ikilerinin pozitif ya da negatif 

ödüllendirilmesi üzerine kurulmuştur. Bu tezde önerilen çözümde, anomali olduğunda 

uyarı yapılması ya da normal durumlarda uyarı yapılmaması pozitif olarak 

ödüllendirilmiştir. Pekiştirmeli öğrenme, Q-learning’de kullanılmak üzere sinir ağları 

ile birleştirilmiş ve geliştirilmiştir. NSL-KDD, UNSW-NB15, CICIDS2017 gibi farklı 

veri kümeleriyle deneyler yapılmıştır. Farklı senaryolarla birlikte en iyi çözüm 

bulunmaya çalışılmış, detaylıca çözümler test edilmiştir. Deneyler sonucunda, derin 

pekiştirmeli öğrenme çözümünün diğer çözüme kıyasla daha iyi sonuç verdiği 

vurgulanmıştır. 
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CHAPTER 1  

 

1. INTRODUCTION 

 

1.1. Rise of the Big Data 

Big data has become a popular concept with the technological advances in the past 

decade. Before then, it was extremely costly to store the data because acquiring the 

needed disk space was not as easy as today. Cloud systems were expensive and not 

common, therefore, to store data, companies needed to have their own storage facilities 

which required time, space and money, much more than compared with today. Today, 

we have unlimited storage, especially provided by cloud services, at our disposal. With 

the competition between service providers, the prices of these services are decreasing, 

whereas the quality of the services are rising. Moreover, many different frameworks 

and tools exist to handle different types of big data. All these advancements have 

recently made big data one of the most popular concepts in computer science, which 

can be seen in the figure below (Google Trends, 2019). 
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Figure 1.1. Rising Popularity of Big Data (Google Trends, 2019) 

 

The ability to store and process data in large volumes and velocity provides significant 

benefits for analyzing network data in real time to detect anomalies that could signal 

presence of attacks on the system. In this thesis, a big data analytics approach is 

proposed for intrusion detection in networks, based on different machine learning 

solutions, namely long short-term memory recurrent neural networks, and deep 

reinforcement learning, which are capable of incorporating the temporal behavior of 

the system into the anomaly detection task. Since the system is desired to respond in 

near real-time, streaming big data from the network is used. Shahrivari (2014) stated 

that batch processing needs the batch to load before starting to process, which is not 

suitable for our task. As filling a batch might take several hours, building a security 

system upon this kind of structure would be a mistake, because most of the attacks will 

do their harm in a matter of seconds. Streaming data processing, on the other hand, 

works in real-time, and enables real-time queries on the side, too. Therefore, stream 

processing has been chosen as the suitable means of processing in our solution. 
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An initial prototype of the proposed system using Apache Spark and the TensorFlow 

machine learning framework for both long short-term memory recurrent neural 

networks and deep reinforcement learning has been developed and promising results 

have been achieved with experiments on large network attack datasets including KDD 

Cup (1999), NSL-KDD (Mahbod et al., 2009), CICIDS2017 (2017) and UNSW-NB15 

(2015). 

1.2. Increasing Popularity of Cloud Computing 

In the last decade, networking and virtualization technologies rapidly advanced. These 

advancements have made cloud platforms the most popular choice for the data storage 

and computing needs of many enterprises. As major cloud service providers offer 

reliable platforms, many companies have migrated their infrastructures and systems 

to those platforms. 

With the increasing popularity of the cloud platforms and their decreasing costs, they 

have become one of the main targets of cyberattacks. Similarly, popularity of the 

Internet of Things (IoT) paradigm has widened the attack surface for cloud systems 

and increased the number of vulnerabilities attackers can exploit. Additionally, 

Ibrahim, Hamlyn-Harris, and Grundy (2016) stated that the unique nature of cloud 

infrastructures have created new security threats. In the Global Threat Report of 

Carbon Black (2019), it is stated that users of Carbon Black’s cloud security solutions 

are seeing a total of one million attempted cyberattacks per day. 

The vulnerability of cloud platforms to attacks creates a need for security measures to 

prevent those attacks or detect them and take action when an attack happens. Although 

some of the existing security methods can be applied to cloud systems, new methods 

designed truly for the cloud systems would be preferable. 

Most of the cloud providers provide monitors for their systems. These monitors track 

various metrics of the system, such as CPU utilization, disk I/O’s, memory utilization 

etc. API’s for accessing these metrics are provided too, which makes them usable for 

custom security solutions. 
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1.3. Importance of Detecting Attacks in Real-time 

Online systems, especially cloud systems, are prone to zero-day attacks, which are 

malicious activities not observed previously. Even though security mechanisms are 

updated quickly, even seconds are important to provide high reliability in such 

systems. Hence, a real-time security system, which is not signature-based, is more 

suitable for the cloud. The system should be able to detect both old and new attack 

methods as fast as possible. As the system will be under new attacks every day, it is 

important that the system will easily adapt to those attacks. 

In order to create a security system, which adapts to and detects new attacks, machine 

learning solutions are required. Machine learning algorithms can in general be 

considered under the following categories: supervised learning, unsupervised 

learning, semi-supervised learning, and reinforcement learning. Supervised learning 

methods can detect new attacks by analyzing old anomalies they are trained with 

initially. Unsupervised learning methods will enable the system to handle new attacks 

and learn from them. In reinforcement learning, the system learns from past actions 

and their consequences. The solutions described in this paper fall under the categories 

of supervised learning (long short-term memory recurrent neural networks), and 

reinforcement learning (deep reinforcement learning with Q-learning). In this thesis, 

both solutions proposed use neural networks. The main difference is that the LSTM-

RNN solution puts neural networks in the center, whereas the DRL solution benefits 

from neural networks as a part of its solution. This combination makes the 

reinforcement learning solution a hybrid of reinforcement learning and supervised 

learning. 

At first, LSTM-RNN solution seemed to be effective as it runs on time series data. On 

the other hand, the deep reinforcement learning solution was also promising as it was 

more suitable to the zero-day attack detection aspect of the problem. Both solutions 

are compared using the same datasets in different combinations in order to prove our 

initial perspective. 
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1.4. Outline 

The remainder of this thesis is organized as follows: Chapter 2 provides an overview 

of related work in intrusion detection systems. The chapter is divided into three 

subsections about intrusion in cloud networks, big data for IDS, and machine learning 

solutions in cybersecurity. Chapter 3 elaborates on the two ML solutions proposed in 

this thesis, DRL and LSTM-RNN. Experiments, datasets, and evaluation metrics are 

described in Chapter 4. Finally, the thesis is concluded, and future work targets are set 

in the conclusion chapter, Chapter 5. 
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CHAPTER 2  

 

2. BACKGROUND AND RELATED WORK 

 

2.1. Intrusion Detection in Cloud Networks 

Network intrusion detection has been a well-studied topic with many different 

approaches proposed along the years. While some of these solutions can also be 

applied in a cloud environment, because of the different characteristics of the cloud 

environments and significantly larger network traffic volumes, several new 

approaches have been suggested to solve the problem of intrusion detection in the 

cloud. In a cloud environment, intrusion detection monitors can be deployed at various 

locations. Maiero and Miculan (2011) suggested that with the usage of virtualization 

techniques, intrusion detection monitors can be deployed in a guest VM or in virtual 

machine monitors. Beyond host or network device monitoring, distributed 

collaborative monitoring approaches are also utilized to catch system-wide attacks as 

described by Bharadwaja et al. (2010). In these types of solutions, infrastructure 

problems need to be solved, since the system must support massive amounts of data 

gathered from different monitors and these data must be processed quickly to detect 

attacks as soon as possible. 

Deshpande et al. (2014) proposed an intrusion detection model for cloud 

environments. The model consists of a data logging module, a preprocessing module, 

an analysis and decision engine, and a management module. Logs are obtained using 

the Linux audit framework. After logs are ready for processing, a k-nearest neighbor 

classifier comes into play and decides if there is an anomaly or not. Different than the 

solution in this paper, system calls are used for detecting anomalies. 
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2.2. Big Data Approaches for IDS 

Enterprises collect terabytes of data related to security. Large enterprises record 10 to 

100 billion events daily. These numbers will only increase as the enterprises hire new 

staff and use new devices. The situation gets worse as these enterprises start to use 

cloud architectures as depicted by Mcdaniel et al. (2013).  

Big data analytics is the key to analyze and process this big information. For this 

purpose, in 2012, Cloud Security Alliance formed a group called Big Data Working 

Group. This group’s (2013) last report “Big Data Analytics for Security Intelligence” 

focuses on big data’s role in security. It is foreseen that performing detailed analytics 

on the data and getting real-time analysis on them is possible today thanks to Big Data 

solutions. 

Before the latest advancements, collecting big data was not logical in terms of cost. 

Hence the logs and events were being deleted in specific periods. With the help of the 

Hadoop framework and new big data tools, deploying big data became easier. 

Querying dirty, inconsistent and large-in-volume data was not effective. Now, big data 

applications help to clean, prepare and query the big data in an effective way.  

It should be noted that data centers will be a target for data thefts. Therefore, their 

protection is important. Also, the source of the data and its validity should be checked 

while acquiring the big data. Analysis of wrong data will create wrong results. 

Furthermore, the results will be observed by people, hence it will be better to visualize 

the data; which means improvements in human-computer interaction are needed.  

Although big data has changed security understanding in SIEMs (Security Information 

and Event Management), it is not the solution for all the problems in security. 

Mcdaniel et al. (2013) emphasized that researchers should always continue to find 

new methods to prevent attacks. With big data, privacy infringement might be another 

issue. Computer scientists need to follow commonly agreed privacy guidelines. 
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Mahmood and Afzal (2013) stated that threat detection and monitoring is the largest 

field in security analytics for financial and defense institutions. Big data analytics' help 

in this area is that, it can predict and detect malicious or dangerous network traffic 

patterns as well as unusual user behaviors. Additionally, it will help unveil sudden 

changes -which typically are suspicious incidents- in network servers. 

In implementing a big data security analytics solution to a corporation, firstly, a 

security analytics business strategy must be prepared. Also, C-level executives must 

be aware of the benefits and must understand the technical basis. Corporations should 

build a platform in which they can experiment with the data, using big data analytics 

tools and techniques. It may also happen to be a necessity to hire experienced 

personnel to be consulted in data science related issues. Furthermore, there should be 

layers which have to run 24/7. For instance, a network monitoring layer should help 

system designers to monitor network streams lively. Also, a live layer for alerting 

suspicions will serve ensuring cybersecurity. 

Recent works have proposed using big data processing approaches to solve the 

problem of intrusion detection in cloud environments. One of these solutions was 

introduced by Casas et al. (2017). They ıdeveloped a system called Big-DAMA, which 

utilized Apache Spark for both batch data processing and streaming data processing. 

Then, they combined their solution with five different supervised machine learning 

algorithms. 

To detect a possible attack using intrusion detection systems (IDS), Mishra et al. 

(2017) stated that basically two techniques can be used: In misuse detection, the IDS 

knows about previous attack patterns and tries to catch an attack by comparing the 

collected data with previous patterns. In anomaly detection, the IDS does not know 

about any previous attacks and tries to find anomalies in the network data, which could 

be possible signs of attacks. In recent years, machine learning approaches have been 

used successfully for both of these techniques. 
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2.3. Machine Learning Solutions for Intrusion Detection  

With the advancements in machine learning in recent years, most of the anomaly-

based intrusion detection systems have started benefiting from machine learning 

algorithms. One of the successful solutions, Beehive, was introduced by Yen et al. 

(2013). In their solution, they used logs to detect network intrusions. They separated 

their features into four categories:  

• Destination-Based Features: Connections to uncommon destinations might 

indicate suspicious behavior. New destinations are the first destination-based 

feature. If a destination has never been contacted in an observation period, it 

is new. The problem here is there are lots of new destinations, which belong 

to cloud services or popular services. Therefore, a whitelist is used to increase 

performance. 

• Host-Based Features: Hosts installing new and potentially unauthorized 

software indicate suspicious activity. The software configurations on a host are 

inferred from the user-agent strings included in HTTP request headers. These 

strings include the details of the application making a request. The number of 

these new strings might signal a potential threat. 

• Policy-Based Features: For a host, the number of blocked, challenged or 

consented domains that are contacted by the host are counted. 

• Traffic-Based Features: Sudden spikes in a host’s traffic volume might be an 

indication of a threat. A spike is defined when a host generates more 

connections than a threshold. 

By using these four different feature types, they have been able to apply an 

unsupervised learning algorithm, k-means clustering, to detect suspicious activities. 

Although the Beehive solution is simple yet effective, it does not work in real-time, 

whereas the solution described in this paper works near real-time. 

Various solutions suggested by different authors use k-means clustering. An example 

of such a solution is described by Razaq et al. (2016). The main problem with these 
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solutions is the need of predefining k. Predefining k makes the solution a supervised 

one, whereas it would be beneficial to keep it unsupervised when using k-means 

clustering. 

A combination of k-means clustering and K-Nearest Neighbor was proposed by 

Sharifi et al. (2015). They first applied k-means clustering to define clusters and their 

centers. The clustering process is applied multiple times in order to achieve the best 

structure. Then this structure is used to classify the data using KNN. Their solution is 

somewhat similar to Razaq et al. (2016)’s solution. Rather than tweaking k-means like 

them, they combined it with KNN. Their overall accuracy was around %90, which 

should be improved in order to establish a secure system. 

Another combination solution including KNN and decision trees is suggested by 

Balogun and Jimoh (2015). This time, decision trees come into play first to create 

node information depending on the rules of the resulting decision tree. This 

information is added to the original dataset. Finally, KNN does the rest and classifies 

the data. Their solution could detect new attacks (attacks not included in the training 

set) with remarkable accuracy. 

Hariharan et al. (2019) proposed a solution with a similar structure to the one described 

in this thesis. They retrieved the data using Elasticsearch (2019). After the retrieval 

part, several machine learning algorithms (Isolation Forest, Histogram Based Outlier 

Score, Cluster-Based Local Outlier Factor, and k-Means Clustering) are run on the 

data. Resulting anomalies are reported to the system administrators. Their solution, 

CAMLPAD, had a %95 accuracy, which was promising. 

One of the solutions utilizing Support Vector Machines (SVM) was proposed by 

Pervez and Farid (2014). Their algorithm was a filtering algorithm tested on the NSL-

KDD dataset for intrusion classification tasks. Although their approach performed 

well in training sets, in the test sets it failed to detect network intrusions which the 

system had not seen before. 
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Recent years have shown many promising results of applying deep learning methods 

to machine learning problems and intrusion detection is not an exception for this case. 

Kim and Kim (2016) and also Chuan-long et al. (2017) proposed applying recurrent 

neural networks to intrusion detection systems and got very promising results. These 

works only show that RNN could be used while detecting anomalies in related data 

and they do not propose a complete end-to-end intrusion detection system. The 

approach described in this paper differs from these previous approaches in that it 

attempts to build a self-healing cloud system through deep learning with recurrent 

neural networks, which integrates time dependencies between observations (data 

points) in the system into the learning process to provide a more accurate 

representation of the attack progression and normal system processes. 

Another deep learning solution is proposed by Behera et al. (2018), which is 

implemented using convolutional neural networks (CNN). In CNN, there are neurons 

with learnable weights and biases. CNN has five types of layers, namely, input layer, 

convolution layer, rectified linear unit, pooling layer, output layer. Different than 

standard neural networks, the convolution layer uses dot product of weights and local 

regions to calculate inputs for the next layer.  Rectified linear unit is used for better 

gradient propagation and effective processing. The authors had successful results with 

their experimentations using the NSL-KDD dataset. Their solution proves the 

usability of deep learning for network intrusion detection. The solution proposed in 

this thesis combines deep learning with reinforcement learning for creating a system, 

which can adapt for zero-day attacks. 

There are several solutions using reinforcement learning to detect network intrusions. 

Deokar and Hazarnis (2012) used log files for their IDS solution. There are several 

types of log files: server-side log files, client-side log files, proxy-side log files, 

firewall-side log files, network-side log files, and system-side log files. In their 

proposed system, log files are converted to XML files by a Processing Unit (PU). 

After that, if a match with a known attack in the knowledge base is found, the attack 

gets reported. Otherwise, an association rule database decides whether there might be 
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signs of an attack or not. Finally, rules are updated according to results of this 

estimation. This solution, rather than using reinforcement learning as a basis, benefits 

from reinforcement learning as a side solution. The approach described in this paper, 

on the other hand, puts reinforcement learning in the heart of the solution. 

Another solution using reinforcement learning is suggested by Servin and Kudenko 

(2008). In their solution, a multi-agent hierarchical architecture has been developed. 

Different sensor agents monitor different states of the network and pass short signals 

up in the hierarchy. Agents at the higher levels of the hierarchy, therefore, have a better 

view of the network. Rather than processing all the information and acting on them, 

these agents leave the local information processing to lower level agents. Finally, these 

higher-level agents learn whether they should alarm the system admin or not using the 

information provided by lower level agents. This multi-agent RL solution works 

accurate enough as implied by the authors, though it is not tested using different 

datasets. Additionally, the RL solution in this thesis includes a deep learning approach, 

which differs from the solution of the authors. 

Elderman et al. (2016) applied reinforcement learning in a cyber security simulation 

to find out the best strategy for both the defender and attacker sides of a cyber-security 

simulation modeled as a Markov game. In their simulation, they tried out different 

techniques such as Monte Carlo learning, Q-learning and neural networks. 

Experiments held showed that Monte Carlo learning was the most effective one for 

both sides of the Markov game. Their work shows that RL can be used with different 

techniques for cybersecurity; also, it can be used as an attacking instrument, too. 

2.4. Deep Reinforcement Learning Solutions in Different Fields 

Deep Reinforcement Learning is being used in many different fields. Although it is 

especially common in AI solutions such as robots, game playing agents, there are 

various approaches implementing it for distinct purposes. Playing Atari is one of the 

classic examples, which is implemented by Mnih et al. (2013). In their solution, 

similar to the solution in this thesis, a convolutional neural network is combined with 
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reinforcement learning. They have used a modified Q-learning algorithm to train the 

network. Cuayahuitl et al. (2015) implemented a DRL solution for playing a strategic 

board game (Settlers of Catan). Their solution had significant success over other 

random, rule-based or supervised-based solutions. Giraffe, a chess engine developed 

by Lai (2015), implements deep reinforcement learning to play chess. MathDQN, 

proposed by Wang et al. (2018), used DRL to solve arithmetic word problems. Again, 

similarly, they have used a two-layer feed-forward neural network in order to find out 

the potential Q-value. 

An example usage of DRL in the field of medicine is suggested by Nemati et al. 

(2016). In the solution, DRL has been used for setting medication doses optimally in 

order to provide the best treatment for the patients. Likewise, chemical reactions are 

optimized with DRL in the solution described by Zhou et al. (2017). 

DRL is used in the biology field as mentioned by Mahmud et al. (2018) in their paper. 

It is being used to extract features from biological sequence data (DNA, RNA, and 

amino acids) and perform predictions on them. Also, it is mentioned that DRL is used 

for bioimaging as well for pixel-level, cell-level and tissue-level analyses. 

Additionally, it is stated that DRL is implemented in many medical imaging 

applications for analyzing medical images obtained from different scans (MRI, CT, 

PET etc.). 
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CHAPTER 3  

 

3. PROPOSED APPROACH 

 

3.1. Overview 

In this work, we propose an intrusion detection system that works with real-time data 

analytics to detect possible attacks and develop a resilience mechanism through deep 

learning with recurrent neural networks. 

The solution involves the collection of system metrics from the network and near real-

time processing of those metrics using big data analytics to discover anomalies. Metric 

collection is done by metric collection agents deployed in related parties like guest 

VMs. These data include network packets and other related metrics like VM usage 

metrics, HTTP server performance etc. After collection, these metrics are sent as a 

stream to a stream processing engine. The stream processing engine gathers the 

metrics inside the stream, considering their timestamps and processes these data by 

feeding them to a recurrent neural network trained previously. If the network finds an 

anomaly in the data, it labels it and triggers an alarm to inform the system 

administrators. The details of these steps are given in the following sections. 

3.2. Metric Collection 

Popular cloud system providers such as AWS share the statistics and state of their 

cloud systems through an API. These statistics contain utilization of CPU, RAM, 

disks, number of packets/bytes received/transmitted, and many other details about the 

current state of the system. In this work, we utilize guest VM agents for metric 

collection, since this approach does not depend on the cloud infrastructure and is more 

flexible than virtual machine monitor solutions. At the metric collection phase, the 

agents collect the required metrics from the guest VM like network flow, basic system 

usage metrics such as CPU utilization, disk read/write metrics etc. and usage metrics 
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of applications that can affect the system performance. The metric collection agent 

has two components, the producer and the consumer. The producer component gathers 

the system and application metrics from the VM using different interfaces. To achieve 

this, the producer must have a pluggable architecture that written plug-ins can gather 

the metrics from, knowing how to get them. The responsibility of the consumer side 

is to gather metric records from the producer and pass them onto the processing phase. 

3.3. Metric Processing 

Due to the large volume and velocity of the data collected from the systems, big data 

processing frameworks are needed to analyze the data. Big data can be processed as 

batches or as streams. Deciding which type of processing is needed is up to the task. 

Shahrivari (2014) stated that the standard MapReduce model and its implementations 

are totally focused on batch processing. Therefore, before any computation starts all 

the input data have to be available. Yet, recent applications have more stream-like 

demands. Additionally, applications might be needed to run continuously, as in the 

example of a query that catches special anomalies from ongoing system events. If we 

handle the data as batches, we need to wait for some amount of time to create batches 

from the given data. After the data become batch, the processing starts. This 

contradicts with our purpose of near real-time detection in this work, as we need to act 

in real time in order to prevent or stop attacks before they can harm the cloud system. 

Stream processing on the other hand involves handling the data in memory as they 

arrive. 

Before starting the work, different frameworks (Storm, Spark, Flink) were compared 

with each other for handling streaming data. Ellingwood (2016) described the pros 

and cons of these frameworks. Storm provides near real-time processing, is scalable, 

and fault tolerant. On the other hand, it is not stateful, unless used with Trident – which 

increases the latency. Flink has higher throughput than Storm, allows SQL-style 

querying, is more high-level, and has machine learning libraries. Flink is a younger 

framework, therefore it cannot be said that it has been tested widely. Therefore, 
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tutorials and example solutions are insufficient compared to other frameworks. Spark 

is designed for machine learning, caches datasets in memory, and is successful for 

varied processing workloads. 

In this work, Apache Spark (Apache, 2019) has been used to process the stream data 

collected from systems. Spark has advantages like fault-tolerance, in-memory 

computation, being faster than similar frameworks, having a wider community, 

multiple language support etc. Shahrivari (2014) stated that main memory is at least 

50 times faster than hard disk in terms of bandwidth. Latency is, likewise, much lower 

when using memory (nanoseconds vs milliseconds). Spark, having in-memory 

computing, is crucial for this work. The data that streams from our network are 

handled by Spark and served to our algorithm in order to detect possible attacks. 

Multiple networks can be watched by using this framework. In similar problems, it is 

seen that Spark is one of the most popular choices for streaming big data, like in Gupta 

and Rani’s (2018) zero-day malware detection framework. 

To support stream processing, many tools are available to specifically handle the 

requirements of this process. Tools like Apache Kafka (Apache, 2019) and Amazon   

Kinesis (Amazon, 2019) provide great support for handling stream data in a scalable 

way. In this solution, Apache Kafka is used to collect the metrics from the guest VM 

agents and pipe them to the stream processing engine. 

For testing the solutions proposed in this thesis, different datasets have been used. The 

data in these datasets are simulated as if they are streaming from a network. This 

simulation is performed by involving Apache Spark and Apache Kafka. Apache Kafka 

is a distributed streaming platform. It is used for reading and writing streams of data. 

Normally, it can be used with different applications, database management systems or 

stream processors. In this work, intrusion detection datasets are passed to Kafka to 

simulate them as if they are the real source of network data. How Kafka will handle 

the datasets is up to configurations. Different configurations were run in order to test 
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the processing power of Spark. The results below are produced by using a part of the 

UNSW-NB15 dataset as source data. 

 

Table 3.1. Process Time Measurements in Streaming Data Simulation 

Batch Size Sleep Between 

Batches in 

Seconds 

Elapsed Time in 

Seconds 

Real Elapsed 

Time in Seconds 

(w/o sleep)  

700000 0 5,29 5,29 

350000 0,5 8,63 8,13 

175000 0,5 12,82 11,32 

100000 0,5 19,66 16,66 

50000 0,5 34,58 28,08 

10000 0,5 153,81 119,31 

 

Although it can be seen in the table that Spark works in real-time with streaming data 

in the test with the whole set (700000 records), to replicate a real-life network 

situation, additional tests are run by slicing the set with different sizes and passing 

them to Kafka, waiting half a second in between. The experiments show that there is 

an overhead in preprocess and postprocess parts, which can be improved to minimize 

the time difference between tests. In the slowest scenario, the whole set is processed 

under two and a half minutes including wait times, which is still acceptable, but 

experiments have proven that Spark can handle much larger data flows easily. Spark 

provides a monitoring tool, Spark UI, which can be used in order to benchmark the 

process. According to benchmark results, configurations can be tweaked in order to 

find the most efficient solution related to the network itself. Configurations of 

networks with different sizes of data flow can be different, therefore network specific 

configurations might be needed. 
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3.4. RNN-based Learning for Intrusion Detection 

Signature-based intrusion detection systems rely on detailed information about 

previously observed attacks. These approaches fail in the case of cloud systems, which 

are open to attacks that might be novel. On the other hand, unsupervised learning 

methods enable us to prevent or at least detect changes in the system parameters, i.e. 

the normal behavior of the system. By this way, the system will be able to detect 

anomalies and will try to prevent if there is an attack going on. In the mean time, 

alarms will be created in the system so that if the security system cannot stop the 

attack, it will warn the user/owner of the cloud system. This is actually the main 

difference from a signature-based intrusion detection system. If this type of system 

does not have any information about an attack, it will most likely be missed. On the 

other hand, for a system with an unsupervised learning algorithm, even a minor 

anomaly might cause the system to detect if something is wrong. When run on isolated 

data points/cloud activity logs, unsupervised algorithms may not achieve very high 

accuracy due to noise in the data. For instance, observation of a sudden spike in CPU 

utilization might signal a possible attack even if it was caused by a legitimate process 

and does not persist for a long period, not causing any degradation in the performance 

of the system. Precisely for this reason, we need to be able to model the time-based 

behavior of the system by considering the data points collectively as a time series 

rather than isolated incidents.  

Recent advances in deep neural networks have made it an effective tool for many 

supervised and unsupervised learning tasks, achieving higher accuracy than 

competing approaches. Recurrent neural networks (RNN) are machine learning 

models consisting of nodes that are connected to each other. These nodes can 

memorize and pass information in a sequence, though they process the data items one 

by one. Therefore, they can handle inputs and outputs that are dependent on each other. 

As stated in Lipton et al.’s (2015) paper, RNNs have been successful in various tasks 

such as image captioning, speech synthesis, time series prediction, video analysis, 

controlling a robot, translating natural language and music generation. 
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Normally, there is only one single network layer in a node of a classic RNN. In 

conventional neural networks, it is not defined how the network will remember events 

of the past to use the information about them in the future. Recurrent neural networks 

aim to solve this issue by using the architecture depicted in Figure 3.1: 

 

 

Figure 3.1. An RNN Loop 

 

As shown in the diagram, the network gets an input x, processes it, and outputs an 

output h. The outcome of the process is used in the next step. To make it clear, the 

loop is demonstrated in an open form in Figure 3.2: 

 

 

Figure 3.2. An Unrolled RNN Loop 

 

The equation below represents the network mathematically: 
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ℎ𝑡 =  𝜃(𝑊𝑥𝑡
+ 𝑈ℎ𝑡−1) 

Here W stands for the weight matrix, which is multiplied by the input of the current 

time. The result is added to the multiplication of the output (hidden state) of the 

previous time step and its own hidden state and the hidden state matrix (transition 

matrix) U. As Nicholson (2018) describes, these weight matrices are used to define 

how much of the information both from the current input and past output will be used 

to determine the current output. If they generate an error, it will be used to update the 

weights to minimize error. The resulting sum is condensed by the hyperbolic tangent 

function 𝜃. 

Some examples of this standard RNN architecture include predicting the next 

character in a series of letters, picking the next note after a sequence of notes of a song, 

deciding where to go when controlling the motion of a robot etc. In our case, we use 

RNN in order to predict an intrusion, but we use LSTM-RNN because of the reasons 

that will be explained later in this section. 

LSTM stands for Long Short-Term Memory. Without it, gradients that are computed 

in training might get closer to zero (in case of multiplying values between zero and 

one) or overflow (in case of multiplying large values). In other words, as the time 

sequences grow, RNN might not connect older inputs to the outputs. LSTM adds 

additional gates to the architecture to control the cell state. By this modification, 

training over long sequences is not a problem anymore. 
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Figure 3.3. Disconnected dependencies in RNN 

 

In an LSTM-RNN there are four layers, which interact with each other. First of all, 

the input is received and copies itself into four. The first one goes into a sigmoid layer. 

This layer decides whether the output of the previous layer is needed and should be 

used, or it should be thrown away. Then another sigmoid layer decides which values 

are going to be updated. A tanh layer generates possible values, which might be 

included in the state. These two layers get combined to update the state. Finally, 

another sigmoid layer picks what we are going to output from our cell state. 

 

 

Figure 3.4. Single layered structure of standard RNN 

 

 

Figure 3.5. Four layered structure of LSTM-RNN 
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In the proposed model, we utilize the LSTM recurrent neural networks (RNN) 

algorithm, which is described by Hochreiter and Schmidhuber’s (1997) in detail, to 

detect deviations from the normal behavior of the network system under monitoring. 

Note that because of the nature of the algorithm, it first needs to learn the normal state 

of the system. By processing the normal state, the system will detect anomalies when 

metric values that deviate significantly from the normal behavior of the system are 

observed. In RNNs, inputs are not independent, every time sequence uses information 

from the previous ones. This feature perfectly suits our task, as we cannot directly 

specify if there is an anomaly without analyzing the system's state for the time being. 

The algorithm receives parameters of the system from Spark and uses those 

parameters as a time series input. The parameters indicate the state of the system's 

properties for that time series. The algorithm then serves these parameters to its 

prediction function. The prediction function tries to find out if there is an anomaly in 

the system. For example, if there is an unrealistic peak in the CPU utilization and 

number of disk operations and incoming network packets, this might indicate that the 

system is under a denial of service attack. From this point, the system can create an 

alarm to warn system administrators or initiate a security action. 

We have used LSTM-RNN in Tensorflow. LSTM is actually handled by Tensorflow 

itself, but we needed to convert some of the fields in data as we could not pass them. 

For example, fields like IP addresses, protocol types, service types etc. converted to 

data types that LSTM-RNN accepts, as strings are not accepted. After processing of 

LSTM-RNN is finished, we check if there was an attack. There was only one output 

for our experiment, which is the actual result: whether there was an attack (1) or not 

(0). How LSTM-RNN works in general is described by Olah (2015) and explained 

below step by step: 

1. The first layer gets current input and output of the past time series, then decides 

if the previous information is needed now. Actually, this layer can be called 
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the forget layer. h stands for the output of the past, x stands for the current 

input, W is the weight of this layer, and b is the bias. 

𝑓𝑡 =  𝜎(𝑊𝑓 . [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑓) 

2. Then we move onto the input layer. This layer is another sigmoid layer, which 

decides the values that are going to be updated. 

𝑖𝑡 =  𝜎(𝑊𝑖. [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑖) 

3. A hyperbolic tangent layer creates candidate values, which might be included 

in the cell state. Cell state is a straight line in our network that flows for the 

entire network. LSTM changes information on this state across the road with 

the help of the gates. 

𝑐𝑑𝑡𝑡 = tanh(𝑊𝑐𝑑𝑡. [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐𝑑𝑡) 

4. Results of all previous steps are combined in order to create an update to the 

cell state. 

𝑐𝑡 =  𝑓𝑡 ∗ 𝑐𝑡−1 +  𝑖𝑡 ∗  𝑐𝑑𝑡𝑡 

5. Finally, the output is decided. Naturally, the cell state is used in deciding. 

Another sigmoid layer takes part, and its output is multiplied the by cell state 

(state will go into tanh first). 

ℎ𝑡 =  𝜎(𝑊𝑜. [ℎ𝑡−1, 𝑥𝑡] +  𝑏𝑜) ∗ tanh (𝑐𝑡) 

We proposed this LSTM-RNN solution for intrusion detection under the name “A Big 

Data Analytical Approach to Cloud Intrusion Detection” to CLOUD2018 conference 

held in Seattle in June 2018. It is accepted in “Application and Industry Track: Cloud 

Data Processing” and presented by Assist. Prof. Dr. Pelin Angın at the conference. 

3.5. Deep Reinforcement Learning Based Intrusion Detection 

Reinforcement Learning (RL) is a machine learning approach built on rewards and 

punishments. RL agents make their decision by checking the state they are in and the 

available actions on the present state. Every decision ends up with a reward or 

punishment (negative reward). These rewards shape the future decisions. 

Reinforcement learning, therefore, is constructed on state-action pairs with resulting 

positive or negative rewards in an environment. An agent is connected to its 
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environment with action and recognition in the classic reinforcement-learning model 

as stated by Kaelbing et al. (1997). In every step of interaction, the agent gets the 

indication of the current state of the environment. After that the agent picks an action, 

which generates an output. With every action the state altered, the value of the 

alteration is sent to the agent via a scalar reinforcement signal. The agent should 

behave and choose actions, which will increase the sum of values of the signal in the 

long run. The agent will learn to do this over time by trial and error, guided by various 

algorithms.  

The agent aims to find a policy in which states and actions are mapped to each other 

and maximize the long-run measure of reinforcement. It is expected that the 

environment will be non-deterministic, which means taking the same action in the 

same state might create different results.   

Reinforcement learning differs from supervised learning. The most important 

difference is rather than presenting input/output pairs, the agent is informed with the 

immediate reward and resulting state after the action; but note that the agent is not 

informed about which action would give the best outcome in the long-term. Another 

difference is that on-line performance is important, the evaluation of the system is 

simultaneous with learning. 

Intrusion detection using Deep Reinforcement Learning (DRL), same as LSTM-RNN, 

depends on learning, unlike signature-based systems, which makes the system safer 

when it meets zero-day attacks.  DRL is different from LSTM-RNN: it does not 

require a long training session beforehand. This characteristic enables the system to 

be ready after training itself in the short term, but still most benefits are seen in the 

long term. 

In our proposed DRL system, there are two different states and four different actions. 

These states, actions and their related rewards and punishments are given in the below 

table: 
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Table 3.2. State, Action and Reward Table for RL 

State Action Reward 

Normal No Alarm +1 

Normal Alarm -1 

Attack Alarm +1 

Attack No Alarm -1 

 

Deep Reinforcement Learning has been used in many different areas, some of which 

are mentioned in Chapter 2 of this thesis. Combined with reinforcement learning, deep 

neural networks can be useful for many real-life problems. Reinforcement learning 

becomes deep reinforcement learning when deep neural networks are used for function 

approximation in policy and value functions. In a reinforcement learning algorithm 

with Q-learning, the value function is described as below: 

𝑄(𝑠, 𝑎) = 𝑟(𝑠) +  𝛾 𝑚𝑎𝑥𝑎′ ∑ 𝑃(𝑠′|𝑠, 𝑎)𝑄(𝑠′, 𝑎′)

𝑠′

 

This equation is called Bellman Equation. s stands for state, a stands for action, r 

represents reward, and P stands for state change possibility. According to the equation, 

Q value of a state-action pair equals the sum of the current reward and potential future 

Q-values. In short, the exact reward is added to possible rewards. The equation is a 

discrete one. On the other hand, in most real-life applications actions and states are 

continuous. Therefore, for the value function, an effective function approximation 

method is required. Neural networks come into play for this need. In the value 

function, every state and Q-value are calculated by using hidden layers of neural 

networks in between. The neural networks are trained by using backpropagation. The 

algorithm described by Minh et al. (2013) is given below step by step: 

Table 3.3. Deep Q-learning Algorithm 

Step Detail 

1 Initialize replay memory D to capacity N 
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2 Initialize Q-function with random weights 

3 for episode = 1, M do 

4 Initialize neural network from a random state s 

5 for t = 1, T do 

6 
Find Q-values for all actions using DNN: 

𝑎𝑡 = 𝑚𝑎𝑥𝑎𝑄∗(𝑠𝑡, 𝑎;  𝜃) 

7 
Choose an action at for current state st by using -

greedy exploration 

8 
Get to the next state st+1 with action at and pick the 

related reward rt 

9 Store transition (𝑠𝑡, 𝑎𝑡, 𝑟𝑡, 𝑠𝑡+1) in D 

10 
Sample random minibatch of transitions 

(𝑠𝑗, 𝑎𝑗, 𝑟𝑗, 𝑠𝑗+1) in D 

11 

 

Set 𝑦𝑗 =

{
𝑟𝑗,  𝑓𝑜𝑟 𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑠𝑗+1 

𝑟𝑗 +  𝛾 𝑚𝑎𝑥𝑎′𝑄(𝑠𝑗+1, 𝑎′; 𝜃), 𝑓𝑜𝑟 𝑛𝑜𝑛𝑡𝑒𝑟𝑚𝑖𝑛𝑎𝑙 𝑠𝑗+1 
 

12 Perform a gradient descent step on (𝑦𝑗 − 𝑄(𝑠𝑗 , 𝑎𝑗; 𝜃))2 

13 end for 

14 end for 

 

As described in the algorithm, DNN steps in as a part of the RL, and makes it DRL. 

In reinforcement learning, future rewards for steps later are not valued as much as 

immediate rewards. DNNs completes and enhances Q-functions by taking future 

rewards into account when deciding which action to take next. Another benefit of 

using DNNs in reinforcement learning is reducing the number of interactions needed 

by using sampling, which in the end increases the overall performance and the data 

efficiency of the algorithm. 
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Deep reinforcement learning, same as LSTM-RNN, is run through TensorFlow in the 

solution. Although TensorFlow is suitable to work with DRL, some alterations on the 

inputs are required. Similarly, changes on some of the parameters affect the results. 

The unsupervised nature of DRL seemed as the main reason behind the changing 

results. This attribute of DRL makes it work in the short-term, though in the short-

term the algorithm seems not to be working quite accurately, as it needs to train itself 

both in its neural networks part and in the RL part. Therefore, it becomes similar to 

the approach in a supervised algorithm, like LSTM-RNN. 
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Figure 3.6. Activity Chart for DRL Algorithm 

 

 





 

 

 

31 

 

CHAPTER 4  

 

4. EVALUATION 

 

4.1. Evaluation Metrics 

To measure the success of the solution, well-known metrics, namely accuracy, 

precision, recall, and F1, will be used. These metrics are defined Powers (2011) and 

are described in the table below: 

 

Table 4.1. Evaluation Metrics, Powers (2011) 

Name of the Metric Formula 

Accuracy 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝑇𝑟𝑢𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑁. + 𝑇𝑟𝑢𝑒 𝑃. +𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

Precision 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒
 

Recall 𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒

𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 + 𝐹𝑎𝑙𝑠𝑒 𝑁𝑒𝑔𝑎𝑡𝑖𝑣𝑒
 

F1 2 ∗
𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
 

 

These metrics have been used for all the datasets. Note that only the labelled dataset 

of NSL-KDD in the LSTM-RNN experiment has been analyzed by using multi-class 

classification with a confusion matrix, whereas the other datasets have been analyzed 

by using binary classification. A confusion matrix is used when there could be two or 

more classes in the output. Every row of the matrix represents the predicted class, 

whereas every column of the matrix presents the actual class. The number of correct 

predictions for a class is seen in the intersection of the said class in the predicted row 
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and the actual column. False predictions are the sum of the other numbers in the same 

column. Overall accuracy calculation does not change in the confusion matrix, only 

precision and recall slightly change (calculated individually using only False Positive 

and False Negative numbers of their related column) as stated by Manliguez (2016). 

4.2. Experiments with LSTM-RNN 

As mentioned in the previous chapters, Apache Spark was used as the stream 

processing engine collecting data from machine instances. The figure below shows 

the flow of the data in the developed prototype. Note that the same structure has been 

used in Deep Reinforcement Learning version of the system: 

 

 

Figure 4.1. End-to-end Working of the LSTM-RNN Solution 

 

4.2.1. Using UNSW-NB15 Dataset 

Different datasets were used to test the LSTM-RNN solution. The first dataset used 

was the “UNSW-NB15” dataset of UNSW ADFA. This dataset seemed well-rounded 

as it contained two million logs, with a total of 49 fields per record. The fields in the 

dataset, such as IP addresses, ports, protocols, packet details etc., are given below in 

detail. Some of the fields needed to be normalized to make them suitable for the 



 

 

 

33 

 

LSTM-RNN solution. Likewise, some insignificant fields are discarded from the data. 

The records in this dataset were labelled as attack or non-attack. 

The data has been simulated to make the system behave as if the data are streaming. 

As required by it, a training set is provided for LSTM-RNN, which has been run 

through Tensorflow, an open-source machine learning framework. The LSTM-RNN 

model on this framework, helps the system to decide whether a record could be an 

attack or not. 

Different runs were performed on the system, using various sample sizes. In these 

tests, train and test samples had the same sizes. The sizes are given in the below chart 

with the related accuracy scores. The tests showed that as the sample size went bigger, 

the accuracy also got higher. The relation is depicted in the figure below. This result 

raised the question: Could an unsupervised algorithm or reinforcement learning 

algorithm be more suitable for this kind of task? This question is answered in the 

upcoming sections. The accuracy rates were between %87 and %91 on average, and 

the highest accuracy was %93.1. 
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Figure 4.2. Accuracy vs Sample Size for LSTM-RNN with UNSW-NB15 

 

Table 4.2. UNSW-NB15 Features 

No. Name Type Description 

 

1 

 

srcip nominal Source IP address 

 

2 

 

sport integer Source port number 

 

3 

 

dstip nominal Destination IP address 

 

4 

 

dsport integer Destination port number 
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5 

 

proto nominal Transaction protocol 

 

6 

 

state nominal 
Indicates the state and its 

dependent protocol 

 

7 

 

dur float Total duration of the record 

 

8 

 

sbytes integer 
Source to destination 

transaction bytes 

 

9 

 

dbytes integer 
Destination to source 

transaction bytes 

 

10 

 

sttl integer 
Source to destination time to 

live value 

 

11 

 

dttl integer 
Destination to source time to 

live value 

 

12 

 

sloss integer 
Source packets retransmitted 

or dropped 

 

13 

 

dloss integer 
Destination packets 

retransmitted or dropped 

 

14 

 

service nominal e.g. http, ftp, smtp... 

 

15 

 

sload float Source bits per second 

 

16 

 

dload float Destination bits per second 
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17 

 

spkts integer 
Source to destination packet 

count 

 

18 

 

dpkts integer 
Destination to source packet 

count 

 

… 

 

… … … 

 

29 

 

stime timestamp Record start time 

 

30 

 

ltime timestamp Record last time 

 

… 

 

… … … 

 

49 

 

label binary 0 for normal 1 for attack 

 

4.2.2. Using KDD Dataset 

The KDD Cup 1999 Dataset is probably the most famous dataset in the network 

security field. It has been used as a go-to benchmark for IDS solutions. Although it is 

a 20-year-old dataset, and is missing some of the newest attacks, it is still popular 

among researchers. The dataset is quite comprehensive, there are five million records 

in it and each record has 41 features. Some of the important features are given in the 

below table: 

 

Table 4.3. KDD Dataset Features 

No. Name Type Description 
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1 

 

duration 

 

integer Record duration 

 

2 

 

protocol type nominal 
Type of the protocol (UDP, 

TCP…) 

 

3 

 

service nominal 
Destination service (ftp, 

telnet…) 

 

4 

 

flag nominal Status of connection 

 

5 

 

source bytes integer 
Source to destination 

number of bytes 

 

6 

 

destination 

bytes 
integer 

Destination to source 

number of bytes 

 

7 

 

land binary 

1 when source and 

destination addresses are the 

same land, 0 else 

 

... 

 

… … … 

 

23 

 

count integer 
Number of connections to 

the same host 

 

24 

 

srv count integer 
Number of connections to 

the same service 

 

25 

 

serror rate float 
% of connections with SYN 

errors 

26 srv error rate float 
% of connections (service) 

with SYN errors 

27 rerror rate float 
% of connections with REJ 

errors 
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28 srv rerror rate float 
% of connections (service) 

with REJ errors 

... … … … 

 

42 

 

label nominal 
“normal” for non-attacks, 

attack type for attacks 

 

Like the UNSW-NB15 dataset, some features are removed or modified to adapt them 

for our LSTM-RNN solution. Results were similar with the said dataset. Although the 

F1 score of the best run is promising, we can see that the number of false negatives is 

dragging the accuracy lower. 

 

 

Figure 4.3. Performance results for LSTM-RNN using KDD 

 

As represented in the related figure, the true positive rate among positives is quite 

high, but the number of false negatives is considerable, which hurts the accuracy in 

the end. Note that %10 percent of the datasets were used for both training (494.022 

records) and testing (311.080 records). 
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4.2.3. Using NSL-KDD Dataset 

NSL-KDD (n.d.) dataset is an improvement over the KDD Cup 1999 dataset. 

Redundant and duplicate records are eliminated in order to prevent bias for learners 

and classifiers. Also, the train and test sets are reasonable in terms of the number of 

records, which eliminates the need of selecting random portions out of the dataset. 

Additionally, it helps make the intrusion detection systems comparable over this 

dataset. It should be noted that all the fields are the same as the original dataset. The 

only change is the removed records. 

In the dataset, different sets are given: Sets with binary labels (anomaly or normal), 

sets with attack-type labels and difficulty levels, sets without the hardest cases. The 

results are depicted in the figures below. Note that full datasets have been used for the 

experiments. 

 

 

Figure 4.4. Performance results using full train dataset with different test datasets of NSL-KDD for 

LSTM-RNN 
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Accuracy slightly reduces when the system gets trained with 20% of the train set of 

the NSL-KDD datasets. Results of this experiment can be found in Figure 4.5 below: 

 

 

Figure 4.5. Performance results using %20 train dataset with different test datasets of NSL-KDD for 

LSTM-RNN 

 

4.2.4. Using CICIDS2017 Dataset 

As most of the datasets became unreliable and out of date, University of New 

Brunswick Canadian Institute for Cybersecurity (n.d.) created a new dataset 

containing up-to-date attacks with many features. The dataset is called CICIDS2017. 

The dataset includes both CSV and PCAP files of the network traffic. HTTP, HTTPS, 

FTP, SSH, e-mail protocols are used in the creation of this dataset. The dataset, in its 

CSV files for machine learning purposes, contains 79 features in total. It is stated by 
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Sharafaldin et al. (2018) that the dataset covered eleven criteria given in the below 

table; while none of the existing datasets was able to cover all these criteria. 

 

Table 4.4. Eleven Important Criteria for IDS Datasets (Sharafaldin, 2018) 

Name of the criteria Detail 

Complete Network Configuration A complete network topology with 

different network elements and varied 

operating systems is used.  

Complete Traffic A user profiling agent is used as well 

as twelve different machines as victim 

in victim network and real attacks 

from attack network. 

Labelled Dataset Attacks are labelled accordingly. 

Complete Interaction Different interactions are covered: 

Internet communication, 

communication within and between 

two different networks on internal 

LAN. 

Complete Capture All traffic information is captured and 

stored. 

Available Protocols All commonly used protocols are 

available. 

Attack Diversity The most common attacks of 2016 are 

available in the dataset. 

Heterogeneity Network traffic is captured from the 

main switch and from all victim 

machines. 

Feature Set More than 80 network flow features 

are included. 

MetaData Detailed structure of the attacks is 

given in the dataset and explained in 

the published paper of the dataset. 
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In creation of this dataset, the network was under the traffic for five days. There are 

eight files in total, all the files represent a unique day and network traffic pair. There 

are 3119345 records in these files. According to the analysis of Panigrahi and Borah 

(2018), the dataset contains %83.34 benign (non-attack) records; the remaining 

records are attack records of fourteen different attack types. The authors mentioned 

that the high percentage of benign records causes an imbalance and tried to solve this 

imbalance relabeling the dataset by merging some of the attack types. Note that this 

improvement was not applied to the experiments in this thesis. 

 

Table 4.5. Dataset details of CICIDS2017 

Class Labels Number of instances Containing Datasets 

Benign 2359087 All days 

DoS Hulk 231072 Wednesday 

PortScan 158930 Friday Afternoon PortScan 

DDoS 41835 Friday Afternoon DDos 

DoS GoldenEye 10293 Wednesday 

FTP-Patator 7938 Tuesday 

SSH-Patator 5897 Tuesday 

DoS slowloris 5796 Wednesday 

DoS Slowhttptest 5499 Wednesday 

Bot 1966 Friday Morning 

Web Attack – Brute 

Force 

1507 Thursday Morning 

Web Attack – XSS 652 Thursday Morning 

Infiltration 36 Thursday Afternoon 

Web Attack – SQL 

Injection 

21 Thursday Morning 

Heartbleed 11 Wednesday 
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As the Monday records only contained benign ones, most of the records (half a 

million) in the beginning of this file are skipped. Other than Monday records, the 

datasets have been used fully. Records of the other days are used in tests individually, 

as they contained completely different attack labels. The results for each day’s 

experiment are given in the below figures. 

 

 

Figure 4.6. Performance results for Tuesday Dataset of CICIDS2017 

 

Precision and F1 scores are quite low compared to higher scores in accuracy. This 

result is expected because of the density of benign records. As the number of benign 

records is nearly 40 times more than the attack records, the number of false positives 

is relatively high, which causes the low scores in precision and F1. 
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Figure 4.7. Performance results for Wednesday Dataset of CICIDS2017 

 

This time, the strange pattern has not emerged as there is a better diversity in the 

records. There are nearly 450000 benign records in the Wednesday dataset, whereas 

the number of attack records are a little more than 250000. The only problem with this 

dataset is the number of Heartbleed attacks. There are only eleven heartbleed attacks, 

which is %0.00039 of the whole dataset. 

 

 

Figure 4.8. Performance results for Thursday Morning Dataset of CICIDS2017 
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The same problem with the Tuesday dataset is seen here. In the Thursday morning 

dataset, the density of benign records gets even higher: 80 times more than attack 

records. This increase can be seen in the figure as the decrease of precision. 

The problem with the dataset becomes critical in the Thursday afternoon file. As there 

are only 36 attack records, accuracy is close to %100 whereas precision is close to %0. 

This pattern is expected and gets fixed when evaluating the day files as one dataset by 

merging them together. Therefore, results for that dataset is not shown here. 

 

 

Figure 4.9. Performance results for Friday Morning Dataset of CICIDS2017 
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Figure 4.10. Performance results for Friday Afternoon PortScan Dataset of CICIDS2017 

 

 

Figure 4.11. Performance results for Friday Afternoon DDoS Dataset of CICIDS2017 

 

Friday results are more satisfying as the data is distributed in a balanced manner in the 

Friday datasets. A final experiment on the CICIDS2017 dataset by using all files as a 

whole produced the result below: 
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Figure 4.12. Performance results of the Whole Dataset (CICIDS2017) 

 

Final results on the CICIDS2017 dataset, with the accuracy close to %96, were 

promising. As a future work, the dataset could be tweaked in order to eliminate 

imbalances. 

4.3. Experiments with Deep Reinforcement Learning 

4.3.1. Using NSL-KDD Dataset 

The system has been tested in a Gym environment for the NSL-KDD dataset, which 

is prepared by Koduvely (2018), using OpenAI’s Gym (OpenAI, 2019). Gym helps to 

test and compare reinforcement learning algorithms. Full datasets have been used 

during experiments. While doing the experiments, it is seen that increasing the training 

cycles of the neural network resulted in better outcomes in terms of accuracy. This, in 

fact, converts the unsupervised system into a supervised system in a way. Still, we 

have a chance to reuse the trained model later, without the need of training again. 

Figure 4.14 below depicts the differences in precision, recall and accuracy related to 

the number of training cycles: 
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Figure 4.13. Precision, Recall and Accuracy values related to iterations in DRL solution using NSL-

KDD 

   

The need for using high iterations was obvious even before the last experiment. The 

same thing cannot be said when experimenting with the number of hidden nodes. 

There are different approaches about finding the suitable number of hidden nodes. 

Some trial-error experiments have been held in our case in order to find the best result. 

The figures below depict and compare different configurations with each other. 
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Figure 4.14. Number of Hidden Neurons Experiment I (Using NSL-KDD) 

 

In the first experiment, the number of hidden neurons was set as 2/3 of the input layer’s 

size. The results were satisfying with an accuracy close to %97. 

 

 

Figure 4.15. Number of Hidden Neurons Experiment II (Using NSL-KDD) 
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In the second experiment, the number of hidden neurons was set equal to the size of 

the input layer. The result was unfruitful with low scores of accuracy and precision. 

 

 

Figure 4.16. Number of Hidden Neurons Experiment III (Using NSL-KDD) 

 

In the third experiment, hidden neurons were one and a half times of the input layer’s 

size. Again, the result was not successful. Recall got lowered, which affected F1 score, 

too. 

 

 

Figure 4.17. Number of Hidden Neurons Experiment IV (Using NSL-KDD) 
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In the next experiment, all scores were balanced. For this one, the number of the 

hidden neurons was half the size of the input layer. The result, again, was 

unsuccessful. 

In the last experiment (V), the square root of the product of the input layer size and 

output layer size was used to set the number of hidden neurons. Different from the last 

three experiments, the result got better, although the first experiment remained the 

best one with its scores. Additionally, the score of the first experiment passed the best 

results with the LSTM-RNN solution’s NSL-KDD experiments. 

 

 

Figure 4.18. Number of Hidden Neurons Experiment V (Using NSL-KDD) 

 

4.3.2. Using UNSW-NB15 Dataset 

The same dataset as the first dataset in the LSTM-RNN solution was used in the last 

experiments with DRL in this section. Again, after experimenting with different 

configurations, the best solution was found as detailed below. Different from the 

LSTM-RNN experiment, this time default training and testing sets have been used 

initially. The training set has a total of 175341 records, whereas the test set has 82332 
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records. Accuracy was 3 percent better than the LSTM-RNN solution. Results are 

given in the Figure 4.20 below. 

 

 

Figure 4.19. Performance results of default test data set of UNSW-NB15 using DRL 

 

The second experiment was held by using randomly picked training and test data over 

the dataset. 100000 records have been picked for both sets. The results have not 

changed in this experiment compared to the experiment using default sets. 
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Figure 4.20. Performance results of manually picked test data set of UNSW-NB15 using DRL 

 

4.4. Comparison with Other Solutions 

In order to measure the real success of the system, it should be compared with the 

other solutions provided by different authors. The table below shows the accuracy of 

some novel solutions using the NSL-KDD dataset: 

 

Table 4.6. Comparison of different intrusion detection systems 

Solution Accuracy 

(%) 

Precision 

(%) 

Recall (%) F1 (%) 

Tang et al., 2016 

(with 0.0001 

learning rate) 

91.7 83 75 74 

Self-taught Learning 

(Niyaz et al., 2015) 

88.39 85.44 95.95 75.76 

Soft-max 

Regression (Niyaz et 

al., 2015) 

78.06 96.56 63.73 72.14 
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Random Forest 

Modeling (Farnaaz 

and Jabbar, 2016) 

99.67 - - - 

RNN-IDS (Chuan-

long et al., 2017) 

97.09 - - - 

Aljawarneh et al., 

2018 

99.81 - - - 

Random Tree + 

NBTree (Kevric et 

al., 2018) 

99.53 - - - 

Deep Reinforcement 

Learning (proposed 

in this thesis) 

96.72 98.06 96.07 97.04 

 

The comparison shows that although the solution proposed in this thesis performs 

better than some novel solutions, it is not the best solution for network intrusion 

detection. Therefore, it can be said that there is still room for improvement to decrease 

the 3 percent difference from the best solutions. 
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CHAPTER 5  

 

5. CONCLUSION 

Thanks to advancements in the big data technologies, big data analytics became one 

of the most useful resources in many fields in computer science. As cybersecurity is 

crucial in our lives today, using these analytics in security solutions is both inevitable 

and beneficial. Additionally, because of the nature of most cybersecurity attacks, 

relevant big data can be extracted from the network by fetching traffic data, system 

logs etc. 

With their increasing popularity in many learning tasks, neural networks are used 

frequently as a solution (or part of the solution) to these problems. Likewise, they are 

used in the solutions proposed in this thesis, too. In order to handle zero-day attacks, 

using a learning mechanism is a must. As nowadays most networks are open to zero-

day threats, a security solution which can detect anomalies, even if those types of 

anomalies were never seen before, is a necessity. 

The main aim of the thesis is to provide a solution for system security through 

detection of possible intrusions by using big data solutions to handle high data flow 

as streaming data. Network data is a prime example of streaming big data. Traffic data 

is quite large in terms of features and the number of records. In this work, the data is 

processed by Apache Spark and passed onto the intrusion detection component of the 

solution that utilizes machine learning algorithms. By using two different machine 

learning approaches, namely LSTM-RNN and Deep Reinforcement Learning, 

anomalies in the network are detected and reported. Both solutions are run with the 

help of Tensorflow, a machine learning framework. Neural networks are used in both 

solutions. Experiments have been performed using various datasets with the 

framework. Diverse configurations have been tried in order to find the optimal 

solution. Especially, setting the number of neurons for the hidden layer was essential 

to the task. Initially, LSTM-RNN seemed a good candidate for the problem with its 
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nature using time-series. Then, DRL also seemed to be an effective solution as a part 

of this intrusion detection system. Therefore, the experiments helped us compare these 

two approaches. Different datasets were used for testing the accuracy of the system. 

In summary, although there is still room for improvement, accuracy rates in the 

experiments were most of the time greater than %90 for both solutions, which was 

promising. DRL seemed to be performing slightly better than LSTM-RNN, hence the 

DRL solution was found more suitable for the system. 

As cloud systems are getting more and more popular every day, a special security 

solution for these systems is needed. All service providers have their own monitors 

for providing different statistics of their systems, such as network statistics, CPU 

status, disk usage etc. For example, Amazon has CloudWatch, Google has 

Stackdriver, and all these tools have easy to implement integration methods for 

providing system metrics.  Therefore, as a future work, a customized system, which 

reads these statistics via these monitors and processes them with the big data and 

machine learning solutions like the one described in this paper, could be developed.  

In summary, an end-to-end intrusion detection system has been developed throughout 

the thesis. A big data solution was designed in order to process streaming big data. 

Different machine learning solutions were adapted and tested. Promising results have 

been achieved after experimenting with different datasets namely, KDD, NSL-KDD, 

CICIDS2017, and UNSW-NB15. Cloud systems have been investigated for future 

possible improvements and using their own metric providers to create a custom 

security system has been determined as a future work direction. Relatedly, a cloud-

specific intrusion detection dataset, not only with traffic data but also including system 

metrics such as CPU utilization, memory utilization, disk performance and read 

writes, does not exist. Such a dataset could be crucial for designing a purely cloud 

oriented security system. Therefore, preparing and publishing such a dataset could be 

another future work, and would be an initial step for a cloud-specific solution. 

  



 

 

 

57 

 

REFERENCES 

 

Apache. (2019, August). Apache kafka, a distributed streaming platform. Retrieved 

 from https://kafka.apache.org/ 

Apache. (2019, August). Apache spark, lightning fast unified analytics engine. 

 Retrieved from https://kafka.apache.org/ 

Aljawarneh, S., Aldwairi, M., & Yassein, M. B. (2018). Anomaly-based intrusion 

detection system through feature selection analysis and building hybrid 

efficient model. Journal of Computational Science, 25, 152–160. 

https://doi.org/10.1016/j.jocs.2017.03.006 

Amazon. (2019, August). Amazon kinesis. Retrieved from 

 https://aws.amazon.com/kinesis 

Balogun, A. O., & Jimoh, R. G. (2015). Anomaly intrusion detection using an hybrid 

 of decision tree and K-nearest neighbor. Journal of Advances in Scientific 

 Research & Applications (JASRA), 2(1), 67-74. 

Behera, S., Pradhan, A., & Dash, R. (2018). Deep Neural Network Architecture for 

 Anomaly Based Intrusion Detection System. 2018 5th International 

 Conference on Signal Processing and Integrated Networks, SPIN 2018, 270–

 274. https://doi.org/10.1109/SPIN.2018.8474162 

Bharadwaja, S., Sun, W., Niamat, M., & Shen, F. (2010). Collabra: A xen hypervisor 

 based collaborative intrusion detection system. Proceedings - 2011 8th 

 International Conference on Information Technology: New Generations, 

 ITNG 2011, 695–700. https://doi.org/10.1109/ITNG.2011.123  

Carbon Black. (2019). Global Threat Report: The Year of the Next-Gen Cyberattack. 

 Retrieved from https://www.carbonblack.com/wp-

 content/uploads/2019/01/carbon-black-global-threat-report-year-of-the-next-

 gen-cyberattack-0119.pdf 

Casas, P., Soro, F., Vanerio, J., Settanni, G., D'Alconzo, A. (2017). Network security 

 and anomaly detection with big-dama, a big data analytics framework. 

 Proceedings of 2017 IEEE 6th International Conference on Cloud Networking 

 (CloudNet), 1-7. https://doi.org/10.1109/CloudNet.2017.8071525 

Chuan-long, Y., Yue-fei, Z., Jin-long, F., & Xin-zheng, H. (2017). A Deep Learning 

 Approach for Intrusion Detection using Recurrent Neural Networks. IEEE 

 Access, 5, 1–1. https://doi.org/10.1109/ACCESS.2017.2762418  



 

 

 

58 

 

Cloud Security Alliance. (2013). Big Data Analytics for Security Intelligence. 

 Retrived from 

 https://downloads.cloudsecurityalliance.org/initiatives/bdwg/Big_Data_Anal

 ytics_for_Security_Intelligence.pdf 

Cuayáhuitl, H., Keizer, S., & Lemon, O. (2015). Strategic Dialogue Management via 

 Deep Reinforcement Learning. 1–10. Retrieved from 

 http://arxiv.org/abs/1511.08099 

Deokar B., Hazarnis A. (2012). Intrusion Detection System using Log Files and 

 Reinforcement Learning. International Journal of Computer Applications, 

 45(19), 28–35. 

Deshpande, P., Sharma, S. C., Peddoju, S. K., & Junaid, S. (2018). HIDS: A host based 

 intrusion detection system for cloud computing environment. International 

 Journal of Systems Assurance Engineering and Management, 9(3), 567–576. 

 https://doi.org/10.1007/s13198-014-0277-7 

Elasticsearch. (2019, August). Elasticsearch. Retrieved from 

 https://www.elastic.co 

Elderman, R., Pater, L. J. J., Thie, A. S., Drugan, M. M., & Wiering, M. A. (2017). 

 Adversarial reinforcement learning in a cyber security simulation. ICAART 

 2017- Proceedings of the 9th International Conference on Agents and 

 Artificial Intelligence, 2(Icaart), 559–566. 

 https://doi.org/10.5220/0006197105590566 

Ellingwood, J. (2016, October 28). Hadoop, storm, samza, spark, and flink: big data 

 frameworks compared [Blog post]. Retrieved from 

 https://www.digitalocean.com/community/tutorials/hadoop-storm-samza-

 spark-and-flink-big-data-frameworks-compared 

Farnaaz, N., & Jabbar, M. A. (2016). Random Forest Modeling for Network Intrusion 

Detection System. Procedia Computer Science, 89, 213–217. 

https://doi.org/10.1016/j.procs.2016.06.047 

Google Trends. (2019, August 6). Worldwide popularity of big data. Retrieved from 

 https://trends.google.com/trends/explore?date=all&q=big%20data  

Gupta, D., & Rani, R. (2018). Big Data Framework for Zero-Day Malware Detection. 

 Cybernetics and Systems, 49(2), 103–121. 

 https://doi.org/10.1080/01969722.2018.1429835 



 

 

 

59 

 

Hariharan, A., Gupta, A., & Pal, T. (2019). CAMLPAD: Cybersecurity Autonomous 

 Machine Learning Platform for Anomaly Detection. Retrieved from 

 http://arxiv.org/abs/1907.10442 

Hochreiter, S., Schmidhuber, J. (1997). Long short-term memory. Neural 

 Computation, 9(8),  1735-1780. 

Ibrahim, A. S., Hamlyn-Harris, J., & Grundy, J. (2016). Emerging security challenges 

 of cloud virtual infrastructure. Retrieved from 

 http://arxiv.org/abs/1612.09059 

Kaelbling, L. P., Littman, M. L., & Moore, A. W. (1997). Live-301-1562-Jair. 1–49. 

 Retrieved from http://www.jair.org/media/301/live-301-1562-jair.pdf 

KDD. (1999). KDD Cup 1999: Computer network intrusion detection. Retrieved from 

 https://www.kdd.org/kdd-cup/view/kdd-cup-1999/Data  

Kevric, J., Jukic, S., & Subasi, A. (2017). An effective combining classifier approach 

using tree algorithms for network intrusion detection. Neural Computing and 

Applications, 28(s1), 1051–1058. https://doi.org/10.1007/s00521-016-2418-1 

Kim J., Kim H. (2016). Applying Recurrent Neural Network to Intrusion Detection 

 with Hessian Free Optimization. In: Kim H., Choi D. (eds) Information 

 Security Applications. WISA 2015. Lecture Notes in Computer Science, vol 

 9503. Springer, Cham 

Koduvely H. (2018). Github repository, gym-network_intrusion. Retrieved from 

 https://github.com/harik68/gym-network_intrusion 

Lai, M. (2015). Giraffe: Using Deep Reinforcement Learning to Play Chess. 

 (September). Retrieved from http://arxiv.org/abs/1509.01549 

Lipton, Z. C., Berkowitz, J., & Elkan, C. (2015). A Critical Review of Recurrent 

 Neural Networks for Sequence Learning. 1–38. Retrieved from 

 http://arxiv.org/abs/1506.00019 

Mahbod T., Ebrahim B., Wei L., & Ali A. G. 2009. A detailed analysis of the KDD 

CUP 99 data set. Proceedings of the Second IEEE international conference on 

Computational intelligence for security and defense applications (CISDA'09). 

IEEE Press, Piscataway, NJ, USA, 53-58. 

Mahmood T., Afzal U. (2013). Security Analytics: Big Data Analytics for 

 cybersecurity: A review of trends, techniques and tools. 2013 2nd National 

 Conference on Information Assurance (NCIA), Rawalpindi, 2013, pp. 129-

 134. doi: 10.1109/NCIA.2013.6725337 



 

 

 

60 

 

Mahmud, M., Kaiser, M. S., Hussain, A., & Vassanelli, S. (2018). Applications of 

 Deep Learning and Reinforcement Learning to Biological Data. IEEE 

 Transactions on Neural Networks and Learning Systems, 29(6), 2063–2079. 

 https://doi.org/10.1109/TNNLS.2018.2790388 

Maiero, C., & Miculan, M. (2012). Unobservable Intrusion Detection Based on Call 

 Traces in Paravirtualized Systems. Proceedings of the International 

 Conference on Security and Cryptography, 300–306. 

 https://doi.org/10.5220/0003521003000306 

Manliguez, C. (2016). Generalized Confusion Matrix for Multiple Classes 

 Generalized Confusion Matrix for Multiple Classes The total numbers of false 

 negative ( TFN ), false positive ( TFP ), and true negative ( TTN ) for each 

 class i will be calculated based on the Generalized. (November), 6–8. 

 https://doi.org/10.13140/RG.2.2.31150.51523 

Mcdaniel, P., Smith, S. W., Cárdenas, A. A., Manadhata, P. K., Hp, |, Sreeranga, L., 

 & Rajan, P. (2013). SYSTEMS SECURITY Big Data Analytics for Security. 

 (December), 74–76. 

Mishra, P., Pilli, E. S., Varadharajan, V., & Tupakula, U. (2017). Intrusion detection 

 techniques in cloud environment: A survey. Journal of Network and 

 Computer Applications, Vol. 77, pp. 18–47. 

 https://doi.org/10.1016/j.jnca.2016.10.015 

Mnih, V., Kavukcuoglu, K., Silver, D., Graves, A., Antonoglou, I., Wierstra, D., & 

 Riedmiller, M. (2013). Playing Atari with Deep Reinforcement Learning. 1–9. 

 Retrieved from http://arxiv.org/abs/1312.5602 

Nemati, S., Ghassemi, M. M., & Clifford, G. D. (2016). Optimal medication dosing 

 from suboptimal clinical examples: A deep reinforcement learning approach. 

 Proceedings of the Annual International Conference of the IEEE Engineering 

 in Medicine and Biology Society, EMBS, 2016-October, 2978–2981. 

 https://doi.org/10.1109/EMBC.2016.7591355 

Nicholson, C. (2018). A Beginner's Guide to LSTMs and Recurrent Neural Networks. 

 Retrieved from. https://skymind.ai/wiki/lstm 

Niyaz, Q., Sun, W., Javaid, A. Y., & Alam, M. (2015). A deep learning approach for 

network intrusion detection system. EAI International Conference on Bio-

Inspired Information and Communications Technologies (BICT). 

https://doi.org/10.4108/eai.3-12-2015.2262516 



 

 

 

61 

 

Olah, C. (2015). Understanding lstm networks. Retrieved from 

 http://colah.github.io/posts/2015-08-Understanding-LSTMs/ 

OpenAI. (2019, August). OpenAI Gym. Retrieved from https://gym.openai.com/ 

Panigrahi, R., & Borah, S. (2018). A detailed analysis of CICIDS2017 dataset for 

 designing Intrusion Detection Systems. International Journal of Engineering 

 and Technology (UAE), 7(3.24 Special Issue  24) 

Pervez, M. S., & Farid, D. M. (2014). Feature selection and intrusion classification in 

 NSL-KDD cup 99 dataset employing SVMs. SKIMA 2014 - 8th International 

 Conference on Software, Knowledge, Information Management and 

 Applications, 1–6. https://doi.org/10.1109/SKIMA.2014.7083539 

Powers, D.M.W. (2011). Evaluation: from Precision, Recall and F-measure to ROC, 

 Informedness, Markedness and Correlation. Journal of Machine Learning 

 Technologies, 2(1), 37-63 

Razaq, A., Tianfield, H., & Barrie, P. (2016). A big data analytics based approach to 

 anomaly detection. 2016 IEEE/ACM 3rd International Conference on Big 

 Data  Computing Applications and Technologies (BDCAT), 187–193. 

 https://doi.org/10.1145/3006299.3006317  

Servin, A., & Kudenko, D. (2008). Multi-agent reinforcement learning for intrusion 

 detection: A case study and evaluation. Frontiers in Artificial Intelligence and 

 Applications, 178, 873–874. https://doi.org/10.3233/978-1-58603-891-5-873 

Sharafaldin, I., Habibi Lashkari, A., & Ghorbani, A. A. (2018). Toward Generating a 

 New Intrusion Detection Dataset and Intrusion Traffic Characterization. 

 (Cic), 108–116. https://doi.org/10.5220/0006639801080116 

Sharifi, A. M., Amirgholipour, S. K., & Pourebrahimi, A. (2015). Intrusion detection 

 based on joint of K-means and KNN. Journal of Convergence Information 

 Technology, 10(5), 42 

Tang, T. A., Mhamdi, L., McLernon, D., Zaidi, S. A. R., & Ghogho, M. (2016). Deep 

learning approach for Network Intrusion Detection in Software Defined 

Networking. Proceedings - 2016 International Conference on Wireless 

Networks and Mobile Communications, WINCOM 2016: Green 

Communications and Networking, 258–263. 

https://doi.org/10.1109/WINCOM.2016.7777224 

University of New Brunswick Canadian Institute for Cybersecurity. (n.d.). NSL-KDD 

 dataset. Retrieved from https://www.unb.ca/cic/datasets/nsl.html 



 

 

 

62 

 

University of New Brunswick Canadian Institute for Cybersecurity. (n.d.). Intrusion 

 Detection Evaluation Dataset (CICIDS2017) dataset. Retrieved from 

 https://www.unb.ca/cic/datasets/ids-2017.html 

University of New South Wales Canberra at Australian Defence Force. (2015). The 

 UNSW-NB15 dataset. Retrieved from https://www.unsw.adfa.edu.au/unsw-

 canberra-cyber/cybersecurity/ADFA-NB15-Datasets 

Wang, L., Zhang, D., Gao, L., Song, J., Guo, L., & Shen, H. T. (2018).  MathDQN: 

 Solving arithmetic word problems via deep reinforcement  learning. 32nd 

 AAAI Conference on Artificial Intelligence, AAAI 2018, 5545–5552. 

Yen, T., Oprea, A., & Onarlioglu, K. (2013). Beehive: large-scale log analysis for 

 detecting suspicious activity in enterprise networks. Proceedings of the 29th 

 Annual Computer Security Applications Conference, 199–208. 

 https://doi.org/10.1145/2523649.2523670 

Zhou, Z., Li, X., & Zare, R. N. (2017). Optimizing Chemical Reactions with Deep 

 Reinforcement Learning. ACS Central Science, 3(12), 1337–1344. 

 https://doi.org/10.1021/acscentsci.7b00492 

 

 



 

 

 

63 

 

APPENDIX 

A. COMPARISON OF STREAMING DATA FRAMEWORKS 

 

Figure A.1. Comparison of Streaming Data Frameworks 
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