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ABSTRACT

LEVERAGING THE HUMAN KINOME FOR
ANTICANCER AGENT CYTOTOXICITY POTENCY PREDICTION

Kinali, Merig
MSc., Department of Bioinformatics

Supervisor: Prof. Dr. Rengiil Cetin Atalay
Cosupervisor: Asst. Prof. Dr. Aybar Can Acar

September 2019, 68 pages

Cancer is the second deadly disease globally. Cell signaling cascades with altered protein
kinase activities induce the majority of the hallmarks in cancer such as proliferation,
angiogenesis, invasion, and metastasis. The major subtype of primary liver cancer,
Hepatocellular carcinoma (HCC) has limited therapeutic options. In this study, we
presented a regression model, which was applied initially on cytotoxic bioactivity data
obtained from HCC cells treated with 120 kinase inhibitors called CanSyL dataset. The
model then extended on publicly available datasets. The model uses human kinome tree
topology-based classes of protein kinases. Small-molecule kinase inhibitors can act on
other pathways by “off-target” or “pathway cross-talk” effects in addition to their
previously reported targets. Our objective in this study was to predict these off-target
effects as potential new targets by regularizing the regression space based on the kinome
tree topology. Our regression model was tested on the CanSyL dataset by applying leave-
one-out cross-validation and achieved promising predictions (median RMSE between 2.5-
4 %) for the kinase inhibitor vulnerability matrix based on the regularization of the human
kinome tree, with no bias in the estimates. Then we scaled up our approach to the public
datasets (CCLE and GDSC). Some of the kinase inhibitors were identified as outliers
based on their individual RMSE. They were significantly different from the kinase
inhibitor groups that they belong to, according to the Mann-Whitney U test (p<0.05). This
difference in specificity suggests that outlier inhibitors are more specific inhibitors while
non-outlier inhibitors are mostly general multi-kinase inhibitors.

Keywords: Hepatocellular Carcinoma, Kinome Tree, Regression Model, Cancer Cell-
lines, Kinase Inhibitors
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INSAN KINOMUNUN HEDEF DISI iLAC ETKILESIMI TAHMININDE
KULLANILMASI

Kinali, Merig
Yiiksek Lisans, Biyoenformatik Boliimii
Tez Yoneticisi: Prof. Dr. Rengiil Cetin Atalay
Tez Esyéneticisi: Dr. Ogr. Uyesi Aybar Can Acar

Eyliil 2019, 68 sayfa

Kanser oliimciil hastaliklar arasinda diinyada ikinci sirada yer almaktadir. Cesitli
nedenlerle islevleri degisen protein kinazlar gérev aldiklar1 proliferasyon, anjiyojenez,
invazyon, and metastaz gibi karsinogeneze temel olusturan hiicre aktivitelerini kontrol
ederler. Karaciger kanserinin en ¢ok rastlanan tiirii olan Hepatoselliiler karsinom (HSK)
icin tedavi olanaklari simirhdir. Bu ¢alismada, kinaz ailelerinin hassasiyetini
belirlememizi saglayan farkli HSK hiicre hatlarindan elde edilen sitotoksik bioaktivite
degerlerini kullanarak bir regresyon modeli gelistirdik. Bu regresyon modelini kinazlarin
filogenetik agac dallanma bilgisine gore diizenleyebilmek i¢in insan kinom agacindaki
topolojisini kullandik. Kinaz inhibitorlerinin asil hedefleri disindaki yolaklar1 da
etkiledikleri  bilinmektedir. Bu ¢alismadaki amacimiz regresyon modeli ile
hesapladigimiz hassasiyet degerlerini kullanarak kinaz inhibitorlerinin hedef-disi
etkilerini hesaplayabilmektir. Olusturdugumuz regresyon modelinin performansini,
KanSiL veri seti kullanarak test ettigimizde, basarili sonuglar gézlemledik (medyan
RMSE 2.5-4 %). Bir sonraki adimda, gelistirdigimiz metodu diger veri setlerine
uyguladik (CCLE ve GDSC). Onerdigimiz model ile yapilan analiz sonucunda kinaz
inhibitdrleri sahip olduklart RMSE degerine gore aykir1 ve aykiri olmayanlar seklinde
gruplanmistir. Son adim olarak aykiri olan kinaz inhibitér grubunun Mann-Whitney U
test sonuglari, aykirt olmayan gruba gore anlamli sekilde farkli bulunmustur (p<0.05). Bu
farklilik bize ayrica bu metod ile segici ve segici olamayan kinaz inhibitorlerini de
belirleyebilecegimizi gostermektedir.

Anahtar Sozciikler: Hepatoselliiler Karsinom, Regresyon Modeli, Kanser Hiicre Hatti,
Kinaz Inhibitérleri, Kinom Agaci
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CHAPTER 1

1.INTRODUCTION

Cancer is the world’s second major cause of death, and the prevalence of cancer
has risen significantly (Jemal et al., 2019). At the cellular level, cancer
development is a multi-stage process that includes mutation and accelerating
capacity for hallmarks such as proliferation, survival, invasion, and metastasis
(Cooper & Hausman, 2007). According to the latest GLOBOCAN statistics liver
cancer is the fourth leading cause of death (782 000 deaths, 8.2%) worldwide
(Bray et al., 2018). The most prevalent and malignant type of primary liver
cancer is Hepatocellular carcinoma (HCC) with limited therapeutic options
(Balogh et al., 2016). Many studies have shown tumor heterogeneity of HCC
which makes identification of the biomarkers or molecular subtypes challenging
and critical for identification of new and effective therapeutics1 (Lu, Hsu, &
Cheng, 2016). It has been proved that cell line models maintain the molecular
background of cancer types in breast cancer and HCC derived cell-lines which
will enable to identify potential biomarkers of different molecular subtypes (R.
S. Finn etal., 2013).

Kinases catalyze the transfer of the phosphoryl groups of ATP onto the hydroxyl
group of target proteins, a process known as phosphorylation, through their well-
conserved eukaryotic protein kinase (ePK) catalytic domain (Cohen, 2001).
Phosphorylation of the proteins modulates fundamental cellular activities such
as proliferation, survival, apoptosis, metabolism, transcription, differentiation,
and migration (Reimand, Wagih, & Bader, 2013). Since kinases are enzymes
that responsible for the phosphorylation process, dysregulated protein kinases
due to mutations, chromosomal rearrangements, gene amplification or
epigenetic changes are associated with cancer and many other diseases.
Therefore, they are essential clinical targets for cancer studies.

Cell signaling cascades with altered protein kinase activities induce the majority
of the hallmarks of HCC such as proliferation, angiogenesis, invasion, and
metastasis. Known altered pathways of HCC such as proliferation and



angiogenesis comprise growth factors and their receptors which are epidermal
growth factor receptor (EGFR), platelet-derived growth factor (PDGF), insulin-
like growth factor (IGF), hepatocyte growth factor (HGF), fibroblast growth
factor receptor (FGFR), and vascular endothelial growth factor receptor
(VEGFR) (Moeini, Cornella, & Villanueva, 2012). Aberrant activation of these
growth factors and their receptors also activates Ras, Raf, MAPK, ERK,
PI3K/AKT, and mTOR which have been found as critical in the formation of
hepatocellular carcinoma (Muntane, J. De la Rosa, Docobo, Garcia-Carbonero,
& J. Padillo, 2013). Pathways related to differentiation are also deregulated in
HCC, such as Wnt signaling in which protein kinases are key regulators in many
steps (Verheyen & Gottardi, 2010). Therefore, human protein kinases are
important targets and complete classification of them is essential for cancer
studies. Human genome encodes 518 protein kinases and 20 lipid kinases which
correspond approximately 2% of the genome have been grouped into groups,
families, and subfamilies and called as human kinome based on their similarity
in the amino acid sequence of the ePK catalytic domain (Manning, Whyte,
Martinez, Hunter, & Sudarsanam, 2002). The ePK catalytic domain composes
of N-terminal lobe (N-lobe) and C-terminal lobe (C-lobe) which are connected
by cleft where ATP binds and most kinase inhibitors are designed to interrupt
the cleft in between N-lobe and C-lobe (P. Wu, Nielsen, & Clausen, 2015).
Human kinome is divided into eight main kinase groups based on their sequence
similarity in their ePK domains as AGC (containing protein kinases A, G and
C), CAMK (calcium/calmodulin-dependent kinase), CK1 (Casein Kinase 1),
CMGC (containing cyclin-dependent kinase, MAPK, glycogen synthase kinase
3 and CDC2-like), STE (homologues of yeast Sterile 7, sterile 11 and sterile 20),
TK (tyrosine kinase), TKL (tyrosine kinase-like) and atypical protein kinases
(@aPKs) which lack sequence similarity to ePK catalytic domain. This
classification has promoted the study of the role of kinases in specific diseases
in parallel with the development of kinase inhibitors. Several previous studies
have indicated that defining off-target effects of small-molecule kinase
inhibitors is critical for effective cancer treatments and rational drug
development strategies. There is a need for the development of different kinome
profiling tools in order to study the selectivity of kinase inhibitors toward their
targets. After the human kinome tree was originally classified by Manning et al.,
the resulting phylogenetic tree was used to develop several kinome tree viewer
tools, disease associated kinase resources, or quantitative selectivity methods.
To date, the kinome tree topology was used to develop many kinome tree
viewers such as KinMap (Eid, Turk, Volkamer, Rippmann, & Fulle, 2017),
Coral (Metz et al., 2018), TREEspot (Davis et al., 2011), and the NCGC Kinome
Viewer (tripod.nih.gov). The kinome tree topology also was used to develop
kinase and disease-associated resources such as KIDFamMap (Chiu et al., 2013)
and KinMutBase (Ortutay, Viliaho, Stenberg, & Vihinen, 2005).
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Cancer-derived cell lines are essential and widely used models in cancer biology
studies. In order to test the efficacy of therapeutic agents, cancer cell lines have
been used by several studies. Although the clinical relevance of cell lines has
been questioned, these models provide the development of anticancer inhibitors
such as bortezomib for the treatment of multiple myeloma (Gillet, Varma, &
Gottesman, 2013) as well as other lead molecules. Large-scale
pharmacogenomic studies provide a collection of human cancer-derived cell
lines tested for different inhibitors. The Genomics of Drug Sensitivity in Cancer
(GDSC) [CITE: PMID 23180760] study has provided drug response data of 138
anti-cancer therapeutics across 700 human cancer-derived cell lines, from 29
tissue types (Garnett et al., 2012) and the Cancer Cell Line Encyclopedia
(CCLE) [CITE: PMID 22460905] has provided a collection of drug response
data of 24 anti-cancer therapeutics across 500 cell lines (Barretina et al., 2012) 1.
We have used publicly available GDSC and CCLE datasets additional to our in
house CanSyL data to compare and examine bioactivity results of the available
HCC cell lines treated with kinase inhibitors comprehensively.

In this study, we built a regression model to predict the efficacy of novel kinase
inhibitors using kinase tree topology through the human kinome tree. It is well
known that in addition to their targeted signaling pathway, small-molecule
kinase inhibitors can affect other pathways by “off-target” or “pathway cross-
talk” effects. Our objective in this study was to predict these off-target effects of
kinase inhibitors by regularizing the regression space based on the kinome tree.

The specific aim and concepts of this thesis were described with respect to the
latest studies about underlying biology and the hallmarks of hepatocellular
carcinoma and the roles of kinases on them in Chapter 2. The off-target effect
concept for the small molecule kinase inhibitors and previously proposed
quantitative selectivity measurement methods were described in detail. Chapter
3 presents the overall methodology and the regression model and its individual
steps such as matrix multiplication, cross-validation, and cosine similarity. The
application of the regression model on CanSyL, GDSC and CCL data and their
results were presented in Chapter 4. Finally, our model and its eventual use for
off-target effect predictions to be exploited in drug repositioning or drug
repurposing were discussed in Chapter 5.






CHAPTER 2

2.LITERATURE REVIEW

2.1. Molecular Cellular Biology of Primary Liver Cancer

2.1.1. Impact of Protein Kinases on the Hallmarks of Cancer

HCC is a complex disease which often develops over a background of chronic
liver disease or cirrhosis. Chronic cellular injury due to viral hepatitis B or C
infections, genotoxic or metabolic stress, induces carcinogenic events. Studies
have shown that aberrant cell signaling pathways caused during these chronic
events are the main reasons for this carcinogenesis (Whittaker, Marais, & Zhu,
2010). Therefore, the identification of the key players of the signaling pathways
involved in hallmarks of cancer is critical for the developing novel molecular
targeted therapies for HCC. Therefore, the importance of protein kinases which
are considered as molecular switches is discussed for their involvement in
proliferation and neovascularization which are the most significant hallmarks of
hepatocellular cancer.

Aberrations in protein kinase signaling pathways drive multiple hallmarks of
cancer including survival, motility, proliferation, metabolism, angiogenesis,
genomic instability, and evading immunity (Gross, Rahal, Stransky, Lengauer,
& Hoeflich, 2015). Kinase pathways regulate survival by controlling apoptosis
and necroptosis regulators or changing their expression. Receptor tyrosine
kinases with integrins regulate cytoskeletal dynamics and, hence motility by
increasing the activation of Focal adhesion kinase (FAK), ROCK1 (Rho-
associated protein kinase 1), MLCK (Myosin light-chain kinase), PAK1, LIMK1
(LIM domain kinase 1). Also, MAPK pathway components affect cell cycle
progression and proliferation. Moreover, cancer cells secrete angiogenic ligands
for VEGFR, FGFR, and TIE2 to increase vascularization and angiogenesis.
Alterations the tumor suppressor genes PTEN and INPP4B lead to the lack of
their inhibitory action on Phosphoinositide-3-kinases (P13Ks), and in turn, result
in increased glucose uptake and metabolism in primary liver cancer cells. Hence
PI3K/Akt the cell survival pathway is activated (Pavlova & Thompson, 2016).
More importantly, loss of heterozygosity mutations in tumor suppressor TP53,
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ATM kinase, and CDKN2A result in oncogene-induced DNA replication stress
which causes genomic instability (Negrini, Gorgoulis, & Halazonetis, 2010).

Cell signaling cascades with altered protein kinase signaling cause the majority
of the hallmarks of HCC such as proliferation, angiogenesis, invasion, and
metastasis as shown in table 2.1 (Moeini et al., 2012; Niwa et al., 2005). Known
dysregulated pathways of HCC such as proliferation and angiogenesis comprise
growth factors and their receptors which are EGFR, PDGF, IGF, HGF, FGFR,
and VEGFR (Moeini et al., 2012). Pathways related to differentiation are also
deregulated, such as Wnt signaling in which protein kinases are key regulators
in many steps (Verheyen & Gottardi, 2010). Taking into account all of these, the
information of altered kinase signaling pathways of HCC, kinase inhibitors, and
kinome classification offers an important opportunity for drug discovery.



Table 2.1: Altered Molecular Pathways in HCC pathogenesis.

Altered Pathway

Gene/target Alteration

Molecular Therapies

Differentiation & Development

Whnt/beta-catenin

Activating mutation/

CTNNB1 overexpression -
AXIN1 Inactivating mutation/LOH
APC Inactivating mutation
Notch NOTCH1 Overexpression -
NOTCH3 Overexpression
Hedgehog SHH Activating overexpression
SMO Activating overexpression
HHIP Downregulated by LOH
Hippo MST1/2 Down-regulated -
pYAP Down-regulated
o o
TP53 Inactivating mutation/LOH Ad5CMV-p53 gene
CDKN2A Inactivating mutation Flavopiridol
(p16) [Hypermethylation
IRF2 Inactivating mutation -
Proliferation i .
EGF EGF/EGFR  Upregulated Erlotinib, Gefinib,
Cetuximap, Lapatinib
HGF/MET HGF Upregulated SU5416/11274
HGFR Cabozantinib (XL184),
(MET) Upregulated Foretinib
IGF IGF2 Overexpression IMC-A12/Cixutumumab
IGF-2R Down-regulating mutation/LOH
PI3K/AKT/mTOR PIK3CA Activating mutation BKM120
PTEN Down-regulating mutation/LOH -
MTORC1 Upregulated Everolimus, Rapamycin
RAS/MAPK KRAS Activating mutation Sorafenib
RPS6K3 Inactivating mutation -
Angiogenesis
FGF FGF19 Upregulated -
Upregulated/
FGFR1/2 activating mutations Brivanib
Sorafenib, Sunitinib,
PDGF PDGFRA Upregulated Imatinib
VEGF VEGF Upregulated
Sorafenib, Brivanib,
VEGFR2 Upregulating amplifications Suninib
Cell Growth &Migration
JAK/STAT SOCS3 Methylation associated silencing AG490



HCC oncogenesis involves various dysregulated signaling pathways. Among
these, proliferation and survival pathways provide many opportunities for the
development of molecularly targeted therapies (R. Finn, 2013).

2.1.2. Role of Protein Kinases in Hepatocellular Carcinoma Vascularization

As one of the hallmarks of cancer, vascularization is regulated by complex
interactions between growth factors, endothelial cells and secreted ligands
(Hanahan & Weinberg, 2011). VEGF, FGF, and Angiopoietins (Ang family of
proteins) are major regulators of neovascularization (Chao et al., 2003). VEGEF’s
angiogenic activity is tightly regulated by gene dosage (Carmeliet & Jain, 2000).
Previous studies have reported the formation and growth of HCC depends
heavily on the formation of new blood vessels in which VEGF members and
their receptors are critical (Figure 2.1) (Zhu, Duda, Sahani, & Jain, 2011). Moon
et al. (2003) have shown that the overexpression of the VEGF increases
vascularity and tumor growth in samples obtained from 49 patients with HCC.
VEGF members stimulate cellular responses by binding receptor tyrosine
kinases (VEGFRs). Additionally, VEGF expression can be induced
independently by hypoxia apart from oncogenic mutations, hormones, cytokines
and signaling molecules such as nitric oxide and MAP kinases.

TN

sURVlvp. M.(;RATK' PROLIFERATI.

ANG IOGENESIS

Figure 2.1: VEGF pathway representing the effect of tumor-secreted VEGF on
endothelial cells. VEGF ligands (VEGF-A, VEGF-B, VEGF-C, VEGF-D,
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VEGF-E, and PLGF) bind to their receptor tyrosine kinases specifically which
activates signal-transduction pathways leading the survival, proliferation, and
migration of endothelial cells to form new vessels.

Taken together, targeting angiogenesis is an effective therapy for HCC treatment
such as approved anti-VEGF therapy with multi-kinase inhibitor sorafenib (Zhu
etal., 2011). The biological impacts of anti-angiogenic agents on HCC treatment
have been tested in many other studies as well. These studies mostly investigated
multi-targeted small-molecule tyrosine kinase inhibitors, including Sunitinib
(Zhu et al., 2009), Brivanib (Huynh et al., 2008), Linifanib (Cainap et al., 2015),
GW786034 (Yau et al., 2011), PTK787 (Wood et al., 2000), and AZD2171
(Alberts et al., 2012).

2.1.3. Role of Protein Kinases in Hepatocellular Carcinoma Proliferation

PI3K/Akt/mTOR pathway is one of the important pathways have been shown to
be involved in HCC due to PTEN tumor suppressor deletion (Buontempo et al.,
2011). This major intracellular pathway regulates cell growth, proliferation, and
survival. The Ras/MAPK pathway is another significant pathway in the
formation of HCC. MAPKSs integrates extracellular stimulations such as growth
factors, cytokines, and extracellular stress signals into intracellular responses.
Many studies have shown that MAPK pathways are deregulated in tumors,
including HCC. MAPK family belongs to CMGC kinase group and this family
contains extracellular signal-regulated kinases (ERKSs), Jun N-terminal kinases
(JNKSs), and p38 MAPKs (Min, He, & Hui, 2011).

2.1.4. Importance of Tyrosine Kinase Inhibitors in Hepatocellular Carcinoma
Therapy

As described above, critical signaling pathways in HCC formation, mostly
involve tyrosine kinases. Up to now, 38 kinase inhibitors have been approved
for cancer treatment in general by the FDA. Sorafenib and Regorafenib are the
only FDA approved small molecule for HCC and they are multi-kinase inhibitors
acting on receptor tyrosine kinases (Ferguson & Gray, 2018). There are two
classes of tyrosine kinases as receptor tyrosine kinases (RTK) which are both
cell surface receptors, and kinase enzymes and non-receptor tyrosine kinase
(NRTK) (M. K. Paul & Mukhopadhyay, 2004). Tyrosine kinases are essential
enzymes and mediators for the cell signaling process because the majority of
them are cell surface receptors and they are responsible for the initiation of cell
signaling cascades leading to carcinogenesis.



2.2.  Small molecule Kinase Inhibitors’ Selectivity Toward Their Targets

The catalytic activity of the protein kinases is dependent on the ATP molecule,
which binds the ATP-binding pocket located in between a 3 sheet containing N-
terminal lobe (N-lobe), an o helix dominated C-terminal lobe (C-lobe), and a
connecting hinge region. Although variety in their main amino acid sequence,
the human kinases share a high degree of similarity in their 3D structures,
particularly in their catalytically active kinase domain where the ATP-binding
pocket is positioned. The ePK catalytic domain, consisting N-lobe and C-lobe,
is linked through a cleft where ATP binds and most kinase inhibitors are
intended to interrupt the cleft between N-lobe and C-lobe (P. Wu, Nielsen, &
Clausen, 2016). The access to the active site where the ATP-binding pocket is
located is controlled by a flexible (conformationally mobile) activation loop
beginning with a conserved sequence of three amino acids, aspartate (D),
phenylalanine (F) and glycine (G) which is known as DFG motif (Knighton et
al., 1991). On activation, kinase structures undergo conformational changes in
the active (DFG-in) and inactive (DFG-out) form (Kooistra & VVolkamer, 2017).
Understanding these conformational changes is a key concept to reveal disease-
causing roles of kinases (Mobitz, 2015). Kinase inhibitors are classified
according to their binding mode as “irreversible” or “reversible”. Based on their
binding site, reversible small-molecule kinase inhibitors are categorized into
four main groups: Type I, Type Il, Type 11l (Allosteric Inhibitors) and Type IV
(Substrate Directed Inhibitors) as listed in Table 2.1 (Bhullar et al., 2018). Since
Type | inhibitors occupy ATP-binding pocket of the kinase in its active DFG-in
state, they show a low kinase selectivity as the targeted ATP pocket is conserved
through the human kinome (Bhullar et al., 2018; Zhang, Yang, & Gray, 2009).
Despite their large-scale clinical achievement, type | kinase inhibitors (e.g.,
erlotinib, gefitinib) come with potential off-target side effects due to their low
selectivity (Bhullar et al., 2018). In contrast to the majority of inhibitors, type 1l
inhibitors (e.g., imatinib and sorafenib) recognize the inactive DFG-out
conformation of the kinases and occupy an additional hydrophobic binding site
adjacent to the ATP binding site (Kufareva & Abagyan, 2008; Zhang et al.,
2009). Allosteric ( type II) inhibitors (e.g., CI-1040, GNF-2) bind in an
allosteric pocket other than an active site without interacting with the ATP
binding pocket and allosterically modulates kinase activity (P. Wu et al., 2015;
Zhang et al., 2009). These inhibitors display the highest degree of target kinase
selectivity since they exploit binding sites and physiological mechanisms unique
to a specific kinase (Zhang et al., 2009). Substrate-directed or type IV inhibitors
(e.g., ON012380) bind to an allosteric site reversibly (Blanc, Geney, & Menet,
2013; Cox, Shomin, & Ghosh, 2011; P. Wu et al., 2015). These kinase inhibitors
do not compete with ATP and therefore they tend to show a higher degree of
selectivity against kinases (Blanc et al., 2013). Irreversible, Covalent or type V
(e.g., afatinib), kinase inhibitors bind covalently to the ATP-binding site with a
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reactive nucleophilic cysteine residue, leading in ATP site blockage and
irreversible inhibition (P. Wu et al., 2016).

Table 2.2: Types of small molecule kinase inhibitors.

Class of Inhibitor Binding Site Selectivity | Binding Type

Type | ATP site Low Reversible

Type Il ATP site and DFG High Reversible
pocket

Type I11 (Allosteric) | Allosteric (ATP High Reversible
pocket vicinity)

Type IV (Substrate- | Allosteric (substrate- | High Reversible

directed) binding domain)

Type V (Covalent) ATP site Low Irreversible

The ATP-binding site is evolutionarily conserved among kinases (Manning et
al., 2002). Hence, most kinase inhibitors targeting ATP-binding site
promiscuously inhibit multiple kinases (Anastassiadis, Deacon, Devarajan, Ma,
& Peterson, 2011). Previous studies have demonstrated that defining off-target
effects of small-molecule kinase inhibitors is critical for effective cancer
treatments and rational drug development strategies. The need to study the
selectivity of kinase inhibitors has led to the development of novel quantitative
methods to measure the selectivity of the kinase inhibitors. Karaman et al., and
his colleagues introduced “Selectivity Score” (S) which is calculated for each
compound by dividing the number of kinases bound by an inhibitor with a
specific affinity score to the total number of kinases experimented (Karaman et
al., 2008). Graczyk et al. proposed another selectivity measurement metric for
kinase selectivity which is a novel application of the Gini coefficient (G)
(Graczyk, 2007). In this compound concentration-dependent selectivity
evaluation method, the magnitude of inhibition is measured for each kinase at a
single point for a specific ATP concentration. In this method first, the sum of
magnitudes of inhibition for all kinases is calculated to find total inhibition.
Second, kinases are sorted in increasing order. After a cumulative fraction of
total inhibition is plotted against the cumulative fraction of kinases, the Gini
coefficient is calculated through the Lorenz Curve. As a result of this metric,
nonselective inhibitors have scores close to zero whereas selective compounds
have scores close to one. Consequently, selectivity patterns of the kinase
inhibitors give useful insight into potential interactions in which an inhibitor may
be involved. However, the significance of these selectivity patterns must be
understood in the context of cell and tissue biology (Smyth & Collins, 2009).
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CHAPTER 3

3.DATASETS AND METHODS

In this chapter, the methodology of this study is explained then the concepts
integrated into our model such as matrix multiplication, cross-validation, and
cosine similarity are presented with respect to the specific aims of this thesis.

3.1. Overview of the Methodology

In this study, a regression model was built through matrix multiplication of
selectivity and bioactivity matrices based on cosine similarity using the kinome
tree feature space.

First, to determine compatible selectivity score vector (s) and vulnerability score
vector (v), for each cell line we calculated the similarity between cell lines’
responses to kinase inhibitors through cosine similarity. Second, we computed
the similarity between the kinome tree regularized selectivity score vector (s)
and the family vulnerability score vector (fv) for each cell line also through
cosine similarity. Then we calculated the error percentage between these cosine
similarities using root mean square error (RMSE) in the Leave-one-out cross-
validation (LOOCV) process. As a result of this method, we aimed to predict a
vulnerability score (v) for each kinase family, its kinome tree regularized version
(fv) and the error rate between them to be able to make off-target predictions.
We applied this procedure to all three datasets (CanSyL, CCLE, and GDSC)
exploited in this thesis. Then we used the regularized and the non-regularized
vulnerability scores for the kinase genes belonging to their families in the
enrichment analysis to see whether kinome-tree based regularization reveals
better prediction for off-target effects of kinase inhibitors.
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3.2. Datasets

3.2.1. Data from CanSyL

Hepatocellular carcinoma cancer cell lines (Huh7, HepG2, Mahlavu, FOCUS)
were grown in Dulbecco’s Modified Eagles Medium (DMEM) supplemented
with 10% fetal bovine serum (Gibco, Invitrogen), 1% non-essential amino acids
(Gibco, Invitrogen) and 100 units/ml penicillin/streptomycin (Gibco,
Invitrogen). Cells were maintained at 37 °C in a humidified incubator under 5%
COo». Kinase inhibitors were purchased from Calbiochem/MERCK. NCI-SRB
assay was initially performed to define the inhibitory concentrations (IC50
values) of compounds in HCC cell-lines Huh7, HepG2, FOCUS, and
MAHLAVU. From this experiment, we obtained HCC cell-line data which
contains 4 cancer cell lines and 120 inhibitors.

Table 3.1: Small molecule kinase inhibitors and their ICsp values four HCC
cell lines used in thesis from Calbiochem/MERCK (*NI: No inhibition)

INHIBITORS FOCUS Mahlavu Huh7 HepG2
MeSAdo NI* NI NI 59.04
AG1296 NI NI 9.54 26.76
AG1478 12.23 10.92 15.22 7.60
AG82 NI NI NI NI
Akti-1/2 521 5.58 8.82 1.88
Aloisine-A 9.75 7.63 9.45 2.59
Alsterpaullone <0.01 <0.01 <0.01 <0.01
Aminopurvalanol-A 2.24 0.39 2.20 0.32
ATM-Kinase Inhibitor 14.17 17.10 8.21 9.57
Aurora Kinase Cdk Inhibitor 0.10 0.09 0.47 <0.01
Aurora Kinase Inhibitor 11 8.39 14.85 6.33 15.37
Ber-Abl Inhibitor 10.02 8.18 8.04 8.98
R0-31-8220 <0.01 <0.01 <0.01 <0.01
R0-31-8425 0.69 4.31 0.02 1.78
Bohemine 35.02 26.89 24.99 24.53
BPDQ 10.29 11.75 11.24 5.84
BPIQ-I 27.67 36.39 15.92 18.41
Casein Kinase 11 Inhibitor | 33.64 18.90 55.16 29.99
CK2 Inhibitor DMAT 15.16 23.62 4.06 9.22
Cdk Inhibitor p35 6.59 7.63 7.94 4.45
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Cdk1 Inhibitor CGP74514A <0.01 <0.01 <0.01 <0.01
CDK 1/2 Inhibitor Il NU6102 10.82 9.62 10.66 4.62
Cdk2 Inhibitor 11 Compound3 NI NI NI NI

Cdk2 Inhibitor 111 5.72 4.10 2.03 <0.01
Cdk2/5 Inhibitor NI NI NI NI

Cdk2/9 Inhibitor <0.01 <0.01 <0.01 <0.01
Chk2 Inhibitor 11 12.03 12.66 9.34 10.82
CLK Inhibitor TG003 NI NI 42.62 NI

Curcumin, Curcuma longa L. 13.36 19.54 9.71 16.08
Daphnetin NI NI NI NI

DNA-PK Inhibitor NI NI NI NI

EGFR Inhibitor <0.01 <0.01 <0.01 <0.01
EGFR Inhibitor 11, BIBX1382 6.69 10.67 8.50 7.75
EGFR / ErbB-2 Inhibitor 14.42 20.03 14.72 15.87
EGF / ErbB2 / ErbB-4 Inhibitor 24.63 49.08 22.01 27.18
Epigallocatechin Gallate NI NI NI NI

Erk Inhibitor 32.85 28.55 20.74 31.43
Erk Inhibitor Il FR 180204 NI NI 82.10 42.62
Fascaplysin, Synthetic <0.01 <0.01 <0.01 <0.01
FGF / VEGF RTK Inhibitor 1.85 8.90 0.01 2.85
Genistein 30.28 40.02 74.70 18.88
Go 7874, Hydrochloride 3.22 8.53 0.67 0.73
H89, Dihydrochloride 4.63 4.45 2.94 2.16
HA1100, Hydroxyfasudil NI NI NI 18.83
Hypericin 14.65 15.20 19.34 23.66
1C261 <0.01 <0.01 <0.01 <0.01
Indirubin Derivative E804 <0.01 1.50 3.92 0.00
IRAK-1/4 Inhibitor NI NI NI 24.85
Isogranulatimide 14.82 37.89 40.43 6.63
JAK Inhibitor | NI NI NI 14.86
JNK Inhibitor V 0.59 5.40 2.05 1.84
Kenpaullone 19.37 26.65 16.07 8.67
LY 294002 10.56 14.15 4.00 6.48
MEK Inhibitor 11 33.37 35.32 36.73 28.95
MEK1/2 Inhibitor 15.43 15.86 16.54 2.19
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ML-7, Hydrochloride 9.20 17.78 12.71 9.19
MNKT1 Inhibitor NI NI 43.61 3.56
Olomoucine NI NI NI NI

PD 98059 NI NI 68.20 23.10
PKCBII / EGFR Inhibitor 9.54 9.96 7.40 4.69
PP1 Analog 11.75 52.71 10.77 9.46
PP1 Analog Il, INM-PP1 451 4.58 4.75 16.82
H-7, Dihydrochloride NI 52.25 10.45 16.92
H-8-Dihydrochloride NI NI 38.08 14.05
KN-93 0.69 0.15 0.45 0.13
Purvalanol-A 2.11 6.91 6.03 4.70
Quercetin dihydrate 67.78 NI 26.33 53.17
ROCK Inhibitor 74.29 NI NI 12.17
R-Roscovitine 7.01 10.99 10.38 9.51
SB-203580, lodo- 9.64 17.29 12.84 7.38
SB-202190 27.12 28.90 11.94 6.71
SB-218078 34.82 34.82 4.62 0.00
SCY 28.45 66.75 38.81 24.68
SKF-86002 15.94 14.30 13.19 21.07
ST-638 NI NI NI NI

Staurosporine <0.01 <0.01 <0.01 <0.01
STO-609 NI NI NI 22.03
SU-5402 NI NI 8.96 28.03
SU-9516 6.78 7.68 5.63 4.77
TGFB-R1-Inhibitor NI 73.94 NI NI

TGFB-R1-Inhibitor 11 NI NI NI NI

TX-1123 6.62 2.74 3.15 1.77
TX-1918 9.74 6.09 10.75 6.04
Tyrene CR4 11.31 12.45 3.05 7.15
Tyrophostin AGL-2043 44.72 126.96 11.24 16.22
W-5, Hydrochloride 38.80 57.37 NI NI

W-7, Hydrochloride 31.91 13.95 34.26 21.81
Weel/Chk1 Inhibitor 0.64 1.35 0.00 0.03
Wortmannin 32.26 NI 30.49 20.62
ZM-336372 NI NI NI 24.89
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2-thioadenosine NI NI NI NI

A3-hydrochloride 19.82 19.76 20.81 7.15
AG-17 <0.01 <0.01 <0.01 <0.01
AG-18 NI NI NI NI

AG-30 NI NI NI NI

AG-99 NI NI NI NI

AG-112 NI NI NI NI

AG-126 95.69 8.21 38.24 50.76
AG-213 NI NI 38.73 28.07
AG-490 63.78 49.35 23.13 13.90
AG-527 NI 46.62 54.97 15.36
AG-825 NI NI NI 0.05
AG-879 8.51 4.82 9.78 4.20
AG-1295 NI NI NI 0.00
Butein 15.07 18.36 12.45 11.60
Emaodin 11.76 6.30 12.16 12.71
Piceatannol 23.09 NI 22.67 23.02
Lavendustin C NI NI NI NI

Tamoxifen, 4-Hydroxy-(2)- 12.76 19.96 13.18 11.15
Et-18-OCH3 0.99 7.18 16.68 7.73
Tamoxifen Citrate 9.14 7.68 6.61 5.15
HA 1077, dihydrochloride NI NI NI NI

Geldanamycin, S <0.01 0.24 <0.01 <0.01
Herbimycin A 4.07 3.36 1.55 0.16
K252-a 0.63 0.43 0.00 0.00
Met Kinase Inhibitor 1.68 4.90 1.55 1.34
Calphostin C 0.25 0.22 0.18 0.04
JNK Inhibitor 11 17.34 NI 14.04 25.66
K-252b, Nocardiopsis sp. 11.13 NI 2.34 5.38
SB 239063 NI NI NI NI
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3.2.2. Datafrom CCLE

Bioactivity  file  (CCLE_NP24.2009 Drug_data_2015.02.24.csv)  was
downloaded from the CCLE website (https://portals.broadinstitute.org/ccle) and
the bioactivity data were retrieved from the file for only the liver cancer cell lines
(Hep3B2.1-7, Hep-G2, HLE, HLF, Huh-1, JHH-2, JHH-4, JHH-6, PLC/PRF/5-
Alexander cells, SK-HEP-1, SNU-182, SNU-423, SNU-449).

3.2.3. Data from GDSC

Bioactivity file (v17.3 fitted_dose_response.xlsx) was downloaded from the
GDSC website (https://www.cancerrxgene.org/) and the bioactivity data were
retrieved from the file for only the liver cancer cell lines (C3A, Hep3B2-1-7,
Huh-1, Huh7, SK-HEP-1, SNU-449). ICso values were filtered based on the area
under the curve (AUC) values greater than 0.80.

3.2.4. Target Set

ChEMBL is an open large-scale database (https://www.ebi.ac.uk/chembl/)
which was mostly manually curated from medicinal chemistry literature
(Gaulton et al., 2012). CheMBL database provides a large variety of resources
for the drug discovery studies and contains 1.8 million compounds, 11000 drugs,
and 12000 targets in total (Mendez et al., 2019). Kinase Targets of the purchased
small molecule kinase (Table 3.1) inhibitors in CanSyL, CCLE and GDSC
datasets were retrieved from ChEMBL database (version 23) through
chembl_webresource_client package separately
(https://github.com/chembl/chembl_webresource client). =~ ChEMBL  web
services offer 20 distinct types of resources and they can be listed by invoking
new_client through chembl_webresource client package. From 20 different
resources, we have used “activity” and “target” to retrieve target information
(ChEMBL_ID and target name) of the kinase inhibitors in all three datasets using
ChEMBL_IDs of the inhibitors (Davies et al., 2015). Targets of the specific
inhibitors were filtered with respect to taxonomy (i.e. human) and pChEMBL
(4.4) value. Activity point with pChEMBL value indicates that the
corresponding record has been curated. Family, group and subgroup information
of the targets were retrieved from the Human Kinome Tree
(http://kinase.com/web/current/) based on Manning et al.
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Figure 3.2: The diagram of the ChEMBL web service resources and resources
used in this study. Oval shapes in red indicate resources used to retrieve the
targets in this study and line between them indicate that they share a common

attribute.

g & ChEMBL

Filtration based on pChEMBL value
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Figure 3.3: Filtration parameters for the chembl_websource_client package.
Targets of the kinase inhibitors were filtered with respect to taxonomy (human)
and pChEMBL (4.4) value.
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Table 3.2: The information of the dataset used in the thesis work.

Data CanSyL | CCLE | GDSC | Retrieved From
Inhibitor 81 19 61 CanSyL, CCLE, GDSC
Cell-line 4 13 6 CanSyL, CCLE, GDSC
Kinase Family | 92 89 94 Manning et al., 2002
Kinase Group |9 9 9 Manning et al., 2002
Target 359 334 349 ChEMBL Database

3.3.  Kinome Tree-based 1Cso Regression Model

3.3.1. Selectivity and Bioactivity Matrices

In order to calculate the selectivity score, the number of targeted kinases in a
specific family was divided by the number of total targets for each inhibitor
(Equation 2.1). Family selectivity score calculation modified from Kahraman et.
al. selectivity score formula. Then, bioactivity matrix was obtained by scaling
ICso value between 0 and 1 where a higher value indicates a stronger effect

(Equation 2.2).

# targeted kinases in a family

Selectivity =

Maxleo_ICSO

#all targets of inhibitor

Bioactivity Score =

MaxICSO—MinICSO
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3.3.2. Implementation of the Matrix Multiplication

Matrix multiplication is a basic tool in linear algebra which has various
applications in bioinformatics. Matrix product contains a record of all
information of the two vectors which corresponds to the composition of each
term in the two matrices. Namely, if A'is an r x s matrix and B is an s x t matrix,
product matrix r X t equal to multiplication of each term in a row of A and each
term in a column of B as illustrated in Figure 2.2. (Klein 2013). In our case, we
obtained the product matrix, called a vulnerability matrix, by multiplying each
term in a row of selectivity matrix which contains selectivity scores of all
inhibitors for a kinase family and column of bioactivity matrix which contains
IC50 values of each inhibitor for a specific cell line. As a result, we obtained a
combination of each row of selectivity and column of bioactivity results which
we called the vulnerability score of each kinase family in a specific cell line
(Figure 2.3). Matrix multiplication steps in the methodology were performed
using the matrix multiplication function in R (>A %*% B #A and B are two
matrices).

b.,| b,
B
b,, | b,
. IT
Al A2 é\g
A v
A4 35, 4 83

Figure 3.4: Demonstration of the matrix multiplication. Each intersection in the
product of two matrices A and B equal to the multiplication of each term in a
row of A and each term in a column of B. (Notation: Capital letters represent
matrices and lowercase letters represent vectors.
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Figure 3.5: The first step of the methodology. The first step is the kinase family
vulnerability score calculation based on the selectivity matrix and bioactivity

matrix multiplication.

In the first step of our methodology, we obtained the product matrix which is
vulnerability matrix by multiplying each term in a row of selectivity matrix
containing selectivity scores of all inhibitors for a kinase family and column of
bioactivity matrix containing normalized ICso values of each inhibitor for a
specific cell line (Figure 3.5). As a result, we obtained a combination of each
row of selectivity and column of bioactivity results which we called the
vulnerability score of each kinase family in a specific cell line
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3.3.3. Regularization

The feature space was regularized on the human kinome by grouping kinases
based on their families and groups based on the assumption that off-target
interactions are more likely to occur for the closely related kinases.

Regularized Selectivity

Selectivity Matrix >
Matrix

Inhibitor " Inhibitor

ey

Family

Figure 3.6: The second step of the methodology. The second step of the
methodology is regularization of the selectivity matrix by distributing the
selectivity score of the inhibitors for the kinase families between the kinase
groups based on human kinome tree.

In the regularization step, the selectivity score of the novel inhibitors for the
kinase families is distributed between the kinase groups based on human kinome
tree. To do so, half of the score assigned to its real family. The remaining half
of the score is equally shared between the other families in that kinase group as
illustrated in Figure 3. We decided the value of regularization parameter
empirically as 0.5 based on the minimum RMSE result. After regularization of
the selectivity scores based on the human kinome tree, we obtained a
vulnerability matrix with regularized selectivity matrix and the same bioactivity
matrix. We calculated the error rate between regularized and non-regularized
vulnerability matrices through RMSE.
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3.3.4. Implementation of the Cosine Similarity

The cosine similarity is used to measure the similarity between two vectors by
calculating the cosine angle between them to determine if two vectors point in
the same direction (Han, Kamber, & Pei, 2012). We used cosine similarity after
the matrix multiplication step to measure the similarity between the non-
regularized selectivity vector and bioactivity vector and then to measure the
similarity between the regularized selectivity vector and bioactivity vector, as

follows:

n
i1 SiVi

similarity(s,v) = cosf =

SV _
Islllvl ~ [en 2 [sn .2
Yizy i Ziz1 Vi

(selectivity score vector (s) and vulnerability score vector (v))

We calculated the error percentage between these cosine similarities using
RMSE through LOOCYV method. We applied this procedure to all three datasets.
As a result of this method, we obtained higher error rates when the regularized
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version of the selectivity scores of inhibitors is not correlated with a vulnerability
score of kinase families in the cell lines based on target affection of the

inhibitors.

3.3.5. Cross-Validation

Cross-validation is a statistical model evaluation method. One of the distinctive
cases of k-fold cross-validation methods is Leave-one-out cross-validation
(LOOCYV). In this method, k equals to the number of occurrences in the data
where in each iteration except for one observation all the data are used for
training and the model is tested on that particular observation (Refaeilzadeh,
Tang, & Liu, 2009)[]. We used a LOOCV method to assess the error percentage
between regularized and non-regularized regression models, wherein each fold
one inhibitor is completely removed and the model is trained on the remaining

inhibitors.

Regularized Selectivity Bioactivity Matrix Regularized
Matrix Vulnerability Matrix
Inhibitor Cell Line Cell Line

Family
Inhibitor
Family

-

Figure 3.8: Representation of the kinome tree-based regularized vulnerability
score prediction. The third step of the methodology is the regularized
vulnerability score prediction method based on the kinome tree regularized
selectivity matrix and bioactivity matrix multiplication.
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3.4. Pathway Enrichment Analysis and Target Specificity in Enriched
Pathways

Vulnerability scores obtained from the kinase family regularization or scores
from generated using the kinome tree topology were used to perform the
enrichment analysis to identify the pathways or cellular processes which are
similarly inhibited by small-molecule kinase inhibitors. The vulnerability scores
were truncated from 0.05 for the noise reduction then normalized for the
enrichment analysis. Enrichr tool (Chen et al., 2013) was used through “enrichR”
R package which provides an interface to several databases of ‘Enrichr web-
based enrichment analysis tool’. Enrichment analysis was performed with
several gene sets which are Panther_2016, GO_Biological Process 2018, NCI-
Nature 2016, and KEGG_2019 Human to examine whether enrichment results
are correlated between the results from enrichment analysis with different gene
sets. Enrichr tool reports four different scores which are p-value, g-value, Z-
score (rank score), and the combined score of the enrichment result. Enrichr
implements Fisher’s exact test to compute p-value of the enrichment, which is
later corrected using Benjamini-Hochberg method to obtain adjusted p-value or
g-value for multiple hypothesis testing. Z-score or rank score is applied by
Enrichr to correct the Fisher’s exact test p-value by considering deviation from
an expected rank since it produces lower p-values for longer gene lists (Chen et
al., 2013). Enrichr combined score is computed by the logarithm of multiplied
p-value and z-scores. combined score ranking is then compared with other
scoring methods (Kuleshov et al., 2016). Enriched pathways were determined
with the cutoff p-adj < 0.05 and positive combined scores. Based on the
enrichment analysis some of the inhibitors were found to be distributed as
outliers. The distinctly aligned inhibitors were identified to test the difference
between the outlier and non-outlier inhibitors according to RMSE result in
respect to their selectivity to kinase families we used Mann-Whitney U test. As
a result of this analysis, we observed those outlier inhibitors tend to be more
selective while non-outliers tend to have multiple targets although some of the
inhibitors do not follow this trend. To identify enriched outlier and non-outlier
inhibitors in significantly targeted pathways, the hypergeometric test which
takes the size of the overlap between the inhibitor set and the list of all inhibitors
(the background) as parameters, and without replacement, was applied using
“phyper” function in R.
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CHAPTER 4

4 RESULTS

4.1.Vulnerability Scores of the Kinase Families

The regression model that we applied in thesis allowed us to obtain first the
small molecule kinase inhibitor “Selectivity matrix” and the “Bioactivity
matrix” and then the “vulnerability matrix” through matrix-matrix multiplication
which finally predicts the vulnerability score of the kinase families specific to
primary liver cancer cell lines for CanSyL, CCLE, and GDSC datasets. These
scores are then allowed us to analyze the effect and the efficiency of the kinase
inhibitors on HCC cells. Hence, we aimed to prioritize kinase families and the
cellular events that they involved through enrichment tools. We obtained the
cell-kinase vulnerability scores with or without using kinome tree topology and
compared their efficiency for this prioritization. When we used the kinome tree
family topology we were able to regularize the kinome-tree based selectivity
matrix by distributing half of the selectivity score of the kinase family between
kinase group in which that family belongs to, based on the assumption that off-
target interactions are more likely to occur for the closely related kinases.
Kinome tree topology-based the vulnerability matrix scores showed that the
most sensitive kinase families are CDK, EGFR, MAPK, PIKK, PKC, Src, CK2,
CK1, Aur, Abl in ranking order in HCC cells. Moreover, regularization step
reveals that GSK and CLK are effectively sensitive in the CanSyL dataset
(Figure 4.1). For the CCLE dataset, the most vulnerable kinase families are
EGFR, BRD, STE7, Src, MAPK, STE20, RAF, PDGFR, Eph, and FGFR.
Furthermore, regularization step uncovers that RIO, BCR and Alpha kinase
families are vulnerable in some of the poorly differentiated liver cancer cell-lines
while Axl is vulnerable in non-aggressive liver cancer cell lines (Figure 4.2). In
GDSC dataset, PIKK, MAPK, BRD, Src, EGFR, PDGFR, VEGFR, STE7, CDK
are the most sensitive kinase families based on vulnerability matrix and Aur,
STE20 kinase families are efficiently sensitive kinase families based on
regularization step (Figure 4.3).
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Figure 4.1: The most vulnerable ten kinase families in CanSyL dataset for both
kinome tree regularized and non-regularized vulnerability scores. Kinome tree
regularized scores were represented with “ R” for each cell line.

The vulnerability matrix scores of the CanSyL dataset indicates the most

sensitive kinase families which are CDK, EGFR, MAPK, PIKK, PKC, Src,
CK2, CK1, Aur, Abl in ranking order.

30



— L N Kinase Group 15 Kinase Group

| Hep 382.1-7 :GC ‘
o e o
HE SNU-449 b evee
.. SNU-182 1 other
| SNU-423 0.5 EIE
| HLF TKL
N A
Be JHH-6
| huk-1
B PLCIPRF/S
.. SK-HEP-1
Hep 382.1-7_R
B HepG2 R
huH-1_R
PLC/PRF/5_R
SK-HEP-1_R
SNU-249 R
SNU-182_R
L | HLE R
SNU-423 R
HLF R
JHH-6_R
JHH-2_R
JHH-4_R
B JHH-2
B IHH-4
Q/@&Q;QLQ@’\Q,’\ 9‘;@2&0 Qf 0@“Q S V%QQ';@‘L\,@#\S- & ‘?\O@OQ-%‘%;ZG& S E

Figure 4.2: The most vulnerable ten kinase families in CCLE dataset for both
kinome tree regularized and non-regularized vulnerability scores. Kinome tree
regularized scores were represented with “ R” for each cell line.

For the CCLE dataset, the most vulnerable kinase families are EGFR, BRD,
STE7, Src, MAPK, STE20, RAF, PDGFR, Eph, and FGFR. Furthermore,
regularization step uncovers that RIO, BCR and Alpha kinase families are
vulnerable in aggressive liver cancer cell-lines while Axl is vulnerable in non-
aggressive liver cancer cell lines except Hep3B2.1-7 (Figure 4.2).
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Figure 4.3: The most vulnerable ten kinase families in GDSC dataset for both
kinome tree regularized and non-regularized vulnerability scores. Kinome tree
regularized scores were represented with “ R” for each cell line.

We selected the most vulnerable ten kinase families for all three datasets to
examine small molecule kinase inhibitor target prioritization. According to
vulnerability scores of all three datasets, most kinase families showed similar
trends in CanSyL and GDSC datasets with kinome tree topology non-regularized
and regularized scores. The most efficiently targeted kinase group was CMGC
for CanSyL and TK for both CCLE and GDSC datasets. In CanSyL dataset Aur,
Abl, GSK and CLK kinase families had different patterns in the regularized and
non-regularized scores. Kinases belonging to GSK and CLK families can be
targeted efficiently with the inhibitors in the dataset while Aur and Abl cannot
be targeted within the top 10 vulnerable kinase families in the dataset (Figure
4.1). Regularization reveals kinases belonging to RIO, BCR and Alpha kinase
families may be affected by inhibitors in the CCLE dataset in aggressive cell
lines specifically (Figure 4.2).
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PKC, Trk, and Aur kinase families also have different patterns for their
regularized and non-regularized vulnerability scores in GDSC dataset. Kinases
belonging to PKC and Trk families can be targeted efficiently with the inhibitors
in the dataset while Aur family cannot be targeted as efficiently as families
within the top 10 vulnerable kinase families in the dataset (Figure 4.3). EGFR,
PIKK, and Src are the most vulnerable kinase families according to both
regularized and non-regularized vulnerability matrices for all three datasets. This
may suggest that the most targetable kinase families with kinase inhibitors in
HCC cell-lines are EGFR, PIKK, and Src.

4.2. Error Rate of the Human Kinome Based on Regularized Selectivity
and Non-regularized Vulnerability Scores

Results with this methodology using the CanSyL dataset applying LOOCV have
achieved promising predictions (median RMSE between 2.5-4 %) for the
vulnerability matrix based on regularization of the human kinome tree, with no
bias in the estimates (Figure 4.4). When we scaled up the approach to the CCLE
and GDSC datasets, our method achieved good cross-validation performance for
most drugs in GDSC (median RMSE within 4%) and in CCLE (median RMSE
between 2-5%) (Figure 4.5-4.6). Outlier and non-outlier inhibitors, according to
RMSE result, and with respect to their specificity to kinase families, are
significantly different from each other in all datasets according to the Mann-
Whitney U test (p<0.05). This difference in specificity suggests that outlier
inhibitors are more specific inhibitors and non-outlier inhibitors are mostly
multi-kinase inhibitors. As a result of this analysis, we observed those outlier
inhibitors tend to target specific kinase families while non-outliers tend to have
multiple targets although some of the inhibitors do not follow this trend.
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Figure 4.4: Error rate of the model based on CanSyL dataset. The error rate of
the similarity between kinome tree-based regularized selectivity score and the
non-regularized vulnerability score was calculated using RMSE.

As a result of the LOOCYV test, outliers indicate inhibitors with the highest error
rates with respect to their individual RMSE values in percentage. Outlier kinase
inhibitors are Aurora Kinase Inhibitor Il, Akti-1/2, Chk Inhibitor 1, MEK
Inhibitor 1, AG-17, ATM Kinase Inhibitor, and TX-1123 for the poorly
differentiated FOCUS cell-line in the CanSyL dataset. In addition to previous
outliers of the FOCUS cell-line, TX-1918, and Casein Kinase Il Inhibitor | are
outliers for the poorly differentiated Mahlavu cell-line. For the well-
differentiated Huh7 cell-line, outlier inhibitors are MEK Inhibitor Il, AG-17,
ATM Kinase Inhibitor, and TX-1123. In addition to outliers of the Huh-7 cell-

34



line, IRAK-1/4, TX-1918, and Casein Kinase Il Inhibitor | are outliers for the
well-differentiated HepG2 cell-line.
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Figure 4.5: Error rate of the model based on GDSC dataset. The error rate of the
similarity between kinome tree-based regularized selectivity score and the non-
regularized vulnerability score was calculated using RMSE.

Outliers indicate inhibitors with the highest error rates among all inhibitors in
GDSC dataset in figure 4.6. Akt Inhibitor VIII, SB590885, and WHI-P97
inhibitors are outliers for all cell lines in GDSC dataset. Additionally, Hep3B2-
1-7, Huh-7, SK-HEP-1, and SNU-449 have KINO01-224 as an outlier.
Moreover, Bryostatin-1 is an outlier for the only hUH-1 cell line.
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Outliers indicate inhibitors with the highest error rates among all inhibitors in
CCLE dataset in figure 4.5. Panobinostat has the highest error rate for all cell
lines. Another inhibitor Tanespimycin is an outlier for all cell lines except for
the JHH-2 and JHH-4.

4.3. Pathway Enrichment Analysis with Vulnerability Scores of Kinase
Families

The vulnerability scores and their ranked data is also used to identify enrich
cellular events and pathways upon treatment with the small molecule kinase
inhibitors. The enrichment results allowed us to effectively predict how and
through which cellular events these inhibitors achieve their bioactivities.
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Figure 4.7: Pathway enrichment results for the CanSyL dataset using the NCI-
Nature gene set. Enrichment analysis was performed using non-regularized
vulnerability scores.
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Figure 4.8: Pathway enrichment results for the CanSyL dataset using the NCI-
Nature gene set. Enrichment analysis was performed using kinome tree
regularized vulnerability scores.

We also observed that when kinome tree topology used for the calculation of
vulnerability matrix, the specific effect of the kinase inhibitors on individual cell
lines become more significantly predicted. For example “Presenilin action in
Notch and Wnt signaling” enrichment term is specifically associated (Adjusted
p-value < 0.05 and combined Score > 0) with FOCUS cell-line with kinome tree
regularized vulnerability scores (Figure 4.8), although it is not significantly
targeted with non-regularized vulnerability scores (Figure 4.7). According to
enrichment results performed with kinome tree-based regularized vulnerability
scores, possible dysregulated growth factors such as Hepatocyte growth factor
(c-Met), VEGFR1 and VEGFR?2 related signaling, PDGFR-beta signaling which
causes HCC formation, can be targeted in both well and poorly differentiated
HCC cell lines with the inhibitors in the CanSyL dataset.
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Figure 4.9: Pathway enrichment results for the CCLE dataset using the NCI-
Nature gene set. Enrichment analysis results with non-regularized vulnerability

Scores.
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Figure 4.10: Pathway enrichment results for the CCLE dataset using the NCI-
Nature gene set. Enrichment analysis was performed using kinome tree
regularized vulnerability scores.

Human kinome tree-based regularization reveals that “p38 MAPK signaling
pathway” can be targeted in Hep3B, HepG2 and hUH1 cell-lines and “TNF
receptor signaling pathway” can be targeted in all cell-lines significantly (Figure
4.10) whereas these pathways were not significantly identified according to
enrichment analysis performed with non-regularized scores (Figure 4.9). Since
CCLE dataset does not contain inhibitor which specifically acts on p38 MAPK,
there is no significant enrichment result for “p38 MAPK signaling pathway” in
the analysis result performed with non-regularized scores. However, through
regularization, we can see the p38 MAPK signaling pathway is affected by off-
target effects of some of the kinase inhibitors. According to this analysis,
tyrosine kinase inhibitors Erlotinib, Lapatinib, Sorafenib, Dovitinib,
Vandetanib, and Nilotinib, CDK4 and CDKG6 inhibitor Palbociclib, receptor
tyrosine Kinase ALK, and HGFR inhibitor Crizotinib and c-Met tyrosine kinase
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inhibitor PHA-665752 (Kim et al., 2019) have off-target effects on p38 MAPK

signaling pathway.
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Figure 4.11: Pathway enrichment results for the GDSC dataset using the NCI-
Nature gene set. Enrichment analysis was performed using non-regularized

vulnerability scores.

41



VEGFR3 signaling in lymphatic endothelium L] .
Trk receptor signaling mediated by the MAPK pathway o [ ] [ ] [ ] (] [ ]
TNF receptor signaling pathway [ ]
Thromboxane A2 receptor signaling . L] . . . .
Signaling events mediated by VEGFR1 and VEGFR2 [ ] o [ ] o [ ] [ ]
Signaling events mediated by Stem cell factor receptor (c—Kit) [ ]
Signaling events mediated by PTP1B [ ] [ ] [ ] [ ] L [ ]
Signaling events mediated by Hepatocyte Growth Factor Receptor (c—Met) [ ] [ ] [ ] [ ] L ] [ ]
Signaling events mediated by focal adhesion kinase L] L J L] L] ® L]
SHP2 signaling '3
Role of Calcineurin-dependent NFAT signaling in lymphocytes [ ] [ ] [ ] [ ]

Retinoic acid receptors-mediated signaling
Requlation of retinoblastoma protein
Regulation of p38-alpha and p38-beta
RAC1 signaling pathway

PDGFR-beta signaling pathway

p53 pathway

P38 MAPK signaling pathway
Netrin-mediated signaling events
IL2-mediated signaling events

Glypican 1 network

Combined Score
® 10
®
@ =

Adjusted p-value

Glucocorticoid receptor regulatory network E 0.015

Pathway

Fc-epsilon receptor | signaling in mast cells
FAS (CD95) signaling pathway
ErbB2/ErbB3 signaling events

ErbB1 downstream signaling

ErbB receptor signaling network

Ephrin B reverse signaling

EPHB forward signaling

EPHA forward signaling

Endothelins

Downstream signaling in naive CDB+ T cells
CXCR3-mediated signaling events
Ceramide signaling pathway

Cellular roles of Anthrax toxin

€DC42 signaling events

CD40/CDA0L signaling

BCR signaling pathway

ATF-2 transcription factor network
Angiopoietin receptor Tie2-mediated signaling
amb2 Integrin signaling

Alpha-synuclein signaling

0.010

0.005

0.000

e 00 ¢ 0000 O
920000
*-00 © 000:000
o000 ¢ 0000 O
o090 ¢ 0000 O

[ T XX ]

S IR Y RNY )
»1@ eo0c0@

@9 e0co0@®
0@ e0c0@

~?
R4

o)
5@ e0ce@®

%%
o
4, ’\L)
g

6‘4/ (J\7

X
&
Cell Line

Figure 4.12: Pathway enrichment results for the GDSC dataset using the NCI-
Nature gene set. Enrichment analysis was performed using kinome tree
regularized vulnerability scores.

For the GDSC dataset, through our methodology, we have found the pathways
that are identified by off-target effects of the kinase inhibitors are “CD40/CD40L
signaling”, “Regulation of retinoblastoma protein”, p38 MAPK signaling
pathway”, and “TNF receptor signaling pathway” (Figure 4.12).
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4.4. Significance of the Specific and Multi-Kinase Inhibitors in the
Targeted Pathways

The p-values, for the overrepresentation of the outlier and non-outlier inhibitor
sets among all inhibitors used in all datasets, were calculated using the
Hypergeometric test. As a result of this method, pathways that are targeted by
selective or multi-kinase inhibitors were identified. In the CanSyl dataset
“Regulation of Rb protein” and “Role of Calcineurin-dependent NFAT signaling
in lymphocytes” are targeted effectively by selective kinase inhibitor MEK
Kinase inhibitor 11 (Figure 4.13).
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CHAPTER 5

5.DISCUSSION

In this study, we present a regression model to predict the effectiveness of a new
inhibitor in a family-based manner using the human kinome tree. It is well
known that in addition to their targeted signaling pathway small molecule kinase
inhibitors can affect other pathways by “off-target” or “pathway cross-talk”
effects. Our objective in this study was to predict these off-target effects of
kinase inhibitors by regularizing the regression space based on the kinome tree
family topology.

The need to study the selectivity of kinase inhibitors has led to the development
of novel quantitative methods to measure the selectivity of these inhibitors.
Examples of these quantitative methods are “Selectivity Score” and “Gini
coefficient” selectivity measurement metrics. Selectivity Score is calculated for
each compound by dividing the number of kinases bound by an inhibitor with a
specific affinity score to the total number of kinases experimented. Gini
coefficient selectivity measurement method considers the magnitude of
inhibition which is based on kinase activity measured at a specific ATP
concentration. In this method first, to find total inhibition, the sum of magnitudes
of inhibition for all kinases is calculated. Second, kinase activities are sorted in
increasing order. After a cumulative fraction of total inhibition is plotted against
the cumulative fraction of kinase activities, the Gini coefficient is calculated
through the Lorenz Curve. The method we presented in this study provides
ranking between the catalog of inhibitors in terms of the combination of their
selectivity and bioactivity values. As opposed to the selectivity score introduced
by Karaman et. al., our methodology does not require a cut-off value which
enables scoring of small molecule kinase inhibitors without depending on
defining any threshold. Moreover, in contrast with the Gini coefficient
selectivity method explained in chapter 2.2, our methodology is population
dependent. In another study, a novel quantitative method has been developed to
predict the adverse effects of drugs related to the inhibition of the kinase targets
using linear algebra. They have predicted associations between kinase targets
and adverse event frequencies in human patients through matrix multiplication
using publicly available kinome-wide experimental data (inhibitor-target
dissociation constant) (Yang et al.,, 2010). We have employed matrix
multiplication, as in this study, to predict associations between kinase families
and HCC cell lines.
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Results with this methodology using the CanSyL dataset applying LOOCV have
achieved promising predictions (median RMSE between 2.5-4 %) for the
vulnerability matrix based on regularization of the human kinome tree family
topology. Our approach also accomplished promising cross-validation
performance most drugs in GDSC (median RMSE within 6-7.5%) and in CCLE
(median RMSE between 2-5%) as well. Outlier and non-outlier inhibitors,
according to RMSE result, and with respect to their specificity to kinase families,
are significantly different from each other in all datasets according to the Mann-
Whitney U test (p<0.05). This difference in specificity may assist to distinguish
specific inhibitors (outlier) and multi-kinase inhibitors (non-outlier inhibitors)
through our method for future studies.

After applying our methodology, we found that EGFR, PIKK, and Src are the
most vulnerable kinase families in HCC cell-lines according to both regularized
and non-regularized vulnerability matrices in all three datasets. This suggests
that the most efficiently targeted kinase families in Hepatocellular Carcinoma
cell-lines with kinase inhibitors targeting EGFR, PIKK, and Src (Figure 4.1).
However, these inhibitors did not show cell line specificity, hence indicating
targeting these kinases may not provide tumor or cell-specific actions which
cannot be used for personized therapies.

In a previous study, based on activity results, it has been found that Aurora
Kinase Inhibitor Il between four Aurora kinase inhibitors in the EMD Millipore
collection was the most potent and selective pan-Aurora inhibitor (CAS 331770-
21-9, S = 0.04). According to the same study, Chk2 inhibitor 1l (CAS 516480-
79-8, s = 0.01) was highly specific for Chk2 (Gao et al., 2013). Based on prior
findings, Aurora kinase inhibitor 11 and Chk Inhibitor Il are selective and specific
inhibitors for their targets. Likewise, we obtained a high error rate for these
inhibitors after regularization based on the kinome tree which indicates the
specificity of the kinase inhibitor in our model (Figure 4.4). In another study, it
has been found that type Il kinase inhibitors tend to be more selective since they
are non-ATP competitors (Blanc et al., 2013). Accordingly, we obtained a high
error rate for the RAF265, one of the type Il inhibitor, in the CCLE dataset
(Figure 4.5). In addition, for PD0325901, which is an extremely selective type
Il (allosteric) kinase inhibitor (P. K. Wu & Park, 2015) in CCLE dataset, we
acquired a high error rate as well. Similarly, we obtained a high error rate for the
Akti-1/2 inhibitor in the CanSyL dataset. The Akti-1/2 inhibitor is an allosteric
(type I11) and highly selective inhibitor which blocks Aktl and Akt2 but not Akt3
(Gilot, Giudicelli, Lagadic-Gossmann, & Fardel, 2010). These findings indicate
that with our methodology selective small-molecule kinase inhibitors can be
identified.
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Enrichment results of this thesis show targetable pathways through inhibitors in
the dataset for each HCC cell line. Wnt signaling is one of the key signaling
pathways activated in HCC leading transformation of the normal liver to HCC
(Zaret & Grompe, 2008). Aihara et al. showed that primary liver cancer tumor
growth can be inhibited using small molecule inhibitor MO-1-1100 which
reduces activation of Notch signaling in FOCUS cells (Aihara et al., 2014). In
accordance with these, we found that “Presenilin action in Notch and Wnt
signaling” enrichment term is specifically associated with FOCUS cell-line with
kinome tree regularized vulnerability scores, although it is not significantly
targeted with non-regularized vulnerability scores. This finding suggests that
EGFR inhibitors tested in CanSyL dataset such as LY294002, AG1478, and
PD98059 or Curcumin Curcuma Longa L may be used to target Wnt signaling
to reduce aggressive primary liver cancer growth in accordance with previous
studies (Mimeault & Batra, 2011; I. Paul, Bhattacharya, Chatterjee, & Ghosh,
2013; Tan et al., 2005) . Additionally, regularization method provides a
distinction between some tumor cell lines as can be seen from poorly
differentiated (FOCUS and MAHLAVU) and well-differentiated (HepG2 and
Huh-7) cell-lines in the CanSyL dataset (Figure 4.8).

For future work, different cut-off values can be used to increase the model
performance and reduce the noise in the data. The method may be applied to a
different set of target proteins with biological metadata such as nuclear receptor
inhibitors which has a classification similar to the kinome tree topology.
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APPENDICES

APPENDIX A

Table A.A.1: The inhibitor list of CanSyL data their reference numbers

Pubchem CATALOG
Inhibitors: Pubchem Names: CID: CAS #: #
MeSAdo Methylthioadenosine 439176 2457-80-9 260585
146535-
AG1296 Tyrphostin AG 1296 2049 11-7 658551
175178-
AG1478 Tyrphostin AG 1478 2051 82-2 658552
118409-
AG82 Tyrphostin A25 2061 58-8 658400
612847-
Akti-1/2 Akt Inhibitor VIII 10196499 09-3 124018
496864-
Aloisine-A ALOISINE A 5326843 16-5 128125
237430-
Alsterpaullone Alsterpaullone 5005498 03-4 126870
220792-
Aminopurvalanol-A Aminopurvalanol A 6604931 57-4 164640
587871-
ATM-Kinase Inhibitor KU-55933 5278396 26-9 118500
443797-
Aurora Kinase/Cdk Inhibitor | JNJ-7706621 5330790 96-4 189406
Aurora Kinase Inhibitor | 331770-
Aurora Kinase Inhibitor 11 | 6610278 21-9 189404
778270-
Ber-Abl Inhibitor GNF-2 5311510 11-4 197221
138489-
R0-31-8220 Ro 31-8220 mesylate 11628205 18-6 557520
131848-
Ro-31-8425 Ro0-31-8425 2404 97-0 557514
189232-
Bohemine Bohemine 2422 42-6 203600
169205-
BPDQ Bpdq 2426 87-2 203697
174709-
BPIQ-I bpig-i 2427 30-9 203696
45,6,7- 17374-26-
Casein Kinase Il Inhibitor | tetrabromobenzotriazole 1694 4 218697
749234-
CK2 Inhibitor DMAT 5326976 11-5 218699
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471270-

Cdk Inhibitor p35 2-Hydroxybohemine 4155347 60-7 219457
190653-
Cdk1 Inhibitor CGP74514A 2794188 73-7 217696
443798-
CDK 1/2 Inhibitor Il Cdk1/2 Inhibitor I11 5330812 55-8 217713
222035-
Cdk2 Inhibitor Il Cdk2 Inhibitor 11 5858639 13-4 219445
199986-
Cdk2 Inhibitor I11 CVT-313 6918386 75-9 238803
21886-12-
Cdk2/5 Inhibitor Cdk2/5 Inhibitor 16760362 4 219448
507487-
Cdk2/9 Inhibitor Cdk2/9 Inhibitor 447961 89-0 238806
516480-
Chk2 Inhibitor Il BML-277 9969021 79-8 220486
300801-
CLK Inhibitor TG003 TG003 1893668 52-9 219479
Curcumin, Curcuma longa L. | Curcumin 969516 458-37-7 239802
Daphnetin Daphnetin 5280569 486-35-1 268295
20357-25-
DNA-PK Inhibitor 6-Nitroveratraldehyde 88505 9 260960
879127-
EGFR Inhibitor EGFR Inhibitor 9549299 07-8 324674
EGFR Inhibitor II, 196612-
BIBX1382 Falnidamol 6918508 93-8 324832
179248-
EGFR / ErbB-2 Inhibitor EGFR/ErbB-2 Inhibitor 9843206 61-4 324673
EGF / ErbB2 / ErbB-4 881001-
Inhibitor HDS 029 11566580 19-0 324840
(-
Epigallocatechin Gallate Epigallocatechin gallate 65064 989-51-5 324880
1049738-
Erk Inhibitor SCHEMBL15021964 16218944 54-6 328006
865362-
Erk Inhibitor 11 FR 180204 FR 180204 11493598 74-9 328007
114719-
Fascaplysin, Synthetic Fascaplysin 73292 57-2 341251
FGF / VEGF RTK Inhibitor 341607
Genistein Genistein 5280961 446-72-0 345834
G6 7874, Hydrochloride Go 7874, Hydrochloride 11540703 - 365252
127243-
H89, Dihydrochloride h-89 449241 85-0 371963
Hydroxyfasudil Hydrochl 155558-
HA1100, Hydroxyfasudil oride 11371328 32-0 390602
Hypericin Hypericin 5281051 548-04-9 400076
186611-
1C261 Ic261 5288600 52-9 400090
Indirubin Derivative E80 854171-
Indirubin Derivative E804 4 6419764 35-0 402081
509093-
IRAK-1/4 Inhibitor IRAK-1-4 Inhibitor I 11983295 47-4 407601
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219829-

Isogranulatimide Isogranulatimide 6419741 00-2 371957
457081-

JAK Inhibitor | Pyridone 6 5494425 03-7 420099
345987-

JNK Inhibitor V AS601245 10109823 15-7 420129
142273-

Kenpaullone Kenpaullone 3820 20-9 422000
154447-

LY 294002 154447-36-6 3973 36-6 440202
623163-

MEK Inhibitor Il MEK Inhibitor 11 389898 52-0 444938
305350-

MEKZ1/2 Inhibitor SL327 9549284 87-2 444939
110448-

ML-7, Hydrochloride 110448-33-4 9803932 33-4 475880
522629-

MNK1 Inhibitor CGP 57380 11644425 08-9 454861
101622-

Olomoucine Olomoucine 4592 51-9 495620
167869-

PD 98059 PD 98059 4713 21-8 513000
145915-

PKCBII / EGFR Inhibitor DAPH 2 6711154 60-2 539652
221243-

PP1 Analog 221243-82-9 4877 82-9 529579
221244-

PP1 Analog Il, INM-PP1 1-NM-PP1 5154691 14-0 529581
108930-

H-7-Dihydrochloride H-7 dihydrochloride 73332 17-2 371955
113276-

H-8-Dihydrochloride H-8 dihydrochloride 150584 94-1 371958
139298-

KN-93 kn-93 5312122 40-1 422711
212844-

Purvalanol-A Purvalanol A 456214 53-6 540500

Quercetin dihydrate Quercetin Dihydrate 5284452 6151-25-3 551600
146986-

ROCK Inhibitor y-27632 448042 50-7 688000
186692-

R-Roscovitine Roscovitine 160355 46-6 557360

SB-203580, lodo- 559400
152121-

SB-202190 SB 202190 5353940 30-7 559388
135897-

SB-218078 SB 218078 3387354 06-2 559402
152075-

SCY Scytonemin 5486761 98-4 565715
72873-74-

SKF-86002 skf-86002 5228 6 567305
107761-

ST-638 ST638 5353962 24-0 567790
62996-74-

Staurosporine Staurosporine 44259 1 569397
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52029-86-

STO-609 STO-609 3467590 4 570250
215543-

SU-5402 Su5402 5289418 92-3 572630
377090-

SU-9516 SU9516 5289419 84-1 572650
396129-

TGFB-R1-Inhibitor 396129-53-6 447966 53-6 616451
446859-

TGFB-R1-Inhibitor Il RepSox 449054 33-2 616452
157397-

TX-1123 TX-1123 403661 06-3 655200
503473-

TX-1918 TX-1918 6419746 32-3 655203

Tyrene CR4 LS-104 9861871 - 655230
226717-

Tyrophostin AGL-2043 AGL 2043 9817165 28-8 121790
61714-25-

W-5, Hydrochloride 61714-25-8 173829 8 681625
61714-27-

W-7, Hydrochloride 61714-27-0 124887 0 681629
1177150-

Weel/Chk1 Inhibitor Weel/Chk1 Inhibitor 16760707 89-8 681637
19545-26-

Wortmannin Wortmannin 312145 7 681675
208260-

ZM-336372 ZM 336372 5730 29-1 692000
43157-50-

2-thioadenosine 2-Thioadenosine 6451965 2 589400
78957-85-

A3-hydrochloride A3 Hydrochloride 9861903 4 100122
10537-47-

Tyrphostin AG-17 Tyrphostin A9 5614 0 658425
118409-

AG-18 Tyrphostin 23 2052 57-7 658395
122520-

AG-30 Tyrphostin AG 30 5328793 79-0 121760
118409-

AG-99 Tyrphostin 46 5328768 59-9 658430

AG-112 Tyrphostin AG 112 5328804 - 658440
118409-

AG-126 AG 126 2046 62-4 658452
122520-

AG-213 Tyrphostin 47 6809674 86-9 658405
133550-

AG-490 Tyrphostin B42 5328779 30-8 658401
133550-

AG-527 Tyrphostin B44 5328772 32-0 658402
149092-

AG-825 AG 825 6091659 50-2 121765
148741-

AG-879 Tyrphostin AG 879 5487525 30-4 658460
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6,7-Dimethyl-2- 71897-07-
AG-1295 phenylguinoxaline 2048 9 658550
Butein Butein 5281222 487-52-5 203987
Emodin Emodin 3220 518-82-1 324694
10083-24-
Piceatannol Piceatannol 667639 6 527948
125697-
Lavendustin C Lavendustin C 3896 93-0 234450
Tamoxifen, 4-Hydroxy-(Z)- 68047-06-
isomer 4-Hydroxytamoxifen 449459 3 579002
70641-51-
Et-18-OCH3 ET-18-OCH3 6918215 9 341207
54965-24-
Tamoxifen Citrate Tamoxifen Citrate 2733525 1 579000
103745-
HA 1077 Fasudil 3547 39-7 371970
30562-34-
Geldanamycin Geldanamycin 5288382 6 345805
70563-58-
Herbimycin A Herbimycin A 5311102 5 375670
97161-97-
K252-a k-252a 3813 2 420298
658084-
Met Kinase Inhibitor SU11274 9549297 23-2 448101
121263-
Calphostin C Calphostin C 2533 19-2 208725
JNK Inhibitor 11 1,9-Pyrazoloanthrone 8515 129-56-6 420119
99533-80-
K-252b, Nocardiopsis sp. K-252a, Nocardiopsis sp. | 490561 9 420319
193551-
SB 239063 SB 239063 5166 21-2 559404
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APPENDIX B

Pathway Enrichment Results for All Three Datasets
Using Go Biological Process Gene Set
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Figure A.B.1: Pathway enrichment results for the CanSyL dataset using the Go
Biological Process gene set. Enrichment analysis was performed using non-

regularized vulnerability scores.
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Figure A.B.2: Pathway enrichment results for the CanSyL dataset using the Go

Biological Process gene set. Enrichment analysis was performed using kinome
tree regularized vulnerability scores.
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APPENDIX C

th the Toy Data
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Figure A.C.4: Error rate of the model based on toy data. The error rate of the
similarity between kinome tree-based regularized selectivity score and the non-
regularized vulnerability score was calculated using RMSE. C, Compound; CL,
Cell Line.
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