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IN PARTIAL FULFILLMENT OF THE REQUIREMENTS FOR THE DEGREE
OF

DOCTOR OF PHILOSOPHY
IN

THE DEPARTMENT OF INFORMATION SYSTEMS

AUGUST 2019





OMNIDIRECTIONAL HYPERSPECTRAL IMAGING
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ABSTRACT

OMNIDIRECTIONAL HYPERSPECTRAL IMAGING

Başkurt, Nur Didem

Ph.D., Department of Information Systems

Supervisor: Prof. Dr. Yasemin Yardımcı Çetin

August 2019, 75 pages

Hyperspectral imaging systems provide dense spectral information on the scene un-
der investigation by collecting data from a high number of contiguous bands of the
electromagnetic spectrum. The low spatial resolutions of these sensors frequently
give rise to the mixing problem in remote sensing applications. Several unmixing
approaches are developed in order to handle the challenging mixing problem on per-
spective images. On the other hand, omnidirectional imaging systems provide a 360-
degree field of view in a single image at the expense of lower spatial resolution. In
this thesis, we propose a novel imaging system which integrates hyperspectral cam-
eras with mirrors so on to yield catadioptric omnidirectional imaging systems to ben-
efit from the advantages of both modes. Catadioptric images, incorporating a camera
with a reflecting device, introduce radial warping depending on the structure of the
mirror used in the system. This warping causes a non-uniformity in the spatial res-
olution which further complicates the unmixing problem. In this context, a novel
spatial-contextual unmixing algorithm specifically for the large field of view of the
hyperspectral imaging system is developed. The proposed algorithm is evaluated on
various real-world and simulated cases. The experimental results show that the pro-
posed approach outperforms compared methods.

Keywords: Omnidirectional Image Processing, Remote Sensing, Spatial Spectral Un-
mixing, Omnidirectional Cameras, Catadioptric Cameras
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ÖZ

ÇOK YÖNLÜ HİPERSPEKTRAL GÖRÜNTÜLEME

Başkurt, Nur Didem

Doktora, Bilişim Sistemleri Bölümü

Tez Yöneticisi: Prof. Dr. Yasemin Yardımcı Çetin

Ağustos 2019, 75 sayfa

Hiperspektral görüntüleme sistemleri elektromanyetik tayfın ilgili bölgelerinde sık
aralıklarla çok sayıda bant üzerinden veri toplayarak görüntülenecek sahne hakkında
zengin bir spektral içerik sunar. Uzaktan algılama uygulamalarında, görüntülenecek
sahneye göre uzamsal çözünürlüğün yetersiz kalması spektral karışım problemine yol
açar. Perspektif görüntülerde bu zor problemi çözmeyi amaçlayan birçok spektral
ayrıştırma yöntemi geliştirilmiştir. Diğer yanda, tüm yönlü görüntüleme sistemleri
uzamsal çözünürlükten feragat ederek tek görüntüde 360 derecelik görüş alanı sağ-
larlar. Bu tezde, hiperspektral kameralar ile aynalar beraber kullanılarak yeni bir kata-
dioptrik görüntüleme sistemi tasarlanmış ve her iki kipin de avantajlarından yararla-
nılmıştır. Katadioptik görüntülerde kullanılan aynanın yapısına bağlı olarak dairesel
bir bozulma meydana gelmektedir. Bu bozulma uzamsal çözünürlüğün sahnede eşit
dağılmamasına yol açarak hiperspektral görüntülemede karşılaşılan ayrıştırma prob-
lemini daha da karmaşık hale getirmektedir. Bu bağlamda, önerilen sisteme özel bir
uzamsal spektral ayrıştırma algoritması geliştirilmiştir. Önerilen yöntemlerin başa-
rımları gerçek dünya ve benzetilmiş görüntüler üzerinde değerlendirilmiştir. Deneysel
sonuçlar karşılaştırılan yöntemlere göre başarımın arttığını göstermektedir.

Anahtar Kelimeler: Tüm Yönlü Görüntü İşleme, Uzaktan Algılama, Uzamsal Spekt-
ral Ayrıştırma, Tüm Yönlü Kameralar, Katadioptrik Kameralar
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and for their valuable advises.

I thank my fellow lab-mates Fatih Ömrüuzun, Yusuf Gür, and Hazan Dağlayan Sevim.
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CHAPTER 1

INTRODUCTION

Hyperspectral imagery provides dense spectral information about the material, it at-
tracts interest of researchers working in the fields of computer vision and remote
sensing. Remote sensing applications aim to monitor large observation fields in a
rapid way with a nondestructive manner. The existing studies on remote sensing and
hyperspectral imaging applications utilize the platforms which are mostly mounted on
airborne or unmanned air vehicles (UAV) in order to monitor large areas. However,
airborne platforms have operational difficulties such as inappropriate weather con-
ditions, flight permissions, no fly zones, and costly aircraft hire. In addition, UAVs
have limitations on the load of the imaging system containing heavy imaging hard-
ware such as sensor and processing unit. Although, recently hyperspectral camera
producers focus on decreasing weight of the systems, this is still a high concern. In
the study, we aim to increase the field of view (FOV) of traditional hyperspectral
imaging systems which use lenses having narrow FOV. Therefore, we contribute to
existing hyperspectral and multispectral imaging systems with providing a large field
of view. Fish-eye lenses, stitching several images captured by a narrow FOV camera,
and catadioptric systems are examples for large FOV imaging systems. Catadioptric
cameras are the optical systems in which refraction (lenses) and reflection (mirrors)
are combined. While these systems produce a deformation in the structure of the im-
age due to the convex mirror used in the system, they are able to present 360 degree
FOV in the horizontal plane. The term omnidirectional is used to denote that the light
rays from all directions are collected.

In the study, we aim to benefit from hyperspectral imaging and omnidirectional imag-
ing technologies to obtain a catadioptric omnidirectional hyperspectral camera, and
to handle the issues arising due to combining these technologies. There are very
few reported studies which use high spectral information for omnidirectional imag-
ing. These studies are summarized in Section 1.2. The low spatial resolution of the
sensors frequently bring about the mixing problem in hyperspectral imaging applica-
tions. Several unmixing approaches are developed in order to handle the challenging
mixing problem on perspective images. To our knowledge ours is the first study that
investigates the applicability of unmixing algorithms for omnidirectional hyperspec-
tral images. We propose capturing a single omnidirectional image without requiring
a prior stitching step.

The performance of the image processing algorithms, the robustness of the results
and the detailed information provided by the sensors are highly dependent on the in-

1



creased spectral and spatial resolution of the data. The conventional hyperspectral
imagers renounce the high spatial resolution in favor of the high spectral resolution.
Today’s remote sensing technology on satellite and airborne applications is limited
with the constraints: data storage capacity, the transmittance broadband between the
imager and ground station, the weight limit to be carried on [7]. These constraints
cause to have a lower spatial resolution which obstructs to measure the spectral sig-
nature of the object to be analyzed. In this case, the pixels captured in such scenario
may not purely contain a single material. The pixel is mixed of the spectral signatures
of the objects which are in the scene that are spatially covered by the pixel. At that
point, a sub-pixel level analysis is needed, and this wide research area is termed as
spectral unmixing. Additionally, the pure spectra of the materials which exist in the
scene, are called as endmembers.

Research Objectives and Significance of the Study

• Using line scan cameras on catadioptric systems

• Developing unmixing and potentially other algorithms specialized for these
imaging system

The Contributions of the Study

The catadioptric hyperspectral image analysis requires different unmixing approaches
compared to the traditional hyperspectral image analysis. In this study, some im-
provements specific to the catadioptric images on unmixing algorithms are proposed.
Although we present a case which uses a catadioptric imaging system, the omnidirec-
tional hyperspectral imaging system can contain a fish-eye lens where the mentioned
unmixing problem for such systems is also valid.

All the proposed methods are based on the spatial resolution factor of the pixels.
Therefore, the literature on catadioptric image formation is analyzed in depth. These
studies enable us to compute the spatial resolution factor of each pixel in the scene,
and consequently to generate a map that illustrates the change on the spatial resolution
values.

The first proposed improvement is for integrating the spatial resolution difference
into the geometrical and spatial-contextual unmixing methods. We also theoretically
examined the contribution of implementing the spatial resolution map into unmixing
algorithms.

The spatial-spectral unmixing approaches integrate the spatial information with the
spectral unmixing approaches where this integration can be done as a preprocessing
step of the spectral analysis or it can be performed concurrently. Traditional unmix-
ing approaches assume the spatial equality of the area covered by each pixel. In
other words, the distance between two pixels is evaluated equal on every part of the
image. However, a new concern occurs for catadioptric unmixing approach. The spa-
tial analysis of spectral unmixing algorithms need to consider the catadioptric mirror
structure. We propose such an improvement for spatial-spectral unmixing algorithms.
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Another improvement is proposed for geometrical unmixing approaches. Most of the
geometrical approaches in the literature assume that the hyperspectral data is spread
in a convex structure. As explained in the previous proposed method, each pixel in
catadioptric image has different spatial resolution factor. Therefore, the mixing ra-
tio of the pixels depend on their spatial resolution. The pixel with a higher spatial
resolution is more likely to contain a pure signature, in other words less mixed signa-
ture. We propose to rate the pixels in the convex structure according to their spatial
resolution factors.

The last novel improvement is proposed for local spectral mixing analysis approach.
The local unmixing algorithms spatially divide the hyperspectral scene rather than
inspecting the whole scene at once. This point of view in unmixing problem produces
more robust and accurate results. We give justifications based on the literature studies.

The Road Map

This study is organized as follows:

Introduction chapter continues with the basic concepts, advantages, constraints, and
application areas of both technologies: hyperspectral imaging and omnidirectional
imaging. Chapter 2 begins the study with a simple introduction to catadioptric imag-
ing principles. We also investigate the spectral characteristic of the mirror used in the
omnidirectional imaging.

The main research area of the study is the unmixing problem in hyperspectral imaging
applications. Chapter 3 provides information about unmixing problem, and state-of-
the-art algorithms. We aim to make this problem clear for the readers who are more
familiar with omnidirectional imaging. We also present brief experimental results for
the sub-processes of the unmixing approach.

Chapter 4 presents the novel approaches which are specially investigated for the pro-
posed catadioptric hyperspectral imaging system. The evaluation of the proposed
methods are given in Chapter 5. The comparison of the methods with the state-of-
the-art algorithms are also shared in the chapter. Finally, a conclusion part is given in
the end of the dissertation.

1.1 Hyperspectral Imaging

A three-dimensional hyperspectral data cube is obtained by measuring the spectral
signature of each pixel. While the first two-dimensions represent the spatial domain
of the scene, the third-dimension represents the data gathered from each spectral band.

The data measured by hyperspectral sensor is the so called digital number (DN) which
is not meaningful before calibration using sensor parameters and the illumination in
the scene. To put it more explicitly, different DN values of an object can be mea-
sured in different acquisition conditions as using different camera and illumination
conditions. After applying gain and offset values of the hyperspectral sensor, data
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is converted to radiance which is the amount of radiation coming from the scene.
Yet radiance still is not able to represent the spectral features of the material. For
quantitative analysis of hyperspectral data, radiance unit is corrected to reflectance
unit. The radiation reflected from the surface is affected from the illumination of the
scene. The sun is naturally the source of illumination for outdoor acquisitions. The
solar spectrum peaks at approximately 500 nm, and shows low radiation at irregular
intervals after NIR region of electromagnetic spectrum. The atmospheric correction
algorithms must be used in order to compensate the solar spectrum effect.

Although hyperspectral sensors make significant contribution to spectral analysis ap-
plications by frequent measurements on electromagnetic spectrum, they may also
have a disadvantage in processing of data due to their high dimensionality. Therefore
dimensionality reduction and band selection algorithms are often implemented to in-
crease the performance of the algorithm and discard redundant information. Latorre-
Carmona et al. [8] observe the effect of denoising in band selection by comparing
several algorithms. Bruce et al. [9] use discrete wavelet transform, and J. Wang &
Chang [10] use independent component analysis in order to reduce dimensionality of
hyperspectral image.

Hyperspectral imagery is preferred in a wide array of remote sensing applications.
Improvements in sensor technologies enable to lower costs and weight, and make
the use of sensor more practical. Hyperspectral imagery is increasingly employed in
agriculture. Plants have distinguishable spectral characteristics on different regions
of electromagnetic spectrum. Furthermore they demonstrate different spectral char-
acteristics in their each growth phase. Therefore studies in the literature show that
spectral analysis in agriculture applications is highly useful to classify the plants and
detect their growth period. Jia et al. [11] aim to analyze spectral discrimination of
four closely planted species: wheat, poppy, barley, and alfalfa. Hyperspectral analysis
algorithms used in agriculture applications commonly benefit from spectral mixture
analysis methods due to the low spatial resolution of hyperspectral data. The area
covers a pixel of hyperspectral image is mostly greater than the canopy area of the
tree or the size of the target leaf. Therefore the pixel is expected to be mixed by spec-
tra of more than one object. The studies in the literature utilize unmixing and spectral
mixture analysis algorithms as given in [12], [13].

1.2 Omnidirectional Imaging

Omnidirectional cameras are composed of catadioptric systems where refraction and
reflection are combined in an optical system: curved mirrors (catoptric) and lenses
(dioptric). In recent years, omnidirectional imaging systems are preferable with a 360
degree field of view (FOV) in the horizontal plane in image processing applications.
This enlarged view property enables to capture the scene by using a single camera
instead of many perspective cameras.

As catadioptric systems can be composed of many planar mirrors [14], they can also
benefit from single curved mirrors, where paraboloidal and hyperboloidal mirrors are
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the most popular ones. However, in this study we focus on catadioptric systems with
a single mirror. Bastanlar [15] briefly explains single-viewpoint property of cata-
dioptric systems. The light rays coming from the scene and targeting the focal point
(single viewpoint) of the hyperboloidal mirror are reflected on the mirror surface so
that they pass through the pinhole (camera center). On the other hand, paraboloidal
mirrors reflect the rays orthogonally and that’s why they require the use of a telecen-
tric lens to collect the parallel rays.

The application areas such as surveillance and simultaneous localization and map-
ping (SLAM) highly need a system that is easy to use, and captures wide field of
view in a single image. Thus, it enables fast analysis of the scene without need of the
installment of several cameras with different angles. Aeromeccanica [16] presents
an unmanned aerial vehicle equipped with an omnidirectional camera with two op-
tics having more than 200 degree FOV. Additionally, an infrared (IR) camera is also
mounted on the drone.

Technest, is transferred to under the umbrella of Genex Technology Solutions, has
been awarded by U.S. Navy Small Business Innovative Research program with the
project [17] "Real-Time Omni-Directional Hyperspectral Imager". The system called
Omni-Guard proposes to develop a real-time omnidirectional hyperspectral recording
and processing imager. It uses compact mega pixel infrared and mid-wave infrared
capable sensors and supposed to capture a 360 degree field of view by using a ro-
tating system that captures 180 degree FOV at a time. Similarly, a rotating spectral
imaging system is used in order to capture large field of view in the studies [18], [19],
[20]. Hirai et al. [18] combine three technologies: HDR, spectral and omnidirec-
tional imaging. They use an automatically rotating mechanism. An RGB camera is
supported by filters in order to acquire 6 band multispectral data between 400 nm
and 700 nm. They perform a correction algorithm on spectral images to reduce the
illumination related noises. Karaca et al. [19] develop a multiband stereo matching
algorithm on a panoramic stereo hyperspectral imaging system. Additionally, they
perform a depth estimation on panoramic hyperspectral dataset. However, in this
study, we propose to develop an omnidirectional hyperspectral system that captures
360 degree FOV in a single image without using a rotating mechanism.

Danilidis et al. [21] has filed a patent with the title "Multispectral Omnidirectional
Optical Sensor and Methods Therefor". It provides a multispectral and omnidirec-
tional imaging system that contains a series of view and reflecting mirrors for split-
ting the electromagnetic spectrum into two or more bands, and corresponding cam-
eras placed relative to the reflecting mirrors. Although the system is innovative for its
time, its multispectral representation capacity is well behind today’s technology.

In terms of hyperspectral omnidirectional imaging, there are few previous studies.
The closest work to ours, presented in [22], records a plenoptic function of the scene
from every location, at every angle, for every wavelength and at every time. They use
3 × 3 spectral coated catadioptric mirrors. They perform a sparse representation on
depth estimation problem by using the system. However, the spectral density of their
proposed system depends on the number of mirrors. Our work, on the other hand, is
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entirely hyperspectral and we investigate unmixing approaches in catadioptric domain
for the first time.

Omnidirectional images inevitably introduce a radial warping due to the structure of
the mirror used in the system. As some of the studies [23], [24], [25], [26] develop
algorithms without modifying the elliptic structure of the scene, others [27], [28],
[29], [30] prefer to transform the image to the panoramic view, and work on linear
representation. For the applications where the spatial nonuniformity does not affect
the performance of the algorithm, we aim to avoid the costly process of generating
panoramic view. Thus, we benefit the spectral content of the pixel without need of
spatial linearity. Hyperspectral imaging with its high spectral density adds value to
remote sensing applications due to its spectral density rather than its provided spatial
information.
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CHAPTER 2

HYPERBOLOIDAL CATADIOPTRIC SYSTEM

In this chapter, the hyperboloidal catadioptric system is investigated. A preliminary
research objective of this dissertation is to analyze the spectral effect of the mirror
used in the proposed system. In the first subsection, image irradiance is studied. In
the second part, related work on mirror material and its reflectance signature are pre-
sented. Additionally, some measurements on omnidirectional hyperspectral system
are shown to investigate the mirror effect. Lastly, hyperboloidal image formation is
studied.

The proposed omnidirectional hyperspectral imaging system is illustrated in Figure 1.
The system is composed of a hyperspectral camera and a hyperboloidal mirror. The
scheme demonstrates a representation of an omnidirectional hyperspectral data cube.
It also shows the spectral signature gathered from a pixel in the data cube. A sam-
ple omni-hyperspectral image acquisition setup is shown in the figure. Finally, an
unwrapped visualization of the omnidirectional image is given in the scheme.

2.1 Image Irradiance

Bidirectional reflectance distribution function (BRDF) defines the ratio of the radi-
ance in the outgoing direction to the incident irradiance. The function is formalized
as [1]:

fr(θi, ϕi, θr, ϕr) =
dLr(θr, ϕr)

dEi(θi, ϕi)
=

dLr(θr, ϕr)

Li(θi, ϕi) cos θidωi
(1)

where fr is the BRDF function, the reflected radiance in the direction (θr, ϕr) is dLr,
and dEi is the incident irradiance with the angle θi and dωi is the solid angle element
within which the incident radiance is confined. The geometry of incident and reflected
elementary beams are illustrated in Figure 2a.

Traditionally, optical propagation has been treated as consisting of two distinct phe-
nomena: regular (specular) propagation and diffuse propagation. However, while
purely regular (specular) or purely diffuse propagation can be very closely approxi-
mated, neither is ever completely and independently achieved in practice. Reflection
difference of these phenomena is demonstrated in Figure 2b and c.
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Figure 1: The proposed omnidirectional hyperspectral imaging system consists of a
convex (hyperboloidal) mirror and a hyperspectral camera looking at the mirror.

There are several BRDF models that aim to model the surface reflection. The Lam-
bertian Surface appears equally bright from all viewing directions and reflects all
incident light. The Lambertian surface is an ideal diffuser as it is independent from
the viewing direction. The BRDF of Lambertian surface is:

I =
ρ

π
kc cos θi (2)

where k is source brightness, ρ is surface albedo (reflectance), c is constant (optical
system), θi is the angle of incident light, and I is image irradiance.

The reflection of a world point to the mirror surface is illustrated in Figure 3. In the
example shown in Figure 3, the incoming light from the sun is reflected to the object
with an angle θi and then to the mirror surface. The outgoing radiance is effected
by the angle of the light and the surface reflectance. In the proposed system, the
radiance is effected by both diffuse and specular propagation. While the reflection
from the object represents the diffuse propagation, mirror reflection is the specular
propagation. We propose to approximately formulate the radiance obtained in the
camera as

I =
(ρbody

π
kc cos θi

)
ρmirror (3)

.

Figure 3 illustrates the scene to be captured in the proposed system. Bastanlar indi-
cated in his study [31] that catadioptric systems are able to provide single-viewpoint
property if the mirror has a focal point which can behave like an effective pinhole. In
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(a) (b) (c)

Figure 2: (a) Geometry of incident and reflected elementary beams [1]. (b) Specular
reflection. (c) Diffuse reflection.

Figure 3, the light ray coming from the world point and targeting the focal point of
the hyperboloidal mirror is reflected on the mirror surface. The reflected ray passes
through the camera center (effective pinhole).

2.2 Stainless Steel Mirror Spectral Characteristics

As discussed in Section 2.1, the intensity value measured in the hyperspectral sen-
sor is dependent on the source brightness, angle of the irradiance vector, diffuse re-
flectance of the object and the specular reflectance of the mirror. Therefore the mate-
rial of the mirror plays a critical role in the measured intensity value. In this section,
literature study on the material of the mirror is presented. In the experimental studies,
we used Neovision Hyperbolic Stainless Steel Mirror.

Benlattar et al. [2] indicate that stainless steel with high visible band reflectance
and high infrared band emissivity can be used as a good radiative cooling material.
They performed their experimental studies on borosilicate glass substrate coated with
stainless steel thin film. The effect of film thicknesses on the reflectance signature is
shown in Figure 4a.

Another study on stainless steel reflectance which is presented by Rooms et al. [3],
is about using metal foils in order to optimize the efficacy and angle dependence of
emission of top-emissive organic light-emitting diodes. The PEDOT used under the
metal foils causes a dip at 480 nm as shown in Figure 4b.

In the study of Marot et al. [4], they aim to optimize the performance of the first mirror
used in ITER plasma diagnostic systems. The first mirror is deemed as one of the most
critical elements of these systems. Because it must survive in an extreme environment
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Figure 3: Image formation of hyperboloidal catadioptric systems.

(a) (b) (c) (d)

Figure 4: (a) Stainless steel reflectance characteristics. [2], [3], [4], [5]

such as intense UV and x-ray radiations, Rhodium is an attractive material for this
purpose thanks to its high reflectivity in the visible wavelength range and its low
sputtering yield. However, the very high price of rhodium calls for its use in the
form of a film deposited onto metallic substrates. Stainless steel is analyzed as an
alternative substrate. The reflectance signature of the stainless steel between 300 nm
– 1800 nm is presented in Figure 4c (SS).

In the literature, it is seen that stainless steel is frequently preferred thanks to its high
reflectivity and low price comparing to other metals. Finally, Figure 4d [5] demon-
strates several materials’ reflectance measurements including stainless steel.

Some Experiments on Spectral Effect of the Mirror

In this experiment, several materials with a diverse signature are captured in order to
observe the effect of mirror on reflected signature.

The scene to be analyzed is shown in Figure 5. Firstly, four points are selected from
the objects, and then their corresponding points on the mirror. Median signatures of
the four points selected on each object are plotted in Figure 5c. An initial analysis on
the spectra shows that the mirror reduces the intensity values of the objects’ original
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spectra. This is expected because some of the incident light may be absorbed by the
mirror and the remainder will be reflected.

The effect of the mirror is gathered from the Eq. 3 given in Section 2.1:

ρmirror =
I

ρbody
π
kc cos θi

(4)

where I is the radiance measured on the sensor, ρmirror and ρbody are the mirror and
object reflectance respectively, k is source brightness, c is constant about the optical
system, and θi is the angle of the irradiance. The computed mirror reflectance signa-
ture is shown in Figure 5d. This analysis provides to deduce that spectral effect of the
mirror is quite linear which is probably caused by the decline in the source of illumi-
nation. In conclusion, the spectral effect of the mirror is negligible on hyperspectral
data processing algorithms.

2.3 Catadioptric Image Formation

In the proposed system the spatial resolution decreases from periphery of the omni-
directional image to its center. In this study, we have demonstrated this effect both
theoretically and practically. Baker and Nayar presented the single-viewpoint geom-
etry of the catadioptric image formation in their fundamental work [32]. They deeply
analyze the different mirror shapes which are used in the catadioptric system. An
expression for the spatial resolution factor of a catadioptric sensor is derived in the
study. They also include a preliminary analysis of the defocus blur caused by the
use of a curved mirror. Baker and Nayar demonstrate in detail the spatial resolution
change due to the image coordinate. However, they set a precondition on this com-
putation: the camera must be localized in the effective pinhole of the catadioptric
system.

Baker and Nayar [32] present a factor that computes the spatial resolution of the
image acquired by the catadioptric mirror. The factor is based on a condition which
assumes that while the mirror is positioned in the effective viewpoint v, the camera
must be positioned in the effective pinhole p. In Figure 6, the mirror geometry is
illustrated in detail based on the studies in [32], [33]. The mirror parameters are a, b
and cwhere c is the distance between pinhole and viewpoint in other terms the camera
and the mirror, and c is given by c = 2

√
a2 + b2.

The variables used in the following equations are demonstrated in Figure 6. As de-
scribed in [32], the resolution of the catadioptric sensor is dA/dv where dA is the
pixel area on the image and dv is the infinitesimal solid angle viewing the world. The
resolution of the conventional camera was derived in [32] as:

dA

dω
=

u2

cos3 ψ
(5)
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(a) (b)

(c)

(d)

Figure 5: (a) RGB representation of the experiment scene. (b) Mirror area. (c) Spec-
tral signatures of materials. (d) Spectral effect of stainless steel mirror

Then, the area of the mirror (dS) imaged by the infinitesimal area (dA) is:

dS =
dω · (c− z)2

cosφ cos2 ψ
=

dA · (c− z)2 · cosψ

u2 cosφ
(6)

The solid angle dv can be defined as:

dv =
dS · cosφ

r2 + z2
=

dA · (c− z)2 · cosψ

u2(r2 + z2)
(7)

where (r, z) is the point on the mirror being imaged. Hence the equation of resolution
of catadioptric sensor can be re-written as:

dA

dv
=

u2(r2 + z2)

(c− z)2 · cosψ
=

[
(r2 + z2) cos2 ψ

(c− z)2

]
dA

dω
(8)
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But, since:

cos2 ψ =
(c− z)2

(c− z)2 + r2
(9)

we have:
dA

dv
=

[
r2 + z2

(c− z)2 + r2

]
dA

dω
(10)

The resolution of the catadioptric camera is the multiplication of the resolution of the
conventional camera with the factor res which is given by:

res =
r2 + z2

(c− z)2 + r2
(11)

Note that the factor in (11) is the square of the distance from the point (r, z) to the
effective viewpoint v divided by the square of the distance from the point (r, z) to the
pinhole p. Hence the spatial resolution is highest around the periphery.
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Figure 6: Image formation in a catadioptric camera with a hyperboloidal mirror.
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CHAPTER 3

HYPERSPECTRAL UNMIXING

The chemical information stored in the hyperspectral data cube provides higher per-
formance on classification, identification and target detection problems in image pro-
cessing applications compared to the conventional imaging systems [34]. Traditional
image processing applications assume that a pixel corresponds to the reflectance value
of a single material. However, especially in remote sensing applications, the neigh-
boring objects can be captured in a single pixel. Hyperspectral imaging makes it
possible to discriminate and identify the different materials existing in a pixel, and
their corresponding mixing ratios. The pure spectral signature of a material is called
as an endmember. The unmixing approach is an umbrella term that encompasses three
main steps: estimation of the number of endmembers, estimation of endmember spec-
tra and estimation of their abundances. The abundance of endmember determines the
proportion of the endmember in a pixel. The general definition of a mixed data is:

xij =
∑
k

eikckj + nij (12)

where xij is the intensity of the ith band of the jth pixel, eik is the spectrum of the ith
band of the kth endmember, ckj is the mixing proportion for the jth pixel from the kth
endmember, and n is random noise. Assuming the ideal case where noise is zero, and
jth pixel purely contains a single material. The ck becomes 1, and the L× 1 vector xj
is equal to ek where L is the number of bands. The mixing proportions should sum to
one, i.e: ∑

k

ckj = 1 (13)

Figure 7 illustrates a basic mixing scenario. Assume that this is a remotely cap-
tured hyperspectral image of a vegetation field. Each color represents different plant
species. The pixel borders are illustrated by black colored grids. The coordinate sys-
tem is given in (x, y) format, where x = 1, . . . , 6 and y = 1, . . . , 6. If we examine
the scenario according to the expressions given in Eq. 12 and 13, where k = 1, . . . , 8.
For example, the pixels in coordinates (1, 1), (2, 1), (1, 6), and (6, 1) are pure pixels of
endmembers 1, 1, 3 and 7, respectively. The pixel which highlighted with white bor-
ders (j = 10) is an example for a mixing case of endmembers 2 and 5. Figure 7b plots
the spectra of pure endmember 2 and endmember 5 (The colors in Figure 7a and b are
corresponding to each other). The noise is ignored in this example. The mixing ratios
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(a) (b)

Figure 7: A basic illustration for the mixing scenario.

are 80 percent of e2 and 20 percent of e5. The mixing is as follows:

x10 = (e2 × 0.8) + (e5 × 0.2) (14)

The spectral signature of the mixed pixel is also plotted in Figure 7b with light green
dotted line. The spectra used in this example are gathered from Indian Pines [35]
dataset: e2 is the median spectral signature of the 16th class, and e5 is the median of
14th class.

The scattered energy is measured as a mixing of the endmember spectra by the sensor.
When the mixing scale is macroscopic, the linear mixing models are used [36]. How-
ever, for the microscopic mixing scale, the linear model is no longer accurate, and
nonlinear models are required [37]. In this study, linear unmixing models are consid-
ered. In linear mixing problems, the mixing occurs within the sensor due to the low
resolution in contrast to the nonlinear mixing case. In this case, all objects in the scene
are exposed to the same irradiance. However, the linear mixing is encountered in the
pixels which contain more than one material. The low spatial resolution prevents the
measurement of their reflectance signatures individually. Although the linear mixing
model is technically simple and clear, it remains incapable in such scenarios where a
physical interaction occurs due to the scattered light from several surfaces. In such a
scenario, the mixing is nonlinear. Additionally, the nonlinear mixing can be observed
in homogeneously mixed materials. On the other hand, albedo effect is another type
of nonlinear model where reflectance is a nonlinear function of albedo [38]. Most
of the studies in the literature including the proposed algorithm in this study are de-
voted to the linear mixing model. The reason is that, despite its simplicity, it is an
acceptable approximation of the light scattering mechanisms in many real scenarios.

Bioucas-Dias et al. [38] present a comprehensive overview on hyperspectral unmix-
ing. They first discussed the linear and nonlinear mixing models, and then briefly
summarized the preprocessing steps of unmixing. They divide mixing models into
five categories as signal subspace, geometrical, statistical, sparsity-based, and spatial-
contextual algorithms. In recent years however, deep learning has attracted much
attention in many domains. Zhang et al. [39] used a convolutional neural network
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architecture that first extract spectral-spatial features and then obtain abundance per-
centages. They present their work using both pixel-based and cube-based architec-
ture.

In Section 3.1, the method used in this study to compute the input parameter re-
quired by the unmixing models is discussed in detail. In Section 3.2 and Section
3.3, geometrical and spatial-contextual categories of the mixing models are studied,
the prominent algorithms in these categories explained and compared theoretically.
The geometrical approaches are analyzed on their pseudocodes. The flowcharts of
the spatial-spectral approaches are presented in the corresponding section. In Section
3.4, the abundance estimation method used in this study is briefly discussed, and the
abundance approach is visually explained on a sample acquisition.

3.1 Estimation of Number of Endmembers

Most of the unmixing approaches in the literature assume that the hyperspectral data
is spread in a convex structure, and this assumption is used as a base for endmember
extraction. However, this assumption requires the number of the pure materials to
be known apriori. Hyperspectral Signal Identification by Minimum Error (HySime)
developed in the study [40] is one of the well-known algorithms in the literature for
estimating the number of endmembers. We implemented HySime for this purpose in
our proposed algorithm. The method is an unsupervised eigen-decomposition based
approach. It first estimates the signal and noise correlation matrices and then selects
the subset of eigenvalues of signal correlation matrix that best represents the signal
subspace in the least squared error sense. Best representation is defined as the sub-
spaces where the difference between signal and noise (Eq. 15) is higher than zero.
The number of eigenvalues where the difference is positive, are determined as the
number of endmembers (k).

(k̂, π̂) = arg min
k,π

{
c+

k∑
j=1

−pij + 2σ2
ij

}
(15)

where c is an irrelevant constant, and π̂ determines the best permutation. i = 1, . . . , L
where L is number of bands. pij and σ2

ij are quadratic forms given by

pij = eTijR̂yeij (16)

σ2
ij = eTijR̂neij (17)

R̂y is the sample correlation matrix, R̂n is the estimated noise correlation matrix, and
ei, . . . , eL are the eigenvectors of signal correlation matrix.

The reader is kindly directed to the study presented in [40] for the detailed explanation
of relation between the noise and sample correlation matrices and the corresponding
minimization purpose of the algorithm.
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3.2 Geometrical Unmixing Approaches

In the literature, geometrical studies are mostly preferred due to their high perfor-
mance and low computational complexity. The geometrical-based approaches are
categorized into two main categories: pure pixel based and minimum volume based
[38]. Well known algorithms Pixel Purity Index (PPI) [41], N-FINDR [42], and Ver-
tex Component Analysis (VCA) [43] assume the existence of pure pixels for each
endmember. The other category that covers the minimum volume based algorithms,
seeks a mixing matrix that minimizes the volume of the simplex containing the data.
The following subsections explain the details of PPI, N-FINDR and VCA algorithms
briefly.

3.2.1 Pixel Purity Index (PPI)

The pixel purity index (PPI) [41] algorithm projects every spectral vector onto skew-
ers, defined as a large set of random vectors. The points corresponding to extrema, for
each skewer direction, are stored. A cumulative account records the number of times
each pixel is found to be an extreme. The pixels with the highest scores are the purest
ones. The algorithm iterates as the number of skewers (num_skewers). PPI requires
lower computational cost than N-FINDR according to the number of iterations. Al-
though, PPI is one of the early developed methods, it still takes place in researches.
The pseudo code of the algorithm is provided in Algorithm 1.

Algorithm 1 Pixel Purity Index (PPI) Algorithm
Input p, R≡ [r1, r2, . . . , rN ], num_skewers {num_skewers is the number of skewer
vectors to project data onto.}
Output M {M is a L× p estimated mixing matrix}

1: skewers := randn(L,num_skewers);{normally distributed L × num_skewers
samples}

2: votes := zeros(N,1);
3: for i := 1 to num_skewers do
4: vol_aux := skewers:,iR0; {R0 is the zero-mean of R}
5: vol_aux := abs(vol_aux);
6: [max_vol,idx] := max(vol_aux); { idx is the indice of the data extreme }
7: [votes]idx := [votes]idx + 1;
8: end for
9: [val_aux,indice] := sort(votes); {sortes votes in descending order}

10: indice := [indice]1 : p;
11: M := [R0]:,indice;
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3.2.2 N-FINDR: An Algorithm For Fast Autonomous Spectral End-member
Determination In Hyperspectral Data

N-FINDR [42] is based on the fact that in spectral dimension the volume defined by
a simplex formed by the purest pixels is larger than any other volume defined by any
other combination of pixels. Therefore, all pixels are evaluated in the algorithm. This
algorithm finds the set of pixels defining the largest volume by inflating a simplex
inside the data. The number of iterations is equal to number of pixels times number
of endmembers (N × p).

The algorithm tries to find the pure pixels by searching each pixel in the data. The
technique is based on the fact that in N spectral dimensions, the N -volume contained
by a simplex formed of the purest pixels is larger than any other volume formed
from any other combination of pixels [42]. For each combination of endmember
set, the volume is recalculated. The volume (v) of the simplex formed by using the
endmember estimation is proportional to the determinant of endmember matrix (E):

V (E) =
1

(l − 1)!
abs(|E|) (18)

where (l− 1) is the number of dimensions occupied by the data. The pseudo code of
the algorithm is provided in Algorithm 2. The number of iteration is quite larger than
PPI and VCA. However, it significantly produces more accurate results than PPI.

Algorithm 2 N-FINDR
Input p, R≡ [r1, r2, . . . , rN ]
Output M {M is a L× p estimated mixing matrix}

1: Rp := UT
p R0;{Up obtained by SVD, and R0 is the zero-mean of R}

2: indice := randi(N,p);{ indice is the randomly selected p points from N samples}
3: Raux := [Rp]:,indice;
4: max_vol := det(Raux);
5: for i := 1 to N do
6: r := [Rp]:,i;
7: for j := 1 to p do
8: [Raux]:,j := r; { temporarily updates the jth endmember}
9: vol_aux := det(Raux);

10: if vol_aux > max_vol then
11: max_vol := vol_aux;
12: indicej := i;
13: end if
14: end for
15: end for
16: M := Up[Rp]:,indice;
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3.2.3 Vertex Component Analysis (VCA): A Fast Algorithm to Unmix Hyper-
spectral Data

The vertex component analysis (VCA) [43] algorithm is based on the assumption that
the endmembers are the vertices of a simplex. The data is carried in this simplex of
minimum volume. The algorithm iteratively projects data onto a direction orthogo-
nal to the subspace spanned by the endmembers already determined. The new end-
member signature corresponds to the extreme point of the projection. The algorithm
iterates until all endmembers are exhausted (p). The pseudo code of the algorithm is
given in Algorithm 3. VCA is one of the mostly preferable geometrical approaches
in the literature due to its simplicity, low number of iterations and high accuracy.

Algorithm 3 Vertex Component Analysis (VCA)[43]
Input p, R≡ [r1, r2, . . . , rN ]
Output M {M is a L× p estimated mixing matrix}

1: X := UT
p R;{Up obtained by SVD}

2: u := mean(X);{u is a 1× p vector}
3:
[
Y]:,j :=

[
X]:,j/

[
X]T:,ju; {projective projection}

4: A:= [eu|0| . . . |0] ;
{
eu =

[
0, . . . , 0, 1]T and A is a p× p auxiliary matrix}

5: for i := 1 to p do
6: w := randn(0,Ip); {w is a zero-mean random Gaussian vector of covariance Ip}
7: f := ((I-AA#)w)/(‖(I-AA#)w‖); { f is a vector orthonormal to the subspace

spanned by [A]:,1:i}
8: v := fTY;
9: k := argmaxj=1,...,N |[v]:,j|; {find the projection extreme}

10: [A:,i] := [Y:,k];
11: [indice]i := k;{stores the pixel index}
12: end for
13: M̂:=Up[X]:,indice;

A sample run is performed to illustrate the iterations of the algorithm (see in Figure 8).
The extreme points are the maxima of v (projection vector), and the vertices of the
hyper plane are computed by updating A(p× p) after each iteration. A is an auxiliary
matrix which stores the projection of the estimated endmembers signatures. The in-
dices of the extreme points are stored, and the spectra corresponding to these indices
in data R(p× L).

3.3 Spatial-Spectral Unmixing Approaches

Bioucas-Dias et al. [38] indicate in their review that statistical models are powerful
alternatives when the spectral mixtures are highly mixed. However, statistical mod-
els come with higher computational complexity compared to the geometrical models.
Another approach in unmixing literature is the incorporation of spatial information
into the spectral unmixing. As it is discussed in [38], the geometrical, statistical and
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sparsity-based approaches work on spectral domain, and ignore the valuable informa-
tion in spatial domain. Researchers are motivated to classify hyperspectral images by
exploiting the correlation between both spatial and spectral neighbors. The idea in
this approach is to utilize the spatial information in addition to the spectral unmixing
algorithms at the expense of additional computation cost. The review of hyperspec-
tral unmixing covers several methods in both endmember extraction and abundance
estimation steps that take advantage of 3D structure of hyperspectral cube.

In the proposed catadioptric hyperspectral imaging system, we aim to utilize the dif-
ference in spatial resolution between the center and outer parts of the mirror and
furthermore to account for the distortion in the mirror. As the spatial resolution in-
creases toward the image center, the possibility of detecting pure pixels in the outer
regions of the image increases. Therefore, the spatial-spectral unmixing approaches
are reviewed in this chapter. Xu et al. [44] and Yan et al. [45] fuse spatial and spectral
information in a sub-pixel level. Yan et al. [45] divide a pixel into sub-pixels which
are redefined by the scalar factor related to the spatial-spectral similarity. Xu et al.
[44] use sub-pixels in the derivation of fractional abundance maps.

Automated Morphological Endmember Extraction (AMEE) [46], Spatial Preprocess-
ing for Endmember Extraction (SPP) [47], Region-based spatial preprocessing (RB-
SPP) [48] and Spatial-Spectral Preprocessing (SSPP) [49] are well known spatial-
contextual unmixing algorithms. These algorithms are reviewed in the following sub-
sections.

Xu et al. [44] and Yan et al. [45] perform a sub-pixel spectral mixture analysis.
AMEE and SPP are pixel-based unmixing approaches, and RBSPP and SSPP are
region-based approaches. In the proposed system, the endmembers are extracted from
the individual regions which are partitioned according to their spatial resolutions.
Therefore, region-based unmixing approaches are more related with the proposed
study. Martin and Plaza proposed an improved version of RBSSP in SSPP. Hence,
the proposed algorithm is only compared with SSPP based on the experimental results
presented in their study.

3.3.0.1 Automated Morpholocial Endmember Extraction (AMEE)

AMEE [46] is one of the first attempts of incorporating spatial information in spectral
unmixing. The conventional morphological operations are extended to the multidi-
mensional data. The algorithm is based on the Morphological Eccentricity Index
(MEI) which is the distance measure between the neighbors. Figure 9 illustrates the
flowchart of the AMEE algorithm. The kernel is moved through all the pixels of the
image. The spectrally purest pixel and the spectrally most mixed pixel at each ker-
nel neighborhood are obtained by multidimensional dilation and erosion operations.
Grayscale dilation and erosion algorithms are expanded to multi-dimensional space.
These morphological operations iterate from pre-defined minimum window size to
maximum window size. These values are arranged according to the optimum range
for performance and cost. They use Spectral Angle Distance (SAD) as pointwise dis-
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tance measure. The "eccentricity" of a pixel points its distance to the spectrally pure
or most highly mixed element. They propose that this index can be used as an impor-
tant indicator to determine the pixel purity degree. After morphological operations,
the MEI map of the hyperspectral data is generated.

Automated endmember selection is performed by using the MEI map. It is obtained
in the competitive endmember selection step by using a threshold. In the algorithm,
a multilevel Otsu thresholding [50] method is used in order to define the threshold
value. After thresholding the MEI image, the regions corresponding to the endmem-
ber candidates are generated by using a region growing algorithm. In this step, an-
other threshold for region growing is used to add sufficiently similar pixels to the
regions. After the region growing process, the mean spectra of the final regions are
obtained. As a consequence, a final endmember set is obtained. The need for two
threshold values and the cost of iterative processes for different window sizes limit
the effectiveness of the algorithm.

As AMEE is one of the first attempts of spatial-contextual unmixing approach. More
robust and high performance methods are developed in the following years.

3.3.0.2 Spatial Preprocessing for Endmember Extraction (SPP)

Zortea and Plaza [47] present a similar approach to AMEE algorithm related with the
incorporation of spatial information. A kernel moves over the hyperspectral image to
compute a scalar. The scalara value corresponds to the spectral similarity of pixels ly-
ing within a certain spatial neighborhood. The Spatial Preprocessing for Endmember
Extraction (SPP) algorithm differs in taking into consideration the spatial distance of
each pixel in the kernel. By this way, the similarity measures are also weighted ac-
cording to their spatial distances to the center of the kernel. The similarity of adjacent
pixels has higher importance.

They categorize four types of pixels according to both spectral and spatial proper-
ties. Spectrally pure and mixed pixels are defined as made up of a single and several
spectral signatures, respectively. On the other hand, spatially homogeneous pixel de-
fines a pixel whose spectral signature is similar to its surrounding pixels. The last
category covers the anomalous pixels which can be considered as the opposite of spa-
tially homogeneous pixels. It should be noted that homogenous and anomalous pixels
may or may not be pure. However, homogeneous areas provide good candidate pixel
vectors for endmember extraction. The transition areas between neighboring objects
contain most probably mixed pixels. Conversely, the pure pixels correspond to the
endmembers less likely exist in these areas.

SPP is not an endmember extraction algorithm. It is proposed as a preprocessing
algorithm for the endmember extraction algorithms. The image is modified according
to the weighting factor, and the output is sent as an input to an endmember extraction
algorithm. The main idea of the algorithm is to estimate the scalar weighting factor
α(i, j) for each pixel in the image where (i, j) is the center pixel in a square shaped
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spatial region with a size of ws× ws. The weighing factor is computed as follows:

α(i, j) =
i+d∑
r=i−d

j+d∑
s=j−d

β(r − i, s− j)γ(r − i, s− j) (19)

γ(r − i, s− j) = γ(X(r, s),X(i, j)) (20)

where X is the three dimensional hyperspectral data cube, γ refers to a similarity mea-
sure calculated between the central pixel X(i, j) and the neighboring pixel X(r, s). β
is a scalar value that weights the spatial closeness between pixels.

ρ(i, j) = (1 +
√
α(i, j))2 (21)

X(i, j)′ =
1

ρ(i, j)
(X(i, j) + Ī) + Ī (22)

where the term X(i, j)′ denotes a spectral signature obtained after weighing X(i, j)
using spatial information, and Ī is the centroid of the data cloud, which was computed
as the mean of all the pixel vectors in the original hyperspectral scene I.

The strategy of SPP is based on a spatial window which translates over the spatial
domain of the scene in order to investigate contextual information around image pix-
els. This is feasible for the scene where the spatial variation is smooth. However, for
the discontinuities and fast changing of spectral information, a region-based adaptive
method is developed.

3.3.0.3 Region-based spatial preprocessing (RBSPP)

Region-based spatial preprocessing (RBSPP) [48] uses the spatial information as a
guide in order to extract the spectral information more effectively. The algorithm
adequately exploits the spatial context in an adaptive manner. This approach first
searches for the spectrally pure regions. In othe words, it searches the groups of
several contiguous pixel vectors having similar spectral content. The algorithm use
a hybrid procedure that combines unsupervised clustering and orthogonal subspace
projection concepts. Then, the method performs unsupervised clustering by using
the ISODATA [51] algorithm. Finally, the algorithm applies the orthogonal subspace
projection to the mean spectra of the resulting regions. The projection is performed
in order to find a set of spatially representative regions with associated spectra which
are both spectrally pure and orthogonal between them. Furthermore, a spectral-based
endmember estimation algorithm can be applied to the pixels in the resulting spatially
connected regions. The flowchart of the algorithm is provided in Figure 10.

RBSPP is a region-based method contrary to the pixel-based ones which are previ-
ously discussed in spatial-contextual methods. As, it discards a high number of pixels,
the total endmember extraction processing time significantly decreases.

23



3.3.0.4 Spatial-Spectral preprocessing (SSPP)

Spatial-Spectral preprocessing (SSPP) [49] is also a similar approach to RBSPP. It
considers spatial and spectral information simultaneously and fuses both sources of
information at the preprocessing level. The flowchart of the algorithm is provided
in Figure 11. The algorithm consists two pixel-based steps. First, the hyperspectral
image is filtered by a multi-scale spatial Gaussian filter. A spatial homogeneity index
is computed by using the difference between the original and filtered hyperspectral
image. Consequently, similar to the PPI algorithm, a spectral purity index is defined.
A principal components transformation is performed. The weight of the maxima and
minima of the projection are one, and the weight of the mean of the projection is
zero. The sum of all weights for a pixel defines its spectral purity index. Two thresh-
old values are used for spatial and spectral analysis in order to discard lower indices.
In parallel to the first two steps, an unsupervised spectral clustering algorithm (ISO-
DATA [51]) is performed. The rest of the algorithm is region-based. The regions
with high spectral purity and high spatial homogeneity are selected. The endmember
selection process is only performed on these selected regions. Therefore, the process-
ing time of the endmember estimation process significantly decreases. According to
the experimental results provided by Martin and Plaza, SSPP produces more robust
results than RBSPP.

3.4 Abundance Estimation of the Endmembers

For some unmixing applications, it is sufficient to only estimate the endmember sig-
natures. However, for some applications, the abundances of endmembers, in sub-pixel
manner, is also desired information. Several least squared error based algorithms are
proposed in the literature for this purpose. These algorithms vary according to their
constraints, and Table 1 shows the related algorithms.

Table 1: Least Squared Error Based Abundance Estimations Algorithms

Non-Negativity
Constrained (X)

Non-Negativity
Constrained (7)

Sum-to-One
Constrained (X)

NSCLS [52]
FCLS [53] SCLS [54]

Sum-to-One
Constrained (7) NCLS [55]

The proposed system in this study needs to be employed both of the constraints listed
above. We use a fast non-negativity constrained least squares algorithm [56], and then
we normalized the abundances so that sum-to-one constraint is satisfied.

An experiment is performed to visualize the abundance estimation approach in un-
mixing problem. The scene is composed of the materials with distinctive spectral
characteristics in visible and near-infrared (VNIR) region of electromagnetic spec-
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trum. The scene is composed of bone, soil, and vegetation residue that can be dealt
with in food inspection and archaeological remote sensing applications. We perform
measurements on bone samples by using ASD spectrophotometer in 350 nm – 2500
nm. Figure 12 depicts the captured signals from raw and cooked bones. The signifi-
cant absorption peaks correspond to hemoglobin (540 nm – 580 nm), water (978 nm,
1192 nm, 1464 nm, and 1930 nm) and lipid (1745 nm) contamination [57], [58]. The
hyperspectral camera used in our experiments is able to measure the range of 400 nm
- 1000 nm. The hemoglobin contamination of the bone is a significant indicator in
VNIR imaging.

Vegetation also demonstrates distinguishable reflectance characteristic in electromag-
netic spectrum. A healthy vegetation shows a sharp increase in red edge region due
to its chlorophyll content. The high absorption in red region and high reflectivity in
near infrared region cause a significant difference in vegetation spectra. Therefore
vegetation indices are mostly preferred in detection, identification and classification
problems of the hyperspectral data.

Figure 13 shows the scene composed of vegetation, soil, bone sample, white paper,
white reflectance, black reflectance, checkboard, building, and sky. Figure 13b is the
cropped region to be studied that contains vegetation, soil, bone samples, white paper,
and sky in the background. The spectral resolution of the data 0.73 nm, and the spatial
resolution is 0.9 mm for the outer part and 3.3 mm for the inner part approximately.

Figure 14 illustrates the estimated endmembers by VCA algorithm. The blue signa-
ture (endmember #1) with the higher reflectivity is most likely belongs to the white
paper. The green signature (endmember #2) shows a sharp increase in near-infrared
(NIR) region, and it belongs to vegetation. The endmember #4 and #5 have low re-
flectivity roughly in 540 nm and 580 nm. These dips are related with the hemoglobin
content of the bone samples as discussed in the previous subsection. As the scene is
observed, the last endmember must be belong to sky or soil endmember. However,
the pixels corresponding to the sky have low reflectivity due to low incident light.
The soil, sky, and shadowy pixels are estimated in an only endmember (endmember
#3). Figure 15 visualizes the abundances of estimated endmembers in the image. The
red and white parts of the bones are estimated separately. The red bone samples re-
flect the incident light comparatively higher between 600 nm – 700 nm (Figure 14
endmember #4 and #5).
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Figure 8: An example illustration for VCA iterations.
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Figure 9: Flowchart of AMEE algorithm.

Figure 10: Flowchart of RBSPP algorithm.
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Figure 11: Flowchart of SSPP algorithm.
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Figure 12: Bone absorbance (a) and reflectance (b) spectra, respectively.
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Figure 13: RGB representation of data. (a) Omnidirectional image. (b) In-zoom
demonstration of region of interest. (c) The RGB image of the corresponding region
acquired by area scan camera.

Figure 14: Estimated endmember spectra by VCA.

30



Figure 15: Estimated abundance maps for each endmember given in Figure 14.
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CHAPTER 4

PROPOSED METHOD

In the Proposed Method Chapter, the preprocessing steps and the proposed improve-
ments are explained. The novel approaches which are specially investigated for the
proposed catadioptric hyperspectral imaging system are presented. Spectral signa-
ture mixing is a commonly encountered problem caused by low spatial resolution in
hyperspectral imagery. It becomes a more challenging problem in omnidirectional
images. Objects are represented with fewer number of pixels by the side of the mirror
center due to the mirror shape. This deformation can be seen in Figure 16. The re-
duction in the spatial resolution causes mixed pixels to be located around the mirror
center. In this dissertation, we aim to propose the application of approaches which
take into consideration the locations of the pixels on the mirror. A general flowchart
of the algorithm is given in Figure 17.

Figure 16: An example for the distortion on omnidirectional images.

4.1 Preprocessing

A preprocessing step is required for real world acquisitions. First, the raw data gath-
ered from the camera is converted to the reflectance unit. The data is effected by
the camera parameters and the illuminator’s spectral characteristics. Hyperspectral
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Figure 17: Flowchart of the general unmixing approach.

sensor is calibrated by using the objects having highest and lowest intensity values
that might be exist in the scene. This process helps to create the intensity range of
the scene. In our experiments, we use a black object as a dark reference, and a plate
made of teflon as white reference which has high reflectivity in VNIR region. How-
ever, the pixels with higher intensity values than white reference, cause to occur the
saturated pixels. In the experiments performed in this study, the reflected light from
the aluminum pole, surrounding buildings, and the sky are saturated. The algorithms
explained in Section 3.2 aim to detect extreme points of the simplex. In that case, the
saturated pixels are always detected as the endmembers. In order to prevent this case,
the pixels having higher reflectivity than a hundred percent are ignored. Lastly, the
outside of the mirror area is blocked in order to exclude from the unmixing analysis.
The flowchart of the algorithm is provided in Figure 18.

4.2 Spatial Resolution Factor

The spatial resolution factor is derived in Eq. 11. However, in the implementation
phase, the expression needs to be represented in terms of image point coordinates.
The relation between mirror parameters, image point coordinates and 3D outgoing
ray are explicitly set up by Onoe et al. [33]. The study generates panoramic and
perspective images from omnidirectional video streams. It describes an approach on
acquisition an omnidirectional video by using the HyperOmni Vision system. The
setup is mounted on a car, and it uses a hyperboloidal mirror which is abbreviated in
the name of the system. The developed system is composed of two steps: video-rate
omnidirectional image acquisition and perspective image generation from an omni-
directional video stream. We widely use their explanations on computation of the
resolution factor and generation of the simulated data.
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Figure 18: Flowchart of the preprocessing.

As illustrated in Figure 6 (Section 2.3), a ray coming from the world point P (X, Y, Z)
toward the focal point v of the hyperboloidal mirror is reflected by the mirror and
passes through the other focal point (camera center) p, and the ray intersects an image
plane at a point (x, y). This hyperboloidal projection yields the equations in [33] as:

θ = tan−1
Y

X
= tan−1

y

x
(23)

γc = tan−1
u√

x2 + y2
(24)

γm = tan−1
(b2 + (c/2)2) sin γc − 2b(c/2)

(b2 − (c/2)2) cos γc
(25)

where (x, y) are the image point, and u is the focal length of camera lens (the distance
between the point p and the image plane). On the other hand, Baker and Nayar [32]
present the relation between the mirror angle (γm) and the mirror points:

tan(−γm) =
z

r
tan(γc) =

c− z
r

(26)

By using the equations between (24-26), r and z can be re-written as:

r =
c

tan(−γm) + tan(γc)
z = tan(−γm)r (27)

The illustrations about the relation between the pixel coordinate and the spatial reso-
lution are presented in the following part of this section.

1. We performed several studies in order to show the change on spatial resolution
of the omnidirectional image. These studies also aim to demonstrate the spatial
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(a) (b)

(c) (d) (e)

Figure 19: (a) Spatial resolution map (The values are presented in grayscale). (b)
Resolution factors of the pixels at the corresponding line in (a). (c) Front view of the
simulated scene. (d) Omnidirectional image. (e) The radial distortion on checker-
board.

distortion occurred due to the mirror shape. First, we simulate the image which
is generated according to the coordinate system of an omnidirectional image.
The mirror parameters are selected the same with NeoVision hyperbolic mirror
(a = 28.095, b = 23.4125). Figure 19a illustrates the change on the resolution
of the simulated omnidirectional image in grayscale format where dark colors
imply the lower spatial resolution values. This illustration helps us to make an
inference about the decrease of the spatial resolution through the mirror center.
The range of the resolution values are plotted in Figure 19b. For an image
with size of (164 × 164), the resolution factors vary to values between 5.52
and 0.3813. After masking the camera location in the center of the image, the
resolution factors vary to values between 5.5 and 3.2.

2. One of the research questions of this study period is to investigate whether
the resolution factor is dependent on the distance between object and mirror.
The objects surrounding the mirror are naturally perpendicular to the ground.
For this case, the distance between object and mirror increases through the z
direction.

The distance d shown in Figure 19c is equal for the upper and bottom part of the
checkerboard. In this experiment, while preserving the distance to mirror on each
point of the object, we still observe the distortion and the change on the resolution.

These experiments show that the resolution factor changes regardless of the distance
between object and mirror. The only parameter that effects the formula of the resolu-
tion factor is the r coordinate of the mirror point.
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4.3 Proposed Improvement on Geometrical Unmixing Approaches (Omni-Approach)

The method that we propose is similar to the conventional spatial-spectral unmixing
approaches in terms of requiring a preprocessing step before endmember estimation.
However, unlike these methods, it does not require spatial connectivity. It aims to
overcome the inequality of spatial resolution that occurs in the omnidirectional hy-
perspectral image. In the preprocessing step, the spatial resolution map is generated
by using the camera and mirror parameters (explained in Section 4.2). In this respect,
the preprocessing step proposed in this study is independent from the scene content.
Then, the map is integrated to the endmember estimation algorithm to be applied.
Therefore, the effect on the endmember estimation algorithm is negligible in terms
of processing time. This provides a great advantage compared to the other spatial-
spectral unmixing methods. The complexity of the proposed algorithm isO(n) where
n is row × column of the omnidirectional image.

The methods that are evaluated in this study are geometry based approaches and they
aim to extract the endmember signatures by maximizing the volume. Under the as-
sumption that the endmembers must be located at the extrema, the data is multiplied
by the spatial resolution map just before detecting the maxima of the volume (see in
Table 2). Thus, the point having high spatial resolution is translated to outer of the
simplex. The possibility of detecting a point having higher spatial resolution as an
extreme point is increased in this way. Conversely, the pixel with lower resolution is
forced to translate to inner position in the data cloud. The maxima of the algorithms
are evaluated in the 6. line of PPI (Algorithm 1), 10. line in N-FINDR (Algorithm
2), and 9. line in VCA (Algorithm 3). We propose to perform the multiplication just
before the measuring the maximum of the data (see in Table 2).

Table 2: The Proposed Omni-Approach on Geometrical Unmixing Algorithms

Original Geometrical
Unmixing Algorithm Omni-Approach

PPI [max_vol, idx] :=
max(vol_aux)

[max_vol, idx] :=
max(vol_aux ∗ res_factor)

N-FINDR vol_aux := det(Raux)
vol_aux :=
det(Raux ∗ res_factor)

VCA k := argmaxj=1,...,N |[v]i,j|
k :=
argmaxj=1,...,N |[v ∗ res_factor]i,j|

4.4 Proposed Improvement on Spatial-Spectral Unmixing Approaches

The main idea of the algorithm is to estimate the scalar factor ρ(i, j) for each pixel
in the image. X(i, j) is the center pixel in a square-shaped spatial region with a size
of w × w. The weighing factor α(i, j) is computed as shown in Line 2 in Table 3.
γ refers to a similarity measure calculated between the central pixel X(i, j) and the
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Table 3: SPP Algorithm

1 d = w
2

2 α(i, j) =
∑i+d

r=i−d
∑j+d

s=j−d β(r − i, s− j)γ(r − i, s− j)
3 γ(r − i, s− j) = γ(X(r, s),X(i, j))
4 β(i, j) = 1√

i2+j2

5 ρ(i, j) = (1 +
√

α(i, j))2

6 X(i, j)′ = 1
ρ(i,j)

(X(i, j)− Ī) + Ī

neighboring pixel X(r, s). β is a scalar value that weights the spatial closeness be-
tween pixels. The term X(i, j)’ denotes a spectral signature obtained after weighing
X(i, j) using spatial information, and Ī is the centroid of the data cloud, which was
computed as the mean of all the pixel vectors in the original hyperspectral scene I.

Figure 20: Inner and outer windows (win, wout) capture same spatial size in real
world.

win
wout

=
resin
resout

(28)

β(rin − iin, sin − iin)

β(rout − iout, sout − iout)
=
resout
resin

(29)

where win and wout are the window size, and resin and resout are the spatial resolu-
tions for the corresponding locations. The window size w (Table 3 – Line 1) must be
set according to the ratio between the corresponding spatial resolutions. In Figure 20,
win and wout contain same spatial area in real world, four black squares on checker-
board. However, it is explicitly seen in the figure that the pixel size of the windows
on omnidirectional image are quite different.

Additionally, the SPP approach is based on the spatial equality of the image pixels.
It means that each pixel in the image has the same spatial resolution. However, the
omnidirectional image formation contains different spatial resolutions. Therefore, the
spatial distance measured in β function must be computed according to the spatial
resolution ratio between inner and outer parts (Eq. 29).
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4.5 Proposed Local Endmember Extraction Approach on Omnidirectional Im-
ages

The materials present in the scene may have diversity on their spectral characteristics,
even though they are pure pixels conceptually. Different environmental and illumina-
tion conditions such as shadow of an object and heterogeneous content of the material
cause a variety on the pure spectral signatures of the material. A single representer
for each class for the complex unmixing problem may not be found. For these rea-
sons, some researchers prefer to conduct their unmixing studies on local endmember
estimation approach [59, 60]. This approach investigates the spectral unmixing algo-
rithms in a small size window independently from the rest of the scene. Somers et al.
[59] introduced a similar algorithm. They select subsets from the hyperspectral data
cube. The extracted endmembers from the subsets are stored in a global endmembers
set, and then clustered in order to obtain the global representers of the pure materi-
als. This algorithm is also used in [60], which aims to monitor seasonal variations
of vegetation cover. They estimate the abundances of the endmembers with a dif-
ferent viewpoint. The data cube is evaluated using the global endmembers set, then
the abundances of the endmembers belonging to the same cluster are accumulated for
each pixel. As a conclusion, they indicate that the local unmixing idea benefits to
discriminate two similar vegetation species.

In our study, we propose that spectral analysis of partitioned circles which are gen-
erated according to their spatial resolution factors, is more appropriate for omnidi-
rectional hyperspectral images. The materials with different spatial resolutions may
have a diversity on their spectral signatures. Local unmixing approach prevents to
miss these cases. The scheme of the proposed algorithm is depicted in Figure 21.
The image is divided into three circles with equal number of pixels. The estimation
of number of endmembers and estimation of spectral signature of endmember (EEA)
are studied independently on each circle. The first column depicts the estimated pure
pixel locations with red dots on the image, their corresponding spectra are plotted
in the following column. After endmember estimation, a bundle of endmembers is
accumulated. The studies presented in [59], [60] take advantage of high number of
endmembers by using Multiple Endmember Spectral Mixture Analysis (MESMA)
[61]. The algorithm is based on using a library which contains field and laboratory
measurements. An enhanced performance of MESMA is presented at [62]. A wide
range of instances according to the application is collected. In spectral mixture analy-
sis, it achieves to discriminate similar spectra [61]. In the proposed algorithm, we do
not use such a library. Instead, we use the internal information of the hyperspectral
data as it is proposed in the study of Somers et al.. A library is created by collecting
from endmember estimation of each circular sub-region. The collected endmembers
set is clustered by k-means[63], and an optimal abundance map is computed by using
multiple endmember spectral mixture analysis. The last column consists the clustered
endmembers and the error maps where white color indicates higher error. The defi-
nition of error map is presented in Section 5.2.1. Note that, the proposed method is
combined with the improvement explained in Section 4.3. The pixels in the circular
sub-regions are multiplied with their corresponding spatial resolution factor.
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Figure 21: The scheme of the proposed local endmember extraction algorithm.
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CHAPTER 5

EXPERIMENTAL RESULTS

In this chapter, the well-known geometrical unmixing approaches and the proposed
improvements on geometrical and spatial-contextual unmixing approaches are evalu-
ated. The accuracies of the algorithms are compared on regeneration error.

5.1 Data Definition

In the experiments, seventeen images are evaluated. While the first eleven of them are
real world acquisitions, the last five images are synthetically generated catadioptric
hyperspectral images. The RGB representations of the experiments are presented in
Appendix A.

5.1.1 Synthetic Data

We have simulated a four-wall indoor scene. Each wall is composed of a signature
gathered from the Indian Pines dataset [35]. Figure 22a illustrates the perspective
view of the cubic room, and Figure 22b is the omnidirectional view. We used the im-
age in the second row to help visualizing the scene easily. The central point coordi-
nate of an omnidirectional image is (0,0,0). The upper and left points from the central
point get negative values. The transformation between world point, mirror point and
image point is technically and practically presented in the report prepared by Zivkovic
and Booij [64]. A world point X is projected to image point xim = (xim yim 1):

xim = PX = KR[I|C]X (30)

where P is the 3 × 4 projection matrix that can be decomposed as described above.
C is a 3 dimensional vector that represents the position of the camera center. The I
above denotes the 3× 3 identity matrix. The matrix R is a 3× 3 rotation matrix that
describes the rotation of the camera with respect to the world frame. The matrix K is
the camera calibration matrix:

K =

(
fx s x0
0 fy y0
0 0 1

)
(31)
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(a) (b) (c)

Figure 22: (a) The perspective view of the room and the corresponding coordinates.
(b) Omnidirectional view of the room. (c) An example illustration for omnidirectional
image of a four-wall indoor scene [6].

where fx and fy are the scale factors in x and y directions, s is skew and (x0, y0) are
the image coordinates of the projection of the camera optical center.

A 3D world point X is first projected to the point Xm on the mirror surface:

Xm = (x y z 1/λ(X))T , (32)

where

λ(X) =
b2(−ez − a

√
x2 + y2 + z2)

b2 + z2 − a2(x2 + y2)
(33)

The pointXm on the mirror is then projected to the image using the standard perspec-
tive camera equations xim = PX = KR[I|C]Xm.

The walls have a pattern of strips with 2 pixel width where the consecutive strips
have different spectral characteristics. Totally 11 different spectra are used in a sim-
ulated image. The spectra are gathered from Indian Pines hyperspectral dataset. The
synthetic data is categorized into four parts:

• No noise, pure spectral signature (Experiment #12)

• Noisy, pure spectral signature (Experiments #13 and #14)

• Noisy, two consecutive strips’ spectral signatures are mixed manually (Experi-
ments #15 and #16)

• No noise, two consecutive strips’ spectral signatures are mixed manually (Ex-
periments #17)

The RGB representations of the categories are demonstrated in Figure 23 (a,b,c).
Figure 23d shows the mixing map that demonstrates the mixing ratios of each pixel.
The highly mixed pixels get higher values in the map. The map is generated for dis-
play purposes. The ratio is computed by multiplying the abundances of a pixel as
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(a) (b) (c) (d)

Figure 23: Synthetic omnidirectional hyperspectral data (a) No noise, pure spectra.
(b) Noisy, pure spectra. (c) Noisy, manually mixed. (d) Mixing map where high
intensity indicates higher mixing ratio.

shown in the following formula:

mixingmap =

p∏
i=1

(ci + 1) (34)

where p is the total number of endmembers, ci are the mixing abundances. We add one
to the abundance values in order to avoid the case which abundance of an endmember
is zero. The sum of the abundances for a pixel is as in equation below:

p∑
i=1

ci = 1 (35)

5.1.2 Real World Acquisitions

The proposed method is tested on scenes that have been acquired by Headwall A-
Series Visible + NIR linescan camera with spectral range of 400 nm - 1100 nm and
1.5 nm spectral resolution. Additionally, we used the hyperbolic mirror of NeoVision.
We performed outdoor acquisitions in all experiments in our study. We have acquired
three datasets which contain totally eleven images. The images in a dataset include
same objects in a variety of positions and illumination conditions. All datasets contain
building, sky, and forest in some scenes. Additionally, white reflector (teflon) and
black reflector are used for reflectance conversion. The sample RGB representations
of the datasets and the materials that exist in the scene are given in Table 4.

• Dataset #1
In the first acquisition, several objects made of clay and mosaic are captured in
addition to the materials discussed above. Experiments #1 and #2 belong to the
Dataset #1.

• Dataset #2
The scene is composed of the materials with distinctive spectral characteristics
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(a) (b) (c) (d)

Figure 24: Synthetic omnidirectional hyperspectral data (a) No noise, pure spectra.
(b) Noisy, pure spectra. (c) Noisy, manually mixed. (d) Mixing map where high
intensity indicates higher mixing ratio.

in VNIR region. Bone, vegetation and soil residues can exist together in ar-
chaeological remote sensing and food inspection problems. Experiments #3,
#4 and #7 to #11 belong to the Dataset #2.

• Dataset #3
The scene contains printed papers with six different colors on different geomet-
rical shapes. The shapes are painted by using red, green, blue, magenta, cyan
and yellow colors. The first print (Figure 24) covers 6 color stripes which lie
from outer regions to the center of the image. Two of the prints are painted by
red, green and blue, and the squares’ size are 1cm2 and 2cm2 (Figure 24b and
c). The last paper (Figure 24d) is designed contrary to the premise of the pro-
posed algorithm. The paper is divided into three parts from outer to the center
of the image. Each part contains different 2 colored squares. The colors which
exist in the inner part, do not exist in the outer part. Experiments #5 and #6
belong to the Dataset #3.
The sample RGB representations of the datasets and the materials that exist in
the scene are given in Table 4.

5.1.3 Limitations

In principal, imaging is based on measuring the light reflected from the object, the
measured value depends on the light that illuminates the scene. The spectral signa-
ture taken from the uncalibrated data contains the signature of the light in the scene.
The camera requires a stable light source in order to obtain an accurate measurement.
Therefore, we need a reliable light source for indoor experiments. Quartz Tung-
sten Halogen Lamp is a stable light source with a known spectral signature. Figure
32 shows an experiment acquired by using VNIR hyperspectral camera and Quartz
Tungsten Halogen Lamp. A ring illumination is used in this study, and it is focused
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to illuminate the center of the FOV of the camera. As seen in the figure, the mirror
gets a dark view and does not reflect the scene. Because these type of specialized
illuminators are only able to illuminate the targeting object rather than the whole en-
vironment. As the omnidirectional mirrors capture the 360 degree view of the scene,
these illuminators are incapable for the system proposed in this study. For omnidirec-
tional imaging, multiple illuminators must be integrated for the diffuse illumination
of the environment to be captured. However, we performed only outdoor acquisitions
because of the insufficient illumination equipment.

Figure 25: Indoor acquisition example. A dark view of the environment.

5.2 Comparison of Methods

In this section, the well-known geometrical unmixing approaches and the proposed
improvements on geometrical and spatial-contextual unmixing approaches are evalu-
ated. The accuracies of the algorithms are compared on regeneration error.

Evaluation Criteria

In this subsection, we compare the effect of the spatial-contextual preprocessing ap-
proaches on the performance of the geometrical unmixing algorithms. The methods
are compared on the error of regenerated data which is created by using the extracted
endmembers. The outputs of the unmixing algorithms are the endmembers(E). The
size of the matrix E is (L × p) where L is the number of spectral bands, and p is
the number of endmembers. The abundances of the endmembers are computed by A
Fast Non-negativity-Constrained Least Squares Algorithm [56]. C contains the abun-
dances in each pixel. The size of the abundance matrix (C) is (p × N) where N is
total number of pixels (rows× columns).

X = EC + ε (36)

RMSE =

√∑N
i=1(S(i, :)2 − X(i, :)2)

N
(37)

where S is original hyperspectral data (L × N), X is measured hyperspectral data
(L × N), and ε is the noise. The difference between S and X is the error which is
used to evaluate the developed algorithms. The difference is measured by the Root
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Mean Squared Error (Eq. 37). The error values are increased by 100 times in order
to make a more clear evaluation.

5.2.1 Comparison of Unmixing Algorithms and Preprocessing Approaches

In this subsection, the performances of the geometrical unmixing algorithms and the
preprocessing approaches are compared. The methods are compared on the error of
regenerated data which is created by using the extracted endmembers. The error val-
ues are multiplied by 100 for display purposes. In Table 6, the first super-column
(containing 3 columns) shows the results of the geometrical unmixing algorithms
without any spatial-spectral preprocessing. The following two super-columns con-
tain the results of the spatial-spectral preprocessing approaches (SSPP and Omni-
Approach) applied before the regarding geometrical unmixing approaches. The ex-
periments whose results are shared in Table 6, the data id between 1 and 11 are the
real world acquisitions, and the rest correspond to the simulated omnidirectional hy-
perspectral data. The SNR of the data are given in Table 5.

The last row of the Table 6 indicates the overall accumulated error values of the ex-
periments. This overall results provide us to make a comprehensive comparison of
the geometrical and spatial-contextual unmixing approaches. The lowest overall error
is obtained when N-FINDR algorithm is applied with Omni-Approach. Additionally,
Omni-Approach achieves to decrease the overall error of PPI and VCA algorithms.
On the other hand, the endmember estimation accuracy of SSPP preprocessing ap-
proach highly depends on the estimated number of endmembers. In this case, SSPP
remains incapable of decreasing the regeneration error of the geometrical unmixing
algorithms.

5.2.2 Evaluation of the Proposed Improvement on Geometrical Approaches

In this subsection, we aim to observe the effect of the proposed improvement ex-
plained in Section 4.3 on the existing geometrical unmixing algorithms. Table 7 and
Table 8 represent the case which satisfies the situation that the proposed improve-
ment is based on. The first column in the table shows the RGB representations of the
scenes. The upper row contains the error maps created by VCA and OmniVCA algo-
rithms. Bright tones indicate higher error, dark tones indicate lower error. The second
row shows the estimated pure pixel locations on the RGB images of the data. The last
row indicates the regeneration errors of the N-FINDR, PPI, and VCA algorithms with
and without omnidirectional approach.

5.2.3 Evaluation of the Proposed Local Endmember Extraction Approach

In this subsection, we evaluate the endmember estimation performance of the algo-
rithm proposed in Section 4.5. Figure 27 demonstrates the comparison of the number
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Figure 26: Over-estimated number of endmembers.

of endmembers estimated from individual circles vs. whole image. Circle 1 is the
outer, and the circle 3 is the inner one. In the experiments between #12 and #17,
11 different spectral signatures are used. The number of endmembers are estimated
highly correlated with the groundtruth in the Exp. #12, #13 and #17. In the Exp. #14,
#15, and #16, the noise is increased, and the data is manually mixed. Consequently,
estimation accuracy is decreased in these experiments. In most of the experiments,
the estimated number of endmembers are similar to each other between circles. How-
ever, in Exp. #3, #4, and #5, the estimated number of endmembers are explicitly
increased in inner circles.

The extracted endmember locations are demonstrated in Figure 28. As it can be ana-
lyzed in the RGB representations, there is no significant material diversity difference
between inner and outer circles. The reliability of Hysime is highly dependent on
SNR estimation accuracy. In the provided Matlab code by the authors, the signal to
noise ratio (SNR) is assigned 50 as default. However, it fails in some cases and the al-
gorithm grossly over-estimates the number of endmembers as in Figure 26. The high
number of estimated endmembers provides regenerating the data with lower error. In
other respects, the difference between the numbers of endmembers of circles is not
reasonable. Therefore, we modified the implementation of the SNR prediction as:

SNR ≡ 10log10

x2

σ2
≡ 10log10

E[sT s]
E[nTn]

(38)

where s and n are vectors standing for signal and additive noise, respectively.
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Figure 27: Estimated number of endmembers on each circular division.

As a reminder, the errors are measured per pixel. In other words, the total error of the
data is normalized by the total number of pixels. Therefore, the error is independent
of the circle size. The proposed improvements are compared in Table 9. The first col-
umn shows the regeneration error without using a spatial information. The following
column contains the results which obtained by using only the OmniVCA approach.
Figure 30 and Table 9 show that the simulated images produce lower errors due to
their comparatively higher SNR values. The overall error is reduced by 3% with Om-
niVCA approach. The last column presents the results of the algorithm where the
OmniVCA and local EEA algorithms are used together. The significant contribution
is obtained in the local EEA and multiple endmember selection approach. The overall
error in this column decreases 45% compared to the VCA approach with no spatial
information.

The experimental results shared in Table 9 correspond to the results of the evaluation
of 3 circles. The performance of the local EEA approach is evaluated for 2, 3, 9,
and 18 circular divisions and sub-regions. Therefore, we measure the relation be-
tween the subset size and performance of the algorithm. The schemes of the divisions
are demonstrated in Figure 29. The chart in Figure 30 compares the subset sizes on
reconstruction error. The study [59] proposes to set the subset size as 10% of the
image size. However, in this study, we obtain lowest error by using 3 circles, in other
words, 33% of the image size. In other respects, the image is partitioned into tori
with equal minor radii. In this case, the inner circle has least number of pixels, and
the outer circle has most number of pixels. In most of the scenes, the inner circle
captures the highly saturated area e.g., sky and aluminum camera holder. HySime
mostly fails in estimation of number of endmembers in these scenes. Therefore, we
continue the studies by keeping equal the number of pixels rather than minor radii.
As the region size decreases, the algorithm for estimation of number of endmembers
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Figure 28: Extracted endmembers on each circular division (from up to down, re-
spectively, Exp. #3, Exp. #4, Exp. #5).

Figure 29: Circular Divisions.

(HySime) underperforms. The output of the HySime algorithm directly effects the
extracted endmember spectra and the regeneration performance.

5.3 Discussion

While N-FINDR searches all pixels for pure pixel detection, VCA has only compu-
tational cost of iteration as number of endmembers. Therefore VCA has consider-
ably lower computational cost than N-FINDR. As it is indicated in the performance
evaluation of study presented in [43], VCA performs better than or comparable to
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Figure 30: Reconstruction errors for each circular division.

N-FINDR. Additionally, the presented experimental studies show that VCA produces
lower regeneration error than PPI and NFINDR.

VCA, PPI, and N-FINDR aim to find the minimum volume containing the data, and
the extreme points on the simplex correspond to the endmembers. However, it limits
the performance of the algorithms for the mixed pixels with a higher brightness than
the unmixed pixels [42].The saturated pixels are always constitute the vertices of the
simplex.

The proposed improvement on geometrical unmixing approaches (Omni-Approach)
specific to the omnidirectional hyperspectral imaging system, succeeded in increasing
the performance of the state-of-the-art VCA method on most of the experiments.
However, scenes which contain different materials on the inner and the outer parts
of the mirror limit the potential of the method.

The proposed local EEA method is also developed according to the structure of the
omnidirectional hyperspectral imaging system. Both of the improvements proposed
in this study are applied concurrently on hyperspectral data. We conclude that the
spectral analysis of omnidirectional data achieves higher performance on spatially
divided parts rather than implementing on whole image. The endmembers and their
abundances are properly estimated by using circular divisions.
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Table 4: Details of the Real World Acquisitions

RGB images Materials existing in the scene

D
at

as
et

#1

• B&W checkerboard

• Teflon (white reflector)

• Several objects (clay)

• Mosaic

• Building

• Camera holder aluminium

• Sky

• Forest

D
at

as
et

#2

• B&W checkerboard

• Teflon (white reflector)

• Black reflector

• Bone

• Leaf

• Soil

• Building

• Camera holder aluminium

• Sky

D
at

as
et

#3

• 6 color prints

• Teflon (white reflector)

• Building

• Camera holder aluminium

• Sky
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Table 5: SNR Values and The Datasets Belonging to The Experiments (Low SNR
Value Indicates High Noise, SIM: Simulated Data)

Exp.# Dataset# SNR

1 1 31

2 1 30

3 2 34

4 2 26

5 3 29

6 3 26

7 2 28

8 2 32

9 2 32

10 2 26

11 2 34

12 sim. no noise

13 sim. 50

14 sim. 30

15 sim. 50

16 sim. 30

17 sim. no noise
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Table 6: Regeneration Error Based Comparison of Geometrical Unmixing Algo-
rithms with and without Preprocessing Approaches (OE: Overall Error)

Exp.#
Geometrical Approaches Spatial-Spectral Approaches

No preprocessing SSPP Omni-Approach

NFINDR PPI VCA NFINDR PPI VCA NFINDR PPI VCA

1 1.97 3.85 1.81 1.94 4.40 2.40 1.72 5.74 1.86

2 2.26 7.27 2.92 2.43 7.01 4.94 2.12 8.12 2.92

3 1.35 4.76 2.49 1.46 2.67 2.00 2.13 2.39 1.75

4 1.05 2.57 1.04 1.05 2.16 0.94 1.05 2.87 0.97

5 2.68 9.43 2.71 5.19 19.35 3.14 2.51 12.38 2.78

6 2.47 9.33 2.42 11.90 10.23 2.51 2.56 9.43 2.63

7 3.85 5.21 1.62 5.13 4.46 1.91 1.90 5.21 1.76

8 1.52 4.19 1.46 1.49 4.15 1.43 1.50 3.92 1.61

9 1.71 3.54 1.60 1.60 4.00 1.46 1.43 3.76 1.55

10 1.36 3.25 1.57 1.37 2.35 1.33 1.42 2.41 1.57

11 1.50 6.84 2.69 1.57 6.06 2.38 1.39 6.37 2.69

12 0.03 24.07 0.00 0.43 23.36 0.43 0.03 11.65 0.00

13 0.09 23.30 1.77 0.36 29.03 1.58 0.08 23.31 1.24

14 0.94 12.44 0.64 1.05 30.13 0.83 0.80 11.55 0.64

15 0.94 12.54 0.65 1.03 30.20 0.92 0.80 25.94 0.65

16 1.30 24.69 0.89 1.29 30.90 1.10 1.09 13.81 0.88

17 0.03 12.21 0 0.12 28.97 0.10 0.03 11.66 0

OE 25.05 169.49 26.28 39.40 239.40 29.40 22.54 160.51 25.51
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Table 7: The Evaluation of the Proposed Geometrical Unmixing Improvement on
Exp. #3

RGB Representation
Error Map of

VCA

Error Map of

OmniVCA

Pure Pixel Locations

of VCA

Pure Pixel Locations

of OmniVCA

Original Algorithms Omni Approach

NFINDR PPI VCA NFINDR PPI VCA

1.35 4.76 2.49 2.13 2.39 1.75
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Table 8: The Evaluation of the Proposed Geometrical Unmixing Improvement on
Exp. #4

RGB Representation
Error Map of

VCA

Error Map of

OmniVCA

Pure Pixel Locations

of VCA

Pure Pixel Locations

of OmniVCA

Original Algorithms Omni Approach

NFINDR PPI VCA NFINDR PPI VCA

1.50 2.25 1.44 1.46 2.19 1.30
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Table 9: Regeneration Error Based Performance Evaluation of the Proposed Improve-
ments (OE: Overall Error)

Exp.#
VCA VCA VCA

no preprocessing Omni-Approach Omni-Approach & Local EEA

1 1.81 1.86 1.20

2 2.92 2.92 1.94

3 2.49 1.75 1.05

4 1.04 0.97 0.57

5 2.71 2.78 1.47

6 2.42 2.63 1.62

7 1.62 1.76 0.41

8 1.46 1.61 0.87

9 1.60 1.55 0.82

10 1.57 1.57 0.68

11 2.69 2.69 1.39

12 0.00 0.00 0.02

13 1.77 1.24 0.07

14 0.64 0.64 0.66

15 0.65 0.65 0.64

16 0.89 0.88 0.86

17 0 0 0.01

OE 26.28 25.51 14.26
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CHAPTER 6

CONLUSION

The hyperspectral cameras used in remote sensing applications often need large field
of view (FOV). Recent applications capture large FOV hyperspectral data by using
airborne, satellite and UAV systems. In this study, we aimed to increase the FOV
of traditional hyperspectral imaging systems. The limitations of existing systems,
weather conditions, flight permissions, no fly zones, costly aircraft hire, and carrying
capacity of UAVs, are alleviated in low cost and easy-to-use manner. We proposed us-
ing line scan cameras on catadioptric systems. To our knowledge, this is the first time
that a single hyperspectral camera and a single catadioptric mirror is used together to
capture an omnidirectional hyperspectral image.

We analyzed the proposed system in the context of spectral unmixing which is one
of the most challenging problems of hyperspectral imaging. We identified the critical
issues on spectral unmixing that must be taken into consideration specifically for the
proposed system, and we investigated these points technically and practically.

Because the proposed system performs the chemical analysis of the object to be cap-
tured, all factors between imaging device and the object must be examined carefully.
Therefore, we performed measurements and literature search on the spectral effect of
the illumination and the material of the mirror. The experimental results show that
the spectral characteristic of stainless steel does not constitute an impediment to the
usage of mirrors on omnidirectional hyperspectral image analysis.

The spatial-contextual approaches on conventional unmixing algorithms need to be
re-implemented according to the mirror formation. The spatial distances between
pixels are not uniform in catadioptric imaging. The distance parameter of the spatial-
spectral unmixing approach was computed due to the structure of the mirror.

Another approach on spectral analysis covers the geometrical unmixing algorithms.
As the region closer to the center of the mirror has lower spatial resolution, we in-
troduced a weighting scheme to favor pure pixels in the outer part of the mirror. The
weighing approach OmniVCA reduced the overall regeneration error 3% compared
to the original VCA approach. Lastly, the local unmixing approach on hyperspec-
tral image analysis was adapted specifically to the proposed imaging system, and
we developed a new spatially local unmixing approach. The novel approach signifi-
cantly (45%) increases the performance of the conventional geometrical and spatial-
contextual unmixing algorithms on estimating the endmembers and their abundances.
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As future work, we suggest an intelligent endmember selection process in the mul-
tiple endmember spectral mixture analysis e.g., incorporating spectral similarity of
the spatially neighboring pixels, developing an effective clustering method by using
the variances. Additionally, regional division step of local unmixing approach can
be performed adaptively based on uniform spectral properties of regions instead of
equal sized ones. On the other hand, the relation between the scene content and the
position of the divider line can be investigated for the vertical divisions. Furthermore,
nonlinear unmixing analysis can be investigated for catadioptric image formation.

The proposed system covers many application areas belonging to the omnidirectional
and hyperspectral imaging. The study may produce a practical solution for the prob-
lems which requires wide field of view including gas emission detection, road traffic
monitoring, biomedical imaging and surveillance.
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APPENDIX A

RGB REPRESENTATIONS OF THE EXPERIMENTS
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Table 10: RGB Representations of the Experiments
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Continuation of Table 10
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Continuation of Table 10
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Continuation of Table 10
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Continuation of Table 10
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Continuation of Table 10
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