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ABSTRACT 

 

MODEL-BASED POSE ESTIMATION OF THE TOOL CENTER POINT OF 

COLLABORATIVE INDUSTRIAL ROBOTS (UR5) USING A PROPOSED 

FIDUCIAL MARKER SYSTEM 

 

MAJIDI BALANJI, HAMID 

Master of Science, Mechanical Engineering 

Supervisor: Assist. Prof. Dr. Ali Emre Turgut 

Co-Supervisor: Assist. Prof. Dr. Lütfi Taner Tunç 

 

September 2019, 130 pages 

 

Real-time pose estimation of Tool Center Point (TCP) of industrial robots is very 

important in industrial robotic applications. The TCP pose information is used in many 

industrial robotic tasks such as  calibration and control tasks for on-line TCP pose 

corrections and improvement of the TCP pose accuracy and repeatability. Nowadays, 

in industry and robotic research laboratories, laser trackers, optical CMMs, stereo 

vision and photogrammetry techniques are applied for  TCP pose estimation purposes; 

however, each of these has their own problems that affect their pose estimation 

performance and efficiency in industrial robots. 

This study presents a novel model-based pose estimation method based on computer 

vision and augmented reality markers. The proposed system is able to estimate the 

pose of the Tool Center Point (TCP) of the industrial robotic manipulators in point-to-

point applications. An innovative Rhombicuboctahedron ArUco Mapper (RAM) is 

designed for pose estimation of the TCP. The performance analysis of the proposed 

system proved its repeatability and accuracy. The absolute positional measurement 

accuracy of the proposed system in the robot base frame is in the range of 0.12-

0.48mm and for orientational measurements in the robot base frame are in the range 
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of 0.003-0.012o. The pose measurement accuracy and repeatability in the camera base 

frame show better results ±50μm-500μm for the positional accuracy and ±0.009o- 

0.05o for the orientational accuracy. The proposed method is considered as a cost-

effective, high accuracy and repeatable TCP pose estimator for industrial robotic 

applications. 

  

 

Keywords: Computer vision, Industrial Robotic Manipulator, TCP pose, 

Rhombicuboctahedron ArUco Mapper, Absolute pose accuracy, Absolute pose 

repeatability   
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ÖZ 

 

Model Tanimli, UR5 Manipulator Ortasinin Posizyonunu Tahim eden, Olcum 

Usaretli Marker Sistemi 

 

MAJIDI BALANJI, HAMID 

Yüksek Lisans, Makina Mühendisliği 

Tez Danışmanı: Doç. Dr. Ali Emre Turgut 

Ortak Tez Danışmanı: Doç. Dr. Lütfi Taner Tunç 

 

Eylül 2019, 130 sayfa 

 

Endüstriyel robotların Alet Merkez Noktasının (AMN) konumunun ve yöneliminin 

kestirimi çok önemlidir. AMN poz bilgisi noktadan-noktaya endüstriyel robot 

uygulamalarında kullanılmaktadır. Günümüzde lazer tarayıcılar, optik CMM’ler, 

stereo görüntüleme ve fotogrametri teknikleri AMN poz belirlenmesi için 

kullanılmaktadır, ne varki bu tekniklerin her birinde poz belirlenmesi performanslarını 

ve verimliliklerini negative yönde etkileyen bazı eksiklikler mevcuttur. 

Bu çalışma bilgisayar görü ve artırılmış gerçeklik işaretlerine dayalı yeni bir model 

tabanlı poz belirleme sistemi sunmaktadır. Bu çalışmada önerilen sistem nokta-nokta 

uygulamalarında kullanılan endüstriyel robotların (AMN) ait pozu (konum ve 

yönelim) belirlemek için geliştirilmiştir. Yenilikçi bir Rhombicubocathedron ArUCO 

Mapper AMN poz belirlenmesi amacı ile oluşturulmuş ve uygulanmıştır. Önerilen 

sistemin performans analizi yüksek hassasiyetli poz belirlenmesinin ve 

tekrarlanabilirliğin mümkün olduğunu göstermiştir. Robot taban koordinat sistemine 

göre mutlak konum ölçüm hassasiyeti 0.12-0.48 mm, yönelim ölçüm hassasiyeti ise 

0.003-0.012o aralıklarındadır. Kamera koordinat sistemine göre mutlak konum ölçüm 

hassasiyeti ±50μm-500μm, yönelim ölçüm hassasiyeti ise ±0.009o- 0.05o olmak üzere 

daha iyi sonuçlar göstermiştir. Önerilen sisteme endüstriyel robot uygulamaları için 
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uygun maliyetli ve yüksek hassasiyetli tekrarlanabilir ölçüm metodu olarak 

değerlendirilebilir. 

 

Anahtar Kelimeler: Bilgisayar görüntüsü, Endüstrıyel robot kolu, TCP poz, 

Rhombicuboctahedron ArUco Mapper, Mutlak poz doğruluğu, Mutlak poz 

tekrarlanabilirlik  
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CHAPTER 1  

 

1. INTRODUCTION 

 

1.1. Background 

The industrial revolution term was coined for the first time by Arnold Toynbee to 

portray Britain’s economic evolution from 1760 to 1840  [1]. 

The term industrial revolution points to a period from the 1770s to 1870s  [2], when 

technological transition happened in manufacturing processes. In this period, 

mechanical and electrical forces were brought under control, enabling the 

manufacturing of novel products and tools. Consequently, social and economic 

advances occurred as a result of this progress in product manufacturing techniques 

from agrarian-based methods to industrial-based techniques, known as the industrial 

revolution.  

In the existing literature, the industrial revolution classifies into four eras: 

1. Industry 1.0:  this era started with the introduction of steam and water power 

from 1760 to 1830. Two significant inventions of this period are forging and 

shaping operations. 

2. Industry 2.0: In this period, factories achieved mass production capabilities 

using the introduction of electrical energy into the industry. From a historical 

viewpoint, this era can be traced back to the years between 1870 to 1914. The 

telephone, the light bulb, phonograph, and internal combustion engines are 

some outstanding inventions of those times. 

3. Industry 3.0: Information technology and electronics have contributed to the 

third industrial revolution. Some industrial historians have called this era as 

the “Digital Revolution.” For instance, the personal computer, the internet, and 
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the telecommunication technology brought into reality as a result of this 

industrial revolution. 

4. Industry 4.0: This era includes the application of the Cyber-physical systems, 

the internet of things (IoT), data exchange, cloud computing, and cognitive 

computing in manufacturing technologies. In a short expression, digitalization 

of the manufacturing procedures and fusion of the production using artificial 

intelligence, information, and communication technologies are some main  

elements of industry 4.0. In fact, the idea of “smart factories” was promoted 

by industry 4.0. Three-dimensional printing, robotic applications in the 

manufacturing process such as product assembly, welding, and machining are 

some examples of this industrial era. Figure 1.1 outlines the development 

stages of the industrial revolution. 

 
Figure 1.1.  Industrial revolution progression [1] 

Currently, living in the Industry 4.0 period, applications of the sensitive, intelligent 

and perceptive robotic agents remain at the forefront of manufacturing sectors.  

1.2. Motivation 

The idea of replacing human workforce with machines is not a new concept. For 

thousands of years, humankind has been trying to minimize the burden of manual 

work by inventing labor-saving devices, such as the plow or potter’s wheel [3]. Among 

invented machines, for most of the people, automatons were appealing candidates to 

replace human beings because of their life-like behaviors and actions. In the eighteenth 
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century, people of Europe experienced the first form of the automata, known as 

Vaucanson’s duck, which used a cam mechanism to sequence its movements to mimic 

human-like body movement [4].      

The term “robot” coined in a science fiction play called “Rossum’s Universal Robots” 

in Czech in 1921 [5]. The root of the “robot” word traces to the Czech word 

“Robotnik” means slave [6]. 

Although the term “robot” is familiar to most people and its physical appearance 

distinguishes them from other human-made objects such as cars and toys, there is not 

a unified or all-in-agreement definition for robots. Finding out a unique definition for 

the “robot” through literature is a challenging task. The concept of a robot has used 

for a broad range of machine types such as industrial robot manipulators, Unmanned-

Aerial Vehicles (UAVs), humanoid robots, etc. However, the most straightforward 

definition has been offered by Bekey [7], as a machine that senses, thinks, acts, and is 

programmable. The sensing ability of robots enables them to collect information from 

their surrounding environment. For example, proprioceptive sensors measure the 

robot state such as robot pose in a workspace [5]. 

Robots need to be programmed and controlled in order to be able to carry out their 

tasks. For this purpose, robot pose information considers as essential and efficient 

factors. In other words, robot pose data enables them to communicate with the 

surrounding environment. The robot localization problem divides into two categories: 

1. Position tracking or incremental localization:  This type of localization 

refers to the case wherein the initial pose of the robot is known in advance, and 

the current pose of the machine is estimated based on updating the previous 

pose. 

2. Landmark-based pose estimation: In this category, some natural or artificial 

landmarks are used for pose estimation in the environment. In other words, in 

this way, the robot computes its relative pose based on the landmarks and in 

this way the robot localizes itself in the environment. 
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Most robot pose estimation and localization algorithms use the information obtained 

from sensors such as laser rangefinders, sonars, GPS, wheel encoders and cameras. 

Although the laser rangefinders are simple to use and have excellent measurement 

precision, they are slow especially when the data need to be exchanged between the 

robot and the laser rangefinder at a high rate. Sonars are cheap and faster, but their 

pose data contains a high degree of uncertainty or error. Pose estimation based on 

odometry methods relies on robot dynamics such as wheel speeds, axes length, and 

wheel diameter. Odometry methods suffer from some drift-induced problems. In other 

words, an anomaly in the robot physics and dynamics will contribute to the erroneous 

results. When compared to the above sensors, cameras are more flexible, cheaper and 

have higher resolution measurements which can be used for object recognition, 3D 

reconstruction, and localization problems. Additionally, advancement in the 

computing infrastructures and tools decreases the computation time of the vision-

based algorithms and make them accessible. 

1.3. Tool Center Point 

Tool Center Point (TCP) is defined as the tool-related reference coordinate that lies 

along the last wrist axis at a user-specified distance from the wrist [8]. Thus, Tool 

Center Point (TCP) locations lie on line passing through the center of the last link to 

the end of end-effector. The exact position of the Tool Center Point (TCP) is a function 

of the end-effector type. For example, for a gripper, it could be the center of the 

fingers. For a paint gun, it could be a specified distance from the painting gun [9].  

1.4. Objective  

The main objective of this study is to propose a vision-based method for estimating 

the 6 DOF pose (position and orientation) of the Tool Center Point (TCP) for the 

industrial robots. High-precision measurements, economic efficiency, and flexibility 

were some of the main goals of this study it can be applied in some manufacturing to 

improve the of the pose accuracy and repeatability of the industrial robots. 
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1.5. Thesis Outline 

The thesis is organized as follows; first, the problem definition, motivation, and 

objective of this study are proposed in Chapter 1. Chapter 2, is focused on the literature 

review and past works concerning the TCP pose estimation of the industrial robots 

proposed by other researchers. Chapter 3 discusses the theoretical principles and 

implemented pose estimation algorithms in this study. Chapter 4 describes the 

experimental setup and procedures used for the conducting of the experiments. The 

results are interpreted and some discussions made over the proposed method in 

Chapter 5. Finally, Chapter 6 concludes the study and suggested some points for future 

works.  
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CHAPTER 2  

 

2. LITERATURE SURVEY 

 

2.1. Introduction 

A statistical survey conducted on 7000 employees in manufacturing sectors from 

seven countries showed that nearly 70 percent of the interviewees believed that 

robotics and automation had improved their productivity considerably. According to 

the statistical analysis of the survey, countries involving industrial automation were 

experiencing  high Gross Domestic Products (GDP) [10]. 

Rapid advances in industrial robotics and automation have attracted the attention of 

manufacturing and industry in mass production. According to the results of a survey 

[11] conducted by the International Federation of  Robotics (IFR), more than three 

million industrial robots will be applied in industrial plants all around the world by 

2020, Figure 2.1. The industrial robots selling market increased with a 15% growth in 

2015 over 2014 (Figure 2.1). The IFR has an estimated average annual growth of 12% 

of the application of robots in industry and other sections from 2016 to 2019, which 

will be amount to the more than 2.5 million industrial robots.   

Nowadays, industrial robots are used widely in manufacturing, especially in the 

automotive and aerospace industries [12]. Some advantages of the industrial robots’ 

applications are reduction in waste materials, and production of high-quality goods 

with high precision. 
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Figure 2.1. Estimated worldwide stock of industrial robots marketing [13] 

The standard  industrial robot classifications are done based on the type of the Tool 

Center Point (TCP) that installs at the last links which determine the application of the 

robot in manufacturing and industry. Based on this classification method, industrial 

robots are classified into three categories [14]: 

1. Welding Robot: This category includes in Arc welding, electron beam welding, 

flux-cored welding, laser welding, MAG welding, MIG welding, orbital welding, 

oxyacetylene welding, plasma cutting, plasma welding, resistance welding, shielded 

metal Arc welding, spot welding, submerged Arc welding, TIG welding, TIP/TIG 

welding, and welding automation. 

2. Material handling robot: In this category, industrial robots play the role of an 

assistant called collaborative robots, dispensing robots, injection molding robots, 

machine loading robots, machine tending robots, material handling robots, order 

picking robots, packaging robots, palletizing robots, part transfer robots, pick and 

place robots, press tending robots, and vision robots. 

3. Third-party applications: In this category, industrial robot applications are 

restricted to the 3D laser vision robots, appliance automation robots, assembly robots, 
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coating robots, cutting robots, deburring robots, drilling robots, grinding robots, 

fiberglass cutting robots, laser cutting robots, material removal robots, milling robots, 

paint robots, polishing robots, sanding robots, spindling robots, and waterjet robots. 

The demand for precise industrial robotic manipulators is increasing year-over-year 

in manufacturing sectors, especially in the aerospace industry. Thus, the problem of 

improving industrial robot precision has been one of the main concerns of the robot 

manufacturers and users.   

2.2. The Significance of the Pose Knowledge of Industrial Robotic Manipulators  

An industrial robot pose accuracy or pose precision is defined as the robot’s ability to 

precisely position its TCP at a specified pose commanded by the robot controller. For 

this purpose, it is required to estimate the TCP pose with respect to a reference point 

[15]. 

The controllers of the industrial robotic manipulators contain an ideal mathematical 

model of the manipulators which relates its encoder readings to the Tool Center Point 

(TCP) pose. However, due to some unmodeled phenomena that is discussed in the 

following sections, the actual pose of the industrial robotic manipulators deviates from 

the ideal pose estimated by the controller. The ideal mathematical model implemented 

in the industrial robotic manipulator controller is called the nominal model, and the 

actual industrial robotic manipulator is called the actual model [16]. Accordingly, to 

increase the pose accuracy, all efforts should be put to decrease the error between the 

ideal and actual models which leads to higher positional accuracy. Industrial Robotic 

manipulators’ positional accuracy is an important factor in applying them in the 

manufacturing sections mainly in the aerospace industry which requires a high degree 

of accuracy [17]. Nowadays, most of the industrial robotic systems are optimized for 

repetitive automation tasks by using teaching methods. In this way, the robot learns 

manually the desired pose of the TCP  to accomplish its task in a repetitive manner. 

But, teaching approach is inefficient in some non-repetitive tasks especially in digital 

building constructions which require the on-line pose estimation of the TCP [18]. The 
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positional inaccuracy of a drilling end-effector mounted on an industrial robotic 

manipulator, Airbus UK [19], showed that the drilled-holes produced by a robotic 

manipulator did not meet the specific requirements by the Airbus standards 

Thus, the 3D  on-line pose estimation of the Tool Center Point (TCP) of robotic 

manipulators is an important factor in high-precision manufacturing and medical 

sections which demands more accurate robotic manipulators.  

2.3. Error Sources of the TCP pose inaccuracy 

This section discusses the primary sources of the positional errors of the industrial 

robotic manipulators that must be detected by the positioning systems. The positional 

errors of the industrial and non-industrial robotic manipulators is categorized into the 

following classes:  

1. Geometric errors: Geometric errors are one of the principal error sources in the 

TCP positioning [20]. It is related to the manufacturing inaccuracies of the robots’ 

parts. This kind of error is as a result of the non-ideal geometry of the links and joints 

of manipulators, such as errors due to machining tolerances.  

2. Environmental errors: The common form of environmental errors occurs in the 

form of thermal errors. The robots’ links and other structures are fabricated from 

materials that can be expand. Therefore, when temperature increase in the workspace 

of the robot; the temperature of motors, bearings, and structural elements increase 

causing thermal deformations causing dimensional inaccuracies. 

3. Dynamic errors: This kind of error occurs as a result of the dynamic loads 

associated with motion. Dynamic errors are due to inertial loading and structural 

resonance created by the motion. Therefore, in the pose accuracy experiments 

conducted in static points, it can be negligible. However, in the path-based controls, 

they become significant [20].  

 4. System errors: These errors are due to improper calibration, sensor inaccuracies, 

drive train backlash, and installation errors [20][21]. 
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All of these errors affect the TCP pose accuracy and impede it to reach to the desired 

pose calculated by the nominal controller, thus, decreasing of the robot’s pose 

accuracy. Based on the stated facts in this part of the study, actual pose estimation of 

the TCPs of the robotic manipulators such as industrial and non-industrial types is a 

critical operation for pose correction in the manufacturing and medical applications. 

In the following section, the standard and popular methods applied for the actual pose 

estimation of the robotic manipulators have been discussed in more detail. 

2.4. TCP Pose Estimation Techniques  

Although most of the industrial robots have high positional repeatability around 30-

50μm [21], however, they suffer from accuracy problems. The poor accuracy of the 

industrial robotic manipulators has limited their application, particularly in the 

aerospace, automobile manufacturing, and carbon-fiber-reinforced polymers 

industries which requires a high-degree of robot accuracies [22]. For instance, in many 

aerospace manufacturing tasks, the required accuracy constraints may be several 

orders of magnitude higher than the robot’s accuracy reported by the factory. Thus, 

there is a great need for the improvement of the pose accuracy of the TCPs. 

Doubtlessly, the robotic manipulator calibration operation is one of the robust 

solutions to this problem. The central part of the calibration operations is the 

measurements of the relationship between the robot’s base position and the robot’s 

TCP accurately [22]. Because of the non-linearity of the industrial robotic 

manipulators due to the error sources (Section 2.3) most TCP errors cannot be 

detectable at robot’s joints. For example, in many cases, joint encoders of the robotic 

manipulators are not able to measure the deflections of the links of robotic 

manipulators. Therefore, position and orientation errors accumulate at the TCP pose 

and make the robot as a less-precise device [23].  

Most of the mathematical models developed of the TCP pose correction operations 

have not incorporated the effects of the error sources mentioned  the Section 2.3. As a 

result, some researchers have proposed and developed external metrology systems to 
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obviate the problems of the positional inaccuracy due to the error sources mentioned 

in ection 2.3 such as robot’s joint encoders. Identification of robot kinematic errors to 

improve pose accuracy by calibration or other pose correction methods requires the 

knowledge of accurate full pose measurements (position and orientation) of robot Tool 

Center Point (TCP) in Cartesian space [24]. 

In the following sections, the applied methods for the measurement of the actual pose 

of the industrial robot’s TCP using external metrologies have discussed in more 

details.  

2.4.1. TCP Pose Estimation Using Theodolites 

Theodolite is an optical instrument that is used for angle measurements in the 

horizontal and vertical planes. Theodolites are used in land surveying, navigation, 

metrology, construction sector, and rocket launching [25].  

The theodolites consist of three parts, including the base, the alidade, and the telescope 

[26], Figure 2.1. The base is installed on a tripod, the alidade rotates about the vertical 

axis, and the telescope rotates about the horizontal axis. The measurements principle 

of a theodolite is based on a line of sight of the telescope, which is usually defined by 

the two angles. There are circular vertical and horizontal circular scales mounted on 

the same axis of the rotation on the horizontal and vertical axes, Figure 2.2 [27]. In 

the old versions of the theodolites, measurement reading did by a Vernier scale which 

was a challenging task to read and extract precise value. However, modern theodolites 

have digital displays that reduce the chances of error readings and enables the device 

to connect with a computer to process or store the data acquired by the theodolite [28]. 
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Figure 2.2. A schematic view of a theodolite structure [27] 

It is surprising to say that theodolites do not compute distance information. They are 

only able to measure the target’s angle information. Theodolites provide two 

independent angle quantities in the horizontal and vertical directions per pose. Directly 

speaking, for each pose, it gives a vertical and a horizontal angle. For example, if 

theodolite has focused at a target point on a robot TCP, it is deduced that target point 

lies somewhere along a line passing through the center of the telescope and target 

point. The measurement accuracy of the theodolites is around ± 0.5 arc second [27].  

Based on the principle of the pose estimation using theodolites, it has been applied by 

some researchers for the industrial robotic manipulators for calibration operation. The 

[29] utilized a single theodolite measurement system for the calibration of a PUMA 

560 manipulator to improve the accuracy of its forward model. The experimental setup 

was configured such that the target on the TCP viewed as a large subset of the 

workspace. The world reference frame is defined as the intersection of the device axes 

and represented by 𝑋𝑤𝑌𝑤𝑍𝑤 , and the target point reference frame is shown by 𝑋𝑡𝑌𝑡𝑍𝑡 

according to Figure 2.3.  
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Figure 2.3. The theodolite poses estimation approach 

According to Figure 2.3, the horizontal and vertical angles and distances between the 

theodolite’s reference frame and the target are α, β and 𝒓̅,  and the transformation from 

the target reference frame into the world reference frame is defined by [29]: 

[

? ? ? 𝑟̅ cos(𝛽) cos (𝛼)

? ? ? 𝑟̅ cos(𝛽) sin (𝛼)
? ? ? 𝑟̅𝑠𝑖𝑛(𝛽)
0 0 0 1

]           (2.1) 

The question mark elements in the (2.1) represent the elements of the transformation 

that are not specified by the theodolite device. The distance variable 𝑟̅ cannot be 

determined by the theodolite. Since only two variables of the (2.1) are known, the 

absolute value of the pose is unknown. If the robotic manipulator changes its TCP into 

another pose, the observer looking the target point on the TCP would have no idea 

whether he is watching a small robot at close range or a giant robot at long-range. In 

order to obviate this problem, it is required to make an additional measurement such 

as length scale tools [30]. 

In order to increase the performance of a single theodolite, some researchers have 

combined it with other measuring tools like vision. A vision-based automatic 
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theodolite (VBAT) [30] was proposed and implemented to obtain an automatic 

theodolite for robot calibration purposes. The system consisted of a digital camera 

mounted on a servo stage rotating in the horizontal (azimuth) and vertical (elevation) 

planes. The whole system controlled using a computer system. In this proposed 

arrangement, the camera replaced in place of the usual theodolite telescope. Despite 

being inexpensive, the developed system could be applied for estimating of the 

positioning inaccuracies industrial robots in calibration processes. 

2.4.2. TCP Pose Estimation Using Coordinate Measuring Machines (CMMs) 

Doubtlessly, one straightforward approach to determine three independent coordinates 

of a point in space is the coordinate measuring machines (CMMs). They are applied 

as one of the most powerful metrological instruments in most manufacturing sites. The 

primary task of a CMM machine is to measure the actual shape of a workpiece and 

compare it against the desired shape. CMMs can measure the shape, form, location, 

and orientation of any object in 3D. The three-dimensional metrological information 

of the parts can be collected using different sensors [31].  Figure 2.4 shows a typical 

coordinate measuring machine. 

 

Figure 2.4. The components of a CMM machine [32] 

The main components of a CMM machine [32] are composed of: 
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1. A three Axes mechanical frame equipped with displacement transducers at each 

axis. 

2. A probe head or sensitive touch probe which contains the sensor to measure the 

part. 

3. Control Unit. 

4.  Computer with a peripheral device such as printer, plotter, etc. and software to 

calculate and display the measurement results. 

CMMs are also used for calibration purposes in industrial robots. For the industrial 

robotic manipulator calibration, a uniform sphere is attached to the Tool Center Point 

(TCP) of the robot. Then, the touch probe is moved so that it touches several points 

on the surface of the target (sphere). In this way, it can calculate the center of a sphere 

from the coordinates of the points on the sphere surface [29]. 

Veitschegger et al. have used CMMs for robot calibration using a fixture for PUMA 

560 calibration. They reported the positional accuracy of their measurements system 

are on the same order of the positioning accuracy of the calibrated robot [33]. Mooring 

et al. [34] have applied a Mitutoyo CX-D2 coordinate measuring machine to estimate 

the pose of the PUMA 560 for calibration. They reported the workspace limitation. 

The CMMs does not cover the entire workspace of the PUMA.  

2.4.3. TCP Pose Estimation Using Laser Trackers 

The automotive and aerospace industries need some high-precision metrological 

equipment to measure the three-dimensional characteristics of the parts and large 

objects. Laser trackers are one of the precise metrological devices that can meet their 

requirements[35].  

Laser trackers apply the principle of the interferometry principle to create point-to-

point measurements [36]. Interferometry [37] is a measurement technique that is based 

on the phenomenon of interference of waves like light, radio or sound waves. The 

simplest form of a laser interferometer is shown in Figure 2.5. A laser resource creates 
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a beam of coherent, monochromatic light that is passed through a beam splitter. A 

portion of the laser beam is transmitted through the beam splitter and directed toward 

the moving mirror and other portion of light reflected toward the fixed mirror. The re-

reflected lights from both the fixed and moving mirrors recombine in the beam splitter. 

As the moving mirror is displaced, the recombined beam interferes causing the 

photodetector to sense an alternating intensity with different wavelength. 

 

Figure 2.5. Laser interferometry [29] 

By counting the number of interferences of the reflected light as a result of moving 

mirror displacement, it is possible to measure the displacement of the moving mirror. 

The accuracy of the interferometer performance is a function of the wavelength [29]. 

A laser tracking system is composed of a fixed base and a rotating head which emits 

a laser beam toward a moving retro-reflective target held against an object to be 

measured. The light re-reflected from the retro-reflective target re-enters the tracker 

in the same direction it has left. This reflected beam used as a means of the 

measurements of the target’s three-dimensional property like position and dimension 

[37]. The spherically mounted retro-reflectors (SMR) are the standard type of targets 

offers by the manufacturers [37]. A laser tracker has two angular encoders and a 

distance meter. The angular encoders measure the azimuth and elevation of the laser 

tracker’s head, and the distance is measured from the tracker’s header to the center of 
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the spherical SMR target [37]. Figure 2.6 shows the schematic of a laser tracker and 

its working principle. 

 

Figure 2.6. A schematic of a laser tracker [37] 

In practice, laser trackers (only three producers in the world: Leica, FARO, or API) 

and optical CMMs (Nikon Metrology, Northern Digital, Metronor, Geodetic Systems, 

AICON, GOM) are two available pose measurements devices that are used for 

calibration of industrial robots to improve their positional accuracy [38]. Laser 

trackers are one of the reliable and available metrology tools used by most of the 

industrial robot manufacturers for robot calibration for many years. One of the earliest 

forms of the position measurements using laser trackers was due to Lau, and Haight 

[39]. Their system consisted only of a steerable beam laser interferometer, Figure 2.7.   

 

Figure 2.7. TCP measurement system developed by [40]  

According to Figure 2.7, laser head sends out a laser beam in the vertical direction. As 

the beam strikes a mirror which can be precisely controlled by rotating the mirror 
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about the horizontal and vertical axes, the beam directed toward a reflector mounted 

on the TCP of the industrial robotic manipulator. The returning beam is directed into 

the laser interferometer. If the TCP starts to move, the reflecting beam alignment is 

changed and this is sensed by the laser interferometer detectors and, causes the mirror 

to rotate so that the returning beam realigns with the previous one. Since the mirror 

angles and distance to the target are known precisely it is possible to calculate the 

location of the target. The first advantage of this system is that it is fully automatic 

and can track the mounted reflector on the TCP. The second advantage is the high 

accuracy of the measurements. However, this system has a significant disadvantage 

of beam interruption which causes the destruction of the interference counting causing 

the measurements to restart. Decker et al. [41] have proposed a laser tracking system 

(LTS) for the real-time pose estimation (position and orientation) of a moving robot’s 

TCP along an arbitrary trajectory. Figure 2.8 shows a schematic of the proposed 

system in this study. 

 

Figure 2.8. The graphical representation of the laser tracking system developed by [41] 

A retroreflector consisted of three perpendicular mirrors mounted on the TCP of an 

industrial robotic manipulator. The mirrors configurations of the retroreflector caused 

the reflected beam from the retroreflector to be in parallel with the sent beam to the 

retroreflector, Figure 2.8. The returning beam is directed by a deflecting mirror into 

the interferometer, a position sensing diode (PSD), and a CCD camera. Since the laser 
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beam hits the center point of the retroreflector, accordingly there is not any 

displacement between the emitted and reflected beam. When the robot moved, the 

laser beam did not hit the center of the retroreflector, thus causing a displacement of 

the reflected laser beam. The PSD measured this displacement and considered it as the 

tracking error. To minimize the tracking error, the deflecting mirror’s joints, which is  

called Cardon, rotated and allowed the emitted laser beam to follow the retroreflector 

mounted on top of the TCP. By this mechanism, the proposed system was able to 

follow arbitrary movements of the retroreflector. The TCP position is estimated using 

the data from the interferometer, the angular encoders, and the PSD signals. For 

orientation estimation of the retroreflector, the CCD camera analyzed the intensity 

profile of the reflected laser beam. The darks lines in the intensity profile were 

representative of the blackened edges of the retroreflector. By analyzing these lines, it 

was possible to calculate the orientation of the retroreflector with respect to the robot’s 

TCP. The main advantages of the developed LTS system in [41] reported as being 

flexible and fast. It could measure a big set of points in a low time. The other advantage 

of the system was its ability for on-line measurements which caused to improve the 

robot dynamic properties leading to a higher path accuracy and precise point 

approaching. However, the system had issues in orientation measurements inaccuracy 

that needed to be improved. The orientation measurements of the developed system 

was improved in [41] . They added some wires at the front of the retroreflector, Figure 

2.9. The supplementary shadows of the added wires created high-resolution images of 

the edges of the retroreflector which facilitated the orientation measurements analysis. 

Despite most efforts put on the [41] and [42], the resulting system could only detect 

the pitch and yaw angles in the range of ± 30°.  

 

Figure 2.9. Modified retroreflector for pose estimation [42] 
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A systematic approach for the estimation of the positioning errors of a Motoman 

SK120 robotics manipulator was proposed in [43]. The main aim of their study was to 

identify the kinematic parameter and its corresponding errors corrections in order to 

improve the ability of the robot in reaching a specified pose more accurately. They 

applied a laser tracker (Leica LT500) for the pose estimation of the robot TCP. Since 

the utilized laser tracker was not able to measure the orientation, therefore their works 

suffered from the orientation estimation problem. Some appealing features of laser 

trackers such as giving high-resolution measurements, covering large workspace and 

contactless measurements have conceived most users to apply them in industrial robot 

calibration. The [42] have applied a Laser Tracking System (LTS) for the calibration 

of the PUMA 560 at the Robotics Center of the Florida Atlantic University for 

estimation of the calibration parameters. They obtained a calibration accuracy about 

0.1mm which was four times precise than the results obtained using a CMM which 

estimated a 0.4mm for the PUMA robot [44].    

2.4.4.  TCP Pose Estimation Pose Estimation Using Computer Vision 

Nowadays, with the rapid developments of the computational power of computers 

along with advanced progress in the visual techniques and algorithms, computer vision 

has placed itself at the top of the science, medical, industry, and high precision 

manufacturing. Some practical applications of the vision systems are [45]:  

• Quality control to the inspection of the defected parts such as in manufacturing 

industries, 

• Pose estimation in Robotic based manufacturing, 

• Food and beverage industry, 

• Medical diagnosis using X-rays or ultrasound images. 

• Navigation for autonomous or mobile robots, 

• Detecting events such as visual surveillance or people counting, 

• Military applications. 
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A lens and a light-sensitive array are the two of the main components of every vision 

system. The light-sensitive array composed of a large number of discrete cells, called 

pixels that senses the frequency of the striking light on them. The frequency 

information from each pixel is digitized, and a discrete number between 0 to 255 is 

assigned to each sensed frequency. The values from 0 to 255 assigned to each pixel 

are called the gray-level values.  Figure 2.10 (a), shows a schematically representation 

of the light-sensitive array, the working principle of a cell (pixel) of a light-sensitive 

array, Figure 2.10 (b), and the concept of the gray-scale images and gray-scale values, 

Figure 2.10 (c)-(d) [46][47] . 

One of the primary concerns of a vision system is the resolution of the light-sensitive 

array, or in other words, the resolution of the image [29]. Nowadays, vision systems 

play important roles in the robotic and industry. In general, robots use vision systems 

for tasks such as obstacle avoidance, human-interaction, identifying and locating 

parts, quality control inspections, and to improve positioning accuracy [48]. One of 

the core requirements of industry 4.0 is the applications of flexible robots in the 

manufacturing processes. The flexibility of robots can be achieved by incorporating 

vision systems and other sensor technologies [49]. Industrial robots require high 

accuracy and repeatability in order to accomplish the assigned tasks. For example, in 

the automotive industry the required accuracy for spot welding is about 1mm, or in 

the aerospace industry it is at least ten- to twenty-fold higher accuracy [50]. 
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Figure 2.10. A light-sensitive array(a), the working principle of a cell array (b) [46], gray-scale image 

(c), and the concept of the gray-level values (d) [47] 

One solution to improve the industrial robots’ accuracy is to equip them with optical-

based sensors and equipment such as laser trackers systems, photogrammetry or vision 

systems with high-resolution cameras for applying them in pose estimation operations 

of the robots TCP [50].  

Vision techniques in industrial robotic fields for the TCP pose estimations tasks can 

be classified according to Table 2.1 [50]. In the following sections, each of the vision 

techniques for the pose estimation of the Tool Center Point (TCP) of industrial robots 

is discussed in more detail. 
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Table 2.1. Vision-based classification for robotic applications [51] 

 Single Camera Multiple Cameras 

Passive vision 2D 

Stereo vision 

Photogrammetry 

 Time of flight Structured light 

Active vision      Structured light 

Light coding 

Laser triangulations 

Projected texture 

stereovision 

 

 TCP Pose Estimation Using Stereo Vision and Photogrammetry  

Photogrammetry is a visual technique for the measurements of the dimensions of an 

object from their digital images using 3D reconstruction techniques and algorithms. 

In general, there are two ways to obtain three-dimensional information of an object 

from their 2D dimensional images  [52]: 

● Model-based pose estimation: A single calibrated camera and a model with a 

known geometry is used to determine the pose of the model, Figure 2.11. 

 

Figure 2.11. Model-based pose estimation (a), and stereo vision-based pose estimation (b) [52] 

● Stereo vision: In this method, two calibrated cameras with a known pose between 

them is used for obtaining the 3D information of an unknown scene, Figure 2.11 (b).    
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In stereo vision and photogrammetric techniques the same point in a real-world scene 

by different cameras and then the intersection of the projection lines is computed to 

obtain its 3D position. For this purpose, some physical markers like stickers or laser 

points are necessary to stick over and around the object for better detections, Figure 

2.12. (a)-(b) [50]. 

 

Figure 2.12. Concept of the projection lines in stereo-vision (a), physical markers-stickers (b), 

physical markers-laser points (c) [51] 

Stereo vision-based pose estimations have been widely used in the industrial robotic 

manipulators such as in assembly. In [52], it was proposed an automatic smartphone 

assembly system in order to assemble the phone back-shell to the phone itself, Figure 

2.13. Their proposed and developed system consisted of two-color CCD cameras 

mounted on the TCP of a six-degree-of-freedom Mitsubishi industrial robot, a vacuum 

absorption tool, and a personal computer to control the whole system. The calibrated 

CCD cameras was used to estimate the pose (position and orientation) of the back-

shells and smartphones itself using the extraction of the corner features of the 

smartphone and its back-shell from the images acquired by the two cameras. In their 

study, the visual pose estimation was used for the robot control system to perform of 

the robotic assembly tasks. Although, the experiment results were satisfactory for the 

laboratory environment, in a practical factory environment, the visual field of view of 

the two cameras was not able to the entire workspace, since in the factory, the distance 

of the smartphone and its back-shell may be far away from each other to be seen inside 

in single frame. 
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Figure 2.13. The automatic smartphone back-shell assembly system [52] 

Thus, when the camera got closer to smartphones, it caused the loss of the camera 

fields of view.  

Švaco et al. [53] has proposed a non-contact stereo vision-based system attached to a 

robotic manipulator, KUKA KR 6 R 900, which was used to measure the pose of the 

calibration points in space. The main aim of this study was to improve the absolute 

accuracy of the industrial KUKA robot which is a common problem in 6 DOF serial 

link manipulators [54]. Figure 2.14 shows the experimental setup configuration used 

in [53]. The system consisted of two perpendicular CCD cameras, with macro lenses, 

that constituted a virtual robot Tool Center Point (TCP), Figure 2.14 (a). A black 

polymer sphere was used as a calibration point with known pose, and its center 

position coordinates estimated by the cameras. Then, the virtual TCP (two 

perpendicular cameras) manually moved to the desired position of the black sphere 

(target). At this point, the vision system automatically adjusted the robot position with 

respect to the calibration sphere in the camera coordinate frame. These cycles were 

repeated over and over and at each stage, the joint variables were recorded for the 

calibration purposes. The final results of the calibration have proven the reliability and 
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accuracy of the vision system applied in this study for the improvement of the absolute 

accuracy of the industrial robots. 

 

Figure 2.14. TCP pose estimation using a stereo-vision system developed by [53] 

Möller et al. [55] have proposed a method for increasing the absolute positional 

accuracy of an industrial milling robot using stereo vision camera system. They 

estimated the pose (position and orientation) of the tool center point (TCP) of the robot 

with a milling spindle. Their vision system was able to measure the pose of the retro-

reflective target attached on the milling spindle, Figure 2.15, and during the milling 

process, the target was observable by the camera systems. A laser tracker system was 

used for the calculations of pose relations between the workpiece, the robot, and the 

camera system as well as the pose relationship between the TCP and the milling tool. 
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Figure 2.15. Experimental setup of [56] 

The applied optical systems in this study consisted of a Leica laser tracker AT 401 and 

an AICON multi-camera system which enabled the high-accuracy pose estimation of 

the robot spindle in big workspaces. However, their proposed vision system accuracy 

decreased in longer distances. The proposed system was able to measure the target’s 

pose at the frequencies up to 10Hz. The final results of their studies showed that the 

stereo vision systems can be considered as a reliable external metrological device for 

improving the absolute accuracy of the industrial robots for machining operations in 

big workspaces. Stereo vision and photogrammetry techniques have applied in 

applications other than the TCP pose estimations. One of the applications of the vision 

systems in modern manufacturing is in advanced robotic welding, especially for the 

path corrections of off-lined programmed welding robots and for the localization of 

the weld seam pose of robotic arc welding [56][57]. 

 TCP Pose Estimation Using Structured-light 

Active vision technique is composed of a light source (light projector) and one or two 

data receptor such cameras. One of the most common active vision techniques is 

structured light vision systems. Unlike passive vision systems like stereo vision and 

photogrammetry techniques which requires the visible features of an object from 
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different viewpoints for pose estimation, in the structured light techniques, artificial 

visual patterns such as a white light is projected on the scene in order to create visual 

patterns. One of the main obstacles of applying of this technique is related to the size 

and weights of sensors which comprised of a projector and a camera that makes it 

challenging to mount them on top of the industrial robot [50]. A solution to this 

problem was purposed by [58], Figure 2.16. 

 

Figure 2.16. Structured-light in Robot Positioning [59] 

In this configuration, Figure 2.16, the camera was mounted on the robot TCP in an 

eye-in-hand configuration and the projector installed on a static and fixed frame 

illuminating the workspace. They reported a positional accuracy of 3mm, which met 

their project requirements. They found the eye-in-hand configuration of the proposed 

system as a positive point which solved the occlusion problems as well. The [59] have 

applied the structured light techniques for robot positioning in a visual servoing 

project. They installed the projector aside the robotic manipulators, and a structured 

light created a coded light pattern in order to create visual features for robot 

positioning. Their proposed system was able to position the robot with respect to 
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planar objects with reasonable  accuracy, but the camera motion became noisier when 

using non-planar objects for robot positioning. 

 TCP Pose Estimation Using Optical Coordinate Measuring Machines 

Optical CMMs apply the image processing techniques and algorithms to perform the 

automatic measurement which is fast and highly accurate [60]. One of the popular 

commercial brands of the optical sensors is the Nikon Metrology optical CMM 

(KCMM) which consisted of three linear CCD camera. Optical CMMs apply the 

triangulation techniques for pose estimation procedure. In order to use this 

measurement device for metrology purposes, it is required to attach active LEDs on 

the surface of a target. If the optical CMM detect only one LED, the three-camera of 

the system estimates the pose of the LED in space using triangulation techniques, if 

two LEDs are detected by the system, they can calculate the distance of the LEDs as 

well. Using nine LEDs, the optical CMMs is able to track the position of the object in 

a volume up to 6 meters away from the device [61]. Recently, optical CMMs are 

becoming popular in the industrial robot sections because of their high-accurate 

measurements. Optical CMMs can measure the pose of the robot TCP dynamically at 

frequencies of 30Hz or more with respect to the robot base. Some CMMs use active 

targets like LEDs or infrared diodes. The main advantage of active targets is that they 

are insensitive to environmental conditions like light variations. Other types such as 

C-Track series, use passive targets which basically consisted of small circular stickers 

covered with retroreflective materials [39]. Figure 2.17, shows two different brands of 

the optical CMMs commonly used by researchers in industrial robotic applications. 
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Figure 2.17. AICON optical CMM (a) [64], and Nikon optical CMM (b) [62] 

A few researchers have applied Optical CMM for the improvement of the positional 

performance of industrial robots. The [63] proposed an online dynamic pose 

correction algorithm to improve the pose accuracy of industrial robots at a single pose 

for applications such as drilling or riveting. This algorithm applied the dynamic pose 

measurements as feedback to the robot control system to guide the robot TCP to the 

desired location. They used an optical coordinate measure machine, C-Track 780, for 

the online pose estimation, and a 6 DOF industrial robot (FANUC LR Mate 200iC)). 

Figure 2.18, shows the experimental setup applied by [63]. 

 

Figure 2.18. Experimental setup: FANUC LR Mate 200iC (a), C-Track (b) [63] 

The C-Track system equipped with a binocular vision sensor that can measure the 

position of the retroreflective targets. The measurement rate of the vision system was 

29 Hz. In their study, C-Track measured the pose of the robot TCP with respect to a 
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workpiece. They applied four retro-reflective targets to evaluate the position and 

orientation of the robot. The 100 static points were measured using the C-Track 

(Optical CMMs) for the evaluation of the pose estimation. Figure 2.19 shows the 

schematic view of the experiment and reference frames in this study. 

 

Figure 2.19. The schematic of  experimental setup [63] 

The experimental results demonstrate that using the optical CMM as the online pose 

measurement tool can improve the positional accuracy of the robots in the orders of 

0.05mm for the position and 0.050° for the orientation. 

2.4.5. Sensor-Fusion based TCP Pose Estimation 

In precise applications, applying a single sensor for pose estimation purposes (position 

and orientation) of a robot such a TCP is not so precise. All sensors have some degree 

of uncertainty which causes loss of precision [64]. To solve this problem, multi-sensor 

fusion techniques have been proposed by some robotic researchers. The main 

objective of the sensor fusion algorithms is to obtain a high performance acquired by 

integration of the individual sensors. In [65], data from inertial measurement sensors 

(IMU) and vision systems were fused in order to improve the accuracy of the proposed 

pose estimation system. Applying IMU sensors alone accompanies with uncertainties 

such as sensor drift errors and using vision by itself cannot handle the problem of 

occlusion moreover, vision cannot cover the whole area of the robot workspace. 

Kalman filter and extended Kalman filter are two of the most common sensor fusion 

algorithms have that been used in robot mapping and localization projects for many 
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years. Siciliano et al. [65] implemented an algorithm for the pose improvement of a 

robot manipulator by implementing a multi-sensor combination measuring system 

(MCMS). In this study, two data fusion algorithms have been applied to fuse the 

position and orientation data such as the Kalman filter (KF) and multi-sensor optimal 

information fusion algorithm (MOIFA). The implemented system setup was 

composed of an industrial robotic manipulator, an industrial photogrammetry system, 

a digital inclinometer, and a PC and software, Figure 2.20.  

 

Figure 2.20. Multi-sensor combination measuring system (MCMS) [65] 

A high precision industrial three-dimensional photogrammetry system and a high 

accuracy digital inclinometer (in the accuracy of 0.01°) have been selected for the 

position and orientation measurements. The experiment results showed that a 

significant decrease in the positional error of the robot manipulator less than 1 mm 

after pose calibration of the robot using these proposed methods. Moreover, the best 

accuracy of the photogrammetry system was obtained in the center of the camera field 

of view. They reported a 38%-78% decrease in pose error by the applying of the fusion 

techniques.  
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2.5. Review of  Robotic Manipulator TCP Pose Estimation Techniques 

In this section, a brief review is carried out over the TCP pose estimation techniques 

used in literature. Theodolite is one of the earliest tools used for the evaluation of the 

industrial robot manipulator’s pose accuracy. Despite being cheap, or being rented at 

a reasonable cost, and using a simple target, its major drawback is the measurement 

recordings process which requires long times to read the measurements. Mooring et 

al. [30] has applied a single theodolite for the pose estimation of a PUMA 560 robot 

end-effector. They reported that the reading procedure as time-consuming and subject 

to the errors. Podoloff et al. [16] has mentioned theodolite as “slow and fatigue”. 

Moreover, they are only able to acquire the angle information of the targets. Add to 

above; theodolites are not able to estimate targets at distances closer than 3.048 to 

4.572 meters because the target would be too large. Therefore, theodolites can be used 

in big areas [29].  

Perhaps one of the appealing devices as a solution to the pose estimation problems of 

theodolites is the coordinate measurement machines (CMMs). Being easy-to-use, 

requiring only a simple target, and giving easily interpretable data are some of the 

advantages of this system [29]. Most CMMs have smaller workspace and this hinders 

their usage in industrial robotic applications and CMMs with large workspace are very 

expensive. Even with the availability of large workspace CMMs, in most cases, there 

is a need for fixtures [29,33] to accommodate the CMM for robot pose estimation 

purposes. Nguyen et al. [24] has considered the theodolites and the CMM based 

methods relying on jigs and fixtures as traditional tooling measurements techniques 

that do not meet the precision requirements imposed by the automatic and aerospace 

industries. Doubtlessly, laser tracking technologies have the greatest impact on 

metrology instrumentation developments and techniques. Recently, laser trackers 

have kept the attentions of the industry and researchers pose measurement of robot 

manipulators in calibration and control operations. In simple versions, laser trackers 
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can measure a point in 3D coordinate, however, they are able to measure the full pose 

of any object by attaching at least three spherically mounted reflectors (SMRS) [39]. 

Being precise and able to measure the pose data in a large working volume are some 

advantages of applying the laser trackers in industrial robotic TCP pose estimations. 

However, similar to any physical systems, laser trackers suffer from some 

measurements problems. Firstly, it is not so easy to measure the TCP pose in any 

arbitrary orientation especially when the attached target on the TCP is not in the field 

of view of the laser. Erdem et al. [67] has proposed a configuration of the active LEDs 

homogenously distributed in a spherical shape, Figure 2.21, for the pose estimation of 

the Tool Center Point (TCP) in any orientation. 

  

 

Figure 2.21. An innovative LEDs target for the TCP pose estimation purposes [66] 

The other problem of pose estimation of industrial robots using laser tracker is 

associated with their precision degradation in manufacturing environment. The laser 

trackers measure the pose of the robot TCP with respect to the robot base which is 

secured to a fixed point on the factory floor.  Any vibration due to the working of other 

manufacturing tools such as pressing machines decreases the accuracy of the pose 

estimations [39]. The other disadvantage of the laser trackers is related to their 

sensitivity to the ambient conditions of the factories or workshops such as air currents 

[29]. Moreover, laser trackers are extremely expensive starting at the minimum pricing 

of 100000$ to approximately 300000$ or more [39].  
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Unlike laser trackers, optical CMMs measures dynamically the robot TCP with respect 

to the robot’s base at frequencies of 30Hz. In contrast to laser trackers, optical CMMs 

are cost-effective, however, the workspace of the optical CMMs are smaller than laser 

trackers [64]. Optical CMMs are less accurate than laser trackers [65][66]. In 

literature, there are a few researchers that have applied optical CMMs in TCP pose 

estimations operations [67]. Some optical CMMs, such as Nikon Metrology and 

Northern digital [68],  use infrared light-emitting diodes as their active targets. The 

main advantage of optical CMMs with active targets in TCP pose estimation 

operations can be associated with being easily detectable and not affected by the 

environmental light conditions, however, they are so expensive. Most researchers 

preferred to use optical CMMs with passive reflectors over laser trackers due to their 

high prices [64][69]. 

Vision-based techniques for the TCP pose estimation purposes can be evaluated based 

on several criteria such as accuracy, range, weight, safety, processing time, and 

environmental effects. In robotic TCP pose estimation applications, stereo-vision, and 

photogrammetry techniques have been used by most researchers [53] 

[55][58][67][70]. Stereo vision and photogrammetry techniques give accurate position 

results in the order of 50μm [71]. However, photogrammetry and stereovision system 

uses several images of a single point and compares its disparities in several images, it 

has the problem [53] of a massive amount of information which causes an 

unacceptable increase in processing time [50], laser trackers are also effected from the 

environmental influences mainly ambient light.  

Time-of-flight cameras are not used commonly for the industrial robots pose 

estimations since they are not so accurate despite their insensitivity to environmental 

disturbances. Konolige [72] reported the pose accuracy of the Time-of-flight cameras 

around 10mm. The application of the structured light equipment for the industrial 

robotic pose estimation purposes does seem to be appealing because of their heavy-

weights, long processing time, and being sensitive to environmental lightning [59].  
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Despite, high-performance pose estimation capability of the sensor fusion-based 

techniques, and being fully automatic measurement processes, there are few numbers 

of researches in this field and it seems, this technique is not so popular by industry and 

scientific researches for industrial robot pose estimation. However, applying IMU 

sensors and vision in fusion-based for the pose estimation purpose in the industrial 

sector is promising. 

In conclusion, based on the literature reviews, currently, the most common, reliable 

and popular pose estimation devices, and tools for the pose estimation of the industrial 

robots are the laser trackers, optical CMMs, and stereo-vision and photogrammetry 

techniques. 

2.6. Contribution 

The main contribution of this study is using a single and cost-effective web-camera, 

unlike stereovision and photogrammetrical methods, which use several expensive 

cameras, while keeping the proposed system’s accuracy close to or even better than 

these systems. The most outstanding feature of this system is its cost-effectiveness, it 

is composed of a 3D geometrical solid with several pieces of print-out papers that are 

not comparable with most expensive laser trackers, optical CMMs, and stereo vision 

systems which costs even up to 300000$ for some versions able to measure the 

orientation. Moreover, the proposed system has a high pose measurement accuracy 

and repeatability. It is easy-to-use and does not require any complex setup or extra 

tools to perform the pose estimation.    
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CHAPTER 3  

 

3. METHODOLGY 

 

3.1. Introduction 

The proposed method for the 6 DOF pose estimation of TCP is discussed in this 

section. The principle of the purposed method is based on using the square fiducial 

markers in the form of an innovative marker map called Rhombicuboctahedron ArUco 

Mapper (RAM). ArUco markers are used as the fiducial markers in this study. Firstly, 

the principle of the ArUco markers, as the elements of RAM, is discussed briefly. 

Following that, the idea behind the geometry of the map is addressed in more detail. 

Then, the idea behind the geometry of the marker map is discussed in more detail.         

3.2.  Absolute TCP Pose Estimation Method 

In this study, the 6 DOF absolute pose of the TCP is estimated in the robot’s base 

coordinate frame. The whole method is composed of four sub-methods, including:  

• Marker detection and identification 

• Marker mapping and localization  

• Model pose estimation with respect to the camera 

• TCP pose estimation with respect to the robot base 

A general overview of the implemented method is shown in Figure 3.1. In the 

following sections, the details of each sub-methods are discussed in more detail.    
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Figure 3.1.Absoulute 6 DOF TCP pose estimation method developed in this study 

3.2.1. The principle of the fiducial markers (ArUco.3)  

The structural elements of the developed TCP pose estimation method are fiducial 

markers. The fiducial markers are used as 3D landmarks for pose estimation 

applications in robotics and augmented reality for many years. Nowadays, the more 

common types of fiducial markers are in square shapes and have bitonal patterns in 

white and black. Being in square shape helps the fiducial marker system to recognize 

the markers and distinguish them from other objects in the environment. Moreover, 

the square shape provides four corner points for the pose estimation algorithm. The 

bitonality of the markers enables the fiducial marker system to codify each marker. 

Thus, each marker is identified by a unique identity as an id number. Additionally, 

black and white patterns eliminate the need for lighting and camera sensitivity 

problems. There are various types of fiducial markers to be applied to pose estimation 

problems such as ARToolKit, ARToolKit Plus, ARTag, and ArUco. 

In this study, an optimized version of the ArUco markers called ArUco3 is applied. 

Compared to other markers, its processing time has decreased considerably, and 

memory-related problems have been solved. 
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Each fiducial marker has its own coordinate frame. The ArUco marker coordinate 

frames are located in the center of the marker. If it is assumes that the side length of 

the marker is s, the coordinates of the corner points of the ArUco are according to the 

convention shown in Figure 3.2.  

 

Figure 3.2. ArUco marker coordinate system 

The coordinates of the corner points of an ArUco marker expressed in the marker's 

coordinate frame are:  
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3.2.2. ArUco Marker Detection 

The first part of the proposed method is called marker detection. In this sub-method, 

some image processing and computer vision algorithms are applied to input frames. 

Figure 3.3 shows the marker detection procedure of the developed method. 

 

Figure 3.3. Marker detection procedure of the proposed method 

The ArUco marker detection procedure is as follows: 

1. Frame acquisition: In this stage, the camera shutter opens and frames 

acquired as input to the proposed method. 

2. Pre-processing: In this stage, some low-level processing like noise 

suppression and the color frames are converted into gray-scale frames. 

3. Applying the adaptive thresholding: Adaptive thresholding is applied to 

extract all the borders of markers in frames. 

4. Contour extraction: In this step, the closed curve of points or lines 

illustrating the objects’ boundaries are extracted. However, it is worth to 

mention that not all the extracted boundaries are markers. 

5. Filtering: All the extracted borders with a small number of points removed. 

6. Polygonal approximation of contours: In this step, only the concave 

contours with precisely four corners points are kept. 

7. Sorting: Counter-clockwise corner sorting is carried out. 
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8. Filtering-out too small rectangles: In this step, only rectangular shapes with 

most external borders are kept. 

9. Marker identification:  Marker detection step comprises the following steps: 

a) Homography algorithm is applied to remove the projective perspective of the 

markers to obtain a frontal view of the rectangles.    

b) Internal code reading: The extracted rectangles are divided  into 6×6 grids, of 

which 5×5 grids contain the marker id information.  

c) If the marker ID is valid, then it is confirmed that the detected region is an 

ArUco marker, then the corners are refined using subpixel algorithm. 

In a nutshell, the output of the marker detection sub-method is the detected markers 

that includes marker ID numbers and four extracted corner points of each marker.  

3.2.3. Model-based ArUco Mapping and Localization Algorithm 

In this section, the marker mapping techniques of the implemented method are 

discussed in more detail. Based on the project specifications, the camera-robot 

configuration is defined to be eye-to-hand because of the risk of the camera lens 

occlusion by the spraying oils or water particles ejected from the spindle tool such as 

water-jets and drills, etc. Based on this fact, for pose estimation purposes, it is 

necessary to apply a map of markers instead of a single marker. The map of markers 

should be mountable on top of a robotic manipulator. In pose estimation problems 

based on the marker mapping techniques as the number of the map’s markers 

increases, the pose estimation accuracy of the developed algorithm improves. Muñoz 

et al. [73] recommended having at least two detected-markers at each frame are 

necessary to have a precise pose estimation. To increase the number of markers in 

each frame of the camera field of view, the marker map geometrical model should 

represent more markers to the camera to increase the estimated pose accuracy of the 

developed system. Moreover, increasing of the number of markers also solves the 

ambiguity problem. The ambiguity problems commonly arise in the marker-based 

pose estimation problems. In this case, the z-axis of the camera and markers are 
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colinear, and two pose solutions are calculated. The other specification of the map of 

markers is that all markers in the map should be in the same sizes. Therefore, the map 

model is required to have regular faces (faces with equal lengths).  

The evaluations of the 3D geometrical shapes and solids showed that the solution 

might exist among convex polyhedral shapes which are composed of regular 

polygons. The assessments of some the of polyhedron solids demonstrated that the 

truncated rhombicuboctahedron was an ideal candidate for this study based on the 

availability of fabrication facilities. Figure 3.4 (a), shows a representation of the 

rhombicuboctahedron designed using CAD software (CATIA), and Figure 3.4 (b) 

shows the manufacturing process using a 3D printer in the KOVAN lab.  

 

Figure 3.4. Designed Rhombicuboctahedron (a), and its 3D printing process (b) 

The truncated rhombicuboctahedron has thirteen square-shaped and four isosceles-

shaped triangles as its facets. According to Figure 3.5, at least four ArUco markers are 

detected from vertical perspective, and at most seven markers are detectable from side-

view perspectives. The detection of several markers increases the robustness of the 

system in case of marker-occlusion and light-varying conditions. The dimensions of 

the Rhombicuboctahedron ArUco Mapper (RAM) are shown in Figure 3.6. The length 

of each square side is 11 cm, and the internal angles between facets are 135°.  

(b) (a)

_) 
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Figure 3.5. Different perspective of the Rhombicuboctahedron  

 

 

Figure 3.6. Geometrical specifications of the Rhombicuboctahedron ArUco Mapper 

After fabricating the map of markers in rhombicuboctahedron shape, and sticking 

ArUco3 markers on its faces, it is required to prepare the map of the 

rhombicuboctahedron model, Figure 3.5. The aim of mapping of the model is to find 

the markers’ pose (position and orientations) on the rhombicuboctahedron. The 

localized and mapped rhombicuboctahedron model are used as a supplementary pose 

estimation tool.  

The used method for the mapping and localization of the proposed model is due to 

[73]. The Rhombicuboctahedron ArUco Mapping (RAM) principle is as follows: 
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Each marker on the Rhombicuboctahedron faces is depicted with four corners, Figure 

3.2, and their poses are represented by Tm transformation. The Tm transforms a 

marker’s corner points from the marker reference frame to the robot base frame. The 

set of the 13 markers attached on the Rhombicuboctahedron solid is depicted: 

𝑀 = {𝑚𝑖}        𝑓𝑜𝑟 𝑖 = 0,1,2, … , 12   (3.5) 

In (3.5), mi is the markers in the set. If a video sequence from the 

rhombicuboctahedron is recorded and the marker mapping algorithm is applied to each 

frame of the video sequence, then, the set of the all detected markers in frame t is: 

𝑓𝑡 = {𝑖|𝑖 ∈ 𝑀} (3.6) 

Moreover, the pixel locations of the corner points of marker i is depicted by: 

𝜔𝑖
𝑡 = {𝒖𝑖,𝑘

𝑡  | 𝒖𝜖ℝ2, 𝑘 = 1…4} (3.7) 

The essential condition for marker mapping using the method in [73] is that only 

frames containing at least two markers have to be processed for the marker mapping 

purposes. In mathematical terms: 

|𝑓𝑡| > 1 (3.8) 

In the marker mapping technique developed in [73], the main aim is to minimize the 

squared of the re-projection error of a detected marker. The estimated re-projection 

error of the detected marker i in frame 𝑓𝑡  is defined as: 

𝑒𝑖
𝑡 = ∑ [Ψ(𝛿, 𝑇𝑡, 𝑇𝑖 . 𝒄𝑗) − 𝒖𝑖,𝑗

𝑡 ]2𝑗      (3.9) 

In (3.9), 𝛿 is the camera intrinsic values, and Ψ is the projection function. Thus, the 

total reprojection error in the whole set of frames is the function of the marker poses, 

frame poses, and camera intrinsic parameters: 

𝑒(𝑇1, … , 𝑇𝑀, 𝑇1, … , 𝑇𝑁 , 𝛿) =  ∑ ∑ 𝑒𝑖
𝑡

𝑖𝜖𝑓𝑡𝑡   (3.10) 

Where M is the total number of markers (M=13), and N is the total numbers of frames.  
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The marker mapping algorithm runs offline on a video of Rhombicuboctahedron 

ArUco Mapper and creates a pose quiver with relative poses of the observed markers. 

Then, an initial pose graph is created, and corner refinement using Levenberg-

Marquardt optimization is applied to reduce the reprojection errors (3.9) of the marker 

corners in all observed frames. The output of this sub-method or marker mapping is 

the Rhombicuboctahedron ArUco Mapper (RAM) that is used by the proposed pose 

estimation method, Figure 3.7. 

 

 

Figure 3.7. Mapped and localized Rhombicuboctahedron 

After the Rhombicuboctahedron Marker Mapping, the map of the model is stored in a 

YML format and feed into the proposed pose estimation method developed in this 

study. Since, the model and pose information of the rhombicuboctahedron is known 

in advance, the proposed pose estimation technique in this study is categorized in 

model-based class. The flow-chart of marker mapping sub-method is shown in Figure 

3. 8. 
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Figure 3.8. Marker mapping sub-method 

3.2.4. RAM Pose Estimation With Respect to Camera (PnP Theory)  

Fiducial markers are used to estimate the camera pose (position and orientation) in 

their coordinate frames. The camera pose estimation includes of estimation of the 

camera rotation (roll, pitch, and yaw) and translation (x, y, z) with respect to a marker 

reference coordinate such a marker coordinate. Camera pose estimation using ArUco 

markers is based on the Perspective-n-Point theory or PnP algorithm. The perspective-

n-point algorithm estimates an object position and orientation with respect to a known 

reference frame from a given set of n 3D-points in the world and their corresponding 

2D projections in the image. Pose estimation based on the points correspondence or 

point-matching has many applications in AR and 3D robot pose estimation problems. 

The direct linear transformation algorithm [45] is one of the earliest forms of the pose 

estimation problem based on the 3D-to-2D points matching theory. 

In order to improve the accuracy of the pose estimation problem based on the 3D-to-

2D point matching, several simplifications have been made to the DLT problem. The 

Perspective-n-Point (PnP) problem, is one of the optimized and robust pose 

algorithms proposed for the solving of the pose estimation problems. Camera matrix 

should be known when using the Perspective-n-Point algorithm.   
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 The Perspective-n-Point approach have many different forms [74], [75], [76], [77], 

[78], and [79]. The straight forward form of the PnP algorithm requires three sets of 

point correspondences, called P3P, which produces four solutions to the pose 

estimation problem. However, by adding the fourth points, called P4P, the problem 

becomes more promising, which called P4P problem. 

Riba et al. [80] have formulated and implemented the PnP problem in a way suitable 

for software implementations. According to the [81], Figure 3.9, given a set of 3D 

points Pi expressed in the 3D real-world and their 2D projections ui onto the image 

plane, the pose of the camera including Rotation and Translation with respect to the 

world and the focal length f can be extracted from (3.11). 

 

Figure 3.9. Perspective-n-Point theory [80] 

𝑠𝑚′ = 𝐴[𝑅 | 𝑡]𝑀′         (3.11) 

𝑠 [
𝑢
𝑣
1
] =  [

𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

] [

𝑟11 𝑟12 𝑟13 𝑡1
𝑟21 𝑟22 𝑟23 𝑡2
𝑟31 𝑟32 𝑟33 𝑡3

] [

𝑋
𝑌
𝑍
1

]         (3.12) 

In (3.11) and (3.12): 

• X, Y, and Z are the coordinates of a 3D point in the world coordinate system, 

• u and v are its projections on the image coordinate system, 
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• A is called the camera matrix, or camera intrinsic parameters (Appendix.B), 

• cx and cy are the coordinates of camera principle point which is located at the 

image center and fx and fy are the focal lengths in the pixel units. 

Thus, by solving the (3.12) the rotation and translation of each correspondence 3D-to-

2D points can be calculated. The pose of the square-shape fiducial markers such as 

ArUco marker is estimated using the theory of the Perspective-n-Points algorithm. 

Each marker provides four points to the perspective-n-point algorithm for pose 

estimation operation. 

After, Rhombicuboctahedron ArUco Mapping, coordinates of markers corner points 

determined in the RAM coordinate frame, Figure 3.10.  

 

Figure 3.10. RAM pose estimation with respect to the camera using PnP theory 

Based on the Perspective-n-point theory, to estimate an object pose with respect to the 

camera, at least three points on its surface should be known in a reference frame. Since 

each marker provides precisely four points in space, the thirteen markers provide fifty-

two 3D-points in space. The three-dimensional coordinates of these points are known 

in the RAM coordinate frame. As mentioned earlier, at least four markers and at most 

seven markers can be detected by the camera during the pose estimation operations. 

Accordingly, at least sixteen points and at most twenty-eight 3D-points provided to 

the PnP algorithm for the RAM pose estimation with respect to the camera coordinate 

frame. (3.13) estimated the pose of the RAM with respect to the camera. 



 

 

 

51 

 

[

𝑟11 𝑟12 𝑟13 𝑡1
𝑟21 𝑟22 𝑟23 𝑡2
𝑟31 𝑟32 𝑟33 𝑡3

] =
𝑠

𝑋2+𝑌2+𝑍2+1
[
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

]

−1

[
𝑢
𝑣
1
] [𝑋 𝑌 𝑍 1]   (3.13) 

Where in (3.13) : 

[𝑹 | 𝒕] = [

𝑟11 𝑟12 𝑟13 𝑡1
𝑟21 𝑟22 𝑟23 𝑡2
𝑟31 𝑟32 𝑟33 𝑡3

]        (3.14) 

By substitution of (3.14) into (3.13), the pose of the RAM with respect to the camera 

will be estimated: 

[𝑹 | 𝒕] =
𝑠

𝑋2+𝑌2+𝑍2+1
[
𝑓𝑥 0 𝑐𝑥

0 𝑓𝑦 𝑐𝑦

0 0 1

]

−1

[
𝑢
𝑣
1
] [𝑋 𝑌 𝑍 1]       (3.15) 

 

3.2.5. TCP Pose Estimation with Respect to the Robot Base   

Till this point, the pose of the RAM is estimated in the camera coordinate frames. 

However, the absolute accuracy and repeatability of the proposed pose estimation 

system are considered in this study, the proposed system should be able to calculate 

the TCP pose in the robot base frame. For this purpose, the homogenous 

transformations are carried out. Figure 3.8, shows the schematic view of the 

homogenous transformations from the TCP to the robot base frames. 

 

 

 

 

 

 



 

 

 

52 

 

 

 

 

 

Figure 3.11. Homogenous transformations from TCP to Robot base 

Where in Figure 3.11: 

𝐻̂𝑇𝑅
(𝑇𝐶𝑃,𝑅𝐴𝑀)

 is the homogenous transformation matrix from the TCP frame to RAM 

frame 

 𝐻̂𝑅𝐶
(𝑅𝐴𝑀,𝑐𝑎𝑚)

 is the homogenous transformation matrix from the RAM frame to the 

camera frame  

𝐻̂𝐶𝑅
(𝑐𝑎𝑚,𝑅𝐴𝑀)

 is the homogenous transformation matrix from the camera frame to RAM 

frame 

𝐻̂𝑅𝑇
(𝑅𝐴𝑀,𝑇𝐶𝑃)

 is the homogenous transformation matrix from the RAM frame to TCP 

frame 

𝐻̂𝑇𝑅
(𝑇𝐶𝑃,𝑅𝐴𝑀)

 is the homogenous transformation matrix from the TCP frame to RAM 

frame 

𝑌𝑇𝐶𝑃 

𝑋𝑇𝐶𝑃 

𝑍𝑇𝐶𝑃 

𝑍𝑏𝑎𝑠𝑒 

𝑌𝑏𝑎𝑠𝑒 

𝑋𝑏𝑎𝑠𝑒 

𝑌𝑅𝐴𝑀 

𝑋𝑅𝐴𝑀 

𝑍𝑅𝐴𝑀 

𝑋𝑐𝑎𝑚 

𝑍𝑐𝑎𝑚 

𝑌𝑐𝑎𝑚 
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𝐻̂𝐶𝐵
(𝑐𝑎𝑚,𝑏𝑎𝑠𝑒)

 is the homogenous transformation matrix from the camera frame to the 

base frame. 

𝐻̂𝑇𝐵
(𝑇𝐶𝑃,𝑏𝑎𝑠𝑒)

 is the homogenous transformation matrix from the TCP frame to the base 

frame. 

To estimates the TCP pose in the robot base frame, the following transformation 

carried to take the TCP point to the robot base frame. 

𝐻̂𝐶𝐵
(𝑐𝑎𝑚,𝑏𝑎𝑠𝑒)

𝐻̂𝑅𝐶
(𝑅𝐴𝑀,𝑐𝑎𝑚)

𝐻̂𝑇𝑅
(𝑇𝐶𝑃,𝑅𝐴𝑀)

         (3.16) 

In (3.16), 𝐻̂𝑇𝑅
(𝑇𝐶𝑃,𝑅𝐴𝑀)

 is calculated from the CAD models of the UR5, gripper and the 

Rhombicuboctahedron ArUco Mapper (RAM). 
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CHAPTER 4  

 

4. EXPERIMENTS   

 

In this chapter, experiment that are carried out to evaluate the performance of the 

developed method is explained. At first, the UR5 robotic arm, the web camera, camera 

calibration, and verification methods are discussed. Then, details of the standard 

experiments conducted to judge the performance of the implemented pose estimation 

method are presented.     

4.1. The UR5 Robotic Manipulator 

The robotic manipulator used in this study is one of the most popular, lightweight, 

highly flexible, and collaborative (COBOT) robots called UR5. Collaborative robots 

(COBOTs) provide a safely human-robot collaboration in industrial environments 

without any risks of injuries or health damages. The UR5 stands for the Universal 

Robotics, and postfix five refers to the robot payload which is 5kg  [82]. The UR5 

robotic manipulators are equipped with a force sensor that stops the robot when it hits 

an object or a human being.  

4.1.1. The UR5 Anatomy 

UR5 is a six-degrees-of-freedom robotic manipulator. It consists of a chain of the six 

rigid links connected by revolute joints as base, shoulder, elbow, wrist1, wrist2, and 

wrist3, Figure 4.1.  
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Figure 4.1. UR5 Robotic Manipulator [74] 

One of the different features of the UR5 Robots compared to the other 6 DOF 

industrial robots is that their shoulder and elbow joints rotation axes are perpendicular 

to the rotation axis of the base joint. The main task of the wrist joint is to move the 

Tool Center Point (TCP) to a specified orientation and position. The technical drawing 

of the UR5 depicted in Figure 4.2.  

 

Figure 4.2. Technical drawing of the UR5 robot arm (all dimensions are in mm) [83] 
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4.1.2. The UR5 Specifications 

The manipulating payload of the UR5 is 5kg/11lbs. UR5 itself weights 18.4kg. Figure 

4.3 shows the UR5 workspace in top and side view. The reach distance of the arm is 

850 mm or 33.5 inches. In general, its workspace is in spherical with the center at base 

and diameter as 1700 mm [83]. 

 

Figure 4.3. UR5 workspace [83] 

The UR5 repeatability is given as 0.1 mm. Table 4.1 depicts some specifications of 

the UR5 robot manipulator [83]. 

Table 4.1. The UR5 Specification 

Specification  

Payload 5 kg/ 11 lbs 

Reach 850 mm / 33.5 in 

Degrees of freedom 6 

Programming Polyscope GUI 

Repeatability                     ±0.1 mm / ± 0.0039 (in) 

Joint Working Range ± 360° 
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4.1.3. Communication with the UR5 

The simplest way to communicate with the UR5 is through the PolyScope GUI 

controller called teach-pendant. Figure 4.4 shows the UR5 control panel. Low-level 

controlling can be done using this controller. Robot Operating System (ROS) is the 

other means of UR5 controlling [84]. Currently, ROS can be installed and used in 

Linux. It has wealthy libraries and forums to solve robotics problems. In some cases, 

when it is required to work in Windows systems, a MATLAB driver that is developed 

by Delft Center for Systems and Control (DCSC) is used [85]. The only shortcoming 

of this driver compared to ROS is that it does not have many libraries and programs 

to be used. 

 

Figure 4.4. PolyScope of the UR5 robot [86] 

4.1.4. Camera and Robot Configurations 

There are three different robot-camera configurations, such as Eye-in-hand, Eye-to-

hand, and active camera head. Based on the requirements of the thesis project 

definition, Eye-to-hand configuration is selected.  

The camera is fixed at a point in the UR5 workspace. Figure 4.5 shows the camera 

and robot configuration used in this study. 
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Figure 4.5. Experimental test setup 

4.2. The Lighting System 

The illumination source is one of the main factors of a successful computer vision 

application. The high-quality lighting system produces a high contrast between the 

objects to be detected or measured and the background. The fluorescent lamps 

constitute the lighting system of the KOVAN laboratory where the experiment is 

conducted. Fluorescent, quartz halogen, and LED are the mostly used lighting systems 

for small and medium-scale machine vision applications [87]. The regular installation 

of the lamps in the array form with equal spaces between them created uniform optics 

in the experiment environment. 

4.3. Experimental Workspace 

Figure 4.6 shows a schematic view of the experiments’ cubic workspace. The UR5 

workspace dimension is in a cubic volume of 1860.50×1860.50×1860.50mm. The 

camera field of view covered the UR5 workspace volume. 
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Figure 4.6. Camera field of view (FOV) 

 

4.4. The UR5 Kinematic Modeling 

In this section the forward kinematics (FWK) of the UR5 is discussed. The applied 

principles and notations for the forward kinematic (FWK) analysis are implemented 

using [88]. The UR5 zero structure condition (all joint angles are zero) is shown in 

Figure 4.7 (a) and its corresponding schematic view is depicted in Figure 4.7 (b). Joints 

and links are labelled according to Figure 4.7 (b).  
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Figure 4.7. UR5 zero condition structure (a) and schematic view of robot (b) 

Figure 4.8 shows the conventions and notations used in assigning reference frames to 

links.  
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Figure 4.8. Convention used for forward kinematic analysis of UR5 arm [88] 

The Denavit-Hartenberg (D-H) parameters principle and convention are described in 

the Appendix. D. 

The Denavit-Hartenberg parameters of the UR5 (Figure 4.9) are: 

𝛽1: [𝑢⃗ 3
(0)

→ 𝑢⃗ 3
(1)

] @ 𝑢⃗ 1
(0)

= 
𝜋

2
 

𝛽2: [𝑢⃗ 3
(1)

→ 𝑢⃗ 3
(2)

] @ 𝑢⃗ 1
(1)

=  0 

𝛽3: [𝑢⃗ 3
(2)

→ 𝑢⃗ 3
(3)

] @ 𝑢⃗ 1
(2)

=  0 

𝛽4: [𝑢⃗ 3
(3)

→ 𝑢⃗ 3
(4)

] @ 𝑢⃗ 1
(3)

=
𝜋

2
 

𝛽5: [𝑢⃗ 3
(4)

→ 𝑢⃗ 3
(5)

] @ 𝑢⃗ 1
(4)

= −
𝜋

2
 

𝛽6: [𝑢⃗ 3
(5)

→ 𝑢⃗ 3
(6)

] @ 𝑢⃗ 1
(5)

=   0 

𝑑1: [𝑢⃗ 1
(0)

→ 𝑢⃗ 1
(1)

] 𝑎𝑙𝑜𝑛𝑔 𝑢⃗ 3
(1)

= 0.89159 

𝑑2: [𝑢⃗ 1
(1)

→ 𝑢⃗ 1
(2)

] 𝑎𝑙𝑜𝑛𝑔 𝑢⃗ 3
(2)

= 0 
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𝑑3: [𝑢⃗ 1
(2)

→ 𝑢⃗ 1
(3)

] 𝑎𝑙𝑜𝑛𝑔 𝑢⃗ 3
(3)

= 0 

𝑑4: [𝑢⃗ 1
(3)

→ 𝑢⃗ 1
(4)

] 𝑎𝑙𝑜𝑛𝑔 𝑢⃗ 3
(4)

= 0.10915 

𝑑5: [𝑢⃗ 1
(4)

→ 𝑢⃗ 1
(5)

] 𝑎𝑙𝑜𝑛𝑔 𝑢⃗ 3
(5)

= 0.09465 

𝑑6: [𝑢⃗ 1
(5)

→ 𝑢⃗ 1
(6)

] 𝑎𝑙𝑜𝑛𝑔 𝑢⃗ 3
(6)

= 0.0823 

𝑏1: [𝑢⃗ 3
(0)

→ 𝑢⃗ 3
(1)

] 𝑎𝑙𝑜𝑛𝑔 𝑢⃗ 1
(0)

= 0 

𝑏2: [𝑢⃗ 3
(1)

→ 𝑢⃗ 3
(2)

] 𝑎𝑙𝑜𝑛𝑔 𝑢⃗ 1
(1)

= −0.425 

𝑏3: [𝑢⃗ 3
(2)

→ 𝑢⃗ 3
(3)

] 𝑎𝑙𝑜𝑛𝑔 𝑢⃗ 1
(2)

= −0.39225 

𝑏4: [𝑢⃗ 3
(3)

→ 𝑢⃗ 3
(4)

] 𝑎𝑙𝑜𝑛𝑔 𝑢⃗ 1
(3)

= 0 

𝑏5: [𝑢⃗ 3
(4)

→ 𝑢⃗ 3
(5)

] 𝑎𝑙𝑜𝑛𝑔 𝑢⃗ 1
(4)

= 0 

𝑏6: [𝑢⃗ 3
(5)

→ 𝑢⃗ 3
(6)

] 𝑎𝑙𝑜𝑛𝑔 𝑢⃗ 1
(5)

= 0 

 

 

Figure 4.9. Frame assignment of the UR5 links based on the notation convention 
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Table 4.2 shows the D-H parameters of the UR5. 

Table 4.2. Denavit-Hartenberg Parameters of the UR5 

D-H Table Link 1 Link 2 Link 3 Link 4 Link 5 Link 6 

𝛽𝑘 
𝜋

2
 0 0 

𝜋

2
 −

𝜋

2
 0 

𝑏𝑘 0 -0.425 -0.39225 0 0 0 

𝜃𝑘  𝑜𝑟 𝛿𝑘 𝜃1 𝜃2 𝜃3 𝜃4 𝜃5 𝜃6 

𝑠𝑘 𝑜𝑟 𝑑𝑘 0.089159 0 0 0.10915 0.09465 0.0823 

𝑂𝑘 O S E W1 W2 P 

 

4.4.1. The UR5 Forward Kinematic 

Using extracted D-H parameters, the homogenous transformation matrix for pose 

estimation of the TCP in the robot base reference frame is: 

𝐻̂06
(0,6)

= 𝐻̂01
(0,1)

𝐻̂12
(1,2)

𝐻̂23
(2,3)

𝐻̂34
(3,4)

𝐻̂45
(4,5)

𝐻̂56
(5,6)

        (4.1) 

Figure 4.10. shows the schematic representation of the transformation operations (4.1) 

from the TCP to the robot base reference frame. 

 

Figure 4.10. Schematic representation of transformation operation from TCP to base frame 

 

The principle of the applied forward kinematic in this study is explained in the 

Appendix. E.  

In (4.1), each transformation matrix H is defined as: 



 

 

 

65 

 

𝐻̂𝑘−1𝑘
(𝑘−1,𝑘)

= [
𝐶̂(𝑘−1,𝑘) | 𝑟̅𝑘−1𝑘

(𝑘−1)

− − − − − | − − −

0̅𝑡 | 1

]        (4.2) 

In (4.1), 𝐶̂(𝑘−1,𝑘) is the 3×3 orthonormal orientation matrix, which specifies the 

orientation of the link frame (k) into same orientation of link frame (k-1), and 𝑟̅𝑘−1𝑘
(𝑘−1)

 

is the position vector from the origin of the frame (k-1) into frame (k) written in terms 

of the unit vectors of the reference frame (k-1). 

The orientation matrix for the two successive links is [88]: 

𝐶̂(𝑘−1,𝑘) = 𝑒𝑢1𝛽𝑘𝑒𝑢3𝜃𝑘        (4.3) 

The transformation matrices between two successive links are computed : 

𝐶̂(0,1) = 𝑒𝑢1𝛽1𝑒𝑢3𝜃1 = 𝑒𝑢1
𝜋

2𝑒𝑢3𝜃1 = 𝑒𝑢1
𝜋

2𝑒𝑢3𝜃1  𝑒−𝑢̃1
𝜋

2𝑒𝑢1
𝜋

2 = 𝑒−𝑢̃2𝜃1𝑒𝑢1
𝜋

2        (4.4) 

𝐶̂(1,2) = 𝑒𝑢1𝛽2𝑒𝑢3𝜃2 = 𝑒𝑢3𝜃2        (4.5) 

𝐶̂(2,3) = 𝑒𝑢1𝛽3𝑒𝑢3𝜃3 = 𝑒𝑢3𝜃3        (4.6) 

𝐶̂(3,4) = 𝑒𝑢1𝛽4𝑒𝑢3𝜃4 = 𝑒𝑢1
𝜋

2𝑒𝑢3𝜃4 = 𝑒𝑢1
𝜋

2𝑒𝑢3𝜃4𝑒−𝑢̃1
𝜋

2𝑒𝑢1
𝜋

2 = 𝑒−𝑢̃2𝜃4𝑒𝑢1
𝜋

2        (4.7) 

𝐶̂(4,5) = 𝑒𝑢1𝛽5𝑒𝑢3𝜃5 = 𝑒−𝑢1
𝜋

2  𝑒𝑢3𝜃5 = 𝑒−𝑢1
𝜋

2  𝑒𝑢3𝜃5𝑒𝑢1
𝜋

2𝑒−𝑢̃1
𝜋

2 = 𝑒𝑢2𝜃5𝑒−𝑢̃1
𝜋

2       (4.8) 

𝐶̂(5,6) = 𝑒𝑢1𝛽6𝑒𝑢3𝜃6 =  𝑒𝑢3𝜃6          (4.9) 

Relative positions of the successive links are computed: 

𝑟 01 = 𝑑1𝑢⃗ 3
(0)

        (4.10) 

The vector representation of (4.10) in the base link frame is computed as: 

𝑟̅01
(0)

= 0.089159𝑢̅3

(0 0⁄ )
= 0.089159𝑢̅3        (4.11) 

The relative position of the link 2 through link 6 with respect to their previous links’ 

frame are: 
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𝑟 12 = −𝑏2𝑢⃗ 1
(1)

        (4.12) 

𝑟̅12
(1)

= −𝑏2𝑢̅1

(1 1⁄ )
= −𝑏2𝑢̅1        (4.13) 

𝑟 23 = − 𝑏3𝑢⃗ 1
(2)

        (4.14) 

𝑟̅𝟐𝟑
(𝟐)

= −𝑏3𝑢̅1

(2 2⁄ )
= −𝑏3𝑢̅1           (4.15)    

𝑟 34 = 𝑑4𝑢⃗ 3
(3)

         (4.16)   

𝑟̅𝟑𝟒
(𝟑)

= 𝑑4𝑢̅𝟑

(𝟑 𝟑⁄ )
= 𝑑4𝑢̅𝟑         (4.17)   

𝑟 45 = 𝑑5𝑢⃗ 3
(4)

            (4.18) 

𝑟̅𝟒𝟓
(𝟒)

= 𝑑5𝑢̅3

(4 4⁄ )
= 𝑑5𝑢̅3        (4.19) 

𝑟 56 = 𝑑6𝑢⃗ 3
(5)

        (4.20) 

𝑟̅𝟓𝟔
(𝟓)

= 𝑑6𝑢̅𝟑

(𝟓 𝟓⁄ )
= 𝑑𝟔𝑢̅𝟑

(𝟓 𝟓⁄ )
= 𝑑𝟔  𝑢̅3 = 𝑑𝟔𝑢̅3        (4.21) 

According to (4.2), the homogenous transformation matrix between successive links 

starting from base link is: 

𝐻̂01
(0,1)

= [
𝐶̂(0,1) | 𝑟̅01

(0)

− − − − − | − − −

0̅𝑡 | 1

] =  [
𝑒−𝑢̃2𝜃1𝑒𝑢1

𝜋
2 | 𝑟̅01

(0)

− − − − − | − − −

0̅𝑡 | 1

] 

𝐻̂01
(0,1)

= [

𝑐𝑜𝑠𝜃1 −𝑠𝑖𝑛𝜃1 0 0
0 0 −1 0

𝑠𝑖𝑛𝜃1 𝑐𝑜𝑠𝜃1 0 0.089159
0 0 0 1

]        (4.22) 

𝐻̂12
(1,2)

= [
𝐶̂(1,2) | 𝑟̅12

(1)

− − − − − | − − −

0̅𝑡 | 1

] =  [
𝑒𝑢3𝜃2 | 𝑟̅12

(1)

− − − − − | − − −

0̅𝑡 | 1

] 
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𝐻̂12
(1,2)

= [

𝑐𝑜𝑠𝜃2 −𝑠𝑖𝑛𝜃2 0 𝑏2

𝑠𝑖𝑛𝜃2 𝑐𝑜𝑠𝜃2 0 0
0 0 1 0
0 0 0 1

]        (4.23) 

𝐻̂23
(2,3)

=  [
𝐶̂(2,3) | 𝑟̅23

(2)

− − − − − | − − −

0̅𝑡 | 1

] =  [
𝑒𝑢3𝜃3 | 𝑟̅23

(2)

− − − − − | − − −

0̅𝑡 | 1

] 

𝐻̂23
(2,3)

= [

𝑐𝑜𝑠𝜃3 −𝑠𝑖𝑛𝜃3 0 𝑏3

𝑠𝑖𝑛𝜃3 𝑐𝑜𝑠𝜃3 0 0
0 0 1 0
0 0 0 1

]        (4.24) 

𝐻̂34
(3,4)

=  [
𝐶̂(3,4) | 𝑟̅34

(3)

− − − − − | − − −

0̅𝑡 | 1

] =  [
𝑒−𝑢̃2𝜃4𝑒𝑢1

𝜋
2 | 𝑟̅34

(3)

− − − − − | − − −

0̅𝑡 | 1

] 

𝐻̂34
(3,4)

= [

𝑐𝑜𝑠𝜃4 −𝑠𝑖𝑛𝜃4 0 0
0 0 −1 0

𝑠𝑖𝑛𝜃4 𝑐𝑜𝑠𝜃4 0 𝑑4

0 0 0 1

]     (4.25) 

𝐻̂45
(4,5)

=  [
𝐶̂(4,5) | 𝑟̅45

(4)

− − − − − | − − −

0̅𝑡 | 1

] =  [
𝑒−𝑢̃2𝜃5𝑒−𝑢̃1

𝜋
2 | 𝑟̅45

(4)

− − − − − | − − −

0̅𝑡 | 1

] 

𝐻̂45
(4,5)

= [

𝑐𝑜𝑠𝜃5 −𝑠𝑖𝑛𝜃5 0 0
0 0 1 0

−𝑠𝑖𝑛𝜃5 −𝑐𝑜𝑠𝜃5 0 𝑑5

0 0 0 1

]        (4.26) 

𝐻̂56
(5,6)

=  [
𝐶̂(5,6) | 𝑟̅56

(5)

− − − − − | − − −

0̅𝑡 | 1

] =  [
𝑒𝑢3𝜃6 | 𝑟̅56

(5)

− − − − − | − − −

0̅𝑡 | 1

] 

𝐻̂56
(5,6)

= [

𝑐𝑜𝑠𝜃6 −𝑠𝑖𝑛𝜃6 0 0
𝑠𝑖𝑛𝜃6 𝑐𝑜𝑠𝜃6 0 0

0 0 1 𝑑𝟔

0 0 0 1

]        (4.27) 
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The homogenous transformation from the TCP to the robot base frame is extracted by 

the substitution of (4.22) -(4.27) in (4.1).  

4.5. Geometric Camera Modeling and Calibration 

Table 4.2 shows the camera specifications used in this study. The camera models is 

described in Appendix. A. The camera’s specifications are shown in Figure 4.11. 

Table 4.3. Camera specifications 

Camera.  

Model Pinhole 

Image Sensing Capacity 16 Megapixel 

Video Sensing Capacity 2Megapixel 

Resolutions 480, 720, 1080 

FPS 30 

 

  

Figure 4.11. Used camera in this study [89]  

Geometric camera calibration calculates the parameters of the lens and image sensor 

of a camera. The camera calibration procedure is a necessary procedure to correct the 

lens distortion effects in image metrology applications. Camera calibration procedure 

ends up with the calculation of the intrinsic, extrinsic, and distortion coefficients.  

In order to estimate the camera parameters, it is required to have 3D world points and 

their corresponding 2D image points.  In Appendix B, camera calibration is discussed 
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in detail. Some common patterns are used for camera calibration. Figure 4.12, shows 

one of these patterns called the checkerboard. ChArUco patterns was developed for 

the camera calibration purposes. In this study, ChArUco pattern, which is a 

combination of the Chessboard and ArUco patterns, is used for camera calibration 

because of its ability to compute the camera parameters including intrinsic, extrinsic, 

and distortion parameters, precisely and reliably.  

 

Figure 4.12. Chessboard (a), ArUco (b), and ChArUco calibration patterns (c) 

ChArUco board is made up of multiple markers. This property enables them to 

calculate the camera matrix even in the case of partially occluded calibration board. 

In other words, in the cases that only some points can be observable or partially 

observable, the calibration code does not fail. About 250 images of the ChArUco 

board are acquired at different poses and locations, Figure 4.12 (c). The camera 

resolution is set up to 1280 × 720.  Tables 4.4 and 4.5 show the results of the 

calibration parameters including the focal lengths, principal point, and distortion 

coefficients calculated during camera calibration. 

Table 4.4. Estimated camera distortion coefficients from ChArUco camera calibration 

Resolution 𝑘1 𝑘2 𝑘3 𝑝1 𝑝2 

1280 × 720 0.1056 -0.2703 0.4166 0.0072 -0.0038 
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Table 4.5. Estimated camera matrix elements from ChArUco camera calibration (mm) 

Resolution 𝑓𝑥  𝑓𝑦 𝑝𝑥 𝑝𝑦 

1280 × 720 1149.87 1147.74 649.2089 372.3689 

 

Reprojection error is considered as an algebraic criterion to judge the accuracy of 

camera calibration procedure. Reprojection error is estimated for every image. Hence, 

in a camera calibration operation which uses several images, the mean of the 

reprojection error used as a criterion for judging the accuracy of the calibration 

process. The calculated reprojection error was calculated as 0.211 that proved the 

success of the calibration procedure.   

4.6. Pose Estimation Performance Evaluation  

The implemented pose estimation system can be considered as a visual-based pose 

measurement sensor. Therefore, it is necessary to evaluate the pose estimation 

performance of the system based on some performance evaluation metrics and criteria. 

The industrial robots pose performance metrics suggested by ISO 9283::1998 standard 

(industrial robot performance) is absolute pose accuracy and repeatability.  

In pose performance evaluations, pose accuracy is defined as the maximum 

translational and rotational errors between any two points in the robot workspace. On 

the other hand, repeatability or precision is defined as the error between several 

successive attempts to reach an actual pose. Repeatability is one of the most critical 

factors in evaluation of the robotic machines and sensors’ performances. Figure 4.13, 

shows the graphical representation of the repeatability and accuracy which helps the 

intuition of these concepts.  

 

Figure 4.13. Repeatability and accuracy graphical concepts [12] 
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It is surprising to tell that repeatability and accuracy are different terms.  According to 

Figure 4.13 a system can be repeatable but not accurate. In terms of pose 

measurements, repeatability is a measure of how close are the successive pose 

measurements by the purposed pose estimation system when the target (TCP) is placed 

in a specified point in robot workspace. In order to evaluate the pose measurement 

performance of the proposed system in this study, some techniques and methods are 

taken from ISO 9283:1998 standards. However, it is worth to mention that ISO 9283 

is defined for the industrial robot’s pose performance evaluation, not for evaluation of 

the pose measurement system performance. In other words, ISO 9283:1998 is a series 

of international standards dealing with industrial robots. It is worth to mention all the 

measurements are absolute or estimated in the robot base coordinate frame. 

4.6.1. Pose Measurement Terms and Definitions 

Before discussing the test procedures, it makes sense to define some technical terms 

used in this study [90]: 

Estimated Pose (Cluster): A set of the TCP absolute pose measurements estimated 

by the proposed system. 

Barycenter: For a cluster of n-points ( (𝑥𝑗, 𝑦𝑗 , 𝑧𝑗) for j = 1, 2,….,n,) the barycenter of 

the cluster of n-points is a point whose coordinate is the mean of the cluster.  

The ground-truth pose (actual pose): The ground-truth pose is a set of points in the 

robot workspace whose pose knowledge including position and orientation are known 

in advance. The ground-truth poses are used for the performance assessment of the 

proposed pose estimation system.   

 Pose Estimation Accuracy  

Pose estimation accuracy of the proposed system is defined as the measurement ability 

of the developed system in minimizing the deviations between a ground-truth pose 

(actual TCP pose) and the barycenter of the estimated poses (cluster) calculated by the 

proposed system. 
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In this study, two kinds of pose accuracies are evaluated:  

a) Position accuracy: the difference between the ground truth pose (TCP actual 

position) and the barycenter of the measured positions of the TCP in the robot base. 

b) Orientation accuracy: the difference between the orientation of the ground-truth 

pose (TCP actual orientation) and the average of the estimated orientations of the TCP 

in the robot base. 

 Pose Estimation Repeatability 

In the visual-based pose estimation systems repeatability or test-retest reliability is a 

function of the time. In other words, it is a time-lapsing process. Repeatability is 

defined as the consistency or agreement between the successive measurements of the 

same quantity performed under the same measurement conditions [91]. In this study, 

the pose measurement repeatability of the proposed system is defined as the closeness 

of estimated poses of the ground-truth poses (TCP actual pose) over a specified period.  

The following conditions are fulfilled in the assessment of the pose’s measurement 

repeatability of the proposed system: 

• The same camera as the measurement instrument 

• The same computer as the processor 

• The same location for the camera 

• The same location for the UR5 robot 

• Repetition over a short and continuous period (camera not interrupted) 

4.7. Absolute Pose Estimation Performance Evaluation Experiments 

In this section, the test procedure used for the evaluation of the pose estimation 

performance of the proposed system is discussed. As mentioned earlier, all the 

measurements are carried out with respect to the robot base reference frame. 
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4.7.1. Selection of the Ground-truth Poses (Calibrated Points) 

In order to judge the performance of the measurement system, it is required to have 

some ground-truth points in which their pose information (position and orientation) 

are specified in advance. For this purpose, five points on a plane are selected as the 

ground-truth poses (TCP actual poses). The selection criteria for the ground truth pose 

is inspired by a test cube offered by the ISO 9283 standard. ISO 9283:1998 have 

suggested four test cubes for the industrial robotic manipulators pose performances 

evaluations, Figure 4.14. According to this standard, the cube should be located in the 

robot workspace; moreover, it should occupy the maximum volume of the robot 

workspace with the edges parallel to the base coordinate system. 

According to Figure 4.14, test cubes are distinguished from each other based on the 

configuration of the measuring plane (cross-hatching plane). Based on this criterion, 

test cube naming conventions are: 

a) C1-C2-C7-C8 

b) C2-C3-C8-C5 

c) C3-C4-C5-C6 

d) C4-C1-C6-C7 
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Figure 4.14. Test cubes offered by the ISO 9283  

The test cube C3-C4-C5-C6 is selected for the pose measurement evaluation of the 

proposed system in this study. The main criterion for this selection was based on the 

UR5 workspace limitation in the KOVAN research lab. Five points are placed on the 

diagonals of the measuring plane called P1 to P5. The points P1 to P5 are called the 

ground-truth points (TCP actual pose). It assumed that the pose knowledge of the 

ground-truth points with respect to the UR5 base coordinate are known in advance. 

The ground-truth poses are estimated from the UR5 forward kinematic. In some 

industrial robotic manipulators, ground-truth points pose have been provided to 

customers in terms of the joint variables to be used in calibration applications. 

According to the ISO 9283 specifications, points P2 to P5 are located at a distance of 

(10±2)L%  from the ends of the diagonals and P1 is at the intersection point of the 

diagonals of the measuring plane 
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 [86].  Figure 4.15, shows a graphical representation of the test cube and calibrated 

points used for the pose accuracy and repeatability evaluation of the proposed system. 

 

Figure 4.15. Used test cube for pose performance evaluations  

Based on the UR5 workspace limitations in the laboratory environment, the maximum 

side length of the test cube is computed as the 1240 mm, Figure 4.16. 

 

 

Figure 4.16. The applied test cube specification in this study 
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The ground-truth point's coordinates (TCP actual poses) is expressed in the UR5 base 

frame as:  

𝑃𝑖(𝑥𝑖, 𝑦𝑖, 𝑧𝑖, 𝑎𝑖, 𝑏𝑖, 𝑐𝑖)  (4.28) 

Where in (4.28), xi, yi, and zi are the position coordinates of the ground-truth points 

and ai, bi, and ci are the orientations of the ground-truth points in the UR5 base frame. 

The position coordinates are expressed in the form of the distance (millimeter) and 

orientation expressed in the form of the angles in radians or degrees unit.   

𝑃1(−79.32, −367.29, 241.58, 0.5987,−2.2848, 2.3725)      (4.29) 

𝑃2(−329.1, −117.34, 491.41, 0.6131,−1.6377, 1.1613)      (4.30) 

𝑃3(170.88,−117.34, 491.41,0.8382,−2.0172,2.8499)       (4.31) 

𝑃4(170.88,−616.75, −8.32,0.0133,−2.2143, 2.2143)        (4.32) 

𝑃5(−329.1, −616.75,−8.32,0.404,2.0036,−2.0041)          (4.33) 

4.7.2. TCP Absolute Pose Estimation Accuracy Experiment  

The experimental setup is depicted in Figure 4.17. First, the Rhombicuboctahedron 

ArUco Mapper (RAM) is mounted on the UR5 gripper, and then the UR5 moves its 

TCP to the point P1.  

 

Figure 4.17. The graphical representation of the test setup 
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At point P1, 30 pose measurements are recorded by the proposed pose estimation 

system. Then, the UR5 moves through points P2 to P5 and at each point, 30 pose 

estimation are recorded by the proposed system. In total, about 150 pose estimation of 

RAM is recorded by the system in the camera reference frame. Each pose estimation 

includes six pose parameters, three translational, x, y, and z, and three orientations a, 

b, and c. In order to evaluate the pose estimation performance in the robot base frame, 

it is required to transform the estimated poses into the robot base frame. For this 

purpose, the coordinate frame transformations are carried out as shown in Figure 3. 8 

(Section 3.2.5).  

Table 4.6 shows the coordinates of the ground-truth poses (TCP actual poses) of P1 to 

P5 in joint space, and Table 4.7 shows their corresponding pose knowledge of the 

ground-truth points in the robot base frame expressed in cartesian coordinate 

representation.    

Pose knowledge of the TCP is calculated using forward kinematic implemented in 

MATLAB. Table 4.8 shows the pose of the ground truth points in the camera 

coordinate frame. 

Table 4.6. Pose knowledge of the ground-truth poses (TCP actual pose) in joint space 

Point No. θ1 (°) θ2 (°) θ3 (°) θ4 (°) θ5 (°) θ6 (°) 

P1 -90.5 -76.99 -97.13 -4.62 113.6 39.55 

P2 -149.95 -90.28 -43.25 -49.21 125.04 -98.85 

P3 30.42 -80.31 -46.36 9.74 18.97 -256.45 

P4 -61.09 -117.4 -88.52 25.53 60.77 0.06 

P5 -111.58 -126.08 -74.47 20.85 111.345 27.41 
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Table 4.7. Pose knowledge of the ground-truth poses (TCP actual pose) in robot base frame 

Point No. x (mm) y (mm) z (mm) a (°) b (°) c (°) 

P1 -79.41 -367.1 640 -14.2781 -101.963 89.9830 

P2 -328.9 -118.7 890.2 -56.3847 77.0456 -44.3927 

P3 172.7 -115.4 890.2 -65.6265 -33.4149 -21.1249 

P4 169.4 -615.7 389.4 -47.8248 -96.0391 95.7527 

P5 -328.9 -616 390.2 -27.3988 -111.7841 112.4429 

 

Table 4.8. The ground truth points pose in the camera coordinate frame 

Point No. Distance (mm) a (°) b (°) c (°) 

P1 1442.9 50.6486 141.5528 9.4372 

P2 1803.6 123.43 -111.52 -20.972 

P3 1914.5 112.42 73.644 30.124 

P4 1151.3 77.921 153.95 1.1959 

P5 1168.8 41.134 167.86 -0.99665 

 

The UR5 robot configurations at each ground-truth points P1 to P5 represented in 

Figure 4.18. The simulations have performed in Robodk (Free edition). 
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Figure 4.18. The UR5’s TCP configuration at the ground-truth points 

4.7.3. Calculation of the Absolute Pose Accuracy of the TCP   

TCP estimated pose (position and orientation) at the ground-truth points recorded by 

the proposed system. At each of the points P1 to P5, the vision algorithm calculates the 

RAM pose in camera coordinate frame and then using (4.1), the absolute pose 

estimation of the TCP at each ground truth points in the robot base frame is calculated. 

The absolute positioning accuracy of the TCP in the ground truth points calculated as: 

𝑃𝐴𝑃𝑖
= √𝑃𝐴𝑋

2 + 𝑃𝐴𝑦
2 + 𝑃𝐴𝑍

2             (4.34) 

Where in (4.34): 
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Positioning accuracy in the x-axis: 

𝑃𝐴𝑥 = (𝑥̅ − 𝑥𝑐)               (4.35) 

Positioning accuracy in the y-axis: 

𝑃𝐴𝑦 = (𝑦̅ − 𝑦𝑐)             (4.36) 

And the positioning accuracy in the z-axis 

 𝑃𝐴𝑧 = (𝑧̅ − 𝑧𝑐)               (4.37) 

In (4.35) - (4.37): 

𝑥̅, 𝑦̅, and 𝑧̅ are the barycenter (mean) of the estimated positions by the proposed vision 

system: 

𝑥̅ =  
1

𝑛
∑ 𝑥𝑘

𝑛
𝑘=1           (4.38) 

𝑦̅ =  
1

𝑛
∑ 𝑦𝑘

𝑛
𝑘=1           (4.39) 

𝑧̅ =  
1

𝑛
∑ 𝑧𝑘

𝑛
𝑘=1           (4.40) 

and 𝑥𝑐, 𝑦𝑐, and 𝑧𝑐 are the ground truth point (TCP actual position) of the UR5, which 

is calculated using the forward kinematic formulas.  

Orientation accuracy about x, y, and z axes of the proposed system is estimated using: 

𝑂𝐴𝑎 = (𝑎̅ − 𝑎𝑐)          (4.41) 

𝑂𝐴𝑏 = (𝑏̅ − 𝑏𝑐)          (4.42) 

𝑂𝐴𝑐 = (𝑐̅ − 𝑐𝑐)          (4.43) 

With: 

𝑎̅ =  
1

𝑛
∑ 𝑎𝑘

𝑛
𝑘=1           (4.44) 

 𝑏̅ =  
1

𝑛
∑ 𝑏𝑘

𝑛
𝑘=1           (4.45) 
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  𝑐̅ =  
1

𝑛
∑ 𝑐𝑘

𝑛
𝑘=1           (4.46)   

Where in (4.41) to (4.43), 𝑎𝑐, 𝑏𝑐, and 𝑐𝑐 are the actual angles of the UR5 TCP and 

𝑎̅, 𝑏̅, and 𝑐̅ are the averages of the estimated orientations of the TCP by the proposed 

system. 

Table 4.9 shows the barycenter (mean) of the estimated positions and the ground-truth 

positions (TCP actual pose) of TCP at the points P1 to P5. 

Table 4.9. Positions knowledge of the ground-truth poses and barycenter position in robot base frame 

Point No. 𝑥̅(mm) 𝑦̅(mm) 𝑧̅(mm) 𝑥𝑐 (mm) 𝑦𝑐 (mm) 𝑧𝑐 (mm) 

P1 -79.4481 -366.6834 639.84 -79.41 -367.1 640 

P2 -328.9754 -119.0754 890.4381 -328.8 -118.7 890.2 

P3 172.8175 -115.5044 889.5824 172.7 -115.4 890.2 

P4 169.4676 -615.7949 389.4127 169.4 -615.7 389.4 

P5 -328.9930 -616.0199 390.0517 -328.9 -616 390.2 

 

Table 4.10 shows the mean of the estimated orientation and the ground-truth 

orientations (TCP actual orientation) at the points P1 to P5. 

Table 4.10. Orientations knowledge of the ground-truth and mean points in robot base frame 

Point No. 𝑎̅ (°) 𝑏 ̅(°) 𝑐̅ (°) 𝑎𝑐 (°) 𝑏𝑐 (°) 𝑐𝑐 (°) 

P1 -14.3840 -101.9593 89.9834 -14.2765 -101.9654 89.9813 

P2 -56.3960 77.0483 -44.3927 -56.3848 77.0496 -44.3975 

P3 -65.6256 -33.4142 -21.1247 -65.6275 -33.4166 -21.1245 

P4 -47.8260 -96.0523 95.7490 -47.8243 -96.0505 95.7467 

P5 -27.3980 -1.950985 -111.7832 -27.3997 -111.7894 112.4427 

 

The statistical analysis of the pose (position and orientation) estimation accuracy 

performance of the proposed system for the 150 measurements (5points × 30 

measurements ) are shown in Table 4.11 and Table 4.12. 
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Table 4.11. Positioning accuracy of the proposed system 

Point No. 𝑃𝐴𝑋 = 𝑥̅ − 𝑥𝐶 𝑃𝐴𝑦 = 𝑦̅ − 𝑦𝐶 𝑃𝐴𝑧 = 𝑧̅ − 𝑧𝐶 𝑃𝐴𝑃𝑖
 

P1 0.0628 0.3800 0.0770 0.3928 

P2 -0.1753 -0.3753 0.2380 0.4778 

P3 0.1175 -0.1044 -0.1176 0.1963 

P4 0.0676 -0.0948 0.0127 0.1172 

P5 -0.0930 -0.0199 -0.1482 0.1761 

Units are in millimeters 

Table 4.12. Orientation accuracy of the proposed system 

Point No. 𝑂𝐴𝑎 = 𝑎̅ − 𝑎𝐶(°) 𝑂𝐴𝑏 = 𝑏̅ − 𝑏𝐶(°) 𝑂𝐴𝑐 = 𝑐̅ − 𝑐𝐶(°) 

P1 −0.009 −0.002 0.0005 

P2 −0.01 −0.001  0.005 

P3 0.002 0.003 −0.002 

P4 -0.002 −0.002 0.002 

P5 0.001 0.006 0.002 

 

Figure 4.19-4.23, shows the 3D representations of the ground-truth poses and TCP 

estimated poses at the points P1 to P5.  

 

Figure 4.19. TCP actual position at the ground-truth point P1 (red) and TCP estimated pose (greens) 
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Figure 4.20. TCP actual position at the ground-truth point P2 (red) and TCP estimated pose (greens) 

 

 

Figure 4.21. TCP actual position at the ground-truth point P3 (red) and TCP estimated pose (greens) 
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Figure 4.22. TCP actual position at the ground-truth point P4 (red) and TCP estimated pose (greens) 

 

Figure 4.23. TCP actual position at the ground-truth point P5 (red) and TCP estimated pose (greens) 

Figs.4.24-4.28 shows the distributions of the positions and orientations of the TCP 

calculated using the proposed system. 
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Figure 4.24. TCP estimated and actual pose at ground-truth point P1 

 

Figure 4.25. TCP estimated and actual pose at ground-truth point P2 
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Figure 4.26. TCP estimated and actual pose at ground-truth point P3 

 

Figure 4.27. TCP estimated and actual pose at ground-truth point P4 
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Figure 4.28. TCP estimated and actual pose at ground-truth point P5 

4.7.4. Calculation of the Pose Repeatability of the Proposed System 

At each ground-truth poses P1 to P5, the developed pose estimation algorithm is 

executed for 10 seconds. During this period of experiment conduction, about 315-368 

poses information (position and orientation) recorded for the TCP pose locations.  

Repeatability of the measured pose data at each ground-truth poses is calculated using: 

𝑃𝑅𝑃𝑖
= √

∑ (𝑃𝑖−𝑃̅)2𝑛
𝑖=1

𝑛−1
           (4.48) 

Where in (4.48): 

𝑃𝑖 =  √(𝑥𝑝𝑖
− 𝑥̅)2 + (𝑦𝑝𝑖

− 𝑦̅)2 + (𝑧𝑝𝑖
− 𝑧̅)2            (4.49) 

Table 4.13 shows the calculated pose repeatability using (4.48). 
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Table 4.13. Repeatability of TCP position measurements by the proposed system 

Point No. 𝑃𝑅𝑃𝑖
(mm) 

P1 ±0.0002 

P2 ±0.0005 

P3 ±0.0004 

P4 ±0.00006 

P5 ±0.00004 

 

The repeatability of the orientation data measurement is calculated for each orientation 

angle about the axes x, y, and z in values of a, b, and c radians: 

𝑂𝑅𝑎 = ±√
∑ (𝑎𝑖−𝑎̅)2𝑛

𝑖=1

𝑛−1
          (4.50) 

𝑂𝑅𝑏 = ±√
∑ (𝑏𝑖−𝑏̅)2𝑛

𝑖=1

𝑛−1
            (4.51) 

𝑂𝑅𝑐 = ±√
∑ (𝑐𝑖−𝑐)̅2𝑛

𝑖=1

𝑛−1
          (4.52) 

Table 4.14 depicts the repeatability of the measured orientations of the TCP at each 

ground truth points. 

Table 4.14. Repeatability of TCP orientation measurements by the proposed system 

Point No. 𝑂𝑅𝑎(°) 𝑂𝑅𝑏(°) 𝑂𝑅𝑐(°) 

P1 ±0.03 ±0.02 ±0.03 

P2 ±0.03 ±0.03 ±0.05 

P3 ±0.03 ±0.04 ±0.03 

P4 ±0.01 ±0.02 ±0.03 

P5 ±0.009 ±0.02 ± 0.02 
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4.8. Pose Accuracy of the Proposed System in the camera frame  

In this section, the pose accuracy and repeatability of the proposed system are 

evaluated in the camera coordinate camera frame. The RAM’s pose in the camera 

coordinate frame depicted by (xRAM, yRAM, zRAM, aRAM, bRAM, cRAM). This evaluation 

method, is comparable to the pose estimation methods used in laser trackers, and 

optical CMMs which performs in the tool’s reference frame. The position 

measurement accuracy of RAM in the xcamera, ycamera, and zcamera directions calculated 

from [92]: 

𝐶𝑃𝐴𝑥 = 
|𝑋𝑖−𝑋̅|

𝑁
  (4.53) 

𝐶𝑃𝐴𝑦 = 
|𝑌𝑖−𝑌̅|

𝑁
               (4.54) 

𝐶𝑃𝐴𝑍 = 
|𝑍𝑖−𝑍|

𝑁
                       (4.55) 

Where in (4.53)-(4.55), N was the number of measurements, 𝑋𝑖, 𝑌𝑖 , and 𝑍𝑖 are the 

position measurements at the i-th step, 𝑋̅, 𝑌̅, and 𝑍̅ are the barycenter of the 

measurements in the x, y, and z-directions. The orientation measurement accuracy of 

the RAM in the camera coordinate frame calculated: 

 𝐶𝑂𝐴𝑎 = 
|𝑎𝑖−𝑎̅|

𝑁
  (4.56) 

𝐶𝑂𝐴𝑏 = 
|𝑏𝑖−𝑏̅|

𝑁
               (4.57) 

𝐶𝑂𝐴𝑐 = 
|𝑐𝑖−𝑐|̅

𝑁
                       (4.58) 

In (4.53) -(4.55), CPA stands for the Coordinate Position Accuracy, and COA stands 

for Coordinate orientation accuracy. Table 4.15 and 4.16 shows the RAM’s position 

and orientation measurements in the camera reference frame. 
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Table 4.15. Accuracy of the coordinate position measurement 

Point No. N 𝐶𝑃𝐴𝑥(mm) 𝐶𝑃𝐴𝑦(mm) 𝐶𝑃𝐴𝑧 (mm) 

P1 368 0.0326 0.0189 0.1908 

P2 356 0.0002 0.1575 0.6350 

P3 315 0.00004 0.0632 0.2526 

P4 320 0.00002 0.0124 0.0822 

P5 318 0.00004 0.0144 0.0630 

 

Table 4.16. Accuracy of the coordinate orientation measurement 

Point No. 𝐶𝑂𝐴𝑎(°) 𝐶𝑂𝐴𝑏 (°) 𝐶𝑂𝐴𝑐(°) 

P1 0.02 0.02 0.02 

P2 0.03 0.02 0.04 

P3 0.02 0.02 0.02 

P4 0.01 0.01 0.02 

P5 0.007 0.01 0.02 

 

4.9. Pose Precision Evaluation in the case of Marker-Occlusion 

One of the main advantages of the application of the map of markers instead of a single 

marker is its robustness to marker occlusion. Occlusion can occur by other objects or 

by the proposed system failure in detecting of some RAM’s markers. For this purpose, 

the robot configured in a specified pose such that all of the RAM’s markers can be 

detected by the system. Then, marker is incrementally on from one to seven, and the 

effects of the marker numbers in the pose estimation are studied. Figure 4.29 shows 

the effects of the marker’s occlusion on the precision (repeatability) of the proposed 

system.  

In Figure 4.29, at first only one marker (marker #0) is available to the system, and 

other markers occluded (turned down in the RAM map, Figure 4.29(a)). For this case, 

RAM’s pose precision (repeatability) is measured in the camera coordinate frame. 
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This case was the worst situation that the proposed system might encounter during its 

action. Then, the markers with ID numbers 2, 3, 4, 10, 11, 12 are turned on one by 

one, Figure 4.29(b) - 4.29(g).  

 

Figure 4.29. Effects of the marker’s occlusion in the proposed pose estimation system 

Table 4.17 and 4.18 shows the position and orientation precision values estimated by 

the proposed system.  
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Table 4.17. Marker occlusion effect on the position precision (repeatability)   

Number of Markers Position Repeatability (Precision)-mm 

1 (Figure4.19(a)) ± 0.4000 

2 (Figure4.19(b)) ± 0.2344 

3 (Figure4.19(c)) ± 0.1300 

4 (Figure4.19(d)) ± 0.1225 

5 (Figure4.19(e)) ± 0.0881 

6 (Figure4.19(f)) ± 0.0642 

7 (Figure4.19(g)) ± 0.0704 

 

Table 4.18. Marker occlusion effect on the orientation precision (repeatability) 

Number of Markers ORa (°) ORb (°) ORc (°) 

1 (Figure4.19(a)) ± 0.05 ± 0.03 ± 0.04 

2 (Figure4.19(b)) ± 0.04 ± 0.02 ± 0.04 

3 (Figure4.19(c)) ± 0.02 ± 0.02 ± 0.03 

4 (Figure4.19(d)) ± 0.02 ± 0.02 ±0.02 

5 (Figure4.19(e)) ± 0.02 ± 0.02 ±0.02 

6 (Figure4.19(f)) ±0.02 ± 0.02 ±0.02 

7 (Figure4.19(g)) ± 0.02 ±0.02 ±0.02 
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CHAPTER 5     

5. RESULTS AND DISCUSSIONS 

 

5.1. Vision System 

In this section, the effects of the vision system on the performance of the proposed 

system in pose estimating are discussed in more detail. 

5.1.1. Illumination (Lighting) 

Illumination techniques is an essential factor in computer vision applications. In order 

to have robust and reliable results, researchers try to create uniform illumination 

during computer vision applications. Environmental lighting intensity is a function of 

time, and this matter makes the computer vision applications a time-dependent 

process. Therefore, in the computer vision applications, researchers try to control the 

light intensities by using particular kinds of lighting systems and by pulling black 

curtains in front of windows to have a uniform illumination in the experiment 

environment.  

During the experiments, there was a combined illumination from the fluorescent and 

outdoor lights.  

 that caused non-uniform illumination and, some of the markers are detected as if they 

are blinking. Blinking markers are those markers that their detection was interrupted 

by the illumination of the environment and the camera resolution. As a result, the 

proposed vision system detected some markers in on-off mode. This negative 

phenomenon of blinking markers was one of the primary sources of the presence of 

the outlier pose data in the pose estimation process using the Rhombicuboctahedron 

ArUco Mapper (RAM). Figure 5.1 shows the presence of a blinking marker as a result 

of uncontrolled illumination in one of the experiments. This phenomenon degraded 

the pose estimation accuracy and repeatability in some degrees. In Figure 5.1 (a), 

marker #9 gets on-off in a fraction of milliseconds, and consequence of this 
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phenomena is the presence of outlier poses that are far from the TCP actual pose or 

ground-truth poses.  

 

Figure 5.1. The blinking marker phenomena in the marker detection operation (a) off, (b) on, and (c) 

arising of outlier poses 

5.1.2. Camera Resolution 

The camera resolution is an essential factor in image processing applications. In the 

early experiments, to decrease the processing time, low-resolutions such as 640×480 

was used for processing. Although low processing time was obtained using 640×480 

resolution, errors in pose estimation procedures increased significantly. It can be 

described based on the perspective-n-point pose estimation procedure applied in 

fiducial markers. In low-resolution images, detection of corner of markers was not 

accurate. Based on this fact, to increase the pose estimation accuracy, the resolution 

is set to 1280×720. In this case, high pose estimation accuracy and high-repeatability 

of the data measurements proved the reliability of the applied resolution. 

5.2. Rhombicuboctahedron ArUco Mapper (RAM) 

In this section, some considerations about the Rhombicuboctahedron ArUco Mapping 

system is discussed. 
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5.2.1. The 3D-Geometrical Consideration of the RAM 

The geometrical characteristics of the mapper model enable the vision system to detect 

at least four markers and at most seven markers during the pose estimation operations. 

Figure 5.2, shows the minimum and maximum detected ArUco markers during one of 

the experiments. Results showed that as the number of detected ArUco markers 

increased, the pose accuracy of the proposed system improved considerably. 

 

Figure 5.2. The minimum detected marker (a), and maximum detected marker (b) 

5.2.2. ArUco.3 as the applied fiducial marker in RAM structure 

The ArUco.3 markers are used as the fiducial markers in the structure of the RAM. 

ArUco.3 is an optimized version of the conventional ArUco marker. ArUco.3 is about 

17 to 40 times faster than the conventional ArUco markers. Moreover, in ArUco.3 the 

memory problem has been solved using mixed-integer linear programming algorithms 

(MILP) [93]. In the previous ArUco versions, as the size of markers increased, 

memory requirements of the detection algorithm increased exponentially. 

Accordingly, as experienced in this study, there is not any limitation in using markers 

with bigger sizes for the RAM pose estimations.  
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5.2.3. Rhombicuboctahedron ArUco Mapper (RAM) Performance Evaluation 

Fiala [94] has defined some metrics to evaluate the performance of the fiducial 

markers. In this study, three essential metrics considered. 

• The false-positive rate: It is defined as the false detection of a non-existing 

marker. In this study, false positive detection has never been observed in 

Rhombicuboctahedron ArUco Mapper (RAM). 

• The inter-marker confusion rate: It is a metric for the detection of the wrong 

marker ID. This also has never been observed during the experiments. 

• The false-negative rate: In this case, despite the presence of the fiducial 

marker in the scene, its presence is not reported by the fiducial marker system. 

This has never been observed during the experiments. 

The Vertex-jitter: Vertex-jitter is a significant problem in fiducial markers systems. 

This problem shows itself in the form of the vibration of marker vertices during marker 

detections step. This vibration causes errors during pose estimation. Despite efforts 

put into eliminating the vertex-jitter, in some orientations and positions, the proposed 

system experienced this undesirable effect which degraded the pose accuracy of the 

proposed system. A demo video [95] shows the occurrence of the vertex-jitter. 

5.3. The Proposed Absolute Pose Estimation System 

In this section, some aspects of the pose accuracy and repeatability are discussed. 

5.3.1. The Absolute Pose Accuracy 

Five ground-truth poses are selected whose pose knowledge with respect to the robot 

base are known. These five poses are representative of a sample of poses with different 

positions and orientations that TCP might experience during a typical run. The 

distance of these points from the camera are listed in Table 4.8. The distance of points 

P1, P2, P3, P4, and P5 from the camera were 1442.9mm, 1803.6mm, 1914.5mm, 

1151.3mm, and 1168.8mm, respectively. The closest and farthest points to the camera 

were P5, and P3, respectively. The lowest absolute positional accuracy estimated by 
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the proposed system is obtained as 0.4778 mm for point P2, Table 4.11. By considering 

the RAM configuration at P2, it observed that the system detected was due to four 

markers; therefore, the position estimation of the RAM had resulted from the 

participation of the four markers or sixteen 3D points. However, what degraded the 

positional accuracy was the presence of blinking markers, which disturbed the position 

estimation of the TCP at point P2. 

According to Table 4.11, and Figure 4.20, it is concluded that the most significant 

errors happened in the y-component of the TCP position at point P2. Although P1 is 

relatively close to the camera, it suffered from the marker blinking problem. Its 

absolute positional accuracy is about 0.3928mm. The farthest point from the camera 

is P3, but since six markers were detected in pose estimation procedure and also there 

was not any blinking marker, its absolute positional accuracy was 0.1964mm which 

was a significant improvement over the absolute positional accuracy of the points P1 

and P2. Figure 4.26, shows the symmetrical distribution of the estimated positions x, 

y, and z of the TCP about the P3. The best absolute positional accuracy of the TCP 

happened at the points P4 and P5, that are about 0.1172mm and 0.1762mm, 

respectively. The main reason for the high positional accuracies at these points are 

associated with their closeness to the camera, and the absence of the blinking markers. 

Considering the x, y, and z components of the estimated positions of TCP in 

Figures.4.27 and 4.28, showed small positional errors in the x, y, and z directions, 

moreover symmetrical distribution of the estimated position components about the 

ground truth values proved this fact.  

Test results for the orientation accuracy of the proposed TCP pose estimation system 

at the ground truth points showed that the most accurate results obtained at the points 

P4, is 0.003°. The high orientation accuracy at this point can be associated with the 

closeness of P4 to the camera, and also the absence of the marker blinking problem. 

The orientation accuracies of points P5 and P1 are in the desirable limits, 0.007°, and 

0.0044° respectively. The points P5 and P1 are close to the camera (1168.8mm, and 

1442.9mm) and did not experience the marker blinking problem. 
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The lowest orientation accuracy belongs to the point P2, 0.01°. It is surprising to 

mention that at point P2, there is the absolute position accuracy problem as well. 

Similar to position accuracy problem, at point P2, the low accuracies in orientation 

estimation by the proposed system can be attributed to the presence of the blinking 

markers. The blinking markers and vertex-jitter phenomena are the two main factors 

in obtaining high accuracy for orientation and position by the proposed TCP pose 

estimation system in this study. Closeness to the camera is also an important factor in 

pose estimation accuracy. 

5.3.2. The Pose Estimation Repeatability 

The repeatability of the TCP pose measurement system is analyzed in the camera 

coordinate system. The tests are carried out with the same hardware (camera and 

computer), at the same location (UR5 and camera locations), and in relatively short 

periods (10 seconds) without interrupting the camera. The results of the pose 

repeatability analysis are depicted in Table 4.13 and Table 4.14. The statistical results 

of repeatability tests show that there is a high level of repeatability of the developed 

pose estimation algorithm. The highest position measurements repeatability belong to 

the points P4 and P5, about 0.00006 and 0.00005 mm, respectively. P2 has the lowest 

repeatability of the position measurement (0.0005184 mm). Results show that the pose 

measurement repeatability of the system was reliable. Similar to the absolute position 

accuracy analysis, with the occurrence of the marker blinking phenomena, the 

positional measurement accuracy of the proposed system degraded significantly. 

There are agreements between the orientation measurements by the proposed system 

for all the point P1-P5, in the range of ±0.009° to ±0.05°. The best orientational 

repeatability, (±0.03°) occurred at the points P4 and P5 where the distance between the 

camera and TCP were short, and there were not any blinking markers. Similarly, the 

lowest orientation repeatability belongs to P2, which suffers from position, orientation 

and pose repeatability problem as the result of blinking markers phenomena. 
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5.4. Affecting Factors of the Pose Estimation System Performance 

Hardware and software problems affect the pose performance capability of the 

proposed pose estimation system.  

5.4.1. Robot 

Similar to the other industrial robotic manipulators, the UR5 robot can be subjected to 

pose error problems mentioned in chapter 2. UR5 is only used for educational 

purposes; accordingly, it has not experienced any overloading problems. Thus, it was 

assumed that the UR5 forward kinematic is correct and it is not subject to the high 

pose errors. It was also assumed that the UR5 robot is calibrated. 

5.4.2. Camera 

Some parts of the TCP pose measurement error are due to the camera specifications. 

The camera used during the experiments is an A4TECH 1080 HD web camera, 

equipped with a CMOS sensor. Although CMOS sensors are high-speed sensors and 

are suited for the detection of the fast-moving objects, they suffer from distortion 

problems. This problem is associated with CMOS sensors and affected the detection 

of the corners of the markers significantly. Consequently, any disturbances in corner 

point detection affected the Perspective-n-point pose estimation algorithm which 

would lead to the erroneous pose estimation. Figure 5.3 shows the schematic 

representation of the distortion effect by the CMOS sensors in marker corner detection 

process which affects the pose estimation operation using fiducial marker systems. 

 

Figure 5.3. CMOS sensors distortion effects on the marker’s corner detection 
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5.4.3. Reference Frame Transformations 

The sources of the TCP pose estimation error came from the homogenous 

transformation from the TCP to the robot base frame. After pose estimation of the 

Rhombicuboctahedron ArUco Mapper (RAM) with respect to the camera, using (4.1), 

the transformation from the TCP to the robot base was performed. Since the 

homogenous transformation is a numerical operation, and moreover the distance 

between the TCP frame and the RAM frame measured manually and also checked 

from CAD information, therefore, some numerical errors are introduced during pose 

estimation. 

In conclusion, by minimizing the errors mentioned in Sections 5.4.1 to 5.4.3, the pose 

accuracy of the developed system would improve significantly. 

5.5. Effects of Occluded-markers on the Position Precision (Repeatability) 

An experiment is carried out to study the effects of the occluded markers in the TCP 

pose measurement precision (repeatability) in Section 4.9. It is concluded that with 

the increasing of the occluded markers of the RAM, the pose precision decreases 

considerably as shown in Figure 5.4. 

According to Figure 5.4 (and Table 4.12), with increasing of the markers from one 

marker to seven markers, the positioning precision (repeatability) increases six times. 

Thus, by decreasing the effects of the RAM’s marker-occlusion, the pose estimation 

precision would improve considerably. 
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Figure 5.4. Effects of the non-occluded markers on the positioning precision (Repeatability) 

5.6. Applications of the Proposed TCP Pose Estimation System  

Improving the positional accuracy and repeatability of the industrial robotic 

manipulators become a critical task that robot producers compete over it to take the 

market control. The industrial robot calibration process is one of the practical 

techniques for improvement of the industrial robot’s pose accuracy. 

Based on the estimated position accuracy and repeatability of the proposed system, 

the developed method is suitable for some industrial applications, especially for the 

improvement of the TCP pose accuracy and repeatability. Currently, based on the 

complexity level of the proposed method, it is applicable in point-to-point industrial 

robotic applications. In the following sections, some point-to-point industrial tasks 

suitable for the developed method are explained.  

5.6.1. Point-to-point Industrial Robots 

A point-to-point robot performs its tasks at discrete points defined in the robot 

workspace. In point-to-point tasks, the robot drives its TCP to a specified discrete 

point in the robot workspace, then stops there and performs its task. After finishing 
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the task at that point, the robot drives its TCP to the next static point, and it repeats the 

working cycle.   

 Spot Welding 

Welding robots attract the primary attention of the customers in the industry and 

manufacturing sectors. Welding operation is a laborious and unhealthy operation 

because of generation of noise, fume, and intense light. The automation of the welding 

tasks in industrial level requires repeatable robots. According to some industrial 

robots’ catalogues, the required pose repeatability is in the  ±0.04 –0.2 mm  [96][97]. 

In this study, the pose measurement repeatability of the proposed method is in the 

range of 0.00005 – 0.0005 mm. Thus, it is concluded that the proposed method has 

the required repeatability to be used in welding operations. 

 Handling, loading, and Unloading 

Machines and tools loading, unloading and handling tasks requires robots with high 

accuracy and repeatability. In these tasks, the robot picks a tool or part from a tool 

holder or a conveyor belt and then position and orient it into a particular configuration 

required by the receiver machine or unit. Some suggested repeatability for the 

handling-robots to accomplish these kinds of tasks is ± 0.1 mm, and absolute pose 

accuracy is ± 0.1mm [92]. Based on the estimated pose accuracy and repeatability, the 

developed method can be applied for pose improvement of the handling-robots’ TCP. 

 Assembly 

Assembly robots are mainly used in the automotive and aerospace industries. The 

robots serve as an assistant or as a master robot to accomplish the assembly tasks. The 

recommended repeatability for assembly task is ± 0.5mm, and for positional accuracy 

is ± 0.5mm [96]. The obtained pose repeatability and accuracy of the proposed system 

in this study proved that it could be applied for the assembly task process. 
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 Inspection 

Customers’ growing interest in purchasing high-quality products, made the producers 

manufacture the zero defects products. Since the human inspection in quality control 

tasks is subject to failures, inspection robots are replacing with human elements in 

manufacturing sites. The most critical item for the inspection robots is repeatability. 

Based on the high-repeatability of the TCP position measurements obtained in this 

work, the proposed system can be applied in industrial inspection robots. 

 Hole drilling 

Many aerospace manufacturing tasks require robots with high positional and 

orientational accuracy and repeatability. One of the point-to-point robotic applications 

in the aerospace industry is hole drilling operations of carbon composites. In [23], the 

required positional accuracy of 6 DOF serial robots to be applied in hole drilling tasks 

of the aerospace parts is reported up to 0.2mm. The proposed pose estimation system 

developed in this study can be applied  in this sector.   

 Component insertion    

Component insertion task is a flexible industrial task. The required pose accuracy and 

repeatability to automate this operation by robots is dependent on the design and 

manufacturing tolerances specified by a particular application. These tolerances varies 

between 0.05mm to more than several millimeters depending on the manufacturing 

operations. The estimated pose measurements accuracy and repeatability of the 

proposed system in this study proved that it could use for the positional and 

orientational accuracy and repeatability improvement of the industrial robots in 

component insertion operations. 

5.6.2. Continuous path applications 

The continuous path applications require robots to accomplish their tasks while the 

robot TCP is in dynamic mode. Continuous path industrial applications include 

spraying, finishing, gluing, Arc welding, cleaning of metal particles, and some 
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complex assembly processes. To evaluate the robots’ positional and orientational 

accuracies and repeatability for continuous path applications requires measurement 

devices capable of evaluating the path accuracy and repeatability of the robots. 

Currently, because of the frame-rate limitations of the applied camera in this study 

(30fps), path accuracy and repeatability evaluation of the proposed system for the 

continuous path applications are not possible. 
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CHAPTER 6  

 

6. CONCLUSION AND FUTURE WORK 

 

6.1. Conclusion 

The demands for industrial robots with high accuracy and repeatability, especially in 

the automotive and aerospace industries dictate the robot manufacturers and users to 

make their robots precise by improving robots’ pose accuracy, and repeatability. There 

is a need for external metrology tools such as laser trackers, optical CMMs and stereo 

vision and photogrammetry techniques to fill this gap. Although laser-trackers and 

optical CMMs are precise pose estimation tools, they are not cost-effective and, in 

most cases, there is a need for more interference of the operator to conduct the 

measurements. 

In this study, a novel 6 DOF pose estimation algorithm for the real-time absolute 

position and orientation measurements of the TCP was proposed and implemented 

based on the computer vision and augmented reality markers principles. For this 

purpose, an innovative marker mapping method is proposed. An Archimedean solid 

called the truncated Rhombicuboctahedron which has thirteen regular faces is used as 

the mapping model. In this study, ArUco.3 markers are used in the map model 

structure.  

The developed pose estimation system can compete with the currently used pose 

estimation devices and tools. The proposed method in this study is considered as a 

cost-effective device. It just uses a regular CMOS-sensor web camera and some print-

out markers. Unlike laser trackers and optical CMMs which costs hundreds thousands 

of dollars and uses some other expensive peripheral devices such as retroreflectors, or 

in stereo vision systems which needs several expensive CCD cameras  for the absolute 

pose accuracy in the orders of 1/10(mm) and orientation estimation in the order of 
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1/1000 (°). Despite being cost-effective, its pose estimation accuracy and repeatability 

calculated on the orders of 1/10(mm) for position and 1/1000 (o) for the orientation 

measurements. Thus, it can be applied for the calibration operation of TCP of 

industrial robots in some point-to-point applications.  

Characteristics of the proposed TCP pose estimation techniques can be summarized 

as follows: 

• Non-contact process: It is not necessary for physical contact of the TCP for 

pose measurement.  

• High accuracy in pose measurement: The statistical analysis of the pose 

accuracy showed a satisfactory and more accurate position accuracy of 

0.12mm-0.48mm and for orientation in the range from 0.003o – 0.01o.   

• High repeatability in pose measurements: The proposed pose estimation 

system showed a high level of agreement between successive pose 

measurements. The measurement repeatability was in the range of 

±0.00005mm-0.0005mm and for the orientation in the range of  ± 0.009o-0.05o.  

• Cost-effective: Only some printed black-and-white papers and a cheap camera 

webcam are used for the TCP pose estimation. 

• Easy-to-use and flexibility: There is no need for special skills or setup 

configuration in order to use the proposed system. The proposed TCP pose 

estimation system can be used in most places with enough illumination to 

detect markers. 

• Appropriate for real-times applications: The proposed pose estimation 

system in this study is fast enough to be applied in the real-time tasks. 

Depending on the number of detected markers of RAM, its processing time is 

in between the 19 to 25 milliseconds. 

• Comparable with commercial pose estimation systems: Currently, the most 

reliable calibration devices for the pose estimation purposes of the industrial 

robots are laser trackers, optical CMMs and stereo vision. By applying these 

tools, the absolute positional accuracy of the manipulators has increased in 
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ranges of less than 1 mm. The positional and orientational accuracy and 

repeatability of the proposed pose estimation system in this study showed that 

it is comparable in performance with the mentioned devices for pose 

estimation.  

In conclusion, the developed pose estimation system is an accurate and repeatable 

TCP pose estimation method that can be applied for the improvement of the industrial 

robots’ pose accuracy and repeatability for point-to-point applications.  

6.2. Future Works 

The proposed pose estimation system can be considered as a prototype that needs some 

performance improvements to be more practical and efficient in manufacturing 

operations. In the future works, high-speed CCD machine vision cameras will be used 

as the visual input for the proposed pose estimation system. CCD cameras obviate the 

problem of distortions; therefore, their application will solve the problem of vertex-

jitter. Using high frame-rates cameras will increase the application of the system for 

more applications such as path continuous tasks like machining, deburring, spraying, 

polishing and cutting.  
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APPENDICES 

A.  Camera Models 

A camera is a device which maps the 3D space into 2D space. This mapping is called 

the perspective projection.  

𝐶𝑎𝑚𝑒𝑟𝑎: ℝ3 ⟹ ℝ2  

Three camera models, namely the central perspective model (Pinhole Camera Model), 

Orthogonal projective model and affine projective model. 

Central Perspective Model (Pin-hole Camera Model): 

The pin-hole camera is the simple model for the perspective projection modelling. 

Image formation in pin-hole camera is depicted in Figure A.1. 

 

Figure A.1. Image formation in a pinhole camera model 

In this architecture shown in Figure A.1 (a), a barrier called aperture is placed between 

the 3D object and a photographic film or sensor. A ray emanating from points on the 
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3D object surface passes through the aperture and strikes the photographic film. In 

vision processing terminologies, the film is called the image or retinal plane, the 

aperture is referred to as the pinhole or camera center O, and the distance between the 

pinhole and image plane is called focal length f [98]. The pinhole camera model is 

considered as a basic camera model. Figure A. 2 shows a schematically representation 

of the pinhole camera model. 

 

Figure A.2. Pin-hole camera model [98] 

 

The central projection mapping from the 3D world (X) into the image plane is: 

(𝑋, 𝑌, 𝑍)𝑇     →   (
𝑓𝑋

𝑍
,
𝑓𝑌

𝑍
)𝑇            (A.1) 

For the pinhole-camera model, representation of the projection equation from the 3D 

world into the image plane using in matrix representation is: 

[
𝑓𝑋 + 𝑍𝑝𝑥

𝑓𝑌 + 𝑍𝑝𝑦

𝑍

] =  [
𝑓 0 𝑝𝑥 0
0 𝑓 𝑝𝑦 0

0 0 1 0

] [

𝑋
𝑌
𝑍
1

]  (A.2) 

Where, in (A.2): 
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𝐾 = [
𝑓 0 𝑝𝑥 0
0 𝑓 𝑝𝑦 0

0 0 1 0

]  (A.3) 

is called the camera matrix. 

Orthogonal Projective Model: 

In this model, images were formed on the photosensitive plane of the camera from the 

parallel beams coming from the object surface [99]. The orthogonal projective model 

is an adequate model when there is a restriction in the range of depth and in the cases 

when the image is small. 

 

 

 

Figure A.3. The orthogonal image projection model[99] 

This is method cannot measure the accurate results when the distance between the 

camera and the object is too small.  

Affine Projective Model: 

This model is a special case of the projective transformation. The affine projective 

models preserve points, straight lines and planes. For example, parallel lines remain 

parallel after affine transformation [100]. The application of this kind of cameras are 

so popular among researchers; however, the linearity of this model allows the camera 

calibration to be done with ease. 
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B. Camera Calibration 

The pinhole cameras introduce significant distortions to the images.  Radial and 

tangential distortions are two kinds of major distortions caused by camera sensors. 

Radial distortions cause the straight lines to appear curved. This distortion intensity 

becomes larger as they go farther from the image center. When the camera lens is not 

parallel with the image plane due to some reasons such as gravitational problems, it 

causes tangential distortions. In computer vision and image processing applications, it 

is necessary to obviate any distortion before any computer vision applications in order 

to obtain accurate results. Some researchers [101] have argued that the main source of 

the image distortion has come from lens distortion due to handling, temperature, and 

humidity conditions. Geometric camera calibration or camera calibration computes 

the parameters of a lens and image sensor of an image or camera in order to remove 

this adverse effect. Simply speaking, the camera calibration is a process to find the 

distortion coefficients. 

(𝑘1, 𝑘2, 𝑘3, 𝑝1, 𝑝2)        (B.1) 

Camera calibration has applications to correct lens distortion, measure the size of an 

object in world coordinate systems, or determine the location of the camera in the 

scene in applications such as machine vision, robotics, 3D scene reconstruction, pose 

estimation and navigation systems. The camera calibration process includes the 

calculation of the intrinsic, extrinsic, and distortion coefficients. Camera calibration is 

an especially important action in dimensional quantitative measurements, depth from 

stereoscopy, or motion from images [102].      

Intrinsic Camera Parameters: 

Intrinsic camera parameters include some camera parameters such as focal length, the 

scale factor, and the optical center point coordinates. Intrinsic camera parameters are 

obtained through a process called camera calibration, which resulted in the intrinsic 

camera matrix or calibration matrix: 
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𝐾 = [
𝛼𝑥𝑓 𝑠𝑓 𝑝𝑥

0 𝛼𝑦𝑓 𝑝𝑦

0 0 1

]  (B.2) 

In (B.2), f is called the focal length, and px and py are called the principle focal point 

in the x and y directional.   
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C. Camera-Robot Configuration 

In robotic applications, based on the camera pose with respect to the robot, three 

cameras-robot configurations are defined. It is worth to mention that in robotic 

applications, the term “eye” refers to the camera, and “hand” refers to the  robot TCP. 

Eye-to-hand System: 

In this configuration, the camera is fixed in a place in the robot workspace and is 

calibrated with respect to the robot base frame. Figure C.1 shows this kind of 

configuration schematically.   

 

Figure C.4. Eye-to-hand configuration [103] 

Although, the eye-to-hand system can see the robot and its workspace, however, it is 

possible to lose the target because of the robot links motion can occlude the robot TCP 

view. 

Eye-in-hand System: 

In this configuration, the camera is mounted on the robot structure and looking at the 

end-effector, Figure C.2. The main advantage of this method is that the robot cannot 

occlude the camera field of view. But, in this configuration, the robot arm should be 
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stopped in some cases, so that vision system can do its pose calculation of a part and 

sent it to the robot control system [104]. 

 

Figure C.5. Eye-in-hand configuration [105] 

Active Camera Head: 

In this configuration, the camera or eye is neither mounted on the robot manipulator 

nor overhead of the robot. Instead, it is mounted on a pan-and-tilt device. The pan-

and-tilt device can change the pose of the camera automatically in order to track the 

object in motion.  
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D. Denavit-Hartenberg Parameters 

Six-Degree-Of-Freedom industrial robot manipulators consist of a series of links 

connected to each other by means of joints.  It is necessary to attach an arbitrary 

reference frame to each link to be able to extract the kinematical relations between the 

successive links. A kinematic relation between two successive links can be explained 

in terms of the homogenous transformations between the frames of links in the chains. 

In order to be systematic in the choice of the attached frames to the links, a commonly 

used reference frame called the Denavit-Hartenberg analysis method or D-H 

convention is used in robotic applications. Figure D.1 shows the Denavit-Hartenberg 

representation of a kinematic chain of successive links with single-axis joints [88]. 

 

 

 

Figure D.6. The Denavit-Hartenberg convention for some links in the kinematic chain[88] 

In the Denavit-Hartenberg convention, any homogenous transformation 𝐻̂𝐴𝐵
(𝑎,𝑏)

 

between the reference frame of link, a and b can be represented as a product of four 

basic transformations. 
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𝐻̂𝐴𝐵
(𝑎,𝑏)

= 𝑹
𝑢⃗⃗ 3

(𝑘)
,𝜃𝑘

𝑻𝒓𝒂𝒏𝒔
𝑢⃗⃗ 3

(𝑘)
,𝜃𝑘

𝑻𝒓𝒂𝒏𝒔
𝑢⃗⃗ 1

(𝑘)
,𝑏𝑘

𝑹
𝑢⃗⃗ 1

(𝑘)
,𝛽𝑘

            (D.1) 

𝐻̂𝐴𝐵
(𝑎,𝑏)

= [

𝑐𝑜𝑠𝜃𝑘 −𝑠𝑖𝑛𝜃𝑘 0 0
𝑠𝑖𝑛𝜃𝑘 𝑐𝑜𝑠𝜃𝑘 0 0

0 0 1 0
0 0 0 1

] [

1 0 0 0
0 1 0 0
0 0 1 𝑑𝑘

0 0 0 1

] [

1 0 0 𝑏𝑘

0 1 0 0
0 0 1 0
0 0 0 1

] [

1 0 0 0
0 𝑐𝑜𝑠𝛽𝑘 −𝑠𝑖𝑛𝛽𝑘 0
0 𝑠𝑖𝑛𝛽𝑘 𝑐𝑜𝑠𝛽𝑘 0
0 0 0 1

] 

(D.2) 

The four quantities 𝜃𝑘, 𝑑𝑘, 𝑏𝑘, and 𝛽𝑘 are parameters associated with the relation of 

the links k-1 and k in the kinematic chain. These four kinematic parameters 𝜃𝑘, 𝑑𝑘, 

𝑏𝑘, and 𝛽𝑘 are defined as the joint angle, link offset, link length, and twist angle, 

respectively. They are also called Denavit-Hartenberg or D-H parameters. 

The D-H parameters are defined: 

a) 𝜃𝑘 is the rotation angle that rotated the link 𝐿𝑘−1 to the link 𝐿𝑘 about joint axis 𝑢⃗ 3
(𝑘)

, 

or mathematically: 

𝜃𝑘 =  ∢[𝑢⃗ 1
(𝑘−1)

→ 𝑢⃗ 1
(𝑘)

 ]𝑎𝑏𝑜𝑢𝑡 𝑢⃗ 1
(𝑘)

   (D.3) 

If the two successive links have a revolute between them, then 𝜃𝑘 will be joint variable, 

however, if the connecting joint be prismatic joint then 𝜃𝑘 = 𝛿𝑘 will be constant. 𝛿𝑘 

is called the deflection angle. 

b)  𝒔𝒌 is the link offset of the two successive links 𝐿𝑘−1 and 𝐿𝑘. 

𝑠𝑘 = 𝐵𝑘𝑂𝑘  along 𝑢⃗ 3
(𝑘)

   (D.4) 

This distance shows the offset between the link 𝐿𝑘−1 and 𝐿𝑘 along 𝑢⃗ 3
(𝑘)

. If the 

connecting joint between link 𝐿𝑘−1 and 𝐿𝑘 is prismatic then 𝒔𝒌 will be joint variable. 

Otherwise, if it is rotation angle then 𝑠𝑘 = 𝑑𝑘 is called offset. 

c) 𝒃𝒌 is the distance between the joint axes of the successive links. 

𝑏𝑘 = 𝑂𝑘−1𝐵𝑘 𝑎𝑙𝑜𝑛𝑔  𝑢⃗ 1
(𝑘−1)

  (D. 5) 

d) 𝜷𝒌 is called the twist angle between two successive links which is defined as: 
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𝛽𝑘 =  ∢[𝑢⃗ 3
(𝑘−1)

→ 𝑢⃗ 3
(𝑘)

 ] 𝑎𝑏𝑜𝑢𝑡 𝑢⃗ 1
(𝑘−1)

       (D. 6) 

Thus, in a nutshell, (𝜃𝑘 , 𝑠𝑘, 𝛽𝑘, 𝑏𝑘) is called the D-H parameter . 
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E. Forward Kinematic of Robotic Manipulators 

Kinematics is a branch of dynamic which studies the motion of the rigid bodies in the 

absence of the external forces. In other words, kinematics concentrates on the study 

of the geometrical description of motion using position, orientation, and their 

derivatives. In terms of the robotic manipulators, forward kinematics is the pose 

estimation of the Tool Center Point (TCP) or end-effectors with respect to a specified 

coordinate reference frame using kinematic equations. In order to achieve this goal, a 

coordinate frame is embedded in each link of the manipulator. Two successive links 

relative position and orientation can be calculated using homogenous transformations. 

Any homogenous transformation matrix can be represented by a matrix H called 

Denavit matrix. It is worth to mention that, a homogenous transformation matrix 

describes the relative translation and rotation between link coordinate systems. 

Mathematically, if Aa describes the position and orientation of the first link and Ab 

describe the position and orientation of the second link, then the relative position and 

orientation of the second link with respect to the first link would be: 

𝐻̂𝐴𝐵
(𝑎,𝑏)

= 𝑨𝑎𝑨𝑏  (E.1) 

𝐻̂𝐴𝐵
(𝑎,𝑏) 

is defined as a transformation matrix describing the relative pose of the link 

with the coordinate system {B} with respect to the link with the coordinate system 

{A}. Accordingly, for a six-degree-of-freedom serial manipulator, a transformation 

matrix which describe TCP pose with respect to the robot base will be: 

𝐻̂06
(0,6)

= 𝐻̂01
(0,1)

𝐻̂12
(1,2)

𝐻̂23
(2,3)

𝐻̂34
(3,4)

𝐻̂45
(4,5)

𝐻̂56
(5,6)

  (E.2) 

In (E.2): 

𝐻̂𝑘−1𝑘
(𝑘−1 ,𝑘)

= [
𝑪̂(𝑘−1 ,𝑘) 𝒓̅𝑘−1,𝑘

(𝑘−1 )

𝟎̅𝑡 1
] (E.3) 

Where, 𝑪̂(𝑘−1 ,𝑘) is called the orientation of the link Lk  with respect to 𝐿𝑘−1. 
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𝑪̂(𝑘−1,   𝑘) = 𝑅̂ (𝑢̅1

(𝑘−1
𝑘−1⁄ )

, 𝛽𝑘) 𝑅̂ (𝑢̅3

(𝑘 𝑘⁄ )
, 𝜃𝑘) =  𝑅̂(𝑢̅1, 𝛽𝑘)𝑅̂(𝑢̅3, 𝜃𝑘)    (E.4) 

𝑪̂(𝑘−1,   𝑘) = 𝑒𝑢1𝛽𝑘𝑒𝑢3𝜃𝑘  (E.5) 

𝑪̂(𝑘−1,   𝑘) = [
1 0 0
0 𝑐𝑜𝑠𝛽𝑘 −𝑠𝑖𝑛𝛽𝑘

0 𝑠𝑖𝑛𝛽𝑘 𝑐𝑜𝑠𝛽𝑘

] [
𝑐𝑜𝑠𝜃𝑘 −𝑠𝑖𝑛𝜃𝑘 0
𝑠𝑖𝑛𝜃𝑘 𝑐𝑜𝑠𝜃𝑘 0

0 0 1

] 

𝑪̂(𝑘−1,   𝑘) = [

𝑐𝑜𝑠𝜃𝑘 −𝑠𝑖𝑛𝜃𝑘 0
𝑐𝑜𝑠𝛽𝑘𝑠𝑖𝑛𝜃𝑘 𝑐𝑜𝑠𝛽𝑘𝑐𝑜𝑠𝜃𝑘 −𝑠𝑖𝑛𝛽𝑘

𝑠𝑖𝑛𝛽𝑘𝑠𝑖𝑛𝜃𝑘 𝑠𝑖𝑛𝛽𝑘𝑐𝑜𝑠𝜃𝑘 𝑐𝑜𝑠𝛽𝑘

]        (E.6) 

Position equation of the link k-1 with respect to link k can be written as: 

𝑟 𝑘−1,𝑘 = 𝑟 𝑂𝑘−1𝑂𝑘
= 𝑟 𝑂𝑘−1𝐵𝑘

+ 𝑟 𝐵𝑘𝑂𝑘
   (E.7) 

𝑟 𝑘−1,𝑘 = 𝑢⃗ 1
(𝑘−1)

𝑏𝑘 + 𝑢⃗ 3
(𝑘)

𝑠𝑘  (E.8) 

The orientation and position of the link k in reference frame k-1 is written as: 

𝑟̅𝑘−1,𝑘
(𝑘−1)

= 𝑢̅1

(𝑘−1
𝑘−1⁄ )

𝑏𝑘 + 𝑢̅3

(𝑘 𝑘−1⁄ )
𝑠𝑘 

𝑟̅𝑘−1,𝑘
(𝑘−1)

= 𝑢̅1𝑏𝑘 + 𝑒𝑢1𝛽𝑘𝑒𝑢3𝜃𝑘  𝑢̅3𝑠𝑘 = 𝑟̅𝑘−1,𝑘
(𝑘−1)

= 𝑢̅1𝑏𝑘 + 𝑒𝑢1𝛽𝑘  𝑢̅3𝑠𝑘 

𝑟̅𝑘−1,𝑘
(𝑘−1)

= 𝑢̅1𝑏𝑘 + (𝑐𝑜𝑠𝛽𝑘 + 𝑢̃1𝑠𝑖𝑛𝛽𝑘) 𝑢̅3𝑠𝑘 

𝑟̅𝑘−1,𝑘
(𝑘−1)

= 𝑢̅1𝑏𝑘 − 𝑢̅2𝑠𝑘𝑠𝑖𝑛𝛽𝑘 + 𝑢̅3𝑠𝑘 𝑐𝑜𝑠𝛽𝑘  (E.9) 

 

The matrix representation of (E.9) is: 

 

𝑟̅𝑘−1,𝑘
(𝑘−1)

= [

𝑏𝑘

− 𝑠𝑘𝑠𝑖𝑛𝛽𝑘

𝑠𝑘 𝑐𝑜𝑠𝛽𝑘

]  (E.10) 
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After   substitution of (E.6) and (E.9) into (E.3), the transformation matrix of link k-1 

with respect to link k   becomes: 

 

𝐻̂(𝑘−1,𝑘) = [

𝑐𝑜𝑠𝜃𝑘 −𝑠𝑖𝑛𝜃𝑘 0 𝑏𝑘

𝑐𝑜𝑠𝛽𝑘𝑠𝑖𝑛𝜃𝑘 𝑐𝑜𝑠𝛽𝑘𝑐𝑜𝑠𝜃𝑘 −𝑠𝑖𝑛𝛽𝑘 − 𝑠𝑘𝑠𝑖𝑛𝛽𝑘

𝑠𝑖𝑛𝛽𝑘𝑠𝑖𝑛𝜃𝑘 𝑠𝑖𝑛𝛽𝑘𝑐𝑜𝑠𝜃𝑘 𝑐𝑜𝑠𝛽𝑘 𝑠𝑘 𝑐𝑜𝑠𝛽𝑘

0 0 0 1

]         (E.11) 

 

 


