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ABSTRACT

ENZYME PREDICTION WITH WORD EMBEDDING APPROACH

Akın, Erkan
M.S., Department of Computer Engineering

Supervisor: Prof. Dr. M. Volkan Atalay

September 2019, 78 pages

Information such as molecular function, biological process, and cellular localization

can be inferred from the protein sequence. However, protein sequences vary in length.

Therefore, the sequence itself cannot be used directly as a feature vector for pat-

tern recognition and machine learning algorithms since these algorithms require fixed

length feature vectors. We describe an approach based on the use of the Word2vec

model, more specifically continuous skip-gram model to generate the vector repre-

sentation of a given protein sequence. In the Word2vec model, a protein sequence is

treated as a document or a sentence and its subsequences correspond to words. The

continuous skip-gram model is a supervised Word2vec model to predict the surround-

ing subsequences from a subsequence. Feature vectors from the Word2vec model can

be coupled with classifiers to infer information from the sequence. As a sample ap-

plication, we consider the problem of determining whether a given protein sequence

is an enzyme or not. For a sample dataset that contains 19,155 of enzyme and non-

enzyme protein sequences, for which 20% of these sequences are put apart for test

and 80% is used for 5-fold cross-validation. The best performance scores are ob-

tained as 0.97 for Precision, Recall, F1, accuracy and 0.93 for Matthews correlation
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coefficient by the Word2vec model with vector size of 100, the window size of 25

and number of epochs as 180 and for the Random Forest classifier. Also, we gener-

ate vector representations for the first level of Enzyme Commission classes by using

the same hyper-parameter set for the Word2vec model. For vector representations of

each class, binary classification is applied and the average performance scores are ob-

tained as 0.87 for Precision, Recall, F1, accuracy and 0.70 for Matthews correlation

coefficient by using the Random Forest classifier.

Keywords: Word2vec, Word Embedding, Proteins, Classification, Enzymes
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ÖZ

KELİME YERLEŞTİRME YAKLAŞIMI İLE ENZİM TAHMİNİ

Akın, Erkan
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. M. Volkan Atalay

Eylül 2019 , 78 sayfa

Moleküler fonksiyon, biyolojik işlem ve hücresel lokalizasyon gibi bilgiler protein

sekansından çıkarılabilir. Bununla birlikte, protein sekanslarının uzunluğu değişir.

Bu nedenle, desen tanıma ve makine öğrenme algoritmaları sabit uzunluklu özellik

vektörleri gerektirdiğinden, sekans bu algoritmalar için doğrudan bir özellik vektörü

olarak kullanılamaz. Belirli bir protein sekansının vektör gösterimini oluşturmak için

Word2vec modelinin, daha spesifik olarak sürekli atlamalı modelin kullanımına da-

yanan bir yaklaşımı tarif ediyoruz. Word2vec modelinde, bir protein sekansı belge

ya da cümle olarak ele alınır ve onun alt sekansları kelimelere karşılık gelir. Sürekli

atlama modeli, bir alt sekansı çevreleyen alt sekansları tahmin etmek için kullanılan

bir Word2vec modelidir. Word2vec modelindeki özellik vektörleri, sekanstan bilgi

almak için sınıflandırıcılarla birleştirilebilir. Örnek bir uygulama için, bir protein se-

kansının enzim olup olmadığını belirleme sorununu ele alıyoruz. 19,155 enzim ve

enzim olmayan protein sekansı içeren örnek bir veri seti için, bu dizilerin 20%’si test

için ayrılmış ve 80%’ i 5’li çapraz validasyon için kullanılmıştır. En iyi performans

sonuçları, Word2vec modelinin parametreleri için 100 vektör büyüklüğü, 25 pencere

boyutu ve 180 tekrarlama sayısı kullanılmış ve Rassal Orman sınıflandırıcısı için Pre-
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cision, Recall, F1 ve Doğruluk sonuçları 0.93 ve Matthews korelasyon katsayısı 0.97

olarak bulunmuştur. Ayrıca, Word2vec modeli için kullanılan aynı parametreleri kul-

lanarak ilk seviye Enzim Komisyonu sınıfları için vektör gösterimleri üretiyoruz. Her

bir sınıfın vektör gösterimleri için ikili sınıflandırma uygulanır ve Rassas Orman sı-

nıflandırıcısını kullanarak ortalama performans Matthews korelasyon katsayısı için

0.70 ve Precision, Recall, F1 ve Doğruluk sonuçları için 0.86 olarak elde edilir.

Anahtar Kelimeler: Word2vec, Word Yerleştirme, Proteinler, Sınıflandırma, Enzim-

ler
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CHAPTER 1

INTRODUCTION

Enzymes are biological catalysts which speed up the biological reactions which are

essential processes for organisms. Enzymes are proteins which are used to lower

the activation energy for biological reactions. Recent progress in technology and

studies show that the number of functionally uncharacterized proteins is increasing.

Representation of biological structures such as sequences has advantages for applying

machine learning applications. The main objective of this study is the prediction

of protein functions from protein sequences by machine learning methods. There

are several essential protein functions such as biochemical reactions, creating tissue

structures, maintaining communication between cells, tissues, and organs, protecting

the body from invaders and providing energy when the body needs. Since proteins

have many functions, they need to be classified. Gene Ontology Annotation and

Enzyme Commission Nomenclature are used to represent the functions of a protein

sequence. A GO annotation is a vocabulary that represents the function of a gene

or a protein [1]. Besides, protein can be categorized as an enzyme or non-enzyme.

In order to classify enzymes, Enzyme Commission numbers are defined. Enzyme

Commission (EC) Nomenclature is a classification scheme based on the reaction in

which the enzyme catalyzes.

An enzyme is a protein and enzymes can be represented by an amino acid sequence

which holds information to identify protein functions [2]. One of the alternatives

to predict the functions of proteins from the sequence is to apply natural language

processing techniques on the protein sequences. Since protein sequences hold infor-

mation about proteins, the function of proteins can be referred from sequences and

based on the relations among the subsequences. If the function of protein is catalyz-
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ing chemical reactions, protein can be classified as enzyme and associated with an

EC class.

1.1 Problem Statement

The first problem is the characterization process of proteins and wet laboratory exper-

iments on proteins are time-consuming and expensive, alternative approaches such as

the use of computational prediction methods became more important. The second

problem is that proteins have a varying length so protein sequences cannot be used

directly for prediction models. Machine learning algorithms can be applied to the bi-

ological structures to predict the function. These machine learning algorithms include

algorithms for classification and natural language processing. The application of nat-

ural language processing techniques to biological sequences is the solution method

that is offered by this study.

Another problem is tracing the relations between predicted enzymes when too many

protein sequences are given to prediction models. Enzyme Commission Nomencla-

ture defines the relations of enzymes according to their functions. The relationship

of enzymes are represented with the names of the enzyme classes which use abbre-

viations that give the base class and the name of the class. In order to trace these

relationships, individual relationships should be followed. Visual representation of

the Enzyme Commission classes is a way to represent the relations between protein

sequences.

1.2 Approach

Word embedding is referred to as continuous vector representation which is the term

of mapping a set of words or phrases to a continuous vector space. In natural language

processing, continuous vector representation is an efficient way to represent words

of large datasets. A continuous vector representation technique, Word2vec, is first

purposed to construct word vectors from a large dataset [3]. Biological sequences

can be split into consecutive amino acid groups which are subsequences. For this

2



study, the subsequences are treated as words in a sentence. Also, the sequences are

used as sentences. The k-mer refers to consecutive subsequences of amino acids

where the length, k, is referred to as l in the rest of the manuscript. Each subsequence

of the protein sequence can be embedded in a vector and represented as an index in a

subsequence vocabulary. The vocabulary of subsequences is constructed from a given

training dataset. These subsequences map to vectors of numerical values. The vector

representation of a protein sequence is computed by using the vector representations

of the subsequences of the protein sequence.

Sequences of functionally annotated and manually reviewed proteins are taken from

the SwissProt section of The Universal Protein Resource Knowledgebase (UniPro-

tKB) database. Word2vec results in a vector for each subsequence and the vectors are

further used as feature vectors for input to the machine learning algorithms. In this

thesis, machine learning algorithms are mainly classifiers such as k-Nearest Neigh-

bor (kNN), Support Vector Machine (SVM), Naive Bias, Random Forest classifier and

AdaBoost classifier. Feature vector values of labeled sequences and their correspond-

ing class values are used for training the binary classifiers which are then employed

to predict the class values of unlabeled sequences. For a protein, there should be a

single feature vector that is constructed from its subsequence vectors. There are three

alternatives to construct sequence feature vectors. The first one is getting maximum

values of columns of the subsequence feature vectors. The second alternative is get-

ting minimum values as similar to maximum value extraction. The last alternative is

calculating the summation of subsequence feature vectors and normalizing them.

There are two alternatives to adjust the hyper-parameters of the Word2vec model cor-

rectly. The first one is comparing word vector differences (similarities) with sequence

homology of protein sequences which can be calculated by BLAST [4]. The second

way is based on the accuracy results of classifiers. Both of these alternatives are used

in this study.

Visualization of word embedding vectors is a key step before classifier selection. If

the feature vectors are projected to form groups of data points in Euclidean space, the

same vectors should be separable. There are a few methods for dimensional reduc-

tion which embed high dimensional data in two-dimensions. One of these methods
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is t-distributed stochastic neighbor embedding (t-SNE) which is a machine-learning

algorithm to project high dimensional data onto two dimensional space. Word2vec

model uses high dimensional vector representations and these vector representations

are projected onto the two-dimensional space by using the t-SNE algorithm. Another

step is choosing a successful classifier. In order to choose a successful classifier, the

values of hyper-parameters of several alternative classifiers are determined and the

performance of these classifiers are assessed.

The last step is visualizing the results of predictions of biological sequences. The

relations between predicted enzymes are difficult to track and analyze since there can

be too many predictions. Visualizing the EC numbers as a tree is an approach to

show the relations between predicted enzymes. Also, the distribution of the number

of the enzymes in classes is important to show which class and subclasses of that class

are predicted mostly. EC numbers and their associated enzymes are visualized in a

web-based tool by using graph visualization techniques and a coloring mechanism is

implemented to show the distribution of prediction results.

1.3 Improvements

This thesis describes two specific improvements which are given as follows:

• Word2vec model is applied to protein sequences to predict the functions of

proteins such as enzyme classes of proteins.

• A web-based interactive visualization tool is developed to visualize the predic-

tions of Enzyme Commission numbers.

The word embedding approach, Word2vec, is applied on biological sequences and

the target dataset contains enzyme classes of proteins. We measure the performance

scores for different lengths of subsequences such as 3 and 5. The previous stud-

ies [5] [6] use 3 as the length of subsequences of protein sequences. In this study, the

protein sequences are divided into subsequences which have 5 amino acids (5-mer)

for each subsequence to achieve better classification performance. Also, we use sev-

eral classifiers to predict unlabeled datasets and compare the performances of these

4



classifiers. The predicted Enzyme Commission classes are visualized to show the

relations between classified enzyme sequences.

5



6



CHAPTER 2

BACKGROUND INFORMATION AND RELATED WORK

2.1 Amino Acids

Amino acids are organic molecules that contain carbon (C), hydrogen (H), oxygen

(O) and nitrogen (N). Other elements such as Sulfur (S) could be found in certain

amino acids. Amino acids are represented by an alphabet of 20 symbols. These

symbols are A, C, D, E, F, G, H, I, J, K, L, M, N, P, Q, R, S, T, V, W, and Y. The

amino acids synthesize proteins. A protein sequence, w, is a string generated with

this alphabet. The length of the protein sequence can be represented as L which is

the number of symbols in the string. In addition to protein sequences, there are other

biological sequences such as nucleic acid sequences (DNA, RNA). For nucleic acid

sequences, the alphabet is composed of four letters (A, C, G, and T).

2.2 Proteins

Proteins are molecules that play crucial roles in biological organisms. Proteins are

required for energy generation, protection of the body, cell structure and communi-

cation between cells. These functions include catalyzing biochemical reactions and

DNA replication. Amino acids are the components of proteins and amino acids bind

together to form proteins. There are 20 types of amino acids and different combina-

tions of amino acids form different proteins. Similar to the other molecules, proteins

are three-dimensional structures and these structures are unique for each protein. The

amino acids are bond with peptide bonds. A small number (20 to 30) of amino acids

forms peptides. A linear chain of amino acids is a polypeptide. At least one of long
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polypeptides is contained by proteins. The sequence of the proteins are determined by

the DNA sequence of a gene. Proteins can interact with other molecules to catalyze

reactions or replicate DNA.

The structure of proteins can be represented with different structure types such as

primary structure, secondary structure, and tertiary structure. The tertiary structure

is the shape of a protein molecule and contains associated secondary structures. The

secondary structure composed of repeating structures in proteins. The primary struc-

ture is an amino acid sequence in one dimension. In Figure 2.1, 3D and 1D structures

of one protein, TRY2_RAT, are shown for illustration purposes. Obtaining the 3D

structure of a protein requires laboratory experiments. Since the primary structures

are relatively easy to obtain, public databases such as The Universal Protein Resource

(UniProt)/SwissProt hold the one-dimensional protein sequences. Protein sequencing

is a technique for determining the amino acid sequence of a protein.

Figure 2.1: 3D Structure and sequence of TRY2_RAT.
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2.3 Gene

Genes are structures that provide physical inheritance in living organisms. DNA is the

basic building block of the gene. Gene Ontology (GO) is an ontology which is used

to represent functions of genes and gene products from organisms present the related

information in a machine-readable form. Wet laboratory experiments about genes and

gene products provide results about the functional information of gene products. GO

annotation includes references such as journal articles and gene product identifiers

(protein ids and GO terms).

2.4 Enzymes

Most of the enzymes are proteins that catalyze biochemical reactions. In order to

accelerate reactions, enzymes lower the activation energy which is required to com-

plete reactions. Some of the enzymes aren’t proteins and these enzymes are RNA

molecules. The enzymes act with molecules and they are called as substrates which

can be defined as products. Enzymes catalyze the metabolic processes in cells in

order to speed up reactions to sustain life.

For some reactions, substrates are broken into multiple products and some reactions

create a larger product. In Figure 2.2, the substrate is broken into products with the

help of an enzyme.

Figure 2.2: Reactions with enzymes reproduced from [7].

Classification of enzymes is defined as a scheme which is called Enzyme Commission
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(EC) Nomenclature. EC number is a four-digit representation and digits represent the

function of enzyme general to a specific order. Four levels of EC numbers are related

to each other in a functional hierarchy. Within the first level, the system annotates

the main enzymatic classes (i.e., 1: oxidoreductases, 2: transferases, 3: hydrolases,

4: lyases, 5: isomerases and 6: ligases).

2.5 Sequence Alignment

Sequence alignment is a method to identify similarities between biological sequences

such as DNA, RNA or protein sequences. These similarities help scientists to ob-

serve functional, or structural relations between biological sequences [8]. Aligned

subsequences could correspond to functional regions, but a single region of the bi-

ological sequence isn’t enough to associate functions [9]. The alignment of se-

quences requires computational methods since the lengths of sequences vary. One of

the computational methods is dynamic programming which is the common method

for sequence alignment. Global and local alignments are two ways of aligning se-

quences. Needleman–Wunsch [10] algorithm is a global alignment method that uses

dynamic programming as a fundamental computation method. For local alignment,

Smith–Waterman [11] algorithm is a common method that uses dynamic program-

ming similar to the Needleman–Wunsch algorithm.

2.6 Proposed Methods and Models

Word2vec has a hidden layer that holds real-valued feature vectors which provide in-

formation about similarities between the given biological sequences. Also, BLAST

finds similarities between sequences and these similarities are compared with the co-

sine similarities of the feature vectors which are obtained from Word2vec. Flowchart

of the approach of this study is given in Figure 2.3. Hyper-parameters of the Word2vec

model is optimized by using similarities of the protein sequences. Enzyme Com-

mission classes are predicted by training classifiers with feature vectors of protein

sequences. The t-SNE algorithm is used to project feature vectors onto the two-

dimensional space.
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Classification includes k-Nearest Neighbors, Support Vector Machine, Naive Bayes,

Random Forest, AdaBoost, and a shallow feed-forward neural network.

Figure 2.3: Flowchart of the proposed methods where the Word2vec model is trained

with subsequences and feature vectors of these subsequences are fetched from the

Word2vec model to compute feature vectors of protein sequences. With these feature

vectors, classifiers are trained to predict Enzyme Commission classes.

2.6.1 Word2vec Model

Word2vec is a shallow neural network which is employed to produce feature vectors

from a given text corpus. A vocabulary is constructed from the given training text

corpus which contains the words from the manually validated sentences. Word2vec

model then creates a vector representation of words from the given vocabulary. The

resulting word vector can be used as a feature vector for machine learning applica-

tions.

There are two models of Word2vec. The first one is continuous bag-of-words (CBOW)

and the second one is skip-gram. Continuous bag-of-words model predicts the cur-

rent word from its surrounding words around the current word. A window (W ) is de-

fined to include the number of surrounding words. Figure 2.4 shows the diagram for

CBOW model. Future words (wc+1..., wc+W ) and history (wc−W , ..., wc−1) words are

given to CBOW model as inputs. The CBOW model predicts the current word (wc)
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from the given future and history words. Figure 2.5 show diagram for Skip-gram.

Skip-gram predicts future words and history words (wc−W , ..., wc−1, wc+1..., wc+W )

based on current word (wc). Skip-gram model uses the current word to predict its

surrounding words in a defined window.

Figure 2.4: Word2Vec Continuous bag-of-words model.
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Figure 2.5: Word2Vec Skip-gram model.

Word2vec training depends on several hyper-parameters including vector size (N ),

window (W ), minimum frequency and number of epochs. The number of epochs is

similar to the one in other machine learning methods. Epochs indicate the number

of iterations that Word2vec model works through the training dataset. Minimum fre-

quency indicates the minimum number of occurrences of a word to be included by

Word2vec model training. A word that has a lower frequency than the minimum fre-

quency parameter is ignored and the vocabulary of Word2vec model doesn’t contain

the word. The window size (W ) parameter is the maximum number of words between

the current word and the surrounding words. Vector size (N ) determines the number

13



of nodes in the hidden layers of the Word2vec model.

Figure 2.6: Overlapped 5-mers subsequences of P84027.

Word2vec model is trained with given subsequences of protein sequences. Figure 2.6

illustrates the protein sequence of a protein, P84027, and overlapping 5-mers subse-

quences of the sequence. Word2vec represents subsequences as a vector space model

which is an algebraic model for representing subsequences as a vector of numerical

values.

2.6.2 BLAST

Basic Local Alignment Search Tool (BLAST) is a tool that finds similarities between

biological sequences with local sequence alignment algorithm which is described in

Section 2.5. BLAST compares a biological sequence to another biological sequence

and the result of the comparison can be used to identify functional similarities. The

E-Value is a threshold value that measures the statistical significance of the similarity

between biological sequences. The match between a region of sequences could occur

by chance. The probability of this chance is defined as E-value. The default E-

value is 10 and higher E-values indicate that BLAST can report sequences with lower

similarities.
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2.6.3 k-Nearest Neighbors

The k-nearest neighbor (kNN) is a classifier that assigns unlabeled data with respect

to the nearest labeled set of data. Nearest labeled set of data consists of k data items

which are closest k data items from the labeled set of data. These k data items are

referenced as k nearest neighbors. KNN classifier is one of the simplest classifiers.

Algorithm 1 is the pseudocode of k-Nearest Neighbors which is adapted from Tay,

Hyun, and Oh [12]. The classification phase includes majority voting among the data

items in the neighborhood. Distance values between all of the pairs are calculated

and stored. If an unlabeled data is going to be classified, the nearest k data items are

chosen. The distance between data items can be defined as Euclidean or Manhattan

or Mahalanobis distance. Let the number of features be n and x and y be two data

items. The Euclidean distance (d) is defined as given in Equation(2.6.1).

For kNN, it is important to choose the best value for k in order to classify training

data items correctly. The grid search approach is useful to choose k value which

is optimized by using the performance metrics of kNN evaluation results which are

collected by cross-validation on the training set.

d(x, y) =
√

(x1 − y1)2 + (x2 − y2)2 + ..+ (xn − yn)2 (2.6.1)

Algorithm 1 Pseudocode of k-Nearest Neighbors [12]
Require: X: set of labeled data, Y : class labels ofX , x: unknown sample, y: labeled

data, m: number of data items in the training dataset

for i← 1 to m do

y ← Xi

compute distance between x and y according to Equation 2.6.1

end for

compute the set, I , which contains the indices for the k smallest distances between

X1. . .Xm and x

return majority label for Yi where {i is in I}
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2.6.4 Naive Bayes

Naive Bayes is a probabilistic classifier that uses Bayes’ Theorem to classify data.

Probabilistic classifiers use feature vectors and classes to determine the probability

of the data items belonging to each class. For each feature vector, the most likely

class is computed based on Bayes’ theorem with the assumption of independence of

features. Since binary classification is applied to protein function prediction, positive

and negative classes can be named as c0 and c1. Let the feature vectors be v1, v2 ..

vn and P be the symbol of probability. The representation of naive Bayes for a class

(c0) probability is given in Equation (2.6.2) which shows the conditional distribution

of feature vector over class c0. P (c0) is the probability of class c0 which can be

calculated as dividing the number of data items in c0 by the total number of data items.

The assumption concerning the independence of the variables may be incorrect but

Naive Bayes is a useful and simple classifier.

P (c0|v1, ..., vn) = P (c0)
n∏
i=1

P (vi|c0) (2.6.2)

The probability distribution of class c0 can be computed under the Gaussian distri-

bution which is given by Equation (2.6.3). For Gaussian distribution, the mean and

variance of feature vectors (v1, v2 .. vn) are computed. The mean value of class values

is represented by µc0 and variance value is represented with σc0 . Naive Bayes has the

advantage of a short training time. Before the prediction of test data, only parameters

of probability distributions are computed. Classification with Naive Bayes is simple.

Given the feature vector, the conditional probability of feature vector is computed and

class with the highest probability is predicted as a result.

P (vi|c0) =
1√
2πσ2

c0

e
(− (vi−µc0 )2

2σ2c0

)
(2.6.3)
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Algorithm 2 Pseudocode of Naive Bayes Classifier [13]
Require: T : training dataset, C: The value of the predictor variable in testing dataset.

C=(c0, c1)

Read the training dataset T

Calculate µ and σ of the predictor variables in each class

for i← 0 to 1 do

Calculate the probability of ci using the Gaussian distribution which is given in

Equation (2.6.3)

end for

Calculate the likelihood for each class which is given in Equation (2.6.2)

return Greatest likelihood

2.6.5 Support Vector Machine

Support Vector Machine (SVM) is a classifier that is used for both regression and clas-

sification tasks. SVM is a supervised learning model that uses the given data to con-

struct a classifier model. The goal of SVM is finding a hyperplane in N -dimensional

space where N indicates the number of features. In order to apply binary classifica-

tion, there can be many hyperplanes but optimal hyperplane should be selected. The

optimal hyperplane should maximize the margin distance between data items of the

two classes.

There are many methods for constructing hyperplane. The first method is the linear

classifier. The second method is non-linear classification which maps inputs into

higher dimensional space. The maximum margin hyperplane divides data items into

groups of data items. Figure 2.7 shows data items that are separated by a hyperplane

in 2D and 3D space. In some cases, data items can not be separated linearly which

requires an optimized the hyperplane.
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Figure 2.7: Two sets of data items are separated by hyperplanes in 2D and 3D space.

Image is reproduced from [14].

In 1992, Bernhard E. Boser, Isabelle M. Guyon, and Vladimir N. Vapnik propose a

new way to construct hyperplanes which are non-linear [15]. They applied kernel

trick [16] for maximum margin hyperplanes. Non-linear classifiers use kernel func-

tions to project data items onto higher dimensional space in which a hyperplane can

be fit to separate data items. Also, non-linear hyperplanes give an advantage of repre-

senting feature vectors in a higher dimensional space by having more attributes. Al-

though non-linear hyperplanes increase the performance of the SVM classifier, there

is a disadvantage which is referred to as the overfitting problem in machine learning

algorithms. There are a few numbers of kernel functions such as Polynomial, Radial

Basis Function, and Hyperbolic tangent. We focus on one of the kernel functions,

Radial Basis Function (RBF), which is used by the SVM classifier.

SVM algorithm has hyper-parameters for Radial Basis Function (RBF) such as γ

value and C value. Equation 2.6.4 shows the kernel function for RBF by using a

free parameter, γ, where vi and vj are the feature vectors. γ parameter defines the

range of influence of a training sample. Low γ values indicate far influence. C

parameter defines the tolerance value between the hyperplane’s margin and the correct

classification of training data. If the value of C is larger, the margin is smaller and

the decision function is better at classifying training data items correctly which might

lead to the overfitting problem. For smaller C values, margin gets larger, therefore

the hyperplane misclassifies more data items.

K(vi, vj) = exp(−γ||vi − vj||2) (2.6.4)
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2.6.6 Random Forest Classifier

Random forest (RF) is a method for classification of data by constructing several de-

cision trees [17]. From decision trees, predictions are collected and merged into a

single decision. The main decision can be made by two main methods. The first

method is finding the class which appears most often. The second method is mean

prediction (regression) from trees. In order to build a single decision from decision

trees, the bagging method is used to create a combination of learning models (deci-

sion trees) in order to increase accuracy. Figure 2.8 shows decision trees and how

to combine them into a single decision. The decision trees are grown in a random

fashion. A random subset of features and training data items are selected. A decision

tree is fit to each training sample and the random subset of features is used to build

the decision tree. Then, the predicted classes are combined to create a result which is

calculated by majority voting. The normal decision trees tend to overfit over-training

sets and Random Forest proposes a way to avoid overfitting problem with creating

random decision trees.

Figure 2.8: Decision Tree image is reproduced from [18]. Data item instance is given

to Random Forest Classifier and decision trees are created. The orange nodes show

that the decisions which are selected by the decision trees. The main decision node

which outputs the final result of Random Forest Classifier by using majority voting.
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2.6.7 AdaBoost Classifier

AdaBoost is a short name of Adaptive Boosting. AdaBoost is a meta-estimator which

combines the output of the classifiers [19]. AdaBoost makes calls to a weak learning

algorithm repeatedly. AdaBoost aims to combine several classifiers that have the

assigned weight values to form a better classifier. The weak classifiers can be decision

trees that are similar to the Random Forest. At the beginning of training, the weights

are set to equal values for each weak classifier. Then, each weak classifier inputs

a random subset of labeled data. The accuracy values of weak classifiers change

the weight values of these classifiers. The more accurate weak classifier has a higher

weight value. After classification of the first iteration, selection method of the random

subset of training set changes. Each data item in the training set is assigned a weight

value. For misclassified data items from the previous iteration, AdaBoost increases

weight values in order to prioritize the data items. As a result, the error of the weak

classifiers can be measured and can be minimized by choosing a better weak learner.

2.6.8 Artificial Neural Network

Artificial neural network (ANN) is a computation model that is inspired by the bio-

logical neural network. ANN can be used for classification. ANN contains artificial

neurons that are similar to biological neurons. Neurons can be referred to as nodes.

The model of ANN is made up of an input layer, a hidden layer, and an output layer.

These layers consist of several nodes according to number of input and output param-

eters. Like other classifiers, there are feature vectors and classes of the input data.

Input nodes represent feature vectors and output nodes represent classes. The con-

nection between input nodes and output nodes includes hidden layers that hold the

information about the relation between inputs and outputs. A simple ANN is shown

in Figure 2.9 which has one hidden layer with four nodes. Nodes and edges have

weight values that are adjusted during the training process of the neural network.

During the classification of test data, feature vectors are fed into the input layer and

values of nodes at the output layer are computed according to the weights of edges.
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Figure 2.9: Artificial neural network figure is taken from [20]. Since binary classi-

fication is applied in this study, two nodes are used at the output layer to illustrate

ANN.

The most common method for training is backpropagation which efficiently trains

multi-layer networks. Backpropagation is a way to calculation of gradient with the

error of outputs [21]. Backward propagation of errors helps the adjustments of the

weights. In order to adjust the output of the network, error value should be minimized

which can be done with calculating the derivative of the error function. The actual

output of a neuron is calculated with the outputs and weights of previous neurons and

an activation function such as logistic function.
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2.6.9 Measuring the Performance of Classifier

The results of classifiers should be assessed and compared. There are several methods

to measure the accuracy of binary classifier models. The accuracy of the Word2vec

model and classifiers depend on the set of hyper-parameters such as vector size (N )

of the Word2vec model or k value of k-Nearest Neighbors classifier or construction

method of hyperplane for SVM. The straightforward method is comparing the true

predictions against all predictions. In binary classification, the terms predicted pos-

itive and predicted negative refer to the classifier’s expected results, and the terms

true and false refer to whether that prediction corresponds to the real outcomes of

prediction. There are two types of measurements that are used for correctly identi-

fied predictions, one is the true positive (TP) and the second one is the true negative

(TN). The true positive predictions indicate the proportion of actual positives that are

correctly identified. The true negative is the proportion of actual negatives that are

correctly identified. Also, incorrectly identified predictions have two types of mea-

surements, one is the false positive (FP) and the second one is the false negative (FN).

The false positive indicates that the proportion of actual negatives that are incorrectly

identified as positive. The false negative is the proportion of actual positives that are

incorrectly identified as negative. Table 2.1 shows the confusion matrix about the

relationships between TP, FP, TN and TP and contains the combinations of predicted

and actual values. Equation (2.6.5) shows how to calculate accuracy value. The sum

of TP and TN values indicates the number of correctly predicted outcomes and the

correctly predicted outcomes are divided into the number of all predictions to calcu-

late accuracy.

Table 2.1: Confusion Matrix

Predicted Values Actual Positive Actual Negative

Positive True Positive (TP) False Positive (FP)

Negative False Negative (FN) True Negative (TN)

In information retrieval, the result of relevancy is measured by precision. Truly rele-

vant results of classifiers are measured by the recall. The high precision value indi-
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cates low false positive predictions and high recall value indicates low false negative

predictions. Higher precision and recall values show that classifier results have higher

accuracy. Equation (2.6.6) shows how to calculate the precision value and Equation

(2.6.7) shows how to calculate the recall value. F1 score is a method to calculate the

weighted average of precision and recall and Equation (2.6.8) shows how to calculate

F1 score by using precision value and recall value. The value of F1 is in range of 0 to

1 and a higher F1 score means better accuracy for the classifier.

In binary and multi-class classification, there is another method is proposed which

is called as Matthews correlation coefficient (MCC). The case of unbalanced classes

requires special measurement techniques such as MCC which handles unbalanced

classes by using all results of predictions. The value of MCC is between -1 and +1.

Positive higher values indicate better prediction results. If the MCC value is close to 0,

the prediction results are random. Negative higher values indicate total disagreement

between expectation and prediction results. In the case of very imbalanced classes,

the F1 score can be misleading since the F1 score doesn’t take into account all results

of predictions in the computation of accurate measurement. Equation (2.6.9) shows

how to compute MCC value.

Accuracy =
TP + TN

TP + TN + FP + FN
(2.6.5)

Precision =
TP

TP + FP
(2.6.6)

Recall =
TP

TP + FN
(2.6.7)

F1 = 2 · Precision ·Recall
Precesion+Recall

(2.6.8)

MCC =
TP · TN − FP · FN√

(TP + FP )(TP + FN)(TN + FP )(TN + FN)
(2.6.9)
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2.6.10 t-Stochastic Neighbor Embedding

Stochastic Neighbor Embedding (SNE) transforms the high dimensional data to lower

dimensional data in order to fit the data in Euclidean space [22]. SNE is a technique

which provides better and faster visualization of intense data items. The mapping of

higher dimensional data to lower dimensional data should preserve distribution of the

original data as much as possible. SNE computes the distances between data items

and create conditional probabilities with these distances. Let P (xj|xi) be the condi-

tional probability that data item xi would choose xj as its neighbor. If the distance

between data items xi and xj is relatively smaller, P (xj|xi) will be high. A Gaussian

probability density function is centered for each object such as xi and xj which is used

to form a Gaussian distribution over the potential neighbors [23]. σ is the variance

of the Gaussian that is centered at data item xi. The conditional probability can be

represented by the Equation (2.6.10). The new data items with lower dimensions can

be represented as yj and yi. The conditional probability for new data items is Qxj|xi.
Since the aim of SNE is converting higher dimensional vectors to lower dimensional

vectors, the mismatched between the conditional probabilities P (xj|xi) and Q(xj|xi)
should be minimized. The mismatched can be calculated with using relative entropy

which is represented with Equation (2.6.12) where n represents number of data items.

P (xj|xi) =
exp(−|xi − xj|2/2σ2)∑
exp(−|xi − xj|2/2σ2)

(2.6.10)

Q(xj|xi) =
exp(−|yi − yj|2)∑
exp(−|yi − yj|2)

(2.6.11)

Mismatch =
n∑
i

n∑
j

P (xj|xi) log
P (xj|xi)
Q(xj|xi)

(2.6.12)

SNE has a hyper-parameter, perplexity, which strongly affects the result of SNE [23].

In 2008, van der Maaten and Hinton [22] proposed a new approach for SNE which

is named as t-SNE. The proposed method, t-SNE, aims to optimize the cost function

by using different distribution (Student-t distribution) rather than Gaussian. The sim-

ilarity between low dimensional data points is computed with Student-t distribution.

Also, t-SNE uses symmetric SNE to reduce the cost function. The symmetric SNE
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is a way to minimize the difference between the probabilities P (xj|xi) and Q(xj|xi).
The symmetric SNE offers that instead of using the conditional probabilities, joint

probabilities can be used, but joint probabilities cause a problem for the outlier data

points. Since an outlier is far from other data points, joint probability has little effect

on the cost function(2.6.12) which makes it difficult to determine the position of an

outlier. In order to avoid the problem, Equation (2.6.13) is proposed to increase the

contribution of the outliers.

P (xi, xj) =
P (xj|xi) + P (xi|xj)

2n
(2.6.13)

2.7 Literature Survey on Word Embeddings

Continuous bag-of-words (CBOW) and skip-gram models are explained in detail in

Section 2.6.1.

Table 2.2 shows the approaches and their related information which are mentioned in

this study. Hyper-parameter sets of Word2vec models are indicated for each approach.

Most of the studies use the skip-gram approach for Word2vec model and these studies

use vector size hyper-parameter, N , as 100.
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Table 2.2: Comparison of the approaches for word embedding.

Approach Dataset W N Model Problem

ProtVec [6], 2015 546790 sequences 25 100 Skip-gram Protein

of Swiss-Prot classification

database

Seq2vec [5], 2016 324018 sequences 5 250 CBOW Protein

of Swiss-Prot classification

database

Dna2vec [24], 2017 hg38 database 10 100 Skip-gram Relationship

between

Nucleotides

concatenation

and summing

of dna2vec

vectors

SMILESVec [25], A-50 dataset 100 Skip-gram Protein

2018 classification

There are a few number of studies for word embeddings and their applications with

biological sequences. Biological sequences can be treated as sentences that is pro-

posed by Asgari and Mofrad [6] where the continuous skip-gram model is used for

protein sequence embedding. Protein sequence embedding is the application of word

embedding for the protein sequences where the subsequences are treated as words.

The model is named as the continuous distributed representation of sequences. Also,

gene sequences can be represented with the model. Asgari and Mofrad named the

models as ProtVec which is for protein sequences and GeneVec which is for gene

sequences. The vector representation of biological sequences which are created by

word embedding technique can be used for classification of proteins, prediction of bi-

ological structures and prediction of interactions between proteins. Protein sequences

are obtained from Swiss-Prot. Then, the classification of protein families is explained.

The sequences of the proteins are the essential inputs for the classification process.
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ProtVec is implemented to use the real-valued vectors of protein sequences which are

obtained from word embedding model to train a classifier model. The accuracy of

that prediction is nearly 93%. 100 dimensional feature vectors are obtained from the

projection layer of the skip-gram model. Those feature vectors are inputs to support

vector machine (SVM) classifier. In order to represent protein sequences, sequences

are divided into subsequences and overlapping 3-mers (3-grams) are employed. Over-

lapping 3-gram subsequences results in three different sequences because the authors

choose to generate new sentences to train the model. Asgari and Mofrad calculate

sequence embeddings from the sum of subsequence embeddings. Also, t-distributed

stochastic neighbor embedding is applied to the feature vectors to show biophysical

and biochemical properties of proteins are distributed correctly in 2D space.

In 2016, Kimothi, Soni, Biyani, and Hogan suggested a way of constructing Word2vec

models for proteomics and genomics [5]. Embedding a sequence in a lower-dimensional

vector is the goal of this paper. The expectation of embedding is retrieving meaningful

information from sequences and use the information for inputs to machine learning

algorithms. The authors call the method as seq2vec which embeds subsequences of

biological sequences into feature vectors. The seq2vec method is based on the work

by Asgari [6]. The seq2vec uses 3 as the length of subsequences which can be referred

to as 3-mers. Overlapping and non-overlapping subsequences are compared. The au-

thors used another approach of Word2vec as a model to create feature vectors from

protein sequences which is called as doc2vec and the doc2vec method is slightly dif-

ferent from Word2vec but the fundamentals of models are nearly the same. The main

goal of using doc2vec is keeping the information about the orders of subsequences. In

order to compute the feature vector for a sequence, the sum of feature vectors for sub-

sequences is used. However, with this approach orders of subsequences are lost. The

addressed issue can be resolved with the doc2vec model since doc2vec uses sequence

and subsequences to construct the model. The distributed-memory (DM) model is

the combination of CBOW model and unique document id (d1). DBOW model is a

combination of skip-gram model and the document id (d1). After the construction

of feature vectors, the authors use kNN as a classifier and test their doc2vec models

with the results of the classifier which is used to predicts protein families. The results

of seq2vec are compared with the results of the Basic Local Alignment Search Tool
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(BLAST) and ProtVec. The authors claimed that the seq2vec approach is better than

ProtVec.

In 2017, Ng used word embedding model Word2vec on DNA sequences [24] and

the author called this approach as dna2vec. A DNA sequence is divided into subse-

quences and k-mer representation is used. Also, Ng mentions finding the correlation

between Needleman-Wunsch [10] similarity score and the similarity of Word2vec

vectors. The objective of this paper is finding the relationship between nucleotides

concatenation and summation of Word2vec vectors of these nucleotides. The se-

lected hyper-parameters of Word2vec are different from those of the study of As-

gari and Mofrad [6] and Kimothi, Soni, Biyani, and Hogan [5], since the number

of amino acids in a DNA sequence is smaller than the number of amino acids in

protein sequences. The length of subsequences is in the range of 3 to 8. The fea-

ture vector size (N ) for Word2vec is selected as 100. In addition to the training

phase, Ng mentions about Needleman-Wunsch algorithm [10] which computes the

similarity of biological sequences with dynamic programming. Needleman-Wunsch

algorithm is a method for sequence alignment which scores global alignments from

given sequences. The paper indicates that the cosine distance of k-mers is related to

Needleman-Wunsch distance of the corresponding k-mers. The first step of training

is splitting DNA sequences with gap characters. Gap characters are unknown amino

acids in sequences and represented as "X" or "-" or "U" in the biological sequence.

Then, the DNA sequence is divided with a fixed length of l which is used to repre-

sent the k value of k-mer. The divided subsequences are overlapping subsequences.

The next step is training the Word2vec model with subsequences. Ng chooses the

skip-gram method for Word2vec training because the skip-gram works better with

infrequent subsequences. In the paper [24], context window size (W ) is selected as

10 which means 10 history and 10 future subsequences are included training process

for current subsequence.

Ng [24] represents two Word2vec vectors as v, w and uses Equation 2.7.1 to calcu-

late the similarity between two these vectors. In this paper, Ng shows results that

support that concatenation of the subsequences is related to summing word embed-

dings of these subsequences. Ng gives results about the relation of cosine similarity

of Word2vec vector and Needleman-Wunsch similarity and plots the result in or-
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der to show the relation. 1000 closest 8-mers are sampled to compare the results of

Word2vec with Needleman-Wunsch similarity of closest 1000 8-mer subsequences.

sim(v, w) =
v.w

‖v‖ ‖w‖
(2.7.1)

Öztürk, Ozkirimli, and Özgür proposed a method to find similarity of proteins by us-

ing protein’s interacting ligands [25]. Ligand is an ion or molecule which binds to the

central metal atom. In this paper, protein functions are predicted from ligands which

have a chemical characteristic. Ligand’s chemical characteristic is a known identifier

of the function of the protein. Word2vec is used as a word embedding model in order

to represent protein sequences as real-valued continuous vectors. Simplified Molec-

ular Input Line Entry System (SMILES) is used to represent ligands. SMILES is a

character-based representation of molecules such as ligands. Vector representations

of ligands are constructed from a manually annotated and reviewed large SMILES

corpus via Word2vec model. Each protein is described by using its interacting lig-

and vector representations. Öztürk, Ozkirimli, and Özgür named their approach

as SMILESVec which use word embeddings with SMILES strings. The dataset of

SMILESVec is retrieved from UniProt and ChEMBL. UniProt stores protein identi-

fiers and sequences, but the interacting ligands are stored in ChEMBL database. The

ligand SMILES are divided into 8 characters of overlapping substrings. The choice

for the number of characters is based on the experiments and experiments include the

range of 4-12 characters. The protein sequences are divided into 3 non-overlapping

amino acids. Protein vectors are constructed from the average of vector values of

subsequences. Also, other methods are assessed such as computing maximum values

of each feature of subsequence vectors which is described in Equation 3.2.2 and min-

imum values of each feature of subsequence vectors which is described in Equation

3.2.4. Another important parameter is vector size (N ) of Word2vec which is selected

as 100. The computation method for Word2vec is the skip-gram. In order to compare

the SMILESVec results, BLAST and ProtVec based methods are used. BLAST has

e-values which can be computed from sequences and these e-values are important

results since the accuracy rate of BLAST is base ground for sequence analysis. In

order to measure the accuracy of the results, the clustering algorithms are used. First

clustering algorithm is Transitive Clustering (TransClust) [26]. Second clustering al-
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gorithm is Markov Clustering Algorithm (MCL) [27]. The sequence embeddings are

fitted into TransClust [26] and Markov Clustering Algorithm (MCL). The F-measure,

precision and recall scores of the results of the clustering algorithms are fetched and

compared. The results indicate that TransClust has better F-measure values.
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CHAPTER 3

DATASETS AND METHODS

3.1 Datasets in General

Training data for this study consist of two main parts which are positive datasets

and negative datasets. Positive and negative datasets are split in order to achieve 5-

fold cross validation. Datasets contain 80% training data and 20% validation data.

The positive training dataset is used to generate Word2vec models. The validation

dataset is used to measure the performance of Word2vec and classifier models. The

UniProt Knowledgebase (UniProtKB) is a public database for the collection of an-

notated proteins. Each entry in the database contains the amino acid sequence and

protein name. Protein sequences and names are extracted from UniProtKB/Swiss-

Prot Release 2017_3. The EC Number annotations are defined in the ENZYME

database (http://enzyme.expasy.org/). These manually annotated and reviewed pro-

tein sequences and EC Number annotations are obtained from UniProtKB/Swiss-Prot

and ENZYME database by Dalkıran [28]. All protein sequences and names that are

associated with enzyme functionalities are retrieved. Since one protein can be asso-

ciated with multiple EC Number, some of the proteins are removed from datasets to

avoid conflicts by Dalkıran [28].

UniProtKB/Swiss-Prot provides FASTA files. FASTA is a text-based format that

bioinformatics applications use. FASTA format contains amino acid sequences, pro-

tein names, and comments about proteins. There is a unique identifier for each se-

quence. These identifiers include the database name.

There are 2 datasets which are taken from the work of Dalkıran [28]. The first one

contains enzymes and non-enzymes. Table 3.1 shows the detail of the Level 0 dataset.
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The second dataset contains the first level of Enzyme Commission classes. Table 3.2

shows the number of sequences for each class in the Level 1 dataset. Level 0 dataset

is filtered by using UniRef50 [29] module which clusters proteins based on their

sequence similarities.

Table 3.1: Number of proteins in Level 0 datasets.

Dataset Number of Positive Proteins Number of Negative Proteins

Protein Sequences 5183 13972

Table 3.2: Number of proteins in Level 1 datasets.

Dataset Number of Positive Proteins Number of Negative Proteins

Oxidoreductases 36822 39920

Transferases 37812 22372

Hydrolases 13440 28922

Lyases 36819 39920

Isomerases 37815 22369

Ligases 13439 28920

3.2 Methods

Biological sequences are processed and classified with libraries that are available for

public. In the implementation phase, Python is used for this study. Python is a pro-

gramming language which has libraries for data science such as Tensorflow [30],

scikit-learn [31] and Gensim [32]. Also, Python has nice graph visualization libraries

such as ggplot [33] and Matplotlib [34]. Python has different distribution versions

and these versions might change the results, therefore Python version is fixed during

the experiments as Python 3.7. In this study, Gensim is used for the implementa-

tion of feeding Word2vec network and fetching data from the Word2vec model. For

classifications, scikit-learn library and its components (KNeigborsClassifier, Gaus-

sianNB, RandomForestClassifier, AdaboostClassifier, MLPClassifier, and SVC) are

32



used to classify feature vectors which are obtained from the Word2vec model. An-

other component of scikit-learn is TSNE which is the implementation of t-SNE algo-

rithm. TSNE is used to visualize feature vectors in a two-dimensional space. Mat-

plotlib library is used to convert TSNE results into a graph. In order to optimize the

epoch parameter of Word2vec, training loss values are calculated. The calculated val-

ues are plotted as loss-epoch graphs with ggplot library. During the experiments, a

computer with 2.40 GHz Intel 5500U processor and 8GB memory is used.

3.2.1 BLAST

BLAST has a command-line application that is available for computations. In or-

der to calculate similarities of protein sequences, two commands of BLAST can be

used. The first one is makeblastdb [35] which creates a database from fasta files.

The database contains a unique identifier for each biological sequence. The second

command is blastp which computes similarities between biological sequences from a

given BLAST database.

3.2.2 Word2vec Model

Algorithm 3 shows the algorithm to calculate feature vectors of sequences from the

real-valued vectors of subsequences by using the trained Word2vec model. The first

step of the algorithm is retrieving the values of hidden nodes of the Word2vec model

that correspond to subsequences. In order to form a single feature vector for pro-

tein sequence, feature vectors of subsequences are merged. There are several op-

tions to form meaningful feature vector for protein sequence. The total number of

subsequences of protein sequences can be represented by n and the total number of

dimensions of the feature vector can be represented by N .
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Algorithm 3 Feature Vector Calculation from Word2vec Subsequences
Require: S: is a protein sequence in training dataset, s1, s2, s3, . . . sn: subsequences

of S, v: is the real-valued vector of the Word2Vec model, N : is the number of

dimensions of feature vector, vi1, vi2, . . . , viN : values in the dimensions of i− th
feature vector of the Word2vec model, Method: MAX, MIN, AVERAGE

for i← 1 to n do

vi←fetch Word2vec model’s hidden node values for si

sum← sum+ vi

end for

if Method is MAX then

for i← 1 to n do

maxvaluesi ←MAX(vi1, vi2, . . . , viN )

end for

return maxvalues

else if Method is MIN then

for i← 1 to n do

minvaluesi ←MIN(vi1, vi2, . . . , viN )

end for

return minvalues

else if Method is AVERAGE then

average← sum/n

return average

end if

One of the options is finding the maximum value of each feature of subsequences. The

maximum value of a dimension of real-valued feature vectors is considered to be the

best value for a feature. Therefore the maximum values are collected for each feature

(v) from Word2vec vectors as shown in Equation 3.2.1. The maximum values of the

first dimension are referred to as ψ0. The maximum value of all dimensions (ψ0..ψN )

creates a vector which is referred to as ω. n is the total number of subsequences in

a sequence. Equation 3.2.2 describes the method for obtaining the maximum valued
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vector of the feature vector of a biological sequence.

ψ0 = max([v00, ..vn0]) (3.2.1)

ω = ψ0..ψN (3.2.2)

The second option is retrieving the minimum values of each feature of Word2vec

vectors of biological sequences. On the contrary, the minimum value of a dimension

of real-valued feature vectors is considered to be the best value for a feature. There-

fore the minimum values are collected for each feature (v) from Word2vec vectors

as shown in Equation 3.2.3. The naming conversions are changed since calculation

results are referred to in the next sections. The minimum values of the first dimension

are referred to as φ0. The minimum value of all dimensions (φ0..φN ) creates a vec-

tor which is referred to as ρ. Equation 3.2.4 describes the method for obtaining the

minimum vector of the feature vector of a biological sequence.

φ0 = min([v00, ..vn0]) (3.2.3)

ρ = φ0..φN (3.2.4)

The third method is averaging the feature vectors of subsequences. Since all subse-

quences contribute to the sequence’s feature vector, a sum of vectors is a reasonable

choice. The sum of the feature vectors of a biological sequence is normalized with

this method. Equation 3.2.5 describes the calculation method for the normalized sum

of feature vectors of a subsequence. The normalized feature vector is referred to as λ.

λ =

∑n
i=0 vi
n

(3.2.5)

Algorithm 6 shows how to train and test the Word2vec model by using Algorithm 4

and Algorithm 5. In this study, Word2vec model is trained with the sequences in the

positive training dataset and tested with the sequences in the positive and negative test

datasets. Vector representations of the sequences in the positive and negative training
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data items are used for training classifiers. Performance metrics of these classifiers

are measured with vector representation of the sequences in the positive and negative

test data items.

Algorithm 4 Training Word2vec Model with Subsequences
Require: βp: Number of positive sequences, β1: Number of positive training data,

β2: Number of positive test data, S1, S2 . . . , Sβ1: are the protein sequences in

training dataset, s1, s2, s3, . . . sn: subsequences of S, v: is the real-valued vector

of Word2Vec, ζ: Word2vec vocabulary size

for i← 1 to β1 do

Add s1, s2, s3, . . . sn of Si to Word2vec vocabulary

end for

Train Word2vec with using the parameters N and W

for i← 1 to β1 do

for all s1, s2, s3, . . . sn of Si do

v← fetch Word2vec hidden node values for s

end for

Calculate feature vectors of Si with using Algorithm3 where subsequences of Si

are s1, s2, s3, . . . sn

end for

3.2.3 Comparison of BLAST-Word2vec

Word2vec is used to form the feature vector of biological sequence. The distance

between feature vectors can be calculated and can be interpreted as the similarity be-

tween the proteins. In order to convert the distance values to similarities, Equation

2.7.1 is used. The cosine similarity is a method that is used to calculate similarities in

several studies [24] [25]. Similarities of sequences depend on the hyper-parameters

of Word2vec. In order to illustrate the distance, some of the proteins are chosen

randomly. Table 3.3 shows identifiers of these proteins and distances between these

proteins. Cosine similarities and BLAST scores show that there is a correlation be-

tween BLAST and vector representations of Word2vec. BLAST result doesn’t con-

tain the similarity between some proteins such as A5FZ54-Q49VI3, since BLAST
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Algorithm 5 Testing the Results of Classifiers
Require: β2: Number of positive test data, βn: Number of negative data, β3: Number

of negative training data, β4: Number of negative test data, S1, S2 . . . , Sβ2+βn: are

the protein sequences in dataset, s1, s2, s3, . . . sn: subsequences of S, v: is the

real-valued vector of Word2Vec, ζ: Word2vec vocabulary size

for i← 1 to β2 + βn do

for all s1, s2, s3, . . . sn of Si do

v← fetch Word2vec hidden node values for s

end for

Calculate feature vectors of Si with using Algorithm3 where subsequences of Si

are s1, s2, s3, . . . sn

end for

Algorithm 6 Training and Test of the Word2vec Model
Require: positive_sequences: are the sequences of positive

data, negative_sequences: are the sequences of negative

data,positive_training_sequences: are the sequences of positive training

dataset, positive_test_sequences: are the sequences of positive test dataset,

negative_training_sequences: are the sequences of negative training dataset,

negative_test_sequences: are the sequences of negative test dataset, β: Number

of sequences, βp: Number of positive sequences, βn: Number of negative

sequences β1: Number of positive training data, β2: Number of positive test data,

β3: Number of negative training data, β4: Number of negative test data

Use Algorithm 4 with positive_training_sequences, β1, β2 and βp to get the list

of positive_training_vectors

Use Algorithm 5 with positive_test_sequences, β2, β3, β4, and βn to get the list

of positive_test_vectors, negative_train_vectors and negative_test_vectors

Fit the labeled data lists (positive_training_vectors and

negative_training_vectors) into classifiers

Measure performance metrics of classifiers with unlabeled data lists

(positive_test_vectors and negative_test_vectors)
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has a threshold value (E-value) to ignore irrelevant results. The hyper-parameters for

Table 3.3 are 5 for window size (W ), 50 for feature vector size (N ), non-overlapping,

3 for the length of subsequences value (l) and calculation method for feature vector of

sequence is the average value of feature vectors which is described in Equation3.2.5.

Table 3.3: Relation of BLAST score and cosine similarity of vector representations

of Word2vec model.

Protein Id Protein Id Cosine Similarity BLAST Score

A5FZ54 Q6MGM7 0.9825 68.6970

A5FZ54 Q2VZN2 0.9937 79.6140

A5FZ54 Q49VI3 0.7844 Too Low

In order to compare the results of Word2vec and BLAST, 1000 most similar pro-

teins with each other and 1000 most dissimilar proteins are chosen. BLAST finds

similarities between proteins but the E-Value leaves some protein-protein similarities

out of the results. Since BLAST doesn’t compute all protein pairs, Word2vec re-

sults are sorted from most similar to most dissimilar. The sorted results of Word2vec

is searched inside BLAST results. If there isn’t any match, the Word2vec result is

ignored. The relation between results are needed to be computed. Pearson correla-

tion coefficient (PCC) is used to compute correlation. Pearson correlation coefficient

is a computation method for linear correlation between two variables which can be

referred to as X and Y . The correlation value between +1 and -1 which are the

highest correlation values. Higher correlation value indicates positive linear correla-

tion. Equation 3.2.6 shows the calculation method for Pearson correlation coefficient

where cov is the covariance and σx is the standard deviation of X and σy is the stan-

dard deviation of Y . Covariance is the calculation method for joint variability of two

random variables. Covariance is positive, if the higher values of BLAST-Word2vec

similarity lists correspond. Equation 3.2.7 shows the formula of covariance calcu-

lation where E[X] is the expected mean of the given list X . The expected mean

indicates that a sample set of the list is taken to calculate average value. Algorithm 7

shows the pseudocode for comparison of the BLAST scores and similarities of vector

representations of Word2vec model.
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Algorithm 7 Comparison of BLAST-Word2vec similarities
Require: p: is the protein id, ζ: is the size of the Word2vec vocabulary, (p1, p2

. . . pζ): are the protein ids which are fetched from Word2vec vocabulary, v: is

the real-valued vector of Word2Vec, b: is the BLAST similarity, z: is the number

of results of the BLAST scores, (b1, b2, . . . bz): are the BLAST scores, a: is the

number of comparison between Word2vec-BLAST, q: is the sorted similarity list

which contains two protein ids (pi and pj), o: is the most similar protein’s score

list, r: is the most dissimilar protein’s score list

for i← 1 to ζ do

for j ← 1 to ζ do

if i 6= j then

Calculate the similarity between the v value of pi and v value of pj using

the cosine similarity which is given in Equation (2.7.1)

end if

end for

end for

q ← Sort the cosine similarities of proteins

for all q do

if number of iterations ≤ a then

oi ← cosine similarity of the Word2vec vector

oi ← the BLAST similarity score in (b1, b2, . . . bz)

end if

end for

q ← Reverse the cosine similarities of proteins

for all q do

if number of iterations ≤ a then

ri ← cosine similarity of the Word2vec vector

ri ← the BLAST similarity score in (b1, b2, . . . bz)

end if

end for

Calculate the deviation for BLAST scores and cosine similarities of o

Calculate the deviation for BLAST scores and cosine similarities of r

Calculate the Pearson correlation between BLAST scores and cosine similarities

by using the Equation 3.2.6
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Table 3.4 shows 9 columns of which first 4 columns are hyper-parameters for Word2vec.

First column is window size (W ) which has three different values as 5, 10 and 25.

Second column is vector size (N ) for Word2vec which has three different values as

100, 150 and 200. Third column is l value for k-mer. Fourth column is the calcula-

tion method for feature vector of biological sequence. Fifth column indicates average

similarity value of Word2vec and Blast similarities of most similar proteins. Sev-

enth column indicates average similarity value of most dissimilar proteins. Sixth and

eighth columns are deviation values. Last column is Pearson correlation coefficient

value of most similar and most dissimilar protein similarities.

pX,Y =
cov(X, Y )

σxσy
(3.2.6)

cov(X, Y ) = E[(X − E[X])(Y − E[Y ])] (3.2.7)

Table 3.4: Comparison of Word2vec-BLAST similarity scores for Level 0 dataset.

W N l Method Avg Sim Sim Dev Avg Dissim Corr

Dissim Dev

5 50 3 sum 95.90 3.18 69.87 6.22 1.00

10 50 3 sum 95.75 3.37 69.30 5.96 1.00

25 50 3 sum 95.82 3.23 68.84 5.85 1.00

5 100 3 sum 96.02 3.02 69.78 6.26 1.00

10 100 3 sum 95.70 3.36 47.98 4.31 0.99

25 100 3 sum 95.80 3.39 50.07 4.16 0.99

5 150 3 sum 96.06 2.98 69.37 6.12 1.00

10 150 3 sum 96.00 3.05 69.56 6.45 1.00

25 150 3 sum 96.00 3.04 68.58 5.90 1.00

5 200 3 sum 96.06 2.99 68.97 6.02 1.00

10 200 3 sum 96.05 2.98 69.33 6.31 1.00

25 200 3 sum 96.04 2.98 68.17 5.65 1.00

5 50 5 sum 95.70 3.33 48.01 4.66 0.99

10 50 5 sum 95.73 3.43 47.87 4.23 0.99
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25 50 5 sum 95.81 3.37 49.99 4.19 0.99

5 100 5 sum 95.70 3.32 47.86 4.16 0.99

10 100 5 sum 96.74 2.25 61.89 2.04 1.00

25 100 5 sum 96.77 2.27 61.94 1.74 1.00

5 150 5 sum 95.69 3.33 47.81 4.21 0.99

10 150 5 sum 95.71 3.46 47.95 4.15 0.99

25 150 5 sum 95.76 3.49 49.60 3.89 0.99

5 200 5 sum 95.67 3.37 48.42 4.61 0.99

10 200 5 sum 95.74 3.43 48.12 4.18 0.99

25 200 5 sum 95.80 3.42 49.49 3.71 0.99

5 50 5 max 94.90 4.76 56.83 4.21 1.00

10 50 5 max 95.17 3.97 54.39 4.07 1.00

25 50 5 max 94.79 4.57 52.67 3.56 1.00

5 100 5 max 95.28 3.78 55.63 4.51 1.00

10 100 5 max 94.58 5.03 55.41 3.50 1.00

25 100 5 max 94.02 5.86 53.16 3.80 0.99

5 150 5 max 95.16 3.83 57.30 4.30 1.00

10 150 5 max 94.98 4.58 55.39 4.52 0.99

25 150 5 max 94.35 5.26 53.25 3.45 0.99

5 200 5 max 95.23 3.73 56.21 4.21 1.00

10 200 5 max 95.10 4.16 55.41 4.16 1.00

25 200 5 max 94.44 5.24 53.89 3.45 0.99

5 50 5 min 95.08 4.29 54.91 4.22 1.00

10 50 5 min 94.21 5.77 55.28 4.15 0.99

25 50 5 min 93.76 5.62 52.18 4.37 0.99

5 100 5 min 95.21 4.03 56.75 4.50 1.00

10 100 5 min 94.97 4.55 55.27 4.26 1.00

25 100 5 min 94.30 4.93 53.13 4.18 0.99

5 150 5 min 95.21 3.97 54.96 4.27 1.00

10 150 5 min 95.04 4.45 54.66 4.21 1.00

25 150 5 min 94.23 5.63 53.18 3.57 0.99
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5 200 5 min 95.29 3.74 56.30 4.33 1.00

10 200 5 min 94.91 4.62 54.88 3.84 1.00

3.2.4 Loss Value

The loss value of the training Word2vec model is an important indicator which shows

the network of convergence of Word2vec model. A good epoch value for Word2vec

can be determined based on the loss value which is computed during the training

process by using Equation 3.2.8 where total number of subsequences is n and window

size is W . Weights between input layer and hidden layer are multiplied with the

weights between hidden layer and output layer to calculate the total weight values of

nodes in the output layer and uj is referred as the total weight value of j-th node of

the output layer.

Loss = −
W∑
i=0

ui +W · log
n∑
j=1

exp(uj) (3.2.8)

3.2.5 Support Vector Machine

Correct values for the γ parameter and C value depends on the experiments. These

hyper-parameters can be adjusted using the grid search method. The grid search could

be implemented as in Algorithm 8. From the grid search algorithm 8, MCC scores

are calculated and compared to find the best hyper-parameters.
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Algorithm 8 Grid Search for Hyper-parameters of SVM
Require: γ: is the parameter of the Gaussian radial basis function of SVM, C: is the

parameter for the soft margin cost function of SVM, v: is the real-valued vector of

Word2Vec model, N : is the number of dimensions of feature vector, n: number of

training data

for C in range (1e− 2, 1, 1e2) do

for γ in range (1e− 1, 1, 1e1) do

Fit SVM with training data {v0,v1, ..vn}

Get SVM results

Compute MCC score with using Equation2.6.9

end for

end for

43



44



CHAPTER 4

RESULTS AND DISCUSSION

Protein sequences are embedded by using Word2vec skip-gram model. The initial ex-

periments are mainly about the selection of the Word2vec model’s hyper-parameters

such as epoch value, window size (W ), vector size (N ), and length of subsequences

(l). In order to find a good epoch value, the training loss value of Word2vec model

is computed during the training process of Word2vec model. Other hyper-parameters

of the Word2vec are selected based on the results of Word2vec-BLAST comparison

which is explained section 3.2.3.

The classifier parameters are selected according to the experiments which are made

with different hyper-parameters of classifiers. For each classifier, there could be a set

of hyper-parameters such as the k value of kNN or γ value of the SVM algorithm.

Also, t-SNE algorithm is used to project the feature vectors into 2D space to visualize

the distribution of the representation of the biological sequences.

4.1 Results

4.1.1 Loss Value

For the epoch value, there is a trade-off between the training time and the accuracy

of vector representations of biological sequences. Figure 4.1, Figure 4.2, Figure 4.3,

and Figure 4.4 show that the Loss-Epoch plots for different epoch values. Blue lines

indicate calculated loss value for the end of an epoch. The orange and dashed lines

indicate the average of the last 10 loss values in order to show the change in loss

value. The last loss values for Figure4.2, Figure 4.3, and Figure 4.4 don’t show a
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significant decline which means Word2vec model is trained well enough to minimize

the loss value. For machine learning applications, training a model has consequences

such as learning the details of the dataset that is called overfitting. In order to avoid

overfitting and train a converged network, binary search approach is applied to epoch

values. The optimal loss value is found where the epoch value is 180 which is almost

the mid-value of 100 and 250. Figure 4.2 indicates that loss values are nearly equal

to the loss values of other experiments with higher epoch values.

Figure 4.1: The plot of training loss values against epoch during the training of the

Word2vec model where epoch value is given as 100.
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Figure 4.2: The plot of training loss values against epoch during the training of the

Word2vec model where epoch value is given as 180.

Figure 4.3: The plot of training loss values against epoch during the training of the

Word2vec model where epoch value is given as 250.
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Figure 4.4: The plot of training loss values against epoch during the training of the

Word2vec model where epoch value is given as 500.

4.1.2 Enzyme Commission Numbers Level 0 Results

The dataset for level 0 contains enzyme and non-enzyme protein sequences. Table

4.1 shows 10 columns which first 4 columns are hyper-parameters for Word2vec.

The other columns are accuracy values for classifiers. The accuracy value is calcu-

lated from the results of 5-fold cross-validation by getting the average. The average

accuracy values of the kNN, SVM, Naive Bayes and Random Forest classifiers are

shown from fifth column to eighth column. The last 2 columns are calculated for the

averaging method (sum) which is defined in Algorithm 3. The accuracy values don’t

always reflect the success of a classifier, therefore other performance measurement

methods are given in Table 4.2 and Table 4.3. Since the averaging calculation method

performs better than other methods, the rest of the results are shown for the averaging

method with Word2vec hyper-parameters.

The results of the level 0 indicate hyper-parameters of Word2vec and l value of k-

mer should be selected carefully. The vector size (N ) affects the results directly. 100

dimensions for the N gives better results for the dataset. Also, the optimum l value

for k-mer is 5. There is another parameter, window size (W ) which affects the results.

The best result from the classifiers indicatesW value should be 10, but there is a close
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result that has the W value as 25. Since the hyper-parameters are nearly fixed, the

experiments on first level classes are done with these two sets of hyper-parameters.

The classifiers have hyper-parameters which are selected based on the performance

of classifiers. There are 4 classifiers that are performed with different parameters.

The performances of classifiers are measured based on all of the hyper-parameter sets

of Word2vec. The grid search method is applied for the hyper-parameters. The first

classifier is kNN which is executed with 3, 5, 7, 9, 13, 17, 25, and 35 as the k value.

The Random Forest classifier performs with several number of estimators such as 10,

20, 40, 60, 70, 100 and 140. The same set of the estimators are used for the AdaBoost

classifier to optimize the AdaBoost’s estimator parameter. The last classifier is SVM

which has more complex hyper-parameters such as kernel method, C and γ value.

Table 4.1: Accuracy values for each classifier with different hyper-parameters of

Word2vec model.

W N l Method kNN SVM Naive RF Ada ANN

Boost

5 50 3 sum 94.76 96.15 83.99 93.11 88.58 92.22

10 50 3 sum 95.43 96.50 86.84 94.07 90.40 93.48

25 50 3 sum 95.96 96.31 89.47 94.49 91.87 94.64

5 100 3 sum 94.31 96.72 81.60 92.76 88.87 93.74

10 100 3 sum 90.89 95.71 72.34 94.27 85.58 94.08

25 100 3 sum 89.79 94.43 71.20 92.33 82.55 91.81

5 150 3 sum 93.86 95.85 79.85 91.94 88.23 94.49

10 150 3 sum 94.30 96.40 83.27 93.21 89.58 94.41

25 150 3 sum 94.83 95.77 87.30 93.80 90.90 94.85

5 200 3 sum 93.40 96.31 78.32 91.77 88.36 94.55

10 200 3 sum 93.88 95.73 82.07 92.50 88.85 94.52

25 200 3 sum 94.41 95.48 86.43 93.52 90.93 94.79

5 50 5 sum 92.74 95.41 81.71 95.06 87.79 94.96

10 50 5 sum 91.48 95.16 73.05 94.32 85.78 93.41

25 50 5 sum 90.15 93.91 71.93 92.54 81.45 91.50
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5 100 5 sum 92.48 96.19 82.63 95.23 87.81 95.40

10 100 5 sum 97.88 98.75 92.57 98.06 97.08 98.77

25 100 5 sum 96.98 97.44 92.67 97.31 95.48 98.05

5 150 5 sum 92.42 96.37 82.43 95.19 88.07 95.67

10 150 5 sum 90.90 95.91 72.64 94.12 86.26 94.16

25 150 5 sum 89.78 94.58 70.55 92.44 82.87 91.48

5 200 5 sum 92.49 96.50 82.66 95.31 88.65 95.68

10 200 5 sum 91.00 95.88 72.63 94.11 86.22 94.02

25 200 5 sum 89.50 94.76 70.37 92.42 82.88 91.53

5 50 5 max 96.71 96.32 95.09 96.46

10 50 5 max 96.32 96.40 94.39 96.45

25 50 5 max 96.04 96.21 94.71 96.10

5 100 5 max 96.76 96.58 95.36 96.70

10 100 5 max 96.38 96.35 95.09 96.62

25 100 5 max 96.19 96.13 95.01 96.45

5 150 5 max 96.72 96.64 95.15 96.80

10 150 5 max 96.71 96.86 95.19 96.79

25 150 5 max 96.24 96.55 94.83 96.57

5 200 5 max 96.86 96.68 95.14 96.89

10 200 5 max 96.63 96.87 94.82 96.78

25 200 5 max 96.27 96.66 94.78 96.66

5 50 5 min 96.88 96.87 95.40 96.33

10 50 5 min 96.28 96.37 94.45 96.27

25 50 5 min 95.75 96.08 94.91 96.45

5 100 5 min 96.63 96.61 95.52 96.61

10 100 5 min 96.47 96.62 95.08 96.77

25 100 5 min 95.96 96.37 95.08 96.71

5 150 5 min 96.88 96.83 95.38 96.76

10 150 5 min 96.46 96.68 94.70 96.59

25 150 5 min 96.13 96.42 95.29 96.67

5 200 5 min 96.81 96.80 95.24 96.78
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10 200 5 min 96.60 96.77 95.09 96.88

Table 4.2: F1 Scores for each classifier with different hyper-parameters of Word2vec

model.

W N l Method kNN SVM Naive RF Ada ANN

Boost

5 50 3 sum 0.95 0.96 0.84 0.93 0.89 0.92

10 50 3 sum 0.95 0.97 0.87 0.94 0.90 0.94

25 50 3 sum 0.96 0.96 0.89 0.95 0.92 0.94

5 100 3 sum 0.94 0.97 0.82 0.92 0.89 0.94

10 100 3 sum 0.91 0.96 0.73 0.94 0.85 0.94

25 100 3 sum 0.90 0.94 0.72 0.92 0.82 0.92

5 150 3 sum 0.94 0.96 0.80 0.92 0.88 0.94

10 150 3 sum 0.94 0.96 0.83 0.93 0.89 0.94

25 150 3 sum 0.95 0.96 0.87 0.94 0.91 0.95

5 200 3 sum 0.93 0.97 0.79 0.91 0.88 0.94

10 200 3 sum 0.94 0.96 0.82 0.92 0.89 0.95

25 200 3 sum 0.94 0.96 0.86 0.93 0.91 0.95

5 50 5 sum 0.93 0.95 0.82 0.95 0.88 0.95

10 50 5 sum 0.91 0.95 0.73 0.94 0.86 0.93

25 50 5 sum 0.90 0.94 0.72 0.92 0.81 0.91

5 100 5 sum 0.93 0.96 0.83 0.95 0.88 0.96

10 100 5 sum 0.98 0.99 0.93 0.98 0.97 0.99

25 100 5 sum 0.97 0.97 0.93 0.97 0.95 0.98

5 150 5 sum 0.92 0.96 0.83 0.95 0.88 0.96

10 150 5 sum 0.91 0.96 0.73 0.94 0.86 0.94

25 150 5 sum 0.90 0.95 0.71 0.92 0.82 0.91

5 200 5 sum 0.93 0.96 0.83 0.95 0.88 0.96

10 200 5 sum 0.91 0.96 0.73 0.94 0.86 0.94

25 200 5 sum 0.90 0.95 0.71 0.92 0.83 0.92
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Table 4.3: MCC Scores for each classifier with different hyper-parameters of

Word2vec model.

W N l Method kNN SVM Naive RF Ada ANN

Boost

5 50 3 sum 0.86 0.90 0.59 0.82 0.70 0.80

10 50 3 sum 0.89 0.91 0.66 0.85 0.75 0.83

25 50 3 sum 0.90 0.91 0.73 0.86 0.79 0.86

5 100 3 sum 0.86 0.92 0.55 0.81 0.71 0.84

10 100 3 sum 0.78 0.89 0.34 0.86 0.63 0.85

25 100 3 sum 0.75 0.86 0.31 0.81 0.55 0.80

5 150 3 sum 0.84 0.89 0.52 0.79 0.70 0.86

10 150 3 sum 0.85 0.91 0.59 0.82 0.73 0.86

25 150 3 sum 0.87 0.89 0.67 0.84 0.76 0.87

5 200 3 sum 0.83 0.91 0.49 0.79 0.70 0.86

10 200 3 sum 0.84 0.89 0.56 0.81 0.71 0.86

25 200 3 sum 0.86 0.88 0.66 0.83 0.76 0.87

5 50 5 sum 0.82 0.89 0.55 0.88 0.69 0.88

10 50 5 sum 0.79 0.88 0.35 0.86 0.64 0.84

25 50 5 sum 0.75 0.85 0.32 0.81 0.52 0.79

5 100 5 sum 0.82 0.91 0.58 0.88 0.70 0.89

10 100 5 sum 0.95 0.97 0.82 0.95 0.93 0.97

25 100 5 sum 0.93 0.94 0.82 0.93 0.89 0.95

5 150 5 sum 0.82 0.91 0.58 0.88 0.70 0.89

10 150 5 sum 0.78 0.90 0.36 0.85 0.65 0.86

25 150 5 sum 0.75 0.87 0.30 0.81 0.56 0.79

5 200 5 sum 0.82 0.92 0.59 0.88 0.72 0.90

10 200 5 sum 0.78 0.90 0.37 0.85 0.65 0.86

25 200 5 sum 0.74 0.87 0.30 0.81 0.56 0.80

Table 4.4 shows all results of kNN with the Word2vec hyper-parameters where N is

100, W is 10, l value of k-mer is 5 and vector calculation for a sequence is averaging
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method. The best k value is 3 for the given Word2vec parameter set. The performance

measurements are shown for different SVM hyper-parameters in Table 4.5. AdaBoost

and Random Forest Classifiers have an important parameter which is the number of

estimators. Table 4.6 and Table 4.7 show the F1 and MCC scores for the different

estimator values.

Table 4.4: MCC and F1 Scores for different k values of kNN.

k MCC Score F1 Score

3 0.95 0.98

5 0.94 0.98

7 0.94 0.98

9 0.94 0.97

13 0.93 0.97

17 0.92 0.97

25 0.91 0.96

35 0.89 0.96

Table 4.5: MCC and F1 scores for different hyper-parameter values of SVM classifier.

kernel C γ MCC Score F1 Score

linear 1.00 auto 0.93 0.97

poly 1.00 auto 0.70 0.87

rbf 0.01 0.10 0.86 0.94

rbf 0.01 1.00 0.85 0.94

rbf 0.01 10.00 0.00 0.62

rbf 1.00 0.10 0.95 0.98

rbf 1.00 1.00 0.97 0.99

rbf 1.00 10.00 0.75 0.89

rbf 100.00 0.10 0.97 0.99

rbf 100.00 1.00 0.97 0.99

rbf 100.00 10.00 0.77 0.90

sigmoid 1.00 auto 0.91 0.96
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Table 4.6: MCC and F1 scores for different estimator values of Random Forest clas-

sifier.

Number of Estimators MCC Score F1 Score

10 0.94 0.97

20 0.95 0.98

40 0.95 0.98

60 0.95 0.98

70 0.95 0.98

100 0.95 0.98

140 0.95 0.98

Table 4.7: MCC and F1 scores for different estimator values of AdaBoost classifier.

Number of Estimators MCC Score F1 Score

10 0.85 0.94

20 0.87 0.95

40 0.90 0.96

60 0.91 0.96

70 0.91 0.97

100 0.92 0.97

140 0.93 0.97

In order to understand the affects of classifier’s hyper-parameters, Table 4.4, Table 4.6

and Table 4.7 can be inspected. Figure 4.5 shows the kNN classifier’s performance

for the k values. Figure 4.6 and Figure 4.7 show the Random Forest and AdaBoost

classifiers’ performance indicators for different estimator values. The results indicate

that lower k value for kNN produces better results. On the contrary, higher estimator

value for AdaBoost and Random Forest produces better results. For the SVM classi-

fier, higher C values with RBF kernel result better and the performance indicators are

shown in the Table 4.5.
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Figure 4.5: kNN performance scores with the k values.

Figure 4.6: Random Forest classifier performance scores with different number of

estimator values.
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Figure 4.7: AdaBoost classifier performance with different number of estimator val-

ues.

The feature vectors are obtained from Word2vec model with the best hyper-parameter

set where N is 100, W is 10, l is 5 and vector calculation for a sequence is averaging

method. In order to visualize the distribution of vectors, t-SNE algorithm is used to

project high dimensional vectors to two-dimensional vectors. Figure 4.8 shows the

projection of data items in training dataset by using t-SNE algorithm. We applied 5-

fold cross-validation, therefore there are 5 figures which represent the feature vector

representation of the dataset. The points with red color correspond to non-enzyme

sequences while points with blue color represent the feature vectors of enzyme se-

quences. Distribution of the data points indicates that data items can be classified by

using vector representation of Word2vec model.
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Figure 4.8: Vector representations of Word2vec model is visualized by using t-SNE

algorithm to project vectors onto 2D space. Since 5-fold cross-validation is applied,

there are five figures.

4.1.3 Enzyme Commission Numbers Level One Results

The studies which are conducted with the enzyme and non-enzyme dataset show that

Word2vec hyper-parameters can be optimized. Although one parameter set results

better than others, we decided to continue experiments with the first two best hyper-

parameter sets where the first one contains 100 as N , 10 as W , 5 for l and averaging

method for vector representation calculation of sequences and the second set contains

the same hyper-parameters except W parameter which is 25. Table 3.2 shows the

details about the number of proteins for each class, but the dataset are randomly
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sampled to reduce training time of the Word2vec model. In order to sample a balanced

dataset, 1000 proteins from the positive and the negative datasets are chosen. Table

4.9 contains the Word2vec-BLAST similarity comparison for these hyper-parameter

sets and averaging method. The corresponding scientific names of classes are given

in Table 4.8 below.

Table 4.8: Level 1 classes and scientific names of these classes.

Class Scientific Name

First Class Oxidoreductases

Second Class Transferases

Third Class Hydrolases

Fourth Class Lyases

Fifth Class Isomerases

Sixth Class Ligases

Table 4.9: Word2vec-Blast similarity for first level of EC classes with averaging

method.

W N l Avg Sim Sim Dev Avg Dissim Corr

Dissim Dev

Oxidoreductases 10 100 5 99.97 0.07 50.26 6.68 0.99

25 100 5 99.97 0.07 39.81 1.58 1.00

Transferases 10 100 5 98.77 1.47 49.39 3.42 1.00

25 100 5 98.81 1.43 41.59 3.31 1.00

Hydrolases 10 100 5 99.65 0.42 49.66 4.98 1.00

25 100 5 99.66 0.39 41.28 3.81 1.00

Lyases 10 100 5 100.00 0.01 47.80 6.78 0.99

25 100 5 100.00 0.01 40.90 3.46 1.00

Isomerases 10 100 5 100.00 0.01 51.11 8.14 0.99

25 100 5 100.00 0.01 38.91 3.27 1.00

Ligases 10 100 5 100.00 0.02 45.43 2.60 1.00

25 100 5 100.00 0.02 38.08 3.16 1.00
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For the best two hyper-parameter set, classifier performances are measured. Table

4.10 shows the accuracy values for classifiers. In order to show classifier perfor-

mances for EC classes, first level of EC classes are shown. Table 4.11 and Table

4.12 show F1 and MCC score of first level classes. Section 4.1.2 contains the level

0 results where one of the hyper-parameter sets produces better results, but another

hyper-parameter set performs as good as the best hyper-parameter set. For first level

results, the another hyper-parameter set where W is 25 and N is 100 performs better

for all of the classes.

Table 4.10: Accuracy values for each classifier with different hyper-parameter sets of

Word2vec model.

W N l kNN SVM Naive RF Ada ANN

Boost

Oxidoreductases 10 100 5 82.85 83.14 84.31 86.25 83.93 84.24

25 100 5 82.64 82.83 87.51 87.80 85.08 83.77

Transferases 10 100 5 65.64 62.29 69.12 73.62 70.08 69.39

25 100 5 65.19 73.33 72.60 74.34 69.97 67.39

Hydrolases 10 100 5 70.64 67.62 74.65 78.43 75.33 76.31

25 100 5 69.88 73.86 77.44 78.96 75.38 74.41

Lyases 10 100 5 91.92 85.19 91.37 92.93 91.24 92.10

25 100 5 91.30 90.72 93.71 94.18 91.65 91.26

Isomerases 10 100 5 91.92 86.52 91.43 93.43 91.55 92.62

25 100 5 90.24 88.92 93.57 94.25 90.73 90.90

Ligases 10 100 5 90.11 84.54 85.77 90.56 89.52 91.15

25 100 5 88.56 86.05 89.83 91.56 88.18 88.48

Table 4.11: F1 Scores for each classifier with different hyper-parameter sets of

Word2vec model.

W N l kNN SVM Naive RF Ada ANN

Boost

Oxidoreductases 10 100 5 0.82 0.83 0.84 0.86 0.84 0.84
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25 100 5 0.82 0.82 0.87 0.88 0.85 0.83

Transferases 10 100 5 0.61 0.57 0.67 0.72 0.68 0.67

25 100 5 0.60 0.72 0.71 0.73 0.67 0.64

Hydrolases 10 100 5 0.68 0.64 0.73 0.78 0.74 0.75

25 100 5 0.67 0.72 0.77 0.78 0.74 0.73

Lyases 10 100 5 0.92 0.85 0.91 0.93 0.91 0.92

25 100 5 0.91 0.91 0.94 0.94 0.91 0.91

Isomerases 10 100 5 0.92 0.86 0.91 0.94 0.92 0.92

25 100 5 0.90 0.89 0.93 0.94 0.91 0.91

Ligases 10 100 5 0.90 0.84 0.86 0.91 0.89 0.91

25 100 5 0.88 0.86 0.90 0.92 0.88 0.88

Table 4.12: MCC Scores for each classifier with different hyper-parameter sets of

Word2vec model.

W N l kNN SVM Naive RF Ada ANN

Boost

Oxidoreductases 10 100 5 0.70 0.69 0.71 0.74 0.70 0.71

25 100 5 0.70 0.70 0.77 0.78 0.73 0.71

Transferases 10 100 5 0.43 0.36 0.45 0.52 0.46 0.47

25 100 5 0.42 0.53 0.52 0.55 0.49 0.45

Hydrolases 10 100 5 0.51 0.46 0.55 0.60 0.56 0.58

25 100 5 0.50 0.55 0.60 0.63 0.57 0.56

Lyases 10 100 5 0.85 0.74 0.83 0.86 0.83 0.85

25 100 5 0.84 0.83 0.88 0.89 0.84 0.83

Isomerases 10 100 5 0.85 0.76 0.83 0.87 0.84 0.86

25 100 5 0.82 0.79 0.87 0.89 0.83 0.83

Ligases 10 100 5 0.82 0.72 0.73 0.82 0.80 0.83

25 100 5 0.79 0.75 0.81 0.84 0.78 0.79

The classifiers perform under different parameters which are same with the parame-
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ters in Section 4.1.2. Figure 4.9 shows the kNN classifier’s F1 and MCC scores for

different k values. Figure 4.10 and Figure 4.11 show the F1 and MCC scores for Ran-

dom Forest and AdaBoost classifier for different number of estimators. According to

kNN performance indicators, the lowest k value for the classifier performs better. For

AdaBoost and Random Forest classifiers, the highest number of estimators performs

better except a few cases such as the results of AdaBoost for the first and the second

classes.

Figure 4.9: kNN performance scores with the k values.

Figure 4.10: Random Forest classifier performance scores with different number of

estimator values.
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Figure 4.11: AdaBoost classifier performance scores with different number of esti-

mator values.

Since the SVM classifier has more than one hyper-parameter, the performance indi-

cators of SVM are shown in Table 4.13. The results indicate that one set of the C and

the γ parameters results better than others, although there is an exception which is

the results of the second class. The best hyper-parameters of SVM is 0.01 for C pa-

rameter and 1.00 for the γ parameter. The SVM classifier results from Section 4.1.2

indicate that performance scores are better with higher C values. Table 4.13 shows

the highest C value and 1.00 for the γ parameter which are one of the best SVM

hyper-parameters in Section 4.1.2 as good as the best hyper-parameter set of SVM in

Section 4.1.2.

Table 4.13: MCC and F1 scores for different hyper-parameter values of SVM classi-

fier.

Class kernel C γ MCC Score F1 Score

Oxidoreductases linear 1.00 auto 0.64 0.80

Oxidoreductases poly 1.00 auto 0.42 0.60

Oxidoreductases rbf 0.01 0.10 0.68 0.81

Oxidoreductases rbf 0.01 1.00 0.78 0.88

Oxidoreductases rbf 0.01 10.0 0.08 0.35

Oxidoreductases rbf 1.00 0.10 0.70 0.82
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Oxidoreductases rbf 1.00 1.00 0.75 0.86

Oxidoreductases rbf 1.00 10.0 0.61 0.78

Oxidoreductases rbf 100.0 0.10 0.69 0.82

Oxidoreductases rbf 100.0 1.00 0.75 0.86

Oxidoreductases rbf 100.0 10.0 0.62 0.80

Oxidoreductases sigmoid 1.00 auto 0.55 0.71

Transferases linear 1.00 auto 0.48 0.7

Transferases poly 1.00 auto 0.14 0.37

Transferases rbf 0.01 0.10 0.41 0.60

Transferases rbf 0.01 1.00 0.53 0.72

Transferases rbf 0.01 10.0 0.02 0.34

Transferases rbf 1.00 0.10 0.44 0.63

Transferases rbf 1.00 1.00 0.49 0.67

Transferases rbf 1.00 10.0 0.54 0.76

Transferases rbf 100.0 0.10 0.43 0.62

Transferases rbf 100.0 1.00 0.49 0.67

Transferases rbf 100.0 10.0 0.55 0.77

Transferases sigmoid 1.00 auto 0.39 0.58

Hydrolases linear 1.00 auto 0.51 0.71

Hydrolases poly 1.00 auto 0.25 0.46

Hydrolases rbf 0.01 0.10 0.51 0.68

Hydrolases rbf 0.01 1.00 0.61 0.77

Hydrolases rbf 0.01 10.0 0.04 0.34

Hydrolases rbf 1.00 0.10 0.55 0.72

Hydrolases rbf 1.00 1.00 0.59 0.75

Hydrolases rbf 1.00 10.0 0.54 0.76

Hydrolases rbf 100.0 0.10 0.55 0.72

Hydrolases rbf 100.0 1.00 0.59 0.75

Hydrolases rbf 100.0 10.0 0.55 0.77

Hydrolases sigmoid 1.00 auto 0.4 0.59

Lyases linear 1.00 auto 0.76 0.87
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Lyases poly 1.00 auto 0.57 0.73

Lyases rbf 0.01 0.10 0.83 0.90

Lyases rbf 0.01 1.00 0.88 0.94

Lyases rbf 0.01 10.0 0.13 0.37

Lyases rbf 1.00 0.10 0.83 0.91

Lyases rbf 1.00 1.00 0.87 0.93

Lyases rbf 1.00 10.0 0.68 0.82

Lyases rbf 100.0 0.10 0.82 0.90

Lyases rbf 100.0 1.00 0.87 0.93

Lyases rbf 100.0 10.0 0.70 0.83

Lyases sigmoid 1.00 auto 0.70 0.82

Isomerases linear 1.00 auto 0.75 0.87

Isomerases poly 1.00 auto 0.50 0.66

Isomerases rbf 0.01 0.10 0.80 0.89

Isomerases rbf 0.01 1.00 0.88 0.94

Isomerases rbf 0.01 10.0 0.03 0.34

Isomerases rbf 1.00 0.10 0.79 0.89

Isomerases rbf 1.00 1.00 0.86 0.92

Isomerases rbf 1.00 10.0 0.71 0.84

Isomerases rbf 100.0 0.10 0.79 0.88

Isomerases rbf 100.0 1.00 0.86 0.92

Isomerases rbf 100.0 10.0 0.72 0.84

Isomerases sigmoid 1.00 auto 0.68 0.81

Ligases linear 1.00 auto 0.75 0.87

Ligases poly 1.00 auto 0.46 0.64

Ligases rbf 0.01 0.10 0.73 0.84

Ligases rbf 0.01 1.00 0.82 0.90

Ligases rbf 0.01 10.0 0.04 0.34

Ligases rbf 1.00 0.10 0.75 0.86

Ligases rbf 1.00 1.00 0.79 0.88

Ligases rbf 1.00 10.0 0.66 0.82
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Ligases rbf 100.0 0.10 0.74 0.85

Ligases rbf 100.0 1.00 0.79 0.89

Ligases rbf 100.0 10.0 0.68 0.83

Ligases sigmoid 1.00 auto 0.68 0.81

The performance scores of classifiers are measured for hyper-parameters of these

classifiers. The SVM classifier performs better for the enzyme and non-enzyme

dataset, but for the first level classes, the Random Forest classifier performs better.

In order to choose a successful classifier, the performance indicators for all datasets

are compared. For the level 0 dataset, the difference between Random Forest and

SVM classifier is relatively small. As a result, we select the Random Forest classifier

to compute the overall results. Figure 4.12 show the F1 and MCC performance scores

of Random Forest classifier for all datasets.

Figure 4.12: The plot of level one and level zero versus their Random Forest’s F1

and MCC scores. Green color is used for F1 score and orange color is used for MCC

score. Blue color is used for F1 score of ECPred [28] results.

The performance scores of the second class and the third class are lower than the av-

erage performance scores. The datasets are analyzed to find out the reason. First, the

distribution of proteins in the negative datasets are given in Figure 4.13 where proteins
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are evenly selected from other classes. Then, the average values of BLAST similarity

scores between protein sequences in the positive datasets and negative datasets are

computed by using BLAST. Figure 4.14 shows the heatmap for the similarity scores

where the similarities between positive datasets and negative datasets of the second

class and third class are nearly identical to the similarity scores of other classes. We

couldn’t find any reason for the low performance scores. The last step is visualizing

the vector representations of data items in the second class by using the t-SNE algo-

rithm. Figure 4.15 shows the distribution of vector representations of data items in

2D space where nearly half of the positive data items overlap with the negative data

items and the distribution helps us to understand the low performance scores of the

classifiers.

Figure 4.13: The plots show the distribution of protein sequences of negative datasets

in other classes. The distributions indicate negative protein sequences are equally

selected from other classes.
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Figure 4.14: The heatmap for BLAST similarity scores between protein sequences in

the positive datasets and negative datasets.
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Figure 4.15: Vector representations of Word2vec models are visualized by using the

t-SNE algorithm to project vectors onto 2D space. The first figure of second class

belongs to the vector representations of the negative data items in the second class and

the second figure of second class belongs to the vector representations of the positive

data items in the second class. In order to compare the classes, vector representations

of the fourth class are given at the second row of figures.

The training time of Word2vec model and classifiers is measured with one of the

hyper-parameter set where N is 100, W is 10, l is 5 and vector calculation for a

sequence is averaging method. Figure 4.16 shows the training time of first class of EC

numbers in minutes against the number of protein sequences in the training dataset.
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Figure 4.16: The plot of training time of Word2vec model and classifiers against the

number of proteins in the training dataset.

4.1.4 Visualization of EC Numbers

Word2vec model represents protein sequences in the vector space which is used to

predict enzyme commission classes. The visualization tool aims to visualize the re-

sult of EC Number predictions which are obtained by using the word embedding

approach. This visualization tool works browser based and presents a new approach

to demonstrate the Enzyme Commission Number as a tree. The visualization tool is a

browser-based application which requires just a web browser without any additional

dependencies. To the best of our knowledge, it is the first time the enzyme commis-

sion number is visualized in a web-based tool. Also, end-user has an interface to

upload files of predictions which could be useful to compare the results of predic-

tions. Options of vis.js [36] is used for the Visualization tool to achieve star topology

tree. Star topology uses the central node which is named as the root node. Prediction

results include protein id, hierarchical prediction of protein and confidence score for

each class in the hierarchical structure. Figure 4.17 is the screenshot of the visualized

prediction results of EC Classes. There are 859 nodes in the EC tree including one
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root, 6 main, 55 sub-family, 163 sub-sub-family, and 634 substrate numbers. The

root node has child nodes which are the 6 main classes of EC number. Since it isn’t

efficient to show all nodes in one tree, only requested nodes are shown in the tree. All

EC number trees include root node in order to give an initial point to expand the tree.

Double click on any node expanse the child nodes. If there isn’t any child node of

double clicked node, depth-first search is used to expand grandchild nodes. Only one

level of nodes is expanded as a result of the user’s action.

Non-enzyme and non-predicted proteins have information which is presented as a

modal view at the right bottom of the web page. Since the non-enzyme and non-

predicted proteins are irrelevant for some of end-users, the model can be hidden with

a single button.

In order to stress the distribution of prediction results, graph coloring is implemented.

In order to assign a color to a node, the number of child nodes is calculated. Accord-

ing to the number of child nodes, a color is assigned. A darker color indicates a higher

number of child nodes. In order to distinguish the colors of the main classes, each

main class is assigned to a different color scheme. These color schemes are similar to

map color schemes which are easy to distinguish between each other. For instance,

the fifth class which is named as isomerases uses a tone of blue.

• Scheme of orange is assigned to first class which is named as oxidoreductases.

• Scheme of green is assigned to second class which is named as transferases.

• Another scheme of green is assigned to third class which is named as hydro-

lases.

• Scheme of blue is assigned to fourth class which is named as lyases.

• Scheme of blue is assigned to fifth class which is named as isomerases. This

scheme is darker than the scheme which is used by fourth class.

• Scheme of purple is assigned to sixth class which is named as ligases.

A node is associated with its own information and child nodes information. Also,

information about the child nodes which isn’t fully connected with an associated node
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is presented. For instance, prediction output contains results of the sixth main class

and sub-sub-classes of the sixth main class, but there isn’t any result of subclasses

of the sixth main class. In this case, information about sub-sub-classes is associated

with the node of the sixth main class. Associated enzyme information represented

at the top of the web page with the interaction of end-user. Since the number of

associated enzymes can be varied for different result sets, a web slider is used to show

the information area. Each information is framed to separated from other information

boxes. Each information box contains a protein id, prediction score. Since there can

be too many information boxes, information about single clicked node is shown.

Figure 4.17: Screenshot of the predicted EC classes.

4.2 Discussion

In this section, the results of Word2vec models and classifiers are inspected. The

similarities of protein sequences are computed with the feature vectors of protein se-

quences which are obtained from Word2vec models. The similarities are compared

with the BLAST similarity scores to optimize the hyper-parameters of the Word2vec

and the calculation methods of feature vectors of the protein sequences. We use the

enzyme and non-enzyme dataset to compare Word2vec models with BLAST. De-

viation values of 1000 most similar proteins and 1000 most dissimilar proteins are

calculated and the Pearson correlation of the similar and dissimilar proteins is cal-
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culated. Deviation results are compared and two of the hyper-parameter sets have

two smallest deviation values. We perform 5-fold cross-validation with classifiers

for all hyper-parameter sets to confirm the deviation results. The same two hyper-

parameter sets perform better than others. As a result, these two hyper-parameter sets

are selected and the experiments on the first level datasets are conducted with these

hyper-parameter sets. The results which are obtained from the experiments on the first

level dataset show that one of the hyper-parameter sets is better than others. Random

Forest classifier is chosen since the performance scores of Random Forest classifier

are better for most of the results. Vector representations of the second class and the

third class of EC classes are classified and the classification results of these classes

are worst than other classes since the vector representations of positive proteins are

similar to the negative proteins in these datasets.

The F1 scores of ECPred [28] are shown in Figure 4.12. The average F1 score of

ECPred is 0.93 but the dataset of this study is filtered by using UniRef. In this study,

only the level 0 dataset is the same dataset which is used by ECPred. Sub-family

classes contain fewer protein sequences which are more similar than the protein se-

quences of the main classes. Since the protein sequences are more similar for sub-

family classes, we expect better classification results for substrate classes.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this study, biological sequences are represented as vectors by using Word2vec

skip-gram model. Prediction of protein functions from protein sequences by using

vector representations and classifiers is the main objective of this paper. First, biolog-

ical sequences are split into equal length subsequences which are treated as words.

Word2vec model is trained with the subsequences to represent subsequences as vec-

tors which are the hidden node values of the Word2vec model. In order to train the

Word2vec model, we use several sets of hyper-parameters and calculation method of

feature vectors of sequences from the real-valued vectors of subsequences. In order

to optimize the hyper-parameter set and the calculation method, similarities between

vectors of sequences are calculated and compared with BLAST similarity scores.

According to similarities between the vector representation of Word2vec and BLAST

scores, we select the optimal hyper-parameter set and the calculation method.

The high-dimensional vector representation of sequences is projected into 2D space

with using t-SNE algorithm which is used to visualize the distribution of high di-

mensional vectors. The data items are classified with several classifiers such as kNN,

SVM, Naive Bayes, and Random Forest to identify the functionalities of biological

sequences. We apply cross-validation on the datasets to optimize the hyper-parameter

sets of the classifiers. Also, classifier performances are evaluated for different hyper-

parameter sets of Word2vec. The comparison between classifiers shows that SVM

and Random Forest classifiers are performed better for the vector representations.

Since the Random Forest classifier’s performance scores are better for most of the

datasets, we show the performance metrics of Random Forest classifier in Figure

4.12. The F1 score value for the level 0 dataset is 0.97 and Matthews correlation
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coefficient score obtained as 0.93. The average F1 score value for EC main classes

obtained as 0.87 and 0.70 for MCC.

A web-based interactive visualization tool is developed to trace the relations between

predicted enzymes. Enzyme Commission Number is visualized as a tree and pre-

dicted enzymes are associated with the nodes of the EC Number tree. Also, non-

predicted and non-enzyme proteins are shown on the web page. Since there can be

too many predictions, a graph coloring mechanism is implemented to stress the dis-

tribution of predicted enzymes.

In the future, training Word2vec models for all of the EC classes and evaluating

the performances of the classifiers are planned. The execution time of training the

Word2vec model is the major issue that prevents us from training all of the EC classes.

There are 858 EC classes which have 30 or more protein annotations and these EC

classes are 6 main, 55 subfamily, 163 sub-subfamily, and 634 substrate classes. Since

the training time nearly takes 15 hours for the first class, training Word2vec models

for all of the EC classes requires enormous time. We classify data items with binary

classification, each EC class is trained and classified individually. In the future, we

plan to classify each level of EC classes with a multiclass classifier. Also, experiments

on other topics and datasets can be evaluated such as DNA sequence classification.

The web-based visualization tool will be available to the potential users and different

prediction results will be visualized such as GO annotations.
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