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ABSTRACT 

 

ZERO-DAY ATTACK DETECTION WITH DEEP LEARNING 

 

Çakır, Berna 

Master of Science, Computer Engineering 

Supervisor: Assist. Prof. Dr. Pelin Angın 

 

August 2019, 78 pages 

 

The rise of the IoT paradigm in the past decade has resulted in an unprecedented 

number of zero-day attacks launched against IoT systems, which are capable of 

causing major damages. Deep learning has recently become a popular technique for 

many learning tasks including intrusion detection, with high potential to detect zero-

day attacks in addition to ones with well-known signatures. In this thesis, we analyzed 

the efficacy of supervised and unsupervised deep learning algorithms for detecting 

zero-day attacks. We experimented with different neural network architectures 

including fully connected, recurrent and temporal convolutional models. The 

proposed deep learning models were proven to be effective in intrusion detection with 

achievement of 95.3% classification accuracy and 97% f1-score. The models were 

tested on datasets created using the same environment with the training dataset as well 

as datasets created in different environments through transfer learning. The tests on 

the datasets, which were created in different environments showed that deep learning 

algorithms are capable of detecting some of the attacks with low false positive rates. 

 

Keywords: Intrusion Detection, Deep Learning, Neural Networks  
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ÖZ 

 

DERİN ÖĞRENMEYLE SIFIRINCI GÜN SALDIRI TESPİTİ 

 

Çakır, Berna 

Yüksek Lisans, Bilgisayar Mühendisliği 

Tez Danışmanı: Dr. Pelin Angın 

 

Ağustos 2019, 78 sayfa 

 

Nesnelerin İnterneti paradigmasının son yıllardaki yükselişi, bu sistemlere yönelik 

büyük hasarlara neden olabilecek benzeri görülmemiş sayıda sıfırıncı gün saldırına 

alan açmıştır. Derin öğrenme son zamanlarda, tanınmış imzalara sahip olanlara ek 

olarak sıfırıncı gün saldırılarını tespit etme potansiyeli yüksek, popüler bir teknik 

haline gelmiştir. Bu tezde, gözetimli ve gözetimsiz derin öğrenme algoritmalarının 

sıfırıncı gün saldırılarını tespit etmedeki etkinliğini analiz ettik. Analizleri farklı derin 

öğrenme modelleri üzerinde yaptık ve bu algoritmaların performanslarını birbirleri ile 

kıyasladık. Test edilen modeller derin öğrenme algoritmaları ileriye dönük sinir ağları, 

özyineli sinir ağları ve evrişimli sinir ağlarıdır. Test sonuçları, %95.3 doğruluk puanı 

ve %97  f1-puanı ile güdümsüz derin öğrenme  metodlarının saldırı tesbitinde başarılı 

olduğunu gösterdi. Eğitim seti ile aynı ortamda üretilen test setlerinin yanı sıra eğitim 

setinden farklı ortamlarda oluşturulmuş test setleri de derin öğrenme yöntemlerini test 

etmek için kullanıldı. Yapılan bu testler derin öğrenme yöntemlerinin farklı 

ortamlarda oluşturulmuş setlerdeki her saldırıyı tespit edemese de bazı saldırıları 

düşük yalancı pozitif oranları ile tespit edebildiğini gösterdi. 

 

Anahtar Kelimeler: Bilgi Güvenliği, Derin Öğrenme, Yapay Sinir Ağları 
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CHAPTER 1  

 

1. INTRODUCTION 

 

1.1. Intrusion Detection 

Intrusion is defined as any kind of threat to information confidentiality, integrity or 

availability such as unauthorized use, alteration or destruction of the information 

systems. An Intrusion Detection System (IDS) is a system whose purpose is to identify 

malicious network activities to assist in maintaining computer security. [1] 

In today’s age, networks are used for many tasks for which security is essential. 

Applications such as online banking and shopping systems, online businesses, emails, 

cryptocurrencies, even military operations rely on computer networks. However, as 

the dependence on computer network increases, the threats to networks also increase. 

The increasing number of threats makes computer security a task of highest 

importance. According to [2], in 2018, cyber-attacks caused losses more than $45 

billion worldwide. 

To fight with cyber-attacks, several hardware and software solutions including 

antivirus systems, firewalls etc. are developed. One of these solutions is intrusion 

detection systems (IDS). IDSs are hardware or software systems, which monitor the 

network to detect malicious activities. Figure 1.1. shows diagram of an intrusion 

detection system which monitors the traffic between the network which is protected 

by the IDS system and rest of the Internet. IDS raises an alert if it detects malicious 

activities [3]. 
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Figure 1.1. Intrusion Detection System 

Based on the methods used for intrusion detection, IDSs can be divided into two 

categories: Signature-based Intrusion Detection System (SIDS) and Anomaly-based 

Intrusion Detection System (AIDS). SIDS keep a database of existing attack 

signatures and use pattern matching techniques to identify attacks with matching 

signatures. SIDS are very effective on detecting known attack vectors with low false 

positive rates. However, they cannot detect attacks, which are not already stored in 

their signature database [4]. 

Anomaly-based Intrusion Detection Systems use heuristic methods to create a model 

of the network defining legitimate patterns and user behaviors as baseline. The model 

is then used to identify the deviations from the baseline model to find potential 

intrusions. AIDS rely on the assumption that the behavior of malicious actors are 

different from the typical user behaviors. The main advantage of this method is that, 

with this model even unknown attacks can be detected. However, since anomaly-based 

methods classify any deviations from the normal as intrusion, unseen system 

behaviors can be detected as intrusions, which can lead to high false positive rates. 
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1.2. Zero-Day Attacks 

One of the most challenging tasks of IDS is detection of zero-day attacks. A zero-day 

attack is an attack, which exploits a previously undiscovered network vulnerability.  

The life of a zero-day attack is shown in Figure 1.2 from the day the software with the 

vulnerability is released by the software maker until the update to fix the vulnerability 

is fixed and distributed. The life of a zero-day attack starts with the discovery of a 

vulnerability in a piece of software. Then, the vulnerability is used to create an exploit 

and attack the targets. After the initial attacks are executed, the vendors which released 

the vulnerable software find out about it and create a patch to fix it. The vulnerability 

does not stop being a threat until the patch is released and distributed.  

 

Figure 1.2. The Life of a Zero-Day Attack [5] 

Since finding vulnerabilities in software requires time and skills, zero-day attacks are 

mainly used as targeted attacks against high-value information systems. However, 

after that, the vulnerability becomes known and variants of it affecting the general 

public are created. After a vulnerability is disclosed, the number of attacks using the 
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same exploit increases 100000 times. The exploit continues to prevail as a threat until 

all hosts are patched for the vulnerability, which takes between 20 days to 30 months 

with an average of 312 days. [6] 

A zero-day attack on a selected target usually is not a single attack, but a sequence of 

attacks, which includes exploration to find weaknesses, gaining unauthorized access 

to the target, gaining elevated privileges on the target to use, modify or delete 

information. These sequences of attacks are known as multi-step attacks or Advanced 

Persistent Threats (APTs). [6] 

Signature based intrusion detection methods cannot detect zero-day attacks since no 

signatures exist for such attacks prior to the attack. Because of this, with the increase 

of the zero-day attacks, SIDS have become less and less effective as an IDS method 

[4]. On the other hand, anomaly based intrusion detection systems are capable of 

detecting attacks which they have not seen before such as zero-day attacks.  

1.3. Motivation 

Anomaly based intrusion detection algorithms are preferred over signature-based 

intrusion detection algorithms when it comes to detection of unknown attacks.Since 

Denning proposed the hypothesis that security violations can be detected as abnormal 

patterns of system usage in 1987, several artificial intelligence techniques have been 

used to develop intrusion detection systems.[7] Out of these methods, deep learning 

is a relatively new field. The aim of this study is to compare deep learning based 

anomaly detection algorithms for intrusion detection. 

Although several works exist on the topic, because of the problems explained below 

it is hard to compare existing anomaly detection methods. The first problem is the way 

the training and testing datasets are selected. There are several works which do not 

use the testing dataset, opting for methods such as cross validation or works, which 

uses only subsets of the test set. These works report high accuracies  many of which 

are above 99%. [8]–[12]. These approaches do not show capabilities of the intrusion 

detection systems since very high accuracies on training dataset can be obtained by 
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overfitting the training dataset with the absence of the test set. The second problem 

with existing works is the way the results are reported. In existing intrusion detection 

datasets, Denial of Service (DoS) attacks, whose purpose is to flood the network with 

useless packages, are more frequent than other attack types. In addition to that, such 

attacks are easier to detect without complex intrusion detection methods. Thus, if 

individual attack detection rates for different attack types are not reported, it is not 

known whether a technique is capable of detecting different types of attacks or only a 

few frequent attacks. In addition to that, most of the existing works do not report the 

performance of their model on detecting previously unknown attacks. 

Lastly, most papers do not report the zero-day attack detection capabilities of their 

models. To test the zero-day attack detection capabilities of the models, the detection 

rates for attacks that do not exist in the training set must be reported. 

The contribution of this thesis is to apply existing deep learning techniques to the 

intrusion detection field and measure and compare their performances in areas 

especially in detection of zero-day attacks. The algorithms are further tested with 

transfer learning by training the model in a dataset and testing it by using another, 

completely unrelated dataset. This allows to compare the behaviors of the deep 

learning-based anomaly detection algorithms in an unseen environment. 

1.4. Outline of The Thesis 

The remainder of this thesis is organized as follows: In chapter 2, the previous works 

about deep learning-based intrusion detection are summarized. In chapter 3, the deep 

learning concepts relevant to this thesis are summarized. In chapter 4, how the deep 

learning methods are used for the intrusion detection field are explained. In chapter 5 

the results of the experimental study are shown. Chapter 6 provides information about 

the transfer learning experiments. Chapter 7 summarizes the findings of this thesis and 

explains the future work directions. 
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CHAPTER 2  

 

2. ANOMALY BASED INTRUSION DETECTION 

 

2.1. Introduction 

This section describes previous works on anomaly-based intrusion detection systems. 

Anomaly-based intrusion detection systems detect network anomalies via analyzing 

network patterns and detecting activities that do not match the normal patterns. AIDS 

must thoroughly understand the characteristics of the normal data in order to be able 

differentiate the abnormal patterns. 

Machine learning is a subfield of artificial intelligence, which aims to develop 

algorithms and mathematical models that can learn from sample data without explicit 

instructions. The models developed using machine learning extract patterns and use 

inference to learn the characteristics of the sample data to make predictions about 

unseen data. Machine learning has been applied extensively to the anomaly-based 

intrusion detection field and has proven to be very successful. 

2.2. Supervised and Unsupervised Training 

Based on the method used for training, machine learning methods can be classified 

into two categories: supervised training and unsupervised training. 

In the supervised method, the mathematical model is trained using a fully labelled 

dataset. Supervised methods can be further divided into two categories: Regression 

and Classification. Regression algorithms are used when the output is from a 

continuous range, while classification algorithms are used when the outputs are 

discrete categories.  

Decision Trees, k-nearest neighbor (K-NN), naïve Bayes, SVM and Artificial Neural 

Networks are some of the most popular supervised machine learning algorithms. All 
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of these algorithms have been used in the intrusion detection field with varying 

degrees of success. [13] 

Unsupervised methods are trained using unlabeled data. In general, unsupervised 

algorithms cluster the input into categories based on commonalities of the data points. 

Unsupervised algorithms are used when a labelled dataset is not available. Clustering 

algorithms such as K-means clustering and hierarchical clustering are examples of 

unsupervised machine learning algorithms. [1] 

Sometimes, it is far easier to collect data belonging to one class than collecting data 

for other classes. For example, in the anomaly detection case collecting non-

anomalous data is easier than collecting anomaly data since anomalies are rarer. This 

is also the case for the intrusion detection field, as it is easier to collect network data 

without attacks than collecting network intrusion data. In that case semi-supervised 

methods can be used to start with partially labelled data, learn characteristics of the 

normal data and find deviations from the normal. One-Class SVM and Autoencoders 

are examples of algorithms that can work in a semi-supervised fashion. 

Although machine learning algorithms have proven to be successful in learning from 

the data without explicit instructions, the performance of the machine learning 

algorithms heavily depends on the representation of data. Each piece of information 

in the representation is called a feature and in order for machine learning algorithms 

to perform well, the features must be selected carefully using domain specific 

knowledge. Deep learning is a subfield of machine learning, which can solve this 

representation problem. Deep learning models have a multi-layered architecture, 

which allows them to do feature selection on their own. The first layers of the deep 

models learn simpler representations from the data, which are then combined to create 

complex representations. [14] 

Currently, deep learning is a very powerful tool both for supervised and unsupervised 

learning tasks including anomaly-based intrusion detection. 
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2.3. Deep Learning Based Intrusion Detection  

Deep Learning is one of the most used machine learning methods in the intrusion 

detection field and has proven to be successful. Deep neural network classification 

methods can be used for supervised training, while autoencoders can be used for 

unsupervised training. Deep learning methods can extract higher level features from 

the given data with high a success rate. In the intrusion detection field, similar to other 

anomaly detection fields, the samples in the dataset are skewed towards the normal 

data, which in turn makes the network also biased toward the normal data. As a result, 

deep neural networks have lower success in detection of less frequent attacks. Deep 

neural networks also have convex optimization functions, which means they can 

converge on a local minimum, and the global minimum cannot always be found.  

Deep learning methods have been used in the intrusion detection field since 2008, 

though the datasets used were much smaller at that time. In 2008, [15] proposed a feed 

forward neural network to create an IDS, which uses the back-propagation algorithm 

to train the network. They ran tests on a dataset extracted from DARPA KDD’98 TCP 

dumps. The network had 76% accuracy rate on the test dataset consisting of 100 

samples. Mukkamala, proposed a hybrid approach combining neural networks and 

SVM to detect intrusion [16]. Xue et al. proposed to modify recurrent neural networks 

for intrusion detection. The KDD’98 dataset was used for testing and 97% accuracy 

was reached on a 200-sample test dataset [17]. Besides, Skaruz also successfully 

applied recurrent neural networks to detect SQL-based attacks [18]. 

Recent improvements in available hardware and software allowed usage of larger 

datasets along with deeper deep learning models. Both supervised and unsupervised 

deep learning methods have been applied on intrusion detection datasets. 

Deep neural network classifiers are used in many studies in the field of intrusion 

detection. [19] checked the   potential   capability   of   deep   neural   network   as   a   

classifier for different types of intrusion attacks on the KDD’99 dataset. A multi-layer 

feed forward network was trained using the KDD’99 dataset. The paper reported a 
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99% training accuracy and showed that DNN can achieve a lower training error than 

SVM. However, this paper did not report the testing accuracy using the testing dataset 

of the KDD’99 dataset. [20]  built   a   deep   neural   network classifier model for an 

intrusion detection system in an SDN environment and trained the model with the 

NSL-KDD Dataset.  They just used six of the 41 features of NSL-KDD, which can be 

easily obtained in SDN. The results showed that although there are algorithms, which 

have higher testing accuracy than DNN, DNN is still able to get an acceptable 

detection rate only using 6 features.  

Recurrent neural networks were also used in the intrusion detection field. [21] 

presented an on-line deep learning method for intrusion detection using an LSTM 

network trained using the Real Time Recurrent Learning (RTRL) algorithm. The 

dataset has samples belonging to 5 different categories 4 of which are different types 

of attacks. The paper reported 93.82 classification accuracy. Kim et al. used an offline 

batch training algorithm relying on using an LSTM network trained using BPTT. The 

paper reported 99% training accuracy [8]. Both papers used the KDD’99 dataset and 

concluded that while LSTM shows promising results, it cannot detect infrequent 

attacks in the dataset.  

[22] tested the effect of the size of the LSTM network on the detection performance 

using NSL-KDD. [23] addresses one of the intrusion detection system challenges, 

which is to achieve a low false alarm rate with new unseen threats using LSTM 

classification. The authors built a model using different RNN models to identify seen 

and unseen threats. They tested their model on unseen network attacks. [22] also 

compared network models containing multiple LSTM layers and concluded that 

adding more layers does not improve the LSTM classification performance. 

In addition to these supervised methods, several deep unsupervised methods have been 

tested for intrusion detection. [24] proposed a deep belief network model in which an 

unsupervised greedy learning algorithm was used to learn similarity representations 
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of the data. KDD’99 was used for evaluation and the authors concluded that the 

network performs better than SVM in terms of accuracy. 

[25] tested stacked deep autoencoders on KDD’99 and showed that a model containing 

4 stacked autoencoders can detect the network attacks in KDD’99 dataset with 94.71% 

accuracy.  

[26] utilized LSTM autoencoders for intrusion detection with their proposed 

autoencoder framework for both fixed and variable length data sequences. They 

developed an online sequential unsupervised dataset for network intrusion detection 

using LSTM-autoencoders on ISCX IDS 2012 dataset [27]. Their experiment carried 

out 5-fold cross validation to validate the performance of their framework using the 

dataset. The experiment carried different autoencoders such as LSTM-Autoencoder 

with Last pooling, LSTM-Autoencoder with Max pooling, LSTM-Autoencoder with 

mean pooling. 

In this thesis, variants of these existing supervised and unsupervised, DNN and LSTM 

architectures have been implemented in addition to Temporal Convolutional 

Networks (TCN), which is described in detail in section 3.7. The existing works use 

different metrics to measure the performances of the algorithms. Some of these works 

do not measure zero-day attack detection capabilities of the algorithms or detection 

rates for different types of attacks. In addition to that, these works focus on a single 

algorithm and do not compare deep learning methods with each other. In this work, 

the performances of these existing algorithms and their zero-day attack detection 

capabilities are evaluated. For anomaly-based intrusion detection methods, 

comparison of these capabilities are as important as other metrics, since detection of 

unknown attacks is the advantage these methods have over signature-based anomaly 

detection methods. In addition to that, comparison of these algorithms is an important 

task since computational complexities of the algorithms are different. The more 

computationally expensive algorithms should perform considerably better in order for 

them to be considered useful. 
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CHAPTER 3  

 

3. BACKGROUND 

 

3.1. Introduction 

This chapter introduces concepts and technology relevant to anomaly-based intrusion 

detection systems using deep learning. These include:  

• Artificial neural networks (ANN)  and how to train them 

• Recurrent Neural Networks 

• Temporal Convolutional Networks 

• Autoencoders 

3.2. Artificial Neural Networks (ANN) 

Most modern deep learning models used today are based on artificial neural networks. 

Artificial Neural Networks are universal function approximators, which means they 

are able to approximate any existing function between an input x and output y 

provided that there are enough hidden units between them. The purpose of training a 

neural network is to find a function, which can describe the relationship y=f(x) 

between the sample input and outputs, which can be generalized to data that are not in 

the sample dataset [14]. 

Artificial neural networks consist of basic computational units called artificial 

neurons, which are inspired by biological neurons. An artificial neuron takes a number 

of inputs to produce an output. The formula used for calculating the output is shown 

below: 

𝑦 =  𝜎(∑ 𝑤𝑖

𝑛

𝑖=0

∗ 𝑥𝑖 + 𝑏) 
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The formula used has weights 𝑤𝑖 for each input 𝑥𝑖 of the neuron, which determines 

how that input affects the output and a bias value, which is equal to the value of the 

function when there is no bias. The weights and bias are used to calculate the weighted 

sum of the inputs [28]. 

After the weighted sum is calculated an activation function 𝜎 is used to calculate the 

output of the neuron. The activation function is a non-linear function, which allows 

non-linear transformation of the input.  

The non-linearity of the activation function plays a significant role as it allows the 

network to learn more complex, non-linear tasks. The most common activation 

functions are sigmoid,  hyperbolic  tangent(tanh), and Rectified Linear Unit (ReLU) 

functions. The sigmoid function takes an input and transforms it into a real number in 

the range [0,1]. The sigmoid function is generally used with neural networks that need 

to output only positive values (e.g. probability). 

 

 

Figure 3.1. Sigmoid Function 

Hyperbolic tangent function is similar to sigmoid function, but instead of the [0,1] 

range, the output of this function is between [-1,1]. RELU function squashes the 

negative input to zero while outputting the positive input as it is. RELU function is 

computationally less expensive than the other activation functions. Unlike the 



 

 

 

15 

 

previous activation functions, ReLU does not saturate to -1, 0 or 1 and converges 

faster.  

 

Figure 3.2. RELU activation function 

Neural networks consist of artificial neurons that are organized in layers. The network 

takes the input and processes it layer by layer to produce an output.  

 

Figure 3.3. Neural Network with Single Hidden Layer 
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3.3. Feed Forward Neural Networks 

Neurons are basic building components of the neural network. In a neural network, 

artificial neurons are organized in layers, where each node is connected to nodes in 

the previous layer. The first layer of the network is called the input layer since this 

layer takes the input of the network as its input. The last layer is the output layer and 

the output of this layer is also the output of the neural network. The remaining layers 

are called hidden layers. Each neuron in each layer is connected to the output of each 

node in the previous layer. Each neuron takes the outputs of the previous layer’s 

neurons and produces an output for the next layer. The flow of information starts from 

the input layer, passes through hidden layers to arrive at the output layer. At the end, 

the output of the network is produced [14]. 

3.4. Training a Neural Network 

The goal of the training is to find the optimal weight values for each neuron so that 

the outputs produced by the model are closest to the actual outputs given in the sample 

data input. 

In order to measure the capability of a neural network to predict the correct output for 

a given input, a function called loss function is used. Loss function measures the 

difference between the real output and the output estimated by the network. One of 

the most used loss functions is Mean Squared Error (MSE), which calculates average 

squared values of the real and estimated output values.  

𝑀𝑆𝐸(𝑦, �̂�)  =
1

𝑁
 ∑ (�̂�𝑖 −  𝑦𝑖)

2𝑁
𝑖=1  , where  

𝑦 is the actual outputs and  �̂� is the estimated outputs. 

Another common loss function is binary cross entropy (BCE). BCE is used when the 

output is binary. 

𝐵𝐶𝐸(𝑦, �̂�) = −
1

𝑁
 ∑ (𝑦𝑖 log(�̂�𝑖) + (1 − 𝑦𝑖)(1 − log(�̂�𝑖))𝑁

𝑖=1 , where  

𝑦 is the actual outputs and  �̂� is the estimated outputs. 
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The goal of training a neural network is to minimize the selected loss function by 

adjusting the weight and bias values of the neurons. Training is done using a 

supervised training algorithm called backpropagation, which takes sample data as 

input and output pairs. 

The training algorithm starts by initializing the weights of the network randomly. After 

that, two phases, forward pass and backward pass are repeated until the loss is 

minimized. 

In forward pass phase, the output of the network and the value of the loss function are 

calculated. Then, in the backward pass phase how to update weights so that the loss is 

reduced is found by using the gradient descent algorithm and weights are updated by 

a small amount. 

The gradient descent algorithm is used to determine how to update the weights to 

reduce the loss. Gradient is defined as corresponding change in the loss value when a 

weight parameter is updated. Gradient descent algorithm calculates the gradients of 

each network parameter with respect to the loss function using chain rule and uses the 

direction of the gradient to determine how to reduce the loss value. 

The chain rule is used to calculate the gradient of the loss function. Chain rule states 

that, for a forward propagating function 𝑓(𝑥) = 𝐴(𝐵(𝐶(𝑥))) where A,B and C are 

functions used to calculate the value of 𝑓(𝑥), the derivative of the function with 

respect to 𝑥 is: 

𝑓′(𝑥) = 𝑓′(𝐴) . 𝐴′(𝐵) . 𝐵′(𝐶) .  𝐶′(𝑥)  

The forward propagation function for a neural network is �̂� = 𝑓(𝑋) = 𝐿(𝜎(𝑊𝑋)) 

where 𝐿 is the cost function, 𝜎 is the activation function, W is the weights of the 

network and X is the input. Thus, the gradient of the loss function is calculated using 

formula below for each weight 𝑤𝑖 in the network: 

𝜕(𝐿𝑜𝑠𝑠)

𝜕𝑤𝑖
=  

𝜕𝐿

𝜕�̂�
 
𝜕�̂�

𝜕𝜎
 

𝜕𝜎

𝜕𝑤𝑖
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After the gradient is calculated, the weights are updated in a small step using the 

formula below. 𝛼 is a parameter called learning rate, which determines the step size 

of the updates. Using the calculated gradient, learning rate 𝛼, and the old value of the 

weight 𝑤𝑖, the new weigth value  𝑤𝑖̀  is calculated using formula 

𝑤𝑖̀ = 𝑤𝑖 − 𝛼
𝜕(𝐿𝑜𝑠𝑠)

𝜕𝑤𝑖
 

The training algorithm decreases the loss incrementally in small steps until it cannot 

decrease anymore using these two phases until the training is completed.  

For large datasets, calculating the gradient for each training sample is time consuming; 

therefore, an algorithm called stochastic gradient descent (SGD) is used to speed up 

the process. Instead of calculating the gradient for each sample, SGD splits the input 

into batches and calculates the gradient descent for all elements in a batch together. 

SGD along with its variants such as Adam, Adagrad, RMSprop are commonly used 

algorithms for training [29]. 

3.5. Recurrent Neural Networks (RNN) 

The feed forward neural networks assume that each sample is independent from each 

other. However, this assumption is not always true. In fields such as natural language 

processing, time series classification, video etc. there is a temporal dependency 

between the data points across time. Feedforward neural networks similar to many 

other machine learning algorithms ignore such dependencies. RNN is an extended 

version of the previously defined feed forward network to handle these dependencies. 

RNN works on sequential data and while processing the sequence retains information 

about the past elements in the sequence. In order to do this, RNN keeps a hidden state 

parameter, whose value is determined by the past elements of the sequence. 
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Figure 3.4. Recurrent Neural Network Architecture 

While processing the element of sequence at time step t, the network uses the hidden 

state of time step t-1. The mathematical formula for calculating the output of an RNN 

is: 

𝑠𝑡 = 𝜎(𝑈𝑥𝑡 + 𝑊𝑠𝑡−1 + 𝑏𝑠) 

ℎ𝑡 =  𝜎(𝑉𝑠𝑡 +  𝑏ℎ) 

In this formula 𝑥𝑡 is the input at time t and 𝑠𝑡−1 is the hidden state’s previous input. 

The current state and current output of the network is calculated using these values. U 

are the weight parameters, which determine the importance of the current input to the 

output similar to the feed forward network. W and V are additional weight parameters, 

which determine the importance of the past data to the output. The training algorithm 

for recurrent neural networks must calculate the optimal values of these weight 

parameters in a similar way to the previous network model. 

An RNN can be unrolled in temporal axis to convert it to a feed forward neural 

network. Unrolling can be done by creating a copy of the RNN for each time step. The 

difference between a normal feed forward neural network and an unrolled recurrent 

neural network is that the unrolled network has the additional constraint that the 

weights must be shared across the model. Because of this, recurrent neural networks 
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can use a variant of the backpropagation algorithm called Backpropagation Through 

Time (BPTT) [30]. 

In BPTT, backpropagating the gradients through the whole network is required in 

order to calculate derivatives of the cost function with respect to each weight of the 

network via the chain rule. As the depth of the network increases, the gradients can 

become extremely large or small because of many multiplications required for 

applying the chain rule. When the gradients become large, the network suffers from 

the exploding gradient problem in which very large weight updates cause problems 

such as unstableness of the network and overflow of the weights. On the other hand, 

too small weights cause the vanishing gradient problem, which result in very small 

weight updates to stop the network from learning [14] [31]. Because of vanishing and 

exploding gradients, the RNN can only be trained on sequences shorter than 10-time 

steps [21]. 

3.6. Long Short-Term Memory Networks (LSTM) 

LSTM is a variant of RNN, which was proposed by [32] to combat the vanishing and 

exploding gradient problem of RNN. LSTM uses gates to determine whether to store 

a specific element in the hidden state or forget it, which allows to remember longer 

dependencies. 

LSTM uses gates to determine whether to forget or keep the incoming data in the 

hidden state. The gates are implemented using sigmoid functions, whose output is in 

the range between 0 and 1. If the output of the gate is closer to 0, the LSTM does not 

allow the input to pass through [33]. 

LSTM architecture consists of four main components: forget gate, input gate, output 

gate and memory cell. The forget gate decides whether to forget the current input or 

not based on the current input and hidden state values, while the input gate decides 

which part of the input to keep in the hidden state. 
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Figure 3.5. LSTM Architecture [34] 

𝑓𝑡 is the output of the forget gate and  𝑊𝑓 , 𝑈𝑓 , 𝑏𝑓 are weights and bias parameters of 

the forget gate.  𝑖𝑡 is the output of the forget gate and  𝑊𝑖, 𝑈𝑖   𝑎𝑛𝑑 𝑏𝑖 are input gate 

weights and bias. These weight and bias parameters are parameters that are optimized 

during training. 

𝑓𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑓𝑥𝑡 +  𝑈𝑓ℎ𝑡−1 +  𝑏𝑓) 

𝑖𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑖𝑥𝑡 +  𝑈𝑖ℎ𝑡−1 + 𝑏𝑖) 

The output of input and forget gates, along with the current value of the input are used 

to calculate the value kept at the memory of the cell 𝑐𝑡. After that, the output and  

hidden state are calculated using these values. ⊙ is the element-wise vector product. 

𝑗𝑡 = 𝑡𝑎𝑛ℎ(𝑊𝑗𝑥𝑡 +  𝑈𝑗ℎ𝑡−1 +  𝑏𝑗) 

𝑐𝑡 = (𝑓𝑡  ⊙  𝑐𝑡−1) +  (𝑖𝑡  ⊙ 𝑗𝑡) 

𝑜𝑡 = 𝑠𝑖𝑔𝑚𝑜𝑖𝑑(𝑊𝑜𝑥𝑡 +  𝑈𝑜ℎ𝑡−1 +  𝑏𝑜) 
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ℎ𝑡 = 𝑜𝑡  ⊙  tanh (𝑐𝑡) 

In RNN architectures, in order to calculate the output for an input at time t, the output 

of the previous steps must be calculated beforehand. Therefore, the training process 

for RNNs cannot be parallelized. In addition to that, the architecture of the LSTM cells 

is more complex than feed forward neurons. Thus, training RNN architectures require 

a lot more time and computational power. 

3.7. Temporal Convolutional Networks (TCN) 

Since RNNs are time and memory intensive, several architectures were developed to 

replace them. One such solution is Temporal Convolutional Networks. TCN is an 

architecture which can take an input sequence of any length to produce an output of 

same length similar to RNN [35], [36]. 

Convolutional Neural Networks are a specific type of feed-forward networks in which 

the input is arranged in a grid-like structure. A CNN consists of convolutional layers 

and pooling layers. A convolutional layer consists of a set of filters. In forward pass, 

the filter is moved across the grid structure of the input and the dot product between 

the input value and filter are calculated to produce the output. The size of the filter is 

smaller than the size of the output, which allows extraction of spatial features. Instead 

of weights for each input element, the filters of convolutional layers are the network 

parameters which are optimized via training. Therefore, CNN is computationally less 

expensive than feed forward networks. Standard CNN does not work on sequential 

data. TCN is an architecture, which uses convolutional layers to process sequences. 

In order to do sequence processing, TCN uses convolutional layers followed by zero-

padding layers. The size of the output of a convolutional layer is smaller than the size 

of input. Thus, zero-padding layers are used to keep the size of the input and output 

the same and the output size does not change after convolutions.  

Another modification of TCN is that, in the convolutional layer, the output at time t is 

calculated by only using elements from time t and earlier in the previous layer. This 
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type of convolution is called “causal convolution”. Causal convolutions allow 

sequence classification using only the past and current information, since it prevents 

future data from affecting the results. 

TCN also uses dilated convolutions to be able to look back at data from further back. 

With only causal convolutions, the TCN can only look back at a history at depth linear 

to the network depth. Dilated convolutions allow the network to keep history at depth 

exponential to network depth. Figure 3.6 shows visualizations of causal convolutions 

with and without dilations. 

 

Figure 3.6. Causal vs Dilated Causal Convolutional Layers [37] 

To create a TCN network, residual blocks whose diagram are shown in Figure 3.7 are 

used. Residual blocks are stacked on top of each other to create the TCN. 
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Figure 3.7. Residual Block and TCN Classifier 

TCN share filters across layers and the depth of the path backpropagation algorithm 

depends only on the depth of the network. Because of this, TCN have low memory 

requirements in comparison to recurrent neural networks, which require memory to 

store partial results for all gates of its recurrent cells. In addition to that, convolutions 

of TCN network can be done in parallel while recurrent architectures cannot be 

parallelized. [35] compared LSTM and TCN on 11 RNN problems and showed that 

TCN works at least as well as LSTM in every task. 

3.8. Autoencoder 

Autoencoder is a specific type of neural network that is trained to copy its own input 

as output with the goal of creating a representation of the input. An autoencoder 

consists of two parts: 
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• An encoder that maps the input x using h=f(x) and 

• A decoder that reconstructs the input from the output of encoder h. 

The goal of training an autoencoder is to find the optimal parameters, which allows 

the model to output its input as best as it can. 

Autoencoders can be used to extract important characteristics of the input dataset. One 

way to learn useful features from a dataset is to use an autoencoder, which has a 

smaller dimension in comparison to x. This forces the encoder to extract defining 

characteristics of input so that the decoder can reconstruct the input using these. If the 

output space of the encoder is larger than the input size, then the encoder memorizes 

the input without learning. This type of autoencoder is called an undercomplete 

autoencoder. 

 

Figure 3.8. Autoencoder 

In autoencoders, both feed-forward and recurrent architectures can be used as 

encoders/decoders. An autoencoder can be used to extract features from both 

individual inputs and sequences. 
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3.9. Neural Network Parameters 

Neural networks have two types of parameters: trainable parameters and non-trainable 

parameters. Trainable parameters of the network are parameters whose values are 

learned during training. These parameters include the weight and bias parameters of 

the neurons. 

Non-trainable parameters of the network are called hyperparameters. These 

parameters are decided before the training is started and includes parameters such as 

number of hidden layers and hidden neurons in the neural network, learning rate, and 

optimization algorithm. The values of these parameters must be tuned through trial 

and error. 

3.10. Evaluation Metrics 

Performance of a neural network is evaluated using its confusion matrix. For anomaly 

detection tasks, in general the data is labelled as negative or positive depending on 

whether given input contains an anomaly or not. If a sample contains an anomaly, it 

is labelled positive and if a sample is not anomolous, it is labelled negative. To 

represent a dataset labelled using these values, binary confusion matrices are used. 

A binary confusion matrix is a matrix consisting of the values below: 

• True Positive (TP): Actual value is positive; model correctly predicts positive  

• False Negative (FN): Actual value is positive; model incorrectly predicts 

negative  

• False Positive (FP): Actual value is negative; model incorrectly predicts 

positive  

• True Negative (TN): Actual value is negative; model correctly predicts 

negative  

These values are used to calculate metrics which measure the performances of 

anomaly detection algorithms.  
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Metrics calculated using the values are: 

𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝑇𝑁 + 𝐹𝑃 + 𝐹𝑁
 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 

𝑅𝑒𝑐𝑎𝑙𝑙 =  
𝑇𝑃

𝑇𝑃 +  𝐹𝑁
 

𝑓1 𝑠𝑐𝑜𝑟𝑒 =  
2 ∗ 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
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CHAPTER 4  

 

4. DEEP LEARNING BASED INTRUSION DETECTION 

 

4.1. Introduction 

This section describes the KDD’99 intrusion detection dataset used in this thesis and 

how the deep learning techniques described in the previous chapters are used on the 

KDD’99 dataset to detect malicious activities. 

4.2. KDD’99 Dataset 

KDD’99 dataset is a fully labeled intrusion detection dataset created in 1999 for The 

Third International Knowledge Discovery and Data Mining Tools Competition. The 

data was collected from simulation of the USA Air Force network. During the 

simulation, 7 weeks’ worth of TCP dumps were recorded for training and 2 weeks of 

testing data were recorded for testing [38]. 

The dataset was created by extraction of 41 features from the collected TCP dumps. 

The extracted features can be classified into 4 categories: Basic Features, Content 

Features, Time-based Traffic Features, Host-based Traffic Features. 

Basic Features: Basic features are the features extracted from the packet headers 

without examining the packet contents. Basic features consist of the following 

parameters: 

• Duration: The time between the start and end of the connection. This feature 

is a continuous feature. 

• Protocol: The protocol used for communication. The possible values for this 

categorical field are “tcp”, “udp” and “icmp”. 

• Service: The service field specifies services such as telnet, ftp, http etc. The 

dataset includes about 70 service categories. 
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• Flag: The status flags of the connection. e.g. S0 flag, which means a connection 

is established, REJ which means a connection is rejected. 

• Source Bytes and Destination Bytes: Continuous data containing information 

about the number of bytes sent from source to destination. 

Content Features: Content features are features extracted from the payloads of the 

packets using domain knowledge. This category includes features such as number of 

failed login attempts, number of file reads made, whether the connection requested 

actions using admin privileges etc.  

Time-based Traffic Features: The time-based features are collected using 2 second 

windows to capture temporal features such as number of connections to the same and 

different hosts in the last 2 seconds, the error rates of the server, etc. 

Host-based Traffic Features: Host-based features are extracted using windows 

containing the last 100 packets. These features are helpful in machine learning for 

detection of attacks spanning longer than 2 seconds. 

The training dataset contains 24 different attacks, the testing dataset also contains 

these 24 attacks but in addition to these, there exist 14 extra attacks in the testing 

dataset. The addition of these attacks aimed to test the abilities of the intrusion 

detection systems on unseen data [39]. 

The attacks can be classified into 4 different categories. These 4 categories are: 

• Denial-of-Service (DoS): Attacks whose purpose is to deny access to a 

network by overflowing the network with malicious packets and consuming 

all resources. 

• Probe: Attacks whose purpose is to collect information about the network. 

Probe attacks use methods such as scanning the ports or IP addresses to detect 

vulnerabilities of the victim. 
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• Remote to Locale (R2L): R2L attacks are attacks in which the attacker can 

send packets to the target over the network but does not have login rights. The 

goal of the attack is to exploit a weakness to gain user access to the machine. 

• User to Root (U2R) Attacks: U2R attacks are attacks such that the attacker has 

normal user access to the target but tries to gain root access. U2R attacks use 

methods such as password sniffing to gain access.  

Table 4.1 shows the different attacks in each category where the attacks that only 

exist in the test set are written in bold. 

Table 4.1. Attacks in each attack category in KDD’99 Dataset 

Category Attacks 

DOS back, neptune, smurf, teardrop, land, pod, apache2, mailbomb, 

processtable, udpstorm 

 

PROBE satan, portsweep, ipsweep, nmap, mscan, saint 

 

R2L warezmaster, warezclient, ftp_write, guess_passwd, imap, multihop, 

phf, spy, sendmail, named, snmpgetattack, snmpguess, xlock, 

xsnoop, worm, httptunnel 

 

U2R rootkit, buffer_overflow, loadmodule, perl, ps, sqlattack, xterm 

 

There are some problems with the KDD’99 dataset. The first problem is that it is old; 

therefore, it does not contain many of the services used today.  

The second problem of the dataset is that it is imbalanced. The training dataset 

contains 494019 samples, which are distributed as 19.69% normal samples, 79.24% 

DoS attacks, 0.83% Probe attacks, 0.23% R2L attacks and 0.01% R2L attacks. 
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Figure 4.1. KDD’99 Attack Distribution Graph 

In the dataset, less than 1% of the attacks are R2L and U2R attacks, which makes 

training and testing intrusion detection methods for these types of attacks harder. 

Because of this, many of the traditional intrusion detection systems, especially those 

that use classification-based algorithms are unable to detect these intrusions with a 

better ratio than random guessing. 

The third problem of the dataset is the noise of extracted features. There are samples 

in the dataset, which contain the exact same or very similar features with different 

labels. This noise especially affects the detection rates of the U2R attacks since their 

features are most similar to the normal samples. 

Other problems regarding the simulation used to collect data also exist. For example, 

in 2003, [40] discovered that all the malicious packets had a TTL of 126 or 253 and 

almost all the normal packets had a TTL of 127 or 254. Fortunately, this property was 

not used in the extracted features.  

Despite the problems, the KDD’99 dataset is the most used intrusion detection dataset 

by far. It is used in 64% of the intrusion detection papers, which can be considered as 

the benchmark for comparing different intrusion detection algorithms [13]. It includes 
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9 weeks of data in total, which includes many different connection types. The 

distributions of the attacks are different in the training and testing set and there exist 

additional attacks in the testing set. These differences allow better testing of intrusion 

detection algorithms. Especially the additional attacks allow testing of intrusion 

detection systems on whether they can detect unknown attacks or not. Because of 

these, the KDD’99 dataset is selected to be used in this thesis for testing various deep 

learning algorithms. 

4.3. Deep Learning Based Intrusion Detection Algorithms 

The deep learning-based intrusion detection algorithms include supervised binary 

classifiers and unsupervised autoencoders. Binary classifiers use all of the training 

data to learn to separate data into normal and attack classes. Autoencoder-based 

unsupervised methods use only non-anomalous training data to learn the normal of the 

system and try to find samples, which deviate from the normal. 

In this thesis, standard Fully Connected Network and sequential LSTM and TCN 

networks are used as both classifiers and autoencoders. The next sections describe 

how these architectures are used as a classifier and autoencoder. 

4.4. Binary Classification Using Deep Learning Techniques 

Given a dataset containing normal and anomalous samples, binary classification can 

be used for anomaly detection in a straightforward manner. After preprocessing the 

data, different hyperparameters for the neural network must be tested to find the 

optimal neural network. Some of the hyperparameters of the feed forward neural 

network are explained below. 

Learning Rate and Optimizer Algorithm: There are several optimization 

algorithms which are based on SGD. [41] developed a unit testing framework to 

compare these algorithms and concluded that different optimization algorithms 

struggle on different tasks and there is no clear best among them. Schaul also stated 

that Adam optimizer is less prone to hyper-parameter tuning. Adam is an adaptive 
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learning method which calculates a learning weight value for each individual network 

parameter by using gradient estimations. Generally, Adam is faster than SGD in 

training the model, however, [42] showed that, despite training taking longer, SGD 

achieves better accuracy rates than Adam for some tasks. Therefore, Adam and SGD 

are selected as potential optimization algorithms. 

Network model: The number of layers and the number of neurons in each hidden 

layer need to be decided. There is no certain method to decide this, other than trial and 

error. But there are some general guidelines thanks to the previous works in the deep 

learning field. 

The more complex the relationship between input and output data, the larger networks 

are required. If the network is not large enough for the complexity of the problem, 

then the network would underfit and cannot learn the complex relationship between 

them. If the network is too large, the network can overfit and simply memorize the 

sample data and would not learn anything else [43]. The amount of training data is 

also another factor, which sets a maximum limit for the network model, if data is 

smaller than the total number of networks parameters, the parameters cannot be trained 

well enough [44]. 

The main problem of classifier-based anomaly-based detection techniques for this task 

is the dataset imbalance. Including the KDD’99 dataset, anomaly detection datasets 

generally suffer from dataset imbalance, since anomalous data appears much less 

frequently than normal data. This makes the deep learning model biased against 

anomalous data, since misclassifying normal data affects the cost function more. In 

the intrusion detection case, the collected datasets usually have sufficient amounts of 

data for some types of attacks such as DoS, but other types of attacks usually do not 

have enough samples. 

Because of the imbalance problem in the KDD’99 dataset, it is very hard for anomaly-

based detection systems to detect R2L and U2R classes while DoS and Probe attacks 
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are easier to detect. In fact, most machine learning algorithms cannot detect R2L and 

U2R attacks with better accuracy than random guessing [21]. 

Dataset imbalance is one of the biggest challenges of deep neural networks. There are 

some methods proposed to fight with imbalance. These methods can be classified into 

two categories: Sampling-based and Algorithm-based. Sampling-based methods can 

be further divided into two categories: Undersampling and oversampling. 

In undersampling-based methods, only a subset of the majority class is used in 

classification to make the dataset balanced. The disadvantage of this method is the 

information loss regarding the majority classes. However, since KDD’99 dataset is 

known for its duplicate and redundant records, this method might help detect the 

minority classes while not losing information.  

In algorithm-based methods, the algorithm is modified to handle the imbalance. One 

example of such methods is cost-sensitive loss functions. Usually, the loss functions 

used in deep learning do not differentiate between the misclassification of different 

classes. However, modifying the loss function to punish misclassification of the 

minority classes more helps classification of minority classes. One of the most popular 

methods used for this purpose is to add weights to the loss function disproportional to 

the size of the samples of each class. These two methods will be used to experiment 

on the KDD’99 dataset to solve the imbalance problem. 

Experiments were run with different parameters such as learning rate, number of 

layers in the network and number of neurons in each layer and regularization 

parameters. The process of finding good parameters is empirical, iterative and requires 

several round trips. 

4.5. Binary Classification Using Sequential Models 

Feed forward neural networks assume each sample is independent from each other, 

however, this is not always the case for intrusion detection data. For example, DoS 

attacks, which aim to overflow the network by sending multiple packets at once, and 
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probe attacks, which search for weaknesses in the target, are sequential attacks by 

nature. The network packets carrying these attacks can look like non-anomalous data, 

but the frequency of the packets might indicate that an attack is happening.  

In addition to that, the multi-step attacks which consist of multiple independent attacks 

following each other can be detected from sequential data. For example, in KDD’99 

data probe attacks are used for detecting weaknesses, U2R attacks are used for gaining 

user access to the target and R2L attacks are used for gaining admin access from a 

computer in which the attacker has user access. In that case these samples are clearly 

not independent from each other. 

LSTM and TCN are architectures used when there are such dependencies between the 

samples. They work on sequences and remember past samples in the sequence while 

classifying each sample. 

LSTM can handle sequences of 500 samples using BPTT without vanishing and 

exploding gradient problem. Exploding gradients can be solved by clipping the 

gradient values above a threshold, but vanishing gradients are a challenge for LSTM 

networks. In addition to that, it is computationally expensive to run BPPT for long 

sequences [45]. 

The KDD’99 training dataset is a 494019-time step sequence. Therefore, LSTM 

cannot be used on the dataset without segmenting the data into smaller sequences. In 

order to apply LSTM to long time series, Sutskever proposed a method called 

“truncated BPTT” (tBPTT) which “processes the sequence one timestep at a time, and 

every k1 timesteps, it runs BPTT for k2 timesteps…”. Since the gradient is only 

calculated for k2 steps, this solves the vanishing gradient problem while still allowing 

LSTM to learn the past. tBPTT solves the vanishing gradient problem while at the 

same time reducing the cost of a single parameter update. Sutskever shows that tBPTT 

works by giving an example in which a sequence of length 1000 is divided into 

sequences of length 20. In this example, the algorithm was able to learn temporal 

dependencies of the sequence without facing vanishing gradient problem [46]. 



 

 

 

37 

 

The TensorFlow library implements a specific version of tBPTT, which is called 

“epoch wise truncated backpropagation”. In this variant of tBPTT, k1 is always equal 

to k2. The sequence is processed a fixed number of timesteps and then BPTT runs for 

the same fixed number of steps. Thus, what the algorithm does is essentially divide 

the sequence into fixed sized smaller sequences and process each sequence by using 

the output and hidden state parameters of the previous sequence. The researches 

comparing Sutskever’s tBPTT and TensorFlow’s tBPTT show that the performance 

of TensorFlow tBPTT with step size k is equal to the performance of Sutskever’s 

tBPTT where k1 is 2*k and k2 is k [30], [47]. Feed forward autoencoders are trained 

on each normal sample to reconstruct the normal samples. Similar to classification 

models, the network parameters must be configured for optimal performance. 
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Figure 4.2. BPTT vs Epoch-Wise Truncated BPTT  

The main problem of tBPTT is that it is sequential, therefore before processing a batch, 

the output and hidden state of the previous batch need to be known. Therefore, the 

process cannot be parallelized. Because of this and the more complex structure of the 

cells, LSTM is much slower than the feed forward networks while also being 

computationally more expensive. Therefore, LSTM is at a disadvantage in comparison 

to feed forward neural networks, especially if the model is used for real time intrusion 

detection.  

In this thesis, Feed forward, LSTM and TCN classifiers have been implemented for 

intrusion detection. 
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4.6. Unsupervised Method: Autoencoders 

To use an autoencoder for anomaly detection, the model first must be trained using 

only the non-anomalous samples of the training set so that the model learns what the 

normal baseline for the dataset is. Then, a reconstruction error threshold must be 

selected above which the samples are considered anomalous. In the literature there are 

different methods used for selecting the threshold. These methods generally use two 

validation datasets consisting of only normal data and mixed data respectively. The 

thresholds are selected using the reconstruction errors of the normal validation data 

generally using statistical properties of it such as mean, standard deviation, etc. 

Selected thresholds are then tested on the second validation dataset.  

For LSTM and TCN autoencoders, the reconstruction is done not for individual 

samples, but for sequences. For these autoencoders, fixed size sequences are extracted 

from all datasets using a sliding window. The label of each window is decided by 

whether the window has any anomalous samples or not. It is expected that the 

autoencoder should not be able to reconstruct a window sequence if anomalous data 

exists regardless of the location of the anomaly. While calculating the reconstruction 

errors, the whole sequence is used.  

The proposed LSTM autoencoder model does not use tBPTT and treats the fixed-

window sized sequences as if they are independent of each other. This approach was 

first used by [48] to detect anomalies in multivariate sensor data. This work 

empirically showed that despite the sequence is divided into smaller sequences 

independent from each other, the model was still able to extract sequential information 

from the dataset. Later on, [49] used a similar algorithm to detect anomalies in 

seasonal KPIs (key performance indicator). Despite using fixed sized windows, which 

hold fewer timesteps than a season’s worth of data, the autoencoder was able to extract 

seasonal patterns from the dataset. [49] proved that the autoencoders are able to extract 

patterns which span larger than the fixed size window length formally and called this 
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“time gradient effect”. Using this approach, fixed-size sequences can be processed in 

parallel, which speeds up the training time considerably. 

After the model is trained on normal data, an anomaly score threshold is calculated 

for the whole sequence. If the score of a sequence is above a decided threshold, the 

sequence is considered an anomaly. The hyper parameters need to be tuned for this 

method, including window size, number of LSTM layers in encoder and decoder, sizes 

of LSTM layers, the anomaly score threshold in addition to regular network 

parameters such as regularization, learning rate and so on. Similarly, TCN 

hyperparameters also must be tuned. 

A disadvantage of this method is that it assigns a label to the whole sequence, not each 

sample. Thus, it is not possible to determine the exact samples that cause the anomaly. 

However, since a sliding window is used to create smaller sequences, it is possible to 

pinpoint where the anomaly is in the sequence by looking at where the first anomalous 

record is. 
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CHAPTER 5  

 

5. EXPERIMENTS 

 

5.1. Introduction 

This section contains the performance results of the anomaly detection methods 

described in the previous chapters. In the experiments, at first, optimal parameters for 

both supervised and unsupervised methods are found. Then, the best performing 

models are compared with each other. Lastly, the results are compared with SVM, 

which is one of the best performing machine learning algorithms in the intrusion 

detection field. 

5.2. Data Pre-processing 

KDD’99 contains 38 continuous or binary and 3 categorical features. The categorical 

features are: “Protocol type” which has 3 categories (tcp, udp, icmp), “service” which 

has 70 categories (including ftp, telnet, http etc.) and “Flag” including 11 categories. 

The neural networks require numerical input, therefore the categorical features are 

converted to numerical values using one-hot-encoding. 

One of the features in the dataset, num_outbound_cmds, only has a single value in 

both training and testing datasets, therefore this feature is dropped from the datasets. 

The numerical features are normalized using min-max scaling [50] so that each feature 

ranges in the interval [0,1].  

The outputs of the samples are converted to binary, where 0 represents a non-

anomalous sample and 1 represents a malicious sample. 

In addition to that, for training of feed forward neural networks, the duplicate records 

are dropped from the training dataset. Feed forward neural networks assume every 
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sample is independent from each other and does not use the dependencies between the 

samples while LSTM and TCN models can use the relationship between duplicate data 

to extract information. 

5.2.1. Classification Experiments 

Hyperparameter tuning is the task of finding the optimal hyperparameters for the 

neural networks. There are no deterministic methods to decide the hyperparameters 

for a particular algorithm used on a particular dataset, although there are some rules 

of thumb, which provide a starting point. Because of this, experiments with different 

hyperparameters must be ran to find the optimal neural network model. 

For each experiment, the tests were run up to 250 epochs. However, an early stopping 

mechanism was adopted to stop the training if the validation loss started increasing 

significantly. Additionally, the model was recorded whenever the validation loss hit a 

new minimum value. For regularization purposes Batch Normalization and Dropout 

are used.  

5.2.1.1. Hyperparameter Tuning for Fully Connected Networks 

For the feed forward network all hidden layers are fully connected layers. For this type 

of network, the hyperparameters to be tuned are learning rate, optimizer algorithm and 

the network models for each network architecture. 

The rule of thumb for selecting learning rate is that learning rate must be a value 

between 0.00001 and 1 [51]. Therefore, experiments with learning rate values in this 

range are run for finding the optimal learning rate. In addition to that, experiments 

using optimizer algorithms Adam and SGD are also tested. 

The number of hidden units is calculated using the formula below: 

Nh=Ns(α∗(Ni+No)) 

Ni = number of input neurons. 

No = number of output neurons. 
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Ns = number of samples in training dataset. 

α = an arbitrary scaling factor, usually 2-10. 

Starting from this point, the best architecture is searched following an iterative process 

and an optimal solution is found. Experiments are run with number of layers ranging 

between 1 to 5. Also, different number of neurons for each hidden layer, in the range 

16 and 512 are tested. ReLU activation is used in all tests. Other hyperparameters that 

are tuned are learning rate and the dropout rates between the layers. 

Table 5.1. Tested Hyperparameters for FCN Classifier 

Hyperparameter Tested Values 

Learning Rate 0.00001, 0.0001, 0.001, 0.1, 0.5 

Number of Hidden Layers 1-5 

Hidden Neuron Counts in Each Layer 2^3 – 2^8 

Optimizer Adam, SGD 

Dropout Rates Between Each Layer 0.1, 0.3, 0.8 

 

The learning rate experiments showed that the network performs better when learning 

rate is in the range [0.001, 0.0001]. When learning rate is 0.00001, the updates to the 

network are so small that the early exit mechanism stops training since validation 

accuracy does not improve. When learning rate is larger than 0.1, the networks cannot 

learn from the network at all. With each update to the weights the loss and validation 

accuracy increases and decreases dramatically and eventually the network settles on 

predicting the same value for each sample. 

The best fully connected classifier model architecture is shown in Figure 5.1. The tests 

showed that there are multiple models which performed as well as the model in Figure 

5.1.; however, this model is selected as the best model, because it was the smallest 

model amongst the best architectures. Smaller architectures use less resources and are 

faster to train. Also, they tend to generalize better [14], which is why the smallest 

architecture is selected. 
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The experiments showed that architectures with fewer number of hidden units than 

the selected architecture were not able to learn the dataset completely and underfit the 

data. Since the number of DoS samples in the network were more than the number of 

samples from other attack categories and DoS attacks have the most unique features 

compared to other attacks, the neural networks were able to learn these attacks but not 

the others. The architecture with the lowest accuracy rate had 90.1% prediction 

accuracy. The prediction accuracy of the model in Figure 5.1. is 93.5% and this is the 

highest prediction accuracy obtained using fully connected  layers.  

 

Figure 5.1. FCN Classifier Model 

5.2.1.2. Hyperparameter Tuning for LSTM Networks 

For LSTM models, the same hyperparameters with the fully connected models must 

be tuned. However, in addition to these, LSTM models have additional parameters. 

The first additional parameters are the number of hidden LSTM layers and size of each 

LSTM layer. For LSTM, the hidden layers usually consist of one or more LSTM layers 

followed by fully connected layers. Thus, configurations with LSTM layers and fully 

connected layers are experimented with to find the best solution. In addition, the 

window size for truncated backpropagation must be selected using the experiments. 
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Table 5.2. Tested Hyperparameters for LSTM classifier 

Hyperparameter Tested Values 

Learning Rate 0.00001, 0.0001, 0.001, 0.1 

Number of Hidden LSTM Layers 1-4 

Hidden Neuron Counts in LSTM Layers 32-256 

Number of Hidden Connected Layers 1-4 

Hidden Neuron in Fully Connected Layers 4, 20, 32, 64, 96, 128 

Optimizer Adam, SGD 

Dropout Rates Between Each Layer 0.1, 0.3, 0.8 

Time steps for tBPTT 32-512 

 

For the single layer LSTM, different configurations for LSTM hidden neurons and 

number of timesteps are tested. The experiments were performed using an LSTM 

layer, which has 32, 64, 128 or 256 hidden units, followed by two fully connected 

layers with 20 and 1 hidden units each. Gradient clipping is used to limit the gradients 

within the [-1, 1] range. After the best window size and LSTM hidden neurons are 

selected, further experiments are conducted to improve the performance.  
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Figure 5.2. Timestep – Accuracy Graph For LSTM 

The experiments show that the single layer LSTM network performs the best when 

the window size for tBPTT is 64 or 128. For longer time steps, the results start to 

worsen. The selected sequence length is equal to the number of samples processed 

before an update is made and in the update all samples in that sequence are considered. 

When the sequence is long, instances of samples, which appear in the dataset rarely, 

are processed with samples that appear frequently. Therefore, infrequent samples are 

ignored, and the results are affected negatively. 

After selection of timesteps, experiments with additional fully connected layers are 

conducted. The experiments showed that single LSTM layer followed by 2 hidden 

layers with 32 and 20 neurons respectively performs very well.  

Table 5.3. Best Performing LSTM networks 

Network Time step Acc f-1 Normal DOS Probe R2L U2R 

LSTM (64) 128 0.941 0.962 0.995 0.991 0.748 0.093 0.200 

LSTM (128) 64 0.940 0.968 0.964 0.999 0.749 0.093 0.157 

LSTM (128) 128 0.932 0.955 0.975 0.986 0.788 0.033 0.142 
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The addition of new LSTM layers did improve the training loss; however, test loss did 

not reflect this. Therefore, a single layer LSTM is chosen as the final configuration. 

5.2.1.3. Hyperparameter Tuning for TCN Networks 

For TCN networks, in addition to hyperparameters optimized for fully connected 

networks parameters regarding the convolutional layers must be optimized. These 

parameters include the number of convolutional layers, number of filters and kernel 

size in the convolutional layers. In addition to that, window sizes are decided in an 

iterative manner. The tested parameters and optimal values are displayed in Table 5.4 

below. 

Table 5.4. TCN Parameters 

Hyperparameter Tested Values Optimal Values 

Learning Rate 0.00001-0.1 0.0001 – 0.001 

Number of filters in Conv layers 16, 32, 64 64 

Kernel size for Conv layer 2, 4, 8, 16 4 

Number of residual blocks to use 1, 2 1 

Optimizer Adam, SGD Adam 

Dropout Rates Between Each 

Layer 
0.1, 0.3, 0.5 0.1 

Activation Function for Conv 

Layers 
Linear, ReLU ReLU 

Sequence Length 32-256 64/128 

 

The size of dilations for each convolutional layer is set by setting the dilation size of 

the 𝑖𝑡ℎ convolutional layer to 2𝑖−1. 

The optimal learning rate for TCN is learning rates between 0.0001 – 0.001 and is 

similar to LSTM networks. The experiments showed that the optimal number of filters 

in the convolutional layers is 64, while the optimal kernel size for the convolutional 

layers is 4. 
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5.3. Classification Experiment Results 

The results showed that classification models, despite having good performances 

based on their accuracy and f1-score performances, are unable to detect R2L and U2R 

attacks. Classification methods suffer from dataset imbalance and cannot detect rare 

attack types in the R2L and U2R categories since less than 1% of all samples belong 

to data in this class. Therefore, methods to fight imbalance were applied to the 

classification methods. 

The first method is to apply weights to each sample. Initially weights were selected 

for each of the 23 unique attacks inversely proportional to the number of samples for 

each attack. But as the number of samples from each class ranges between 2 and 1 

million, these selected weights were too high for underrepresented classes, and it did 

not allow the network to stabilize. The loss value jumped between each epoch and 

eventually the network settled to output a single value. Therefore, weights are applied 

according to attack categories.  

In the undersampling method, 2000 attacks from each category are selected; however, 

less than 2000 samples exist for R2L and U2R attacks, therefore all existing samples 

from these categories are included. In addition to anomalous samples, normal samples 

are added to the undersampled dataset so that the total number of anomalous samples 

and normal samples are equal to each other.  

Table 5.5. Binary Classification Results 

Model Accuracy Precision Recall F1-score 

Vanilla FCN 0.931 0.918 0.996 0.955 

FCN w/ Weights 0.927 0.913 0.996 0.9532 

FCN w/ Sampling 0.935 0.927 0.9923 0.958 

LSTM 0.941 0.929 0.998 0.962 

LSTM w/ Sampling 0.942 0.939 0.989 0.963 

TCN 0.942 0.929 0.998 0.962 

TCN w/ Sampling 0.941 0.939 0.988 0.963 

 



 

 

 

49 

 

The binary metrics get worse when using the sampling method. In addition to that, 

sampling-based methods have higher false alarm rates. However, without sampling 

the networks cannot detect the R2L and U2R attack categories and can only detect 

DoS and probe attacks. Overall, it can be concluded that sampling models are better 

than non-sampling models. 

Table 5.6. Binary Classification Detection Rates 

Model Normal DoS Probe R2L U2R Avg. 

Vanilla FCN 0.986 0.9614 0.93 0.308 0.285 0.695 

FCN w/ Weights 0.987 0.948 0.879 0.4246 0.785 0.805 

FCN w/ Sampling 0.970 0.940 0.958 0.737 0.828 0.887 

LSTM 0.993 0.992 0.843 0.062 0.185 0.615 

LSTM w/Sampling 0.958 0.970 0.892 0.517 0.7 0.807 

TCN 0.993 0.992 0.839 0.077 0.328 0.646 

TCN w/ Sampling 0.953 0.961 0.874 0.518 0.714 0.806 

 

Lastly, for zero-day attack comparison, the detection rates of attacks that only exist in 

the test set are compared in Table 5.7. Although there are 237594 DoS samples in the 

testing set, only 6555 of them are unique to the testing set. Out of these 6555 samples 

5000 of them belong to the same attack type: mailbomb. Since the neural network 

cannot detect this attack, their DoS detection rates are very low. However, they can 

detect more than 99% of the DoS attacks that exist in the training dataset, thus very 

high DoS detection rates are achieved. LSTM and TCN models achieve two times 

better performance in detecting DoS attacks, probably because of their abilities to 

extract sequential patterns. However, for all other attack types the FCN model is 

superior to the others and has the best average detection rate. Overall, the detection 

rates of unknown attacks are lower than the detection rate of known attacks except 

LSTM networks’ probe attack detection rate.  
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Table 5.7. Zero-day Attack Detection Rates 

Model DoS  PROBE R2L U2R Avg 

FCN w/ Sampling 0.117 0.888 0.616 0.613 0.558 

LSTM w/Sampling 0.242 0.896 0.449 0.354 0.486 

TCN w/ Sampling 0.223 0.856 0.471 0.387 0.484 

 

5.4. Autoencoder Models 

Similar to classification models, optimal hyper-parameters for autoencoders were also 

found by trial and error after the training dataset was split into a training set and two 

validation sets. An architecture containing a 3-layer encoder followed by a 3-layer 

decoder was optimal for all autoencoders which can be seen in Figure 5.4. The first 

layer after the input layer has 300 neurons, which is larger than the number of features 

in the processed KDD’99 dataset, which has 122 features. This allows autoencoder to 

model the features better. The latent layer has 10 neurons, which means autoencoder 

represents the input with 122 features using 10 features. 

For FCN and TCN autoencoders the ReLU activation function is used in all layers 

except the layer directly after the latent view. However, for LSTM tanh activation 

function is used as it was originally designed by Graves [33]. Using ReLU with LSTM 

caused the “Dying ReLU” problem. A large gradient can cause a weight update to a 

ReLU neuron so that it will never activate again regardless of the input [52]. 
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Figure 5.3. Autoencoder Model 

For LSTM and TCN autoencoders fixed size windows were selected after 

experimentations with window sizes of 32, 64, 128 and 256. For both LSTM and TCN, 

the sequence with 64 samples has the optimal sequence length. 

Since LSTM-AE and TCN-AE models make predictions per sequence instead of 

samples, the calculation of metrics is different for these models. The number of 

sequences in the test set is equal to the difference between the number of elements in 

the test set and the selected window size. The binary metrics are calculated using the 

actual and predicted label of the sequences.   
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Table 5.8. Binary Metrics for Autoencoders 

Model Accuracy Precision Recall F1-score 

FCN-AE 0.953 0.982 0.959 0.970 

LSTM-AE 0.916 0.940 0.971 0.955 

TCN-AE 0.930 0.979 0.948 0.963 

 

The detection rates for attacks in the sequences are determined by whether the 

sequence, which has the attack as its middle element, is identified correctly or not. 

However, if an attack that is harder to detect is next to an easier to detect attack, it is 

impossible to say whether the attack can be successfully detected or not. Fortunately, 

harder to detect U2R and R2L attacks are not placed closer to the other attacks, 

therefore the detection rate information represents whether the attack can be detected 

or not accurately. 

Table 5.9. Detection Rates for Autoencoders 

Network  Normal DOS  PROBE U2R R2L Avg. 

FCN-AE 0.962 0.994 0.999 0.376 0.928 0.851 

LSTM-AE 0.972 0.940 0.888 0.277 0.228 0.661 

TCN-AE 0.936 0.972 0.935 0.310 0.285 0.680 

 

The fully connected autoencoder can detect almost every attack in each category 

perfectly except for U2R attacks. The reason why it cannot detect U2R attacks is that 

the features of some of these attacks are very similar to some of the normal samples. 

In particular, there is an attack called “snmpgetattack” in the test set, for which normal 

samples with the exact same features exist in the training set. Removing these from 

the normal training data increases the detection accuracy for U2R attacks. Anomaly 

detection systems rely on the assumption that anomalies have distinctive properties 

and this assumption does not hold for U2R feature values. 
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LSTM-AE and TCN-AE have lower accuracy and f-1 scores in comparison to FCN-

AE and do not learn to detect rare attacks. The possible reason for this is that the 

dataset might not be fit for sequence-based anomaly detection. Most of the previous 

works regarding LSTM-AE based anomaly detection systems were done on datasets, 

whose inputs consist of sequences collected from a single source in a continuous 

manner such as sensor data, stock market rates, seasonal KPI data and so on. 

Moreover, these values change in a continuum [48], [49]. In the KDD’99 dataset, the 

samples are listed in sequential order. However, two samples that are next to each 

other in the dataset might not be related to each other. In a computer network, multiple 

packets are transmitted between multiple computers at the same time. These packets 

might have no relation to each other besides occurring simultaneously. Thus, 

processing them in the same sequence would only create noise. In addition to that, the 

samples in the dataset have no identifying information such as IP addresses or port 

numbers. Because of this, the samples that are related to each other cannot be detected. 

In a way, the KDD’99 dataset is not a long sequence, but a list of shorter sequences 

sorted together. 

In addition to that, the amount of data might not be enough for these models. These 

architectures are more complex than fully connected architectures, which in general 

require more data. Adding this to the complexity of the KDD’99 dataset sequences, 

the architectures might need more data to capture the characteristics of the dataset.  

The second possible reason is that sequence-based models might not be necessary. 

The KDD’99 dataset has features, which contain information about the packets that 

arrived in the last 2 second window and the last 100 packets, which help detection of 

sequential attacks. 

In general, the best performing model is FCN-AE, since it has the best accuracy, f1-

score and average attack detection rates. The only criterion for which this architecture 

is not the best is the U2R attack detection rate and false alarm rate. The LSTM 

classifier has the lowest false alarm rate.  
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5.5. Performance Comparison with SVM 

SVM is one of the most successful machine learning algorithms in intrusion detection. 

SVM can be used for supervised training while a modified version of the algorithm, 

One-Class SVM (OC-SVM) can be used as an unsupervised training method. [16] 

compared the performance of SVM and ANN on the KDD’99 dataset in 2002. The 

results showed that the detection results of SVM are better than those of deep learning. 

Therefore, SVM and OC-SVM will be used to measure the success of the deep 

learning algorithms on metrics such as accuracy, f1-score, detection rate and run time. 

SVM is a supervised classifier, which takes labelled data in which labels are 

categorical. SVM determines an optimal hyper-plane, which separates the training 

data according to their classes. There are many hyper-planes, which separate the data, 

but the optimal hyper-plane is described as the hyper-plane that maximizes the margin 

between the classes. The hyperplane separates the data linearly, which makes SVM 

not applicable for tasks more complex than linear problems. However, by using kernel 

functions the mapping for more complex problems can be done [53]. 

One-class SVM (OC-SVM) is a modified version of SVM, which is trained using only 

data that belongs to one class. OC-SVM separates the input data from the origin in the 

feature space and maximizes the distance of the hyperplane separating the data and 

origin. As a result, the algorithm captures the regions in the input space, where the 

input data lives. Given new data, the algorithm returns whether the data belongs to the 

region of the input class or not [54]. 

There are two main advantages SVM has over the deep learning-based intrusion 

detection algorithms. Firstly, the loss function of SVM algorithm, hinge loss, is a 

concave function, which means it has a single minimum value that the training 

algorithm eventually is able to find. Deep learning algorithms use non-convex loss 

functions, which have local minima that training algorithms can get stuck at [55]. 

Secondly, the SVM classifier is less affected from dataset imbalance than deep 
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learning based classifiers, since SVM only considers samples that are closer to 

boundaries that separates the different classes, which are called support vectors.  

SVM and OC-SVM algorithms were used on KDD’99 to compare the results with the 

deep learning models. SVM classification performances are shown in Table 5.10. The 

results show that the performances of deep learning classifiers are comparable to deep 

learning classifiers when it comes to accuracy and f1-scores, which are in the range of 

0.935-0.941 and 0.958-0.964 respectively. However, FCN-AE outperforms both SVM 

and OC-SVM with 0.953 accuracy and 0.97 f1-score. 

Table 5.10. SVM Binary Classification Results 

Model Accuracy Precision Recall F1-Score 

SVM 0.939 0.938 0.990 0.963 

OC-SVM 0.941 0.941 0.988 0.964 

 

The detection rates of SVM and OC-SVM for different attack categories are given in 

Table 5.11. Unlike deep learning-based classifiers, SVM can detect infrequent attacks 

without additional measures such as undersampling. Thus, SVM might be able to 

perform better for practical intrusion detection than deep learning-based classifiers.  

OC-SVM has the highest detection rate for U2R type attacks with 0.832 between all 

tested algorithms. However, FCN has a higher average detection rate with 0.887 in 

comparison to OC-SVM’s 0.880. In addition to that, besides U2R attacks, for all attack 

types FCN-AE has higher detection rates than OC-SVM while having a lower false 

positive rate. In conclusion, FCN-AE outperforms SVM and OC-SVM algorithms in 

every metric other than detection of U2R attacks. 

Table 5.11. SVM Attack Detection Rates 

Model Normal DoS  PROBE U2R R2L Avg 

SVM 0.980 0.960 0.822 0.438 0.667 0.734 

OC-SVM 0.934 0.980 0.990 0.832 0.667 0.880 
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5.6. Performance Comparison with Existing Works 

In this section the performance of the deep learning-based algorithms is compared 

with existing works from the literature. All selected papers use the KDD’99 training 

set for training and the complete KDD’99 dataset for testing. For comparison of 

machine learning methods, the work of [56] is selected, where performances of 

different algorithms are compared. For deep learning methods, the results are collected 

from various papers where the KDD’99 dataset is used. 

Table 5.12. Accuracy and f1-Scores of Existing Works 

Algorithm Accuracy f1-score Other Scores 

AdaBoostM1  0.915 0.945 - 

BayesNet 0.916 0.945 - 

Decision Table 0.947 0.966 - 

J48 0.934 0.958 - 

MLP 0.918 0.947 - 

Naïve Bayes 0.914 0.944 - 

OneR 0.907 0.939 - 

Random Forest 0.924 0.950 - 

RBF Network 0.852 0.900 - 

SGD 0.922 0.945 - 

LSTM with RTRL [21] 0.938 0.96 - 

DBN on stacked RBM [24] - - 
DR= 0.935 

Recall = 0.923 

AE with softmax classifier [25] 0.956 0.969 FPR= 0.42% 

Semi-supervised  DRBM [57] 0.940 - - 

AE for dimensionality reduction 

and RBM [58] 
0.921 - 

Recall= 0.922 

FPR= 1.58% 

FCN (This work) 0.935 0.958 - 

FCN-AE (This work) 0.953 0.970 - 

 

In comparison to existing methods, only one work has higher accuracy rates than 

FCN-AE, which has 0.956% accuracy in comparison to 0.953% accuracy rate of FCN-
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AE. However, FCN-AE has a higher f1-score with 0.97 in comparison to 0.969 [25]. 

The work also uses an autoencoder for intrusion detection. However, unlike the model 

in this thesis, after training the autoencoder [25], it adds a softmax layer to the end of 

the network and trains the network in a supervised manner. Overall, the performances 

of both algorithms are similar to each other. Overall, autoencoders seem to be the 

algorithm with the highest accuracy and f1-scores among the deep learning algorithms 

and hybrid deep learning algorithms, which combine deep learning algorithms with 

other algorithms.  

In general, papers which focuse on anomaly-based intrusion detection algorithms do 

not report individual detection rates for different attack categories. However, there are 

several works that use classification methods, which uses deep learning algorithms to 

make 5-class classifications in which each attack category and normal samples are 

used as classes. Table 5.13 reports detection rates from existing algorithms, where 2-

class anomaly detection or 5-class detection algorithms are used on the KDD’99 

dataset. 

Table 5.13. shows that FCN-AE has the highest detection rates for DoS, Probe and 

R2L attacks and FCN has the highest average attack detection rate. However, OC-

SVM has the highest detection rate for U2R attacks. In general, the results show that 

majority of the existing algorithms are not capable of detecting U2R and R2L attacks. 

Among the previous works, the highest U2R detection rate is 0.44, while the highest 

detection rate for this attack type is 0.832, which is obtained using OC-SVM. Among 

the previous works the highest R2L detection rate is 0.182 while the highest R2L 

detection rate is 0.928, obtained with the FCN-AE algorithm. 
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Table 5.13. Detection Rates from Existing Works 

Model Normal DOS  PROBE U2R R2L Avg 

C. 4.5 [59] 0.995 0.971 0.833 0.132 0.084 0.603 

Pnrule [60] 0.995 0.969 0.732 0.066 0.107 0.574 

C. 4.5 w/ Oversampling [61] 0.995 0.941 0.747 0.257 0.062 0.600 

Random Forest w/ 

Oversampling  [61] 
0.995 0.942 0.746 0.243 0.106 0.606 

MLP [62] 0.984 0.970 0.860 0.143 0.119 0.615 

Boosted J48 [62] 0.995 0.969 0.920 0.118 0.171 0.635 

General Regression NN [62] 0.911 0.993 0.853 0.440 0.128 0.665 

Boosted Modified Probabilistic 

NN [62] 
0.998 0.984 0.917 0.227 0.182 0.662 

ANN [61], [63] 0.993 0.939 0.741 0.129 0.129 0.586 

LSTM [21] 0.995 0.994 0.784 0.031 0.171 0.595 

SVM (This work) 0.980 0.960 0.822 0.438 0.667 0.734 

OC-SVM (This work) 0.934 0.980 0.990 0.832 0.667 0.880 

Vanilla FCN (This work) 0.986 0.9614 0.93 0.308 0.285 0.695 

FCN w/ Sampling (This work) 0.970 0.940 0.958 0.737 0.828 0.887 

FCN-AE (This work) 0.962 0.994 0.999 0.376 0.928 0.851 

 

 

 



 

 

 

59 

 

CHAPTER 6  

 

6. TRANSFER LEARNING 

 

6.1. Introduction 

This chapter summarizes the results of transfer learning experiments on neural 

networks, which are trained on the KDD’99 dataset. The trained networks were then 

used to detect intrusions on the IDS 2017 dataset, which was created by the Canadian 

Institute for Cybersecurity in 2017. This dataset is almost twenty years newer than the 

KDD’99 dataset, therefore, there are some attacks that did not exist in the dataset as 

well as non-anomalous data, which is extracted from network services that did not 

exist before. 

6.2. CI IDS 2017 Dataset 

The dataset is a generated dataset, which used a profiling system to create abstract 

behaviors of 25 users based on several network services such as HTTP, FTP, email 

protocols, etc. [64]. 

The created dataset spans 5 work days from Monday to Friday during work hours. In 

the Monday dataset, there exist only non-anomalous data while other days contain 

anomalous data too. There are 17 different attacks, which include zero-day attacks and 

multi-step attacks in the dataset. The attacks belong to the categories below: 

Brute Force Attack: This is an attack, where the attacker tries to send as many 

messages as possible for purposes such as cracking a password or finding hidden 

content. If this attack was in the KDD’99 dataset, it would be labelled as a PROBE 

attack. 
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Botnet: A Botnet is a number of devices each of which runs one or more bots. The 

bots can be used for several purposes including participating in DoS attacks, phishing, 

email scams, Bitcoin mining, etc. [65]. 

DoS Attack: DoS attacks aim to overload the network by sending too many packets. 

Similar to the KDD’99 dataset, DoS attacks are the attacks with the largest number of 

samples in the network. 

Heartbleed Attack: This attack allows exploitation of a bug in the OpenSSL library, 

which provides encryption for Internet applications such as Web, e-mail and VPN. 

This bug allows anyone on the Internet to get unauthorized access to data on systems 

that use problematic versions of the OpenSSL library [66]. 

Web Attack: Web attacks are attacks, which exploit vulnerabilities in Web 

applications. Web attacks in this dataset include Cross-Site Scripting, which allows 

the attacker to inject scripts into websites and SQL injection, which allows the attacker 

to run SQL queries on the victim’s database. 

Infiltration Attack: Infiltration is a multi-step attack, where a vulnerable software is 

exploited to gain access and create a backdoor on the victim. After the backdoor is 

created different attacks can be conducted such as port scan, Nmap and so on. 

The dataset is available to the public as both raw files and labelled tabular data. The 

labelled data has different features than the KDD’99 dataset. Therefore, feature 

extraction is required to convert the data into  the same format as the KDD’99 dataset. 

The Zeek Security Monitor tool was used to extract features from individual packets, 

then a script was used to convert the output of the tool to create a tabular dataset with 

KDD’99 dataset features [67]. 

For features that cannot be extracted, such as “num_failed_logins” and “logged_in”, 

the values are filled in with 0s. 

Originally the created dataset consisted of 3612571 samples, where 3271619 are 

normal data and 340952 are attacks. However, about 70% of the extracted data were 
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DNS queries. These samples are dropped from the dataset, and as a result the final 

number of data points in the dataset is 1055884. 

6.3. CI IDS 2017 Test Results 

Experiment results from previous chapters showed that fully connected classifier and 

fully connected autoencoder networks perfrom better than LSTM and TCN models. 

Because of this, fully connected architectures used in this section to be trained using 

using CI IDS 2017 data.  

The classifier is trained by using 5-fold cross-validation. While dividing the dataset 

into folds, the ratios of each attack is kept the same as the original dataset. The 

autoencoder model is trained using only normal samples from the same training 

datasets used for  the classifier above. The validation datasets are split into two similar 

datasets to decide the anomaly threshold. The results are given below: 

Table 6.1. CI IDS Dataset Results 

Model Accuracy Precision Recall F1-score 

FCN 0.997  0.985  0.985 0.984  

FCN-AE 0.987 0.950 0.915 0.932 

 

Table 6.2. Detection Rates 

Attack Type Number of Samples Classifier DR Autoencoder DR 

Brute Force 6972 0.791 0.807 

DOS 330398 0.993 0.960 

Heartbleed 8 0.000 0.333 

Web Attack 2066 0.388 0.242 

Infiltration 59 0.111 0.547 

Botnet 1449 0.374 0.645 

Normal 3271619 0.999 0.990 
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In CI IDS 2017 datasets case, unlike KDD’99, the classifier performed better than the 

autoencoders. The possible reason for this is that this dataset does not suffer from 

imbalance problems as much as the KDD’99 dataset does. In balanced datasets it is 

expected that supervised methods will perform better than the unsupervised methods. 

However, similarly to the KDD’99 dataset autoencoder outperformed the classifier in 

detection of rare attacks. 

6.4. Transfer Learning 

There are plenty of works in the field of deep learning-based intrusion detection. 

However, in all of these works the datasets used for training and testing are collected 

from the same environment. The purpose of this experiment is to test whether a neural 

network trained using a dataset created in an environment can be used to detect 

anomalies in another environment. In the literature there exists one work, which 

applies transfer learning to the intrusion detection field. The work trains an SVM on 

the KDD’99 dataset and uses the model to detect anomalies in the Kyoto 2006 

intrusion detection dataset. The paper removes infrequent attacks from both the 

training and test datasets and reports 99% detection accuracy in the target dataset [68], 

[69]. 

This section includes experiments including testing the network models, which are 

trained using KDD’99 and CI IDS 2017 with the other dataset. The datasets are almost 

20 years apart and the average normal model has changed in the past 20 years.  

Initial experiments showed that for both classifiers and autoencoders, these 

approaches do not work as all models classified every item in the other dataset as an 

anomaly. However, assuming the autoencoder does reconstruct the normal items from 

the other dataset in a similar way, the reconstruction error would be similar for all 

normal items.  

The table shows the detection rates of the KDD’99 dataset according to the 

autoencoder trained on the CI IDS dataset. The threshold used is the mean of the 

reconstruction errors of the elements of the dataset.  
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Table 6.3. FCN-AE Detection Rates 

Attack  Detection Rate 

Normal 0.999 

DoS 0.825 

Probe 0.509 

U2R 0.0001 

R2L 0.071 

 

For this experiment, the accuracy is 0.784, precision 0.732, recall is 0.999 and f1-score 

is 0.845.  

The table below shows the detection rates of the CI IDS dataset according to 

autoencoder trained on the KDD’99 dataset. 

Table 6.4. FCN-AE Detection Rates 

Attack  Detection Rate 

Brute Force 0.002 

DoS 0.630 

Heartbleed 0.000 

Web Attack 0.000 

Infiltration 0.000 

Botnet 0.000 

Normal 0.754 

 

Accuracy is 0.705, precision is 0.598, recall is 0.529 and f1-score is 0.61. The results 

show that the autoencoders trained on the other dataset can only detect DoS attacks. 

For more complex attacks this approach does not work. 

The difference between the results of the networks is that the first network has almost 

no false alarms while the second network considers some of the normal data as 

abnormal. The inspection of false alarms showed that in KDD’99 the false alarms are 

mainly caused by the messages sent from UDP ports 137 and 138. These ports are 
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assigned for NetBIOS, which is a protocol used for File and Print Sharing under all 

current versions of Windows. The way this protocol was implemented allows binding 

to any connection rather than only the local network. Thus, it can be and was used for 

malicious activities including the following trojans/backdoors, which also use these 

ports: Chode, God Message worm, Msinit, Netlog, Network, Qaz. In total there are 

101909 samples using this protocol and these samples are the majority of the network 

errors. 

The results of the transfer learning experiments show that direct transfer of the 

intrusion detection solution is not possible across network systems. However, both of 

the used datasets are simulations, which were created twenty years apart. 
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CHAPTER 7  

 

7. CONCLUSION 

 

7.1. Summary 

In this thesis, supervised and unsupervised anomaly detection methods were tested on 

a well-known intrusion detection dataset. The results showed that unsupervised 

methods are better at detecting infrequent attacks while supervised methods perform 

better when there are enough samples of the attack in the dataset. Intrusion detection 

is a field where the anomalies are constantly evolving in both quantity and complexity, 

it is impossible to collect data about all existing and future malicious activities. 

Therefore, unsupervised methods are better suited for the intrusion detection task.  

The anomaly-based methods work on the assumption that the anomalous data is 

different from the normal data. These types of attacks might not have differentiable 

features in comparison to normal data, and then anomaly detection cannot be used. In 

the KDD’99 dataset, the fully connected autoencoder is able to detect all anomalies 

except the U2R samples, which have the same features as the normal samples. In this 

case the problem is not the algorithm, but the features extracted from the dataset. For 

traditional machine learning algorithms, the way the data are represented affects the 

performance of the network heavily, since these algorithms cannot extract complex 

patterns while deep learning algorithms can extract latent features from the 

representation because of the deep layered model. The algorithms are not tested 

directly on the network packets, but the features extracted from them. Therefore, the 

success of the algorithms might be limited by the feature engineering process.  

The results show that the simpler fully connected models work better than sequential 

models. The possible reason for that might be that sequential models are not a good 
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fit for this task, or the representation of the data might prevent these models from 

capturing temporal dependencies. 

The transfer learning section of this thesis shows that the model trained on a network 

cannot be used on another network to detect infrequent attacks since the baseline 

normal activities are different from each other. The datasets are 18 years apart from 

each other. In the newer dataset the packets are larger, and durations of connections 

are longer. In addition to that, in the IDS 2017 data, there are packets from different 

services. However, the networks were able to capture some of the attacks, which can 

mean that these algorithms can be improved. Also, previously mentioned limitations 

of the feature selection process can also limit the success of the transfer learning 

process.  

The experiments in this thesis showed the unique challenges of intrusion detection 

tasks. Firstly, anomalies change over time, which itself is not unique to the intrusion 

detection field. For example, the anomalous behavior changed in Maroochy water 

treatment plant and because of this it could not be detected [70]. However, in the 

intrusion detection field anomalies are actively created by skilled malicious actors in 

sophisticated ways. The second challenge of anomaly-based intrusion detection is that 

not only the anomalous data changes but normal data changes too. The comparison of 

KDD’99 dataset and CI IDS 2017 dataset showed that there are many services 

available in the 2017 dataset. In addition to that, the average numbers of source and 

destination bytes in each connection increased in 2017. 

Secondly, the volume of data collected from a computer network is in general larger 

than those for many anomaly detection tasks. For intrusion detection each connection 

arriving at an IDS must be processed. The very common 1-Gb/s Ethernet interface can 

transmit up to 125,000,000 bytes/s, which means between 80,000 to 1,500,000 

packages per second can be transmitted using the interface [71]. The raw data 

collected for CI IDS Dataset is about 10 GB per day. Processing computer network 

data is resource-intensive in comparison to processing a dataset collected less 
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frequently e.g. hourly, weekly, monthly. In addition to that, data collected from a 

computer network is collected from multiple devices in the network, most of which 

have no relation to each other.  

7.2. Future Works 

In this thesis, the performances of deep learning algorithms for intrusion detection 

models are evaluated using the KDD’99 dataset. KDD’99 consists of 41-column 

tabular data extracted from raw network packets. The experiments show that using 

selected features, the algorithms were able to detect DoS attacks with high detection 

rates. However, for U2R attacks the features were similar to normal samples and 

because of this the algorithms were not able to differentiate between them. Even in 

transfer learning experiments, the algorithms were only able to detect DoS attacks in 

the test set. The reason for this is that 18 out of 41 features are information extracted 

from the packets collected in the last 2 seconds and the last 100 packets before the 

dataset. Since DoS attacks are sent in a higher speed than normal and other attack 

samples, these 18 features distinguish between DoS attacks and other samples. As a 

result, the algorithms can detect these attacks easier than other attack categories. For 

machine learning algorithms, the performance of the algorithms is dependent on the 

representation of the data since these algorithms cannot extract simpler representations 

from complex representations. However, deep learning algorithms can learn from 

complex representations. Therefore, instead of tabular data more complex 

representations can be used to extract properties of the normal and attack samples. 

Even raw network packets can be used as an input to NLP algorithms and intrusion 

detection can be done without feature engineering. 

The experiments in this thesis showed that LSTM and TCN do not perform as well as 

simple fully connected architectures. The reason for this is that although the used 

datasets are ordered in a sequential manner, the samples next to each other are not 

always related to each other. This is because the samples are collected from multiple 

connections across the network between different source and destinations using 
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different services.  In addition to that, since the identifying information such as IP 

addresses and port numbers of the source and destination are excluded from the 

dataset, it is impossible for the algorithms to identify packets that belongs to the same 

connection. However, by changing the representation of the data to include this 

information, sequential dependencies between the samples can be used to detect 

intrusions. 

Secondly, collection of anomalous samples for non-sequential attacks is an important 

task for development of intrusion detection algorithms. Intrusion detection datasets 

are naturally imbalanced since collected data contains mostly normal samples. 

However, the majority of the anomalous data belong to sequential attacks such as DoS. 

The number of samples of other types of attacks are low. For example, in the KDD’99 

dataset such attacks make up less than 0.5% of the dataset. In the CI IDS 2017 dataset, 

there are 8 samples of Heartbleed attacks and 59 samples of Infiltration in comparison 

to 330398 samples of DoS attacks. Collection of the data from such attacks would be 

useful in intrusion detection.  

Lastly, transfer learning experiments were done on two datasets collected in 1999 and 

2017 respectively which makes the datasets 18 years apart from each other. In these 

years, several new technologies and services were introduced, which did not exist 

when the KDD’99 dataset was created. The algorithms were trained using the KDD’99 

dataset, resulting in the classification of some of the new services as anomalies. If 

datasets which are created in different environments at the same time are used for 

transfer learning, the algorithms might perform better. 
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APPENDICES 

 

A. KDD’99 Dataset Features 

duration: continuous. 

protocol_type: symbolic. 

service: symbolic. 

flag: symbolic. 

src_bytes: continuous. 

dst_bytes: continuous. 

land: symbolic. 

wrong_fragment: continuous. 

urgent: continuous. 

hot: continuous. 

num_failed_logins: continuous. 

logged_in: symbolic. 

num_compromised: continuous. 

root_shell: continuous. 

su_attempted: continuous. 

num_root: continuous. 

num_file_creations: continuous. 

num_shells: continuous. 

num_access_files: continuous. 

num_outbound_cmds: continuous. 

is_host_login: symbolic. 

is_guest_login: symbolic. 

count: continuous. 

srv_count: continuous. 

serror_rate: continuous. 
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srv_serror_rate: continuous. 

rerror_rate: continuous. 

srv_rerror_rate: continuous. 

same_srv_rate: continuous. 

diff_srv_rate: continuous. 

srv_diff_host_rate: continuous. 

dst_host_count: continuous. 

dst_host_srv_count: continuous. 

dst_host_same_srv_rate: continuous. 

dst_host_diff_srv_rate: continuous. 

dst_host_same_src_port_rate: continuous. 

dst_host_srv_diff_host_rate: continuous. 

dst_host_serror_rate: continuous. 

dst_host_srv_serror_rate: continuous. 

dst_host_rerror_rate: continuous. 

dst_host_srv_rerror_rate: continuous
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