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ABSTRACT

DEVELOPMENT AND COMPARISON OF THE EXTENDED KALMAN 
FILTER AND UNSCENTED KALMAN FILTER FOR BOTH TIGHTLY 
COUPLED AND LOOSELY COUPLED INS/GNSS INTEGRATION BY 

USING MEMS IMU

Güreş, Onur

M.S., Department of Electrical and Electronics Engineering

Supervisor: Prof. Dr. Buyurman Baykal

September 2019, 119 pages

Navigation technologies evolved with improvements for the last two decades. Nav-

igation devices are easy to buy and satellite navigation is available all around the 

World. The key part for designing a navigation system is the algorithms used in-

side of it. This thesis focuses on the comparison between the proven reference unit 

and author designed navigation algorithms by using same IMU and GNSS inside of 

the reference unit with collected field d ata. I n t his t hesis, b oth E xtended a nd Un-

scented Kalman Filter estimation techniques were developed by applying tightly and 

loosely coupling methods in MATLAB. As the reference unit NovAtel SPAN IGM-

A1 was selected. This unit is a self-proven unit which also has one of the market’s 

best integration algorithm SPAN. The unit includes ADIS-16488 MEMS IMU and a 

NovAtel OEM6 GNSS Receiver with single antenna. The selected standalone units 

for developed algorithms’ confirmation were also ADIS-16488 as MEMS IMU and 

NovAtel OEM6 GNSS receiver. Hence, a comparison between the reference unit and 

the author designed filters was m ade. Car navigation trial results were compared for

v



different estimation and integration methods. Results showed that tightly coupled

EKF was the best among developed algorithms. The results also showed that tightly

coupling integration outperformed both UKF and EKF loosely coupled INS/GNSS

integration. The unstability and effects of scale factors on UKF were also inspected.

Keywords: INS, GNSS, Kalman Filter, EKF, UKF, IMU Classification
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ÖZ

İ

MEMS TİPİ AÖB KULLANILARAK SIKI BA ̆GLI VE GEVŞEK BA ̆GLI
AÖB/KKS BÜTÜNLEŞTİRME TEKNİKLERİ İLE GENİ ̧SLETİLMİŞ VE 

KOKUSUZ KALMAN FİLTRE ALGORİTMALARININ GELİ ̧STİRİLMES
VE KARŞILAŞTIRILMASI

Güreş, Onur

Yüksek Lisans, Elektrik Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. Buyurman Baykal

Eylül 2019 , 119 sayfa

Navigasyon teknolojileri son 20 yılda gerçekleşen teknolojik gelişmeler ile oldukça 

ilerlemiştir. Gerekli ekipmanların satın alımı ve erişim artık çok kolay olup ve uydu 

navigasyonu tüm dünyayı kapsamaktadır. Bu nedenle bir navigasyon sistemi tasarla-

nırken en önemli parçası içerisinde kullanılan algoritmalar olmaktadır. Bu tez kap-

samında yapılan çalışmalar kendini kanıtlamış, bilinen referans bir ünite ile bu ünite 

yer alan aynı model AÖB ve KKS’den alınan verileri kullanan ve tez kapsamında ge-

liştirilen navigasyon algoritmaları ile karşılaştırılmasına odaklanmmıştır. Bu tez kap-

samında, hem Genişletilmiş Kalman Filtresi (GKF) hem de Kokusuz Kalman Filtresi 

(KKF) kestirim teknikleri geliştirilmiş ve sıkı bağlı ile gevşek bağlı bütünleştirmek 

metotları uygulanmıştır. Referans ünite olarak NovAtel firmasına ait SPAN IGM-A1 

seçilmiştir. Bu ünite kendini kanıtlamış ve içerisinde piyasada bulunan en iyi algo-

ritmalardan biri olan SPAN yer alan bir üründür. Bu ünite içerisinde ADIS-16488 

MEMS AÖB ve NovAtel’e ait tek antenli OEM6 KKS alıcısı yer almaktadır. Geliş-

tirilen algoritmaların doğrulanması için seçilen bağımsız üniteler de ADIS-16488 ve
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OEM6 KKS alıcısıdır. Bu nedenle, referans ünitesi ve geliştirilen algoritmalar ara-

sında geçerli bir karşılaştırma gerçekleştirilmiştir. Araba testleri koşturulmuş ve elde

edilen sonuçlar farklı kestirim ve bütünleştirme metotları için karşılaştırılmıştır. Elde

edilen sonuçlar UKF ve EKF arasında büyük farklar oluşmadığını göstermektedir.

Buna rağmen, UKF hata kestirim GNSS kaybı gibi durumlarda daha iyi performansa

sahip olmuştur. Genişletilmiş Kalman Filtresi ise daha yönelim açılarının hesaplan-

masında daha düşük hataya sahip olmuştur. Sıkı bağlı bütünleştirmenin gevşek bağlı

bütünleştirmeye göre hem GKF hem de KKF için daha iyi performansa sahip olduğu

görülmüştür. Son olarak her iki filtrenin kararlılığı ve KKF için kullanılan ölçek çar-

panlarının etkisi incelenmiştir.

Anahtar Kelimeler: AÖB, KKS, Kalman Filtresi, Genişletilmiş Kalman Filtresi, Ko-

kusuz Kalman Filtresi, AÖB Sınıflandırması
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Today a few methods exist to calculate navigation data of a user, out of which two of

them are used most commonly[6]. The first method uses Newton’s Laws of Motion

with gyroscope and accelerometer data. The main purpose is to compute the rate

of change in position from epoch to epoch. This is done by integrating collected

data from accelerometers twice to calculate the change in position and integrating

data from gyroscopes once to get the change in rotation. This procedure requires

initialization of position, velocity and attitude. Inertial Navigation System (INS) is the

general name of devices which use explained procedure for calculation of navigation

data. Inertial Measurement Unit (IMU) is the most important element in INS because

it has gyroscopes and accelerometers for each reference axes inside[1].

The second method depends on receiving pre-defined Radio Frequency (RF) signals

from navigation satellites. Original ideas to follow satellites from ground stations

happened after the first satellite was placed in orbit in 1957. Scientists realized

that satellites can be tracked by using "Doppler Affect" which enables calculation

of the distance between satellite and ground station. Scientists used this information

to track submarines with nuclear missiles by putting six satellites over the poles of

world. However, the response time of these satellites could take minutes. To avoid

latency and get accurate results, US Department of Defence accelerated its efforts

and launched its first NAVSTAR satellite at 1978.[2] In 1993, there were 24 actively

working Global Positioning System (GPS) satellites all around the world. Since then

there have been additional constellations such as GLONASS, GALILEO, BEIDOU
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and they are all called Global Navigation Satellite Systems (GNSS).

Both INS and GNSS have their lack of accuracy depending on their own error sources.

INS has a drift in the solution that grows with time. It leads long term inaccuracy with

the accumulation of systemic errors coming from inertial sensors. GNSS needs a line

of sight (LOS) between the end-user and the corresponding satellite being used at

each epoch. In obstructive environments where dense forests or high buildings exist,

GNSS signal blockage can happen partially or completely. The following chapters

will provide details about these error sources. In conclusion, other than some specific

applications such as geo-referencing for INS and open area navigation for GNSS,

these two technologies are not preferred for navigation as standalone system with-

out aiding. Over the last two decades scientists and engineers made available using

these two systems together and got superior navigation results especially when GNSS

signal quality is low (urban environments) and price of the equipment is critical for

upcoming applications.

1.2 Objectives

Data fusion is a practical solution between INS and GNSS to compensate for errors

of both systems. Kalman Filtering techniques are used for the combination. Kalman

Filtering can be divided into two phases. At the first phase, position, velocity and at-

titude estimates are calculated by using INS mechanization equations. At the second

stage, these estimates are updated with observed GNSS measurements by comparing

to what mechanization equations estimated at the very same time. At the end of the

second phase, the Kalman filter has enough information from both systems to com-

pute their inaccuracies. Kalman Filter uses this information to find out the optimal

navigation solution. The inertial navigation solution would diverge quickly in the

absence of GNSS updates. GNSS solution limits inertial errors with its updates.

Extended Kalman Filter (EKF) is the most commonly used filtering technique in mar-

ket for this purpose. On the other hand, the Unscented Kalman Filter (UKF) offers

another characteristic for linearization. Both techniques have their disadvantages and

the following chapters explain them in detail.
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In the scope of this thesis, author designed filter algorithms were developed to show

the performance differences between EKF and UKF compared with deeply coupled

proven algorithm in the reference unit. MATLAB was used to develop algorithms

and process data. For this purpose, well known and proven market INS/GNSS system

NovAtel SPAN IGM-A1 is selected as reference unit. The subsystems of reference

units are ADIS-16488 MEMS IMU and NovAtel OEM6 GNSS Receiver. Hence, the

focused items in this thesis are the performance of developed filters and modelling

system dynamics and measurement errors as linear states for Kalman filters.

IMU and GNSS receiver error models are created by autocorrelation analysis for

the state transition matrix. To understand real performance differences with author-

designed algorithms, the same IMU and GNSS receiver were selected. By collecting

from standalone IMU and GNSS receiver raw data, author designed algorithm re-

sults were gathered. Differences of both filters compared with reference unit were

computed and root-mean-square differences were used for error calculations. Results

show that tightly coupled EKF is feasible for future works. With the results of this

thesis, a single box INS/GNSS system can be developed and tests with land and aerial

vehicles can be applied to this future system.

1.3 Previous Research and Limitations

Solid scientific background has been created over the last two decades about inte-

grating INS and GNSS systems thanks to the works such as [6, 5, 9, 4] and among

others.

There are a lot of applications for INS/GNSS integration. Manned and unmanned

aerial vehicles, ships, boats, submarine and agriculture are some of the most com-

mon applications. [14] For satellite navigation, a star tracker algorithm was used to

improve attitude determination of INS while using GNSS as an update in the same

Kalman Filter [3]. Other methods such as visual aided INS (VINS) was proposed

instead of GNSS in [4] for Unmanned Aerial Vehicles by using a realistic camera

model. In [5], author designed a loosely coupled Extended Kalman Filter for mobile

phone navigation and compared it with higher grade proven INS/GNSS system.
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The accuracy of an INS/GNSS system strongly relies on the quality of its sensors.

Some of the applications need centimeter level accuracy such as unmanned aerial

vehicles during landing. Some of them do not need very accurate results and 30

meter of accuracy is enough for their purpose such as personal car navigation [6].

To perform an integration, sensor errors inside an INS (accelerometers and gyro-

scopes) should be examined and classified. To prove designed INS/GNSS system

performance, there should be a reference unit [5].

The integration methods also vary and should be investigated carefully concerning

application. Filtering technique may vary such as Extended Kalman Filter and Un-

scented Kalman Filter [7, 8]. The selection of different filtering techniques with

different integration strategy can affect navigation performance after mechanization

equations are done in Inertial Navigation Systems. There are also error sources com-

ing from GNSS and the robustness of the integration will reveal itself when GNSS

outage happens. INS alignment is another case because if INS cannot be aligned

correctly, navigation performance degrades very dramatically [21].

1.4 Contribution

This thesis aims to develop in a proven navigation algorithm in order to be used a

single box real-time navigation system for future work. INS/GNSS algorithms with

different integration methods and different filtering techniques were created to com-

pare them with a qualified reference unit. For that purpose, all navigation algorithms

were developed in MATLAB in compliance with real-time software. Field data were

collected with car trials and root-mean-square technique were used to compute per-

formance. At the end of this thesis, four different integration algorithms, two different

Kalman Filter designs and two different system dynamics models are provided.

1.5 Outline

Chapter 2 describes INS and GNSS technologies in detail since, characteristics of

two systems are important for understanding system dynamics and measurements.
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The main topics are INS mechanization equations and INS error sources, GNSS mea-

surements, position, velocity calculations and GNSS error sources and their effects

on accuracy, alignment techniques and classification of INS sensors.

Chapter 3 describes Kalman processing methods by starting with linear Kalman Fil-

ter technique and exploring non-linear Kalman Filter techniques that includes both

Extended (EKF), Unscented (UKF).

Chapter 4 describes author designed integration filters by presenting system process

and measurement models. Chapter starts with the integration strategies and continues

with integration filter details. At the end of the chapter, lever-arm effect and vehicle

motion constraints are briefly explained.

Chapter 5 starts with the specifications of reference unit and continues with verifica-

tion tests. Test results from car trials are given with figures and explained with respect

to all filter output. General results are presented with respect to coupling methods. At

the end of the chapter, scale parameters of UKF and stability of designed filters are

provided.

Chapter 6 summarizes the conclusions of thesis and recommends future work.
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CHAPTER 2

BACKGROUND AND OVERVIEW OF GNSS AND INS

2.1 Global Navigation Satellite Systems

Global navigation satellite systems work in all environmental conditions and aim full

coverage around the world. GNSS receivers need to track at least 4 satellites to com-

pute 3D navigation information.

2.1.1 GNSS Overview

U.S. Department of Defence kicked off GNSS with the launch of the Global Po-

sitioning System (GPS) in mid-1970s. Its main purpose was to provide sub-meter

level positioning accuracy to submarines [9]. However, in today’s modern world,

almost all unmanned and manned applications use satellite navigation anywhere in

the world. Ever since the launching of first navigation satellite, constellations such

as GPS, GALILEO, GLONASS, BEIDOU led a robust satellite navigation network

[22]. A general GNSS navigation architecture includes three main parts. These parts

are the space segment, the control segment and the user segment.

The space segment is a cluster of satellites around Earth. These satellites orbit with

a distance of nearly 20200 km [5]. Each satellite system has its own set of satellites,

i.e. constellation. Each GNSS satellite in a constellation has same distance from each

other with a nominal inclination angle 55◦to equatorial plane [3].

The control segment includes ground equipment and facilities for monitoring and

controlling entire the GNSS system. For GPS constellation, there are two master

control stations (one primary and one backup), four navigation data uploading center
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and sixteen monitor stations all around the world [22].

The user segment is the most crowded and dynamic part of the GNSS structure. Mili-

tary purposes led GPS and GLONASS designs at first but from the start of the 2000s,

civilian applications have become the major part of the user segment. There were

around a few million users of the GNSS at the beginning but with the evolution of

microchips and mobile phones, the GNSS application is everywhere today [6]. A

user segment includes the receiver that includes a RF front-end with the GNSS an-

tenna and a processor. The processor deals with measuring and decoding necessary

information coming from a GNSS satellite.

A simple visualization of orbits and GNSS segments are given in Figure 2.1.

(a) Orbits (b) Segments

Figure 2.1: GNSS Orbits and Segments [22]

Today there are two GNSS constellations with full Earth coverage: GPS (USA) and

GLONASS (Russia Federation). In addition to these constellations, there are ongoing

works by the European Union (EU) and the Republic of China (RPC). EU’s global

navigation satellite system has been on development phase since 2004. The constel-

lation is called GALILEO and there are currently 10 launched satellites at the space

segment. However, these satellites are not open to public use and only have coverage

around Europe for scientific developments and experiments. The key difference of

GALILEO from others is that the constellation will serve only for civilian purposes.

RPC’s GNSS name is BEIDOU. BEIDOU constellation completed its regional cov-

erage at the end of 2012 and started its service to China. China plans to launch 35

satellites including already launched, spared satellites and complete world coverage
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by 2020 [10].

The addition of new constellations to current ones is important for end-users since it

enables navigation alternatives for GNSS receivers with capability of working multi-

frequency, multi-constellation. Especially for harsh environments and latitudes near

both poles, increased satellite availability is crucial [21].

2.1.2 GNSS Measurements and Errors

GNSS satellite sends navigation messages, which consist of the almanac, the ephemeris,

timing, error correction and satellite status [11, 12]. Almanac and ephemeris are

briefly explained below but a GNSS signal is much more complicated and requires a

lot of detailed information to get familiar. In this thesis, only necessary information

for navigation filter is focused. For more details on the GNSS signal, please refer to

[2, 11, 15].

Satellite almanac data is a summary of orbital data for all the satellites. Master control

stations send almanac data that is valid for weeks. Almanac data gives the receiver to

have an idea about where the visible satellites might be. For this purpose, receivers

usually keep Almanac data in their storage. Nevertheless, almanac data does not pro-

vide the necessary accuracy for the receiver to calculate the satellite’s exact position.

Ephemeris data provides the necessary accuracy. Ephemeris is a satellite specific

data. It gives information that is much more accurate about the relevant satellite’s

position. Ephemeris has a shorter time of validation and satellites update ephemeris

data more frequently than almanac data. [11].

With the explained information inside the GNSS signal, a receiver can gather three

types of measurements to the end-user.

2.1.2.1 Pseudorange Measurements

For pseudorange measurements, the speed of signal propagating from satellite to user

is equal to the speed of light. By using the time of arrival, receiver calculates the

distance between itself and the relevant satellite. Calculated ranges are pseudoranges
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because they contain errors, which come from the fact that satellite atomic clock and

receiver clock synchronization is not perfect. This fact creates a bias and its name is

clock bias [11].

Pseudorange measurements include the range with errors but clock bias is not the only

error in real life. In addition to clock bias, random noise, various propagation, and

system errors exist in real life. Hence, pseudorange measurement equation is written

by Equation (2.1) [5, 6].

p = r + cδT − cδt+ δion + δtrop + δorbit + δp (2.1)

where

p is the measured pseudorange between a satellite and an user in meters

r is the true range between a satellite and an user in meters

c is the speed of light in free space (m/s)

δT is the receiver clock error in seconds

δt is the satellite clock error in seconds

δion is the ionospheric error in meters

δtrop is the tropospheric error in meters

δorbit is the orbit prediction error in meters

δp is the combination of errors coming from multipath, receiver noise in meters.

2.1.2.2 Pseudorange Rate Measurements

Pseudorange rate measurements are the derivate of the pseudorange measurement [4].

Velocity observation is given in Equation (2.2).

10



ṗ = ṙ + cδ̇T − cδ̇t+ δ̇ion + δ̇trop + δ̇orbit + ε̇ (2.2)

where

ṗ is the measured range rate in m/s

ṙ is the true range rate in m/s

δ̇T is the receiver clock drift in m/s

δ̇t is the satellite clock drift in m/s

δ̇ion is the ionospheric error drift in m/s

δ̇trop is the tropospheric error drift in m/s

δ̇orbit is the orbital prediction error drift in m/s

ε̇ is the drift from multipath and noise in m/s.

In this thesis, incoming measurements from the reference unit receiver and the stan-

dalone GNSS receiver were pseudorange and pseudorange rate measurements. But

there is another measurement which is not applicable to all GNSS receivers. It is told

briefly in next section for information purposes.

2.1.2.3 Carrier-Phase Measurements

There is another measurement that depends on counting the carrier-phase for cal-

culating pseudoranges. Centimeter-level accuracy is feasible with the usage of this

method. It is feasible because it relies on counting the cycles of a GNSS signal. How-

ever, there is always a difference between measured and receiver generated ranges.

This is the ambiguity and it is a combination of a fraction and an integer part. Cal-

culation and elimination of the fraction part is easy but for the integer part, it is more

complicated [23]. Therefore, the total carrier-phase can be written as a summation of

measured carrier-phase and ambiguity. Carrier-phase visualization is given in Figure

2.2.
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Figure 2.2: Carrier-Phase Measurement

Pseudorange from computed carrier-phase is a summation of measured carrier-phase

and ambiguity as given in Equation 2.3.

p = (N + Φ)λ (2.3)

By using Equation 2.3, carrier-phase equation is provided as below.

p = r + cδT − cδt− δion + δtrop + δorbit + εc + λΦ (2.4)

where

εc is the error in carrier measurement and multipath meters

Φ is the integer ambiguity in cycles and the rest of the parameters are same as given

in Equation (2.1).

The carrier-phase measurement equation has the same errors with a slight difference.

For carrier-phase measurement, the ionospheric effect has minus in front of it. Tro-

pospheric effect creates additional cycles because delay in time causes advance in

frequency. Readers can observe this difference in Equation (2.4) by comparing it

with Equation (2.1). Another difference comes from the possible amount of errors

affecting calculations. Since the accuracy is cm level, the multipath and system noise

are much smaller by comparing same errors in pseudo-range measurements [2, 13].
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2.1.3 GNSS Navigation Solution

Range between satellites and receivers are key information for calculation of the user

position. There is also additional information from the navigation message such as

the ephemeris data. For the details of the ephemeris data, readers can refer [11] and

[14] and other GNSS textbooks.

A simple geometric range definition can be defined without errors as below:

r =
√

(XS −XU)2 + (YS − YU)2 + (ZS − ZU)2 (2.5)

Calculation of range from pseudorange code or carrier-phase depends on the type of

the receiver or application but results have same output. XU , YU , ZU are user coor-

dinates and XS , YS , ZS are the known satellite coordinates coming from Ephemeris.

The other unknown in addition to user position XU , YU , ZU in Equation 2.5 is the

receiver clock bias δ̇T .

Equation 2.5 is a non-linear equation. Taylor series expansion is used for lineariza-

tion. For any pseudorange function f(X, Y, Z), Taylor series expansion around ith

satellite is given in Equation 2.6.

f(Xi, Yi, Zi) = f(X0, Y0, Z0) +
δf(X0, Y0, Z0)

δX0

∆X+

δf(X0, Y0, Z0)

δY0

∆Y +
δf(X0, Y0, Z0)

δX0

∆Z +HigherOrderTerms

(2.6)

where f(Xi, Yi, Zi) is equal to ith satellite’s range function.

By taking only first order terms and next taking the derivatives in 2.6, linearized

pseudorange equation is computed as:

ri = ρi −
Xi −X0

pi
∆X − Yi − Y0

pi
∆Y − Zi − Z0

pi
∆Z+

cδT − cδt+ δion + δtrop + δorbit + δp

(2.7)

where pi =
√

(Xi −XU)2 + (Yi − YU)2 + (Zi − ZU)2
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In matrix form, pseudorange equation becomes:

ri = pi +
[
(−Xi−XU

pi
) (−Yi−YU

pi
) (−Zi−ZU

pi
) 1

]


∆X

∆Y

∆Z

c∆T

+

cδT − cδt+ δion + δtrop + δorbit + δp

(2.8)

By using the standard LSE form which is Ax = b onto above equation for each

satellite, pseudorange equation becomes as given in Equation 2.9 where the parameter

n is the number of satellites and A is a (n x 4) matrix.


(−X1−XU

p1
) (−Y1−YU

p1
) (−Z1−ZU

p1
) 1

... ... ... ...

(−Xn−XU

pn
) (−Yn−YU

pn
) (−Zn−ZU

pn
) 1



δX

δY

δZ

cδT

 =


p1 − r1 + c(δT − δt1)− δi1 − δt1 − δo1 − ε1

...

pn − rn + c(δT − δtn)− δin − δtn − δon − εn


(2.9)

Next section will provide error sources and their mitigation methods to increase ac-

curacy.

2.1.4 GNSS Error Sources

For GNSS navigation, accuracy strongly depends on the location of the receiver and

mitigating the error sources. Better accuracy comes with the well separated reference

points in space. If the range measurements are relative to four satellites, which are

very near to each other, results will become nearly equal and the effects of small rela-

tive errors will increase. The distribution of satellites may lead magnification of range

error. Effect of satellite geometry over the GNSS solution uses the unitless dilution

of precision (DOP) oarameter. For more details on DOP readers can refer to [11, 13].
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DOP is a common parameter, which is a performance metric for GNSS receivers. It

gives the user an idea of the possible GNSS quality of the current location.

Other errors affecting GNSS quality are summarized in the next subsections. Model-

ing or differential GNSS techniques can achieve the mitigation of these error sources

with some exceptions. Differential GNSS uses either code or carrier-phase based

methods. Carrier-phase method is referred as Real Time Kinematic (RTK).

There are also satellite correction networks and special softwares to provide correc-

tion of errors. If a receiver uses satellite network, corrections arrive from a set of

geostationary satellites such as TerraSTAR, OmniSTAR. They have their trade-off

but offer their subscribers less than a half meter accuracy. For details of differential

GNSS and aided satellite corrections, readers can refer to [6] and [15].

2.1.4.1 Ionospheric Errors

Ionosphere covers between 50 to 1000 km distances from the surface of the Earth.

It consists of ionized gases because of solar radiation. Ionized gases mean free elec-

trons and ions. The existence of free electrons produced by ionization makes the

ionosphere as acting a variable medium even during the daily cycle. A part of the

ionosphere can be in shadow and other parts of the ionosphere can be under sunlight.

This situation creates changes in the characterization of the ionosphere and makes it

hard to model. The primary effect of the ionosphere onto the GNSS signal is relative

speed degradation. Since a signal with speed of light enters a medium rather than free

space, the relative speed of signals reduces below the speed of light.

The magnitude of the error related to the ionosphere is directly proportional to total

electron content (TEC). Electrons do not spread homogeneously at the ionosphere.

This leads reflection coefficient to change randomly and affecting GNSS frequency

signals by delaying code measurements and advancing carrier-phase measurements

[11, 15]. The mitigation of ionospheric errors is possible by using the differential

GNSS methods. Ionosphere does not have same effects on different RF frequen-

cies. Therefore, in the absence of differential GNSS methods, dual-frequency GNSS

receiver can eliminate this error type. Today, most of the recent receivers support
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dual-frequency and more than one constellation. However, in the case where one

receiver does not support dual-frequency, this receiver uses Klobuchar Model from

other satellites in order to decrease error [11, 15].

2.1.4.2 Tropospheric Errors

The troposphere is a layer which extends its upper limit to the stratosphere and lower

limit to 9 km above Earth’s surface. This layer is composed of dry gases and water

vapour. Unlike ionosphere, the delay caused by this layer is same for all GNSS fre-

quencies. That is why differential GNSS or multi-frequency GNSS receivers have no

advantage in this error. Error sources reasoning from Tropospheric delays can be dis-

tributed around dry and wet parts of this layer. 90% contribution to refractive index

of the troposphere comes from dry part and rest 10% comes from wet part. By mod-

eling of dry part errors, mitigation down to 1-2% of the total is possible [11, 15]. The

difficulty comes from predicting the wet part. However, since the percentage of wet

part is small and can only affect a 5-30 cm error around mid-latitudes modelling is not

crucial[11]. Finally, tropospheric errors below 5 cm is feasible by using differential

GNSS techniques [6].

2.1.4.3 Clock Errors

As explained in pseudorange measurements section, the receiver’s clock and a GNSS

satellite’s atomic clock are not perfectly synchronized with each other. Each side’s

clock has its own oscillator, and this leads noise around time information. The error

is generally around a few meters and does not change much with time. If the receiver

uses differential GNSS techniques, the error cancels out completely due to double dif-

ferentiation. And if the receiver can see at least 4 satellites, the time error estimation

by using GNSS computations is applicable [9].
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2.1.4.4 Orbital Errors

Satellites have pre-specified orbits for their missions but there are imperfections when

the satellite moves. Wrong calculations for satellite’s own location occurs and it

leads wrong ephemeris data in navigation message. The ground segment compares

the satellite’s true location and calculated location. After that process, the ground

segment send comparison results as correction messages to the satellites at least once

a day. Satellite that receives correction message update its calculation and broadcasts

updated ephemeris to receivers. Differential GNSS techniques can decrease this type

of errors down to a few centimeters [15].

2.1.4.5 Multipath

Multipath propagation of the GNSS signal is one of the dominant sources of error

according to [11]. It really is a major problem especially around high buildings,

obstructions, dense forests. GNSS signals can be reflected easily before coming to

receiver and create secondary or multiple signals at the receiver as shown in Figure

2.3. Reflected signals always have longer propagation times and cause problems at

the receiver side since it is waiting for only direct line of sight signal from relative

satellite.

Figure 2.3: GNSS Multipath Error [22]

Multipath error mitigation is not feasible by using differential GNSS techniques. An-

tenna location strategy is the easiest and most effective mitigation method. Another

simple protection is to use antennas with ground plane. Ground plane is a metal-

lic disk centered at the base of the antenna and designed for attenuation of signals
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reflected from ground. Another key aspect may be choosing a higher grade GNSS

antenna which has capability of understanding the polarity of incoming signal. Since

GNSS signals are right hand polarized, left hand polarized multipath signals eliminate

directly with this type of antenna. It is also better to mention that using carrier-phase

measurements rather than code measurements give lower multipath error according

to [9].

Multipath error is hard to model and strongly depends on the receiver’s environment.

But there are methods of multipath mitigation which can be divided as Spatial Pro-

cessing Techniques and Time-Domain Techniques [13]. However, mentioned meth-

ods increase the computational complexity of the GNSS solution.

2.1.4.6 Receiver Noise Error

Since GNSS signal levels are very low and the receiver’s front-end is highly sensitive

to receive weak signals, receiver noise is important for GNSS performance. Receiver

noise is sum of the electromagnetic field created by receiver’s cables, antennas. The

random movement of electrons in a receiver’s conductors has an effect which is called

thermal noise. In the past by testing two same model receivers by connecting to one

antenna by using a GNSS splitter, receiver noise became clear [14] and [6]. The

results showed that differential GNSS cancels out all the major error sources but noise

and multipath errors remain.

Combining all the possible receiver noise error together pseudorange code measure-

ments can have minimum a 4 cm error while carrier-phase measurements can have

mm level accuracy [25].

2.1.4.7 GNSS Error Summary

At the end of the GNSS error source discussions, a table which includes a summary

of all errors and each error’s level is given in Table 2.1.

User-equivalent-range-error (UERE) is the remaining GNSS error after mitigation of

the above residual error. By using the assumption that is the remaining errors are
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Table 2.1: Summary of GNSS errors (adapted from [6, 11, 9, 5])

Error Source Single Point Differential

Ionosphere 2 to 50 m 0.05 to 0.2 m

Troposphere 2 to 30 m 0.1 to 1 m

Clock (Receiver) < 1 m 0 m

Clock (Satellite) 0 to 10 m 0 m

Orbital < 1 m ~0 m

Multipath 0.2 to 500 m 0.2 to 500 m

Receiver (Code) Noise ~0.4 m ~0.4 m

uncorrelated, user equivalent range error (UERE) is easy to compute. A zero-mean

Gaussian random variable that has a variance equal to the root-sum-square of each

error source variances is equal to UERE variance as given below.

σUERE =
√
σ2

eph + σ2
clk + σ2

ion + σ2
tro + σ2

mult + σ2
rec (2.10)

where

σeph is the range error due to ephemeris data

σclk is the range error due to clocks

σion is the range error due to ionospheric conditions

σtro is the range error due to tropospheric conditions

σmult is the range error due to multipath

σrec is the range error due to receiver noise.

According to [13] above equation is equal approximately to 5.3 m which is a typical

expectation of single-point GNSS receiver with nice environmental conditions and 6

m is chosen for author designed measurement model based on this information.
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2.1.5 Conclusions about GNSS

GNSS is a very useful and accurate navigation system for a lot of applications. Un-

der good conditions and with techniques such as differential GNSS, the accuracy

of system can be mm level. However, as a standalone navigation system, GNSS has

weaknesses. RF propagation is vulnerable to atmospheric conditions and signal speed

decreases under speed of light. That causes delay for code-based measurements and

advance for carrier-phase measurements. From the nature of RF propagation, it is also

vulnerable to jamming and multipath. Under jamming conditions or loss of the line of

sight signal between satellite and receiver, GNSS outages can occur. The reflection of

signals can happen with environments where a lot of building and other obstructions

exist. This will lead to multipath. Other error sources results from atomic clocks and

receiver clocks of both sides. Most of the error sources can be eliminated by using

differential GNSS techniques but not all the errors. It is also worth mentioning that

differential GNSS techniques are not applicable to all navigation application and even

if they exist, base stations cannot continuously give necessary information. They are

dependent on the range of the radio-links of the communication system between base

and rover.

As a conclusion, in applications where harsh reflection can occur or continuous and

high accuracy navigation solution is necessity, standalone GNSS is not advised to be

used. Therefore, it would be wiser to use an additional system to GNSS that does

not affect from environment and weather conditions. On the other hand, INS is not

vulnerable to environmental conditions but still has error sources. In the next section,

details of an INS will be provided.

2.2 Inertial Navigation Systems (INS)

As discussed in first chapter, ancient people tried to find their way by looking at their

environments such as stars for their location and to sun for calculation of time. This

form of navigation is called Dead Reckoning (DR). In modern times, after inventions

of accelerometers and gyroscopes and other sensors, people started using these sen-

sors to compute necessary information to be used for DR principle. An accelerometer
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is a device usually with a proof mass, m, which is constant and at equilibrium po-

sition if the case is stable. If external force exists, the proof mass moves among its

horizontal axis. If the rate of change is sensed and scaled correctly, the acceleration

among this axis can be computed. On the other hand, a gyroscope senses the change

in angular movements and measure angular rates with respect to reference frame.

An inertial measurement unit (IMU) includes three mutually orthogonal accelerom-

eters and gyroscopes inside of it. Accelerometers measure linear motion and gy-

roscopes measure angular motion in three mutually orthogonal directions [13]. An

inertial navigation unit (INS) consists of an IMU, a processor and a mechanization

module. INS outputs position and attitude information which are calculated by using

Newton’s first and second law as a principle as a self-contained DR navigation system

[6].

The basic working logic of INS can be summarized as sensing acceleration caused

by an external force. By using Newton’s law, force can be translated to acceleration.

Integrating acceleration once provides change in velocity and twice provides change

in position since the last calculated velocity and position. However, measured accel-

erations are in a coordinate frame which is different than the coordinate frames to be

used in navigation calculations. Therefore, a translation between coordinate frames

is required. This is achieved with angular rates coming from gyroscopes. Gyroscopes

output necessary rotation information for coordinate translation. That is the main

reason for using a gyroscope along with an accelerometer in an IMU. If the transfor-

mation of primary rotation of the accelerations into necessary coordinate frame fails,

calculation of the true position will never occur. Therefore, INS quality strongly de-

pends on the grade of gyroscopes to be used inside it.

2.2.1 Reference Coordinate Frames

A set of transformations is necessary when working with INS. It is also important to

have outputs with respect to Earth hence, further reference frames are necessary. This

section explains briefly all reference frames relevant to inertial navigation systems

used in this thesis. Most of the information was gathered from [13].

21



2.2.1.1 Earth-Centered Inertial Frame (i-frame)

An inertial frame must be stationary in space or have a constant, non-accelerating

velocity. All inertial sensor measurements are computed with respect to inertial nav-

igation frame. In addition to that, GNSS receiver calculates satellite’s position and

velocity with respect to this frame originally.

Origin: Earth’s center of mass

Zi axis: Parallel to the axis of Earth’s rotation, pointing North Pole

X i axis: In equatorial plane towards the vernal equinox

Y i axis: Completes a right-handed system

2.2.1.2 Earth-Centered Earth-Fixed Frame (ECEF, e-frame)

This frame has the same origin and z-axis with i-frame but rotates along with the

Earth.

Origin: Earth’s center of mass

Ze axis: Parallel to the axis of Earth’s rotation, pointing North Pole

Xe axis: In equatorial plane towards the mean Greenwich meridian

Y e axis: Completes a right-handed system

2.2.1.3 Local-Level Frame (LLF, l-frame)

This frame is used to express the user’s attitude and velocity when on or near the

surface of Earth.

Origin: Navigation system’s center of navigation

Z l axis: Upwards (Completes right-handed system)

X l axis: Points to east

22



Y l axis: Points to true north

This reference frame name is ENU since the directions of each axis. On the other

hand, there is another LLF frame called NED (North, East, Down) which only differs

from ENU with its z-axis pointing down. Hence, z-axis completes a left-handed

system in this frame. Figure 2.4 shows the relation between i-frame, e-frame and

l-frame.

Figure 2.4: ENU Frame and its relation with e-frame and i-frame [13]
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2.2.1.4 Body Frame (b-frame)

The body or vehicle frame is used for attitude calculations. There may be applications

on the relevant vehicle which needs vehicle’s attitude information. Therefore, attitude

information on the e-frame or l-frame is converted to this frame. In this thesis, body-

frame is aligned with navigation platform’s attitude axes. Roll, pitch and yaw angles

with respect to this frame are given at Figure 2.5.

Origin: Navigation system’s center of navigation

Zb axis: Upwards (Completes right-handed system)

Xb axis: Points to the right side of the vehicle

Y b axis: Points to the left side of the vehicle

Figure 2.5: Vehicle Body Frame and Attitude Angles [13]
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2.2.1.5 IMU Enclosure Frame

IMU enclosure frame is the physical distribution of sensors inside an IMU. It is use-

ful especially for big systems to consider IMU enclosure firstly since matching en-

closure frame with vehicle/system frame is the easiest way to reduce the number of

frame translations. Otherwise, more translations would be required to get solution at

desirable frame. IMU enclosure frame was aligned with test car’s body frame in this

thesis.

2.2.1.6 Computation Frame

This frame is the reference frame that INS computer assumes to be the true navigation

frame. Whole equations of motion are implemented with respect to this frame on

navigation solution module of INS algorithm in this thesis.

2.2.2 Coordinate Frame Transformations

The fundamental rotation matrix can be calculated by multiplying elementary rotation

matrices around each axis as given in 2.11.Ra
d means a rotation matrix from a-frame

to d-frame. Rc
d equals the rotation matrix around y-axis, Rb

c equals the rotation

matrix around x-axis andRa
b equals the rotation matrix around z-axis. Rotation starts

with rotating from z-axis followed by x-axis and finally y-axis for correct alignment.

Ra
d = Rc

dRb
cRa

b (2.11)

Ra
d =


cosα 0 − sinα

0 1 0

sinα 0 cosα




1 0 0

0 cos β sin β

0 − sin β cos β




cos γ sin γ 0

− sin γ cos γ 0

0 0 1

 (2.12)

Inertial calculations used in this thesis often include coordinate frame transforma-

tions. Each transformation involves a rotation matrix which is called direction cosine

matrix (DCM). The basis vectors of rotation matrix are normalized in length and co-

sine of angle between them is equal to dot product of them. This is the motivation of
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calling rotation matrices as direction cosine matrices [5]. Some useful properties of

DCM’s are presented in Equation 2.13.

Rd
a = (Ra

d)−1 = (Ra
d)T = (Rc

dRb
cRa

b)T

= (Ra
b)T (Rb

c)T (Rc
d)T

(2.13)

The transformation between inertial frame and ECEF frame depends on the knowl-

edge of the angular velocity vector between these two frames. The angular velocity

between of those two vectors is equal to rotation of the Earth. From Figure 2.4, for a

transformation from i-frame to e-frame is equal to a rotation about the z-axis by the

angle ωe which denotes the Earth’s rotation rate [13]. Notice that, the DCM for this

transformation is equal to third matrix in Equation 2.12.

Ri
e =


cosωet sinωet 0

−sinωet cosωet 0

0 0 1

 (2.14)

The inverse of the matrix Ri
e is equal to transformation from the e-frame to the i-

frame as given in 2.15:

Re
i = (Ri

e)−1 = (Ri
e)T (2.15)

Transformation from LLF to ECEF is applied by rotating x-axis with ϕ-90 degrees

first and next by a rotation around z-axis with λ+90 degrees as shown in Figure 2.6.
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Figure 2.6: LLF and ECEF Relation [13]

The DCM Rl
e for this transformation is calculated as given in Equation 2.16 and its

matrix form is given in 2.17.

Rl
e = [(Ra

b)(90 + λ)][(Rb
c)(ϕ− 90)] (2.16)

Rl
e =


cos(−λ− 90) sin(−λ− 90) 0

− sin(−λ− 90) cos(−λ− 90) 0

0 0 1




1 0 0

0 sin(ϕ) − cos(ϕ)

0 cos(ϕ) sin(ϕ)

 (2.17)

In geographical manner, the angle ϕ is the latitude and the angle λ is the longitude.

The reverse transformation is given in Equation 2.18.

Re
l = (Rl

e)−1 = (Rl
e)T (2.18)

The final transformation, which is done from body frame to local level frame, is used

frequently during mechanization equations in the INS navigation solution process. It

is done by rotating all three axes. The rotation sequence is first making a rotation

around z-axis, then a rotation about x-axis and finally a rotation about y-axis. The
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angles which apply all three sequential rotation are called Euler angles roll, pitch and

yaw respectively. The process is given in 2.19.

Rb
l = (Rl

b)−1 = (Rl
b)T = (Rc

dRb
cRa

b)T

= (Ra
b)T (Rb

c)T (Rc
d)T

= RZ(−ψ)RX(−ξ)RY (−η)

(2.19)

The rotation angle around x, y, z axes are pitch, roll and yaw respectively. If DCM

Rb
l is known accurately, Euler angles can be calculated easily [13].

Since this thesis deals with navigation equations and attitude outputs should have roll,

pitch and heading, Equation 2.19 should be modified as below:

Rb
l = (Rl

b)−1 = (Rl
b)T = (Rc

dRb
cRa

b)T = RZ(ψ)RX(−ξ)RY (−η) (2.20)

The transformation from body frame to ECEF and the i-frame can be computed with

already found rotation matrices above.

b-frame to e-frame is calculated as follows where Rle was given is Equation 2.17 and

Rb
l was given in Equation 2.20:

Rb
e = Rl

eRb
l (2.21)

b-frame to i-frame is calculated as follows where Rei was given is Equation 2.15 and

Rb
e was given in Equation 2.21:

Rb
i = Re

iRb
e (2.22)

2.2.3 Inertial Navigation Systems Mechanization Equations

An INS uses the dead reckoning method for the position, velocity, and attitude cal-

culations as mentioned earlier sections. Calculations are done by using IMU’s raw
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data inside. The IMU’s raw data includes angular rates and accelerations or velocity

changes from epoch to epoch. Mechanization starts with a set of initial values and

iterations are done recursively from the beginning with the prior epoch’s output. The

mechanization equations written in this section is implemented with respect to ECEF.

As mentioned above there are two kinds of data coming from an IMU. Mechanization

is done by integrating these two data set with proper transformations. For the IMU

used in this thesis, the body frame is the same as the inertial frame. Therefore, raw

observations are collected in body frame. With this information at first step, a rota-

tion matrix for transformation from b-frame to e-frame is computed by using IMU’s

angular rates in each axis. To get real angular data, Earth rotation should also be

considered which is sensed in e-frame. Earth’s rotation rate is rotated to b-frame and

compensated from gyroscope’s raw data. After finding angular rates relative to body

frame, rotation matrix from b-frame to e-frame can be calculated.

At the next stage, the calculated rotation matrix is used for rotation of acceleration’s

measurements from b-frame to e-frame. Notice that the Earth’s gravity is also mea-

sured with accelerometers so, this effect should be removed from measurements. Af-

ter removing gravity and integrating accelerations created by external forces, velocity

of the vehicle is computed. Finally, with the integration of velocity, position is com-

puted.

INS error sources such as biases, scale factors should be removed before starting

mechanization. The details of INS error sources and methods to mitigate them are

discussed in the next section.

As a summary, the mechanization equations are given by Equation 2.23. The mech-

anization equations are the results of the derivative of position, velocity and attitude

equations.


ṙe

v̇e

Ṙe
b

 =


ve

Rb
ef b − 2Ωie

eve + γe

Rb
e(Ωei

b + Ωib
b)

 (2.23)

where ‘dots’ implies derivative, ‘b’ and ‘e’ letter imply the b-frame and e-frame re-
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spectively. The symbols,

re is a three-dimensional position vector (xe, ye, ze),

ve is a three-dimensional velocity vector (vex, vey, v
e
z),

γe is a three-dimensional velocity vector (γex, γey, γ
e
z),

Re
b is the rotation matrix from b-frame to e-frame,

Ωb
ei is the skew-symmetric matrix of the rotation rate ωbei,

Ωb
bi is the skew-symmetric matrix of the rotation rate ωbbi,

f b and Ωb
ib are the measurements taken from IMU. Mechanization equation given here

for e-frame is solved in the next sub-section . Most of the calculations gathered from

[13].

2.2.3.1 Raw Measurements

Raw measurements coming from an IMU tend to have errors that grow with time

additively if not compensated. Details of these errors and how to obtain their values

such as biases, scale factors and others are given in Section 2.2.4. Below is a method

to correct these errors after obtaining their values,

θbib =

(
θ̃bib − bg∆t

)
(1 + Sg)

(2.24)

vbf =

(
ṽbf − ba∆t

)
(1 + Sa)

(2.25)

where θ̃bib is the angular rates from gyroscope. Subscript implies rotation from i-frame

to b-frame and superscript implies that the measurement is done in b-frame. ∆ṽbf

is the acceleration increments from the accelerometer. Superscript implies that the

measurement is done in b-frame. bg and ba are gyroscope and accelerometer biases

and Sg and Sa are gyroscope and accelerometer scale factors respectively.
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2.2.3.2 Attitude Update

The measured rotation rate from the gyroscope includes Earth’s mean rotation rate.

In order to find vehicle’s rotation accurately, Earth’s rotation should be removed from

gyroscope’s measurements. Since vehicle’s measurements are done in body frame,

Earth’s rotation rate is transformed from e-frame to b-frame. After transformation, it

is subtracted from total measurements taken from gyroscope. The equations for this

process are given in Equation 2.26 and Equation 2.27.

θbie =
(
Rb
iω

e
ie

)
∆t (2.26)

θbeb = θbib − θbie (2.27)

ωe is the Earth’s rotation rate which is equal to approximately 15.041o/h and θbeb is

the angular rotation in the b-frame.

After computing angular measurements in the b-frame, current epoch’s rotation ma-

trix Rb
e is created by using these measurements. A quaternion approach is proposed

for this purpose because it provides a convenient representation and it is easy to place

found angular measurements with a quaternion method. It also has the advantage of

having fewer differential equations than a rotation matrix. This method also adds a

cover for singularities, which can be occurred at edges of roll and pitch values [5].

Hence, the rotation matrix can be created by using measurements θbeb (θbx, θ
b
y, θ

b
z) as

given in the following equations.

Update quaternion [6]:


q1

q2

q3

q4


k+1

=


q1

q2

q3

q4


k

+ 0.5


c sθbz −sθby sθbx

−sθbz c sθbx sθby

sθby −sθbx c sθbz

−sθbx −sθby −sθbz c




q1

q2

q3

q4


k

(2.28)
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where

s =
2

θ
sin

θ

2
(2.29)

c = 2cos

(
θ

2
− 1

)
(2.30)

θ =

√
(θbx)

2 +
(
θby
)2

+ (θbz)
2 (2.31)

After obtaining the quaternion at current epoch, rotation matrix Rb
e at current epoch

can be calculated as given in Equation 2.32.

(
Rb
e

)
k+1

=


(q2

1 − q2
2 − q2

3 + q2
4) 2(q1q2 − q3q4) 2(q1q3 + q2q4)

2(q1q2 + q3q4) (q2
2 − q2

1 − q2
3 + q2

4) 2(q2q3 − q1q4)

2(q1q3 − q2q4 2(q2q3 + q1q4) (q2
3 − q2

1 − q2
2 + q2

4)


(2.32)

The new rotation matrix is used to calculate roll, pitch and heading after calculation

of position in geodetic coordinates.

2.2.3.3 Acceleration Measurements Corrections and Frame Transformation

Coriolis Effect is named after the effects of pseudo-forces from Earth’s rotation since

IMU can be assumed to be at the surface of the Earth. It can be computed by using

the previous epoch velocity as given in Equation 2.33 [5].

αe = 2Ωe
ieve (2.33)
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Gravity correction should also be applied to velocity increments. This can be calcu-

lated by using the latest position. After calculating these values, Coriolis and gravity

corrections can be applied to acceleration measurements as given in Equation 2.34.

∆v = ∆vef − αe∆t+ γe∆t (2.34)

The third term on the right of the above equation is gravity correction that is calculated

from latest position. First term on the right is the acceleration measurements rotated

to e-frame. Hence, velocity increments, ∆vbf measured by accelerometer in b-frame

shall be rotated to e-frame. It is done by using the prior epoch’s rotation matrix Re
b

and corrected angular measurements from gyroscopes as given Equation 2.35.

∆vef = (Re
b)k+1

(
I − 1

2
Sb
)

∆vbf (2.35)

where Sb is the skew-symmetric matrix of angular measurements and I is the identity

matrix.

2.2.3.4 Velocity and Position Update

The velocity and position at the current epoch can be computed by using previous

epoch’s velocity and average of both previous and current epochs corrected velocity

measurements of as given in Equation 2.36.

vek+1 = vek +
1

2

(
∆vek+1 + ∆vek

)
(2.36)

Calculation of the current epoch’s position uses same methodology as velocity as

given in Equation 2.37.

rek+1 = rek +
∆t

2

(
vek+1 + vek

)
(2.37)
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2.2.3.5 Computing Latitude, Longitude, Height and Roll, Pitch, Yaw

Latitude and longitude are the most common output form of position. Increments of

position can be calculated by using the computed velocities in the local frame [4]. In

order to have geodetic positions latitude, longitude and height, rotation from e-frame

to geodetic coordinates should be applied. It is given in Equations 2.38, 2.39, 2.40:

Latitude:

ϕ̇ =
vn

RM + h
(2.38)

Longitude:

λ̇ =
ve

(RN + h) cosϕ
(2.39)

Height:

ḣ = vu (2.40)

where ve, vn, vu are the components of the velocity in east, north and up directions in

order. RM and RN are the meridian and normal radius of the accepted Earth model

WGS-84. Details about calculation of RM and RN can be found in [11].

Re
b was already found in Equation 2.32. Therefore, the rotation matrix from b-frame

to l-frame is found as given by Equation 2.41. Rl
e was computed by using geodetic

latitude and longitude.

Rl
b = Rl

eR
e
b

(2.41)

From Rl
b, Euler angler i.e. roll, pitch and yaw are computed as given in Equations

2.42, 2.43, 2.44.

ξ = − tan−1

((
Rl
b

)
3,1(

Rl
b

)
3,3

)
(2.42)
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η = sin−1
((
Rl
b

)
3,2

)
(2.43)

ψ = tan−1

((
Rl
b

)
1,2(

Rl
b

)
2,2

)
(2.44)

The complete mechanization equation is summarized in Figure 2.7.

Figure 2.7: INS Mechanization Summary

2.2.4 INS Error Sources

INS measurements accuracy strongly depends on correct computation of position, ve-

locity and attitude information of vehicle or user before starting navigation. As men-

tioned earlier, there are some error sources coming from the nature of accelerometers

and gyroscopes such as bias, scale factor. In addition to these error sources, there are

Earth gravity and Coriolis effects. There are other errors and special arrangements

should be done to cancel their effects on inertial navigation. Three criteria for the

performance or classification of an IMU is given below [27].

• Repeatability: The quality of an IMU in a manner by looking at the differences

between each output under the same conditions. It refers on the product sheets
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as the maximum variation between same measurements under same conditions

over multiple trials.

• Stability: The quality of an IMU is measured by evaluating the same output

over time with the same input. Stability is decided by single run with longer

time.

• Drift: The rate of change occurred at the output when the input remains con-

stant i.e. changes in outputs without an input.

Both gyroscopes and accelerometers have errors that are generally defined by bias

stability, bias drift, scale factors, noise and misalignment of the axes. Accelerom-

eter and gyroscope measurement model with all possible error sources are given in

Equation 2.45 and Equation 2.46.

w̃ = w + bg + w.Sg + w.Ng + εg (2.45)

f̃ = f + ba + f.Sa + f.Na + εa (2.46)

where ’tilda’ means measurement made by relevant sensor, subscript ’a’ means ac-

celerometer errors and ’g’ means gyroscope errors and

w is the angular rate (deg/h),

f is the specific force,

b is the bias,

S is the scale factor,

N is the non-orthogonality of relevant sensor triad,

ε is the relevant sensor random noise.

Modeling an INS with certain error constraints results removal of errors partially or
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completely. In these sections, important errors affecting sensors inside an IMU are

provided. Visualizing of common INS errors are provided in Figure 2.8.

Figure 2.8: INS Error Visualization [27]

2.2.4.1 Bias

Bias is the average difference between the expected output and the measured output

when the IMU is turned on. It has o/h (or rad/s) unit for gyroscopes and m/s2 (mg)

unit for accelerometers. Bias characteristics of an IMU are important since a repeat-

able bias can be compensated easily and a stable bias is a key to minimizing error in

measurement. Therefore, bias can be divided into two parts as bias repeatability and

bias stability.

Bias repeatability is generally referred to as turn-on bias because, it evaluates the

consistency of bias generated at each IMU power-up. It is found deterministically by

taking average of many measurements under same conditions. Calibration processes

such as six-position test or the turntable calibration enable computation of bias re-

peatability. For high-grade IMUs, bias repeatability is negligible [6]. For lower-grade

IMUs, bias repeatability cannot be decided in certain since on the each power-up,

biases can result in big differences. For this class of sensors a turn-on bias should be

calculated at each power-up and it causes longer estimation period and longer align-
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ment [27].

Bias stability is the change on the bias from the power-up until the end of the measure-

ment. It is also referred as in-run bias. It depends on the temperature, time and sensor

type. Bias stability is estimated by INS filter constantly and it is well-compensated

error source for all low and high grade IMUs [16].

2.2.4.2 Scale Factor

Scale factor is the deviation of the input-output gradient as shown in Figure 2.8. Scale

factor errors are provided in PPM. For high grade IMUs, scale factor is negligible but

for low grade IMUs (MEMS) a calibration procedure is required. Since scale factor

is deterministic, it can be calculated by using six-position test or turntable calibration

procedures just like turn-on bias. If the scale factor errors are variable, they can also

be modeled stochastically by using any random process [6, 16].

2.2.5 Misalignment Errors

Misalignment errors occur mainly during the manufacturing processes of an IMU.

The axis orthogonality is broken and the measurements of each axes become depen-

dent to other axes measurements. This error can be removed by calibration methods

given above section or modeled by a random process just like in this thesis [16].

2.2.5.1 Noise (Random Walk)

There is an additive noise in each gyroscope and accelerometer measurements. Sensor

dynamics or electronics, cabling around sensor create noise. It is also referred to

as random walk. Random walk is an effective error within alignment and GNSS

outages and depends mainly on the quality of gyroscope. It is generally modeled

as zero-mean white Gaussian process but can also be calculated deterministically.

Calculation is done by collecting only a few seconds measurements from IMU sensors

between different time cycles and finding the mean standard deviation value from
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these measurements [16, 27]. In this thesis, chosen method was to model it as random

noise.

2.2.6 Initial Alignment

As mentioned in the beginning of this section, INS needs initial position, velocity and

attitude information before starting navigation. After taking an initial information,

INS can start mechanization by using accelerations and rotation rates measurements.

For in-run situations, there is already information about the prior epoch. However,

for the very first initialization INS needs this information externally. The process of

providing this information includes position, velocity, and attitude alignment.

For the initialization process, position and velocity information is supplied from the

aiding system. GNSS was the aiding system for this thesis. Velocity is also available

with other aiding equipment such as odometer (for land applications) or air computer

(for aerial applications) but in this thesis, only aiding system was GNSS.

Roll and pitch angles are only dependent on acceleration measurements. Under static

conditions, the accelerations measured on the x-axis and y-axis of body frame can be

used to compute roll and pitch angles as given below equations [14].

ξ = − sin−1

(
∆v̄bx
γ∆t

)
(2.47)

η = sin−1

(
∆v̄by
γ∆t

)
(2.48)

’bar’ above equations means time average. In this thesis time to calculate first roll

and pitch was 60 seconds.

Accelerometer bias magnitude is an indication of the accuracy for roll and pitch esti-

mation. They are calculated as given in Equations 2.49 and 2.50 [6]:
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δξ =
(ba)x
γ

(2.49)

δη =
(ba)y
γ

(2.50)

The final part of the attitude information is the toughest part of alignment. The quality

of an IMU or the type of application can decide the alignment method. The quality of

an IMU for heading initialization depends on the gyroscope. The gyroscope inside an

IMU must have capability of measuring rotation rate of Earth in order to find heading

statically. It requires that gyroscope shall have total gyro-bias less than 15.04 deg/h.

High-grade IMUs have highly sensitive gyroscope inside of them. They can achieve

static heading alignment. Since static alignment strongly depends on gyroscope, it is

also referred as gyro compassing [21].

Heading is computed statically by rotating body frame angular rate measurements to

the horizontal frame. Rotation angles are applied according to computed initial roll

and pitch angles as given in Equation 2.51. Finally heading is calculated by taking

inverse tangent of angular measurements. Before doing that, rotation to horizontal

plane should be applied for roll and pitch.

ψ = − tan−1

((
∆θ̄hib

)
x(

∆θ̄hib
)
y

)
(2.51)

Static alignment can take time between a minute or a few minutes. It strongly depends

on the environment since the sensors inside IMUs are sensitive and no movements

should be done during static alignment.

With lower grade IMUs such as used in this thesis, gyroscopes are not that sensitive.

In order to evaluate heading information in such systems the kinematic alignment

procedure is applied. This procedure is called kinematic alignment because, it uses

GNSS velocity measurements.
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ψ = tan−1

(
vEGNSS
vNGNSS

)
(2.52)

where vE and vN represents the velocities computed from GNSS measurements. This

procedure generally needs at least 5 m/s speed in the horizontal plane because the

accuracy of calculated heading depends on the amount of movement or velocity as

given in Equation 2.53. As velocity or acceleration get higher, accuracy of initial

heading estimation gets higher.

σ2
ψGNSS

=

(
V E
GNSS

)2(
vEGNSS

2
+ vNGNSS

2
)2σ

2
vNGNSS

+

(
V N
GNSS

)2(
vEGNSS

2
+ vNGNSS

2
)2σ

2
vEGNSS

=
σ2
vGNSS

v2
GNSS

(2.53)

where sigmas are the standard deviation of GNSS computed velocities and VGNSS is

the GNSS computed velocity.

The other and application dependable method for heading alignment is using an ex-

ternal aiding. By using either a magnetometer or a Dual-Antenna GNSS receiver. A

magnetometer is very sensitive to the electromagnetic variations around it and needs

soft and hard iron calibrations. In a complex system, placement of a magnetometer

is hard. On the other hand, Dual-Antenna GNSS receivers can provide heading and

pitch information by using dual measurements taking from both antennas ends. This

solution adds extra price and another GNSS antenna to be placed, which requires at

least a meter distance in order to provide accurate heading information [8].

Finally, it would be nice to mention that kinematic heading alignment has some con-

ditions. For most of the land applications, east and north components of l-frame ve-

locities are horizontal to the vehicle’s direction of motion. However, for applications

such as marine and aerospace, there may exist both horizontal and vertical velocity

components due to motion or environmental conditions. For this type of applica-

tions, alignment should be computed analytically based on there is large uncertainty

on heading. The method is referred as Large Heading Uncertainty (LHU) [8].

In this thesis, first heading was given manually to filter and kinematic method was
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used to provide more accurate heading due to the grades of IMU’s inside of both

reference and developed systems. The summary on the quality of IMUs depending

on type and amount of errors is provided in the next section.

2.2.7 Classification of Inertial Navigation Systems

IMU’s quality depends on the bias, the noise, the measurement rate, gyroscope tech-

nologies and their capability of the output data in one second. The IMU grades in

Table 2.2 are taken from [28] and classified as high, mid and entry performance. The

key element which determines the accuracy and quality of an IMU is gyroscope. Ac-

celerometer technology is more mature and even if the high-level IMUs have more

accurate acceleration measurements, they do not create the real difference. Most of

the accelerometers are very accurate at measuring gravity and roll/pitch values esti-

mations are accurate enough even with entry-level IMUs.

As mentioned in the previous section, gyroscopes that can measure Earth rotation rate

can make static heading alignment. In general the heading needs kinematics to be

accurate. Therefore, there will be drifts over heading for level flight or straight route.

The amount of the drifts on heading strongly depend on the quality of gyroscope.

Finally, with high-level IMUs, system can estimate IMU errors more accurately and

this will reduce the possibility of unexpected drifts or unacceptable navigation solu-

tions. As can be seen from Table 2.2, the IMUs used in this thesis are entry-level

IMUs. Therefore, there shall be special arrangements to prevent performance degra-

dation for developed INS/GNSS systems while using IMU data.

2.2.8 Conclusions About INS

Inertial navigation is a solid method for computing position, velocity and attitude

of a vehicle since it does not depend on the external or environmental conditions

like GNSS. It is a self-contained navigation method. However, inertial navigation

solution have errors and the accuracy strongly depends on the error characteristics

and accuracy of gyroscopes used.
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Table 2.2: IMU Quality Classification

IMU Entry Mid High

Level Perf. Perf. Perf.

Gyro Bias 20 to 700 2 to 6 <= 2

(deg/hr)

Angular

Random Walk 0.0667 to 0.3 0.012 to 0.125 0.07 to 0.125

(deg/rt-hr)

Acc.

Bias >= 4 1 to 3 <= 1

(mg)

Meas.

Rate 100 to 200 100 to 200 >= 200

(Hz)

Gyro MEMS RLG,FOG, FOG,

Tech. MEMS RLG

Some STIM300, HG1900, LN200,

COTS ADIS16488, uIMU-IC, ISA-100,

Sensors EPSON EG320N KVH1750 HG1700
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As given in Table 2.2, errors are worse for MEMS sensors and they can grow quickly

as the solution becomes unacceptable. There are always errors in the measurements

made by gyroscopes and accelerometers. Hence, integration on these measurements

will add these errors to calculated velocity, position and attitudes. Rapid growth in

error is caused by these integration methods mainly and main elements of errors are

biases in accelerometers and gyroscopes.

In order to have an accurate attitude measurements, accurate computation of velocity

components is required. There are a few aiding systems such as GNSS for position

and velocity, dual-antenna GNSS for heading and pitch additionally, air data comput-

ers for airspeed and barometric altitude, magnetometer for heading and odometer for

velocity updates [17].

To estimate errors and update INS computations, there are techniques such as Kalman

filtering, particle filtering, federated filter, and artificial intelligence (19). The most

frequently used technique is Kalman filtering. Both INS and GNSS have weakness

in their nature, integration of both technologies is common nowadays for accurate

navigation solution. This thesis uses GNSS as aiding to a MEMS IMU. Estimation

techniques and integration details of INS and GNSS are discussed in next chapters.
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CHAPTER 3

ESTIMATION TECHNIQUES

3.1 Estimation

Estimation can be explained as using the knowledge coming from various observa-

tions to calculate unknown parameters. Fundamentally if the number of known pa-

rameters is equal to the number of unknown parameters, unknown parameters can

be found perfectly. Additionally, if the system that has been dealing with is linear,

knowledge from measurements can be written as Equation 3.1.

z = Hx+ η (3.1)

where,

z is the measurement vector,

H is the observation,

η is the measurement noise.

Measurement noise comes from the imperfections due to measurement equipment or

technique or environmental conditions and random errors. As told above, if the num-

ber of known measurements is equal, there is no problem but if the number of mea-

surements is more than unknowns, there should be an optimal solution to the problem.

This is where the least square estimation enters estimation process. Least square esti-

mation computes the optimal state which has the minimum residual. Residuals are the

differences between measurements and estimation of unknowns. This method gives
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most probable, most precise and most accurate estimate by choosing the state with

minimum residual [18].

In order to compute an estimate from measurements by using least squares estimation,

below computations should be done. Assume that an estimate with minimum residual

is found as given in Equation 3.2:

v = z −Hẋ (3.2)

where ẋ is the least square estimated vector of unknown parameters. Optimal solution

is not possible for conditions where the number of measurements is less than the

number of unknowns. Additionally, if unknown parameters are not time invariant,

measurements are not enough to make an optimal estimation. In this situation, the

system needs to know dynamic behaviour of the system in the defined time interval.

INS/GNSS integrated systems are good example of this type of calculations. With the

information to understand dynamic behaviour of the systems, better estimations are

feasible. Limitations coming from the number of measurements are cancelled hence it

will be possible to make estimation in conditions where there are fewer measurements

than the unknowns. A linear time-variant system dynamics and measurement models

are given as in Equation 3.3 and Equation 3.4:

ẋ(t) = F (t)x(t) +G(t)w(t) (3.3)

z(t) = H(t)x(t) + η(t) (3.4)

where, ’dot’ represents time derivative and

F (t) is the system dynamics matrix,

G(t) is the shaping matrix of system noise,

w(t) is the process noise with covariance Q(t),
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Equations 3.3 and 3.4 are the basis for Kalman Filtering which uses both measure-

ments and dynamics of the system to get optimal result.

It would be better to go forward with discrete-time equations since computations were

done discretely on a computer in this thesis. Discrete Equations 3.3 and 3.4 are given

below:

xk+1 = Φk+1,kxk +Gkwk (3.5)

zk = Hkxk + ηk (3.6)

where,

xk+1 is the state vector at epoch k+1,

xk is the state vector at epoch k,

Φk+1,k is the state transition matrix computed from system dynamics matrix from

epoch k to k+1,

Gk is the shaping matrix of system noise at epoch k,

wk is the process noise at epoch k with covariance Qk,

zk is the measurement vector at epoch k,

Hk is the measurement matrix at epoch k,

ηk is the measurement noise at epoch k with covariance Rk.

With the assumption that the system dynamics do not change from epoch k to epoch

k + 1, computation of the state transition matrix (STM) is applicable with a Taylor

expansion on system dynamics as given by Equation 3.7 [6]:

Φ ≈ eF∆t = I + F∆t+
(F∆t)2

2!
+

(F∆t)3

3!
+ ... (3.7)
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where I is the identity matrix and ∆t is the time interval between two epochs. First

order Taylor expansion uses first two terms of the Equation 3.7 as STM with the

assumption that higher order terms are negligible.

The process noise matrix is a diagonal matrix where each diagonal element has the

expected value of process noise at that time epoch. It is calculated as in Equation 3.8:

Qk =

∫ tk+1

tk

Φk+1,τG(τ)Q(τ)GT (τ)ΦT
k+1,τdτ (3.8)

Using the assumption of constant process noise between epochs tk and tk+1, process

noise becomes as in Equation 3.9 [8]:

Qk ≈
1

2

[
ΦkGtkQtk

T +GtkQtkG
T
tk

ΦT
k

]
∆tk+1 (3.9)

3.2 Kalman Filter

Kalman filter is a recursive algorithm and is used for compensation of INS sensor

errors with updates from GNSS in this thesis. Kalman filtering is an optimal least

mean-variance estimator and also has the advantage of giving valuable statistical in-

formation about error characteristics of relevant systems. It does that by using all

knowledge without looking at their precision. It is very useful for error analysis.

Kalman filtering uses below information to make an optimal estimation [13]:

1. Information about the system and its measurements.

2. Statistical knowledge of the noise characteristics of system, measurements and

uncertainty in system model.

3. Knowledge coming from initial conditions to be estimated system states.

An inertial system outputs navigational data with high data rates. But the error aris-

ing from its sensor characteristics grows with time. KF takes low frequency data
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from GNSS to compensate errors coming from INS high frequency data. There are

alternative systems for aiding purposes such as microwave radar (LORAN), air data

computer for air speed, an odometer for land applications, set of images with a geo-

graphical database [37]. GNSS is the most common method for land, marine and air

applications since it has a global coverage, good accuracy, low cost and high avail-

ability of receivers where they can be purchased over internet or off-line data sets can

be found on-line. This thesis uses a GNSS receiver with one antenna as an aiding

source to be integrated with an entry-level MEMS inertial navigation system.

3.2.1 Kalman Filter Algorithm

Kalman filter has three main stages in which two of them are prediction and measure-

ment updates. Before starting the process, an initialization should be applied. With a

wrong initialization, the filter can diverge to a whole different result than it should do.

There are also assumptions for KF algorithm used in thesis which are summarized

below:

1. KF is optimal for linear systems hence both process and measurements must be

described as linear models.

2. KF assumes that process to be estimated and measurements occur at discrete

points and both measurements and process are modeled as given in Equation

3.3 and 3.4.

3. The system (process) noise wk and the measurement noise ηk are uncorrelated

zero-mean white noise processes where their auto covariance functions Qk, Rk

are known. Qk is a positive definite matrix that represents the process noise re-

lated with INS sensor errors and Rk is a positive definite matrix that represents

the measurement noise related to aiding sensor error and constraints.

4. As mentioned above, initialization is also crucial for KF performance hence an

initial state vector is assumed to be a random vector that is uncorrelated with

measurement and process noises.
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5. Finally, the initial state vector x0 and its covariance matrix P0 are known prior

to initialization.

KF is a recursive sequential algorithm. After initialization is completed, a prediction

is made about the next state vector. Measurement from aiding system is used to

correct predicted state vector.

3.2.1.1 Prediction

In the prediction stage of KF, the best estimate of last epoch is used with the state

transition matrix given in Equation 3.7. Since the process noise is zero-mean, the

predicted state vector is computed as given in Equation 3.10:

X̂−
k+1 = Φk+1,kx̂

+
k

(3.10)

where the ’hat’ describes the estimated parameter, the superscript ’-’ describes the

predicted parameter before measurement and the superscript ’+’ describes the quan-

tity that updated with measurement at last epoch. Note that predicted state vector

depends only on the state transition matrix i.e. system dynamics and the last known

updated state.

Computation of a priori error covariance matrix is similar. This matrix represents the

error propagation contributed from the process noise (i.e. INS sensor errors) from

epoch k to k + 1.

P−
k+1 = Φk+1,kP

+
k ΦT

k+1,k +Qk (3.11)

where P+
k is the updated estimate of the last epoch with the measurement at epoch

k. Note that predicted error covariance matrix depends on system process noise and

a posteriori error covariance.
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3.2.1.2 Measurement Update

Whenever aiding system measurement is available, it is used to correct errors in pre-

dicted state. The new information coming from aiding system should be weighted

by using predicted error covariance matrix P−
k+1 and measurement noise covariance

Rk+1. The computation of Kalman gain aims minimizing the mean squared error of

the estimate [13].

Kk+1 = P−
k+1H

T
k+1

(
Hk+1P

−
k+1H

T
k+1 +Rk+1

)−1 (3.12)

Kalman gain is the key parameter in deciding the amount of correction from new

measurement about the predicted estimation. Equation 3.12 shows that if new mea-

surement is noisy then the measurement noise covariance is expected to be higher or

if the predicted error covariance is lower than KF will trust the predicted estimations

rather than new measurement. On the contrary, if new measurement is accurate and

have less noise or if predicted error covariance is higher, KF will trust on the mea-

surement. This logic determines the amplitude of Kalman gain parameter. In this

thesis, if GNSS measurements are accurate; K has large amplitude and measurement

noise covariance matrix Rk+1 gets smaller.

The comparison between predicted state vector and measurement is done by using

Kalman gain as given in Equation 3.13:

x̂+
k+1 = x̂−k+1 +Kk+1

(
zk+1 −Hk+1x̂

−
k+1

)
(3.13)

where Hk+1x̂
−
k+1 is the predicted measurement ẑk+1. zk+1 is the actual measurement

made at epoch k + 1. They both create the innovation sequence vk+1 as given in

Equation 3.14:

vk+1 = zk+1 − ẑk+1 = zk+1 −Hk+1x̂
−
k+1

(3.14)
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Innovation sequence is the amount of new information coming from the measurement

and is weighted with Kalman gain as explained earlier.

Finally, error covariance is updated by using predicted error covariance matrix and

Kalman Gain for a current epoch as given in Equation 3.15. Error covariance matrix

is useful for error analysis and next epoch’s initialization before prediction.

P+
k+1 = I −Kk+1Hk+1P

−
k+1

(3.15)

Updated error covariance matrix implies the level of reliability on the updated (cor-

rected) estimated a posteriori state vector x̂+
k+1 for the next state.

A summary of general Kalman filtering is provided in Figure 3.1 with explanations.
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Figure 3.1: Kalman Filter Summary

3.3 Non-Linear Kalman Filtering

One of the assumptions was made previous section about KF optimality is that the

process and measurement models must be described as linear models. However, in

real-world, there are no linear systems at all. Applications such as INS and GNSS

integration and their equations are non-linear. First known trial and application was

Apollo space missions in 1960s for linearization according to [37]. The basic idea

was to linearise a non-linear system and apply KF algorithm as given in previous
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section. A non-linear process and measurement models are presented by Equations

3.16 and 3.17:

xk+1 = f(xk, k) + wk (3.16)

zk+1 = h(xk+1, k + 1) + ηk+1 (3.17)

where f and h are the non-linear, known system and observation matrices. Lineari-

sation to these functions means the differences of them from the nominal trajectory.

xk+1 = x∗k+1 + δxk+1 (3.18)

where ’*’ means that the value to be used as reference ’δ’ means the perturbation

from the reference value. Hence, when dealing non-linear systems, KF estimates

error states rather than whole states. Error states represent the difference between

predicted states and measurement states. Then the system and measurement equations

are represented as Equations 3.19 and 3.20:

δxk+1 = φk+1,kδxk + wk (3.19)

δzk+1 = Hk+1,kδxk+1 + ηk+1 (3.20)

There are three methods to be explained which are used for linearisation non-linear

systems in the next sub-sections. The first two of them use derivatives or Jacobian for

the linearisation of system and process models. The third one uses a different method

which focuses on the Gaussian distribution properties and making a linearisation by

selecting sigma points from distribution. Methods are named Linearised Kalman

Filtering (LKF), Extended Kalman Filtering (EKF) and Unscented Kalman Filtering

(UKF) in order.
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3.3.1 Linearized Kalman Filter (LKF)

With the assumption of perturbations calculated in Equations 3.19 and 3.20, the first-

order Taylor series expansion can be applied to calculate system transition Φk+1,k and

measurement Hk+1 matrices. As given in Equation 3.7, if a non-linear state dynamics

matrix F is differentiable, it can be linearised with Jacobian matrix. Hence, Φk+1,k

can be represented as linearised system model with the Jacobian of system dynamics.

Similarly, if a non-linear observation matrix H is differentiable, it can be linearised

with Jacobian matrix. Hence, Hk+1 can be represented as linearised measurement

(sensor) model with the Jacobian of observations.

For the evaluation of Jacobian matrices, LKF uses a known trajectory. LKF is used

commonly during for a system’s design beginning phase or in applications where a

reference trajectory can be created without breaking the assumption of little pertur-

bations for linearisation to be realized. These applications are the flying route of an

air-plane or a satellite that will orbit around world with same trajectory for years. It

is also used for INS/GNSS applications. In INS/GNSS applications, mechanization

equations output is accepted as reference trajectory for current epoch.

LKF is an open-loop configuration where calculated perturbations from KF is directly

subtracted from reference trajectory and calculated perturbations are not fed back to

inertial navigation system [11], [19].

3.3.2 Extended Kalman Filter (EKF)

For most of the real-time navigation applications where random trajectories occur

frequently, finding a reference trajectory is not possible. There is also a possibility

that the difference between reference trajectory and calculated estimates can grow in

time and the assumption of small perturbations is not held.

There is another linearization method where Jacobian matrices are calculated with

respect to the best state estimate rather than reference trajectory. In this method, best

estimates initialize KF and estimated value is used as reference trajectory for cur-

rent epoch-to-epoch Jacobian matrix calculations. This method creates a closed-loop
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configuration where the inertial navigation system are updated with last calculated

perturbations before calculating its output. By updating on reference trajectory with

best estimates, growth of error due to big difference between reference and estimated

states is limited. However, there is still a possibility of divergence from filter esti-

mates if initial values are highly erroneous and noisy according to [20].

In this thesis one of the KF filters developed for INS/GNSS integration was EKF. In

Figiure 3.2, LKF and EKF equations and implementations are summarized. EKF part

was implemented exactly same in MATLAB for designing EKF in this thesis.

3.3.3 Unscented Kalman Filter (UKF)

The other linearization method is applicable by using Unscented Transform (UT). It is

applicable by carefully sampling several points from the given mean and covariance

of the PDF and making linearization with respect to these selected samples. Lin-

earized points create transformed mean and covariance. In EKF, predictions depend

only on the a priori mean value from last epoch without taking any expectation. Also

for EKF, Covariance is calculated same as linear Kalman filter equations. However,

if the approximations on first-order terms have high errors, the Kalman filter may

not work optimally and may even diverge completely from true mean and covariance

[29].

There have been researches and works done about UKF in the past. The first proposal

for Unscented Transform (UT) was presented by [30] and authors of [31] worked on

adaptations of UT to UKF and observed its performance on INS/GNSS integrated

systems. Even though there were better results in some cases comparing with EKF,

singularities occurred from Euler angle calculations according to [8]. This problem

was solved by using quaternions [34]. Also in [32], authors worked on UKF non-

linear estimation and presented their algorithm and comparisons with EKF.

The biggest concern of applying UKF rather than EKF in nonlinear estimation is the

computation burden in real-time applications. For systems with a large number of

sigma points may lead to a significant computational burden according to [8]. Every

extra transformation which is not done in EKF brings additional burden. Hence there
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Figure 3.2: LKF and EKF Summary
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have been works on that issue additionally. In [33], authors offered a method of using

square root UKF besides Cholesky update algorithms as provided in [8]. In [30],

authors made trials and presented a method for reducing sigma points.

In the next sections, the basics of UT is given and Scaled UT is explained. After

transformation is done, Kalman Filtering by using unscented transformed mean and

covariance is explained. At the end of this section, there will be a summary about cal-

culating sigma points, weights, UKF prediction and measurement updates in author

generated UKF. Mathematical explanations and equations are mostly taken from [8].

3.3.3.1 Unscented Transform (UT)

The UT is a procedure which depends on sampling a set of weights and sigma points

with respect to given mean and covariance. Selected weights and sigma points satisfy

below conditions:


∑p−1

i=0 wi = 1∑p−1
i=0 wiXi = x̂∑p−1
i=0 wi(Xi − x̂)(Xi − x̂)T = P

(3.21)

where wi’s are weights, Xi’s are sigma points, p is the number of sigma points, x̂ and

P are the given mean and covariance in order. Equation 3.21 gives the idea about the

realization of UT. There are two constraints about selecting weights in order to over-

come the possibility of being sampled far from uncertainty level. These constraints

were presented by [34].

1. The 0th weight is a free parameter. It can be chosen by designer freely and all

other weights have the same magnitude.

2. The 0th weight is equal to mean and all other weights lie on a hypersphere

where they are all centered at the mean.

58



The summarized UT is given in Equations 3.22 and 3.23:

Xi =


x̄, i=0

x̄+
√
n+ κPx, i=1,...,N

x̄−
√
n+ κPx, i=N+1,...,2N

(3.22)

wi =


κ

n+κ
, i=0

1
2(n+κ)

, i=1,...,N
(3.23)

where κ is a scaling parameter which is used to adjust higher-order non-linearities

such as fourth and higher; and P is the covariance matrix for given PDF. κ is assigned

as zero commonly as stated in [33].

With standard UT even if the above constraints are applied, there may be large un-

certainty for attitude angles especially. Therefore, [35] represented an updated UT

method that scales sigma points and this method is called Scaled UT (SUT).

3.3.3.2 Scaled Unscented Transform (SUT)

Sigma points and weights given by Equation 4.19 can be scaled by using below equa-

tions. For sigma points [8]:

Xi =


x̄, i=0

x̄+ α
√
n+ κPx, i=1,...,N

x̄− α
√
n+ κPx, i=N+1,...,2N

(3.24)

where α is a small positive scale factor which takes values between 10−4 and 1. In

SUT, weights are also scaled but they are scaled differently for mean and variance as
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given in Equations 3.25 and 3.26:

wmi =


w0−1
α2 + 1, i=0

wi

α2 , i=1,...,2N
(3.25)

wi =


w0−1
α2 + 2 + β − α2, i=0

wi

α2 , i=1,...,2N
(3.26)

where wmi ’s are scaled weights for transformed mean and wci ’s are scaled weights for

transformed covariance. β is another parameter to reduce higher-order effects which

has the optimum value 2 for Gaussian distributions [35]. Note that the weights and

sigma points given above are true for three conditions given at the beginning of this

section. The calculations are not given here but they can be found in [8].

3.3.3.3 Kalman Filtering (UKF)

Details of Unscented Kalman Filtering step by step are given next.

With the assumption that there is a non-linear system dynamics matrix and a mea-

surement matrix with additive Gaussian noise as given below:

xk+1 = f(xk, k) + wk, where Qk = E
[
wkw

T
k

]
(3.27)

zk+1 = h(xk+1, k + 1) + ηk+1, where Rk+1 = E
[
ηk+1η

T
k

]
(3.28)

First step is initialization:

x̂0 = E [x0] (3.29)

P0 = E
[
(x0 − x̂0)(x0 − x̂0)T

]
(3.30)
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Next step is to calculate weights and sigma points according to SUT equations given

in Equations 3.25 and 3.26. After this step, Kalman filter can start its prediction state

based on INS output.

Transformation of calculated sigma points are done through non-linear system dy-

namics matrix:

X́k+1,k = f(Xk) (3.31)

where X́k+1,k is transformed sigma points from epoch k to k+1.

Computation of mean and covariance from transformed sigma points is done:

X̂−
k+1 =

p−1∑
i=0

wmi X́i,k+1,k (3.32)

P−
k+1 =

p−1∑
i=0

wci

(
X́i,k+1,k − X̂−

k+1

)(
X́i,k+1,k − X̂−

k+1

)T
+Qk (3.33)

For measurement update, measurement prediction should be done. For this to happen,

transformed sigma points in Equation 3.31 are transformed again through the non-

linear measurement matrix:

Źk+1,k = h
(
X́k+1,k

)
(3.34)

Predicted measurement can be computed from above information:

ẑ−k+1 =

p−1∑
i=0

wmi Źi,k+1,k (3.35)

The covariance between the predicted state and measurement is calculated as follows:

Pxz,k+1 =

p−1∑
i=0

wci X́i,k+1,k − x̂−k+1Źi,k+1,k − ẑ−k+1

T
(3.36)
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The covariance of innovation sequence is also calculated as follows:

Pzz,k+1 =

p−1∑
i=0

wci Źi,k+1,k − ẑ−k+1Źi,k+1,k − ẑ−k+1

T
+Rk (3.37)

Kalman gain is calculated with these covariances as follows:

Kk+1 = Pxz,k+1P
−1
zz,k+1 (3.38)

After Kalman gain is calculated, measurement update finalizes with corrected state

vector eliminates as following two equations:

x̂+
k+1 = x̂−k+1 +Kk+1(zk+1 − ẑk+1) (3.39)

P+
k+1 = P−

k+1 −
(
Kk+1Pzz,k+1K

T
k+1

)
(3.40)

The corrected or updated state vector and covariance which is an indicator of how

reliable this estimated value is then fed back as initial values for the next epoch and

they are used for calculation of sigma points and weights. The algorithm used in the

thesis for UKF is given in Figure 3.3.
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Figure 3.3: UKF Summary
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CHAPTER 4

INTEGRATION OF INS/GNSS AND MODELING ERRORS BY LINEAR

STATE EQUATIONS

4.1 Integration Techniques

As mentioned earlier, both INS and GNSS have flaws in their nature and advantages

compared to each other. To overcome both system flaws, there are different methods

at the level of sharing information and usage of estimated errors at Kalman filter.

The methods can be chosen according to the application, environmental conditions

(such as Urban or Open Area), quality and accuracy of chosen INS sensor and GNSS

receiver.

There are four methods for integration purposes. The main difference between these

methods comes from the types of information used to compute navigation data. With

this aspect, methods can be named as uncoupled, loosely coupled, tightly coupled and

deeply coupled integration. The most common methods used in user level are loosely

coupled and tightly coupled integration methods [13, 19].

In some applications of INS/GNSS integration, estimated errors are only used for

current state’s INS navigation solution error compensation. This implementation ap-

proach is defined as open loop. The second approach uses these estimated errors

to compute better navigation solution from INS-only solution in addition to current

state’s error compensation. Hence, this method is named as closed loop.

In the uncoupled integration, systems work independently from each other and both

INS and GNSS systems compute their positions differently. In this method, when

GNSS starts to compute navigation solution, INS stops computing or INS outputs are

65



not used during this period. In this method, INS and GNSS become a backup system

for each other. This method requires the least computational load since it does not

include any Kalman filter. However, since both systems work independently from

each other, their navigational accuracy is not improved at all. In addition to this fact,

attitude information such as roll, pitch and heading is not computed during GNSS

period if chosen GNSS receiver is a single antenna GNSS receiver like the one in this

thesis.

On the other hand, deeply coupled integration method requires both systems to work

cooperatively. At this method, integration is called deeply since integration is done

at the GNSS receiver tracking loops level. Rather than using GNSS as an aiding

source only, deeply coupling uses INS to improve GNSS tracking loops accuracy

when GNSS signals is degraded or GNSS accuracy is low additionally. However,

integration at this level requires designer to manipulate firmware of the receiver and to

sample in-phase and quadrature of GNSS correlators. Hence, this type of integration

is not commonly used by designers other than receiver manufacturer [4, 7].

The most common methods for INS/GNSS integration are loosely and tightly coupled

since they can be applied to most of the equipment on market.

4.1.1 Loosely Coupled Integration

Context of loosely coupled integration comes from the fact that error corrections are

only done by aiding GNSS position and velocity as measurement to Kalman Filter.

It means, GNSS position and velocity are computed separately by a GNSS filter and

computed GNSS position and velocity are subtracted from position and velocity com-

puted by INS. The difference then becomes the input for navigation filter.

The main advantage of this method is that even if one of the systems fail, other system

can keep on computing navigational data on itself. Hence, system becomes robust to

failures. Another advantage of this system will be seen in next sections where loosely

coupled integration requires less states than tightly coupled integration method at

Kalman filter design. However, this method requires using two system’s output and

this leads a high probability on increasing noise at system. In addition, to compute
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accurate GNSS position and velocity, receiver needs at least four satellites on sight.

Otherwise GNSS accuracy becomes corrupted and lead low accuracy solution.

The loosely coupled integration method block diagram is given in Figure 4.1. It can

be seen from this figure there are two Kalman filters. Hence, [6] named this method as

decentralized integration strategy.

Figure 4.1: Loosely Coupled Integration

As discussed in the beginning of this chapter, application does matter for choosing

right integration method. The cost, computational load and ease of implementation

need to be compared with the environmental conditions where system will work com-

monly. For aerial applications or open area application, there are no obstruction to

lead multipath or corruption on GNSS signals, loosely coupled INS/GNSS integrated

products are used commonly. However, if the application is critical and blockage of

GNSS signals may happen frequently, tightly coupled integration method is chosen.

Details of this method is given in the next section.

4.1.2 Tightly Coupled Integration

In this integration method, GNSS and INS work together where each can be referred

as a sub-system of a system. Tightly coupled integration uses raw GNSS measure-

ments such as pseudorange, carrier-phase measurements and Doppler measurements

are used rather than GNSS computed position and velocity. Perturbations are com-
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puted by finding difference between GNSS raw measurements and INS predictions.

The rest of the navigation algorithm is same with loosely coupled integration. Nav-

igation filter takes perturbations and outputs estimated errors. The block diagram

of tightly coupled integration is given in Figure 4.2 where it can be observed that if

GNSS ambiguities are solved, system needs only one Kalman Filter [7].

Figure 4.2: Tightly Coupled Integration

Tightly coupled integration can still compute INS/GNSS solution even under low

number of visible satellites. As given in Chapter 2, GNSS receiver needs at least

4 satellites to compute position and velocity. Since raw measurements are used for

tightly coupling, even with 2 satellites, accurate navigation solution can be computed

continuously. However, system process model should be modified for tightly coupled

integration method. System transition matrix (STM) have larger dimensions com-

paring with loosely coupled STM. Hence, additional states increase computational

load. Today, for urban areas or city center where blockage of GNSS systems happen

frequently, tightly coupled integration is a common choice.

Since both methods are the most common integration methods in market today, IN-

S/GNSS integration is applied by using both methods with different Kalman Filtering

techniques on same sensors in this thesis.
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4.1.3 Open Loop and Closed Loop Implementation

At the both loosely coupled and tightly coupled integration block diagrams given in

Figure 4.1 and Figure 4.2, computed error estimates are fed back to INS mechaniza-

tion process. This type of implementation is named Closed Loop. This implemen-

tation type is a necessity when low-cost IMU sensors exist in INS/GNSS integration

since this type of sensors tend to have drift and growth on their errors. These errors

propagate largely in a short time [6]. Feedback of error estimates corrects this type of

sensor error sources and improve Kalman Filter performance.

For Open Loop implementation, INS mechanization equations do not aware of the

estimated errors by Kalman filter because errors are not fed back to INS. Estimated

errors are only used for error correction of INS navigation output. This type of imple-

mentation is valid if system have high-grade IMU sensors. This type of sensors tends

to behaviour more stable than low-grade sensors and do not propagate large errors in

short time intervals [6].

For this thesis, Closed Loop implementation is adapted for both tightly coupled and

loosely coupled integration methods since a low-cost MEMS IMU is used in INS

mechanization process.

4.2 Lever Arm Effects on Integration

Beside INS/GNSS integration techniques above, there is another critical parameter

which affects the accuracy of system. GNSS receiver makes calculations with respect

to antenna phase center. INS makes its measurement with respect to intersection of

three orthogonal axes. The distance vector between the antenna phase center and the

center of INS measurements is called lever arm. Lever arm is a three-dimensional

vector and differences between INS and GNSS centers at each axis are taken account.

Mathematical equations for lever arm effect are taken from [14].

The difference in position and velocity depending on the lever arm vector is found by
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following Equations 4.1 and 4.2:

∆re = Re
bl
b (4.1)

∆ve = Ωe
ieR

e
bl
b +Re

bΩ
b
ibl
b (4.2)

where lb is lever arm vector in b-frame. To compute the effect of lever arm at each

calculation, above equations are perturbed as given Equations 4.3 and 4.4 with the

assumptions of errorless gyro measurements and perfectly known rotation matrix.

δ∆re = Re
bδl

b (4.3)

δ∆ve = Ωe
ieR

e
bl
b +Re

bΩ
b
ibδl

b (4.4)

From Equation 4.3, in order to cancel lever-arm effect on position, lever-arm must

be known with the same accuracy as position. There is another fact from Equation

4.4 which shows the effect of lever-arm on velocity depends on the rotation rate in

addition to position. In this case, lever-arm should be known with better accuracy

than position since only 1 cm error in velocity can cause 5 mm/s velocity error [14].

As a result, lever-arm must be known with very high accuracy (less than 1 cm) in

order to cancel its effect in each measurement update. To measure lever-arm, proved

common measurement techniques are used such as laser total station with mm accu-

racy. Another method of measuring lever-arm is estimating it by IMU mechanization

process with enough accuracy. However, under bad GNSS coverage and low dynam-

ics conditions, the filter may diverge from the truth [38]. Lever-arm estimation with

error decreases the accuracy on horizontal plane for single-antenna GNSS receiver.

Lever-arm error with respect to secondary antenna for dual-antenna GNSS receiver

leads a biased computation of lever-arm [36]. Finally, lever-arm inaccuracies lead

growth of error in position, velocity and heading. Hence, it should be noted for hard-

ware integration of an INS/GNSS system, lever-arm measurement should be done

with enough accuracy.
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4.3 Modeling INS and GNSS Errors by Linear State Equations

This section explains the system dynamics and measurement models developed for

this thesis. It starts with the augmentation of INS error sources for system transition

matrix and measurement matrix.

As discussed earlier, Kalman filter calculates error states of the navigation. Aug-

mented states need to be added to system model for accurate navigation. On the other

hand, measurement states need to be modified according to integration techniques

given in previous section.

4.3.1 System Process Model

General navigation filter for INS contains nine error states which are defined as three

positions, three velocities and three attitude error states. This is only possible where

all the error sources and their characteristics are completely known hence it is not

possible in real life. As explained in Chapter 2, there are quality differences among

IMUs because of the inertial sensors inside of them. In this thesis an entry perfor-

mance MEMS IMU ADIS-16488 was used for development. This led system dynam-

ics model needs to be augmented with additional error states. All states and complete

system dynamics model will be explained in following sub-sections.

4.3.1.1 General INS Error States

The INS mechanization output position, velocity and attitude vectors. For compli-

ance, Equation 4.5 is represented again:


ṙe

v̇e

Ṙe
b

 =


ve

Re
b − 2Ωe

iev
e + γe

Re
b

(
Ωb
eiΩ

b
ib

)
 (4.5)

Kalman filtering uses perturbed system model. Hence, Equation 4.6 needs to be per-

turbed. This process includes a series of complex derivation hence details of this
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derivation are not given here. Readers can find details of derivation in [40] and [8]

and [13].


δṙe

δv̇e

ε̇e

 =


δve

−2Ωe
ieδv

e +N eδre − F eεe

−Ωe
eiε

e

+

0

Re
bδf

b

Re
bδw

b

(4.6)

where δ sign means perturbed quantity and ’dots’ denote time derivatives and the

superscripts ’b’ and ’e’ denote body and ECEF frames in order. Other symbols:

δr is three-dimensional position error state vector,

δv is three-dimensional velocity error state vector,

ε is misalignment error state vector in three dimensions,

F is the skew-symmetric matrix of specific force in three dimensions,

Re
b is the rotation matrix from b-frame to e-frame,

Ωie is the skew-symmetric matrix of rotation rate from i-frame to e-frame,

N is the gravity gradient coefficient matrix,

δf is the accelerometer sensor errors in three dimensions,

δw is the gyroscope sensor errors in three dimensions.

According to [6] and [8], this error model is named as the φ-angle error model in the

literature.

4.3.1.2 Sensor Error States

IMU sensors have different quality grades and their error characteristics differ in ac-

cordance with sensor quality. For high-quality IMUs, turn-on bias (bias repeatability),

scale factor and axes misalignment errors can be ignored since they are all calculated

with calibration methods explained in Chapter 2 easily. The remaining errors for

high-quality IMUs are bias stability (in-run bias) and sensor noise. Given these facts,
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there were two different filters designed for this thesis. First one included the sensor

error states with bias stability error and sensor noise. As a result, accelerometer and

gyroscope error equation can be written as Equation 4.7 and Equation 4.8 [6, 14]:

δf = f̃ − f = δba + ηa (4.7)

δw = w̃ − w = δbg + ηg (4.8)

Sensor noise spectral densities ηa and ηg were computed by computing the standard

deviation by using a few seconds of static data. Standard deviations were computed

after removing the mean and by selecting random periods in static data. By taking

mean of these standard deviation, noise spectral densities, qa and qg were computed.

The general method for modelling bias stability, δbi, is to use First order Gauss-

Markov process. It can also be modeled as zero-mean white Gaussian but as presented

in [41] and [42], for engineering application it is more realistic to use Gauss-Markov

process [5]. The first order Gauss-Markov process model for bias stability is given in

Equation 4.9:

δḃi = − 1

τi
δbi + ηbi (4.9)

where ’i’ is equal to ’a’ for accelerometer and ’g’ for gyroscope and

τi is the selected correlation time,

ηbi is the Gauss-Markov process driving noise with spectral densitiy qbi.

Hence, the Gauss-Markov process includes parameters τi, qi and these parameters

were computed from autocorrelation function of the raw data collected in user-selected

correlation time [6, 41]. The general rule for collecting static data from IMU was to

collect as much as possible for required accuracy. As told in [5] for 10 percent accu-

racy in an hour, amount of static data to be collected can be up to 200 hours. Previous

researches showed that even with the less static data, there is still enough accuracy

for this thesis. Hence, as [14] and [5] authors did in their researches, as much as static
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data was collected for this purpose. For this thesis, ten hours of static data is used in

order to compute the Gauss-Markov model parameters.

qbi =

√
2σ2

i

τi
(4.10)

where σi is the computed standard deviation.

Computing temporal variance and using Equation 4.10 for both accelerometer and

gyroscope bias stability model, augmented bias stability error states were ready.

After auto-correlation processes is done and Gauss-Markov process model parameters

are computed, the system dynamics model can be written with bias stability error and

sensor noise parameters as below which results in a 15-State system dynamics model:



δṙe

δv̇e

ε̇e

δḃa

δḃg


=



03x3 I3x3 03x3 03x3 03x3

N e
3x3 −2(Ωe

ie)3x3 −F e
3x3 (Re

b)3x3 03x3

03x3 03x3 −(Ωe
ie)3x3 03x3 (Re

b)3x3

03x3 03x3 03x3

(
−1
τa

)
3x3

03x3

03x3 03x3 03x3 03x3

(
−1
τg

)
3x3





δre

δve

εe

δba

δbg


+



03x3 03x3 03x3 03x3

(Re
b)3x3 03x3 03x3 03x3

03x3 (Re
b)3x3 03x3 03x3

03x3 03x3 I3x3 03x3

03x3 03x3 03x3 I3x3




ηa

ηg

ηba

ηbg



(4.11)

System dynamics noise spectral density matrix is given below which is created with

the information gained from auto-correlation:

Q =


(qa)3x3 03x3 03x3 03x3

03x3 (qg)3x3 03x3 03x3

03x3 03x3 (qba)3x3 03x3

03x3 03x3 03x3 (qbg)3x3

 (4.12)

The above system dynamics model was valid for systems with high-quality IMUs.
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However, for applications with lower grade IMUs such as the one which is used for

this thesis, scale factor, non-orthogonality and turn-on biases should also be compen-

sated through Kalman filter. In Chapter 2, these errors were told as deterministic in

their nature but can have rapid changes from one turn-on to next turn-on for entry-

level IMUs. Both errors were modeled as bias stability and noise. Modeling all error

sources can lead instabilities in filter and weaken accuracy of navigation solution [14].

Scale factor error can be modeled as the Gauss-Markov process in order to compen-

sate error through the Kalman filter. It requires computation of parameters such as

correlation time and noise spectral density which has same procedure with bias sta-

bility. Other methods can be found in [5]. In this thesis Gauss-Markov process model

was chosen and correlation time was selected as 10 hours. The Gauss-Markov process

model for scale factor was given in Equation 4.13:

Ṡi =
−1

τsi
Si + ηsi (4.13)

where ’i’ is equal to ’a’ for accelerometer and ’g’ for gyroscope.

With the assumption of slow variation, static data from both gyroscope and accelerom-

eter was collected for 10 hours and the temporal standard deviation was computed by

using technical specifications provided by IMU company.

Turn-on biases was assumed to be constant for each power-up cycle. Hence, for

both accelerometer and gyroscope, it was modelled as random constant processes

[6]. Other methods for computing or modelling turn-on biases can be found in [5].

Turn-on bias processes are given in Equation 4.14:

ḃi,turnon = 0 (4.14)

where ’i’ is equal to ’a’ for accelerometer and ’g’ for gyroscope.

Combining the above error states results in a 27-State augmented system process

model as given in Equation 4.15:
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

δṙe

δv̇e

ε̇e

δḃa

δḃg

ḃa,ton

ḃg,ton

Ṡa

Ṡg



= (Φ)27x27



δre

δve

εe

δba

δbg

ba,ton

bg,ton

Sa

Sg



+



03x3 03x3 03x3 03x3 03x3 03x3

(Re
b)3x3 03x3 03x3 03x3 03x3 03x3

03x3 (Re
b)3x3 03x3 03x3 03x3 03x3

03x3 03x3 I3x3 03x3 03x3 03x3

03x3 03x3 03x3 I3x3 03x3 03x3

03x3 03x3 03x3 03x3 I3x3 03x3

03x3 03x3 03x3 03x3 03x3 I3x3





ηa

ηg

ηba

ηbg

ηsa

ηsg



(4.15)

where (Φ)27x27 is given in Equation 4.16 where each elements presented below is 3x3

matrix:



0 I 0 0 0 0 0 0 0

N e −2(Ωe
ie) −F e (Re

b) 0 0 0 0 0

0 0 −(Ωe
ie) 0 (Re

b) 0 0 0 0

0 0 0
(

−1
τa

)
0 0 0 0 0

0 0 0 0
(

−1
τg

)
0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 0

0 0 0 0 0 0 0
(

−1
τsa

)
0

0 0 0 0 0 0 0 0
(

−1
τsg

)



(4.16)

Corresponding system process noise spectral density matrix for 27-State is given in
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Equation 4.17:

Q =



(qa)3x3 03x3 03x3 03x3 03x3 03x3

03x3 (qg)3x3 03x3 03x3 03x3 03x3

03x3 03x3 (qba)3x3 03x3 03x3 03x3

03x3 03x3 03x3 (qbg)3x3 03x3 03x3

03x3 03x3 03x3 03x3 (qsa)3x3 03x3

03x3 03x3 03x3 03x3 03x3 (qsg)3x3


(4.17)

It would be nice to mention the fact that, INS bias is the summation of bias repeata-

bility and turn-on bias. Since they were modeled separately, four different error state

matrices were occured in Equation 4.16 and Equation 4.17.

There are other modeling techniques for augmented error states for low-cost, low-

quality IMUs. Readers are invited to read [4], [11] and [8].

4.3.1.3 GNSS Error States

In a tightly coupled integration, GNSS pseudorange and pseudorange rate measure-

ments are used in calculations. Hence, their error sources should be augmented to

system process model for compensation. Two additional error states which are clock

offset and clock drift error states [6] are the additional two states for tightly coupled

integration method. In this situation, 15-State and 27-State system process matrix

becomes 17-State and 29-State for tightly coupled method.

4.3.2 Measurement Model

The measurement models for loosely coupled and tightly coupled integration meth-

ods are different since measurements taken from aiding sensors are different. For

compliance, the loosely coupled measurement model is given first and it is followed

by tightly coupled measurement model.
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4.3.2.1 Loosely Coupled Integration Method

In this integration method, the difference between INS computed position/velocity

and GNSS derived position/velocity is used for the innovation sequence. A com-

parison is done between measurements and INS predictions at this step and at the

next step, this comparison is weighted according to the uncertainty of current mea-

surements and predictions. Thus, the measurement design matrix for loosely coupled

integration is written easily in Equation 4.18:

H =

I3x3 03x3 03x(n−6)

03x3 I3x3 03x(n−6)

 (4.18)

where ’n’ is the number of states used in the system dynamics model.

Measurement noise covariance matrix R for this thesis was computed by calculating

measurement’s standard deviation at zenith and scale it according to elevation angle

e with sin
(

1
e

)
[14].

The measurement noise is only composed of GNSS components. INS noises is al-

ready processed before innovation sequence in Kalman filtering. Hence, INS error

states have no effect on innovation and, after first 6 columns, rest of the columns are

equal to zero.

4.3.2.2 Tightly Coupled Integration Method

In this integration method GNSS pseudorange and pseudorange rate measurements

are used for innovation sequence of Kalman filtering. The pseudorange and pseudor-

ange rate rows in design matrix are given in Equations 4.19 and 4.20:

hp =
√

(Xi −XU)2 + (Yi − YU)2 + (Zi − ZU)2 + ct (4.19)

hṗ =
√

(Vxi − Vxu)2 + (Vyi − Vyu)2 + (Vzi − Vzu)2 + cδt (4.20)
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where Xi, Yi, Zi and Vxi , Vyi , Vzi are the ith satellites’s position and velocity in ECEF

andXU , YU , ZU and Vxu , Vyu , Vzu are the user’s position and velocity in ECEF, t is the

clock offset error and δ is clock drift error.

Since clock offset and drifts error states are augmented into the system process model

and other error states are processed by system process matrix, the design matrix H

can be written as in Equation 4.21 [6]:

H =

H(ρ)Nx3 0Nx3 0Nxm−8 −1Nx1 0Nx1

0Nx3 H(ρ̇)Nx3 0Nxn−8 0Nx1 −1Nx1

 (4.21)

where N is the number of visible satellites and m is the number of states. H(ρ) and

H(ρ̇) are given in Equations 4.22 and 4.23:

H(ρ) =


∂p1

∂rx

∂p1

∂ry

∂p1

∂rz
0 0 0 1 0

... ... ... ... ... ... ... ...

∂pN

∂rx

∂pN

∂ry

∂pN

∂rz
0 0 0 1 0

 (4.22)

H(ρ̇) =


∂ṗ1

∂rx

∂ṗ1

∂ry

∂ṗ1

∂rz

∂ṗ1

∂vx

∂ṗ1

∂vy

∂ṗ1

∂vz
0 1

... ... ... ... ... ... ... ...

∂ṗN

∂rx

∂ṗN

∂ry

∂ṗN

∂rz

∂ṗN

∂vx

∂ṗN

∂vy

∂ṗN

∂vz
0 1

 (4.23)

Measurement noise covariance matrix for this thesis was computed by calculating

measurement’s standard deviation at zenith and scale it according to elevation angle

e with sin
(

1
e

)
[14] for tightly coupled measurement model too.

4.4 Summary of Loosely and Tightly Coupled Integration

In this section, the summary of loosely and tightly coupled integration developed for

this thesis are provided separately. They are provided in Figure 4.3 and Figure 4.4:
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Figure 4.3: Summary of Loosely Coupled Integration
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Figure 4.4: Summary of Tightly Coupled Integration
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CHAPTER 5

FIELD TEST AND RESULTS

5.1 Test Scenario and Setup

In this chapter, all test results with the author designed INS/GNSS integrated systems

are presented. Results starts with selected path and reference unit specifications. Af-

ter this section, results for loosely and tightly couple EKF and results for loosely and

tightly coupled UKF is presented in different sections. Comparison between UKF

and EKF is done with respect to both loosely and tightly coupled integration meth-

ods in general and GNSS outage. Effects of scale parameters on designed UKF are

presented. Finally, stability for two filters are compared.

Data collection from standalone ADIS-16488 IMU and Novatel OEM-6 GNSS re-

ceiver is done at the same time with reference unit Novatel SPAN IGM A1 unit. The

difference of this thesis comes from the fact that the reference unit IMU and GNSS

receiver elements are the same with the standalone units used for author designed fil-

ter confirmation. Hence, results will enable a real comparison between a self-proved

high technological integration algorithm of a INS/GNSS unit at market and author-

designed algorithm’s performance.

The reference unit has a deeply coupled INS/GNSS filter which is called NovAtel

SPAN. It is a proven technology that has been used in various applications [26]. Nova-

tel also offers Dual Antenna options which enables heading and pitch improvements

at overall performance but since the GNSS unit selected for this thesis can make sin-

gle point positioning, reference unit was selected to have single point solution too.

The overall performance of reference unit presented by [28] is given in Table 5.1:
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Table 5.1: NovAtel SPAN IGM-A1 IMU Specifications [28]

Gyro Input Range +-450 deg/s

Rate Bias Stability 2 to 50 m

Angular Random Walk 0.3 deg/sqrt(hr)

Acc. Input Range +-18 g

Bias Stability 0.1 mg

Velocity Random Walk 0.029 m/s/sqrt(hr)

Dimensions 152x142x51 mm

Weight 515 gr

Power Input / Consumption 10-30 VDC / 4W

The coarse alignment of the reference unit is done by entering initial heading or kine-

matically with speeds higher than 5 m/s [21]. The accuracy of reference unit is also

presented by Novatel for both normal and two different GNSS outage time intervals

are given in Table 5.2:

Table 5.2: NovAtel SPAN IGM-A1 Navigation Performance [28]

Outage Position Pos Vel Att

Duration Mode (M) RMS (M/S) RMS (deg) RMS

H V H V R P H

GNSS OK SP 1 0.6 0.02 0.01 0.035 0.035 0.015

10s Outage SP 1.41 0.7 0.1 0.021 0.072 0.072 0.21

where,

’SP’ means Single Positioning i.e. without differential GNSS,

’H’ and ’V’ mean horizontal and vertical,

’R’, ’P’, ’H’ mean roll, pitch and heading.

Standalone ADIS-16488 IMU has MEMS technology and very easy to integrate it to

any system with proper interface [39]. Raw and compensated data can be collected

from IMU but the compensation should be applied by Kalman Filter since MEMS

IMU’s tend to have variate error characteristics from day to day as discussed earlier.
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Standalone GNSS receiver was also selected the same within reference unit and

bought from Novatel. ıt provided position, velocity and pseudorange measurements.

The visuals of elements and test setup block diagram is provided in Figure 5.1:

Figure 5.1: Car Trial Test Diagram

As explained earlier, the data collected from all units simultaneously with a car trial

at the Middle East Technical University, ANKARA, Turkey. In order to make true

measurements, both GNSS receiver connected to the same GNSS antenna by using

a GNSS splitter. A 12 VDC battery provided the power through all units and their

placement at the car is given in Figure 5.2.
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Figure 5.2: Test Setup Placement Before Car Trial

There was a critical measurement before starting tests which were basically matching 

the phase center of GNSS antenna with the IMU center of measurements i.e. lever 

arm. This procedure was important since it has an impact on the accuracy of both 

reference unit and standalone unit’s collected data. To get lever arm measurement,
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this thesis used a simple method which was taken from [5]. It works by selecting a

reference point for measurement of distance of both IMU center and GNSS antenna

phase center. After measuring these distances, computation of lever arm was feasible.

The path selected for data collection included some obstacles such as trees, building

and a few turns. Data collection trajectory created for this thesis is presented in Figure

5.3:

Figure 5.3: Car Trial Path

5.2 EKF Results with Collected Data

The results with both loosely coupled and tightly coupled EKF are presented in this 

section. To get error figures about certain parameters, the root-mean-square differ-

ences were calculated.

General positioning performance is given below at l-frame for both integration meth-

ods in Figure 5.4. The reference path was created from reference unit collected so-

lution at the same path and only a transformation from geographical coordinates to 

local level frame was applied.
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(a) Car Trial Comparison EKF Tightly and Loosely Coupled Integration

(b) Performance with Closer Look

Figure 5.4: EKF Tightly Coupled and Loosely Coupled Car Test Results

In general, there seems no major differences but when it was inspected closer, the 

difference between the tightly coupling and loosely coupling was observed. Tightly 

coupled EKF kept its position computation smoother than the loosely coupled inte-

gration. The latitude errors in degrees are provided in Figure 5.5:
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(a) Latitude Comparison of EKF Tightly and Loosely Coupled Integration

(b) Latitude Performance with Closer Look

Figure 5.5: EKF Tightly Coupled and Loosely Coupled Latitude Performance
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Longitude errors in degrees are provided separately in the Figure 5.6:

(a) Longitude Comparison of EKF Tightly and Loosely Coupled Integration

(b) Longitude Performance with Closer Look

Figure 5.6: EKF Tightly Coupled and Loosely Coupled Longitude Performance

Performance difference is easier to observe in Figure 5.5 and Figure 5.6 between

tightly and loosely coupling. Positioning performance of EKF tightly coupled and

loosely coupled integration is summarized as the error in degrees with respect to

reference unit in Figure 5.7:
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Figure 5.7: EKF Tightly Coupled and Loosely Coupled Integration Positioning Errors

Velocity trend for this car trial can be summarized as below:

• The vehicle was accelerated to 35-36 km/h,

• After acceleration has completed, the vehicle kept on driving with constant

velocity until next turn,

• The vehicle turned left with near turn-rate,

• The vehicle kept on going with the level speed at 35-36 km/h and turn left again

with slower turn-rate this time,

• Vehicle kept on going with the speed of 30-35 km/h until the end of the trial

and data collection was stopped at the finish line.
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Velocity error performance for both integration methods is given in Figure 5.8:

Figure 5.8: EKF Tightly Coupled and Loosely Coupled Integration Velocity Errors

Without the need of detailed inspection, the difference between both integration method

can be observed easily. Tightly coupled integration had better performance for veloc-

ity.

Attitude (Euler) angles were evaluated in two groups which are pitch/roll errors and

heading results. Pitch/roll errors are near 0 for all trial. The error in degrees for both

integration method is presented in Figure 5.9:

Figure 5.9: EKF Tightly Coupled and Loosely Coupled Integration Roll and Pitch

Errors

Pitch and roll need to be estimated from accelerometer data as it was discussed in
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Chapter 2. Their estimation takes some time hence, at the beginning of the figures

there are bigger error values for both integration method. However, with tightly cou-

pling, alignment for pitch and roll took shorter time and its error rates are closer to

zero compared with loosely coupled error values.

On the other side, heading value has interesting results. At the beginning its error

was computed as zero because, it cannot produce heading value before computing

its roll and pitch values. In addition to that fact, as discussed earlier, both reference

unit and standalone selected IMU had same brand and same specifications hence they

cannot be statically aligned by measuring Earth’s rotation rate. After some acceler-

ation and starting computation of roll and pitch with enough certainty (smaller than

1◦), the computation of heading values was started. At first tightly coupling looked

worse but after initialization was completed and the uncertainties of heading started

to become small, tightly couple integration outperformed loosely coupled integration.

The heading results are given in Figure 5.10:

Figure 5.10: EKF Tightly Coupled and Loosely Coupled Integration Heading Results

5.3 UKF Result with Collected Data

The results with both loosely coupled and tightly coupled UKF are presented in this

section with the same order as the previous section.

General positioning performance is given at l-frame for both integration methods at
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Figure 5.15. It was the same logic with the previous section where the reference

path was taken from reference unit collected data. It is again difficult to observe

easily but when the graph was zoomed at a randomly selected area, the difference

between loosely and tightly coupled integration performance became obvious. The

tightly coupled integration outperformed loosely coupled integration by computing

smoother position solution as it was for EKF.

(a) Car Trial Comparison UKF Tightly and Loosely Coupled Integration

(b) Performance with Closer Look

Figure 5.11: UKF Tightly Coupled and Loosely Coupled Car Test Results

The latitude and longitude errors in degrees are also provided for UKF in Figures

5.12 and 5.13 where the performance difference was observed more directly between

tightly and loosely coupled UKF.
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(a) Latitude Comparison of UKF Tightly and Loosely Coupled Integration

(b) Latitude Performance with Closer Look

Figure 5.12: UKF Tightly Coupled and Loosely Coupled Latitude Performance
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(a) Longitude Comparison of UKF Tightly and Loosely Coupled Integration

(b) Longitude Performance with Closer Look

Figure 5.13: UKF Tightly Coupled and Loosely Coupled Longitude Performance

For the vehicle trend given in the previous section, velocity error performance for

both integration methods is given in Figure 5.14:
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Figure 5.14: UKF Tightly Coupled and Loosely Coupled Integration Velocity Errors

The difference between velocities was observed easily by looking at the values for

selected points at the y-axis. It can be seen from here that tightly coupled integra-

tion provided better results at velocity. Note that there were some peaks for both

tightly coupled and loosely coupled integration computed velocities. They are nor-

mally tuned by adjusting scale parameters of UKF normally but they are given here

on purpose without adjusting since they were important at comparison between UKF

and EKF at Section 5.5.

Attitude (Euler) angles gave interesting results as given in 5.15. The only performance

metric that loosely coupled integration was better for UKF was roll and pitch values.
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Figure 5.15: UKF Tightly Coupled and Loosely Coupled Integration Roll and Pitch

Errors

As can be observed from Figure 5.15, the time for computing roll and pitch was

shorter than EKF but it resulted in both attitude values on a constant error value

within time. On the other hand, heading results were again similar with EKF as given

in Figure 5.16 for UKF. It can be seen from there, especially at the end of car trial,

the loosely coupled UKF started to give less accurate heading. The reason for this

behaviour can be explained by the possible vulnerability to less dynamic conditions

for UKF loosely coupled integration. Especially at the last part where the vehicle

started to stop the heading uncertainties started to grow. UKF heading results are

given in 5.16:

Figure 5.16: UKF Tightly Coupled and Loosely Coupled Integration Heading Results
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5.4 Long Test Results

After the verification of algorithms, a longer path was selected with more buildings

and trees. The path was selected such that the number of visible satellites can drop

below four momentarily. Since, tightly coupled integration outperformed loosely cou-

pled at last section, for clarity only tightly coupled versions of EKF and UKF results

are presented.

The path which were collected data is given in Figure 5.17:

Figure 5.17: Long Car Trial Path

The position results are given in meters in Figure 5.18 in general and in Figures 5.19,

5.20, 5.21 with closer looks:
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Figure 5.18: Long Car Trial Result of EKF and UKF

Figure 5.19: Performance with Closer Look to Beginning
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Figure 5.20: Performance with Closer Look to Position with Turns and Intense

Trees/Buildings

Figure 5.21: EKF and UKF Long Car Trial Test Results

It can be followed from closer looks that at the beginning of trial, both methods

worked well with close accuracy to each other. EKF was better for a while. However,

after the car went into the road with more trees and buildings, Extended Kalman Filter

started to work with more errors. It can be seen in Figure 5.20 that EKF lost track for

a short time but it quickly converged to true path. At this time UKF started to diverge

with bigger errors until a measurement arrived. The upside down trend of magenta

line can be seen in Figure 5.20. At the end of the car trial, there were higher buildings

and more turns. Closer look to final part of car trial is given in Figure 5.21.

After investigating GNSS receiver data logs, an expected result was observed. The
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GNSS availability, at the time when both filter started computing worse results, was

lower than expected. The reason could not be found about it but it may be the result

of obstacles or antenna connection at GNSS receivers or a problem within the splitter.

When they were worked again at open-sky, there seemed to be no problem in these

elements. Hence, with long car trial satellite visibility was tested too. The number of

satellites seen for whole trial is given in Figure 5.22:

Figure 5.22: EKF and UKF Long Car Trial GNSS Satellite Availability

More information about comparison are given in below figures where latitude, longi-

tude, velocity and attitude comparisons are provided.
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The latitude performance was very close to each other but EKF did estimate more

smoother latitude results than UKF as given in Figure 5.23.

(a) Latitude Comparison of UKF and EKF

(b) Latitude Performance with Closer Look

Figure 5.23: UKF and EKF Latitude Performance
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The longitude performance was very close to each other but EKF did estimate more

smoother longitude results than UKF as given in Figure 5.24.

(a) Longitude Comparison of UKF and EKF

(b) Longitude Performance with Closer Look

Figure 5.24: UKF and EKF Longitude Performance
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The overall performance of both EKF and UKF with respect to reference unit is given

in Figure 5.25 where the satellite availability effects can be observed easily:

Figure 5.25: EKF and UKF Long Car Trial Positioning Errors

The satellite availability effects are also observed in velocity errors as given in Figure

5.26. Both filters converged well for velocity even under low satellite availability.

Figure 5.26: EKF and UKF Long Car Trial Velocity Errors

The roll,pitch should not be affected by satellite availability as much as position and

velocity estimates did. It can be observed from the roll and pitch errors given in

Figure 5.27:
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Figure 5.27: EKF and UKF Long Car Trial Roll and Pitch Errors

Heading is vulnerable to low availability of satellites since it is calculated from GNSS

velocities when estimated heading’s uncertainty rises. As it can be seen from 5.28,

UKF and EKF did very well with heading calculations.

Figure 5.28: EKF and UKF Long Car Trial Heading Results

5.5 Overall Results and Filtering Tecniques Comparison

In this section, the results provided for both EKF and UKF are discussed. In the both

integration methods, tightly coupling method outperforms loosely coupling method.

In order to understand if there was a major difference between filtering techniques,

one of the designed algorithm’s output that was root mean square differences were
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used for all results. With these results comparison tables were created for both EKF

and UKF.

Table 5.3 gives the comparison for short car trial:

Table 5.3: RMS Error Comparison for Short Car Trial with high Satellite Availability

EKF LC EKF TC UKF LC UKF TC

East Pos RMS 2.2732 m 0.5646 m 3.9931 0.6017

North Pos RMS 2.3915 m 0.7682 m 2.4657 0.8291

East Velocity RMS 0.8675 m/s 0.2576 m/s 1.039 m/s 0.0522 m/s

North Velocity RMS 0.2533 m/s 0.2887 m/s 0.2732 m/s 0.2254 m/s

Roll RMS deg 0.3932 0.7094 0.2998 0.0058

Pitch RMS deg 0.4397 0.5435 0.3391 0.0057

Heading RMS deg 1.81 1.82 1.813 1.812

Table 5.4 gives the comparison for long car trial:

Table 5.4: RMS Error Comparison of Long Car Trial with low Satellite Availability

EKF TC UKF TC

East Pos RMS 0.9635 m 2.1886 m

North Pos RMS 0.9928 m 2.2775 m

East Velocity RMS 0.4434 m/s 0.4905 m/s

North Velocity RMS 0.2834 m/s 0.3806 m/s

Roll RMS deg 0.3246 0.3323

Pitch RMS deg 0.4502 0.4376

Heading RMS deg 1.7637 1.7772

By looking at the two tables, difference between two filtering techniques: EKF was

better than UKF with the applied methods in author-designed algorithms and refer-

ence unit selected in this thesis.

The position error rates at Table 5.4 are higher than given tightly coupled error rates

at Table 5.3. The reason for this situation was the bad GNSS quality at some part of

the route due to low satellite availability. Other than this, roll and pitch errors were

less for both tightly and loosely coupled UKF integration in Table 5.3. The main
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reason for this situation was that the alignment time for EKF took longer than UKF

as discussed earlier. Hence, when longer car trial was applied, the roll and pitch errors

are much closer each other for both two filtering technique as given in 5.4.

5.6 Effects of Scale Parameters on Scaled UKF

In Chapter 3, scale parameters of UKF were explained. In this chapter, the effect of

varying scale parameters of Scaled UKF was examined.

The scaled UKF sigma points and weights were calculated from equations given in

Chapter 3.

In below results, β was chosen as 2. κ was chosen as 0. The only variable parameter

was α and for long car-trial results, its effect was investigated. α takes values between

10−4 and 1. The results for 1, 0.75, 0.5, 0.25 and 0.1 are presented in Table 5.5:

Table 5.5: Effects of α on the performance of UKF

Alpha (α) 1 0.75 0.5 0.25 0.1

East Pos RMS 2.1889 m 2.1888 m 2.1886 2.1956 2.2142

North Pos RMS 2.2810 m 2.2779 m 2.2775 2.2987 2.3290

East Velocity RMS 0.5025 m/s 0.5013 m/s 0.4905 m/s 0.5103 m/s 0.5314

North Velocity RMS 0.3902 m/s 0.3912 m/s 0.3806 m/s 0.3916 m/s 0.4127

Roll RMS deg 0.3411 0.3430 0.3323 0.3542 0.3753

Pitch RMS deg 0.4381 0.4374 0.4376 0.4485 0.4697

Heading RMS deg 1.7792 1.7789 1.7772 1.7987 1.8157

By looking at these results in more detail, the optimum α is equal to 0.5 which was

also the used one in above results.

The other parameter β was also varied by keeping α constant. No significant changes

occurred at the results. Analysis were repeated for different values of α but the results

were same. Hence, the key parameter for an adaptive UKF algorithm is α for UKF

algorithms developed in thesis.
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5.7 Stability of EKF and UKF

Both EKF and UKF algorithms did not become unstable with the tests conducted on

open field. They remained bounded with the constraints taken from [43]. In order

to push limits, there shall be a new test plan where the limits of filter can be pushed.

This new test plan should include sharp turns and high variations on accelerations.

This type of test will trigger some breaks at small error and small noise assumptions

and lead filter to become unstable.
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CHAPTER 6

CONCLUSIONS AND FUTURE WORK

6.1 Conclusions

This thesis proposed author-designed INS/GNSS integration algorithms by using dif-

ferent coupling and Kalman Filtering methods as a first step in order to accomplish a

real-time single box navigation solution for future works. Algorithms developed for

this purpose are written clear in MATLAB and they are convertible to an embedded

software at the end.

Results of designed integration algorithms were compared by filtering raw data from

standalone units. For loosely coupled integration methods, positions and velocity

were computed from pseudorange and pseudorange rate data collected from stan-

dalone GNSS receiver. For tightly coupled integration methods, pseudo-ranges and

pseudorange rate data collected from same receiver was used directly. A car trial sce-

nario and proper test setup were created and each test step was followed carefully.

With the given results and methods provided at previous chapters, conclusions can be

summarized as below:

1. Tightly coupled integration technique outperforms loosely coupled integration

technique for both EKF and UKF.

2. Loosely coupled integration technique is more sensitive to satellite drops, vehi-

cle dynamics and sensor errors compared with tightly coupled integration.

3. 17-State and 29-State EKF and UKF were developed in this thesis. 17-State

includes three dimension position, velocity, attitude error estimates and 6 IMU
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error estimates and 2 GNSS error estimates. 29-State includes all states in 17-

State with the addition of 12 IMU bias and scale factor error states.

4. IMU error modelling is very important for accurate Kalman Filter navigation.

In the preliminary design of an INS/GNSS integration project, considering

modelling and calibration requirements for low-cost IMUs is important.

5. The system dynamics model and measurement model matrices are very impor-

tant since they provide non-linearity. For low cost and entry performance IMUs,

system dynamics can have more states than expensive and high-performance

IMUs.

6. Biases and noises can be modelled easily with the proper selection of models

such as Gaussian-Markov, white Gaussian, random constant.

7. Fine alignment and coarse alignment are very important. With wrong align-

ment, the filter can diverge and compute the wrong navigation solution. The

key precaution for this case is to initialize Kalman Filter with accurate and cor-

rect values.

8. UKF computation burden is larger than EKF computation. UKF can take more

resources than EKF hence, for real-time applications, EKF is preferred.

9. The performance differences between EKF and UKF for both loosely and tightly

integration methods are presented. The author designed UKF for this thesis has

some outliers and they need to be dealt with in addition to Kalman Filter design.

10. Loosely coupled integration is good enough for open sky and aerial applica-

tions since there will not be obstacles or lose of satellites from environmental

effects in these applications. For more challenging applications tightly coupled

integration is advised.

11. Both UKF and EKF can be used for real-time implementation for especially

land application since they both had good performance at bad GNSS quality.

12. For scaled UKF developed in this thesis, parameter α has impact on navigation

solution.
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6.2 Future Works

With the given conclusions provided at previous section , future works are planned as

below:

1. The number of states for both loosely and tightly coupled integration can be

increased for more accurate results. For example, non-orthogonality of IMU

axes can be modelled as separate error states in the system dynamics model as

[8] made in his work.

2. Real-time embedded software can be developed quickly by taking the basis of

the methods and algorithms generated for this thesis.

3. For scaled UKF, artificial intelligence can be developed in order to adapt its

sigma points and weights more frequently with changing conditions.

4. Motion constraints such as Zero Velocity Updates, height constraint and exter-

nal velocity aiding can be used for land applications to enable robustness in

GNSS denied environments.

5. Different modelling techniques for biases and scale factors can be developed.

There are many process models which may fit better than the ones used in this

thesis.

6. Instead of modelling the IMU characteristics, a higher performance IMU can

be chosen and calibration methods with required equipments can be tested for

contribution to less state hence less computational burden.

7. Instead of using only one entry-level IMU, multiple IMUs can be used in order

to create a federated filter and the effect of multiple IMUs can be observed on

same algorithms.

8. External heading aiding by using a magnetometer or dual-GNSS receiver can

be used for faster static alignment or in-motion alignment.

9. The algorithms developed here can be tested for unmanned aerial vehicle ap-

plication where other motion constraints or external velocity sources such as

air-velocity may be inserted to filter input.
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10. Effects of more accurate GNSS receivers with RTK, SBAS etc. should be ob-

served in order to minimize inaccuracies coming from satellite navigation.

11. The reference unit used in this thesis was not a high-grade IMU. Hence, a new

comparison between developed algorithms and higher grade INS/GNSS unit

shall be applied or a path which the coordinates are known exactly can be used

for further performance information.

12. In order to see stability performance of two filters, a new field test with harder

conditions such as sharp turns, extreme minus and plus accelerations etc. can

be applied.
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