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Supervisor, Physics, METU

Assist. Prof. Dr. Emre Yüce
Co-supervisor, Physics, METU

Examining Committee Members:

Prof. Dr. Mehmet Parlak
Physics, METU

Prof. Dr. Bülent G. Akınoğlu
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ABSTRACT

USING ARTIFICIAL NEURAL NETWORK (ANN) TECHNIQUES FOR SOLAR
IRRADIATION PREDICTIONS

Akbaba, Erol Can
M.S., Department of Physics

Supervisor : Prof. Dr. Bülent G. Akınoğlu

Co-Supervisor : Assist. Prof. Dr. Emre Yüce

September 2019, 34 pages

Estimation of solar energy is a task with many benefits to a diverse group of people.
This purpose is pursued with many different methodologies. Artificial Neural Net-
works (ANNs) are the novel methods of choice in the last decade. We compare the
classical solar irradiation estimation methods with different ANN schemes including
different inputs, data amount and estimation target. Our analyses show that the use
of ANN to predict solar irradiation reaching the Earth’s surface gives similar results
with that of the classical regression approaches. The small difference between these
two approaches lies within the instrumentation accuracy of the measuring devices.

Keywords: solar energy, estimation, machine learning, deep learning, artificial neural
network
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ÖZ

YAPAY NÖRON AĞLARI (YNA) İLE GÜNEŞ RADYASYONU
TAHMİNLENMESİ

Akbaba, Erol Can
Yüksek Lisans, Fizik Bölümü

Tez Yöneticisi : Prof. Dr. Bülent G. Akınoğlu

Ortak Tez Yöneticisi : Yrd. Doç. Dr. Emre Yüce

Eylül 2019 , 34 sayfa

Güneş enerjisi tahmini bir çok farklı gruba fayda sağlayan bir bilgi. Bu amaçla bir
çok analiz ve model hali hazırda geliştirilmiş bulunmakta. Güneş enerjisi tahminle-
rinde son yıllarda yükselişe geçen Yapay Nöron Ağları (YNA) ile klasik yöntemleri
karşılaştırıyoruz. Farklı girdiler, veri miktarı ve hesap hedefleri üzerinden yaptığımız
karşılaştırmalarda YNA’nın klasik yöntemlerle benzer isabet gösterdiği sonucuna var-
dık. İki yöntem arasındaki küçük miktarda bulunan isabet farkının enstrümentasyon
hatası limitleri içinde kaldığı sonucuna vardık.

Anahtar Kelimeler: güneş enerjisi, makine öğrenimi, derin öğrenme, nöron ağı
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Dedicated to the exalted pursuit of knowledge.
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

Estimation of daily total energy received per unit area is a task that can help in many

areas including allocating future solar panel capacity, filling missing data, facilitating

calculation of solar energy in regions without advanced measurement stations and

more.

To facilitate this calculation many models exist in the literature, with varying degrees

of accuracy in their estimation. These models, while adequate, can always be im-

proved upon and offer great potential benefits to the growing solar energy industry

and all related research disciplines if potential improvements are realized. As the ma-

chine learning approach is having a resurgence over the last decade its potential may

yet prove useful in the problem of daily solar energy estimation.

Core of the estimation problem consists of obtaining a functional relationship be-

tween values like bright sunshine fraction (i.e the ratio of bright sunshine duration to

total daylight time), daily average (or minimum, maximum) temperature or any other

measured quantity about weather and total daily energy received on a surface. An

important part of the problem is determining which subset of often used climatology

variables (like temperature, latitude etc.) are required for most accurate estimations.

The final concern is the accuracy pertaining to measured data when comparing per-

formance differences in models.

As a consequence, the aim of the thesis is to estimate daily solar irradiation using

machine learning and comparing these estimations with a conventional model. It
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is also aimed to clarify if a machine learning algorithm produces better estimation

schemes compared to the conventional model in connection with the unavoidable

errors in the measurements.

1.2 Proposed Methods and Models

Many models are proposed in the literature, establishing functional relationships be-

tween daily solar energy and a long list of variables, chief among them being bright

sunshine fraction (i.e the ratio of bright sunshine duration to total daylight time), and

latitude. These input variables are often accompanied by some subset of other mea-

sured quantities about the climate such as average temperature during day, maximum

or minimum temperatures, relative humidity, wind speed and direction and many

more. These functional relationships often come in the form of a sum of elemen-

tary functions of the input variables (usually polynomials). Multiplicative relations

between the real numbered powers of the inputs is also a model that is considered. Ex-

amples of these and more can be found in the works of Kumar et al. [1] and Özgören

et al. [2] which also compare them to neural networks with a single hidden layer.

The methods utilized in obtaining numerical values for the parameters of these mod-

els vary as well. Most common methods are linear and non-linear regressions to local

data of solar irradiation and other climatic parameters. A universal approach con-

ducted by Akınoğlu and Ecevit [3]] ties local models together to generate estimates

that are valid globally.

Machine learning in the form of neural networks are rivaling human performance in

some areas and the core reason is the increased feasibility of deep neural networks

which have many hidden layers. This is a result of an increasing amount of data being

collected over the last decades, improvements in computing hardware and develop-

ment of more efficient algorithms and implementations.

1.3 Contributions and Novelties

The contributions and novelties of the thesis are itemized in the following:

2



• Investigating the role of having more layers within neural network model to

estimation accuracy of daily solar energy;

• Obtaining a quantitative estimate for the performance difference of more versus

less data in training a neural network;

• Facilitating a comparison between machine learning based estimation and con-

ventional approaches regarding accuracy

• Comparing the differences between models in light of measurement uncertainty

1.4 The Outline of the Thesis

Chapter 2 summarizes the conventional methods and results. Chapter 3 contains an

explanation of how machine learning with deep neural networks operates. It starts

with a general overview of machine learning and then continues with a more detailed

take on the core parts of machine learning. Specifically the structure of a neural

network and the gradient descent optimization algorithm is explained in some detail.

Final section notes the reasons behind expecting deep neural networks to perform

better.

Chapter 4 examines the data and its use. Which climatic variables were available, how

they have been grouped for purposes of training, validation and set as well as iden-

tification of the subset which results in the most accurate estimate. It then continues

with outlining the various choices made regarding the multi layer perceptron model

and model’s training with gradient descent. These are followed by the performance

of trained networks, in comparison with classical methods.

Chapter 5 concludes the main points regarding feasibility of machine learning for

solar energy estimation task. A broader view of both machine learning and solar

energy is considered for the purposes of future potential.

3
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CHAPTER 2

CONVENTIONAL APPROACHES

Scientific interest in solar energy is not a new phenomenon. As such there are many

different models to estimate and to forecast. In this chapter we aim to provide a short

summary for the estimation of (daily) solar energy incident on a surface.

2.1 Meteorological Variables

In review of empirical models Besharat et al [4] utilize four categories of meteoro-

logical variables that are used to estimate incoming solar energy. These are sunshine

based, cloud based, temperature based and other, which may combine several vari-

ables from previous three categories.

Sunshine based estimations have their start at Angstrom-Prescott relation;

H

H0

= a+ b(
n

N
) (2.1)

where H is the daily solar radiation on a horizontal surface, H0 is the extraterrestrial

radiation at the periphery of Earth’s atmosphere, n is bright sunshine duration in

hours and S0 is the total daylight hours. a and b are the empirical parameters to

be determined from data. This equation implicitly depends on latitude through H0

and N , which are calculated. n is determined from measurements using sunshine

recorders.

A great number of researchers have utilized this equation with the local data they have

available to make estimations. Besharat et al cite dozens of models obtained from the
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premise of the Angstrom-Prescott equation. Geographical scope of the models range

from being specific for a single meteorological station or city to encompassing an

entire nation.

Akınoğlu and Ecevit [3] combines one hundred local coefficients of the linear Angstrom-

Prescott relation over the globe to obtain a quadratic relation, presented below:

H

H0

= 0.145 + 0.845
n

N
− 0.280(

n

N
)2. (2.2)

In cloud based estimations satellite or ground observation of cloud cover is utilized

in making estimations about solar energy. Proposed empirical forms include polyno-

mials (up to degree 3) and exponential relations.

Temperature based models have more diversity in mathematical form as well as inde-

pendent variables. Inputs for these are usually minimum and maximum temperature

at the location for a given day, with the average also included in some models.

Other models include various climatological measurements like relative humidity,

mean precipitation and more. In general, models with diverse set of measurements

were more often utilized in large scale (up to half of a continent’s area or more)

models.

In their case study Besharat et al. list best performing model for their location. With

respect to variables sunshine and temperature based models outperform other consid-

erations, with "other" category model a close third with variables of daily sunshine

fraction, maximum and minimum temperature of day.

In an examination of sunshine based models Yorukoğlu [5] reports that out of the five

models considered (linear, quadratic, cubic, logarithmic and exponential) the cubic

polynomial is the most accurate. However, quadratic and linear models are also close

in accuracy. In final analysis Yorukoğlu concludes that the linear Angstrom-Prescott

model has similar accuracy and only half the parameters.

In review of artificial neural network (ANN) performance in solar radiation estimation

Yadav [6] reports a number of models with different inputs considered. These inputs

are more varied and numereous than previous empirical models. Yadav reports that

6



ANNs that produce best results in their analysis include the inputs of temperature,

relative humidity, atmospheric pressure and wind speed after sunshine duration. Their

work considers neural networks with a single hidden layer and two hidden layers.

Shamshirband et al [7] examine the usefulness of extreme learning machines (ELM)

for solar energy estimation task. ELMs are neural networks that utilize radial basis

functions introduced by Huang et al [8]. Shamshirband et al study uses ELMs with

one and two hidden layers.

In general, previous studies either utilize a proposed functional form which has its

parameters determined by regression or neural networks with up to two hidden lay-

ers.

7
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CHAPTER 3

WHAT IS MACHINE LEARNING?

3.1 Introduction

Machine Learning (ML) is a cluster of algorithms that are used to obtain models

from data. Current state of the art consists of artificial neural networks (or just neural

networks) that can learn useful representations from data or environment interaction.

Machine learning is not a new methodology, having gone through a boom and bust

cycle[9]. Current resurgence is attributed to more data being available, more efficient

algorithms and hardware improvements.

Machine learning consists of various different approaches that can be quite distinct

from each other. Constructing a walker with a few sticks and joints then evolving

them according to a fitness criteria (e.g distance covered) is under the umbrella of

machine learning, as well as video recommendation engines and spam detectors.

There are two main components to a machine learning application. First is the model

and second is the optimization procedure to optimize the model by changing the pa-

rameters based on data. Our model is a neural network (specifically a multi layer

perceptron) while our optimization procedure is a variant of gradient descent called

AdaGrad[10].

Our type of problem is called a regression problem as opposed to a classification prob-

lem. In instances where we’re aiming to approximate a continuous function it’s called

regression, an example of which is estimation of housing prices. If discrete labels or

categories are output then it is termed classification which would be exemplified by

email spam filters.

9



There are also two different kinds of learning. One is where “true” results are avail-

able (as is in our case or spam filters) which is called “supervised learning” and where

such data is not available (like video recommendation) which is called “unsupervised

learning”.

As for the optimization procedure, backpropagation and variants of gradient descent

are the current staples of training a neural network. Gradient descent can be under-

stood via an analogy to gravity. Over a surface (called loss surface) a point particle

is dropped under gravity. As such the particle will move in the direction of lower

elevation, eventually settling to a (often local) minima if there is one. The surface

is an analogy to how similar obtained model is to what the data represents, whereas

gradient descent is analogous to gravity. On the surface higher points are where the

model and data diverge, lower points are where they agree. The main task of machine

learning is to find the lowest possible valley. Of course the dimensionality of neural

networks is significantly greater than 3, but the analogy still remains valid.

To wit, this work is about supervised training of an artificial neural network to obtain

a model to estimate daily solar irradiation with different input variables using the

aforementioned AdaGrad as the optimization algorithm.

3.2 Neural Networks

Neural networks are originally inspired from the structure of our brains, with neurons

connecting to each other and sending signals if neuron is “active”. Software equiva-

lent of this structure is expressed through a “graph” (as in graph theory, mathematics

of pairwise connected objects). An example graph is provided in figure 3.1.

In figure 3.2 you can see an example of a neural network with 2 hidden layers. Each

circle is a “node” corresponding to a neuron. Connections are made between one

group of neurons (layer 1 neurons) to another group (layer 2 neurons). This structure

of layered units, with inputs connecting to inner neurons which in turn are connected

to the output node is the most basic structure of a neural network with a single hidden

layer. These inner neurons are called “hidden” because they don’t interact with input

or output data directly. Any neural network with more than 1 hidden layer is called a

10



Figure 3.1: © Taiyaki1228 (https://commons.wikimedia.org/wiki/File:Wikibooks_graph_theory.png), Wiki-

books graph theory, https://creativecommons.org/licenses/by-sa/3.0/legalcode

An example graph, with 5 nodes labeled with vi. In a mathematical contexts the name
given to nodes is vertex, the connections are called edges. In machine learning we will
call them neurons and weights, respectively. Also, we will not have connections like
the one between v1 and v3 in a neural network since a connection like that prohibits
formation of layered neurons.

11



Figure 3.2: © John Salatas (https://commons.wikimedia.org/wiki/File:Multilayer_Neural_Network.png),

Multilayer Neural Network, https://creativecommons.org/licenses/by-sa/3.0/legalcode

A neural network consisting of 2 hidden layers. It has 3 inputs and 2 outputs. Unlike
the general graph, this structure has clear layers which can be deduced from the lack
of connections between neurons in the same layer.

deep neural network.

Similar to a neuron activating, our mathematical model needs a gating function to

characterize activity of a node. Most historically appropriate function for this purpose

is called the sigmoid function while the most recent and state of the art choice is

rectified linear unit (relu). Another option for a neuron’s activation is hyperbolic

tangent. These are shown in fig 3.3.

The capacity of neural networks to approximate any continuous function is estab-

lished via the universal approximation theorem. Chapter 4 of Michael Nielsen’s book

[11] demonstrates a graphical approach to how neural networks can approximate any

continuous function. There are also analytical proofs from Cybenko [12] and Hornik

et al. [13].

As an example, for a single layer neural network with 5 inputs, 10 hidden neurons

and 1 output the entire model under consideration is as follows:

12



Figure 3.3: Activation of a single neuron as a function of its input.
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N =
∑

W2iai + b2 (3.1a)

ai = σ(
∑

W1jXj + b1) (3.1b)

where W1 and W2 are connection weights, and b1, b2 are the bias terms. W1 is for

the connections from input to hidden layer and W2 for the connections from hidden

layer to output. As we have 5 inputs and 10 hidden neurons, shape of W1 is (5, 10)

as a matrix. Shape of W2 is (10, 1) so in total this network contains 62 parameters,

including two bias terms.

Neural networks are initialized with random weights, so their output is completely

random in the first run. The only meaning of the formulation comes through universal

approximation theorem. Once a neural network learns from data, the resulting model

is encoded in the activity of the nodes. This means neural networks are black boxes

by default. Their universality, however, makes them worthwhile.

3.3 Gradient Descent

Once we have a neural network with randomly initialized weights, we are supposed

to optimize the weights to obtain a model that matches given data.

Optimization is a process aimed at a goal. In the case of machine learning that goal is

called loss function, or objective function. This function is a measure of how close our

approximation is to the data. There are various different choices that can be made,

with increasing complexity and nuance as the problem domain becomes harder for

computers. In the process of optimization we aim to reduce loss as close to 0 as

possible. Here it will suffice to demonstrate one of the most common loss functions,

the squared error:

L =
1

2M

∑
m

(Nm − ym)2 (3.2)

where ym is the target value found in data for m − th element of the data set, Nm

is corresponding output from neural network, M is the total number of data points

14



in the data set used to calculate L. This loss value acts as a guide to how well our

model is doing in the process of optimization. As the loss decreases our model starts

to resemble the data more accurately.

Gradient descent is an optimization algorithm that relies on derivatives of the loss

function with respect to the parameters of our model. If we label the parameters of

our model as Wij basic structure of the gradient descent algorithm looks like this:

Initialize eqn. 3.1 with random Wij

while loss > desired loss do

Compute derivative of L wrt parameters,
∂L

∂Wij

Change the values of Wij to Wij − l
∂L

∂Wij

end
Algorithm 1: Basic structure of gradient descent

Here l is called the learning rate. It controls how far we move in the direction opposite

to the gradient in a single update step(gradient itself points in the direction of increas-

ing L with respect to the parameters of our model). There are practical considerations

in choosing l, two obvious cases being too large or too small values for l. In the

former case this algorithm never converges and in the latter case it always converges

but time to completion may be too long. Usually there’s a suitable intermediate value

between large and small l. Common practice is to reduce the learning rate as training

goes on, either automatically by the algorithm or by manually arranging its value.

Learning rate is the first example of a class of variables called “hyperparameters”. The

constants used in optimization algorithm, number of layers, number of neurons in the

layers and many more belong to this category. In general any parameter that requires

tuning and isn’t a weight in our neural network will be a hyperparameter. They can

be assigned manually, or chosen through a “grid search” of several potential values.

The method we use, namely hyperband, is explained later.

There are various different modifications to the basic setup of gradient descent. These

include adding a momentum term [14], adaptive methods that scale learning rate au-

tomatically [15] and each weight specifically [16]. All of them share the same under-

lying idea as the basic variant.
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Backpropagation is the technique of moving the gradient of the loss function from

output nodes towards input nodes. Since error of any node by itself doesn’t make

sense except for the output, every parameter that eventually culminate in loss calcu-

lation gets judged by its contribution to the loss function. Below is backpropagation

of errors in equation form for our 1 layer neural network in eqn 3.1,

∂L

∂Wij

=
1

M

∑
m

(Nm(Wij)− ym)
∂Nm(Wij)

∂Wij

(3.3a)

∂Nm(Wij)

∂Wij

= aiσ′(
∑
j

(W1jXj + b1))Xj (3.3b)

Here M is the total number of data points, with m denoting a single element of that

set. σ′ denotes the derivative of the specific activation function used. It is because of

this step that the activation functions in neural networks must be differentiable. With

differentiable activations, calculating derivatives with backpropagation scales linearly

with the number of data points. Doing the same task using the usual numerical dif-

ferentiation methods would have resulted in O(n2) scaling. This linear scaling with

input, combined with parallel computing is what enables use of "big data".

One final note regarding the use of gradient descent is that when passing through the

data only a small portion of that data is seen at a single update step. This considerably

speeds up the optimization process, even though each step is somewhat random.

3.4 Quality of Fit

The procedure explained above is quite simple but in practice there are many pitfalls.

Because neural networks contain a large number of parameters, it’s possible for them

to overfit the data (“memorizing” data), fitting so closely that the model matches the

noise in the data and end up generalizing poorly. It is also possible to have a network

fail to extract all information from the data, which is called underfitting. These can

be identified via observation of loss value over time during training.

For purpose of testing generalization, a small subset of the total data called a “vali-

dation set” is used. The neural network never sees this portion during training, only

16



the loss value over this subset of data is calculated as well as the loss value over the

training data (or training set). During the training these two values should decrease

together. A decrease in loss value of training data while loss value of validation data

is either increasing or remaining the same implies overfitting. The last iteration at

which loss value of training data and validation data decreased together is the opti-

mal time to stop training. Anytime before this would be underfitting, anytime after is

overfitting. This method is called early stopping.[17]

There are many other methods to control overfitting. Most straightforward option is

just having more data, as it’s difficult to memorize all the training data when there

is too much of it. Another method is called (weight) regularization, in which a term

proportional to the weights or the square of the weights is added to the loss function.

This penalizes using too many weights unnecessarily at the expense of a control con-

stant, the regularization hyperparameter. This hyperparameter controls how strongly

weights contribute to the total loss. Searching and using a value as close to optimal

for weight regularization yields models that generalize with more accuracy.

Another method is called dropout, where during training some random portion of the

neurons in a layer are disabled by temporarily setting their activations to zero for a

single iteration. This forces the network to use less of its available capacity at each

iteration without sacrificing potential benefits from redundancy. The proportion of

dropped neurons is another hyper-parameter, however it’s almost always optimal to

use p=0.5 for dropout rate. [18]

When training is finished, further tests of the model’s quality are done on a separate,

third set of data called the test set. Since validation data is used to stop training at an

optimal point, model is optimized over the validation set implicitly. There could be

a configuration of parameters that give higher loss on validation set, but lower in a

much more diverse data set. Those configurations aren’t chosen with early stopping,

but the procedure identifies overfitting to training data and is a staple of the machine

learning approach.

Checking the quality of the final model can be done through many ways. While

optimization procedure uses loss function (specifically mean squared error) as the

metric of choice, any statistical metric is appropriate. These may be mean absolute
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error, mean squared error, linear correlation coefficient, lin’s concordance correlation

and many others.

A way to probe the precision of the model is sampling initial values. Upon acquir-

ing an initial weight configuration the network is trained until desired conditions are

reached. This process is repeated with everything held exactly the same except the

initial values. Several trained networks can then be used to estimate the standard de-

viation of the model. The causes that would contribute to such a variation are initial

values and different local minima the network ends up in after training. Since the

training and validation data, optimal stopping condition, network structure and opti-

mization parameters are held constant, this amounts to estimating model uncertainty.

It should also be noted here that in our case, the loss value is convex and as a result

has a global minima which also is the only local minima. There are, however, many

different configurations of weights that would yield results close to this value. The

outlined method samples exactly these.

3.5 Hyperparameter Choice

Before actual training starts, we need to set the hyperparameters to some certain val-

ues that will serve us in the best manner possible. To facilitate this, most straight-

forward approach is to use brute-force search over many possible values for each

hyperparameter. Let’s say we are concerned with a starting learning rate l0 and a

rate reduction parameter τ to be used in ln
1+τn

for the n − th update step. In this

case sampling 5 points each for a total of 25 possible settings is quite feasible. This

would be followed with a grid of values with less difference between them, to hone

in the hyperparameters. As an example, first search for learning rate could be for val-

ues 10−4, 10−3, 10−2, 10−1, 1 while second search, assuming the first returned 10−3,

would include 5× 10−3, 3× 10−3, 10−3, 9× 10−4, 7× 10−4, 5× 10−4.

In practice, number of hyperparameters are higher than 2. How many data points

are included in a single update (batch size), regularization parameter (if there is one),

number of layers of the network, number of neurons to consider in these layers and

many more can be considered. Even the choice of which adaptive gradient descent

18



algorithm can be included in this kind of search. As a result of this, the number of

dimensions for hyperparameters grows and with it potential configurations grow in

a multiplicative manner. This results in brute-force grid searches to be costly and

time consuming. If we had 5 hyperparameters with 5 options each, we would need

to check 55 possible settings, and then another time with smaller differences between

values.

Hyperband is an algorithm that takes a different approach to hyperparameter tuning.

While it takes the entire set of possibilities, it samples different amounts of configu-

rations in many iterations of the algorithm. Hyperbands starts with most exploratory

setting, selecting as many different configurations as possible and then tests them

minimally. Then a fraction 1/r of the top performing results are chosen and trained

longer by r times. This approach is repeated several times, managing the trade-off

between need of exploration and finite resources. Each iteration after the first selects

fewer configurations and trains them longer. Li et. al. report that hyperband is 20

times faster than random sampling. [19]

3.6 Why Deep?

When it comes to neural networks, there’s an important difference in how the univer-

sal approximation theorem is proved and how the real algorithm works with finite size

and resources. In theory any neural network with at least 1 hidden layer approximates

universally, at least for all partially continuous functions. In practice, however, deeper

networks work better by a significant margin compared to shallower ones. Indeed, the

latest resurgence in machine learning is mostly because of increasing practicality of

deep learning. Shallower, smaller networks don’t need as much data to avoid over-

fitting, computational efficiency in training isn’t as big a concern since number of

parameters are small, some of them can be analytically solved so newer algorithms

aren’t needed. Despite all these deep networks manage to do things single layer net-

works simply can’t.

This can be easily understood by pointing out and explaining the most important

step of machine learning before deep networks became popular. Feature extraction,
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coming up with numerical summaries of data that are most useful for the end goal of

the practitioner was an integral step. It’s this step that deep learning does by itself.

Let us pursue this from a visual analogy of identifying faces. We can do it almost

immediately in our daily lives. A neural network does this by identifying distinct

portions of the input pixels to specific names. What happens in a deep network is, on

penultimate layers a face is broken up into a collection of facial features. Eye shapes,

ears, mouth and overall geometry of a face are combined together. For Pinochio those

are a nose that’s too long, thin overall shape with small ears and mouth. Each of these

features is also broken down in smaller units, an ear shape is a collection of curves

at certain angles and coloration. All penultimate features are crafted from a learned

list of basic shapes, layer by layer. Right after the input layer, the only features to

be found are lines that delineate edges in the picture. From a combination of these,

curved features are made. From the curved features, specific and different shapes for

eyes, ears etc are obtained. At the last step, a combination of these features help us

identify Pinochio.

The visual analogy is relatively straightforward to understand. This kind of exami-

nation becomes quite difficult once more abstract input-output relations are consid-

ered. For the main study in this thesis, geometrical insights in specific layers don’t

enlighten us since we don’t *see* daily solar energy with eyes collecting bright sun-

shine fraction and average temperature. However, the principle behind deep learning

remains the same. During training a deep neural network will learn features directly

relevant to the task it’s made to do. More layers mean a neural network can learn

more complicated, specific features.

From a physics based viewpoint, progressing through the layers of a neural network

we identify more specific distributions of light. Each layer has less entropy, hence

carves a more precise slice from the space of possible features. This phenomenon is

behind deep neural networks’ success.

20



CHAPTER 4

RESULTS AND ANALYSIS

4.1 Data

Data used in our study is provided via courtesy of Devlet Meteoroloji İşleri (DMİ). It

covers 39 cities with a total of 46 measurement stations distributed in them.

Main data consists of average temperature per day and total solar power per ten sec-

onds. The solar power is subjected to the filter of 120 Wm−2 cutoff criteria for the

purpose of determining bright sunshine hours [20] and summed for a given day. A

similar sum is applied to solar energy values as well. Daylength is calculated accord-

ing to formula 4.1 below. Solar energy incident on the outer layer of the atmosphere

is calculated according to eqn 4.2. Latitude data for each station is obtained from

DMİ.

N =
2

15
cos−1(−tanφtanδ) (4.1)

H0 =
24× 3600Gsc

π
(1+ 0.033cos(

360n

365
))(cosφcosδsinωs+

πωs
180

sinφsinδ) (4.2)

In these equations φ is latitude, δ is the declination angle, and ωs denotes the hour

angle at sunset. These angles can be seen in fig 4.1.

For the purposes of training a neural network, we divided total data over 39 cities into

three distinct sets. These are the training set which is used to train the network, the

validation set which serves as a check on memorization and the test set, which the
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Figure 4.1: © https://image.slidesharecdn.com/earthsunangle-150224223317-conversion-gate02/95/earth-

sun-angle-3-638.jpg?cb=1424819965

Sun-Earth angles; δ is declination angle, φ is latitude and ω is hour angle.

network never interacts with during training. We chose five cities to be in validation

set and ten for the test set. For training set, two distinct subsets are used to compare

with each other, one where all 24 of the remaining cities are present and another with

a single city from each major climate region in Turkey. This last division is aimed at

testing the data requirement for obtaining an accurate estimate. Division of stations

into the mentioned clusters is listed in table 4.1

4.2 Details of the Neural Network

The main architecture utilized was multi-layer perceptron (MLP). Number of layers

are determined with the hyperband algorithm [19]. All considerations included in the

hyperparameter configurations are tabulated in table 4.2

Once the algorithm ran its course, top 20 hyperparameter configurations out of the 196

sampled are sorted from least error to highest. Modal average of the hyperparameters

in this list are taken as the result. These results determine the best optimizer to use

is adamax [21] for minimization of mean absolute error (MAE). The lowest errors
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Table 4.1: Names of meteorological stations included in the data. In training set
bolded stations are the ones used for smaller version, all of it for larger version.

Stations in Training Set Çanakkale, Isparta, Karaman, Van Bölge, Er-
gani, Ünye, Rize, Artvin, Bolu, Tokat, Gümüşhane,
Ağrı, Doğubeyazıt, Bursa, Gemerek, Divriği, Afy-
onkarahisar, Malatya, Akşehir, Kulu, Hakkari, Adana
Bölge, Tercan, Kemalpaşa, Menemen, Malazgirt, Palu,
Develi, Göksun, Ulukışla, Bozova

Stations in Validation Set Kırklareli, Tarsus, Şırnak, Tortum, Boğazlıyan
Stations in Test Set Ceylanpınar Tigem, Kilis, Elmalı, Burhaniye, Kasta-

monu, Kars, Solhan, Suşehri, Beyşehir, Aksaray

Table 4.2: Full list of hyperparameter configurations utilized in Hyperband algorithm.
Parameters used for actual training are in bold.

Scaler StandardScaler, RobustScaler, MinMaxScaler, Max-
AbsScaler

Layer Count 1, 2, 3, 4
Initialization Distribution Uniform, Normal, Glorot Uniform, Glorot Normal,

He Uniform, He Normal
Batch Size 16, 32, 64, 128

Loss Function Mean Absolute Error, Mean Squared Error
Optimizer Adam, AdaGrad, Adamax, Nadam
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were obtained with 2 layers. We also observed that dropout [18] as a method to

counter overfitting was useful with random 40% of the neurons at the penultimate

layer ignored on each update. First layer contained batch normalization [22] to keep

gradients in range (0,1) so training doesn’t slow down.

Guided by the hyperband results, we trained a two layer MLP with parametric ReLU

activations [23] where the first layer has 20 and the second has 15 neurons respec-

tively. Validation set has been used to determine the optimal time to stop training

[17].

We considered subsets of potential inputs as well as a distinction for each input sub-

set of directly estimating daily solar energy per squared meter (H) versus daily solar

energy per squared meter as a fraction of extraterrestrial radiation ( H
H0

). We trained

50 networks each with the chosen hyperparameters and inputs, with different initial-

izations to gauge model variance. Table 4.3 contains the mean performance results

according to several different metrics.

4.3 Performance Analysis

Our complete performance results are presented according to several metrics, aver-

aged over fifty ANNs trained per result. Table 4.3 contains these while table 4.4 lists

the standard deviations around the means.

In the aforementioned tables, MAE stands for Mean Absolute Error and is computed

according to MAE = 1
M

∑
m |Nm − ym| where Nm is the estimate of the ANN (or

other model) and ym is the measured value for m − th datum of all M values in

data. RMSE stands for Root Mean Squared Error, calculated according to RMSE =

1
2M

∑
m(N

m − ym)2. These two errors are the main drivers in our analyses.

Other metrics are squared linear correlation coefficient (R2) which is calculated ac-

cording to eqn 4.3, percentage of explained variance (EVS) calculated with eqn 4.4,

fraction within error (FIE) for 0.5, 1 and 1.5 MJs within RMSE calculated with eqn
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Table 4.3: Root Mean Squared Error (RMSE) and Mean Absolute Error (MAE) in
MJm−2. R2 is squared correlation coefficient. EVS is Explained Variance Score.
FIE(K) refers to Fraction in Error K where K is a numerical amount in MJm−2.
For example, FIE(1) shows the fraction of predictions within 1 MJm−2 of the mea-
surements. All comparisons are between predictions and measurements. Input col-
umn shows the subsets of data used in training. n is bright sunshine duration, N
is daylength, T is average temperature, φ is latitude. Rows including H refer to
networks trained to estimate daily solar energy directly rather than the fraction of ex-
traterrestrial radiation H

H0
. Rows with 6 and 31 are for networks trained with 6 or 31

stations respectively.

Input RMSE MAE R2 EVS FIE(0.5) FIE(1) FIE(1.5)

n,N − 6 3.944 1.974 0.788 0.793 0.271 0.494 0.651
n,N − 31 3.875 1.943 0.796 0.799 0.277 0.505 0.659
n,N −H6 4.338 2.223 0.743 0.760 0.218 0.414 0.572
n,N −H31 3.992 2.072 0.783 0.796 0.245 0.456 0.615
n,N, φ− 6 3.986 2.197 0.784 0.788 0.214 0.402 0.554
n,N, φ− 31 4.134 2.136 0.767 0.779 0.246 0.460 0.615
n,N, φ−H6 4.378 2.367 0.738 0.755 0.199 0.377 0.526
n,N, φ−H31 4.123 2.112 0.768 0.782 0.244 0.452 0.610
n,N, T − 6 4.049 1.935 0.777 0.781 0.292 0.524 0.682
n,N, T − 31 3.886 1.884 0.794 0.798 0.299 0.534 0.690
n,N, T −H6 4.210 2.136 0.758 0.772 0.236 0.443 0.608
n,N, T −H31 4.015 2.020 0.780 0.793 0.258 0.476 0.639
n,N, T, φ− 6 4.099 2.144 0.771 0.777 0.228 0.428 0.588
n,N, T, φ− 31 4.043 1.941 0.777 0.782 0.292 0.524 0.680
n,N, T, φ−H6 4.297 2.238 0.748 0.763 0.221 0.412 0.568
n,N, T, φ−H31 4.094 2.074 0.772 0.787 0.244 0.457 0.620
Universal2.2 4.164 2.231 0.770 0.771 0.231 0.428 0.588
Quadratic in s 4.375 2.374 0.746 0.773 0.224 0.426 0.580
Quadratic in s, T 4.323 2.332 0.752 0.776 0.230 0.438 0.593

25



Table 4.4: Standart Deviations of ANNs obtained by 50 different initializations each

Input RMSE MAE R2 EVS FIE(0.5) FIE(1) FIE(1.5)

n,N − 6 0.088 0.020 0.010 0.010 0.006 0.008 0.007
n,N − 31 0.048 0.015 0.005 0.005 0.003 0.004 0.004
n,N −H6 0.266 0.062 0.032 0.035 0.015 0.023 0.026
n,N −H31 0.112 0.045 0.013 0.012 0.010 0.014 0.015
n,N, φ− 6 0.113 0.055 0.012 0.011 0.010 0.015 0.019
n,N, φ− 31 0.220 0.177 0.026 0.019 0.020 0.033 0.037
n,N, φ−H6 0.226 0.134 0.028 0.027 0.015 0.026 0.031
n,N, φ−H31 0.222 0.061 0.026 0.027 0.013 0.018 0.018
n,N, T − 6 0.086 0.025 0.010 0.009 0.007 0.010 0.008
n,N, T − 31 0.061 0.020 0.006 0.006 0.006 0.007 0.007
n,N, T −H6 0.193 0.054 0.023 0.023 0.016 0.024 0.023
n,N, T −H31 0.118 0.059 0.013 0.013 0.017 0.023 0.021
n,N, T, φ− 6 0.099 0.066 0.011 0.011 0.015 0.024 0.028
n,N, T, φ− 31 0.151 0.051 0.017 0.015 0.008 0.012 0.011
n,N, T, φ−H6 0.232 0.082 0.027 0.028 0.014 0.022 0.025
n,N, T, φ−H31 0.135 0.054 0.015 0.016 0.017 0.024 0.024

4.5.

R2 =
(M ∗

∑M
m=1N

mym −
∑M

m=1N
m
∑M

m=1 y
m)2

M(
∑M

m=1(N
m)2 − (

∑M
m=1N

m)2)(M(
∑M

m=1(y
m)2 − (

∑M
m=1 y

m)2)
(4.3)

EV S = 1− V ar(N − y)
V ar(y)

(4.4)

FIE =
number of data where (Nm − ym > E)

total number of data
(4.5)

In calculation of FIE in eqn 4.5 E stands for the difference of RMSE desired. In our

calculations 3 different values of E are used; 0.5, 1.0 and 1.5 MJ .

The main takeaways that we derive from table 4.3 are as follows. There is a small

difference between calculating H vs H
H0

where the latter option is more accurate.

Inclusion of latitude explicitly results in higher error. Using more data mostly leads

to better accuracy. Detailed analyses are presented in the following paragraphs.
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Figure 4.2: Fractional or Direct Estimation

Figure 4.2 shows the comparisons for estimating H directly or as a fraction of ex-

traterrestrial radiation. Difference is small but consistent. The reason for this could

be that fractional results are between (0, 1) and neural networks train better when the

inputs and outputs are in a smaller bounded region (strictly between 0 and 1) versus

a larger unbounded one(between 0 MJ and an unspecified high value).

In the comparison of training data amounts, which is shown in 4.3, outlook is mostly

as expected. More data leads to more accurate estimations as well as lower variation.

The exception here is with the explicit inclusion of latitude φ in the inputs. φ is

already accounted for in calculating daylength N and extraterrestrial radiation H0 so

it’s already a part of the model implicitly. We speculate that the mechanism outlined

in Wilson et. al. [24] is responsible for increasing errors with more data when φ is

included explicitly. It is also noteworthy that standard deviations only go higher when
H
H0

is the target to estimate, however, since inclusion of φ lowers overall estimation

accuracy, lower variation isn’t useful for any application.
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Figure 4.3: Data Amounts
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Table 4.4 holds another interesting information. We observe that estimating H vs H
H0

results in higher variance, again with the exception of explicit φ in the inputs.

The most important comparison is between classical methods of estimation versus

the ANNs. In figure 4.4 the quadratic model with universal coefficients (eqn 2.2)

proves slightly more accurate than a fit made to local data by a margin of 0.24 MJ .

Inclusion of T as input slightly improves accuracy for polynomial model but not for

ANNs. The main comparison is to be made between mean ANN performance and the

universal model where the ANN outperforms by a margin of 0.29 MJ in RMSE, in

favor of ANNs.

To put this number into context, the measurement error of most common sunshine

recorders regarding daily solar energy is 2% around the reported value. This gives,

for our dataset, a value of 0.32 MJ mean measurement error for daily totals over all

stations.

We observe one final point about input variables. Inclusion of daily average tempera-

ture T yields negligible accuracy loss with ANNs, and a similar amount of accuracy

gain with empirical fits using classical regression. We suggest that average tempera-

ture during day isn’t too important by itself in explaining the variation of daily solar

energy, especially when n and N are already present and account for much of the

variance by themselves.
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Figure 4.4: ANN vs Classical
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CHAPTER 5

CONCLUSION

We use the most basic and fundamental climatology variables in estimation of daily

solar energy totals, using classical regression, universal relation and best multi layer

perceptron (MLP) setup we managed to setup. We find that explicit dependence on

latitude is detrimental and that except for explicit φ more data leads to lower errors.

H/H0 as the target of estimation instead of H also leads to lower errors. For the most

important comparison however, we can state the following as a succinct summary:

MLPs offer modest benefits in accuracy but incur a high cost on practicality.

For purposes deemed important, use of MLPs can offer advantages not just in accu-

racy but also in ease of estimation of variance in the predictions. Although machine

learning appeared very early in the literature, modern hardware improvements within

the last decade made the training of ANNs a less time intensive task. In this view,

being able to sample many different initializations to gauge how varied the results get

is a valuable tool for any decision maker who would like to know how uncertain a

given model is.

The accuracy benefit, however, remains small - right around the ballpark of measure-

ment error. Of course inclusion of more variables may help reduce prediction errors.

One of the reasons why deep learning is so effective is its suitability to model causal

events. For this reason it would be an interesting study to increase directly related

weather parameters as input to a neural network and try to estimate solar energy from

those values only. The resulting network would need to be a model of how climate

works, albeit an incomprehensible one for humans.

Main limitation in our study, however, is the architecture of the network. While MLPs
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suffice for an estimation task like this, the line of study mentioned above could and

should be pursued with state of the art architectures, like the transformer. The main

benefits of such an architecture would be its simplicity regarding hyperparameter

tuning, its capacity to handle both sequential and non-sequential relations in the data

at the same time. This would allow a network like that to learn the cyclic patterns

year-over-year and daily, long term trends with possibility of such a model to learn

causal effects of geographical distance.

Whatever the future may bring, it certainly holds immense potential for climate mod-

eling and forecasting. Estimation on the other hand, is better served by classical

methods except in niche cases.
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