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ABSTRACT

POINCARE’S PHILOSOPHY OF MATHEMATICS AND THE IMPOSSIBILTY
OF BUILDING A NEW ARITHMETIC

AKCAGUNER, Koray
M.A., Department of Philosophy
Supervisor: Assoc. Prof. M. Hilmi Demir

September 2019, 100 pages

This thesis examines Poincaré’s philosophy of mathematics, in particular, his
rejection of the possibility of building a new arithmetic. The invention of non-
Euclidean geometries forced Kant’s philosophy of mathematics to change, leading
thinkers to doubt the idea that Euclidean postulates are synthetic a priori judgments.
Logicism and formalism have risen during this period, and these schools aimed to
ground mathematics on a basis other than the one that was laid down by Kant. With
regards to the foundations of mathematics, Poincaré adopted Kant’s philosophy and
remained an intuitionist, though naturally, he had to make significant changes in
Kant’s thought. Poincaré argued that the branch of mathematics that contains
synthetic a priori judgments is arithmetic, which is completely independent of
experience and therefore pure. What gives arithmetic its object of knowledge and
justifies the use of its fundamental principles is not experience, but a pure intuition.
On the other hand, Poincaré claimed that our ideas about space and the geometric
postulates are not imposed upon us, that they are not known a priori but are rather
conventions — “definitions in disguise”. The role experience plays in the foundations
of geometry has given us the possibility of building non-Euclidean geometries.

However, since arithmetic is completely independent of experience, it is not possible
iv



for a change similar to that in geometry to take place in arithmetic, which would alter
its basic concepts or principles that we consider to be true. It is argued in this thesis
that it is possible to develop the intuition which lies at the basis of arithmetic and this
may become the starting point of a new arithmetic. It will be shown that this is what

Cantor has actually achieved when establishing transfinite ordinal arithmetic.

Keywords: Intuitionism, conventionalism, synthetic a priori, non-Euclidean

geometries, transfinite arithmetic.
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POINCARE NIN MATEMATIK FELSEFESI VE YENI BIR ARITMETIK INSA
ETMENIN OLANAKSIZLIGI

AKCAGUNER, Koray
Yiiksek Lisans, Felsefe Bolimii

Tez Yoneticisi: Do¢. Dr. M. Hilmi Demir

Eyliil 2019, 100 sayfa

Bu tez Poincaré’nin matematik felsefesini, 6zel olarak da kendisinin yeni bir
aritmetik kurmanin imkanim reddedisini incelemektedir. Oklid-dis1 geometrilerin
icadi Kant’in matematik felsefesini degisime zorlamus, diisiiniirleri Oklid
postulatlarinin sentetik a priori yargilar oldugu fikrinden siiphe duymaya itmistir.
Mantikeilik ve bigimeilik okullar: bu donemde yiikselmis ve matematigi Kant’in 6ne
stirdiigii temellerden baska temellere oturtmay1 amaglamistir. Poincaré ise
matematigin temellerine dair Kant’in felsefesini benimsemis ve sezgici kalmstir;
fakat elbette Kant’in diigiincesinde koklii degisiklikler yapmasi gerekmistir. Poincaré
matematigin sentetik a priori yargilar barindiran alaninin, deneyimden tiimiiyle
bagimsiz ve dolayisiyla saf olan aritmetik oldugunu 6ne siirmiistiir. Aritmetige bilgi
nesnesini veren ve temel ilkelerinin kullanimini mesru kilan sey deneyim degil, saf
bir sezgidir. Buna karsin Poincaré, uzaya dair fikirlerimizin ve geometrik
postulatlarin ise bize dayatilmadigini, bunlarin a priori bilinmedigini ve aslinda
birtakim uzlagimlar, “kilik degistirmis tanimlar” oldugunu séylemistir. Deneyimin
geometrinin temellerindeki pay1 bize Oklid-dis1 geometriler kurmanin imkanini
vermistir; fakat aritmetik tlimiiyle deneyimden bagimsiz oldugundan, geometridekine
benzer bir degisimin aritmetikte yasanmasi ve buradaki temel kavramlarin veya

dogru kabul edilen ilkelerin degismesi miimkiin degildir. Bu tez, aritmetigin
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temelinde yatan sezginin gelistirilebilecegini ve bunun da yeni bir aritmetigin
baslangi¢ noktasi olabilecegini 6ne siirmektedir. Cantor’un sonludtesi ordinal

aritmetigi kurarken esasinda bunu basardigi gosterilecektir.

Anahtar Kelimeler: Sezgicilik, uzlasimcilik, sentetik a priori, Oklid-dist

geometriler, sonludtesi aritmetik.
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The Great book of nature can be read only by those who know
the language in which it is written, and this language is
mathematics.

- Galileo

In fine, it is our mind that furnishes a category for nature. But this
category is not a bed of Procrustes into which we violently force
nature, mutilating her as our needs require. We offer to nature a
choice of beds among which we choose the couch best suited to
her stature.

- Poincaré
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CHAPTER 1

INTRODUCTION

Almost every philosopher who has questioned the value and certainty of the
knowledge produced by humankind has written on mathematics. Unlike the physical
sciences, the exactness found in mathematics and the fact that its truths are
unassailable have always astonished philosophers. Many theories have been put
forward to explain what the source of the fundamental difference between the two
sciences is, and to what mathematics owes its certainty. A great number of thinkers
have portrayed the contrast between the object of mathematics and physics.
Mathematics was said to be about ideal objects (such as numbers, points, and lines),
whose properties are immediately conceived by the mind; whereas physics is about
sensible objects (such as molecules, rocks, and planets), whose properties are
perceived by the senses. The two kinds of objects have brought with them an idea of
‘two worlds’: a world of forms, which is invisible and perfect; and a world of matter,
which is visible and ephemeral. It is possible to find a similar terminology being used
in almost every period in the history of philosophy, for since Plato, there has never
been a time when this theory had difficulty in finding proponents. Though thinking
about the nature of mathematics does not necessarily lead to such a duality, the idea
has given rise to certain problems that still remain to be solved, and even today these
questions continue to motivate thinkers to propose new theories. Some of these
questions can be formulated as follows: How did the thought of ideal objects first
emerged? What does it mean for such objects to exist? And more importantly, what
is the nature of the agreement between the ideal and sensible, such that it makes the
former essential in explaining and predicting the behavior of the latter? Every
philosopher of mathematics must face these questions, and as we can see, these are
linked to some fundamental problems in epistemology and ontology. This is
unavoidable, because ultimately, what is questioned in philosophy of mathematics is
the long sought relationship between mind and matter, thought and world.



French mathematician and philosopher of science Jules Henri Poincaré (1854-
1912) has dealt with these and other similar questions, and he has found reasonable
explanations for almost all of them. He is a substantial figure in philosophy of
mathematics, because different attitudes philosophers have today towards the nature
of mathematical entities and mathematical knowledge! were first rigorously outlined
and separated from each other in his era, through debates between his contemporaries
and of course himself. Poincaré based the existence of mathematical entities and the
necessary character of their relations on the pure intuitions of the human mind and on
the common nature of these minds which were trained in a similar environment. He
is therefore considered a naturalist (see Folina, 2014; Stump, 1989) and an
intuitionist regarding the foundations of mathematics, though his intuitionism differs
from Brouwerian intuitionism, which is what many contemporary thinkers consider
when it comes to intuitionism in mathematics. Poincaré was certainly not a platonist,
and he has also defended his position against formalists such as David Hilbert (1862-
1943) and logicists such as Bertrand Russell (1872-1970). Not only mathematics but
philosophy of science in general owes a lot to him. Some see Poincaré as the father
of conventionalism, and many scientists today — those who question the essence of
their practice at least — hold some form of conventionalism concerning the nature of
scientific truth.

The subject of this thesis is Poincaré’s philosophy of mathematics, more
specifically, his rejection of the possibility of building a new arithmetic as in the case
of non-Euclidean geometries. Poincaré’s intuitionism, which he built to a significant
extent on Kant’s philosophy, has allowed him to give an account of how it was
possible to build non-Euclidean geometries, but led him to deny the same possibility
for arithmetic. In order to have a full grasp of Poincaré’s rejection, the thesis begins
by presenting the key concepts in Kant’s philosophy of mathematics, namely,
synthetic a priori and pure intuition. Then, in Chapter 3, Poincaré’s interpretation of
these concepts is given and the main aspects of his idiosyncratic intuitionism are
explained. This chapter closes with a clear demonstration of the difference between
the foundations of arithmetic and geometry and Poincaré’s reasons for rejecting the

possibility of a new arithmetic. Finally, in Chapter 4, Georg Cantor’s (1845-1918)

! The most prominent of these schools are logicism, intuitionism, and formalism.
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transfinite ordinal arithmetic is presented, and it is discussed from which aspects can
this theory be considered a new arithmetic.

Although the thesis largely adheres to Poincaré’s intuitionism, it adds
something to it: the intuition which lies at the basis of arithmetic can be developed.
According to Poincaré, the possibility of rejecting Euclidean postulates lies in the
fact that geometry and experience are not completely independent. The principles of
arithmetic — mainly, the principle of mathematical induction — however, are
completely independent of experience; they originate from the affirmation of a power
of the mind itself, and we have a direct intuition of this power. This power is
basically the ability to conceive the idea of indefinite repetition. It is argued in this
thesis that this power, and hence the intuition that corresponds to it, can be subject to
improvement. It is claimed that this is what Cantor has achieved, and it became the
starting point of a new arithmetic.



CHAPTER 2

KANT’S PHILOSOPHY OF MATHEMATICS

After Plato and Aristotle the third famous figure in Western philosophy is
perhaps German philosopher Immanuel Kant (1724-1804). His influence in shaping
the history of thought is certainly comparable to the two important thinkers of
antiquity. Kant has synthesized the two prevalent schools of his day: Continental
Rationalism and British Empiricism, among whose most celebrated proponents we
can cite René Descartes (1596-1650) and David Hume (1711-1776) respectively. The
name Kant gave to his doctrine was Transcendental Idealism. This doctrine was
mainly put forward to explain the nature and origin of our knowledge, and it was an
attempt to secure the objective knowledge of the empirical world, without adhering
to the existence of a mind-independent intelligible world.

Kant’s genius lies in his reformulation of a priori philosophy?. He observed
that all knowledge begins with experience, but not all knowledge arises out of
experience (1929/1781, p. 41, A1/B1). Since experience is the way it is, that is,
organized and conceptualisable, Kant thought that there must be a certain framework
that we impose upon experience in order to make it intelligible, and that this
framework itself can be a source of knowledge. Such a framework, which is
epistemologically prior to any conceptualisable experience and constitutive of it, is
the condition of possibility of having an objective knowledge of the world, in other
words, of doing science. The ‘lawful’ aspect of reality should be ascribed to the
faculties of the human being which is experiencing it. Kant thought that if something
is held as being valid universally and necessarily, then it must be known a priori,
meaning that it is related to the active contribution of our minds: “We can know a

priori of things only what we ourselves have put into them” (1929, p. 23, Bxviii).

2 The term a priori is of Latin origin and means “from the earlier”, which is opposed to a posteriori,
meaning “from the later”. Before Kant, a priroi was used to indicate a reasoning that proceeds “from
causes to the effect”, and a posteriori “from effects to causes”. Kant used a priori in order to specify
knowledge that is independent of experience — knowledge that is universal and necessary — as opposed
to a posteriori, i.e. knowledge that is derived from experience.

4



This shift of attention from the object of experience to the experiencing subject is the
Copernican revolution in the history of philosophy. Even though some tenets of
Kant’s philosophy are abandoned today, the idea that the subject must have a
framework independent of and prior to experience in order to make experience
intelligible, still finds many proponents.

Kant’s epistemology, ethics, and aesthetics are all centered on his theory of
the a priori, and at the heart of his theory we find arguments concerning the nature of
mathematical knowledge. In his first Critique, Kant takes arithmetic and geometry as
proper examples of a priori knowledge, and he often appeals to the epistemic status
of their propositions to explain what it means for something to be known
independently of experience and belong to the subjective constitution of our mind.
According to Kant, mathematical propositions are synthetic a priori judgments, and
what gives mathematics its object of knowledge is not experience, but pure
intuitions.

These two concepts, i.e. synthetic a priori and intuition, are essential in
understanding Poincaré’s philosophy of mathematics, because Poincaré followed
Kant and classified the propositions of arithmetic as synthetic judgments, whose
truth is known a priori on the basis of a pure intuition. This, though, was a quite
different intuition than the one Kant described. What really separates Poincaré from
Kant, however, is Poincaré’s ideas on the nature of space and geometry. This does
not change the fact that Poincaré remained Kantian to a significant degree, for he has
certainly built his theory by adapting the Kantian perspective, and by using the
concepts he introduced. These concepts will be examined in detail as they were first
formulated by Kant, then in Chapter 3 we will see how they were revised by

Poincaré.

2.1 The Distinction between Analytic and Synthetic Judgments

Kant argued that we possess two faculties, one passive and the other active;

he referred to them as sensibility and understanding respectively®. He claimed that,

3 There is also a third faculty, i.e. imagination, but it will not be discussed in this thesis. Nevertheless,

it is worth noting that for Kant, in addition to sensibility and understanding, imagination is essential in

acquiring knowledge: “Synthesis in general [...] is the result of the power of imagination, a blind but
5



in the first place, we must have a capacity for being affected by objects, and
sensibility is the faculty that grants us this capacity; it is the faculty through which
objects are given to us (1929, p. 65, A19/B33). Our sensibility has a certain structure,
a certain form, to which objects conform, and Kant referred to space and time as the
forms of our sensibility (see. 2.4), which was a revolutionary idea. Through these
forms, objects affect us, and we obtain intuitions of them. Kant described intuition as
a means of cognition which relates to its object immediately (p. 65, A19/B33). He
focused on intuition and not on perception of objects, because he thought that even
perception involves a certain act of cognition: it is always found in a particular time
and space, which means that it is received through the forms of our sensibility. All
perceptions are therefore grounded on pure intuition (p. 141, A116).

Kant argued that intuition is something that is not conceptualized, and so it
cannot be an object of thought, because according to him, “thought is knowledge by
means of concepts” (p. 106, A69/B94). By itself, intuition cannot yield knowledge:
“Intuitions without concepts are blind”. In making something an object of thought,
and therefore of knowledge, the mind must play an active role. For Kant, this role is
played by the understanding; it conceptualizes the manifold given by sensibility.

There are some pure concepts in our understanding, i.e. categories, which are
not derived from experience, but which, nevertheless, organize the manifold given by
sensibility. We derive further concepts through the employment of these pure
concepts (or rather these rules) accompanied by what is given through sensibility.
Kant wrote, “The only use which the understanding can make of these concepts is to
judge by means of them” (p. 105, A68/B93). The mind knows only through
judgments, and in fact, “we can reduce all acts of understanding to judgments” (p.
106, A69/B94). A judgment is the combining of two concepts in the subject-
predicate form, e.g. snow is white, some bodies are heavy, or in its general form, A is
B. Kant observed that there are two kinds of judgments, two different ways of
combining concepts: a judgment is either analytic, meaning that the concept of the
predicate is already contained in the concept of the subject and logical analysis of the
subject is sufficient for showing that the predicate is implied in it, e.g. all bachelors

are unmarried; or a judgment is synthetic, meaning that the concept of the predicate

indispensable function of the soul, without which we should have no knowledge whatsoever, but of
which we are scarcely ever conscious” (1929, p. 112, A78/B103).
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is not already contained in the concept of the subject and so the former cannot be
deduced logically from the latter but must be added to it, which means that a
synthesis between them is required, e.g. all bachelors are unhappy.

Kant has provided two criteria for distinguishing analytic and synthetic
judgments. First, as we have mentioned, in analytical judgments the concept of the
predicate is already thought in the concept of the subject. Kant’s example is “all
bodies are extended”. He asserted that ‘to be extended’ is already thought in the
concept ‘body’4, though obscurely. Thus, in making this judgment, “I do not require
to go beyond the concept which I connect with ‘body’” (p. 49, A7/B11); what | do is
rather to become conscious of what other concepts are already thought while I am
thinking the concept of the subject. If through this method | find that the concept of
the predicate is already thought in the concept of the subject, then the judgment is
analytical. If not, then | must add the predicate synthetically to the subject®. Kant’s
example is “some bodies are heavy”. He observed that he does not include the
predicate of weight in the concept of a body at all®, but experience nevertheless
teaches that the two concepts belong together. Heaviness can therefore be added to
the concept of a body synthetically on the basis of what experience furnishes.

The second criterion to test a judgment and see whether it is analytical is to
deny its truth and derive a contradiction. Kant argued that if denying the truth of a
judgment, e.g. all bodies are extended, leads to a contradiction, then the judgment
must be analytical, because “all analytic judgments rest entirely on the principle of
contradiction” (2004/1783, p. 17, 4:267). Kant believed that we cannot judge that
there is a body, perhaps a very strange one, which is not extended, because extension

is found in the definition of body; if we judge otherwise, we would be contradicting

4 Together with impenetrability, shape, figure, etc. (1929, p. 49, A8/B12)

5 Even though we can add synthetically any two concepts as long as they are not contradictory, not
every synthetic judgment will have an object; there has to be a basis on which we can perform this
synthesis. According to Kant, this basis is either experience or pure intuition. See 2.4.

6 “I do not include in the concept of a body in general the predicate ‘weight’, nonetheless this concept
indicates an object of experience through one of its parts, and | can add to that part other parts of this
same experience, as in this way belonging together with the concept [...] [L]ooking back on the
experience from which | have derived this concept of body, and finding weight to be invariably
connected with the above characters, | attach it as a predicate to the concept; and in doing so I attach it
synthetically, and am therefore extending my knowledge” (1929, pp. 49-50, A8/B12)

7



ourselves. Similarly, we cannot judge that there is a bachelor who has a wife,
because bachelor is defined as unmarried man. In both cases, the concept of the
predicate can be deduced logically from the concept of the subject, and so denying
their relation must inevitably lead to a contradiction. Notable that neither situation
requires us to consult to experience in order to see whether we are judging right,
whether there is a bachelor who has a wife, for instance, because logic already
teaches us a priori that these concepts are contradictory.

Kant himself never actually referred to these two as two different criteria, he
took them to be equivalent. It seems that for him, if a concept is implied in the
definition of another, and so deducible from it by logic, this guaranteed that in
thinking the former we also think the latter, and vice versa. But later philosophers,
especially logicists like Gottlob Frege’ (1848-1925) and Alfred Jules Ayer® (1910-
1989) criticized Kant’s view of analyticity and argued that these two criteria were not
actually equivalent. Ayer (1964) wrote that a concept being already thought in
another is a psychological criterion; whereas being deducible from another using the
principle of contradiction is a logical one. If the concept of the predicate is deducible
from the definition of the subject by simple rule following, then it is auxiliary
whether our thinking accompanies this procedure or not. Therefore the two criteria
cannot be used interchangeably as Kant did. These philosophers held that the
psychological criterion was inadequate for showing whether a judgment was
analytical; only the fact that the judgment cannot be denied without self-
contradiction — that is, resting on the principle of contradiction — is the proper
criterion of analyticity. This debate will be relevant in Chapter 3.4 where Poincaré’s

views about the epistemic status of arithmetical propositions are discussed.

" See Frege (1960), §17; §88. “Kant obviously — as a result, no doubt, of defining them too narrowly —
underestimated the value of analytic judgments” (p. 99).

8 See Ayer (1964). “Kant does not give one straightforward criterion for distinguishing between
analytic and synthetic propositions; he gives two distinct criteria, which are by no means equivalent”
(p. 294).

8



2.2 Mathematical Propositions are Synthetic Judgments

Kant claimed that unlike logical propositions, which are analytical and “can
be entitled explicative” (1929, p. 48, A7/B11) for they add nothing new to our
knowledge, mathematical propositions are synthetic judgments; we cannot expect to
arrive at a mathematical truth simply by analyzing the concepts involved. This is true
for propositions of both arithmetic and geometry.

Kant appealed to the psychological criterion in order to demonstrate this
result. He wrote:

One might well at first think: that the proposition 7 +5=12isa
purely analytic proposition that follows from the concept of a sum
of seven and five according to the principle of contradiction.
However, upon closer inspection, one finds that the concept of the
sum of 7 and 5 contains nothing further than the unification of the
two numbers into one, through which by no means is thought what
this single number may be that combines the two. (2004, p. 18,
4:268)

And this “can be seen all the more plainly in the case of somewhat larger
numbers” (p. 19, 4:269). Kant is drawing attention to the fact that when we are
calculating a sum, the result is not known by us beforehand, and he is taking this
as an indication that 12 is not derivable from 7 + 5 using the principle of
contradiction alone. He never proved this though; he believed that having shown
the predicate is not already thought in the subject implied that the judgment was
synthetic. Kant concluded that propositions of arithmetic are not explicative but
ampliative (p. 16, 4:266), the mere analysis of the subject does not give us the
predicate, so we ‘go beyond’ the concept and perform a synthesis (p. 18, 4:269).

The same is true for geometric propositions. Propositions such as “in a
triangle two sides together are greater than the third” or “the sum of interior angles of
a triangle is equal to two right angles™ are synthetic judgments according to Kant. He
argued that neither conclusion could be derived simply by analyzing the concept of a
figure enclosed by three straight lines; however long we meditate on this concept, we
cannot discover what relation the sum of its angles bear to a right angle, or its sides
to each other. Kant concluded that geometric propositions are synthetic. In the first
Critique, Kant explains how the second proposition is proved by the geometer by



constructing a triangle. His geometer draws a triangle using straightedge and
compass and derives the desired result with the help of Euclid’s postulates:

He at once begins by constructing a triangle. Since he knows that
the sum of two right angles is exactly equal to the sum of all the
adjacent angles which can be constructed from a single point on a
straight line, he prolongs one side of his triangle and obtains two
adjacent angles, which together are equal to two right angles. He
then divides the external angle by drawing a line parallel to the
opposite side of the triangle, and observes that he has thus obtained
an external adjacent angle which is equal to an internal angle — and
so on. In this fashion, through a chain of inferences guided
throughout by intuition, he arrives at a fully evident and universally
valid solution of the problem. (1929, p. 579, A716/B744)

The method of the geometer involves something else other than purely logical
principles, and therefore it is synthetic. As in the case of arithmetic, in geometry we
also go beyond the given concept to see what other concepts are in relation with it,

and make a judgment accordingly.

2.3 The Truth of Mathematical Propositions is Known A Priori

Now in ‘going beyond’ a concept we usually make use of what is given in
experience. Experience teaches us whether the sky is blue, or whether Earth is
bigger than Venus. What guides us in amplifying our cognition regarding these
concepts is the actual perception of objects, and judgments about them are
therefore a posteriori, i.e. known through experience. But perception of objects
can never be the basis of a mathematical judgment, because as Kant observed,
“[Mathematical judgments] carry with them necessity, which cannot be derived
from experience” (1929, p. 52, A10/B15). We can conceive the possibility of the
sky being red for example (as in a sunset); the concepts sky and blue are not
necessarily related, because what is taught by experience can someday be
corrected by it. However, it seems that we cannot conceive 7 + 5 to be something
different than 12; these concepts are related necessarily and experience cannot be
the source of such necessity. According to Kant, what is taken as necessary must
be known a priori, i.e. prior to the experience of objects, and as such, it must
pertain to the subjective constitution of our minds. He concluded that the

synthesis of mathematical concepts was performed a priori.
10



Like many other philosophers, Kant also pointed out that the proper object of
mathematics is not the objects given in experience. Counting either pebbles or sheep
plays no role in determining the truth of a proposition in arithmetic. Similarly, a
three-sided figure built out of wood or plastic can never be the basis of a geometric
truth. Experiments done with pebbles or wood can only yield knowledge about the
material with which the experiment is performed, and this always a posteriori. These
experiments can never teach a purely mathematical relation, because mathematics is
concerned with ideal objects (such as numbers and lines), which are not given in
experience, and whose relations we conceive to be necessarily true. Even though
sensible objects may exemplify mathematical objects, the former can never be the
basis of the necessity and universality in mathematical sciences. Experience can
therefore only serve as the ground of synthesis of judgments a posteriori; the
synthesis of mathematical judgments, which express necessity, must be carried out a
priori, i.e. independently of experience.

The most important question now manifests itself: If mathematical judgments
are synthetic, and it is shown that the objects we encounter in experience cannot be
the basis of their synthesis, then what is the ground on which we make mathematical
judgments? What guides us in arithmetic and geometry if not the familiar objects
around us? Kant answered that rather than the objects given in experience, what
guides us in these sciences are the forms to which every object of experience must
conform. Space and time are these forms, and they are the forms of our sensibility.

2.4 Forms of Sensibility: Space and Time

Kant described sensibility as the faculty through which objects are given to
us. As being forms of our sensibility, space and time are indispensable, and in fact,
constitutive elements of experience. Every object (or to be more accurate, every
appearance), without exception, is always found in a particular space and time. Kant
argued that this was not because space and time had an objective reality independent
of our cognition. There is not an absolute space and time in which objects reside
when they are not perceived by us; rather, space and time pertain to the subjective
constitution of our minds. These are frameworks which lie ready in the mind prior to
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the experience of objects; they constitute and limit our experience. Space is the form
of all outer experience, and time is the form of all inner experience (1929, §3; §6).
Kant wrote that Space and Time are empirically real, meaning that their reality is
necessarily recognized by every thinking, judging, experiencing human being. But at
the same time they are transcendentally ideal, meaning that they have their seats in
our subjective constitution, and in this respect they cannot be called objectively real
(1929, p. 72, A28/B44).

In synthesizing concepts and making a judgment we usually make use of
what is given in experience, and what is given in experience are sensible objects.
These objects affect us, and we obtain intuitions of them. According to Kant, every
concept that is not empty has a corresponding intuition, in other words a content, and
this intuition is the ground on which a concept is added synthetically to another.
What determines the truth of judgments a posteriori, such as ‘the sky is blue’, is the
corresponding intuitions we have of the relevant concepts, and since these are
obtained from sensible objects, Kant referred all such intuitions as sensible intuition.
Sensible intuition cannot teach us something necessary, and so cannot serve as a
basis for mathematical judgments. But Kant asserted that even without any sensible
object to stir intuitions, we nevertheless possess an intuition of the framework to
which every sensible object must conform; when everything sensible and intelligible
is abstracted from the representation of an object®, the form of sensibility still
remains, and what is intuited then is this form. In contrast to sensible intuition, Kant
called the intuition of the form of our sensibility pure, and referred to space and time
as pure intuitions®. According to him, it is these pure intuitions that serve as a basis
for mathematical judgments; they allow us to construct (or represent to ourselves)
mathematical objects. Since these forms lie ready in the mind prior to the experience
of objects, they are a legitimate source of a priori knowledge, and hence the

necessity and universality in mathematics can be explained.

% “If, then, I take away from the representation of a body that which the understanding thinks in regard
to it, substance, force, divisibility, etc., and likewise what belongs to sensation, impenetrability,
hardness, colour, etc., something still remains over from this empirical intuition [...]. These belong to
pure intuition, which, even without any actual object of the senses or of sensations, exist in the mind a
priori as a mere form of sensibility” (1929, p. 66, A21/B35)

10 “This pure form of sensibility may also itself be called pure intuition” (1929, p. 66, B35/A21)
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In mathematics we go beyond the concepts by making use of what is given in
pure intuition. According to Kant, in order to determine the truth of a proposition in
arithmetic we call the aid of intuition of time, and in geometry the intuition of space.
Mathematical objects are not given in experience, but they are not empty symbols
devoid of content either. We are able to construct mathematical objects on the basis
of pure intuition and become conscious of the relations these objects bear to each
other. A number is constructed by a successive addition of units (1929, p. 134,
A103). We can conceive the idea of succession, in other words we can count,
because Kant argues that for us, time is a pure intuition. Similarly, we can represent
to ourselves a line in space and go on to construct more complex figures in pure
intuition, and thereby become conscious of yet unknown geometric relations.

According to Kant, in both cases, that which guides us is pure intuition.

2.4.1 Arithmetic and Time

Kant thought that when we are asked to do the addition 7 + 5, “[We] use the
intuition that corresponds to one of the two, such as one’s five fingers, or five points,
and in that manner adding the units of the five given in intuition step by step to the
concept of seven” (2004, p. 19, 4:269). Even though we may use fingers to represent
the concept five, as sensible objects our fingers do not have a mathematical
character. The intuition that corresponds to the number five is actually a successive
addition of units: 1 + 1+ 1 + 1 + 1, and fingers are used only because they resemble
the pure units whose addition we originally represent to ourselves in time. By adding
the units of the five to the number seven (which is also represented as a successive
addition of units), that is by counting, we “see the number 12 come into being”
(1929, p. 53, B16). Kant argued that although it may seem as if by this method
nothing new is said in the predicate (=12) which is not already thought in the subject
(7 + 5), this is actually not the case. “That 7 should be added to 5, | have indeed
already thought in the concept of a sum = 7 + 5, but not that this sum is equal to the

1 This is true for integers and rational numbers. But the construction of irrationals poses a serious
problem. An irrational number cannot be constructed by a successive addition of units, because a
‘unit’ by whose operations we can calculate an irrational number cannot be found. For a discussion
about Kant and irrational numbers, see Van Atten (2012).
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number 12” (p. 53, B16). In order to judge that 7 + 5 is 12, we must represent to
ourselves the concept of the subject in pure intuition, and this is done simply by
counting; only then can we decide whether the proposition 7 + 5 = 12 is true or not.
For Kant, this was an indication that propositions of arithmetic were synthetic. He
thought that they differed from logical propositions whose truth we can show only
with the help of the principle of contradiction. There is something else in arithmetic

other than logic, and Kant found this in the pure intuition of time.

2.4.2 Geometry and Space

Just like arithmetic, geometry also presupposes something else other than
logic. Surely we make use of some fundamental logical propositions in geometry,
such as a = a, the whole is equal to itself; or a + b > a, the whole is greater than its
parts. Kant held that these propositions are analytic a priori and they rest on the
principle of contradiction. But in geometry they “serve only as links in the chain of
method and not as principles” (1929, p. 54, B17). We cannot constitute geometry
using these propositions alone, because contrary to logic, which is devoid of content,
geometry has a subject matter, i.e. space. We need principles other than purely
logical ones that would describe space. In geometry we study lines, surfaces, figures,
etc. It is evident that we have an intuition corresponding to each of these concepts.
We know what a line or a point means; we can represent these to ourselves, or in
Kantian terms, we can give to ourselves an object in intuition (p. 86, A48/B65).
According to Kant, when we represent to ourselves two points, we immediately see
that there can only be one straight line between the two; or similarly, that through
any line and a point not on the line, only one parallel can be drawn passing through
this point. Now for Kant, these results are not attained by logic alone, and they are
not derived from experience either. Geometry is not the study of the relations
between sensible objects, because if it were, then “that there should be one straight
line between two points would not be necessary, but only what experience always
teaches” (p. 69, A24) (we will see in Chapter 3.5 that for Poincaré this was more or
less the case). Kant concluded that geometry is the study of the framework to which
sensible objects must conform, and that this framework is given a priori, because it
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is the form of our sensibility. Geometry owes its necessity and universality to this a
priori framework. We construct lines and figures in space, and when we represent to
ourselves a line, Kant believed that we immediately see only one parallel can be
drawn to it from a given point. In this respect the parallel postulate and all the results
that are derived thereof are intuitive results; they are grounded upon the pure

intuition of space.

2.5 Summary

The key concepts in Kant’s philosophy of mathematics are outlined above.
Kant classified mathematical propositions as synthetic a priori judgments. He called
them synthetic, because he believed that in a mathematical proposition the result is
not just a mere rephrasing of what is given (as in the case of analytical judgments),
but it covers something more. Kant expressed this by saying that contrary to logical
judgments, in mathematical judgments the concept of the predicate is not already
thought in the concept of the subject.

Moreover, the truth of mathematical propositions is known a priori, that is,
prior to any particular experience and without consulting to them. Rather than
investigating the relations between sensible objects, which, for Kant, are incapable of
exhibiting the necessary character of mathematical relations, in mathematics we
investigate ideal objects which we give to ourselves, or construct, in pure intuition.
Mathematics is the study of the frameworks to which every object of experience
must conform. These frameworks are called space and time and we have a pure
intuition of them, because they pertain to our subjective constitution, i.e. they are the
forms of our sensibility.

As we can see from the preceding lines, Kant established mathematics as a
science, even though he thought that its subject matter was not the objects given in
experience. By determining the truth of a proposition in mathematics we learn
something new; mathematics expands our knowledge. Thus it would be wrong to
claim that mathematics is a branch of logic, which is no doubt an indispensable aid
for mathematics, but actually a body of tautologies and therefore not a science.
Besides, the truths of mathematics are conceived as laws; we hold them to be
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inviolable and valid for every mind. Hence mathematics meets the requirements of
being a science; it teaches us previously unknown laws, not of sensible objects but of
our mode of perceiving them. Since our mode of perceiving objects is prior to their
perception and a determining factor in it, all other sciences that aim to describe the
perceived relations between these objects should be founded upon mathematics.

Everything that has been said so far is essential in understanding Poincaré’s
philosophy of mathematics, for he has taken a Kantian standpoint in the face of
numerous problems concerning the foundations of mathematics. Poincaré thought,
for example, that the propositions of arithmetic (but not all of them) are synthetic a
priori judgments, and he found the justification for their truth in a pure intuition. He
distinguished mathematics from logic and treated the former as a science.
Furthermore, he agreed with Kant that space and time were not independent realities
but frameworks that we impose upon nature to make it intelligible and suitable for
experimenting. However, he disagreed with Kant on the idea that principles of
geometry — or more precisely, postulates of Euclidean geometry — were synthetic a
priori. The reason, as might be expected, is that Poincaré was exceedingly familiar
with non-Euclidean geometries, where the truths Kant held as necessary and
universal turn out to be false. Lalande (1954) wrote, “Nobody has done more than
[Poincaré] in France to bring home to educated men the idea that Euclid's system of
axioms is not endowed with metaphysical truth, and that on this point it does not
differ in any way from Riemann’s or Lobachevski's axiomatic systems” (p. 598).
Poincaré also disagreed with Kant on the nature of the intuition which lies at the
basis of arithmetic, and exactly which propositions in arithmetic are synthetic.

The next chapter is devoted to show how Poincaré transformed the Kantian
outlook and established his original theory, which, I believe, was more accurate and
in tune with the scientific discoveries of his day. Our principal aim will be to provide
a firm basis on which we can make sense of the following claim asserted by
Poincaré: Building a new arithmetic is not possible as in the case of non-Euclidean
geometries. This is the central claim that this thesis aims to disprove. In Chapter 4,
Georg Cantor’s theory of transfinite ordinal numbers is presented, which can be said

to contain a new arithmetic. But let us first identify Poincaré’s position and
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understand what he thinks the difference between geometry and arithmetic is; later, a

detailed analysis of transfinite ordinal arithmetic will be given.
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CHAPTER 3

POINCARE’S PHILOSOPHY OF MATHEMATICS

3.1 The Intellectual Climate after Kant

Kant’s critical method and his ideas concerning almost every branch of
philosophy have attracted much attention from subsequent philosophers. Naturally,
his ‘intuitionistic’ philosophy of mathematics had its share of this attention. After all,
Kant’s ideas about mathematics occupy a central place in his overall philosophy.

However, over time the belief in the Kantian idea that there exist in our minds
frameworks which are independent of experience was weakened in the light of new
scientific evidence and the criticisms that followed. One of the principal reasons
behind this weakening was the invention of non-Euclidean geometries. The first
person to take the possibility of these geometries seriously and to work on them was
Carl Freidrich Gauss (1777-1855). In 1792, when he was only 15 years old, Gauss
started to work on the fifth postulate of Euclid*?, and in 1817 he was convinced that
this postulate was independent of the other four postulates, i.e. that it could not be
derived from them. He then started to work on alternative geometries where this
postulate was rejected, yet he never published these works. The first publication
concerning non-Euclidean geometries came from Hungarian mathematician Janos
Bolyai (1802-1860) in 1825, in the form of an appendix to his father Farkas Bolyai’s
book, who was a close friend of Gauss. Russian mathematician Nikolai Lobachevsky
(1792-1856), unaware of Bolyai’s work, published his own studies in Russian in
1829, in a local university publication the Kazan Messenger. The works of these two
mathematicians were discussed in a rather small circle, but this changed in 1854
when Bernhard Riemann (1826-1866) gave an inaugural lecture about his works on

12 “If two lines are drawn which intersect a third in such a way that the sum of the inner angles on one
side is less than two right angles, then the two lines will intersect each other on that side if extended
far enough”. This postulate is equivalent to what is known as the parallel postulate, which simply
states that given a line and a point not on it, there exists only one line that passes through this point
and never intersects the given line.
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non-Euclidean geometries where he completely reformulated the notion of space.
Finally in 1868, Eugenio Beltrami (1835-1900) set these non-Euclidean geometries
on a firm basis and reduced the problem of their consistency to the problem of the
consistency of Euclidean geometry.

These mathematicians showed that Euclid’s postulates were not the only
candidates for constituting a consistent system of geometry, and that it was possible
to have different geometries that describe space, even though these may seem
unintuitive. In these geometries the parallel postulate was replaced by other
postulates®®, and so the results derived from the parallel postulate were false. For
instance, in non-Euclidean geometries, the sum of interior angles of a triangle adds
up to something greater or less than two right angles. Furthermore, two triangles
having the same interior angles but different side lengths cannot be drawn — in other
words, there are no similar triangles in these geometries — yet they are as consistent
and as rich as Euclidean geometry. Schiller (1896) wrote, “If it is a universal and
necessary truth that the angles of a triangle are equal to two right angles, it cannot be
an equally universal and necessary truth that they are greater” (p. 179). Philosophers
were thus led into questioning the existence of an a priori framework that our minds
imposed upon experience inexorably, giving rise to Euclid’s postulates, for non-
Euclidean geometries clearly showed that there were other logically possible
frameworks for describing space. Naturally, the following questions were raised:
What is it that has led us into treating Euclidean geometry as intuitive, that is, why
this form of sensibility rather than another? And among these geometries, which one
is the true geometry?

Another factor that undermined Kant’s idea of a pure form of sensibility was
that the theory of evolution of biological species by natural selection was becoming
increasingly dominant!4. The path that led to this theory was opened chiefly by

13 Lobachevsky’s and Riemann’s postulates. Lobachevsky’s postulate states that there exist two lines
parallel to a given line through a given point not on the line. Riemann’s postulate states that there are
no parallel lines. Riemann also had to reject the second postulate of Euclid, which states that a line
segment can be extended indefinitely. Riemann assumed that it cannot, and on these suppositions he
has laid the foundations of spherical geometry.

4 In fact, in Critique of the Power of Judgment, Kant argues for something like a proto-Darwinian

theory of evolution, although not yet for natural selection, which nevertheless shows how farsighted

and exceptionally brilliant he was. He suggests that merely mechanical means can account for the
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French biologist Jean-Baptiste Lamarck (1744-1829) and his theory of inheritance of
acquired characteristics, which first appeared in 1801. But the theory of evolution by
natural selection was first formulated after almost 60 years by Charles Darwin (1809-
1882) in his book On the Origin of Species (1859). With the help of the technological
advancements of 19" and 20" century, but more importantly, with the establishment
of modern biology and genetics, the number of observations confirming the idea that
the different traits in biological species were the result of mutation, adaptation, and
selection continued to grow. Philosophers then naturally questioned whether the
frameworks we impose upon experience or the ‘pure’ intuitions we possess were
shaped by such an evolution, as in the case of physical and behavioral traits, meaning
that they were not that pure after all*.

Seeing the problems with founding mathematics on our forms of sensibility
and the pure intuitions of these forms which are supposedly independent of
experience, thinkers sought another basis on which they can ground mathematics.
This led some philosophers like Frege to reject Kant’s position and attempt to reduce
mathematical principles to principles of logic. Others such as Hilbert held that
mathematics was simply the study of formal systems whose principles are like the
rules of a game which are otherwise meaningless. And there were still others who
committed to intuitionism but sought to revise Kant’s original position. Poincaré was
a member of the last group; he remained a Kantian and an intuitionist. He accepted

that there are propositions in mathematics which are synthetic and known a priori on

variation in biological species: “The agreement of so many genera of animals in a certain common
schema [...] strengthens the suspicion of a real kinship among them in their generation from a
common proto-mother, through the gradual approach of one animal genus to the other, from that in
which the principle of ends seems best confirmed, namely human beings, down to polyps, and from
this even further to mosses and lichens, and finally to the lowest level of nature that we can observe,
that of raw matter: from which, and from its forces governed by mechanical laws [...] the entire
technique of nature [...] seems to derive” (2000, p.287, 5:419). But apparently Kant did not consider
the possibility that the form of our sensibility or understanding could have such an origin; the
hypothesis can be used to explain only the physical constitution of living beings, and even this was
regarded by Kant as a “daring adventure of reason”.

15 A similar view was expressed by Poincaré in Science and Method, where he mentioned the role of
adaptation and natural selection in acquiring the idea of space. According to him, the distinctive
movements which allow us to parry incoming threats or reach desired objects are constitutive of
space: “Certain hunters learn to shoot fish under the water, although the image of these fish is raised
by refraction; and, moreover, they do it instinctively. Accordingly they have learnt to modify their
ancient instinct of direction or, if you will, to substitute for the association A1, B1, another association
Al, B2, because experience has shown them that the former does not succeed.” (2008, p. 116).
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the basis of a pure intuition, but as Janet Folina (1986) writes, compared to Kant,

“Poincaré’s theory of the synthetic a priori is much more minimal” (p. 30).

3.2 Poincaré against Logicism and Formalism

Poincaré presented his views in three books: Science and Hypothesis (1903),
The Value of Science (1905), and Science and Method (1908). In these books he
formulated and often defended his idiosyncratic intuitionism against Russell and
Hilbert, the champions of logicism and formalism of his era. After Kant came the
logicist attempts, mainly by Frege and Russell, to rid mathematics of any need of
intuition and to reduce it to logic, thereby show that mathematical propositions are
analytic a priori. These philosophers thought that something could be known a priori
only in virtue of its lack of factual content; there were no a priori intuitions that
could serve as a basis to synthetic propositions. In truth, mathematical reasoning was
not different than logical reasoning and it had nothing to do with forms of sensibility
or pure intuitions. A. J. Ayer (1910-1989), another important defender of logicism in
the 20" century wrote, “To say that a proposition is true a priori is to say that it is a
tautology” (1964, p. 301) and mathematics is only a “special class of analytic
propositions, containing special terms” (p. 297).

Poincaré was one of the fiercest opponents of this tradition. He believed that
contrary to logic, mathematics was not a gigantic tautology but a science, and it had a
“creative virtue” (2011, p. 3). In The Value of Science, Poincaré likens a logicist —
whose only tool is analysis® — to a person who checks whether each move is made in
accordance with the rules of the game in order to understand a game of chess. He
argues that the person must rather recognize the strategy and the plan behind every
move in order to truly understand the game. “We need a faculty which makes us see
the end from afar, and intuition is this faculty” (p. 22). There is a parallelism between
chess and mathematics, in the sense that both are rule following procedures yet
analysis alone is not sufficient for understanding either of them. Just like ascertaining
the correctness of every move in a game of chess is not sufficient, so is ascertaining

every step of a mathematical proof.

16 Referred to as “division and dissection” (1907, p. 23).
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When we have examined these operations one after the other and
ascertained that each is correct, are we to think we have grasped the
real meaning of the demonstration? Shall we have understood it
even when, by an effort of memory, we have become able to repeat
this proof by reproducing all these elementary operations in just the
order in which the inventor had arranged them? Evidently not; we
shall not yet possess the entire reality; that I know not what which
makes the unity of the demonstration will completely elude us.
(1907, p. 22)

The quote certainly ends in an obscure manner regarding what intuition is. But
Poincar¢ clarified his views in the following chapters, and so will we. Here it is
necessary to add that there is obviously a limit to the analogy between chess and
mathematics: the former can “never become a science, for the different moves of the
same piece are limited and do not resemble each other” (2011, p. 21).

Poincaré raised a similar criticism against Hilbert and his formalist program.
Hilbert wished to reduce the number of the fundamental assumptions of geometry to
a minimum. Some of these assumptions might be understood intuitively, but Hilbert
held that in essence they were simply formal rules from which theorems could be
deduced by purely analytic procedures. There were others such as Giuseppe Peano
(1858-1932) who have tried to accomplish what Hilbert did in geometry for
arithmetic and analysis. In the very beginning of his Foundations of Geometry,
Hilbert (1950) wrote:

Let us consider three distinct systems of things. The things
composing the first system we will call points [...] those of the
second we will call straight lines [...] and those of the third system
we will call planes [...] We think of these points, straight lines, and
planes as having certain mutual relations, which we indicate by
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means of such words as “are situated”, “between”, “parallel”,
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“congruent”, “continuous”, etc. The complete and exact description
of these relations follows as a consequence of the axioms of
geometry.

Even though Poincaré admitted that he thought very highly of Hilbert’s book, he still
condemned Hilbert’s approach. Regarding the ‘things’ Hilbert considered at the
beginning of his book, Poincaré writes: “What these ‘things’ are we do not know,
and we do not need to know — it would even be unfortunate that we should seek to
know; all that we have the right to know about them is that we should learn their
axioms” (2008, p. 122). And again:
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[In Hilbert’s Formalism] in order to demonstrate a theorem, it is
neither necessary nor even advantageous to know what it means.
The geometer might be replaced by the logic piano imagined by
Stanley Jevons; or, if you choose, a machine might be imagined
where the assumptions were put in at one end, while the theorems
came out at the other, like the legendary Chicago machine where
the pigs go in alive and come out transformed into hams and
sausages. No more than these machines need the mathematician
know what he does. (2014, Book II, Ch. 3)

We can see from the above lines that Poincaré’s emphasis was principally on
understanding. If we completely neglect our intuitions that play a role in
mathematics and adopt a strong formalist standpoint, then we would sacrifice an
integral part of mathematics: we would “not divine by what caprice all these
[theorems] were erected in this fashion one upon another” (1907, p. 22), and we
would not see why among countless possible assumptions these particular ones were
judged preferable to others (2008, p. 148). It would therefore be very difficult, if not
impossible, to learn and understand mathematics if it is presented to us as a purely
formal practice, and this is why Poincaré wrote that he would not recommend
Hilbert’s book to a schoolboy (2008, p. 122).

There is another, perhaps an even more serious criticism that Poincaré raised
against Hilbert’s program, and consequently against every other program that aims to
prove the consistency of mathematics within a formal system, such as Peano’s or
Zermelo-Fraenkel’s Axiomatic Systems. Poincaré argued that the principle of
mathematical induction is an indispensable tool for all branches of mathematics,
which states that if a theorem is true for y = 1 and if it is shown to be true fory + 1
when it is true for an arbitrary y, then the theorem is true for all natural numbers.
Now where does this principle come from? If it is a purely logical principle, then its
negation must be capable of being reduced to the principle of contradiction. But how
can we be sure that this principle never leads to a contradiction? Poincaré maintained
that every attempt to show mathematics is consistent needs to prove, at some point,
that the principle of mathematical induction is exempt from contradiction. Since this
principle states something about an infinite number of cases, a direct verification
showing the principle is true for a finite number of cases would not suffice. “We
must then have recourse to processes of demonstration, in which we shall generally
be forced to invoke that very principle of complete induction that we are attempting
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to verify” (2008, p. 153). Thus, every attempt to prove the consistency of the
principle of induction will make use of the principle itself, “for that is the only
instrument which enables us to pass from the finite to the infinite” (2011, p. 14). This
poses a problem for formalists and logicists, yet it is not a problem for an intuitionist
like Poincaré, because just like Kant, Poincaré thought that this principle is an a
priori synthetic judgment and is grounded upon a pure intuition; we immediately
become conscious of its validity because it pertains to the subjective constitution of
our minds and we have a direct intuition of it (see Chapter 3.4).

After examining the quotations above, it might seem as if Poincaré used the
term intuition in several different ways. In fact, he admitted that the meaning of this
term was quite vague and he tried to elucidate it. In The Value of Science, he writes:
“To make any science, something else than pure logic is necessary. To designate this
something else we have no word other than intuition. But how many different ideas
are hidden under this same word?” (1907, p. 19). We saw that he used the term
intuition to designate the faculty “that which makes us see the end from afar”. For
Poincaré, this faculty is an integral part of understanding. A person who has not
developed this kind of intuition in a particular field will lack something very crucial
in comparison to a person who has, even though both are bound by the same rules
and doing the same operations. Seen under this light, intuition appears to be
something psychological. This led some thinkers such as Warren Goldfarb (1988) to
claim that Poincaré’s concern in invoking intuition in mathematics was to explain the
psychology of mathematical thinking. However, though an accurate observation, this
is only one-half of Poincaré’s intuitionism. Intuition understood this way is not
exclusive to the mathematician; a chess player, a composer, and even a logicist
requires its aid. What is intuited in all these practices is a certain strategy peculiar to
that field. It is developed through many experiences and it allows the practitioner to
immediately see beforehand what steps she should take. But Poincaré mentions
another kind of intuition, one which is pure and reminiscent of Kant’s, which gives
rise to mathematical reasoning. What is intuited here is not the strategy or the plan in
this or that practice, and unlike Kant, Poincaré did not relate this to the intuition of
the pure forms of our sensibility. This is rather the intuition of a certain power of the

mind, which consists in “conceiving the indefinite repetition of the same act, when
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the act is once possible. The mind has a direct intuition of this power, and experiment
can only be for it an opportunity of using it” (2011, p. 16). This intuition is pure, and
unlike the intuition a chess player has, it is given prior to all experience. This is
actually the intuition we have mentioned in the previous paragraph, i.e. the one to
which we owe the principle of mathematical induction. Let us now specify the two
kinds of intuition as Poincaré¢ formulated them, and distinguish the one that serves as

a basis to synthetic judgments in arithmetic, giving rise to the ‘science of number’.

3.3 Poincaré’s Intuitionism

It is true that one of Poincaré’s intentions was to explain the psychology of
the mathematician and that he used the term intuition in order to do this. There are
many passages in which he described what goes on in the “soul” of a mathematician.
The most detailed of these passages is found in Science and Method. In the third
chapter of the first book, Poincaré explains the intuition that guides the
mathematician in a mathematical invention by describing in detail the mental
processes after which he managed to establish the existence of different classes of
Fuchsian functions. Reflecting on his experiences, Poincaré concludes that both
conscious and unconscious mental procedures play a role in mathematical invention.
The conscious procedures consist of many trials with different combinations, carried
out gropingly. These are indispensable for a mathematical proof, since through them
the mathematician gains an acquaintance with his problem and becomes more
competent. But more importantly, the conscious work of the mathematician “set[s]
the unconscious machine in motion” (2008, p. 56). The unconscious procedures are
reasonings that go on in the mind of the mathematician even after his focus is turned
away from the problem. Among countless possible combinations, only a few can be
constructed consciously by the mathematician, which, in most cases, will appear to
be barren and useless in the beginning. But Poincaré observes that the unconscious
ego, or the “subliminal ego”, once stirred by a conscious work, would keep reasoning
about the problem by eliminating the useless and encumbering combinations among
the extremely numerous possibilities, selecting the most fruitful ones. What guides

the mathematician in this unconscious work is an intuition that is certainly not
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operating arbitrarily, but following extremely subtle and delicate rules, which are
practically impossible to be stated in precise language; “They must be felt rather than
formulated” (2008, p. 57). What is felt here is the “mathematical beauty; of the
harmony of numbers and forms and of geometric elegance. It is a real aesthetic
feeling that all true mathematicians recognize” (p. 59). Poincar¢ states that the results
of this unconscious work present themselves to the mind in moments of sudden
illumination. He cites experiencing several of such instances; one when he was
walking on the cliffs of Caen and another when he was serving his time in the army
in Mont-Valérien.

What we need to notice is that the intuition Poincaré described in these
passages is not exclusive to the mathematician. In fact, there are other thinkers who
have noted that this intuition is not limited to mathematics. Folina (1986) regards it
as a faculty that glosses over the incomplete character of both mathematical and
empirical experience (p. 86). Gerhard Heinzmann (1988) likens it to “the awareness
of the mastery of a schema” (p. 48). We can easily assume the mathematician in the
above paragraph to be replaced with a composer and the proof with a musical piece
the composer is working on. Or similarly we can imagine it to be a chess player
trying to devise a new and unheard strategy. Analogous to Poincaré’s mathematician,
the composer would most likely say what guides her in her process of creation is a
certain kind of intuition. We can imagine her saying that through this intuition, which
is very difficult to elucidate, she appreciates harmony and able to recognize the
patterns that arouse in her a feeling of beauty, and what she is looking for very often
comes to her in moments of inspiration.

This kind of intuition is also what distinguishes a professor from a student of
mathematics. Surely what causes the difference between them is primarily
experience, but the abundance of experiences would be useless if it did not help to
develop in the mathematician a certain kind of intuition, i.e. the feeling towards
mathematical beauty. Because this feeling is highly improved and polished in a
professor, he would not waver in the face of a problem that would easily overwhelm
a student.

If intuition in mathematics was confined solely to what is described here, then
it would truly be something entirely psychological, not something over and above the
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intuition developed in a specialist concerning his or her particular field. However,
even though the student of mathematics — or an amateur in any particular field —
lacks this kind of intuition compared to a specialist, both the student and the
professor of mathematics share something in common: both possess a mind that is
capable of conceiving the idea of indefinite repetition, and therefore able to count.
They both have a direct intuition of this capacity and as Poincaré wrote, experience is
only an opportunity for them of using it. Because the student also has this capacity,
he is able to construct numbers just like the professor, and the reasoning behind the
method of proof by mathematical induction is not going to be a mystery for him.
Through countless experiences the student would eventually develop the kind of
intuition we described in the previous paragraphs. But he would never have learned
mathematics and understood mathematical reasoning if he did not have an intuition
of this distinctive mental capacity in the first place, which amounts basically to the
ability to count indefinitely; without it, the concept of ‘number’ would be completely
meaningless.

Poincaré¢ offered a reliable criterion for distinguishing these different kinds of
intuition. He wrote that there are intuitions that may deceive us, and then there are
intuitions that may never do so. For instance, the intuition a chess player has
developed may sometimes deceive him. We can imagine the game he planned being
outmaneuvered by a more brilliant strategy coming from his opponent. Also the
mathematician guided by his feeling towards mathematical beauty “need[s] to work
out the results of the inspiration” (2008, p. 56). A more striking example Poincaré
gives of a deceptive intuition is geometric intuition. He writes: “If we try to imagine
a line [...] our representation must have a certain breadth. Two lines will therefore
appear to us under the form of two narrow bands”. The geometer “[imagines] a line
as the limit towards which tends a band that is growing thinner and thinner, and the
point as the limit towards which is tending an area that is growing smaller and
smaller” (2011, p. 31). On the basis of our representations we intuitively conclude
that whenever we imagine a curve, there are going to be an infinite number of lines
intersecting this curve at only one point, i.e. that the function this curve represents
will be everywhere differentiable. By establishing the existence of functions which
are continuous everywhere but differentiable nowhere, Karl Weierstrass (1815-1897)
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has showed once again that we were mistaken in trusting our intuitions in geometry.
What the chess player and the geometer have in common is the fact that the basis of
their intuition is experience: the player’s intuition depends upon the countless games
he played, and the geometer’s intuition depends upon the countless observations he
had of the motion of the most notable objects around him, in our case, solid bodies.
The role experience plays in geometry and how the motion of solid bodies relates to
it are subjects of Chapter 3.5. At the moment it is sufficient to know that Poincaré
asserted that geometry is not completely independent of experience and this is why
geometric intuition sometimes deceives us.

On the other hand, the intuition we have of our capacity to iterate indefinitely
— consequently of the principle of mathematical induction — can never deceive us,
because “it is only the affirmation of a property of the mind itself” (2011, p. 17).
Poincaré called this “the intuition of pure number” (1907, p. 20). Nothing empirical
plays a role in formulating the principle of mathematical induction; its truth is known
a priori on the basis of a pure intuition and it is “imposed upon us with such an
irresistible weight of evidence” (2011, p. 16), for what is intuited here is simply a
mental capacity. The term intuition is used both for that which makes us conscious of
a distinctive mental capacity and also that which makes us conscious of the strategy
behind any practice, giving us competence, be it in chess, mathematics, or even
logic. This is because in both cases we become conscious of the object of our inquiry
immediately, without surveying all the intermediary steps. Our intuition is “an
incomplete summary of a piece of true reasoning” (2011, p. 216), or in Folina’s
words, a glossing-over faculty. The difference is that in pure intuition what is
summarized is an a priori reasoning; whereas in the intuition a practitioner (or a
geometer) develops what is summarized is a reasoning that is borrowed from
experience. This is precisely the reason why we can never be deceived by pure
intuition but may be misled by what we will call sensible intuition. However, when
we use the term sensible intuition in the context of Poincaré’s philosophy, it should
be noted that this is not perfectly in line with Kant’s conception. Both thinkers took
this to mean an intuition which is derived from experience (though in Kant’s case,
this already presupposes a pure, a priori form of sensibility) and as such, incapable

of being a basis for necessary and universal truths. But unlike Kant, Poincaré thought
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that the intuition which lies at the basis of geometry is not pure; it is to a certain
degree sensible. He believed that the intuition we have of our forms of sensibility is
not pure, because our forms of sensibility — the mental frameworks to which objects
conform — are not given a priori; these are convenient frameworks invented by us
under the guidance of experience. This is perhaps the fundamental difference that
separates Poincaré from Kant and it is the origin of Poincaré’s stronger empiricist
tendencies. How experience guides us in adopting the most convenient framework
among other possible options is discussed in Chapter 3.5.

One final remark on the difference between the intuition developed in a
specialist and the intuition of pure number: it may be argued that this distinction is
not really necessary, for these two intuitions can be reduced to one. In fact, there is
no doubt that these intuitions are related to a certain degree. A very important
element of the intuition that helps a professional — be it a chess player or a
mathematician — in his or her particular field, is the recognition of patterns that are
recurring. Recognition of these repeating patterns is actually constitutive of the
‘feeling of beauty’ that guides a specialist. Thus, it would not be wrong to say that
the idea of repetition is an integral part of the intuition developed in a specialist. How
these two intuitions are related and whether they can be reduced to one is out of the
scope of this paper. However, it is worth noting that we cannot fully explain the
intuition in mathematics in terms of the intuition developed in a specialist, because as
we have said, the latter is sometimes deceptive. Contrary to this, according to
Poincaré¢, the intuition of pure number on which arithmetic is grounded can never
deceive us. What this intuition amounts to is the capacity to conceive the idea of
indefinite repetition. From repetition, number arises, and the principle of
mathematical induction is simply the affirmation of this mental capacity.

3.4 Mathematical Induction and the Intuition of Pure Number

As we have mentioned above several times, Poincaré disagreed with Kant as
to which propositions in arithmetic should be considered synthetic. According to
Poincaré, propositions in the form 7 + 5 = 12 are not synthetic but analytic

judgments. He wrote that the method for showing the truth of these propositions is
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not a proof properly so called but verification. “Verification differs from proof
precisely because it is analytical, and because it leads to nothing” (2011, p. 5). For
Poincaré, these are rather uninteresting for a mathematician. What is truly interesting
and fruitful in mathematics are theorems, for example the proposition which states
that every natural number is either even or odd. It is these propositions that needs to
be proved, and in which “the conclusion is in a sense more general than the
premises” (2011, p. 5).

7 + 5 =12 can be verified when the operation x + 1 (adding 1 to any given
number) is defined. Poincaré wrote, “Whatever may be said of this definition [i.e. X +
1], it does not enter into the subsequent reasoning” (2011, p. 7). 7 + 5 =12 is simply
a rule following procedure. Poincaré considered 7 + 5 to be an instance of the general

formula x + a. He defined x + a as

x+a=[x+(@-1)]+1 (D)

“We can know what x+a is when we know what x+(a-1) is, and since | have
assumed that to start with we know what x+1 is, we can define successively and ‘by
recurrence’ the operations X+2, X+3, etc.” (2011, p. 8). Poincaré notes that (1) is not
a purely logical definition, “It contains an infinite number of distinct definitions,
each having only one meaning when we know the meaning of its predecessor” (p. 8).
The general formula x + a is of a different character than 7 + 5, which is a particular
instance of this formula. On the basis of the definitions above, we can reach 7 + 5 =
12 after a finite number of syllogisms. We will know what 7 + 5 is when we know
what 7 + 4 is. We know what 7 + 1 is from the definition of x + 1, it is 8. We know
what 8 + 1is, itis 9, and so on. 7 + 5 is only a logical step in this reasoning.

As we can see that for Poincaré, the fact that the result of the sum 7 + 5 is not
immediately recognized, or to express this in Kantian terms, the fact that the concept
of the predicate is not already thought in the concept of the subject, does not
necessarily make 7 + 5 = 12 a synthetic judgment. It is therefore accurate to say that
Poincaré has sided with the logicists on this issue, that is, the psychological criterion
not being satisfied does not indicate that the judgment is synthetic. Even though we
may not immediately see the result of a sum, this does not mean that we cannot also
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reach it by a purely analytical reasoning. Once x + 1 is defined, we can always verify
in a finite number of syllogisms the truth of the sum of two numbers, however big
the numbers may be. In order to calculate this sum we do not need to use intuition
and find a correspondence for these concepts in terms of fingers or points added to
each other in temporal succession. We can do that, but that is not what Poincaré
thought the role of intuition in arithmetic was.

“If mathematics could be reduced to a series of such verifications it would not
be a science” (2011, p. 5). As we have said, what is truly valuable in mathematics for
Poincaré are theorems. Theorems must be proved rather than verified. 7+5=12isa
verification, but the proposition, for instance, that every natural number is either even
or odd is a theorem. The truth of any particular instance of this theorem such as (7 +
5) can always be verified. By following the procedure described above, we can show
by way of analysis that 7 + 5 is 12 and that this is an even number (assuming the
definition of even and odd is given). We can do the same for any natural number say
4, (11 + 8), 3%, etc. We can easily verify that all of these numbers are either even or
odd. But we can never reach our theorem by conjoining countless of such
verifications. The list of our verifications will always be finite, so how to prove this
theorem that states something about an infinite number of cases? Now for Poincaré
this is where synthesis in mathematics comes in. Logical reasoning can only verify
the particular instances of this theorem, but in order to reach the general theorem
where an infinite number of verifications are contained in only a few lines, a
synthesis is required, and this is carried out on the basis of the principle of
mathematical induction, which, according to Poincarg, is “mathematical reasoning
par excellence” (2011, p. 12). The principle of mathematical induction is an
instrument which the logicist does not possess; it is the only instrument that enables
us to pass from the finite to the infinite. “This instrument is always useful, for it
enables us to leap over as many stages as we wish; it frees us from the necessity of
long, tedious, and monotonous verifications which would rapidly become
impracticable” (2011, p. 14).

In order to formulate our theorem we first need to define what even and odd

means. We suppose x + 1 is defined and properties of addition and multiplication are
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given®’. A natural number x is called even if it is a multiple of 2, in other words, if

there is a natural number n where x = 2n.

X=2n (2)

A natural number x is called odd if it is not a multiple of 2, in other words, if

there is a natural number n where x = 2n + 1.

Xx=2n+1 3)

Together with (1) where the addition of any two numbers is defined, we now
have three definitions. The theorem we wish to prove states that for every natural
number x there is a natural number n such that either x =2nor x =2n + 1. Itis easy
to verify this theorem for a particular number and increase the number of our
verifications, but it is clear that none of these verifications will be considered a proof
of the theorem. Rather, we must arrive at our result by reasoning inductively. First,
we need to show that the theorem holds for the base case, x = 1. Next we need to
assume that it holds for an arbitrary x and show that it holds for x + 1. If both
conditions are satisfied, we can conclude that every natural number is either even or
odd. The principle itself requires no proof, pure intuition of number guarantees its
truth a priori. We assert without a doubt that the theorem will be true if it is true for x
+ 1 when it is true for x, because we immediately recognize that there will be nothing
that can disturb this reasoning at a later step. For Poincaré, this is neither a logical
nor an empirical reasoning, but a mathematical reasoning, and as a matter of fact,
mathematical reasoning par excellence. Let us see the proof in order to appreciate the

value of this principle.

Theorem: VX, X EN[In,neN:x=2norx =2n+ 1]

17 In fact, in Science and Hypothesis, Poincaré (2011) treats each of these properties as a theorem and
proves them using the definition of addition (1) and the principle of mathematical induction. For
instance, with regards to associativity of addition, he considers a + (b + ¢) = (a + b) + c as a theorem
and shows that this is true for ¢ = 1, and then shows that when it is true forc = y itistrue forc=y + 1
(pp. 8-11). He states that this indicates even at such an early stage of arithmetic where the properties
of the most basic operations are defined, we must appeal to the intuition of pure number.
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Proof by induction

Base Case: x=1
1=(2-0)+ 1, therefore odd (3)

Successor Case: Assume x is either even or odd. Show (x + 1) is either even or odd.

If x is odd, then (x + 1) is the sum of two odd numbers. The sum of two odd
numbers is always even, because for every natural number a and b wherea=2n+1
andb=2m+1

atb=@2n+1)+(2m+1)
a+b=2n+2m+2

a+b=2(n+m+ 1), therefore even (2)
Hence if x is odd then x + 1 is even.

If X is even, then (x + 1) is the sum of an even number and an odd number.
The sum of an even number and an odd number is always odd, because for every

natural number aand b wherea=2nandb=2m+1

atb=2n+(2m+1)
atb=2n+2m+1
a+b=2(m+n)+ 1, therefore odd (3)

Hence if x is even then x + 1 is odd.

Either way, x + 1 is either even or odd, which is what we needed to prove. We
may thus conclude that every natural number X is either even or odd.

Each step of this proof follows directly from a previous step (or from the
definitions we have given) according to the principle of contradiction. For instance,
while showing the sum of two odd numbers is always even we actually compared
two definitions, one of which was only a little more complex than the other, and
demonstrated that they were in fact identical. But in asserting that the theorem would
hold for every natural number if it is shown to hold for an arbitrary number and its
successor, we did not rely upon the principle of contradiction but on the principle of

mathematical induction, and therefore on the intuition of pure number. This simple
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proof then illustrates the role of intuition in establishing the truth of a mathematical
proposition where a generalization is made over infinitely many elements. According
to Poincaré it is these propositions where the conclusion is more general than the

premises, and these are grasped intuitively.

3.4.1 The Intuition of Pure Number and Time

In the first pages of Science and Hypothesis, Poincaré gives (or rather proves)
the rules of algebraic calculus and the definitions required to do elementary
arithmetic on the supposition that x + 1 is given, in other words, that we already
know what it means to add the number one to any given number. But can we not say
that there is already a difficulty in defining x + 1? Looking from a Kantian point of
view, we may argue that the concepts ‘addition” and ‘number’ must have
corresponding intuitions. Besides the principle of mathematical induction, and
perhaps even prior to it, the basic concepts of arithmetic must be understood
intuitively instead of as mere logical symbols without any significance. Poincaré
would have certainly agreed. When he is arguing against logicists, Poincaré writes:
“You give a subtle definition of numbers; then, once this definition given, you think
no more of it; because, in reality, it is not it which has taught you what number is;
you long ago knew that” (2014, Book 11, Chapter 3). What has taught us what
numbers are is the intuition of pure number, i.e. the ability to conceive the idea of
indefinite repetition. But Poincaré separated himself from Kant by claiming that what
Is intuited in arithmetic is not the pure form of our sensibility. For Poincaré, space
and time are mental frameworks which are imposed by us upon nature, yet they are
not given a priori, because experience plays a certain role in their foundations. These
frameworks are invented by us in order to accommodate our particular field of
experience, and it is experience that guides us in choosing the most convenient
framework for representing natural phenomena. If such a framework were to be a
basis for the basic concepts and principles of arithmetic, then arithmetic would not be
an a priori science, for experience would then have a determinant role in its
foundations. Thus Poincaré¢ was careful not to relate the intuition of pure number to

the intuition of time as a form of sensibility. Although he did not say directly that the
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ability to conceive the idea of indefinite repetition pertains to the form of our
understanding, he did say that the idea of group'®, which is given a priori and which
“preexists in our minds, at least potentially [...] is imposed on us not as a form of our
sensitiveness, but as a form of our understanding” (2011, p. 82). We can infer that
the ability to iterate indefinitely and hence the principle of mathematical induction is
also imposed upon us by the form of our understanding. The intuition of pure number
pertains not to sensibility but to understanding, because it seems that it is the form of
the latter which Poincaré considered as being independent of experience. In this
sense there is a significant deviance from the Kantian thought on Poincaré’s side.
Poincaré has completely separated arithmetic from sensibility; both from sensible
objects and from the forms of our sensibility.

It may sound odd to argue that there is absolutely no relationship between the
intuition of pure number and time, since ‘succession’ and ‘repetition” seem to be
temporal concepts. In fact, in The Value of Science, Poincaré writes that it is
repetition which gives space its quantitative character, and that “repetition supposes
time; this is enough to tell that time is logically anterior to space” (1907, p. 72). But
he did not recourse to the idea of time while explaining the foundations of arithmetic
and the intuition of pure number. Especially in his paper “The measure of time”*°,
Poincaré treated time as a convenient framework just like space. He wrote, “We have
not a direct intuition of simultaneity, nor of the equality of two durations” (1907, p.
35). In order to measure time, we need to make use of certain means; these may
include pendulums, the revolution of the Earth around itself, or the speed of light. In
making one of these methods the standard way of measuring time, we need to adopt

some rules whose truth we cannot know a priori but must choose in terms of

18 A group in mathematics is a set with a binary operation, which combines any two elements to create
a third in such a way that group axioms are satisfied, namely, closure, associativity, identity, and
invertability. Poincaré argued that not any particular group but the idea of group in general pre-exists
in our minds as a form of our understanding. The concept of group and its role in the genesis of
geometry is discussed in Chapter 3.5.1 (A).

19 Poincaré (1898), Revue de Métaphysique et de Morale, 6, pp. 1-13. Also appears in The Value of
Science (2008), Chapter II.
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convenience and simplicity?®. Nevertheless, Poincaré mentioned a psychological
time, which indeed appears as a form pre-existing in our minds. He described this as
the feeling by which we distinguish “present sensation from the remembrance of past
sensations or the anticipation of future sensations” (1907, p. 26). It is also the feeling
which informs us that between the memories we can recall, there always remain
other instances of which we may not have a memory. Poincaré did not take
psychological time into account in the foundations of arithmetic, nor did he refer to it
when he is explaining the intuition of pure number. Moreover, he argued that
psychological time alone is not sufficient for constructing the temporal framework in
which we wish to put everything, including the phenomena of our consciousness, of
other’s consciousness, and also the physical facts, “which no consciousness sees
directly” (1907, p. 27). The construction of this framework requires certain
assumptions whose truth we cannot know a priori. Contrary to this, the truth of the
principle of mathematical induction is known a priori, because unlike our ideas
about time, it involves nothing empirical; it is imposed on us directly by the form of

our understanding and we have a pure intuition of this form.

3.4.2 The Difference in the Foundations of Arithmetic and Geometry

But can we not raise to Poincaré the same criticism he raised against Kant?
That is, could experience play a role in the form of our understanding as it does for
our sensibility? Poincaré answers this in the negative and compares the principles of
arithmetic with that of geometry to endorse his view. As we have said, Poincaré
argued that experience cannot be the source of the principle of mathematical
induction, but only an opportunity of using it; the principle is a perfect example of a
synthetic a priori judgment and it is imposed on us with an irresistible weight of
evidence by the very nature of our minds. This is why Poincaré believed that we can

never conceive the rejection of this principle and construct a “false arithmetic” that

20 With respect to pendulums, and therefore to all sorts of clocks, it is assumed that all the beats of the
pendulum are of equal duration. With respect to the revolution of the Earth, it is assumed that two
complete rotations of the Earth about its axis have the same duration. And with respect to the speed of
light, Poincaré claimed that it is assumed that light has a constant velocity and that it is the same in all
directions: “This postulate could never be verified directly by experiment; it might be contradicted by
it if the results of different measurements were not concordant” (1907, p. 34).
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would follow from a contrary proposition (2011, p. 57). But there is something
fundamentally different in geometry. According to Poincaré, principles of geometry
are not given a priori but chosen conventionally under the guidance of experience,
and this is exactly why it was possible to construct non-Euclidean geometries.
Poincaré thought it was evident, for instance, that the fifth postulate of Euclid is not
forced upon our minds, for we are able to reject it and construct alternative
geometries using Riemann’s or Lobachevsky’s postulates (See footnote 14). For
Poincaré this showed that the Euclidean framework, which we find intuitive and with
the help of which we reason about physical phenomena, is not unique; there are
different possible frameworks, equally conceivable and coherent. The reason we find
the Euclidean framework intuitive is not because it is a form pre-existing in our
minds prior to all experience, but because it is the simplest and the most convenient
one that describes our particular field of experience. If we were taken to another
world in which our impressions would change radically and where the motion of
objects would follow altogether different laws from the ones we are accustomed,
then, given enough time, our sensibility would adapt its form. Our straightedge and
compass would no longer describe the lines we are familiar with, and so we would be
forced to choose different principles describing different frameworks. In other words,
we would be led to adopt different conventions, and it is going to be these
conventions that we will be teaching in the geometry classes of our hypothetical
secondary schools. “So that beings like ourselves, educated in such a world, will not
have the same geometry as ours” (2011, p. 79). On the other hand, Poincaré believed
that the same is not true for arithmetic. He held that no experience can render the
principle of mathematical induction useless and compel us to abandon it; contrary to
Euclid’s postulates, this principle is not a convention, but an affirmation of a
property of the mind itself. Poincaré writes: “Let us next try to [...] reject
[mathematical induction] and let us construct a false arithmetic analogous to non-
Euclidean geometry. We shall not be able to do it” (2011, p. 57). Here for the first
time we see clearly the reason behind Poincaré’s rejection of the possibility of
constructing an alternative arithmetic. The reason is simply that arithmetic is a pure,
a priori science, whose basic concepts and principles are known independently of
experience by a pure intuition; whereas the postulates and the meaning of the basic
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concepts of geometry cannot be known a priori, these are determined by convention:
“It is impossible to discover in geometric empiricism a rational meaning” (2011, p.
115). So far we have explained Poincaré’s views on the nature of arithmetic and
specified briefly how it is different from geometry. But we have not yet elaborated
on his ideas about how we have constructed geometry and what exactly is the role

experience plays in its foundations. This will be our next subject.

3.5 Conventionalism in Geometry

Poincaré argued that it is impossible to decide a priori whether the concept of
straight line, whose definition is ‘the shortest distance between two points’,
corresponds to a Euclidean or a non-Euclidean line, or how many ‘lines’ can pass
through two points. There is not a rational decision to be made concerning these
matters. Like Euclid, we may assume that lines can be extended indefinitely, that
there is only one line passing through two points, and that there is only one line
parallel to a given line. We would then be giving the name straight to the sides of
Euclidean triangles and by accepting his other postulates we can derive the rest of
Euclidean geometry. But we may equally assume, as Riemann did, that lines cannot
be extended indefinitely, that there are more than one line passing through two
points, and that there are no parallels. We would then be giving the name straight to
the sides of spherical triangles and derive a body of geometry which is equally
coherent and interesting as Euclidean geometry. Poincaré’s reasoning on this matter
is straightforward: If Euclid’s postulates were a priori intuitions as Kant affirmed,
“They would then be imposed upon us with such a force that we could not conceive
of the contrary proposition, nor could we build upon it a theoretical edifice. There
would be no non-Euclidean geometry” (2011, p. 57). Since there is, then the truth of
Euclid’s postulates is not the result of an a priori reasoning, and this becomes even
clearer when we compare them with what Poincaré called a true synthetic a priori
judgment, i.e. the principle of mathematical induction.

What, then, is the source of these postulates, and why is it that we feel
unwilling to oppose them? Is it because they are actually experimental facts? But as

Kant has shown and later Poincaré confirmed, experience cannot be the basis of a
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geometric truth: “We do not make experiments on ideal lines or ideal circles; we can
only make them on material objects” (2011, p. 58). Experiments done with material
objects will always remain approximate, whereas in geometry there is certainty.
According to Poincaré, if someday we observe objects which are moving differently
from what we are used to and whose movements more or less resemble non-
Euclidean motions, we would not conclude that this experiment refutes Euclidean
geometry, but rather prefer to draw conclusions about these particular objects??;
Euclidean geometry and all other geometries would remain unaffected by such an
experiment. “No experiment will ever be in contradiction with Euclid’s postulate;
but, on the other hand, no experiment will ever be in contradiction with
Lobachevsky’s postulate” (2011, p. 86). Experience can neither directly verify nor
refute geometric postulates.

The situation in geometry is rather peculiar. There are propositions in
geometry whose truth we hold as self-evident and therefore consider as axioms, but
the truth of these propositions cannot be shown by reasoning a priori (since we can
equally conceive contrary propositions), neither by way of experience, and yet still,
there is no doubt that geometry is in some connection with experience, for it lies in
the foundations of almost all physical sciences. “It then follows for Poincaré [...] that
we have here — in this very special situation — a conventional choice or free
stipulation” (Friedman, 1995, p. 312). The axioms of geometry belong to a new
epistemic category: they are conventions.

Conventions are “intermediary principles found in scientific disciplines that
lie on the border between pure mathematics (the synthetic a priori) and the natural
sciences (the synthetic a posteriori)” (Folina, 2014, p. 26). These are not forced upon
us by the nature of our minds, nor are they experimental facts. Even though
experience cannot directly refute a convention, it does guide us in choosing the most
useful one among other possible hypotheses. This is exactly the situation in

Euclidean geometry??. Contrary to spherical or hyperbolic geometries, Euclid’s

21 See Science and Hypothesis (2011), Chapter V.

22 Conventions are not limited to geometry. According to Poincaré, they are found in physical sciences
as well, e.g. the principle of least action, the principle of inertia, etc. For the discussion about the
conventions in physical sciences, see Science and Hypothesis, Chapter V1.
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geometry, in other words plane geometry, is the geometry that seems most intuitive
to us, and it is this geometry that we consider as standard. Poincaré thought that this
is because the framework built using Euclid’s axioms is the most convenient one that
describes the movements of the most significant objects around us, including our
own bodies, which are called solid objects. Poincaré defined them as “[the] objects
whose displacements may be corrected by a correlative movement of our body”%
(2011, p. 70). For us, these objects are such that they do not change their shape or
size as they are moving. Euclid’s postulates provide us with the most simple and
convenient framework for describing the movements of objects which are displaced
without being deformed, and since this is characteristic of the most significant
objects around us, it is not a mystery that we have intuitively adopted the Euclidean
framework. However, this movement — a displacement without deformation — is
never perfectly realized. We know that due to changes in pressure or heat, very small
variations which are imperceptible by us occur in the shape and size of these objects.
“But in laying the foundations of geometry we neglect these variations; for besides
being but small they are irregular, and consequently appear to us to be accidental”
(2011, p. 77).

In Poincaré’s philosophy, experience is an integral part of geometry.
According to him, we construct a framework of spatial associations “by studying the
laws by which [sensation of objects] succeed one another” (2011, p. 67). For
Poincaré, these associations are what we call the evidence for geometric truths — the
repugnance we feel towards breaking very old habits (2008, p. 104). “It is just
because this association is useful for the defense of the organism, that it is so old in
the history of the species and that it seems to us indestructible” (1907, p. 71). But
what is associated can be dissociated, though in the case of spatial associations this is
very difficult, because “we have to overcome a multitude of associations of ideas

which are the fruit of a long personal experience and of the still longer experience of

23 Correcting a displacement means to perform the movements that would establish the initial
impressions of the object before its movement. If | see a car moving a meter to the left in front of me,
I can trace its movement with my eye and by walking a meter to the left | can reestablish my
impressions of the car. A detailed explanation of what a displacement is and what it means to correct
itis given in 3.5.1. (B).
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the race” (1907, p. 70). However, since the laws of succession of the sensation of
objects is not something we can discover by reasoning a priori but by experience,
Poincaré¢ maintained that there is nothing preventing us from imagining these objects
to be succeeding one another according to laws which differ from the ones we are
accustomed. According to Poincaré, this is exactly what non-Euclidean geometries
amount to — frameworks that describe objects which are moving according to

unconventional laws.

3.5.1 Conditions for Constituting Geometry

Poincaré cites both a priori and (unlike in the case of arithmetic) empirical
conditions that play a role in the genesis of geometry, and according to him, these
empirical conditions define the subject matter of geometry (Folina, 2014, p. 13).
When | say a priori conditions, | mean that which is given prior to all experience and
which pertains to the constitution of the mind; and when | say empirical conditions, |
mean that which is given in experience and which a mind having the described

constitution encounters.
3.5.1.1 A priori Conditions

First of all, in order to build the framework we call space an organism needs
to have a mind that is capable of conceiving indefinite repetition. As we have said,
Poincaré thought that only then can number be a part of geometry and space may
have a quantitative character. The intuition of pure number is therefore necessary for
constituting geometry. Besides, Poincaré argued that this intuition plays a very
important role in the invention of the mathematical continuum, and the space of the
geometer is actually a three dimensional mathematical continuum. The invention of
the mathematical continuum deserves a detailed investigation on its own; here we
can only deal with it briefly?*, We can summarize Poincaré’s position in the
following way: The rough data of our senses sometimes give us contradictory results.

It may happen, for instance, that our sense of weight cannot distinguish two objects A

24 1t will be explained how a continuum of the first-order — as Poincaré called it — is created. This is
the continuum composed of integers and fractions. But the real continuum of the mathematician is a
continuum of the second-order, which is composed of real numbers. For the creation of a second-
order continuum, see Science and Hypothesis (2011), Chapter II.
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and B, weighing 10 and 11 grams respectively, while it can distinguish A from C,
which is weighing 12 grams, but cannot distinguish B from C. The results of our
experience may then be expressed as “A =B, B =C, A <C, which may be regarded
as the formula of the physical continuum. But here is an intolerable disagreement
with the law of contradiction, and the necessity of banishing this disagreement has
compelled us to invent the mathematical continuum” (2011, p. 28). Even though we
may develop better and more delicate instruments, according to Poincaré we will
never be able to escape from the inherent contradiction of the physical continuum by
following such a method. There will come a time when we encounter again with a
new, indistinguishable term. “We only escape from [this contradiction] by
incessantly intercalating new terms between the terms already distinguished, and this
operation must be pursued indefinitely” (2011, p. 29). Now since we can
immediately become conscious of the possibility of such an operation on the basis of
the intuition of pure number, we can create a mathematical continuum where every
element is completely distinguishable from one another and therefore escape from
the inherent contradiction of the physical continuum when experience gives us
contradictory results.

Another a priori condition for constituting geometry is for the mind to have
the notion of group. A mathematical group is a set with a binary operation that
combines any two elements to create a third in such a way that group axioms are
satisfied (see footnote 19). Poincaré writes, “What mathematicians call a group is the
ensemble of a certain number of operations and of all the combinations which can be
made of them” (Poincaré, 1898, p. 13). For instance, the set of all integers together
with the addition operation forms a group. According to Poincaré, the general notion
of group pre-exists in our minds, at least potentially, as a form of understanding, and
“the object of geometry is the study of a particular ‘group’ [...] only, from among all
possible groups, we must choose one that will be the standard, so to speak, to which
we shall refer natural phenomena” (2011, p. 82). Here ‘natural phenomena’
designates the observable motion of objects. Poincaré argues that we consider the
displacements of the objects around ourselves as forming a group, and the object of

geometry is the group of these displacements.
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Displacements, which we shall soon discuss as an empirical condition for
geometry, are movements performed by objects that can be corrected by a correlative
movement of our body, and the objects that perform such a movement are called
solid objects. For us, these objects move continuously without changing their shape
or size; they do not go through sudden changes, shrink or extend. According to
Poincaré, the possibility of such a motion is admitted implicitly in Euclid’s
postulates, and the properties of the group describing this particular motion are used
in his demonstrations®. But “the possibility of the motion of an invariable figure is
not a self-evident truth” (2011, p. 53). Euclid adhered to the properties of a particular
group intuitively, as we all do, not because it was the ‘pure’ form of his sensibility,
but because it just happens that the objects whose movements we can correct with a
corresponding movement of our body are those that do not change their shape as they
are moving, and the displacements of these objects obey approximately to the
properties of this particular group. This group already exists in our minds potentially,
along with countless other possible groups, yet experience gives us the opportunity to
reach it (2011, p. 82) and to employ it in explaining natural phenomena.

Not all these groups are suitable for describing displacements. Poincaré
believed that those that are suitable are determined by a theorem of Norwegian
mathematician Sophus Lie (1842-1899), which characterizes all manifolds where
free mobility of figures is possible?. Poincaré argued that Lie’s group-theoretic

solution to Helmholtz’s problem of space?’ shows that the number of geometries in

%5 This point is mentioned in almost all of Poincaré’s writings on geometry, but the most detailed
explanation is given in “On the foundations of geometry”. Poincaré (1898) writes, “When I pronounce
the word ‘length’, a word which we frequently do not think necessary to define, | implicitly assume
that the figure formed by two points is not always superposable upon that which is formed by two
other points; for otherwise any two lengths whatever would be equal to each other. Now this is an
important property of our group”. And again, “How do we proceed in our reasonings? By displacing
our figures and causing them to execute certain movements. | wish to show that at a given point in a
straight line a perpendicular can always be erected, and to accomplish this | conceive a movable
straight line turning about the point in question. But | presuppose here that the movement of this
straight line is possible, that it is continuous, and that in so turning it can pass from the position in
which it is lying on the given straight line, to the opposite position in which it is lying on its
prolongation. Here again is a hypothesis touching the properties of the group” (p. 33).

% In modern terms, free mobility amounts to constant Riemannian curvature. For Poincaré’s
interpretation of Lie, see Poincaré (1898, p.37; 2011, p.55).
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which free mobility is possible is limited, and for Poincaré, this amounts to saying
that there are only a limited number of groups suitable for describing the
displacements of objects. In all these geometries (1) space has n dimensions, (2) the
movement of an invariable figure is possible, and (3) p conditions are necessary to
determine the position of this figure in space. “The number of geometries compatible
with these premises will be limited. | may even add that if n is given, a superior limit
can be assigned to p” (2011, p. 55). When n is 3, only three systems of geometry can
be established: flat, hyperbolic, and spherical; in other words, zero curvature,
constant negative curvature, and constant positive curvature. A particular group of
displacements corresponds to each of these geometries, and the choice as to which of
these groups is going to refer to natural phenomena — the observable motion of
objects — remains free. But the choice is not made arbitrarily; here it is experience
that guides us. We have chosen the geometry of zero curvature, i.e. the Euclidean
group, because, first of all, it is simpler?®; and second, the most significant objects
that approximate to what we call an invariable figure are such that they do not
change their shape as they are moving, and this is the group that best describes such
movements. But certain movements that may be described by other groups are not
ruled out a priori. In Science and Hypothesis Poincaré imagines a hypothetical world
whose inhabitants would most likely adopt a non-Euclidean group to refer to the
phenomena of their world.

Suppose, for example, a world enclosed in a large sphere and
subject to the following laws:—The temperature is not uniform; it
is greatest at the center, and gradually decreases as we move
towards the circumference of the sphere, where it is absolute zero.
The law of this temperature is as follows:—If R be the radius of the
sphere, and r the distance of the point considered from the center,
the absolute temperature will be proportional toR? — r2. Further, |
shall suppose that in this world all bodies have the same co-
efficient of dilatation, so that the linear dilatation of any body is
proportional to its absolute temperature. Finally, | shall assume that

27 In Philosophy of geometry from Riemann to Poincaré, Roberto Torretti (1984) formulates
Helmholtz’s problem of space as follows: “Which among the infinitely many geometries whose
mathematical viability has been shown by Riemann's theory of manifolds are compatible with the
general conditions of possibility of physical measurement” (p. 154). See Torretti (1984), Chapter 3.1
for further discussion of Helmholtz’s problem of space and Lie’s solution of it.

28 “It is the simplest in itself, just as a polynomial of the first degree is simpler than a polynomial of
the second degree” (2011, p. 59).
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a body transported from one point to another of different
temperature is instantaneously in thermal equilibrium with its new
environment. There is nothing in these hypotheses either
contradictory or unimaginable. A moving object will become
smaller and smaller as it approaches the circumference of the
sphere?,

To us who are living outside the sphere, the objects moving inside the sphere would
no longer appear as invariable figures, for they would undergo deformations which
we would be unable to correct by a corresponding movement of our body. An object
O inside the sphere moving from point A to point B would shrink or expand, and no
matter where we move around this sphere we will never be able to have the same
impression of O when it was in A. But the creatures who are living inside the sphere
and therefore subject to the same deformation O undergoes can reestablish their
impressions by performing a corresponding movement with their bodies. They would
therefore consider O as an invariable figure, and the movement it performs as a
displacement. The object of their geometry would be the group of these particular
displacements, i.e. “The laws of motion of solids deformed by the differences of
temperature” (2011, p. 76). “Beings educated there would no doubt find it more
convenient to create a geometry different from ours, and better adapted to their
impressions” (p. 82), they would adopt a non-Euclidean group and this will be the
one that they find intuitive. Poincaré treated these groups as models that lie ready in
the mind: “We have within us, in a potential form, a certain number of models of
groups, and experience merely assists us in discovering which of these models
departs least from reality” (1898, p. 13).

The list of a priori conditions for establishing geometry can no doubt be
extended. For example among these conditions we can cite the logical rules of
inference, and perhaps self-awareness, for in order to establish a system of spatial
associations the organism needs to have a certain degree of awareness of its own
movements — these should be performed voluntarily. It also has to be able to recall
these movements as well as the movements of other objects. These and a few other
conditions were mentioned by Poincaré as well, but the two that are discussed above

were the ones that interested him the most.

29 In the following paragraphs, Poincaré supplements this picture with hypotheses concerning the
relationship between the laws of heat and the refraction of light, thereby altering the impressions of
the inhabitants of this world even further. See (2011, pp. 75-79).
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3.5.1.2 Empirical Conditions

Like the list of a priori conditions, the list of empirical conditions is certainly
much longer than what is written here. Only two of these conditions will be
discussed, though these are the ones that were emphasized the most in Poincaré’s
writings.

The first empirical condition that needs to be satisfied for an organism to
establish geometry is for the organism to have mobility. According to Poincaré, a
motionless being could have never acquired the idea of space (2011, p. 69). Space
does not necessarily have to be a pure intuition, and in fact it is not, because there are
other conceivable spaces than the one we find intuitive; rather, we are able to
conceive a certain group of spatial relations simply because we are creatures who can
perform certain movements. Mobility should be granted if an organism is to have an
idea of space, otherwise the organism would have no means of discovering spatial
relations; this is something it cannot do by reasoning alone. If the organism is
motionless, then there is no way for it to correct the movements of objects by
performing a corresponding movement with its own body. It will therefore be unable
to distinguish changes of state from changes of position. Poincaré considered these
as the two main changes that objects may undergo. An object can either change its
state or it can change its position. If an object undergoes a change of position, we say
that the object has been displaced. The possibility of making this distinction lies at
the basis of geometry, and Poincaré argued that it iS impossible for an immobile
creature to make it.

But it is not enough for the creature to be mobile. In order to distinguish
changes of state from changes of position the motion of objects must also meet
certain criteria. Objects should move in such a way that we can correct them with a
correlative movement of our body and restore our initial impressions of the objects;
only then can we say that objects are displaced. This, then, is the second empirical
condition for establishing geometry — the possibility of displacement. So far we have
mentioned this concept several times, especially when explaining the concept of
group, and there we gave its definition: Displacements are movements performed by
objects that can be corrected by a correlative movement of our body. We have also
said that objects capable of performing such a movement are called solid objects.
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That there are such objects is not a self-evident truth, but an experimental fact, and
Poincaré argued that from this experimental fact we are led to distinguish the two
main classes of changes that objects may undergo:

We see at first that our impressions are subject to change; but
among the changes that we ascertain, we are very soon led to make
a distinction. Sometimes we say that the objects, the causes of these
impressions, have changed their state, sometimes that they have
changed their position, that they have only been displaced. (2011,
p. 68)

We are able to make this distinction, because it just happens that there are objects
whose changes are such that we can “restore the primitive aggregate of impressions
by making movements which would confront us with the object in the same relative
situation” (2011, p. 68). We classify the changes that can be corrected by this means
as changes of position, and those that cannot be corrected are called changes of state.
Objects which frequently experience displacements that may be thus corrected are
called solid bodies. If “there were no solid bodies in nature there would be no
geometry” (2011, p. 71), because we would not be able to distinguish changes of
position from changes of state and so could not obtain the idea of space.

A quick digression is necessary. We should notice that in claiming that there
are ‘solid’ bodies in nature Poincaré is not actually affirming a property of the things
in themselves®. Here solid body only refers to a relation being ensured between
objects and ourselves, that a certain compensation is possible. Our classification of
objects as solid does not directly concern what they are as they are in themselves;
what distinguishes these objects is determined in relation to us. And in fact, an object
that is considered solid by an observer and whose movements are recognized as

displacements may not be considered solid by another observer. Remember the

%0 Poincaré agreed with Kant on the idea that nothing concerning the things in themselves can be an
object of knowledge; all that can be known is our specific relationship with objects. “[ The physical
theories] teach us now, as they did then, that there is such and such a relation between this thing and
that thing; only, the something which we then called motion, we now call electric current. But these
are merely names of the images we substituted for the real objects which Nature will hide for ever
from our eyes. The true relations between these real objects are the only reality we can attain” (2011,
p- 179) In fact, there are passages where Poincaré went even further and argued that the true reality is
nothing but these relations; an investigation into the properties of things as they are in themselves
actually has no object. “External objects, for instance, for which the word object was invented, are
really objects and not fleeting and fugitive appearances, because they are not only groups of
sensations, but groups cemented by a constant bond. It is this bond, and this bond alone, which is the
object in itself, and this bond is a relation” (1907, p. 138).
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hypothetical creatures living inside the sphere. The objects these creatures would
consider solid and whose movements they would classify as displacements would not
be considered solid by us, for there is no way for us to “restore the primitive
aggregate of impressions by making movements which would confront us with the
object in the same relative situation”. Thus, in saying an object is solid Poincaré is
not pointing at an objective reality, but only stating that a certain relationship can be
ensured between the observer and the object in question. Let us now return to our
main subject.

Assume that two objects, first 0,and then 0, (let these be a red sphere and a
blue cube), move from point A to point B. For the sake of the argument let us also
assume that we do not yet know geometry, and so cannot relate the changes these
objects are undergoing to points or to space in general. We can only ascertain
that 0,, which was causing the aggregate of impressions a, is now causing the
impressions a'; and 0,, which was causing the aggregate of impressions 3, is now
causing the impressions . Poincaré argues that in terms of sense data there is
nothing in common between a and 8, and so between a’and S’; these are two
completely different groups of sensations. But still, even without knowing geometry
and having an idea of space, it is possible for us to assert that both 0,and 0, merely
changed their position and performed the same displacement. This is possible if, by
the same correlative movement of our body, we can reestablish the initial
impressions a and S. If we can thus correct our impressions then we call both
changes a displacement, and indeed, the same displacement. This possibility is
granted to us by experience. We then consider all these displacements — that
particular class of movements which can be corrected by a correlative movement of
our body — as forming a group, and the true object of geometry is this group.
According to Poincaré, when we represent an object in space, we are actually
thinking about a certain group of displacements; when we say an object is at some
point in space, “it simply means that we represent to ourselves the movements that
must take place to reach that object” (2011, p. 67). So we may argue that what Kant
thought was a pure form of sensibility — that which remains after everything sensible

is abstracted from the representation of an object — was, in fact, a representation of a
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certain group of movements, which are performed frequently by the most significant
objects around us, including our bodies.

According to Poincaré, the group that we have chosen which best describes
displacements pre-exists in our minds potentially along with other groups, but we
have chosen the one that helps us accommaodate our particular field of experience.
The choice cannot be made a priori but it is not arbitrary either; it is nature that
shows us the couch best suited to her stature (1898, p. 43). The displacements of
material objects only approximately obey to the properties of the group we have in
mind. But Poincaré writes that this is enough for us to consider this displacement, by
an artificial convention, as a change resulting from two other component changes:
one that is obeying the properties of the group rigorously; and the other, which is
small, is regarded as a qualitative alteration (1898, p. 11).

We cannot disregard the role experience plays in the genesis of geometry; we
cannot separate space from the distinctive movements of our bodies and of other
objects. The primitive concepts of geometry, such as distance, point, and line are
understood on the basis of these particular movements, to which geometric postulates
are also fundamentally related. This is the empirical part of geometry, for the
possibility of these movements is given to us by experience. Precisely for this reason,
Poincaré stated that geometry is not as pure as arithmetic3L. There is nothing
preventing us from imagining the impressions of objects to be succeeding each other
according to laws which differ from the ones we are accustomed, and in fact, as we
have seen above, Poincaré imagined a world where such impressions would be actual
when the given physical hypotheses are granted. The geometry of the inhabitants of
such a world will be different from ours, and neither our, nor their geometry will be
the true geometry. One geometry can only be more convenient than another. The
principles which these creatures would find intuitive are going to be different from
the ones we find intuitive, and these may even be contradicting with each other, yet
neither group of principles would be imposed by the nature of the minds of those
who follow them; these will be merely convenient hypotheses, or “definitions in
disguise” (2011, p. 59). It is possible for experience to render one of these principles

useless one day (though not by directly contradicting it) and lead its followers to

31 “We must seek mathematical thought where it has remained pure — i.€., in Arithmetic” (2011, p. 6)
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adopt another convention. However, a similar situation cannot happen in arithmetic,
for according to Poincaré, the principles of arithmetic are imposed directly by the

nature of the mind; this is a pure, a priori science.

3.6 Summary

The distinction between arithmetic and geometry in Poincaré’s philosophy of
mathematics is now clear. In order to give a detailed explanation of this distinction
we first presented Poincaré’s criticisms to logicism and formalism that emerged after
Kant. According to Poincaré¢, mathematics is neither a branch of logic, nor merely a
formal game whose rules have no intrinsic meaning; mathematics is a science and it
is based on the intuitions of the human mind. But contrary to what Kant believed,
Poincar¢ held that the intuition underlying mathematics is not the intuition of the
pure forms of our sensibility, in other words, of space and time. The idea that there
are frameworks in our minds which are given prior to all experience but which,
nevertheless, determine the spatial and temporal relations between objects was
unacceptable for Poincaré. He maintained that these frameworks were invented by us
under the guidance of experience. It is true that nature does not impose them upon us,
we impose them upon nature, yet we do this under her guidance and counsel.
Poincaré argued that we do not have a pure intuition of space and time, “the persons
who believe they possess this intuition are dupes of an illusion” (1907, p. 27); there
are no ‘pure’ frameworks in our minds which are completely independent of
experience. The invention of non-Euclidean geometries showed that there are other
conceivable, yet unintuitive spaces, and for Poincaré this was proof that our
framework is not unique. He believed that the reason for choosing this particular
framework among other possible options cannot be given entirely on rational
grounds; experience must be playing a determinant role in making this decision. He
argued that it does this by showing us the most convenient framework among the
possible ones.

According to Poincaré, the pure intuition underlying mathematics pertains not
to sensibility but to the form of our understanding, and this means for him an
intuition of a certain capacity, a power of the mind. This is not a mysterious power,
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but simply the capacity to conceive indefinite repetition. This is the intuition that
gives meaning to the concept of number, and the principle of mathematical induction
is the formulation of this intuition. The truth of synthetic judgments in arithmetic is
shown with the help of this principle, and the truth of the principle itself is known a
priori, because it is simply the affirmation of a property of the mind itself. For
Poincaré, nothing empirical plays a role in the formulation of this principle;
experience is only an opportunity of using it. This is why he considered arithmetic
pure and restricted solely by the mind itself. But in geometry there are other
principles. Geometric proofs are based on certain axioms whose truth is considered
self-evident, but which, according to Poincaré, are not imposed upon us by the nature
of our minds; they are convenient hypotheses. Euclid’s axioms are not self-evident
truths of reason. This point is almost indisputable, for it is possible to replace, for
instance, the fifth postulate with a contrary proposition and still build a new, though
‘unintuitive’ geometry. The choice as to which propositions should be considered as
axioms of geometry remains — to a certain degree — free, yet our choice is guided by
experience. We are confronted with certain objects and their motion (or more
precisely, aggregates of impressions), and experience shows us which of the potential
frameworks in our minds is best suited to describe their motion. The most
remarkable objects around us are solid bodies — objects whose displacements we can
correct with a corresponding movement of our body, and which do not change their
shape or size (at least perceptibly) as they are moving. Euclid’s axioms seem
intuitive to all of us, and for a long time no one has doubted the truth of these
axioms, because the framework built on the basis of these axioms describes the
motion of figures that undergo no deformation as they are being translated, which is
what the solid bodies in our field of experience approximates to. If we accept that
lines can be extended indefinitely, and from a point only one parallel can be drawn to
a given line, then a figure drawn between these lines can be translated without being
deformed, and this figure can also be superimposed with another figure so that their
sizes can be easily compared. But as Poincaré said, the motion of an invariable figure
is not a self-evident truth. This possibility is shown to us by experience, for it has
confronted us with certain objects whose movements approximately agree with the

movement of a perfectly invariable figure. But since the familiar movements of
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objects is something taught by experience, there is nothing preventing us from
imagining different kinds of movements. We can imagine the impressions of objects
to be succeeding each other according to different laws, and for Poincaré this is the
starting point of a non-Euclidean geometry. But he held that something similar
cannot be accomplished for arithmetic, because the principle of mathematical
induction involves nothing empirical; its truth is directly imposed upon us by the
nature of our minds. Trying to reject this principle and build an alternative arithmetic
based on an opposite proposition would be equivalent to trying to cease thinking
mathematically, for what we are trying to reject is the basis of mathematical
reasoning. Poincaré concluded that it is impossible to build a new arithmetic as in the

case of non-Euclidean geometries.
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CHAPTER 4

CANTOR’S TRANSFINITE ORDINAL ARITHMETIC

Is rejecting the principle of mathematical induction the only way to build a
new arithmetic? It seems reasonable that unless we want mathematical thinking to
cease, we should not ignore the pure intuition that gives meaning to the concept of
number. But could not this intuition itself give rise to new principles? Could it be
possible to establish a new arithmetic by developing, not by rejecting this intuition,
and refining the primitive notions of arithmetic? | maintain that this is possible, and
that Georg Cantor’s transfinite ordinal arithmetic provides an adequate example.

In his famous paper Grundlagen einer allgemeinen Mannigfaltigkeitslehre®2
(1976/1883), Georg Cantor introduced to the world an entirely new type of number
called transfinite numbers. These numbers were neither absolutely infinite nor finite;
they designated a ‘many’ which is infinite, but which, at the same time, could be
thought of as ‘one” — as a determinate, completed unit. Transfinite numbers had a
peculiar arithmetic where, for example, the commutative law failed to be generally
valid in the case of addition and multiplication. In order to build the theory of these
numbers German mathematician adhered to a principle whose author was no one but
himself: the second principle of generation®. On the basis of this principle he

defined the first transfinite ordinal number3* o (sometimes called the smallest limit

32 “Foundations of a General Theory of Manifolds”.

33 This principle will be examined in detail in Chapter 4.2. Cantor’s formulation is as follows: “If any
definite succession of defined whole real numbers is given of which there is no greatest, then on the
basis of this second principle of generation a new number is created, which can be thought of as a
limit of those numbers, i.e. can be defined as the next greater number to all of them” (1976, p. 87). For
instance, when the sequence of natural numbers is given, i.e. 1, 2, 3, 4, ..., Cantor asserts that a new
number w is created by which we can count all the elements of the sequence and which, therefore, is
greater than all of them. See 4.2.

3 The two primary types of number Cantor discusses in his theory of manifolds are cardinals and

ordinals. Cardinal numbers are not in the scope of this paper, though for some mathematicians they

are the true subject, and arguably constitute the more interesting part, of set theory. In simplest terms,
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ordinal), and then by using the first and the second principles of generation (see 4.2)
he definedw +1, 0 + 2,..., - 2, w - 3, ..., w?, ..., w®,... etc. Furthermore, unlike
what Poincaré proposed, instead of rejecting the principle of mathematical induction
and replacing it with a contrary proposition, Cantor extended this principle so that it
would be applicable to his new, transfinite numbers. This new principle is called the
principle of transfinite induction. Underlying all of Cantor’s mathematical
innovations was his unusual but groundbreaking conception of infinity. Cantor
brought a new meaning to the concept of infinity, but more importantly, he managed
to make this a subject of mathematical investigation. | contend that the basis of
Cantor’s new principles and novelties is the same as that which grounds the principle
of mathematical induction — it is what Poincaré called the intuition of pure number.
On this view, what justifies the truth of Cantor’s principles is the intuition of a
distinctive capacity of the mind, only that Cantor has improved this capacity and
refined the primitive mathematical notions accordingly, which became the starting
point of a new arithmetic.

Poincaré praised Cantor for the services he rendered to science; nevertheless,
he openly contested Cantor’s new conception of infinity, more precisely, his
acceptance of the actual infinite. The distinction between potential and actual infinity
was first put forward by Aristotle to designate the difference between an
uncontainable, never-ending progression; and a containable, yet infinite progression
(see 4.1.1). In Science and Method, Poincaré (2008) wrote: “There is no actual
infinity. The Cantorians forgot this, and so fell into contradiction” (p. 195). Poincaré
believed that Cantor’s treatment of ‘all’ real numbers as a completed totality was
inherently flawed. The idea of actual infinity has given rise to impredicative
definitions (see 4.3), which in turn resulted in what Poincaré called Cantorian
Antinomies®. But a lot of his criticisms are mainly directed to transfinite cardinal

numbers, not ordinals, and more generally to non-predicative definitions. With

a cardinal number is how many of something there is, whereas an ordinal number is what the order of
something is. If we have a set of five objects, e.g. {a, b, ¢, d, e}, then the cardinal number that
corresponds to this set is 5, for the set has that many elements. But if we are discussing about the
element ‘¢’ in this set, this will have the ordinal number 3, for it is the third element in the set.

3 Burali-Forti’s antinomy, The Zermelo-Kénig antinomy, Richard’s antinomy. See Poincaré (2011),
p.185.
54



regards to transfinite ordinals, Poincaré was content only with stating the Burali-Forti
Paradox and asserting that it was wrong to think ‘all ordinal numbers’ as forming a
set. We will clarify Poincaré’s reasons for rejecting the idea of actual infinity, though
these reasons have not prevented Cantor’s theory from gaining even more popularity
and becoming one of the most interesting fields of today’s mathematics. Today,
students of mathematics in higher education are introduced with these unusual whole
numbers. Students are expected to give up their intuitive idea of infinity, or rather to
see this concept under a new light, which was handed down to us by Cantor. What is
astonishing is that when this is achieved and the theory of transfinites is understood,
it allows us to solve some problems that we can formulate in the old theory but
cannot solve without accepting the new one®. Like the invention of non-Euclidean
geometries, which once demanded interpretation, we now have a ‘non-standard’,
seemingly unintuitive arithmetic that we need to make sense of. The origin and the
justification of the principles of this new arithmetic requires clarification. Surely the
emergence of transfinites and their peculiar arithmetic did not take place exactly in
the same manner as that of non-Euclidean geometries. First of all, unlike in the case
of Euclid’s postulates, Cantor did not replace the principle of mathematical induction
with a contrary proposition, but he rather improved the principle itself. Thus, the
results of transfinite arithmetic are not in contradiction with the results of our
standard, finite arithmetic; the new arithmetic is more of an extension of our previous
system. Furthermore, the possibility of rejecting Euclid’s postulates stems from the
role experience plays in their foundations. We have arrived at the postulates of non-
Euclidean geometries by assuming the empirical conditions underlying Euclidean
geometry to be different, in other words, by assuming the impressions of objects to
be succeeding each other according to laws which differ from the ones we are
accustomed. But a similar method cannot be adopted in arithmetic. If we believe that
arithmetic is a pure, a priori science, and as such, independent of experience, then
we must hold that changes in empirical conditions — either actual or hypothetical —
cannot result in a refinement in the basic concepts and principles of arithmetic. But
such a refinement should nevertheless be possible, for there is no doubt that Cantor

has succeeded in making it. | maintain that this is possible, not by rejecting the

% Defeating the Mathematical Hydra and Goodstein’s Theorem are examples of such problems. These
are discussed in Chapter 4.3.
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intuitive results but by developing intuition itself, and this is in fact what Cantor did.
In spite of the fact that I find Poincaré’s intuitionistic philosophy of mathematics
accurate and Cantor’s realism a bit too overwhelmed with metaphysics®’, unlike
Poincaré | believe Cantor in no way contradicted the previously given definitions, or
the pure intuition on which primitive notions are based; instead, he has naturally
extended them. Poincaré was wrong only in thinking that the intuition of pure
number is limited and that it compels us to work only with finite whole numbers.
Cantor paved the way for the idea of ‘infinite whole numbers’ to gain recognition,
and in order to do this he had to change the commonly held, intuitive understanding
of mathematical infinity. Let us first see how Cantor had managed to do this; later his

theory will be presented in more detail.

4.1 Theory of the Actual Mathematical Infinite

In a paper published in 1899, Poincaré wrote: “Before, one began with a large
number of concepts regarded as primitive, irreducible and intuitive; such were the
concepts of whole number, fraction, continuous magnitude, space, point, line,
surface, etc. Today only one remains, that of whole number” (as cited in McLarty,
1997). Unfortunately, a few years before this was written, Cantor had published his
Grundlagen in which he was presenting a reformulation of the concept of whole
number — the last remaining frontier. The first section begins with the following
lines:

[...] my investigations in the theory of manifolds®® has reached a
point where its continuation becomes dependent upon an extension
of the concept of a real whole number beyond the present
boundaries; in particular, this extension goes in a direction in
which, to my knowledge, no one has so far looked for it. (1976,
p.70)

87 Cantor’s metaphysical and even religious views play a determinant role in his mathematical theory
of the infinite. The arguments to which Cantor appeals in order to explain a detail in his theory are
sometimes metaphysical in nature. For example, according to Cantor (1976), “The true infinite or
absolute, which is in God, admits of no kind of determination” (p. 76). He also believed that a clearly
conceived mathematical entity will always have a counterpart in the external world because of the
principle of “the unity of the all, to which we ourselves belong as well” (p. 79).

% Also used as “set” or “aggregate”.
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Cantor argued that the traditional understanding of ‘whole number’ admits only finite
numbers. He held that this concept should be made more comprehensive so that it
allows infinite numbers as well. According to Cantor, the reason no one had
considered the possibility of an infinite whole number lies in the widely accepted but
rather limited understanding of infinity. He cited many philosophers, such as
Descartes, Locke, and Leibniz, whom he thought had this understanding, while at the
same time tracing the idea back to Aristotle. Cantor claimed that with regards to
mathematics, the majority of philosophers held the following as an incontestable
proposition taken from Aristotle: infinitum actu non datur®® . They believed that
infinity in mathematics is meaningful only when it is used to designate a procedure
that continues without ever terminating — “a variable magnitude, either growing
beyond all limits or diminishing to an arbitrary smallness, always, however
remaining finite”*° (1976, p.70). The obvious example is the generation of natural
numbers by constantly adding 1 to itself, in other words, counting. It is easy to see
that this procedure is never complete; there is no last element and thus it must be
called potentially infinite. Clearly none of the steps of this procedure is the ‘infinite’
step; the procedure is never actually infinite. If we follow this line of reasoning then
we must accept that infinity cannot be thought of as a determinate number, but only
as an indefinitely varying magnitude or a non-terminating, endless progression. In
order to argue for the existence of his transfinite numbers which were actually
infinite, Cantor felt compelled to defeat Aristotle’s arguments. He claimed that the
misconception about the state of affairs concerning the finite and the infinite, which
was rooted in Aristotle’s writings, led philosophers to assume that no modifications

can exist between the absolute infinite and the finite. Cantor proved otherwise:

39 «Actual infinity does not exist”. This was used almost as a motto by scholastic philosophers.

40 In truth, Cantor said that infinity in mathematics has occurred so far under not one but two different
forms. He called the one we have cited the non-genuine infinite, and this was the prevailing
understanding for a long time. Cantor argued that the other one emerged in modern times, in particular
in function theory: “It has become necessary and in fact common practice to imagine in the plane
representing the complex variable a single point at infinity, i.e. an infinitely distant but determinate
point” (1976, p.70). Cantor called this the genuine infinite. In contrast to non-genuine infinite, which
he characterized as “variable finitude”, the genuine infinite was not variable but determinate.
However, Cantor claimed that his transfinite numbers can be captured by neither of these two. For
more on this see Cantor (1976), Section 1.
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What | maintain and believe | have proved in this paper as well as
in my earlier endeavors is that after the finite there is a transfinitum
(which also could be called suprafinitum), i.e. an unlimited
gradation of determinate modes which in their nature are not finite
but infinite, yet which, much as the finite, can be determined by
determinate, well-defined and distinguishable numbers. | am
convinced, therefore, that the domain of definable magnitudes is
not limited to the finite magnitudes; accordingly, the limits of our
cognition may be extended further without it being necessary to do
any kind of violence to our nature. (1976, p.76)

4.1.1 Cantor’s Response to Aristotle’s Rejection of Actual Infinity

In Grundlagen, Cantor discussed two arguments which were given by
Aristotle against the existence of an infinite number. First, in Metaphysics Book XI,
Aristotle argues that a number is that which is arrived at by counting, and (1) only
finite numbers can be counted; therefore, only finite numbers exist. The second
argument is that if an infinite number were to exist, then (2) it would annul the finite
numbers; since finite numbers do exist, then an infinite number does not. We take (1)
and (2) as the two main premises which were used by Aristotle to prove the non-
existence of actual mathematical infinity. Cantor believed that his theory of
transfinites, in which he gave a proper definition of an infinite number and made it
subject to mathematical investigation, is proof that both (1) and (2) are false.

Cantor claimed that (1) is an undemonstrated proposition; in taking this as a
true premise and concluding that only finite numbers exist, Aristotle has committed a
petitio principii. He thought that only finite numbers can be counted, “because only
counting procedures with respect to finite aggregates were known to him” (1976,
p.75). Cantor believed that there are counting procedures with respect to infinite
aggregates as well, and he designed such a procedure on the basis of his second
principle of generation (see 4.2). This principle allowed him to define first the
smallest and then the rest of the transfinite ordinal numbers, which were required to
count infinite aggregates. w is defined by the second principle of generation as the

next greater ordinal number to all finite ordinals*!; this is a number that has no

1 More precisely, w denotes the order type of a set in which there is a first element and after every
element comes a next element in accordance with a certain rule. The obvious example is {0, 1, 2, 3,
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immediate predecessor and is used to count all the elements of the set of natural
numbers. Every ordinal number has an immediate successor; this is something we
hold intuitively and it is explained in Chapter 3.4 how this is rooted in the intuition of
pure number. But in Cantor’s theory we find that not all ordinals have an immediate
predecessor, and w is the smallest number having this property*2. It is impossible to
reach o with a successive addition of units, in other words, by finite counting. For
Cantor, however, this does not make transfinite ordinals less real than finite ordinals,
for on the basis of his new generation principle he has succeeded in defining the
former as determinate and precise as the latter, and extended counting beyond finite
numbers, showing that number formation does not end with finite numbers. But how
was Cantor able to arrive at this principle which was unnoticed by Aristotle?
Everyone who has read Cantor and knows a little about his life should notice the
theological motives behind his mathematical research. Cantor thought that his
ambitious investigation into the concept of the infinite was inseparable from the
study of God, i.e. the absolutely infinite being. In fact, throughout his investigations,
Cantor believed that time to time, God was with him. In his book Georg Cantor: His
Mathematics and Philosophy of the Infinite (1990) J. W. Dauben writes that Cantor
believed the fundamentals of set theory were divinely inspired to him by God (p.
298). | maintain that it is possible to free Cantor’s theory from these theological
connotations and argue that what he has actually accomplished was to develop a pure
intuition that was already present in him. On this view, it is the intuition of a mental
capacity that underlies the second principle of generation. This capacity consists in
conceiving an indefinitely repeating process as a single event and assigning to it a
determinate number when a certain order can be found among its members. In the
language of set theory this means well-ordering of a set that has infinitely many
elements. This point will be elaborated in Chapter 4.2.

With respect to (2), Cantor did not deny that an infinite number annuls a finite

number, but he held that this happens only under certain circumstances, and since

...}, 1.e. the set of all natural numbers. The set of all natural numbers is said have the order type w, or
similarly, w is the ordinal number that corresponds to the set of all natural numbers. See 4.3.

LAX[Xx+1=w],XEN
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Aristotle did not properly define an infinite whole number and gave it a determinate
meaning, his intuitive reasoning cannot be accepted without criticism. In truth,
Aristotle did not use (2) directly in order to show the non-existence of an infinite
number, but rather to show that a body — “that which is bounded by planes” — or
likewise any of the elements that make up a body — fire, water, earth, air — cannot be
infinite. He wrote, “If one of the two bodies falls at all short of the other in potency,
the finite will be destroyed by the infinite”; and similarly, if an element like fire or
water were to be infinite, then “it would be the destruction of the contrary elements”
(Avristotle, trans. 2015, p. 114). Cantor saw this argument as directly applicable to
mathematics, and held that it is concerned not with the magnitude of a body or an
element, but with numbers in general. This is quite understandable, for when we are
first introduced with the idea of mathematical infinity in high school — which is
shown with the symbol ** — most of us are naturally led to think like Aristotle: we
consider this in terms of potential infinity and believe that any finite number that
goes into operation with it would be destroyed. oo is not a determinate number, it is
rather thought of as a non-terminating process. This is why instead of writing x = o,
we write X — co. Any finite number, however big it may be, would be utterly
insignificant when it is standing next to oo, and when such a number is added to or
multiplied by oo, it is unreasonable to think that the result would be something
determinate: the finite number will always be annulled by the infinite. However,
there is an error in this reasoning. oo cannot be used freely in arithmetical operations,
because arithmetical operations for it are not defined. Surely there is an idea behind
this term which we are all familiar with, but this is not enough to conceive it as a
determinate number and make it subject to further mathematical investigation.
Arithmetical operations with oo must therefore be left undefined, as is usually the
case in calculus. On the other hand, contrary to oo, Cantor defined w as a determinate
number and showed its relation to our traditional numbers, it is therefore possible to
write X = w. w belongs to a class of a new type of numbers, namely, limit ordinals,
which are defined by the second principle of generation. When Cantor defined

arithmetical operations for limit ordinals, he saw that if w is added to a finite number,

43 This symbol was first used by English mathematician John Wallis (1616-1703) in 1650s.
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the result is w: the finite number is destroyed by the infinite; but when a finite

number is added to w, the result is a new number. He expressed this as follows:
lto=w

On the other hand,

ot+l+w

w + 1 is a whole new number, which is greater than w, more precisely, its successor.
Therefore, “We can very well adjoin a finite number to an infinite number (if the
latter is thought of as determinate and complete) and unite the finite number with the
infinite number without bringing about the annulment of the former” (1976, p. 75).
This result will be explained in detail in Chapter 4.2.1, at the moment it is sufficient

for appreciating Cantor’s reasons for rejecting Aristotle’s argument.

4.1.2 The Intuition of Pure Number and Potential Infinity

According to the theory suggested in this thesis, the affinity we feel for the
idea of potential infinity is caused by the intuition of pure number. What has led
Aristotle, and is leading us even today, to resist the idea of actual infinity in
mathematics is the particular meaning that the concept of infinity acquires through
the intuition of pure number.

It is quite easy to relate this intuition to the idea of potential infinity. The
intuition of pure number amounts simply to becoming conscious of mind’s ability to
conceive indefinite repetition. When we want to express that a certain quantity is
infinite (i.e. the number of elements in the set of natural numbers), or similarly a
procedure is infinite (i.e. counting), we actually make use of this intuition, for what
we mean is nothing other than that there is no end to what we are measuring; it can
increase, or diminish, indefinitely. “Understanding indefinite iterability is what
enables us to understand the potential infinity of a set like the natural numbers”
(Folina, 1986, p. 35).

Poincaré stated that even though we may think ourselves very far from the
idea of infinity while discussing the foundations of arithmetic, this idea is already
playing a preponderating part, and in fact, what makes mathematics a science is for
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the most part its relationship with infinity (2011, p. 14). A similar view was
expressed by Hilbert (1964) with the famous phrase: “Mathematical analysis is a
symphony of the infinite” (p. 138). | believe that the concept of infinity, like that of
number, is principally understood in terms of the intuition of pure number. This
intuition, taken simply as ordinary counting, gives us the natural numbers and
warrants proofs by mathematical induction. But in doing so, it also attaches a
meaning to the concept of infinity. By means of it, infinity is conceived as an
indefinite progression, or similarly, as an ever growing quantity. This intuitive
conception, however, does not let us treat infinity as a determinate number, for when
we wish to determine it, we feel that we must stop the progression; and when we stop
it, what we get is always a finite number. The progression in its entirety, which is
what we really mean when we use the word infinite, remains as something
indeterminate. Our intuitive ability of ordinary counting leads us into adopting the
idea of potential infinity, and so like Aristotle, we naturally think that infinity is not a
number.

But is the possibility of accepting the proposition “infinity is a number” ruled
out a priori? We have said that in arguing against the synthetic a priori status of
Euclid’s postulates, Poincaré wrote: “Are they synthetic a priori intuitions, as Kant
affirmed? They would then be imposed upon us with such a force that we could not
conceive the contrary propositions, nor could we build upon it a theoretical edifice.
There would be no non-Euclidean geometry” (2011, p. 57). By the same token, if the
proposition “infinity is not a number” was known a priori, then Cantor could not
have conceived the opposite proposition and built upon it a new arithmetic. But he
did, and he was praised by many great mathematicians such as Hilbert and Godel for
doing so. This indicates that the meaning of the concept of infinity is not given a
priori; it acquires a certain meaning through the intuition of pure number, but it is

open for interpretation, because the intuition of pure number itself can be developed.

4.2 Fundamentals of Transfinite Ordinal Arithmetic

Cantor, just like Poincaré, thought that the sequence of natural numbers 1, 2,
3, ... has its origin in the repeated addition of units (Dauben, 1990, p.97). In

62



Grundlagen, Cantor called the process of defining numbers by a successive addition
of units the first principle of generation (1976, p .87). This refers to ordinary
counting and it is the most intuitive and straightforward way of generating new
numbers. However, Cantor believed that number formation does not end here. There
is a second, and even a third principle of generation®*, by which infinite whole
numbers are defined. After showing that Aristotle’s arguments are not strong enough
to banish infinite whole numbers from mathematics, Cantor presented the principles
and the conceptual framework required to establish the theory of these numbers. This
conceptual framework was his theory of manifolds, sometimes called the naive set
theory.

Cantor did not define what a set is in a rigorous way, though it is not clear
whether such a definition can be given at all. He was content with stating that a set is
“a multiplicity that allows itself to be thought of as one™* (1976, p. 93). We know,
however, that there are some multiplicities that cannot be thought of as one, such as
0, i.e. the ‘set’ of all ordinal numbers; or Russell’s famous example, “the set of all
sets that are not members of themselves”. It has been shown that when we try to
think of these multiplicities as one, we fall into contradiction. Cantor’s intuitive
conception did not specify which multiplicities can be thought of as one, and this
presented serious problems. This is why his theory is usually referred to as a naive
set theory.

Although Cantor’s definition of set was problematic, his definition of a well-

ordered set was rigorous and proved itself to be very useful. This concept played an

4 Cantor (1976) called the third principle of generation the principle of limitation, or inhibiting
principle (p. 71). This principle allowed him to “produce natural breaks in the sequence of transfinite
numbers” (Dauben, 1990, p. 98). With the use of the first and second principles of generation it is
possible to create an unlimited sequence of transfinite ordinals. Cantor used the inhibiting principle to
impose limits on the endless formation process and thus obtain distinct number classes. The first
number class is simply the finite ordinals generated by the first principle of generation, and the second
number class is the entire sequence of transfinite ordinals created by the first and second principles of
generation. However, this principle was rather overlooked, because it was closely related with the
continuum hypothesis (see footnote 51) and higher cardinalities. Cantor thought that the second
number class was actually an infinity of ordinal numbers which belong to one and the same cardinal
number, &_ (1915, p. 159), and higher cardinalities were in turn related to ordinals from higher
number classes.

45 Cantor also writes the following in Contributions to the Founding of the Theory of Transfinite
Numbers: “By an ‘aggregate’ (Menge) we are to understand any collection into a whole
(Zusammenfassung zu einen Ganzen) M of definite and separate objects m of our intuition or our
thought” (1915, p. 85).
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essential role in the generation of infinite whole numbers, for the second principle of
generation creates a number that is used to count the elements of a set with infinitely
many elements only when this set can be well-ordered. A well-ordered set is one in
which “the elements are bound together by a specifically pre-assigned law of
succession, according to which there exists both a first element [...] and there
follows after every single element another specific element” (Cantor, 1976, p.72). If
we put aside the problems concerning the definition of set and assume that a whole
composed of elements can be given, we can say that this is a well-ordered set when it
is possible to arrange its elements in a specific order. Let us assume a set S is given
which is composed of four elements, e.g. {4, 1, 3, 2}. We can arrange the elements
of this set as {1, 2, 3, 4}, therefore give it an ascending order. We can also give it a
descending order by arranging the elements as {4, 3, 2, 1}. Even {4, 1, 3, 2}, which
appears to have no specific order, is a well-ordering of S. Here the order is simply the
following: first element is 4, second element is 1, third element is 3, and last element
is 2. Well-ordering of a set with finitely many elements is always possible, because
even if there is not a practical way of arranging the elements we can always order
them, however numerous they may be, by selecting one element at a time, and this
will be our law of succession. The different orderings we have given of S does not
change the order type of S. This is characteristic of finite sets: different orderings of
the elements of a finite set does not change the order type of the set. In the case of S,
the sets of all different orderings of S will be isomorphic to each other; they will all
have a first element and the last element in each set will be the 4™ element. While
discussing transfinite ordinals we are going to see that different orderings of the
elements of an infinite set changes the order type.

Cantor thought that a set with infinitely many elements can also always be
well-ordered, and he considered this as “a law of thought which seems to be basic
and consequential” (1976, p.72). He wrote in Grundlagen that he will return to this
law in a later treatise. However, he did not, and it was seen later that this should not
be taken as a law but as a theorem that requires proof, which is today referred to as

the well-ordering theorem®. There are some sets, like the set of all real numbers or

46 The well-ordering theorem states that every set can be well-ordered. This should not be confused
with the well-ordering principle. The well-ordering principle states that every non-empty set of non-
negative integers contains a least element, and thus has a ‘natural’ order, which makes it a well-
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the set of points in space, in which it seems impossible to determine a first element
and find a rule of succession that will order the rest of the elements. In 1904, Ernst
Zermelo introduced the axiom of choice*’ as an “unobjectionable logical principle” to
prove the well-ordering theorem. This axiom basically states that there is always a
function that selects one element at a time from a nonempty set even if the set has
infinitely many elements, making it a well-ordered set. But since the axiom only
states that such a function is possible and does not specify what this function is, it
was not accepted by all mathematicians, for it was a paradigm of non-constructive
mathematics. This axiom is still the subject of great controversy, and it plays the role
of a catalyst in determining the different attitudes mathematicians have towards the
nature of their art.

If we put aside the problematic sets, there are a lot of sets with infinitely
many elements which are fairly easy to be put in a well-ordered form. The obvious
example is N, the set of all natural numbers. We simply start with 1 and arrange the
rest of the elements in ascending order: {1, 2, 3, 4, ...}. Similarly Z, the set of all
integers can also be well-ordered in the following way: {0, -1, 1, -2, 2, -3, 3, ...}.
Notice that {...,-3,-2,-1,0, 1, 2, 3, ...} is not a well ordering of Z, for there is not a
first element in this arrangement. Cantor proved with an ingenious method that Q,
the set of all rational numbers, can also be well-ordered. This method is called
diagonalization®®. Cantor visualized a table that is supposed to contain all the rational
numbers where the first row is composed of integers, the second row is composed of
fractions with 2 as a denominator, the third row is composed of fractions with 3 as a

denominator, etc. Starting with O which is in the left uppermost corner, Cantor

ordered set. It has been proved that the well-ordering theorem is logically equivalent to the axiom of
choice. In fact, there are numerous other mathematical statements, from both set theory and other
branches of mathematics, which are logically equivalent to the well-ordering theorem, e.g. Zorn’s
lemma. See Moore (2013), pp. 330-334.

47 For every indexed family (S;);e; of nonempty sets there exists an indexed family(x;);c,; of elements
such that x; € S; foreveryi € I.

4 This should not be confused with the diagonalization used in proving the nonlistability of the set of
real numbers. Cantor is the inventor of both proofs and he used diagonals in both of them. However,
the only thing that is common for both is the visual method of diagonalization, what they demonstrate
is completely different. For the diagonal proof of the nonlistability of real numbers, see Stillwell
(2010), pp. 6-10.
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moved on to 1, and then made a diagonal down to Y5, and by following this ‘diagonal

movement’ he has ordered all the elements of the set of rational numbers.

0—>1 1—>2 2—>-3
v 7 v S/

12 2 32 32 52 ...
A4

3" 323 23 43
v 7/

14 -14 3/4 -3/4

pN
N

15 -15 2/5

Figure 1. Well-ordering of Q

The diagonal method gives us the following set: {0, 1, 1/2, 1/3, -1/2, -1, 2, 3/2, ...}.
This is a well-ordering of Q. It should now be clear that many sets other than N, Z,
and Q, such as the set of all even numbers, powers of 2, rationals between 1 and 2,
etc. (mainly the subsets of N, Z, and Q) can also be well-ordered.

When Poincaré described the ‘mathematical spirit’, he wrote that it is this
spirit “which has taught us to give name to things differing only in material, to call it
by the same name” (1907, p. 77). As a mathematician in whom this spirit was highly
matured, this was exactly what Cantor did with regards to sets similar to ones we
mentioned above. He saw that all these sets could be well-ordered and that they had
the same order type: (1) they all had a first element, (2) a rule with which the rest of
the elements are ordered, (3) and no last element. “Cantor believed there was nothing
improper in thinking of a new number o, which expressed the natural, regular order
of the entire set” (Dauben, 1990, p. 97). Cantor conceived a potentially infinite series
as a completed totality, thus as actually infinite, under a new number that expressed
the natural order of the series. He saw this as “an extension, or actually a
continuation, of the sequence of real whole numbers beyond the infinite [...] this
extension will come to be regarded as a thoroughly simple, appropriate, and natural
one” (1976, p. 70). Not only Cantor but also Hilbert regarded it as a natural

extension. He wrote: “When we have counted 1, 2, 3, ... we can regard the objects
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thus enumerated as an infinite set existing all at once in a particular order. If,
following Cantor, we call the type of this order w, then counting continues naturally
with o+1, o+2 ...”. And again, “We arrive at [transfinite numbers] simply by
counting beyond the ordinarily enumerably infinite, i.e. by a natural and uniquely
determined consistent continuation of ordinary finite counting” (1964, p. 140).

Counting past the finite whole numbers requires admitting the second
principle of generation. This principle is not a violation of our intuition but an
extension of it. The second principle of generation suggests that

If any definite succession of defined whole real numbers is given of
which there is no greatest, then on the basis of this second principle
of generation a new number is created, which can be thought of as
a limit of those numbers, i.e. can be defined as the next greater
number to all of them. (1976, p.87)

Cantor tells us that it is possible to conceive the ever growing series of naturals, as
long as they are well-ordered, as a distinct number, and simply go on counting with
transfinite numbers. In Chapter 3, we have discussed Poincaré’s idea suggesting that
we have a mind capable of conceiving indefinite repetition. Now Cantor is showing
us that it can also conceive an indefinite repetition as a single event once it has found
a way of arranging its steps, and can go on repeating this new event indefinitely.
Once this is admitted, it then becomes possible to arrange the elements of an infinite
set in infinitely many new ways, and thereby give it new order types. These new
order types are what the unlimited gradation of transfinite ordinals amount to. For
instance, it becomes possible to arrange the elements of N in the following way: {2,
3,4, ...; 1} This set would seem completely meaningless if the second principle of
generation is not admitted, in other words, if it is rejected that our minds can
conceive some form of actual infinity. We would then be unable to count past
infinity, fall back to Aristotle’s reasoning and be compelled to oppose to the forming
of such a set. But thanks to Cantor, this set now has a definite meaning, because we
now know that the number 1 in this set can said to be in the w®" place. The sets {1, 2,
3,4, ...} and {2, 3, 4, ...; 1} have different order types. The former, as having a first
and no last element, has the order type w. The latter, however, has a last element, and
this element is one that has no immediate predecessor; it is in the w®" place in this

set. The order type of this set is w + 1.
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(1,2,3,4, ..} =

2,3,4, . 51l=w+1

We can also form a set in which the natural numbers are arranged as odd and
even numbers, i.e. {1,3,5,7,...;2,4,6,8, ...}, whose order type will be @ - 2. Even

a set can be formed where the powers of each prime number are arranged in

the order type of this set will be w?.

4.2.1 Formal Notation*®

The conceptual framework required to establish the theory of transfinite
ordinals is set theory. There are, however, two main approaches to set theory,
namely, naive set theory and axiomatic set theory. Naive set theory is primarily due
to Cantor, and it has been discussed briefly in the previous chapter. The main
difference between the two approaches is that naive set theory does not include
axioms or definitions which are given using formal logic, but is rather defined
informally using natural language. Axiomatic set theories, on the other hand, begin
by stating their axioms formally, and build the rest of the theory based upon the
given axioms. The first axiomatization of set theory was given by Zermelo in 1908,
though there are several other axiomatic systems used in set theory, e.g. NBG
(Neumann-Bernays-Gadel set theory), MK (Morse-Kelley set theory), etc. The
axioms of ZFC (Zermelo-Fraenkel set theory with the axiom of choice) will be used
throughout this section.

The building up of set theory is based first upon the Axiom of the Empty Set.

This axiom states that there exists a set with no members:

JA[Vx, x € A]

49 The notation adopted in this section is from James Clark’s (2017) Transfinite Ordinal Arithmetic.
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The empty set is represented symbolically as @. In order to create the rest of the
ordinals we require another axiom, the Axiom of Infinity. We can treat this axiom as
the refined and modernized version of Cantor’s second principle of generation. The
Axiom of Infinity guarantees the existence of an infinite set I. Essentially, ordinals
are specific combinations of members of the infinite set. | is a set that contains the
empty set as a member, and for every x that is a member of I, the set formed by the

union of x with its singleton {x} — a set that only contains x — is also a member of 1.

AP elN(Vxel[xU{x}EI]]

This gives us the following set:

1= {0, {0}, {9, {0}}, {0, {@}, {2.{8}}, {@, {0}, {0.{@}}, {@, {2}, {@, {@}}}. ..}.

Thanks to John von Neumann we have a simple way of relating the natural numbers
with the members of 1. Von Neumann (1976) defined an ordinal as “the set of all
ordinals that precede it” (p. 347) and gave each ordinal a label from non-negative
integers. With this method it becomes possible to relate @ to 0, {@} to 1, {@, {@}} to
2, etc. To denote this labeling Clark (2017) used the delta-equal-to symbol (£).

12 {@}={0}

22{0,{9}}={0,1}

32{0,{0},{0,{0}}={0,1,2}
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This notation is compatible with our intuitive results. Here it is easy to show, for
instance, that the successor of 2 is 3. The successor relationship for ordinals is

defined as follows:

a+tl2au{a}

This means having the union of a with its singleton {a}. Hence,

2+1=2U{2}={0,1}u{2}=4{0,1,2} =3

Every ordinal has an immediate successor, but we have said that in Cantor’s theory
there are ordinals that have no immediate predecessor. The latter are called
transfinite ordinals or limit ordinals. Clark formulates this by saying that every
ordinal a falls into one of two classes, K; or K;;, which designate the non-limit

ordinals and limit ordinals respectively. Symbolically this is represented as,

a=0Vv3IP[B+1=a],Va€E K,

Note that K; and K;; are not sets but classes.This is in order to escape from paradoxes
like that of Russell’s or Burali-Forti’s, though this approach has problems of its own.
These will be discussed in the next chapter.

The existence of the smallest limit ordinal o is guaranteed by the Axiom of
Infinity. w is defined as the set of all finite ordinals as well as their supremum, w £
{0, 1,2, 3, ...}. This limit ordinal also has an immediate successor, which is greater
than it:

w+l=woU{w}={0,1,2,3,...} U{w}=1{0,1,2,3, ..., 0}

We can now demonstrate why the commutative law fails in the addition of transfinite

ordinals. In general, the addition of two ordinals @ + f means that we count a
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number of times and then count 8 number of times afterwards. The most

appropriate way of formalizing this is by using a Cartesian product.

a+f2ax{0}upx{1}*

This formula tells us to count a times and then £ times. Therefore « + 1 means that

we count w times and then 1 more.
wot+l=ox{0}ulx{1}=40,1,23, ...} x {0} u {0} x {1}
This gives us,
={(0,0), (1,0), (2,0), (3,0), ...} U (0,1)
={(0,0), (1,0), (2,0), (3,0), ..., (0,1)}
Notice that this set is isomorphic to {0, 1, 2, 3, ..., w}, where there is a last element
with no immediate predecessor. However, adding 1 to « means that we count to one
and then to w. This gives a set where there are no limit ordinals, it is therefore of a
different order type than the previous set.
l+w=1x{0}Uuwx{1}={0} x{0}u{0,1,23,..}x{1}
= (0,00 U {(0,2), (1,2), (2,2), (3,1), ...}

={(0,0), (0,2), (1,1), (2,1), (3,2), ..}

This set is isomorphic to {0, 1, 2, 3, ...}, hence to w. Now we see why 1 + w # w +

1. Therefore we write,

50 Using a and b or any other symbol instead of 0 and 1 is unimportant. 0 and 1 are selected only for
convenience. If we were to add 3 numbers we would then require 3 symbols: 0, 1, and 2; or a, b, and
C.
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lto=w
lto#+w+l>w
Similar results are achieved in the case of multiplication. Multiplication with

transfinite ordinals, like that of finite whole numbers, is understood in terms of

repetitive addition. The formal definition of ordinal multiplication is the following:

Therefore if we take, for instance, the product of 2 - 3, this means to add 2 three

times.

2:3=2+2+2

If we adopt the previous formalism we get the following:

2+42+2=2x{0}U2x{1}U2x{2}

={(0,0), (1,0, (0,1), (1.1), (0,2), (1.2)}

This set is isomorphicto {0, 1, 2, 3,4,5}=6. Thus 2 - 3=6.

If we take the product of 2 - w, which means to add 2 indefinitely, this will be

represented as,

2+42+2+ .. =2x{0yu2x{1}u2x{2}u ..

={(0,0), (1,0), (0,1), (1,1), (0,2), (1,2), ...}

This set is isomorphic to {0, 1, 2, 3, ...} = w. Thus 2 - v = w. However, if we take the

product of w - 2, which means to add o two times, we get a different result:
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w-2=w+w=0x{0}Uwx{1}

={(0,0), (1,0), (2,0), (3,0), ...} u {(0,1), (1,1), (2,1), (3,2), ...}

={(0,0), (1,0), (2,0), (3,0), ..., (0,1), (1,1), (2,2), (3,1), ...}

This set is isomorphicto {0, 1, 2, 3, ..., , o+, w+2, ...} =w-2. That2-w # w -

2 is now clear. Therefore we write,

2-0Fw-2>w

It is possible to derive further and equally interesting results. For instance, from what
has been demonstrated so far it is possible to show that the product of a transfinite
ordinal with a finite ordinal will always be greater than a finite ordinal added to a
transfinite ordinal. Thus, for instance, w - 2 is greater than all of the following: o +
2,0+ 219 @+ 2100 ¢ + 21000 Similarly, a finite power of a transfinite ordinal
will always be greater than a product of a transfinite ordinal with a finite ordinal. For
instance if we take w?, this is greater than all of the following: o - 2, @ - 21°, -
2100 ¢y . 21000 etc. (see Stillwell (2010) for details).

With respect to the principle of induction, since we now have new numbers,
we need to extend this principle so that it becomes applicable to limit ordinals. We
do this by adding a third step to standard induction, turning it into transfinite
induction. There are two steps in standard induction. First, we verify that the theorem
is true for the base case, y = 0. Then we assume that the theorem is true for an
arbitrary y and show that it is also true for y + 1. In addition to these two steps, in
transfinite induction we assume that y is a limit ordinal, i.e. y € K;;. We assume that
the theorem is true for all the elements of y and show that it is also true for y. As we
have explained in the previous chapter, besides the capacity to conceive indefinite
repitition, we have the capacity to conceive this entire repetition as a single event — a

determinate number — once we find an order in it, and continue with our repetition
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using this new number. We owe the concept of a limit ordinal to the intuition of this
mental capacity. Since every ordinal is either a limit ordinal or a non-limit ordinal, a

theorem holds for all ordinals if it holds for all three steps.

4.3 Objections to Transfinite Arithmetic

There are three possible questions that can be raised against the use of
transfinite numbers. First, is the theory of these numbers coherent, can we be sure
that its results do not lead to a contradiction? Second, is it intuitive? Is it reasonable
to expect for people to understand it with sufficient effort? Third, are these numbers
useful? Do they help us in broadening our mathematical knowledge and present
solutions to previously known problems? Poincaré raised the first two of these
questions; here we are going to address all three of them.

Cantor’s theory stirred many controversies after it was made public. These
were mainly about the transfinite cardinal numbers, the continuum hypothesis®, and
most importantly, the definition of set. Cantor’s definition allowed for sets to be
formed unrestrictedly, that is, a set could be formed of objects that satisfy any given
property. Ironically, it was Cantor who first saw the problem with the unrestricted
formation of sets. When he considered the entire set of ordinals ©Q, he saw that this
was a well-ordered set, so it must have had an order type ¢ greater than all ordinals.
But since ¢ was an ordinal, it must have been contained in Q, which results in 6 < 6.
Cantor concluded that 2 was not actually a set but an inconsistent multiplicity®2. This

contradiction is the main reason that in the previous chapter we treated K; and K;; as

51 The continuum hypothesis states that there is no set whose cardinality is between the cardinality of
the set of real numbers (x,) and the cardinality of the set of integers (%), which means that x, is the

next cardinal number to X . For Godel’s formulation of the hypothesis, see Godel (1964b). In 1963 it
was proved by Paul Cohen, who was complementing Godel’s work of 1940, that the truth of the
continuum hypothesis is independent of — or rather undecidable in — ZFC, thus either the hypothesis or
its negation can be added as an axiom to ZFC.

52 According to Cantor, an inconsistent multiplicity is still a multiplicity, a collection-like object,
though in which it is impossible to “think without contradiction all its elements as being together, and
consequently, of the set itself as a unified thing in itself” (as cited in Jané, 1995). In addition to the
sequence of all ordinals, another clear example of an inconsistent multiplicity is the sequence of all
cardinal numbers, i.e. the set of all alephs. Cantor claimed that neither could be an object of further
mathematical consideration. For a more detailed account of inconsistent multiplicities, see Jané
(1995).
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classes of ordinals and not as sets. Because when they are taken as sets, they become
subject to set-theoretical operations, which means we can take their union K; U K;;
and derive the set of all ordinals Q — a set that is shown to be contradictory. By
claiming that K; and K;; are not sets but classes, we escape from this contradiction.
There is, however, a strong disposition to treat this solution as a mere play of words.
What are these ‘classes’ if not sets? It seems they are playing an integral role in our
theory, yet we cannot make them subject to further mathematical investigation. This
is still an ongoing debate and there is an extensive literature written on it>.

Even though this contradiction was first noticed by Cantor, it has gained
recognition with Russell and his famous paradox. Russell considered “the set of all
sets which are not members of themselves” and showed that the idea was
paradoxical; it exhibitied a similar contradiction with that of Q. Russell concluded
that the problem was with the naive set theory in which the definition of set was not
given rigorously, where it was possible to form for any property a set of objects that
satisfy it. He asserted that not every property defines a set; those definitions that
define a set he called predicative, and those that do not impredicative. An
impredicative definition is one where there is a generalization over the totality to
which the entity being defined belongs. These definitions create a certain kind of
circularity, for they define a totality “whose existence would entail the existence of
certain new elements of the same totality, namely elements definable only in terms of
the whole totality” (Godel, 1964a, p. 217). Russell held that contradictions mainly
occur in set theory when a set is defined impredicatively. In order to amend these
problems he proposed three solutions: the zigzag theory, theory of limitation of size,
and the no-class theory®*.

Poincaré also considered impredicative definitions as a major problem with
Cantor’s theory. He wrote, “It is the belief in the existence of the actual infinite
which has given birth to those non-predicative definitions” (2008, p. 194). Poincaré
saw the problem in the fact that an impredicatively defined set cannot be studied

mathematically, because the classification would then be mutable, “The appearance

53 See Jané (1995) and Welch & Horsten (2016).

54 See Russell (1906). Also see Godel (1964a) for Godel’s evaluation of Russell’s solutions.
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of a new object [would] oblige us to modify the classification” (p. 195). In fact,
Poincaré held that in his diagonal proof>® where Cantor showed that the set of real
numbers have a higher cardinality than the set of natural numbers, he actually used
an impredicative definition and mistook the fact that he failed to establish a one-to-
one correspondence between these sets for an indication that R has a higher
cardinality than N. According to Poincaré, the reason that no one-to-one
correspondence was found between these sets should be ascribed to Cantor’s way of
defining R impredicatively: “To represent points in space by the sentences which
serves to define them [...] is to construct a classification which is not predicative,
one which entails all the inconveniences” (1963, p. 61). Poincaré offered his own
solution: “The important thing is never to introduce entities not completely definable
in a finite number of words” (2008, p. 45). He thus rejected the use of infinite
numbers and remained a finitist, because for him,

[E]very mathematical theorem must be capable of verification [...]
and the verifications apply only to finite numbers, it follows that
every theorem concerning infinite numbers or particularly what are
called infinite sets, or transfinite cardinals, or transfinite ordinals,
etc., can only be a concise manner of stating propositions about
finite numbers. (1963, p. 62)

Although concepts like Q or x, (the cardinal number that corresponds to the set of

real numbers) were problematic, no one has seriously doubted the set of all natural
numbers being well-ordered and having a certain order type, . Poincaré, for
instance, did not devote a chapter to ordinals as he did to cardinals. The second
principle of generation works perfectly when the sequence of natural numbers is
considered. It is not an impredicative definition of w, for even though it generalizes
over all finite ordinals, the principle is intended to define an infinite ordinal: “It [is] a
uniquely determined extension of the concept of ‘number’ to the infinite sets”
(Godel, 1964b, p. 258). This extension is legitimate, but only when it is restricted.
The need for such a restriction definitely needs explanation; it must be answered why
is it that we are unable to use the principle in the case of Q while it is possible to use
it in the case of natural numbers. However, this alone should not be a reason for

rejecting the theory of transfinite numbers completely, which, as we will see shortly,

55 This proof is the one that we have not mentioned; it is different than the diagonal proof that shows
the well-ordering of Q. For details, see Stillwell (2010), pp. 6-10.
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is very useful, even necessary for solving certain problems. In its restricted form, the
theory of transfinite ordinals and their arithmetic remains intact.

But is defining something without contradiction necessarily implies its
existence in mathematics? Should not the thing being defined have an intuitive
aspect to it? Poincaré’s answer is quite complicated. When describing how
Kronecker defined irrationals as a “particular method of division of commensurable
numbers®®” (2011, p. 26), Poincaré wrote: “Mathematicians do not study objects, but
the relations between objects [...] If we did not remember it, we could hardly
understand that Kronecker gives the name of incommensurable number to a simple
symbol” (p. 25). What we should expect from a symbol is therefore to express a
relation and not an object. If we remember that “‘possible’ in the language of
geometers simply means exempt from contradiction” (p. 24), and if we have shown
that our definition is non-contradictory, then we can say that the relation being
defined ‘exists’. But how do we show that it is non-contradictory? For Poincaré, if
the consequences of the definition are finite, we do this directly by giving (or
constructing) a concrete example for which the consequences hold. However, if the
consequences are infinite, then we have to recourse to mathematical induction,
which, as we have explained, is based on a pure intuition. Thus, definitions that are
intended to specify an infinite number of relations are always given in intuition. In
this sense, Kronecker’s definition is not problematic. However, “in Poincaré’s view,
set theory does ‘banish’ intuition, for it contradicts it” (Folina, 1986, p. 118). Thanks
to our ability to iterate indefinitely, we have an intuition of a never ending sequence
— a potential infinity — but not of an actually infinite set. Theorems can only be
verified for finite numbers, even when we are using induction to prove for infinitely
many of them, but never for an infinite number. Transfinite numbers, then, is “a
violation of our prior conception of mathematical objects [...] our glossing over
faculties does not address such ‘objects’” (Folina, 1986, p. 119). Furthermore,
against the set theorists who wanted to make the theory of finite numbers depend
upon transfinites, Poincaré wrote, “This method is evidently contrary to all sane
psychology; it is certainly not in this way that the human mind proceeded in

constructing mathematics” (2008, p. 145). | grant that this is true, but there is nothing

% Poincaré used the term commensurable for rational numbers and incommensurable for irrational
numbers.
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wrong in accepting that the mind is now advancing in a different way. Poincaré
rejected the idea that we have an intuition of an infinite number. He argued that the
intuition in mathematics — the intuition of pure number — gives only finite numbers
and warrants proofs by mathematical induction. I have tried to show how it is
possible to treat transfinite ordinals as being not in contradiction with the intuition of
pure number, but rather as extensions of it. By examining our primitive conception of
infinity, and with the help of the concept of a well-ordered set, it is possible to make
our ‘glossing over’ faculties address infinite sets by their order types. Contrary to
what some platonists believe, the fact that we can address these sets is not because
they exist in a mysterious, set theoretical realm, and we can somehow interact with
them; we rather construct these sets — or in Poincaré’s terms, these relations — with
the help of a pure intuition, now adjusted to allow counting with infinite numbers.
As for the usefulness of transfinite arithmetic, | am going to choose a rather
meaningful example. When he was criticizing the problems of set theory, Poincaré
wrote: “We are sure to see [these problems] resurrected with insignificant alterations,
and some of them have already risen several times from their ashes. Such long ago
was the Lernaean hydra®” with its famous heads which always grew again” (2008, p.
145). Today, there is a proof for slaying a mathematical hydra which is growing
heads a lot more rapidly than the one in the myth, and funny that this proof uses
transfinite ordinals. In 1982, mathematicians Laurie Kirby and Jeff Paris proposed a
new variation of the story of the hydra where the creature is a mathematical beast. In

their version the hydra is shaped like a tree:

5" The Lernaean Hydra is a monster in Greek mythology. The hydra has many heads, and when one of
them is cut off, the creature grows two more heads. Killing the hydra was the second of the twelve
labours of Hercules, and he managed to kill it with the help of his nephew lolaus, who cauterized the
wound every time Hercules cut off a head.
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Figure 2. A mathematical hydra

R is taken as the body of the hydra and all the dots above it — such as U, V, and H —
are its heads. Our mathematical hydra grows heads out of its heads, and we can only
chop off heads from which no heads are growing, for instance in the above case we
can remove H but not V. Like the one in the myth, our hydra also grows new heads
when one of its heads is removed, but it has a special rule for doing this, and this rule
can be chosen arbitrarily as long as new heads are growing out from the head that is
one level below the removed head (for instance the rule can be, “grow a copy of the
decapitated portion of the hydra that remains below the removed head”. In this case,
when H is removed, a copy of all the heads from V to R will grow out of U). The
creature dies when there remains no heads that grow out of R. Now the question is: Is
it possible for Hercules to kill a significantly tall mathematical hydra? Is there a way,
a strategy for chopping off the heads of this creature so that he will eventually reach
R, or is the beast destined to grow to infinity? Kirby and Paris proved that given any
hydra with an initial composition and a rule for growing heads, we can always defeat
it in a finite number of steps no matter the order we chop off the heads. This may
sound counterintuitive. It is easy to see that after only a few decapitations the hydra
will have a lot more heads compared to the original, and apparently with each
decapitation it will continue to grow new heads. But Kirby and Paris showed that
eventually the hydra will be defeated, and this is true regardless of the order of

decapitations. They used transfinite ordinal arithmetic in their proof, and their
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method is based on a special labeling of the complexity of the hydra in terms of limit
ordinals. We will not go into the details of the proof, for a summary see Stillwell
(2010), pp. 51-54. We can see that the theory of transfinite ordinals is not a useless
occupation; it has helped us in solving a problem which is fairly easy to formulate in
the language of ordinary mathematics. Besides, perhaps it might have given Hercules
relief and motivation if he had known the theory of these numbers, then he wouldn’t
need to call his nephew lolaus for help to cauterize the wound each time a head was
removed.

‘Killing the Hydra’ is actually a special case derived from a more general
theorem called the Goodstein’s theorem. This is a theorem about the natural numbers
which was first put forward and proved by Reuben Goodstein in 1944. It states that
every Goodstein sequence converges to zero. A Goodstein sequence is a certain class
of integer sequences that grows very quickly. In order to create one, we take any
positive integer and represent it in hereditary base 2 notation (which means basically
to write it in base 2 where 2 is the largest number). For instance if we take 13, this

will be represented as

13=22*14+22+1

We then replace all 2s with 3s and subtract one to create the next term in the

sequence.

331 +33+1-1=108

We write this new number in hereditary base 3 notation, and then replace all 3s with

4s and subtract one to create the third term in the sequence, etc.

108 = 33*1 + 33

44714+ 44 1 =1279
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The first three terms of our Goodstein sequence are 13, 108, and 1279. The fourth
term will be strictly larger. At first glance, the sequence seems to be growing very
rapidly. However, Goodstein proved that this sequence, and every Goodstein
sequence, eventually terminates. This is a stunning result. The base bumping
operation gives us a much larger number, and it is highly suspicious that subtracting
one from it will ever lead to the termination of the sequence. Nevertheless, this is
indeed the case, and Goodstein proved it using transfinite ordinals. With a special
labeling of the terms of this sequence with transfinite ordinals and exploiting the
rules of their arithmetic, it is possible to show that just like in the case of the hydra,
even though the terms seem to be growing very rapidly, subtracting one at each step
gradually decomposes the entire structure (see Stillwell (2010), pp.47-51). What is
even more astonishing is that Kirby and Paris have proved that Goodstein’s theorem
is unprovable in Peano Arithmetic. This is a fairly simple theorem of number theory
and it is easy even for a student to formulate it, yet it is unprovable in the basic
language in which it is formulated®®. This is because the terms become
unmanageably big in no time when they are handled using only finite arithmetic. The
Goodstein sequence that starts with 3 terminates in five steps. According to Kirby
and Paris, the one that starts with 4, however, terminates in 3 - 2402653211 _ 1
steps. Transfinite ordinals are not only useful but also necessary for showing that
Goodstein’s theorem, a simple theorem found in number theory, is true.

Although the benefits we have cited so far have only been valuable for pure
mathematics, | do not see any serious obstacle to the use of transfinite numbers in the
explanation of some phenomena that will be observed in the future. As in the case of
imaginary numbers, finding an application for a subject of pure mathematics to

observable phenomena sometimes takes centuries.

%8 After Godel’s incompleteness theorem and Gerhard Gentzen’s proof of the unprovability of ;-
induction in Peano arithmetic, Goodstein’s theorem is the third example of a true statement that is
unprovable in Peano arithmetic.
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CHAPTER 5

CONCLUSION

The examination of the theory of transfinite ordinals shows that it is possible
to consider what Cantor achieved in arithmetic to be similar to what Riemann and
Lobachevsky did in geometry, and thus we may argue that Cantor has laid the
foundations of a new arithmetic. It follows that Poincaré was mistaken in rejecting
the possibility of building a new arithmetic. Of course, we cannot treat Cantor as the
Riemann of arithmetic; the building up of transfinite ordinals did not take place
exactly in the same manner as that of non-Euclidean geometries, because there is a
fundamental difference between both in the foundations and in the subject matter of
arithmetic and geometry.

In order to emphasize the difference between the two main branches of
mathematics | have adopted Poincaré’s philosophy, and in most cases | adhered to
his intuitionism, which is built to a significant extent on Kant’s philosophy. As we
have seen in Chapter 3, for Poincaré¢, the difference between arithmetic and geometry
lies in the fact that geometry and experience are inseparably bound; the observable
motion of objects and the distinctive motion of our bodies play a constitutive role in
the establishment of the framework we call space. However, experience has no such
role in the foundations of arithmetic; the concept of ‘number’, and the fundamental
rules that these objects obey, pertain nothing but to the subjective constitution of our
minds, and these are given by a pure intuition, in other words, by a direct awareness
of a mental capacity. Poincaré held that the affinity we feel for the postulates of
Euclidean geometry is caused by the observation of solid objects, and assuming laws
which are different from the ones we are accustomed has given us the postulates of
non-Euclidean geometries. Neither group of postulates is imposed upon us directly
by the nature of our minds; according to Poincaré, they are conventions, and not

synthetic a priori judgments.
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If it is admitted that arithmetic is independent of experience in the sense
Poincaré described, then it is easy to see that something similar to what happened in
geometry cannot take place in arithmetic. However, it is undeniable that today we
have a new and unusual, yet a functioning arithmetic, whose details we have given in
Chapter 4. Once it is admitted that the intuition underlying arithmetic can be
developed, that our mental capacities can be subject to improvement, then it becomes
possible to provide an intuitionistic basis to the theory of transfinite ordinals. On this
view, transfinite ordinals and the principle of transfinite induction are grounded upon
the same intuition that gives us natural numbers and justifies the use of standard
induction — the intuition of the mind’s capacity to conceive indefinite repetition.
Cantor has shown that our minds, which are capable of conceiving indefinite
repetition, can also conceive such a repetition as a definite number once it has found
an order among its steps. By carefully examining the common Aristotelian
conception of infinity, and by supplementing this with his concept of ‘well-ordering’,
Cantor showed that a mental capacity that already exists in all of us can be improved.
He was able to establish a new type of number and the theory of its unordinary
arithmetic, which is surprisingly useful, and appears quite meaningful to the
mathematicians who are willing to follow his steps.

What is presented in this thesis can be considered as a defense of a slightly
different version of Poincaré’s intuitionism. According to this view, empirical
observation plays no role in the foundations of mathematics; this science is based
upon the intuitions of the human being. Contrary to what some philosophers
believed, mathematical intuition is not a mysterious faculty (Ayer, 1964); it is
basically mind’s becoming conscious of its own constitution and capabilities. In the
case of Poincaré, this amounts to the capacity of conceiving indefinite repetition —a
quite ordinary and natural ability. What is suggested in this thesis is that this capacity
can be developed, and this is the starting point of a new arithmetic. We have realized
that geometric concepts were necessarily understood under the guidance of
experience, and that the evidence for geometric postulates lies partly in observation.
By imagining different laws for the motion of objects, in other words, by adopting
new conventions, we were able to derive non-Euclidean geometries. Since

experience plays no role in the foundations of arithmetic, we cannot expect for a new
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observation, or a modification in the ordinary empirical conditions, to result in a
change in the meaning of the basic concepts or principles of arithmetic. Here the
thesis departs from the general Poincaréan picture and speculates that the possibility
of such a change lies in the development of intuition. It suggests that Cantor had
managed to do this, and thus he was able to establish the theory of transfinite ordinal
arithmetic.

In this picture, intuition in mathematics is not — as platonists such as Godel
like to think — something like a perception of physical objects. Mathematical objects
such as transfinite numbers do not exist in a mind-independent mathematical realm,
and our intuition is not a way of interacting with these mysterious objects; rather, our
mind constructs these objects. In fact, these are not ‘objects’ in the ordinary sense
but rather relations, which the mind is able to conceive within the limits of its
capacities. The rules of transfinite ordinal arithmetic are not some arbitrary rules for
manipulating meaningless symbols. The justification for these rules comes from the
intuition of a mental capacity, just as in the case of natural numbers and finite
arithmetic. It is therefore possible to make sense of transfinite ordinal arithmetic as
an intuitionist, without committing to either platonism or nominalism regarding the

existence of mathematical objects.
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APPENDICES

A. TURKISH SUMMARY/ TURKCE OZET

Bu tez Poincaré’nin matematik felsefesini konu almaktadir. Matematigin
temellerine, 6zellikle de uzaya ve geometrinin dogasina dair bir¢ok problemde
Poincaré nin sezgiciligi ve uzlasimcilig1 savunulmakta, fakat Oklid-dis1 geometrilere
benzer yeni bir aritmetik kurulamayacagi savi elestirilmektedir. Poincaré’ nin yeni bir
aritmetigi reddedisinin ardindaki temel sebep, aritmetigin tiimiiyle deneyimden
bagimsiz olduguna, geometrinin ise deneyim ile ayrilmaz bir bigimde bagli olduguna
inanmasidir. Oklid postulatlarini reddedip karsit dSnermeler temelinde yeni
geometrilerin insa edilmesine imkan tantyan, deneyimin geometrinin temellerindeki
roliidiir. Buna karsin Poincaré’ye gore aritmetikte deneyimin higbir rolii yoktur.
Aritmetik ilkelerin — ki ona gore bunlarin en 6ne ¢gikan1 matematiksel tiimevarim
ilkesidir — dogrulugu bize bizzat zihnimiz tarafindan dayatilir. Bunlar deneyim ile
degil saf bir sezgi araciligiyla bilinir ve belli basl zihinsel kabiliyetlere indirgenir.
Dolayistyla aritmetikte Oklid postulatlarinda oldugu gibi reddedilip yerine karsiti
konulabilecek bir ilke yoktur. Bu tezde, zihinsel kabiliyetlerimizin ve onlara dair
sahip oldugumuz sezginin gelisebilecegi savi one siiriilmekte, bunun da yeni bir
aritmetigin baslangi¢ noktasi olabilecegi iddia edilmektedir. Poincaré’ye eklenen tek
sey, aritmetikte faydalandigimiz sezginin gelisebilecegi varsayimidir. Cantor’un
temellerini attig1, alisilmadik yent tiir sayilarin ve ilkelerin bulundugu sonluétesi
ordinal aritmetik teorisi yeni bir aritmetige 6rnek olarak alinmis ve bu teoriyi
kurarken Cantor’un esasinda hepimizde oldugu gibi kendisinde de var olan zihinsel
bir kabiliyeti gelistirdigi one siiriilmiistiir. Bdylece birebir ayn1 olmasa da Oklid-dis
geometrilere benzer yeni bir aritmetigin sezgici bir temelde nasil izah edilebilecegi
gosterilmistir.

Bu sonuca varmak i¢in en basta Kant’in matematik felsefesi 6zetlenmektedir, zira

Poincaré tam bir Kant¢1 olmasa da goriisiinii biiylik 6l¢iide Kant’1n tanittig
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kavramlar tizerine kurmustur, ki bunlarin baslicalar1 ‘sentetik a priori’ ve ‘saf
sezgi’dir. Kant matematigin, doganin hakiki isleyisinde degil, esasinda kendi
zihinlerimizin yapisinda temellendigini 6ne slirmiistiir. Bu bakimdan matematik tam
anlamiyla nesnel degildir, cilinkii nihayetinde fiziksel nesneler hakkinda degil, bu
nesneleri duyumsayan ve onlar hakkinda diisiinen zihin hakkindadir. Buna karsin
yine de matematiksel bilgi zorunlu ve evrenseldir, ¢linkii zihinlerimizin hepimizce
paylasilan yapisi ile ilgilidir; matematige ancak bu bakimdan nesnel denebilir.

2. Boliimde anlatildigi gibi Kant’a gore bilissel aktiviteyi miimkiin kilan iki
melekemiz vardir; bunlar duyarlilik ve anlama yetisidir. Duyarlilik, nesneleri
sezmemize yarayan melekedir. Esasinda bu biligsel bir aktivitedir ve nesneler ile
dogrudan iliski kurmamiza yarar; fakat Kant’a gore sezgi kavramsallagmamustir ve
dolayisiyla tek basina bilgi tiretmek, yargida bulunmak icin yeterli degildir.
Duyarlilik tarafindan bize verilenlerin siniflandirilmasi, organize edilmesi gerekir ve
bu yolla kavramlar olusturulur. Bunu gergeklestiren ise anlama yetisidir. Anlama
yetisinin kendine has bir yapisi, onda halihazirda bulunan birtakim saf kavramlari
vardir; bunlar kategorilerdir. Kategoriler bir bakima duyarliligin verdiklerini
kavramsallastirmanin kurallaridir. Kavramlar yargilarimizin nihai 6geleridir ve bilis
ancak yargilar araciligiyla gerceklesir. Bilgi liretmek i¢in bu iki melekenin birlikte
uyum i¢inde ¢aligmasi gerekir.

Kant duyarliligimizin da belli bir bi¢ime, bir yapiya sahip oldugunu 6ne
stirmiistiir. Bu yap1 deneyimden bagimsizdir; dahasi, deneyimden 6nce verili boyle
bir yap1 anladigimiz tiirden deneyimin de kosuludur. Nesnelerin tecriibe edilebilmesi
i¢in bu yapiya uymalar1 gerekir. Kant i¢in uzay ve zaman iste bu tiir yapilardir;
Poincaré’nin deyimiyle onlar zihinsel ¢ergevelerdir. Kant’a gore hi¢bir nesneyi
sezmesek, cevremizden tamamiyla soyutlanmis olsak bile, duyarliligimizin yapisini,
yani deneyimden once zihnimizde halihazirda bulunan bu ¢ergeveyi sezmek
miimkiindiir. Uzay ve zaman saf sezgiler, veya kimilerinin deyisiyle saf goriilerdir.
Tiim nesneler bir uzayda ve zamanda tecriibe edilir; uzayda ve zamanda olmayan bir
nesne olanakli degildir. Kant’a gore bundan ¢ikarilacak sonug, uzay ve zamanin
nesnelere degil, zihnimize, daha dogrusu duyarliligimizin yapisina atfedilmesi

gerektigidir.
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Duyarliligimizin yapilar olarak uzay ve zaman Kant i¢in matematiksel
onermelere de gereken temeli saglar. Matematiksel bir 6nermenin dogrulugunu
arastirirken fiziksel nesnelerle ilgilenmeyiz, ¢iinkii Kant’a gore bu nesneler
matematiksel dnermelerde bulunan zorunlulugun ve evrenselligin kaynagi olamazlar.
Boyle bir zorunulugu ve evrenselligi ancak deneyimden bagimsiz, ondan 6nce
verilen, yani a priori bir zeminde bulabiliriz. Iste uzay ve zaman Kant i¢in bu zemini
saglar. Aritmetik bir onermenin — Kant’in 6rnegini alirsak 7 + 5 = 12°nin —
dogrulugunu arastirirken zaman sezgisinden faydalaniriz. En basta boyle bir 6nerme
Kant’a gore analitik degil sentetik bir yargidir, yani verilenlerin baska bir bigimde
ifade edilisi degil, onlarla yapilan bir sentez, bilgimize katilan yeni bir seydir.
Mantiksal 6nermelerin tlimii analitik yargilardir ve bu yargilarin dogrulugu
nihayetinde ¢elismezlik ilkesine indirgenir, bir baska deyisle onlar totolojilerdir.
Matematik ise mantik degildir; matematikte sentetik yargilar da bulunur. Iste bu tiir
yargilarin zemini alisilmigin aksine tecriibe ettigimiz nesneler degil, bizzat kendi
duyarliligimizin yapisi, bu yapiya dair sahip oldugumuz saf sezgidir. Kant’a gore 12,
7 + 5’ten analitik olarak ¢ikan bir sonug degildir. 7 + 5’1 diisiindiiglimiizde sonucun
12 oldugunu dogrudan sdyleyemeyiz; bu toplama islemini yapmamiz, yani saymamiz
gerekir ki bu da Kant i¢in bir sentezi isaret eder. Bu sentezi yapmamizi saglayan
zaman sezgimizdir. Toplama islemi, daha da temelde say1 kavrami, yineleme
fikrinden tiirer. Kant’a gdre bir say1 soyut birimlerin art arda eklenmesidir ve bu ‘art
arda eklenme’ fikrinin kaynag tecriibe edilen nesneler degil, duyarliligimizin bir
yapisi olarak zamandir. Ozetle 7 + 5 = 12 6nermesi sentetik bir dnermedir ve zaman
sezgisi araciligiyla a priori bilinir.

Geometrik dnermeler i¢in de benzer bir durum s6z konusudur. ‘iki noktadan
yalniz bir dogru geger’ 6nermesi de Kant i¢in sentetik bir yargidir ve deneyime
dayanmadan, a priori bilinir. Bu yarginin dogrulugunu bize gdsteren gdzlemlenen
nesneler degil, bu nesnelerin uymak zorunda oldugu zihinsel yap1, yani uzaydir.
Noktalar, dogrular ve sekiller bizce tasarlanir; Kant’a gore bu kavramlara karsilik
gelen sezgiler duyarliligimizin yapisi tarafindan saglanir, bu sebeple de a priori
bilinirler. Kant uzayda iki nokta tasarladigimizda aralarindan bir dogru
gecebilecegini dogrudan gordiigiimiizii sdyler. Bu dogruyu bir noktanin etrafinda

dondiirebilecegimizin; belli kurallara uyarak ¢emberler, licgenler insa
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edebilecegimizin bilgisini bize veren duyumsanan nesneler degil, duyarliligin
yapisidir. Bu bakimdan geometrik dnermeler ve en basta da Oklid postulatlar: Kant
icin sentetik a priori yargilardir. Salt mantik bu 6nermeleri dogrulamaktan aciz,
deneyim de onlardaki kesinligi vermek i¢in yetersizdir; bu 6nermelerin dogrulugunu
bize gosteren, ayni1 zamanda deneyimin de kosulu olan, duyarliligimizin yapisidir.

Bolyai, Lobachevsky ve Riemann gibi 19. yiizy1l matematikgileri Oklid
postulatlarinin bazilarini karsitlariyla degistirerek yeni geometriler kurmay1
basarmus, bdylece Oklid uzayinin olanakli tek uzay olmadigimi gostermistir. Bu
sonu¢ Kant’in Oklid postulatlarinin a priori sentetik yargilar oldugu fikrini oldukca
stipheli bir hale getirmistir ve diistiniirleri geometrik postulatlarin mahiyetini bir kez
daha sorgulamaya itmistir. Oklid-dis1 geometrilere hayli asina olan Poincaré de Oklid
postlatlariin a priori bilindigi fikrini reddetmistir. Eger duyarliligimizin gergekten
de Kant’1n inandig1 gibi bize Oklid uzaym dayatan a priori bir yapisi varsa nasil
olmus da Riemann gibi matematikgiler bu dayatmadan siyrilmis ve Oklid
postulatlarinin karsitlariyla degistirildigi uzaylar diisiinebilmistir? Poincaré i¢in bu,
deneyimin geometride bir rolii oldugunun gdstergesidir. Olanakli uzaylar arasindan
Oklid uzaymin segilmesi a priori bir se¢im degildir; bu spesifik uzay: tanimlayan
onermeleri dogru kabul edisimizde deneyimin bir rolii olmalidir.

Buna ragmen Poincaré matematikte sentetik a priori yargilar bulunuyor
oldugu fikrini timden diglamamuistir; yalnizca bunlarin geometride degil,
matematiksel diisiincenin en saf kaldig1 alanda, aritmetikte oldugunu sdylemistir.
Tipk1 Kant gibi Poincaré de matematikte mantiktan 6te bir sey oldugu fikrindedir;
ona gore mantigin aksine matematik bir bilimdir ve yaratici bir giice sahiptir, yani
yalniz analitik yargilar barindiran dev bir totolojiye indirgenemez. Fakat burada da
Kant ile bir anlagmazlik vardir. Poincaré’ye gore 7 + 5 = 12 gibi 6nermeler analitik
yargilardir; hakiki sentetik a priori yargilar ise timevarimin kullanildigi, sonsuz
durum i¢in gegerli olan genel teoremlerdir. Bu teoremlere bir 6rnek 3.4 numarali
boliimde verilmis ve ispatinin nasil yalniz ¢elismezlik ilkesine dayanarak
verilemeyecegi gosterilmistir. Poincaré’ye gore 7 + 5 = 12 dnermesinin analitik bir
yargi olmasinin sebebi dnermenin dogrulugunun verilen bir kuralin (bu durumda x +
1) sonlu kez uygulanmasi sonucu bulunabilmesidir. Toplama bir kez tanimlandiginda

yalnizca ¢elismezlik ilkesine dayanarak yapacagimiz sonlu tane kiyas sonucu 7 +
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5’in 12 ettigini dogrulayabiliriz; birbirine eklenen parmaklari veya taslari
diisiinmeden, isin i¢ine sezgi katmadan bu ifadenin dogrulugunu gésterebiliriz.
Poincaré’ye gore 7 + 5 = 12 gibi tekil onermeler ispatlanmaz, bunlar dogrulanir ve
bir dogrulama da Poincaré i¢in analitik bir istir; sonucta verilenlerden Gte bir sey
bulunmaz.

‘Biitiin dogal sayilar ya tek ya ¢ifttir’ gibi bir nermeyi aldigimizda ise bunun
7 + 5 =12 durumunda oldugu gibi dogrulanamayacagini goriiriiz; bu dnermenin
ispatlanmasi gerekir. Verili bir say1 i¢in, hatta verilecek tiim sayilar i¢in 6nerme
dogrulanabilir; fakat bu dogrulamalardan higbiri tiim dogal sayilar hakkinda bir yargi
belirten bu 6nermenin ispati olarak alinamaz. Eger matematik yalnizca
dogrulamalardan ibaret olsaydi mantiktan bir farki kalmaz ve bir bilim olmazdi, bu
tiir 5nermelerin dogrulugu da bizim i¢in erisilemez olurdu, zira bunlar1 ancak sonsuz
dogrulama yaparak gdsterebiliriz. Iste Poincaré icin matematikte sezginin rol
oynadig1, bir sentezin s6z konusu oldugu yerler bu teoremlerin ispatlaridir. Bu
teoremlerin ispati i¢in ¢elismezlik ilkesinden bagka bir ilkeye ihtiya¢ duyariz, bu da
matematiksel tlimevarim ilkesidir. Bu ilke bize bir teoremin herhangi bir n dogal
sayist i¢in dogruyken n + 1 i¢in de dogru oldugu gosterilirse teoremin tiim dogal
sayilar icin dogru oldugunu sdyler. Iste bu ilke Poincaré icin mantigin alaninin
disindadir; o salt matematiksel bir ilke, hatta matematiksel akil yiirlitmenin temelidir.
Poincaré bu noktada Kant¢1 davranmis ve bu ilkenin deneyimden &grenilmedigini,
tersine onun deneyime dayatildigini ve deneyimi miimkiin kildigini sdylemistir.
Matematiksel tiimevarim ilkesi hakiki bir a priori sentetik yargi 6rnegidir. Fakat
Poincaré bunu duyarliligimizin yapilariyla veya zaman ile iligskilendirmemistir. Ona
gore ne uzaya ne de zamana iliskin saf bir sezgimiz vardir. Dogru, bunlar birtakim
zihinsel gercevelerdir ve duyarliligimizin yapilari oldugu kabul edilebilir; fakat onlar
deneyimden tiimiiyle bagimsiz degildir. Poincaré icin deneyimden tiimiiyle bagimsiz
olan, ancak yine de bize nesneler arasindaki uzamsal ve zamansal iligkilerin nasil
olmasi gerektigini sdyleyen zihinsel bir yapinin varlig1 kabul edilebilir bir fikir
degildir. Bu yapilar veya gergeveler a priori verilmez, Poincaré’ye gore onlar
deneyimin rehberliginde icat edilir. Bu bakimdan nesneleri i¢ine oturttugumuz uzay

ve zaman denen ¢erceveler sentetik yargilar i¢in a priori bir temel olamazlar.
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Matematiksel timevarim duyarliligimizin degil, anlama yetimizin yapisinda
temellenmistir ve bizim bu yapiya dair dogrudan bir sezgimiz vardir. Poincaré i¢in
anlama yetisinin bu yapisi basit¢e bir olayin sonsuz defa yinelenmesini kavrama
giiciidiir. Bizim zihnimiz dyledir ki bir kere gergeklesen bir olay1 sonsuz kez tekrar
ettirmeye muktedirdir. Iste sayma kabiliyetimizin de temeli budur. Poincaré igin bu
saf bir sezgidir, fakat kendisi bunu zamanla iligkilendirmemistir. Poincaré¢ burada
Kant’tan ayrilmis ve aritmetigi hem duyulur nesnelerden, hem de duyarliligimizin
yapilarindan ayirmistir. Matematiksel tiimevarim ilkesi anlama yetimizle iliskilidir
ve bu belli bir zihinsel kapasiteye isaret etmektedir. Bu ilkenin dogrulugu zihnimize
bizzat kendi yapis1 tarafindan dayatilir. Matematik¢inin gergekten ilgisini ¢eken
teoremlere matematiksel tiimevarim ilkesiyle varilir ve bunlar sentetik a priori
yargilardir.

Geometrik postulatlar ise matematiksel timevarim ilkesi ile ayn1 mahiyeti
tasimaz. Poincaré’ye gore Oklid postulatlarinin reddedilebilmesi Oklid uzaymin
zihnimize dayatilan bir ¢er¢eve olmadiginin gostergesidir. Nesneleri igine
yerlestirecegimiz uzamsal bir ¢erceve igin birden fazla olasilik vardir; tipki Oklid
uzay1 gibi hiperbolik ve kiiresel uzaylar da diisiintilebilir. Bizim bu uzaylar arasindan
Oklid uzaym se¢gmemizin ardinda yatan sebep ise bu gergevenin ¢evremizdeki en
dikkate deger nesnelerin hareketlerini en uygun ve kolay sekilde tarif etmemize
yarayan ¢erceve olmasidir. Cevremizdeki en dikkate deger nesneler kati cisimlerdir.
Bu cisimler hareket ederken sekil degistirmeyen ve izlenimlerini viicudumuzun
karsilikl1 bir hareketiyle diizeltebildigimiz cisimlerdir. Kati cisimlerin hareketi Oklid
uzayinda kolayca tarif edilir. Diger postulatlarla beraber iki noktadan yalnizca bir
dogru gectigi ve verili bir dogruya ancak bir paralel ¢izilebildigi kabul edilirse, bu
uzayda insa edilecek sekiller bi¢cim degistirmeden, uzayip kisalmadan bir yerden bir
yere taginabilir. Poincaré’ye gore diger geometrilerin degil de Oklid geometrisinin
standart kabul edilmesinin nedeni kati cisimlerin hareketinin gézlenmesine
dayanmaktadir. Fakat kat1 cisimlerin hareketi — yani sekil degistirmenin eslik
etmedigi bir hareket — a priori vardigimiz bir sonug degildir, Poincaré igin bu
deneysel bir olgudur. Tam da bu sebeple deneyimin bize verdigi kurallarin aksini
diistinerek, yani cisimlerin alisilmadik kurallara gore hareket ettigini varsayarak, yeni

geometriler insa etmek miimkiin olmustur. Ornegin Riemann postulatinda oldugu
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gibi iki noktadan birden fazla, hatta kimi zaman sonsuz dogru gegtiginin
varsayilmasi, Poincar¢ i¢in cisimlerin aligildik hareketlerinin degisiklige ugradiginin
diistiniilmesidir; bu postulatlarin tarif ettigi uzaylarda artik bir cisim sekil
degistirmeden yer degistiremeyecektir. Nihayetinde Poincaré’ye gore uzay yalnizca
bir hareketler grubudur; uzayda bir nokta tasarlarsak bu yalnizca o noktaya varmak
i¢cin yapmamiz gereken hareketleri tasarliyoruz anlamina gelir. Uzay1 viicudumuzun
ve gozlemledigimiz cisimlerin aligildik hareketlerinden koparmak miimkiin degildir;
fakat bu hareketlerin imkani bize deneyim tarafindan verildiginden, farkl: tiir
hareketler ve bu hareketleri tarif eden uzaylar1 diistinmenin 6niinde bir engel de
yoktur. Oklid postulatlar1 bu yeni uzaylari tarif edecek postulatlardan daha dogru
degil, yalnizca daha kullanislidir. Bu postulatlar Poincaré i¢in nihayetinde birtakim
uzlagimlara, kilik degistirmis tanimlara indirgenir.

3. Bolim aritmetik ve geometrinin temelleri arasindaki bu farkin agikca
belirtilmesiyle kapanmaktadir. Ozetle aritmetik, geometriden farkli olarak
deneyimden tiimiiyle bagimsizdir. Oklid postulatlarmin nihayetinde deneysel bir yani
oldugundan bunlari karsitlaryla degistirmek miimkiin olmustur; fakat matematiksel
timevarim ilkesinin deneysel higbir yan1 yoktur. Poincaré i¢in bu ilkenin dogrulugu
bize zihnimiz tarafindan dayatilir, ¢iinkii aslinda bu ilke zihinsel bir kabiliyetin
dogrudan sezilmesidir — sonsuz yineleme kabiliyeti. Poincaré Oklid postulatlarinda
oldugu gibi bu ilkeyi reddedip yeni bir aritmetik kurmaya calisilirsa bunun
basarilamayacagini soylemistir; bunu yapmak bizzat matematiksel diisiinmeyi yok
saymak anlamina gelecektir.

4. Boliim Cantor’un sonludtesi ordinal aritmetik teorisine adanmustir.
Cantor’un teorisi yeni bir aritmetik olarak alinmakta ve bunun hangi yonlerden
Oklid-dis1 geometrilere benzedigi sorusturulmaktadir. Sonludtesi aritmetigi yeni bir
aritmetik olarak gérmek yanlis olmaz, zira bu teoride tamamiyle yeni tiir sayilar ve
bunlarin tabi oldugu, ilk bakista yabanci gelen birtakim kurallar bulunur. Cantor
tiimevarim ilkesini reddetmemistir, fakat bu ilkeyi gelistirmis ve ondan sonluétesi
tiimevarim ilkesini ¢ikarmistir. Aymi sekilde alisilmis say1 kavraminin da anlamini
genisletmis ve sonsuz sayilart matematigin bir konusu haline getirmistir. Cantor
sonsuz biiyiikliiklerin nasil birer say1 olarak diisiiniilebilecegini gostermis ve bunlarin

aliskin oldugumuz dogal sayilar ile iligkisini ortaya koymustur. Sonludtesi aritmetik
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bu yeni tlir sayilarin aritmetigidir ve sonludtesi tiimevarim ilkesi bu teorideki
birtakim ispatlar1 yapmak i¢in kullanilir. Bu aritmetikte toplamanin ve ¢arpmanin
degisme 6zelligi yoktur, iistelik sonludtesi sayilarin biiyiikliik ve kiiciikliik iligkileri
de alistigimizdan farklidir; 6rnegin sonluétesi ordinal bir say1yi iki ile carpmak, ne
kadar biiyiik olursa olsun sonlu bir say1y1 bu sayiya eklemekten her zaman daha
biiyiik bir say1 verecektir (w - 2 > @ + 21999). Bu teori ve dzellikle de sonludtesi
sayilar bize ne kadar yabanci gelse de, bugiin matematigin en heyecan verici ve
yeniliklere gebe alanlarindan biridir. Dahasi, birtakim problemlerin ¢éziimiinde bu
sayilarin yalnizca faydali degil, ayn1 zamanda gerekli de oldugu gosterilmistir ve bu
mesele 4.3 numarali bolimde detaylica anlatilmaktadir.

Cantor sayarak ulagilamayacak bir sayinin varligini kabul etmistir. Bir baska
deyisle bu Oyle bir sayidir ki kendisinden hemen 6nce gelen bir say1 bulmak
imkansizdir. Yine de bu Cantor i¢in bu say1y1 bir hayal {iriinii, bir kuruntu yapmaz.
Bu say1 dogal sayilar kadar gercektir, yalnizca ona erigsmek icin bildigimiz sayma
prosediiriinden farkl bir prosediir izlememiz gerekir ki bu da Cantor’un ikinci
iretme ilkesinde tarif edilmistir. Bu ilkede Cantor sonsuz elemana sahip fakat
aralarinda hi¢ bozulmayan bir siralamanin oldugu kiimelere bitmis, tamamlanmis
birer nesne, bir say1 olarak bakmanin miimkiin oldugunu sdyler. Dogal sayilar
kiimesi sonsuz elemana sahiptir ve asla kapanmayacaktir, ¢iinkii ‘en biiyiik dogal
say1’ yoktur. Buna ragmen elemanlar arasinda bir sira vardir. Iste Cantor bu siraya
bir say1 atfetmis ve buna w, en kii¢lik sonludtesi ordinal say1 demistir. Boylece dogal
sayilar kiimesinin elemanlarini, hatta daha da 6tesini saymak miimkiin olmustur. Bu
ilkenin kabul edilmesi bize sonludtesi sayilari, sonluétesi timevarim ilkesini ve bu
sayilarin kendilerine has aritmetigini vermistir. Baslarda kimi ¢eliskilere yol agmis
olsa da bugiin bu ilke kusursuzlastirilmistir ve sinirlandirilmis bir halde gecerliligi
saglanmustir, iistelik son derece de faydali oldugu gosterilmistir. Peki nasil olmus da
Cantor bu ilkeyi 6ne siirebilmistir? Bu tezde bu soruya bir cevap verilmektedir:
Cantor, Poincaré’nin tarif ettigi son derece anlasilir ve dogal olan bir zihinsel
kabiliyeti, yani sonsuz yineleme kabiliyetini gelistirmistir. Cantor bize, sonsuz
tekrar1 kavramaya muktedir olan zihnilerimizin, yaptig1 bu tekrarda bir sira
bulabildigi taktirde biitiin bu siireci tek bir olay gibi kavramaya da muktedir

oldugunu gdstermistir. Sonludtesi sayilarin ve yeni aritmetik ilkelerin dogusu Oklid-
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dis1 geometrilerde oldugu gibi deneysel kosullarin farazi bir sekilde
degistirilmesinden kaynaklanmamaktadir; bunlar bizzat zihinsel yetilerimizin
gelistirilmesi ile ortaya ¢ikmustir.

Eger aritmetigin Poincaré’nin tarif etigi gibi deneyimden tiimiiyle bagimsiz
oldugu kabul edilirse, geometridekine benzer bir durumun aritmetikte
gerceklesemeyecegini gdrmek kolaydir. Yine de bugiin yeni ve alisilmadik, iistelik
son derece faydali olan ve igleyen bir aritmegimiz oldugu yadsinamaz. Bu teorinin
saf matematige faydalar1 4.3’te anlatilmaktadir. Eger aritmetigin temelinde yatan
sezginin gelisebilecegi, zihinsel yetilerimizin ilerlemeye tabi olabilecegi kabul
edilirse, o zaman sonludtesi ordinal teorisine sezgici bir temel 6ne siirmek miimkiin
olur. Bu gortiste sonludtesi ordinaller ve sonludtesi tiimevarim ilkesi bize dogal
sayilar1 veren ve standart timevarim ilkesinin kullanimin1 mesru kilan ayn1 sezgide
temellenmistir — zihnin sonsuz yineleme kabiliyeti. Cantor bu tiir bir tekrari
kavrayabilen zihnin, bir sira buldugu taktirde bu tekrarin biitliniinii belirli bir say1
olarak diislinebildigini gostermistir. Aristoteles’in uzun siire matematige hakim
olmus sonsuzluk anlayisini dikkatle analiz ederek ve bunu kendi 6ne siirdiigi ‘iyi-
siralama’ kavramu ile destekleyerek Cantor hepimizde bulunan bir zihinsel yetinin
gelistirilebilecegini gostermistir. Kendisi yeni tiir sayilar ve bunlarin siradisi
aritmetigini kurmay1 basarmistir, ki bunlar sasirtict derecede faydali olmustur ve
Cantor’un adimlarini takip etmeye razi olan matematikgilere oldukga anlaml
gelmektedir.

Bu tezde sunulana, Poincaré’nin sezgiciliginin bir miktar degistirilmis bir
versiyonunun savunulmasi olarak bakilabilir. Bu goriise gore empirik gozlemin
matematigin temellerinde higbir rolii yoktur; bu bilim insanoglunun sezgilerinde
temellenmistir. Bazi filozoflarin (Ayer, 1964) diisiindiigliniin aksine matematiksel
sezgi gizemli bir meleke degildir, o basit¢e zihnin kendi yapisi ve kabiliyetleri
hakkinda dogrudan bir kavrayisa sahip olmasidir. Poincaré’nin durumunda bu sonsuz
yineleme kabiliyetine tekabiil eder. Bu tezde 6ne siiriilen, bu kabiliyetin
gelisebilecegi ve bunun da yeni bir aritmetigin baglangi¢ noktas1 olabilecegidir.
Geometrideki kavramlarin deneyimin rehberliginde anlasildig1 ve geometrik
postulatlara dair delillerin kismen gézlemde bulundugu goriilmiistiir. Cisimlerin

hareketi i¢in alisilmisin disinda kurallar varsayarak, bir baska deyisle yeni uzlasimlar
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benimseyerek, Oklid-dis1 geometrileri kurmak miimkiin olmustur. Deneyim
aritmetigin temellerinde hi¢bir rol oynamadigindan, yeni bir gozlemin veya alisildik
deneysel kosullarda meydana gelecek gercek veya farazi bir degisikligin aritmetigin
temel kavramlarinda veya ilkelerinde bir degisiklige sebep olmasi beklenemez. Bu
noktada tez genel Poincaréci goriisten ayrilmakta ve boyle bir degisikligin sezginin
gelistirilmesinde bulunabilecegini iddia etmektedir. Cantor’un bunu bagardig: ve
bdylece sonludtesi ordinal aritmetik teorisini kurdugu savunulmaktadir.

Bu goriise gore matematikteki sezgi, Godel gibi bazi filozoflarin
diisiindiigiiniin aksine fiziksel nesnelerin duyumsanmasina benzeyen bir sey degildir.
Sonludétesi sayilar gibi matematiksel nesneler zihinden bagimsiz matematiksel bir
diyarda degildirler ve sezgimiz de bu gizemli nesnelerle etkilesime gecmek i¢in bir
yontem degildir. Daha ziyade zihnimiz bu nesneleri insa eder. Aslinda bunlar
alisildik anlamiyla ‘nesne’ degil, zihnin kendi yetileri ¢ergevesinde kavramaya
muktedir oldugu birtakim iliskiler, bagintilardir. Sonludtesi ordinal aritmetigin
kurallar1 anlamsiz birtakim sembolleri islemek i¢in ortaya koyulmus keyfi ve bos
kurallar degildir. Bu kurallarin mesruiyeti tipki dogal sayilar ve sonlu aritmetikte
oldugu gibi belli bir zihinsel kabiliyetin sezilmesine dayanir, yalnizca bu kabiliyetin
gelistirildigi kabul edilmelidir. Dolayisiyla sonluétesi ordinal aritmetigi platonizm

veya nominalizme diismeden, bir sezgici olarak anlamlandirmak miimkiindiir.

99



B. TEZ iZiN FORMU / THESIS PERMISSION FORM

ENSTITU / INSTITUTE

Fen Bilimleri Enstitiisii / Graduate School of Natural and Applied Sciences  [_]
Sosyal Bilimler Enstitiisii / Graduate School of Social Sciences I
Uygulamali Matematik Enstitiisii / Graduate School of Applied Mathematics [ ]
Enformatik Enstitiisii / Graduate School of Informatics [ ]

Deniz Bilimleri Enstitiisii / Graduate School of Marine Sciences [ ]

YAZARIN / AUTHOR

Soyadi / Surname . Akgagiiner
Adi/ Name : Koray
Boliimii / Department : Felsefe

TEZIN ADI / TITLE OF THE THESIS : Poincaré’s Philosophy of Mathematics and
the Impossibility of Building a New Arithmetic

TEZIN TURU / DEGREE: Yiiksek Lisans / Master ||} Doktora /[ |
PhD

1. Tezin tamam diinya ¢apinda erisime acilacaktir. / Release the entire |l
work immediately for access worldwide.

2. Tez iki il siireyle erisime kapah olacaktir. / Secure the entire work for [
patent and/or proprietary purposes for a period of two years. *

3. Tez alt1 ay siireyle erisime kapah olacaktir. / Secure the entire work for[ ]
period of six months. *

Yazarim imzasi / Signature Tarih / Date

100



