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ABSTRACT 

 

TIME AND STATE DEPENDENT PARAMETERIZED MODEL 

REFERENCE ADAPTIVE CONTROL 

 

Okumuş, Zeynep 

Master of Scıence, Aerospace Engıneerıng 

Supervisor: Assist. Prof. Dr. Ali Türker Kutay 

 

August 2019, 142 pages 

 

Unknown external disturbances or nonlinear dynamics, could affect both the stability 

and the performance of the of the air vehicles adversely. Unavoidable structure of this 

reality occurrance in real life applications, led the researches to design adaptive control 

which could eliminate the deficiencies of the nominal controller. So that, the main aim 

of the total controller, to satisfy the robustness and performance of the controller could 

be established.  

Model following controller, and the model reference adaptive controllers are the ones 

which determine a reference model, and satisfy the system model responses track the 

reference model. The performance of the model reference adaptive controller depends 

on the success in prediction of the uncertainties mentioned above.  
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The prediction is done, by the multiplication of basis functions and adaptive weight 

coefficients. The convergence of the predicted weights to their true values means 

accurate uncertainty prediction. Concurrent adaptive learning, eliminates PE 

restriction for parameter convergence, enhances the performance of the model 

reference adaptive controller. Data storage in concurrent adaptive learning is based on 

singular value maximizing.  

Chebsyhev polynomials and Fourier series are used as time dependent basis functions, 

and state dependent function for the state dependent basis functions, in uncertainty 

prediction. The adaptive weight update law is defined for both types of uncertainties, 

depending on the Lyapunov stability theorem. The time and state dependent model 

reference adaptive controller gives the best reference model tracking results, 

compared to the ones which use solely time or state dependent basis functions, and 

the related weight update laws.  

 

 

Keywords: Adaptive Learning, Time State Dependent Uncertainty Parametrization, 

Fourier Series, Chebsyhev polynomials, Concurrent Adaptive Learning  
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ÖZ 

 

ZAMAN VE DURUM DEĞİŞKENLİ PARAMETRİZE EDİLMİŞ MODEL 

REFERANS ADAPTİF KONTROL 

 

Okumuş, Zeynep 

Yüksek Lisans, Havacılık ve Uzay Mühendisliği 

Tez Danışmanı: Dr. Öğr. Üyesi Ali Türker Kutay 

 

Ağustos 2019, 142 sayfa 

 

Bilinmeyen dışsal rahatsızlıklar veya linear olmayan dinamikler, bir hava aracının 

hem kararlılık hem de performansını olumsuz etkileyebilir. Gerçek hava koşullarında 

oluşması engellenemez gerçeğin bu yapısı, araştırmacıları normal kontrolcünün 

eksiklerini gidermek için adaptif kontrolcü tasarlamaya yöneltmiştir. Böylece asıl 

amacı gürbüzlük ve performans sağlamak olan toplam kontrolcü sağlanmış olacaktır.  

Model takip kontrolcü ve model referans adaptif kontrolcü, referans model belirler ve 

sistem modelinin referans modeli takip etmesi sağlanır. Model referans adaptif 

kontrolcünün pefromansı, yukarıda bahsedilen rahatsızlıkları giderebilmesiyle 

ölçülür. 

Belirsizlik tahmini, taban fonksiyonu ile adaptif ağırlık katsayısının çarpımıyla elde 

edilir. Tahmin edilen ağırlıkların doğru değerlerine yaklaşması, belirsizlik tahmininin 

iyi yapıldığını gösterir. Eşzamanlı adaptif öğrenme, değişken yaklaşması için sürekli 

uyarma kriterini kaldırarak, model referans adaptif kontrolcünün performansını artırır. 

Eşzamanlı adaptif öğrenmede, bilgi depolaması tek değer maksimizesine dayanır. 

Belirsizlik tahmininde, Chebsyhev polinomları, ve Fourier serileri, zaman değişkenli 

taban fonksiyonu olarak, ve durum değişkenli fonksiyon durum dğişkenli taban 

fonksiyonu olarak kullanılmıştır. Adaptif ağırlık güncelleme kanunu, Lyapunov 
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kararlılık kanununa dayanarak, her iki belirsizlik türü için belirlenmiştir, Durum ve 

zaman değişkenli parametrize edilmiş model referans adaptif kontrolcü, sadece zaman 

veya durum değişkenli taban fonksiyonu ve ilgili ağırlık güncelleme kanununu 

kullanan kontrolcülere göre daha iyi referans model takip performansı göstermiştir. 

Anahtar Kelimeler: Adaptif Kontrolcü, Zaman ve Durum Değişkenli Belirsizlik 

Parametrizesi, Fourier Serisi, Chebsyhev Polinomları, Eşzamanlı Adaptif Öğrenme 
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CHAPTER 1  

 

1. INTRODUCTION 

 

1.1. Motivation 

The uncertainties and unmodelled dynamics appearing in both the system model and 

its environment, causes nonlinearity and time varying structure in the flying vehicle. 

The need for control system to eliminate mentioned uncertainties arises. An adaptive 

autopilot system design for a slender delta wing air vehicle is the purpose of this study. 

A control system should satisfy two main characteristics. During the control system 

design procedure, the criteria should be satisfied such that the system is both stable 

and performs properly. Stability, in other words boundedness of the signal vectors has 

to be satisfied, since the control actuation system has physical limitations. 

Performance, in other words tracking the reference model accurately in an acceptable 

time interval has to be satisfied, since the aim of the controller is to eliminate the 

difference between the outputs of the reference model and the plant. Output error 

convergence to zero causes the reference model tracking accurately. Throughout the 

process, the system performance and robustness should be calibrated within the 

bandwith of the control system. 

Unexpected disturbance like gust or turbulence, and unknown dynamics of the system 

like nonlinearity or unmodelled dynamics could cause threat to the system for both 

being stable and performing properly. Adaptive control has emerged in order to 

eliminate such unexpected disturbance or unknown dynamics effects on the system 

being stable and performing properly. The system is regulated by the control system 

by applying control input. Disturbance to the system could be categorized in two 

classes, such as matched disturbance and dismatched disturbance. Matched 

disturbance means that disturbance enters to the system at the control input application 
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point. Dismatched disturbance is the one which cannot be observed in the control input 

application point. In this study, matched disturbance will be studied. By the 

application of adaptive control input to the system where the matched disturbance 

enters to the system, the unexpected disturbance could be removed. Adaptive control 

input, namely uad is composed by the multiplication of constant adaptive weights and 

the basis function. The basis function is the first step for prediction of the unknown 

disturbance structure. Since it is difficult to determine the disturbance thoroughly by 

the approximation of basis function at first step, the adaptive control input, uad should 

be updated by multiplying the basis function with the constant adaptive weights. So 

the second step for prediction of the unknown disturbance structure is, determination 

of constant adaptive weight coefficients. The adaptive weight coefficients are updated 

at each time step during the simulation. Convergence or being restricted in a domain 

region of the adaptive weight coefficients means that, the unknown disturbance 

structure is predicted approximately. Elimination of the disturbance process gets 

through two steps. First the disturbance structure should be predicted approximately, 

second by the application of the control input that disturbance should be removed. By 

the adaptive control input structure composition process as mentioned, the first step, 

namely disturbance structure prediction is being done. Since the disturbance is 

matched, by the application of control input, the second step, namely removal of the 

disturbance is fulfilled. Since the adaptive weight coefficients of the basis function 

converges to their true values or remain in a limited domain region throughout the 

simulation, it is a time dependent process to remove a disturbance when it enters to 

the system. Control input signals determine the amount of control surface deflection 

needed to apply to the air vehicle which has been exposed to the unknown disturbance. 

As mentioned, both the nonlinearities and unmodelled dynamics of the system and the 

physical environment could be included in the unknown disturbance definition. The 

magnitude of the adaptive control surface deflection, namely uad, should be limited in 

a domain region, since the control surface deflection has physical limits. The control 

system being stable is determined so. The disturbance elimination is done by the 

composition and then application of the adaptive control input. Adaptive control input 
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structure is constructed during the simulation, by the update of the adaptive weight 

coefficients. The time passed through the process and the approximation level of the 

disturbance, are success criteria for this time dependent process. As time passed 

shortens and the approximation level of the disturbance increases, the disturbance 

determination and elimination gets better. This determines the performance of the 

control system. 

So, since in the real flight conditions, modelling nonlinearities and unmodelled parts 

of air vehicles thoroughly is not possible, it is important to design control systems. 

Adaptive control is a special working area of control system design. It is dedicated to 

remove unexpected disturbances or unmodelled parts of the system, which is not 

included in the design process of the air vehicle. The capability of adaptive control 

system to meet the deficient modeling of air vehicles in real flight conditions, has 

caught attention by so many researches. Many theses and articles have been written 

about adaptive autopilot design. Making a contribution to the adaptive autopilot design 

has been the major motivation for this thesis work. 

1.2. Literature Review 

Automatic control, namely adaptive control is a widely studied area since it performs 

in real flight conditions. Highly agile missiles, fighter aircrafts, or other autonomous 

air vehicles operate in highly dynamic air conditions. Like the case given in (Go & 

Ramnath, 2008), air performance capabilities are enhanced in modern fighter aircraft 

for the purpose of air superiority. Nonlinear flight conditions like highly complex 

dynamics, such as high angle of attack wing rock motion, or constant amplitude and 

definite frequency determined sustained lateral oscillations could be required for the 

purpose mentioned. In (Aditya, 2015), the complex interactions between the 

aerodynamics, structural dynamics and propulsion system of an air breathing 

hypersonic vehicle is identified by the direct adaptive control model designed. As 

stated in (Kasnakoǧlu, 2016), (Ka, Dworak, & Jaroszewski, 2013), (F.A. Faruqi & Vu, 

2002), (Farhan A Faruqi, 1990), MIMO, multi input multi output methods are usually 
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preferred for missiles, helicopters, and multirotor vehicles where dynamical couplings 

are dominant. In (Noriega, 2016), generic adaptive autopilot is designed for general 

aviation aircraft for use in several makes and models to remove internal and external 

disturbances. Adaptive autopilot has evolved to eliminate such unmodelled 

nonlinearities and disturbances. 

The controller parameters are adjusted in MRAC, which is model reference adaptive 

controller, with the aim of satisfying the plant system behaves as the reference model 

by yielding the same output to the application of the same reference input. (Korul, 

Tosun, & Isik, n.d.), (Burak, 2016). The adaptive law of weight update uses the 

difference between the outputs of the reference model and the plant. The decrease in 

the error means that the uncertainty is predicted approximately. The adaptive law of 

weight update is constructed by the principle of Lyapunov Stability Theorem. 

Tracking error and adaptive weight convergence is guaranteed by the weight update 

law. (Calise, Sharma, & Corban, 2008). 

As stated in (I.M. Y. Mareels, 1988), (Boyd & Sastry, 1986), PE, persistent of 

excitation, and sufficient richness is introduced in the adaptive control context to 

guarantee the exponential convergence of adaptive algorithms. PE, persistent of 

excitation is a restriction criteria put for reference input command entering to the 

system. Adaptive weight convergence, without diverging is the main aim of the PE 

criteria application, so uncertainty prediction will be done accurately. Uncertainty 

prediction is a time process. So, especially if, system state dependent approximation 

function is used for uncertainty parametrization, then it will be better to excite the 

reference command input, for better learning the uncertainty entering to the system. 

This will enhance exponentially bounded transient performance of the system. But, it 

will put a restriction on the reference input command, which is hard to monitor or 

control. On the other end, if time dependent periodic FS; Fourier series or CP, 

Chebyshev polynomials is used as the approximation function, then since the value of 

the approximation function will change at each time step, it will learn the uncertainty 

without putting a restriction on the reference command input. To sum up, PE 



 

 

 

5 

 

condition, firstly guarantees robustness of the control system, by violating adaptive 

weight divergence. Secondly, satisfies uncertainty elimination, by supplying adaptive 

weight convergence to the real values. By the way, FS, Fourier series expansion 

method usage as the approximation function, firstly guarantees robustness of the 

control system, by updating adaptive weights according to the Lyapunov stability 

theorem. Secondly, satisfies uncertainty elimination, by supplying that the adaptive 

weights converge to the actual values or weights stay in a limited range. As stated in 

(Chowdhary, 2010), (Girish Chowdhary, Tansel Yücelen, Maximillian Mühlegg, 

2014), (Maximilian, M,Chowdhary G, n.d.), (Chowdhary & Johnson, 2011), 

(Quindlen, Chowdhary, & How, 2015), CCAL, concurrent adaptive learning can 

guarantee convergence of the error in tracking output to zero and error in weight 

prediction to zero, by satisfying the linear independence of the stored data; also 

eliminates both the requirement of the system states excitation persistently and the PE 

restriction criteria on the reference command input. Especially if the approximation 

function used to predict the uncertainty is state dependent, then using CCAL, 

concurrent adaptive learning algorithm in the adaptive weight update process would 

be better, rather than PE, persistent of excitation, restriction on the reference command 

input. CCAL, will use recorded data with the current data at the same time step of the 

simulation, so adaptive weight convergence will be satisfied as the simulation works. 

The key point in the CCAL algorithm, is to increase the quality of the adaptive weight 

update law, by controlling the recorded data in terms of its spectral properties. It will 

record the current data on the recorded data, only if the new data will increase the 

minimum value of the singular value of the recorded data. This method is named as 

SVM, singular value maximizing.  

System state dependent uncertainty parametrization, and time dependent uncertainty 

parametrization are two ways for prediction of uncertainty. In (Qu, 2003), (Asadi & 

Shandiz, 2017), (Polycarpou & Mears, 1998), there are examples of state dependent 

uncertainty parametrization, and in (Choon-Ki Ahn, Beom-Soo Kim, 2015), (Haddad, 

Hayakawa, & Stasko, 2010), (Tyukin, Prokhorov, Member, & Leeuwen, 2007), 
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examples of time dependent uncertainty parametrization could be found. Since 

uncertainty elimination is done in two basic steps. Firstly, uncertainty parametrization, 

and then in order to eliminate uncertainty effect on the system, secondly, adaptive 

weight update law should be determined. Adaptive weight update law could also be 

categorized according to whether the uncertainty parametrization is done dependent 

on the system states or dependent on time. 

 

1.3. Contribution of This Thesis 

The need for operation in wide spectrum air conditions of agile aircrafts, autonomous 

vehicles and missiles, has required the emergency of adaptive control in 1950s. The 

main idea of the adaptive control is to regulate the system behaviour according to the 

changing environment and system dynamics. Change in environment and system 

dynamics results in unmodelled nonlinearities or unknown linear parts of the system. 

Unmodelled nonlinearities, namely disturbances, could be predicted with the usage of 

proper basis functions multiplied with constant adaptive weights. Unknown linear 

parts of the system, namely plant model, could be determined or predicted if the 

system model is known exactly or not. Adaptive control could be classified as direct 

adaptive controller and indirect adaptive controller according to the need for plant 

model parameter estimation. In direct adaptive controller, the plant is known but the 

disturbances are predicted with the usage of adaptive elements. In indirect adaptive 

controller, plant model parameter estimation is done online and then controller 

parameters are computed based on the estimated plant model. One of the most famous 

type of direct adaptive controller is MRAC. MRAC is constructed to regulate the 

system behaviour according to the changing environment and system dynamics. In 

order to do this, first a reference model is specified, and then the adaptive control 

satisfies the system to react as the specified model. The name of the controller is MFC, 

with the inclusion of adaptive elements it is named as MRAC. In this thesis also, 

MRAC is used as the adaptive controller. The common point between the MFC and 
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MRAC, is having reference model. The two controllers differ such that, MRAC has 

adaptive control parameters. Control parameters need to be adjusted during the flight, 

since having extremely nonlinear dynamics results in change in aircraft dynamics 

during the flight. As the adaptive term implies, adaptive control parameters namely, 

the weights of the network are adjusted continuously by the adaptation law. In the case 

that, the difference between the outputs of the model and the plant converges to zero, 

the desirable response of the system could be achieved. The adaptation law is derived 

according to the term which is the difference between the outputs of the model and 

the plant. The derivation is done according to the Lyapunov stability theorem. To sum 

up, agile aircrafts have extremely nonlinear dynamics during flight. Nonlinearities 

which is not modelled or linearities of the system which is not known could exist in 

both environment and system model. Nonlinearities which is not modelled appearing 

in the environment could be defined as disturbances, and linearities of the system 

which is not known could be defined as uncertainty in plant model. To make the 

controller stable and satisfy transient performance characteristics, disturbances acting 

on and uncertainties of the system model should be eliminated. The need for the 

elimination of the existence of uncertainties in both the environment and plant models, 

caused the design of adaptive controller. Indirect adaptive controller is designed to 

predict both the disturbances appearing in the environment, and the uncertainties or 

unknown dynamics in plant model. Direct adaptive controller is designed to predict 

only the disturbances appearing in the environment, the plant model dynamics is 

assumed to be known. As an example MRAC could be given, which uses adaptive 

controller parameters. Adaptive controller parameters are updated during the 

simulation. So, during the design process of the adaptive controller, parametrization 

of the uncertainty and update law of the adaptive weights are two basic steps. As 

mentioned, during the update law of the adaptive weights Lyapunov stability theorem 

is taken as the basis. Uncertainty parametrization is done by approximation functions 

depending on whether the uncertainty is structured or unstructured. In the case that 

uncertainty could be parametrized with the usage of known functions depending on 

either the system states or time, it could be defined as structured uncertainty. On the 
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other hand, if uncertainty could only be approximated with the usage of basis functions 

multiplied by constant adaptive weight coefficients, then it could be defined as 

unstructured uncertainty. Basis functions used in prediction could also be dependent 

on system states or time. Since unstructured uncertainty needs prediction algorithm, 

rather than the structured uncertainty, many approximation methods have been studied 

in the adaptive controller design study area. NN, neural networks, for instance are used 

as universal approximators in order to predict unstructured uncertainties. As an 

advantage, the functions being continuous and integrable, and defined on a compact 

domain and to within any tolerance makes the prediction of uncertainty process more 

accurate. As a disadvantage, tuning work of the structure and parameters makes NN 

usage as the approximator function harder. Since tuning of the structure and 

parameters is needed, NN’s are also system state dependent usually, as in the case in 

(Blumel, Hughes, & White, 2000), (Suresh, Omkar, Mani, & Sundararajan, 2008). 

In this thesis, it is proposed that, both uncertainty parametrization and adaptive weight 

update law should be done according to the dependency of the uncertainty on the time 

or system state variables, without paying attention to the structure of the uncertainty 

whether structured or unstructured. If the uncertainty entering to the system externally, 

i.e. disturbance is structured, then the basis function should be in terms of the variable, 

which determines the type of the structure for the uncertainty. If the dependent 

variable for the structured uncertainty is time, then the basis function should also 

depend on time, if system state variables, vice versa. Uncertainty parametrization step 

should be done depending on the variable type. Adaptive weight update law should 

also be done accordingly. If the uncertainty entering to the system externally, i.e. 

disturbance is unstructured but dependent on time variable, then the basis function 

should be selected as Fourier series based basis function, or Chebyshev polynomials 

of the first kind, which is dependent on the time. Adaptive weight update law should 

also be done accordingly. If both time dependent unstructured uncertainty and state 

variable dependent structured uncertainty enters to the system, then as the uncertainty 

parametrization method, linear combination of time dependent approximation basis 
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functions, like Fourier series and state variable dependent approximation basis 

functions should be constructed. Also adaptive weight update law should be applied 

to each kind of approximation function separately. 

1.4. Thesis Structure 

In chapter 1, motivation, literature review, thesis contribution, and thesis structure is 

given. 

In chapter 2, MFC is given. Sample system model, design of model following 

controller, and simulation example are given.  

In chapter 3, MRAC is given. Design process for model reference adaptive control, 

simulation with MRAC for the challenging case, concurrent adaptive learning added 

MRAC, law of update for concurrent learning, and algorithm of the data selection 

procedure for the stored history stack is given.  

In chapter 4, time and state dependent parameterized MRAC is given. Time dependent 

uncertainty parametrization, Chebyshev polynomials based MRAC, Fourier series 

based MRAC, Fourier series based MRAC design using a sample system model, 

weight update law for time dependent uncertainty parametrization, state dependent 

uncertainty parametrization, weight update law for state dependent uncertainty 

parametrization, time and state dependent combined uncertainty parametrization, 

weight update law for time and state dependent combined uncertainty parametrization, 

stability proof is given. 

In the fifth chapter 5, simulation results is given. Comparison of MRAC and FS TSD 

CCAL MRAC, comparison of FSBMRAC and FS TSD CCAL MRAC, comparison 

of FS TD CCAL MRAC and FS TSD CCAL MRAC, comparison of all controllers, 

max disturbance elimination, FS TD CCAL MRAC (Disturbation factor=2), FS TSD 

CCAL MRAC (Disturbation factor=2&100) is given. Also, comparison of disturbance 

and control input, concurrent adaptive learning effect is given. 

In the sixth chapter 6, conclusion is given. 
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CHAPTER 2  

 

2. MODEL FOLLOWING CONTROL 

 

Model following control is a method of modern control theory, wherein the plant 

behaves as the reference model in terms of output, to obtain the response desired. The 

desired response output of a dynamical system can be determined by setting response 

of the system model in steady state conditions and in transient conditions. (Fujio & 

Ishida, 2016). The model-following system has been studied by several researchers. 

(S & Y, 2016), (Sato, 2009), (Inoue et al., 2015) 

In this chapter, firstly definition of a sample system model is done which is a basis for 

the upcoming study. Secondly, the structure of the MFC is presented and the design 

is given. 

2.1. Sample of System Model 

A simple system model is defined in (Gezer, 2014), for the reason of discussing the 

methods for controller design given in this study. The number of the states of the 

system is two. The input directly affects the first state, and the second state is obtained 

by taking the integral of the first state. The system model is mathematically defined 

as, 

𝑥1̇ (𝑡) = 𝑢(𝑡) + 𝛿(𝑥(𝑡), 𝑡),   𝑥1(0) = 𝑥10,   𝑡 ϵ  R+ 

(2.1) 
𝑥2̇ (𝑡) = 𝑥1(𝑡),                         𝑥2(0) = 𝑥20,   𝑡 ϵ  R+ 

 

The equations model the rolling motion for a slender delta wing exposed to the wing 

rock dynamics defined in (Yucelen & Johnson, 2012). Roll rate, the first state, is 

symbolized by 𝑥1(𝑡) ϵ R, and the roll angle for the slender delta wing, the second state, 
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is by 𝑥2(𝑡) ϵ R, input by the control system on the system model is by, 𝑢(𝑡) ϵ R. The 

state space model of the 2.1 is in the form of, 

ẋ (𝑡) = 𝐴𝑥(𝑡) + 𝐵(𝑢(𝑡) + 𝛿(𝑥(𝑡), 𝑡)) (2.2) 

 

where the system matrix is symbolized by A= [
0 0
1 0

], and the input matrix is by B = 

[
1
0
], and the state vector is by 𝑥 (𝑡) ϵ R2𝑥1. The matched disturbance 𝛿(𝑥(𝑡), 𝑡)) on 

the system is formed by 𝛿𝑒𝑥(𝑡) which is the external disturbance, and 𝛿𝑤𝑟(𝑥(𝑡)) which 

is the dynamics of the wing rock. 

𝛿𝑒𝑥(𝑡), the external disturbance is a random disturbance dependent on time. The 

system is subjected to this disturbance in order to represent unexpected random events 

occurring in the air during flight, like wind, or gust. 

𝛿(𝑡, 𝑥(𝑡)) =  𝛿𝑒𝑥(𝑡) + 𝛿𝑤𝑟(𝑥(𝑡)) (2.3) 

 

The dynamics of wing rock given in (Yucelen & Johnson, 2012) as, 

𝛿𝑤𝑟(𝑥(𝑡)) = 𝛼1𝑥2 + 𝛼2𝑥1 + 𝛼3|𝑥2|𝑥1 + 𝛼4|𝑥1|𝑥1 + 𝛼5𝑥1
3   (2.4) 

 

The dynamics of wing rock motion is modelled in the equation (2.4), by the 

multiplication of constant aerodynamic coefficients and the nonlinear functions 

depending on the system states. The constant aerodynamic coefficient values are, 𝛼1 =

0.1414, 𝛼2 = 0.5504, 𝛼3 = −0.0624, 𝛼4 = 0095, and 𝛼5 = 0.0215 as given in 

(Yucelen & Johnson, 2012). 

The vector form for the wing rock dynamics equation could be shown as follows, 
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𝛿𝑤𝑟(𝑥(𝑡)) =  [𝛼1 𝛼2 𝛼3 𝛼4 𝛼5]   

[
 
 
 
 

𝑥2

𝑥1

|𝑥2|𝑥1

|𝑥1|𝑥1

𝑥1
3 ]

 
 
 
 

 (2.5) 

                      = 𝛼 𝑓 (𝑥(𝑡)) 

 

with 𝛼 𝜖  𝑅1𝑥5 and 𝑓(𝑥(𝑡))𝜖  𝑅5𝑥1. 

Up to this point, first the linear system model of which structure is known is formed 

as the system model. Secondly, totally random external disturbance of which structure 

is unknown and dependent on time is added to the system externally. Thirdly, the wing 

rock dynamics which is multiplication of unknown constant aerodynamics 

coefficients and system states dependent known functions is added to the system 

externally.  

Control input is applied on the system by the usage of actuator mechanism So, it could 

also be modelled. Control actuator system is the dynamic model which determines the 

relationship between the commanded and actuated control input. In this study, linear 

differential equation having the degree of two is used to model the actuator dynamics. 

The actuator dynamics representation is,  

𝑥�̇� = 𝐴𝑐𝑥𝑐(𝑡) + 𝐵𝑐𝑢𝑐(𝑡) . (2.6) 

 

where the state vector for control actuator system is defined as 𝑥𝑐 (t)ϵ  R
2𝑥1, and the 

commanded input on the system is defined as 𝑢𝑐 (t) ϵ R. 𝑥𝑐(𝑡) =  [
𝑢 (𝑡)
𝑢 ̇ (𝑡)

], is the state 

vector which is set up with the control input actuated 𝑢(𝑡) and its derivative 𝑢 ̇ (𝑡). 

The system matrix for the control actuator is, 𝐴 = [
0 1

−𝜔𝑐
2 −2𝜁𝑐𝜔𝑐

], and the input 

matrix is 𝐵 = [
0
𝜔𝑐

2]. 𝜔𝑐, is the control actuator system natural frequency and 𝜁𝑐, is the 
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damping ratio. The selected values for the control actuator system model is as 𝜔𝑐 =

50 𝑟𝑎𝑑/𝑠 and 𝜁𝑐 = 0.7. 

The combined state matrix for system and control actuator model is, 

[
 
 
 
 𝑥1̇(𝑡)

 𝑥2̇(𝑡)

 �̇�(𝑡)

 �̈�(𝑡) ]
 
 
 
=  [

0 0 1 0
1 0 0 0
0 0 0 1
0 0 −𝜔𝑐

2 −2𝜁𝑐𝜔𝑐

] [

𝑥1(𝑡)

𝑥2(𝑡)
𝑢(𝑡)
�̇�(𝑡)

] + [

0
0
0
𝜔𝑐

2

] 𝑢𝑐(𝑡)

+ [

1
0
0
0

]  𝛿(𝑥(𝑡), 𝑡) 

(2.7) 

 

The compact form of the combined system state could be represented mathematically 

as,  

𝑥�̇�(𝑡) = 𝐴𝑝𝑥𝑝(𝑡) + 𝐵𝑝𝑢𝑐(𝑡) + 𝐵𝑑𝛿(𝑡, 𝑥(𝑡)) (2.8) 

 

where 𝐴𝑝ϵ  R
4𝑥4 is the system matrix belonging to the plant, 𝐵𝑝ϵ  R4𝑥1 is the input 

matrix to the plant, and 𝐵𝑑ϵ  R4𝑥1 is the input matrix representing the disturbance. 

The compound system in (2.8) could be examined whether controllable or not by 

determining the rank belonging to the controllability matrix, 

𝐶 = [𝐵𝑝  𝐴𝑝𝐵𝑝  𝐴𝑝
2𝐵𝑝  𝐴𝑝

3𝐵𝑝]  (2.9) 

 

The controllability matrix 𝐶ϵ  R4𝑥4 being full rank, means that the controllability of 

the compound system is available. 

2.2. Model Following Control Design 

The system dynamics for the system model and for the control actuator is obtained. 

The reference model determination is the second step in designing MFC. 𝜔𝑛 which is 

the natural frequency desired and 𝜁𝑛 which is the damping ratio, are the criteria 
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parameters to determine the reference model. The system transient response exhibiting 

these criteria parameters, form the dynamics desired for the reference model. 

The reference model could be constructed by using second order linear differential 

equation and with the usage of natural frequency desired and the damping ratio. On 

the other hand, it could also be constructed by placing the poles belonging to the 

system model eigenvalues to the desired pole locations as long as the system model is 

controllable. This method is named as full state feedback control. The formula 

belonging to Ackermann is used in the calculation of the gains in this process. (Ogata, 

2002). The number of the states for the plant in (2.8) is four. Rate of roll angle, roll 

angle, control input actuated, and derivative of control input actuated are the states, 

respectively. In model following design process, the eigenvalue positions of only the 

rigid body motion model dynamics will be changed. The original locations of the poles 

for the control actuator will be sustained. So two desired criteria for the system model 

should be determined.  

The desired locations of the eigenvalues of the rigid body dynamics, as the desired 

criteria, are determined by using the roots belonging to the characteristic equation 

representing the desirable dynamics,  

𝑠2 + 2𝜁𝑛𝜔𝑛𝑠 +  𝜔𝑛
2 =  0 (2.10) 

 

The roots of the characteristic equation are, λ1 = − ζnωn + √ζn
2ωn 

2 − ωn
2 and 𝜆2 =

 − 𝜁𝑛𝜔𝑛 − √𝜁𝑛
2𝜔𝑛 

2 − 𝜔𝑛
2. The roots of the characteristic equation for the control 

actuator system are 𝜆3 = − 𝜁𝑐𝜔𝑐 + √𝜁𝑐
2𝜔𝑐 

2 − 𝜔𝑐
2, 𝜆4 = − 𝜁𝑐𝜔𝑐 − √𝜁𝑐

2𝜔𝑐 
2 − 𝜔𝑐

2. 

The desirable eigenvalues belonging to the reference model are determined by the 

roots of the two characteristic equation. To sum up, the reference model characteristic 

equation should be as,  

(𝑠 − 𝜆1)(𝑠 − 𝜆2)(𝑠 − 𝜆3)(𝑠 − 𝜆4) =  0 (2.11) 
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As mentioned above the formula belonging to Ackermann is used in the calculation 

of the gains for a system which is available for the feedback of the full states. The 

system model having the same characteristic equation with the specified model is the 

aim. The Ackermann’s formula for a system model having a degree of four could be 

as, 

𝐾𝑟 = [0 0 0 1] 𝐶 (𝐴𝑝 − 𝜆1 𝐼4𝑥4)(𝐴𝑝 − 𝜆2 𝐼4𝑥4)(𝐴𝑝 − 𝜆3 𝐼4𝑥4)(𝐴𝑝 − 𝜆4 𝐼4𝑥4) (2.12) 

 

The controllability matrix in (2.9) is represented as matrix 𝐶, and the identity matrix 

as 𝐼4𝑥4. The gain vector calculated as 𝐾𝑟  ϵ  R
1𝑥4  is the vector representing the gain of 

feedback to acquire the dynamics of the specified model. The representation for the 

reference model could be given as, 

𝑥�̇�(𝑡) = (𝐴𝑝 − 𝐵𝑝𝐾𝑟)𝑥𝑟(𝑡) + 𝐵𝑝𝐾𝑟 [

0
1
0
0

] 𝑟(𝑡) (2.13) 

       = 𝐴𝑟𝑥𝑟(𝑡) + 𝐵𝑟𝑟(𝑡)    

 

𝐴𝑟  ϵ  R
4𝑥4 is the system matrix belonging to the reference model, and 𝐵𝑟  ϵ  R

4𝑥1 is the 

input matrix. 𝑥𝑟(𝑡) ϵ  R
4𝑥1 is the state vector belonging to the reference model, and 

𝑟(𝑡) ϵ R for the reference command. 

The natural frequency and the damping ratio desired for the reference model are 

selected as, 𝜔𝑛 = 0.4 𝑟𝑎𝑑/𝑠, 𝜁𝑛 = 0.707. The formula belonging to Ackermann is 

used to calculate the gains for full state feedback controller to acquire the reference 

model, as 𝐾𝑟 = [0.57 0.16 0 0 ]. Since the states belonging to the control actuator 

system are chosen to sustain the responses for the open loop case, the eigenvalues 

representing these states are hold at their initial locations. So the last two gains of the 

gain vector is zero.  
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The combination of the equation (2.8) for the plant dynamics, and the equation (2.13) 

for the reference model can be shown as,  

𝑥𝑝𝑟̇ (𝑡) = [
 𝑥𝑝𝑟̇ (𝑡)

 𝑥�̇�(𝑡)
] =  [

𝐴𝑝 04𝑥4

04𝑥4 𝐴𝑟
] 𝑥𝑝𝑟(𝑡) + [

𝐵𝑝

04𝑥1
] 𝑢𝑐(𝑡) + [

04𝑥1

𝐵𝑟
]  𝑟(𝑡) (2.14) 

 

The combined equation (2.14) state vector is 𝑥𝑝𝑟  ϵ  R
8𝑥1. The rewritten form of the 

more compact form of this equation can be shown, 

𝑥𝑝𝑟̇ (𝑡) = 𝐴𝑝𝑟𝑥𝑝𝑟(𝑡) + 𝐵𝑝𝑟𝑢𝑢𝑐(𝑡) + 𝐵𝑝𝑟𝑟𝑟(𝑡) (2.15) 

 

𝐴𝑝𝑟  ϵ  R
8𝑥8, is the system matrix belonging to the compound system, 𝐵𝑝𝑟𝑢ϵ  R8𝑥1, is 

the matrix for input by the control system on the system model and 𝐵𝑝𝑟𝑟ϵ  R
8𝑥1 is the 

reference command input matrix. 

As an addition of integral state, the integral of the difference between the reference 

roll angle, and the plant roll angle is taken. The calculated integral state is as, 

𝑥𝑖̇ (𝑡) =  [0 − 1  01𝑥3  1  01𝑥2] 𝑥𝑝𝑟 = 𝑥𝑟2 − 𝑥2 (2.16) 

 

The integral state could be defined as, 

𝑥𝑖(𝑡) =  ∫ (𝑥𝑟2 − 𝑥2)
𝑡

𝑡=0

𝑑𝑡 (2.17) 

 

The roll angle of the system (2.1) is represented as the state 𝑥2 in (2.17), and the roll 

angle of the reference model is represented as the state 𝑥𝑟2 in (2.13). 

The form of the combined equation (2.14) added the integral state is given as, 

𝑥�̇�(𝑡) = [
 𝑥𝑝𝑟̇

 𝑥�̇�
] =  [

𝐴𝑝𝑟 08𝑥1

0 −1 01𝑥3 1 01𝑥2 0
] [

𝑥𝑝𝑟

𝑥𝑖
] + [

𝐵𝑝𝑟𝑢

0
] 𝑢𝑐(𝑡) + [

𝐵𝑝𝑟𝑟

0
]  𝑟(𝑡) (2.18) 
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The design of the MFC is based on this mathematical representation which is the open-

loop equation belonging to the total system. The compactly rewritten form of the 

equation is,  

𝑥�̇� = 𝐴0𝑥𝑠 + 𝐵0𝑢𝑢𝑐(𝑡) + 𝐵0𝑟𝑟(𝑡) (2.19) 

 

where, the state vector is 𝑥𝑠ϵ  R
9𝑥1, the system matrix is 𝐴0ϵ  R

9𝑥9, the matrix for input 

by the control system on the system model is 𝐵0𝑢ϵ  R9𝑥1, and the input matrix for 

reference command in the open loop system equation is 𝐵0𝑟ϵ  R
9𝑥1. 

The open loop system formulized at (2.19), The states are, rate of roll angle 𝑥1(𝑡), roll 

angle 𝑥2(𝑡), control input actuated 𝑢(𝑡), derivative of control input actuated �̇� (𝑡), 

rate of reference roll angle 𝑥𝑟1(𝑡), reference roll angle 𝑥𝑟2(t), reference control input 

actuated 𝑥𝑟3(𝑡), derivative of the reference control input actuated 𝑥𝑟4(𝑡), and the 

integral of the difference 𝑥𝑖(𝑡). Since the measurability of the real states is available, 

also all states belonging to the open-loop system equation could be get for feedback. 

The optimality is chosen as the calculation method for the gain of feedback belonging 

to the MFC. The determined cost function is minimized during the optimization 

process. The performance vector in quadratic form is the basis for the cost function. 

The chosen system states and control inputs are combined linearly in order to construct 

the performance vector. The selection of the performance vector is as, 

𝑧 (𝑡) = [  (𝑥𝑟1 − 𝑥1) (𝑥𝑟2 − 𝑥2) (𝑥𝑟3 − 𝑢) (𝑥𝑟4 − �̇�) 𝑥𝑖 𝑢𝑐  ]
𝑇 (2.20)  

 

where 𝑧 ϵ  R6𝑥1 . The selected weights are used to penalize the linearly combined 

states in performance vector. 

𝑄𝑧 = 𝑑𝑖𝑎𝑔 ([ 𝑄𝑥1       𝑄𝑥2     𝑄𝑢     𝑄�̇�     𝑄𝑥𝑖     
𝑄𝑢𝑐 

]) ϵ  R6𝑥6, is the weight matrix. For 

the aim of determining the optimal controller gain, the cost function which is to be 

minimized is, 
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𝐽 =  ∫ (𝑧𝑇(𝑡)𝑄𝑧𝑧(𝑡))𝑑𝑡
∞

𝑡=0

 (2.21) 

 

The cost function given in (2.21), can also be expressed as the linear quadratic 

regulation function is as, 

𝐽 =  ∫ (𝑥𝑠
𝑇(𝑡)𝑊𝑥𝑥𝑠(𝑡)  +  𝑢𝑐

𝑇(𝑡)𝑊𝑢𝑢𝑐(𝑡) +   2𝑥𝑠
𝑇(𝑡)𝑊𝑥𝑢𝑢𝑐(𝑡)) 𝑑𝑡

∞

𝑡=0

 (2.22) 

 

𝑧(𝑡), which is the performance vector is linear combination of system states as given, 

𝑧(𝑡) = 𝐶𝑧𝑥𝑠(𝑡) + 𝐷𝑧𝑢𝑐(𝑡)  (2.23) 

 

where 𝐶𝑧 = [
−𝐼4𝑥4 𝐼4𝑥4 04𝑥1

01𝑥4 01𝑥4 1
01𝑥4 01𝑥4 0

] ϵ  R6𝑥9  is the selector matrix from the system 

states, and 𝐷𝑧 = [
05𝑥1

1
] ϵ  R6𝑥1 is the selector matrix for the system commanded 

control input. By inserting (2.23) into (2.21), the rewritten form of the cost function is 

get as, 

𝐽 =  ∫ ((𝐶𝑧𝑥𝑠(𝑡) +  𝐷𝑧𝑢𝑐(𝑡))
𝑇
𝑄𝑧  (𝐶𝑧𝑥𝑠(𝑡)  + 𝐷𝑧𝑢𝑐(𝑡)))𝑑𝑡

∞

𝑡=0

 (2.24)  

 

which yields, 

𝐽 =  ∫ ((𝑥𝑠
𝑇  (𝑡)𝐶𝑧

𝑇𝑄𝑧 + 𝑢𝑐
𝑇(𝑡)𝐷𝑧

𝑇𝑄𝑧)(𝐶𝑧𝑥𝑠(𝑡) + 𝐷𝑧𝑢𝑐(𝑡)))𝑑𝑡
∞

𝑡=0

 (2.25) 

 

If the terms in (2.25) are collected as, 

𝐽 =  ∫ (𝑥𝑠
𝑇(𝑡)𝐶𝑧

𝑇𝑄𝑧𝐶𝑧𝑥𝑠(𝑡) + 𝑢𝑐
𝑇(𝑡)𝐷𝑧

𝑇𝑄𝑧𝐷𝑧𝑢𝑐(𝑡)
∞

𝑡=0

+ 2𝑥𝑠
𝑇(𝑡)𝐶𝑧

𝑇𝑄𝑧𝐷𝑧𝑢𝑐(𝑡))𝑑𝑡 

(2.26) 
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If the equations in (2.22), and (2.26) are compared term by term, the weight matrices 

could be related with the equations as, 

𝑊𝑥 = 𝐶𝑧
𝑇𝑄𝑧𝐶𝑧       𝑊𝑢 = 𝐷𝑧

𝑇𝑄𝑧𝐷𝑧       𝑊𝑥𝑢 = 𝐶𝑧
𝑇𝑄𝑧𝐷𝑧   (2.27) 

 

where 𝑊𝑥  𝜖  𝑅
9𝑥9 , 𝑊𝑢 𝜖  𝑅 and 𝑊𝑥𝑢 𝜖  𝑅9𝑥1 . 

With the usage of the minimization function which is solved optimally, the input by 

the control system on the system model is calculated as, 

𝑢𝑐(𝑡) =  −𝐾 𝑥𝑠(𝑡) (2.28) 

 

The total gain 𝐾 ϵ  R1𝑥9 for the MFC is given in the equation (2.28). The linear 

quadratic regulation method is used in the computation of the ultimate gain of the 

controller 𝐾. As the procedure of this method, the Riccati equation is solved firstly,  

𝐴0
𝑇𝑋 + 𝑋𝐴0 − (𝑋𝐵0𝑢 + 𝑊𝑥𝑢)𝑊𝑢

−1(𝐵0𝑢
𝑇 𝑋 + 𝑊𝑥𝑢

𝑇 ) + 𝑊𝑥  (2.29) 

 

is solved. The solution of the Riccati equation is, 𝑋 ϵ  R9𝑥9 . Then, the calculation of 

the gain of the controller is done by the equation, 

𝐾 = 𝑊𝑢
−1(𝐵0𝑢

𝑇 𝑋 + 𝑁𝑇) (2.30) 

 

In the end, the design is concluded. 

The equation for the closed loop of the MFC, is determined by substituting the 

commanded input of the control system on the system model with (2.28) as, 

𝑥�̇�(𝑡) = 𝐴0𝑥𝑠(𝑡) + 𝐵0𝑢(−𝐾𝑥𝑠(𝑡)) + 𝐵0𝑟𝑟(𝑡)  

           = (𝐴0 − 𝐵0𝑢𝐾)𝑥𝑠(𝑡) + 𝐵𝑜𝑟𝑟(𝑡)  (2.31) 

     = 𝐴𝑐𝑙𝑥𝑠(𝑡) + 𝐵𝑐𝑙𝑟(𝑡)    
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The system matrix for the closed loop is 𝐴𝑐𝑙 ϵ  R
9𝑥9  , and the closed loop input matrix 

is 𝐵𝑐𝑙ϵ  R
9𝑥1 . 

Figure 2.1 gives the block diagram for the MFC. As seen, the reference command 

directly drives the reference model, and to compute the control input commanded 𝑢𝑐 

the compound state vector is multiplied by the gain of the controller 𝐾. 

 

Figure 2.1 Model Following Control 

 

The weight matrix given in (2.21), used in the calculation of the cost function to 

calculate the optimal controller gain is selected as, (Gezer, 2014) 

𝑄𝑧 =  

[
 
 
 
 
 
0.1 0 0 0 0 0
0 100 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1000 0
0 0 0 0 0 1]

 
 
 
 
 

 (2.32) 

 

The resulting controller gain of the MFC is, (Gezer, 2014a) 

𝐾 = [20.9    37.7    5.6     1  − 20.9   − 37.7   − 5.6  − 1   − 31.6] (2.33) 
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The computation for the gain of the controller 𝐾, concludes the MFC design for the 

sample system model. 

2.3. Simulation Example 

The equation (2.7) gives the model for the plant belonging to the slender delta wing 

combined with the actuator model and the disturbance input. The system block 

diagram subjected to the external disturbance, dynamics of wing rock, and 

measurement noise inputs is given in Figure 2.2. 

 

 

Figure 2.2 MFC with dynamics of wing rock, external disturbance and measurement 

noise 

For the MFC controller performance observation, two types of reference command 

step is applied. Step command is the first one and sine wave is the second one. The 

step command applied to the MFC controlled system, is a step sequence as given in 

Figure 2.3, the sine wave command applied to the MFC controlled system is as given 

in Figure 2.4. 

As mentioned in (2.1), two parts constitute the disturbance applying on the system 

Random external disturbance is the first part of the disturbance. The possibility of gust 

subjection upon the delta wing is modelled with this input of external disturbance. The 

random external disturbance is function of time only and makes peak around -10 
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degrees and +10 degrees. This means that in case of that amount of gust occurrance 

upon the system, to remove the unexpected disturbance effect upon the system, the 

controller should apply exact opposite amount of control surface deflection command. 

Figure 2.5 shows the random external disturbance. 

Wing rock dynamics is the second part of the disturbance applying upon the system. 

The angle of roll and rates of roll for the delta wing could be affected by the wing rock 

dynamics which produces external moment upon the system The mathematical 

relation expressing the disturbance of the wing rock 𝛿𝑤𝑟(𝑥(𝑡)) in terms of the system 

states is given in (2.4) as, 

𝛿𝑤𝑟(𝑥(𝑡)) = 𝛼1𝑥2 + 𝛼2𝑥1 + 𝛼3|𝑥2|𝑥1 + 𝛼4|𝑥1|𝑥1 + 𝛼5𝑥1
3  (2.34) 

 

Figure 2.6 shows the wing rock dynamics applying upon the system. 

It is modelled by the assumption that the noise disturbing the evaluation of the roll 

rate of the system 𝑛𝑥1(𝑡) is a Gaussian distributed random signal which has zero mean 

and 10−4 𝑟𝑎𝑑/𝑠 variance, as shown in Figure 2.7. 
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Figure 2.3 Step Command Input 

 

Figure 2.4 Sine Wave Command Input 
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Figure 2.5. Random External Disturbance vs time 

 

Figure 2.6. Wing Rock Dynamics vs time 
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Figure 2.7 Noise added to Roll Turn Rate vs time 

 

Figure 2.8 MFC Response to Step Command Input Under the Effect of Wing Rock 

Dynamics, Random External Disturbance and Noise 
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Figure 2.9 MFC Response to Sine wave Command Input Under the Effect of Wing 

Rock Dynamics, Random External Disturbance and Noise 

 

Figure 2.8 shows that, the reply of the MFC controlled system being exposed to the 

dynamics of wing rock, random external disturbance and noise, is fluctuating around 

the reference model response. It could be acceptable since not diverging from the 

reference model response, however needs to be further enhanced. The random external 

disturbance used in MFC, has 20 variance and simulated at 0.1 time step. Figure 2.4 

shows the command which is sine wave applied to the MFC controlled system. The 

reply of the MFC controlled system is seen in Figure 2.9, which is exposed to the 

random external disturbance, dynamics of wing rock, and noise, and subjected to the 

command input which is sine wave that is given in Figure 2.4. As the case in Figure 

2.8 the system could pursue the reference model response with the impact of MFC, 

without diverging from the path. The shift between the reference roll angle and 

commanded sine wave is a result of designed controller. Though the shift, with the 
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impact of MFC, the behaviour of the model belonging to the system resembles to the 

behaviour of the reference model as a response to the reference input, which could 

eliminate the effects of random external disturbance, dynamics of wing rock, and 

noise. Though, since the fluctuations seen in Figure 2.9, it could be said that MFC 

should be further developed to eliminate the disturbances occurring on the system 

model. 
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CHAPTER 3  

 

3. MODEL REFERENCE ADAPTIVE CONTROL 

 

MRAC, model reference adaptive controller, is one of the most utilized adaptive 

controller type used for modern control applications. Samples of MRAC design could 

be seen in (Jain & M.J, 2013), (Eugene Lavretsky, n.d.), (Stepanyan & Krishnakumar, 

2014), (Liu, Tao, & Joshi, 2010), (Arabi, Yucelen, & Gruenwald, 2018). 

As in the MFC, model following controller, MRAC, also uses the reference model, as 

to be a precedent for the system model. The term which is the difference between the 

outputs of the reference model and the plant model is aimed to converge to zero as 

much as possible. For the aim of excluding the difference between the outputs of the 

models, due to the uncertainties in the system model and environmental disturbances, 

adaptive elements are determined. The adaptive elements are updated according to the 

law of weight update during the simulation.  

In the primary MRAC, the parametrization of the uncertainty is done using the known 

functions dependent on the system variables. In this manner, it is assumed that the 

uncertainty is structured and the parametrization is done using the system variables. 

This section is formed by four sections. MRAC design method is given in 3.1, 

simulation with MRAC for the case challenging is given in 3.2, concurrent learning 

model reference adaptive control method and the update law of weight regarding with 

the proposed method is given in 3.3 and 3.4, algorithm of data selection for the stored 

data memory during the concurrent adaptive learning is given in 3.4.1. 
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3.1. Model Reference Adaptive Control 

The mathematical representation corresponding the MRAC applied upon a general 

system model is given in this section. Consider the general mathematical 

representation for the system model as the one given in (2.1) as, 

�̇�(𝑡) =  𝐴𝑥(𝑡) + 𝐵[𝑢(𝑡) + Δ(𝑡)] (3.1) 

 

𝑥(𝑡) ϵ R𝑛  is the vector representing the state and 𝑢 ϵ R is the input of the control 

system. It is assumed that the general system has single input, and 𝑢 ϵ R is the input 

of the control system. Δ(𝑡)ϵ  R is the external disturbance upon the system. The 

structure of the disturbance is assumed to be in the form of, 

Δ(𝑡) =  𝑊𝛽(𝑥(𝑡)) (3.2) 

 

For the disturbance estimation in (3.2), 𝛽(𝑥(𝑡)) symbolizes the parametrization of 

the uncertainty. In MRAC, in this section, the parametrization of the uncertainty is 

done as being dependent on the system states. The constant ideal weights are 

represented by 𝑊, which are the weights of the corresponding parametrization. 

𝑢(𝑡) which is the input of the control system is computed by the algebraic subtraction 

of the adaptive controller from the nominal controller as, 

u(𝑡) = 𝑢𝑛(𝑡) − 𝑢𝑎𝑑(𝑡) (3.3) 

 

with nominal control input 𝑢𝑛(𝑡) ϵ R, and for adaptive control input 𝑢𝑎𝑑(𝑡)ϵ R. 

In the calculation of the nominal input 𝑢𝑛(𝑡), a full-state feedback method is used. 

The full-state feedback controller is, 

𝑢𝑛(𝑡) = −𝐾𝑟𝑥(𝑡) + 𝐾𝑟𝐻𝑟(𝑡) (3.4) 

 



 

 

 

31 

 

𝐾𝑟  ϵ R1𝑥𝑛  is the controller gain. 𝑟(𝑡) ϵ R, is the reference command input to the 

system. 𝐻 ϵ R𝑛𝑥1  is the reference input matrix. 

Since the aim is to satisfy that the system model which is closed loop controlled with 

the nominal input behaves as the specified model, the gain of the controller 𝐾𝑟  is 

calculated for the sake. In other words, the reply of the closed loop system controlled 

with nominal input without any disturbances, is equal to the reference model response 

which is desired.  

Hence, the system equation for the specified model used for the MRAC is as, 

𝑥�̇�(𝑡) = (𝐴 − 𝐵𝐾𝑟) 𝑥𝑟(𝑡) + 𝐵𝐾𝑟𝐻𝑟(𝑡) (3.5) 

       𝑥�̇�(𝑡) = 𝐴𝑟𝑥𝑟(𝑡) + 𝐵𝑟𝑟(𝑡)    

 

𝑥𝑟(𝑡) ϵ R
𝑛𝑥1  which is the specified model state, has the same dimension with the 

system state. Reference model system matrix 𝐴𝑟 = 𝐴 − 𝐵𝐾𝑟   ϵ R𝑛𝑥𝑛 , and reference 

model input matrix 𝐵𝑟 = 𝐵𝐾𝑟𝐻 ϵ R𝑛𝑥1 , are as seen from the specified model equation. 

In order to exclude the disturbance from the system, the adaptive controller is 

designed. The purpose of the adaptive controller is to exclude the disturbance upon 

the system. So, it is expected that the adaptive input and the disturbance have the same 

form of structure, so as the adaptive input could cancel the disturbance. The 

disturbance is assumed to have structured uncertainty, such that it is parametrized as 

multiplication of known function and the weight coefficients. The known function 

depends on system states, and the weight coefficients is stated by a vector which 

parameterizes each component of the known function. Since as mentioned the 

adaptive input should be in the same form of disturbance structure, it should also be 

in the form of multiplication of weight coefficients with the known function which 

depends on system states. In this case, since the weights are not known by the 

controller, it is assumed that the ideal weight coefficients exists and they should be 

estimated. The formulation for the adaptive controller is, 
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𝑢𝑎𝑑(𝑡) = �̂�(𝑡) 𝛽(𝑥(𝑡)) (3.6) 

 

The dimension of the predicted weights �̂�(𝑡) is the same with the ideal weights and 

adaptive controller updates these weights at each step during the simulation. 

The update law of the weights used in MRAC is, 

�̇̂�(𝑡) = Γ𝛽(𝑡)𝑒(𝑡)𝑇𝑃𝐵  (3.7) 

 

The learning rate for the update law of the weights is represented by Γ, in (3.7). The 

learning rate determines the structure of the design. The increase in the value of Γ, 

causes the adaptation mechanism try to update the weight coefficient faster. As a result 

of this, it estimates the disturbance on the system faster. The decrease in the value of 

Γ, causes the stiffness of learning the disturbance mechanism get to be tougher. This 

results, increase in the time duration in learning the disturbance structure. So, the 

design selection multiplier Γ, is defined as the rate of learning for the adaptation. 

The term of the difference between the outputs of the reference model and the plant 

model is represented as 𝑒 as given in (3.7). The mathematical relation for the 

calculation of 𝑒 is given as, 

𝑒(𝑡) = x(t) − xr(𝑡)  (3.8) 

 

where 𝑒(𝑡) ϵ R𝑛𝑥1 . This term also drives the adaptation mechanism. As the term of 

the difference between the outputs of the reference model and the plant model 

decreases, e converges to zero neighbourhood. This means that weight coefficient 

estimation of the ideal weights has become successful in the uncertainty 

parametrization process. On the other hand, the increase in 𝑒, drives the weight update 

law in the way to increase the coefficients in order to estimate the disturbance more 

faster. 
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The constant matrix 𝑃 in (3.7) is computed by using the equation of Lyapunov which 

is, 

𝐴𝑟
𝑇𝑃 + 𝑃𝐴𝑟 + 𝑅 = 0  (3.9) 

 

As shown in (3.9), in the Lyapunov equation, 𝐴𝑟, system matrix of the reference model 

is used. The matrix 𝑅 is a symmetric matrix with all positive eigenvalues, which is a 

design selection matrix. Any positive definite matrix could be selected to manage the 

MRAC adaptation mechanism. 

The stability proof of Lyapunov theorem is omitted in this section. A simple 

explanation for the proof of stability of the basic MRAC, in which parametrization of 

the uncertainty is done by using familiar functions that depend on the states of the 

system can be found in (Yucelen, 2012). 

The block diagram for the MRAC is shown, in Figure 3.1. 

 

Figure 3.1 MRAC Block Diagram 
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As seen from the figure, the update law of the weight is driven by the term of 

difference between the outputs of the reference model and the plant model. The 

adaptive control input is also driven by update law of weight, and updated with the 

new weight concurrently. For the aim of excluding the disturbance applying upon the 

system, the algebraic difference of the nominal control input and the adaptive control 

input is get. It is assumed that the uncertainty parametrization is known, and 

constructed with the known functions that depends on the system states. So, both the 

update law of weight and the adaptive control input uses the states of the system as 

the feedback. 

The general overview of the MRAC is given in this section. The case in which the 

defined sample system model exposed to challenging disturbance, and controlled with 

MRAC is given in the upcoming section. 

3.2. Simulation with MRAC for the Challenging Case 

The achievement of the MRAC method under the case that is challenging, such that 

external disturbance, dynamics of wing rock and noise on the rate of roll angle for the 

slender delta wing is examined in this section. Wing rock dynamics is function of 

system states, as given in (2.4). Since as the parametrization of the uncertainty, MRAC 

uses known functions that depend on system states, wing rock dynamics equation is a 

good example as the basis function construction. The wing rock dynamics equation is 

constructed by the multiplication of constant ideal weights and known function of 

system states, while the parametrization function in MRAC is also constructed by the 

same function that depend on system states. Determination of the function coefficients 

will be done in the sections related with the update law of the weight. 

The equation of the dynamics of wing rock for the defined delta wing is, 

                            𝛿𝑤𝑟(𝑡) = 𝑊𝛽(𝑥(𝑡)) (3.10) 

                                          = 𝛼1𝑥2 + 𝛼2𝑥1 + 𝛼3|𝑥2|𝑥1 + 𝛼4|𝑥1|𝑥1 + 𝛼5𝑥1
3 
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The vector form of the function 𝛽(𝑥(𝑡)) in (3.10) that depends on the states of the 

system is, 

𝛽(𝑥(𝑡)) =

[
 
 
 
 

𝑥2

𝑥1

|𝑥2|𝑥1

|𝑥1|𝑥1

𝑥1
3 ]

 
 
 
 

  (3.11) 

 

The vector of the ideal weights of which elements match the elements in the system 

state function vector is 

 𝑊 = [𝛼1   𝛼2   𝛼3   𝛼4   𝛼5]  (3.12) 

 

The mathematical value for the ideal weights is taken from (Yucelen & Johnson, 

2012), as given 2.1. 

𝑊 = [𝛼1  𝛼2   𝛼3   𝛼4  𝛼5] (3.13) 

                                                   
= [0.1414      0.5504    − 0.0624      0.0095      0.0215] 

 

The system equation with the dynamics of wing rock is, 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵(𝑢(𝑡) + 𝑊𝛽(𝑥(𝑡)) + 𝛿𝑒𝑥(𝑡)) (3.14) 

 

The system matrix A, and the input matrix B corresponding the roll dynamics of a 

slender delta wing are, 

𝐴 = [
0 0
1 0

]       𝐵 =  [
1
0
] (3.15) 

 

𝜔𝑛 = 0.4 𝑟𝑎𝑑/𝑠 and 𝜁𝑛 = 0.707 are the selected values of the natural frequency 

desired and the damping ratio for the reference model. The formula belonging to 
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Ackermann is used to calculate the specified model and the gains of the nominal 

controller 𝐾𝑟 as given in (2.12). The gains are, 

𝐾𝑟 = [0.57 0.16] (3.16) 

 

The state space equation for the reference model is, 

   𝑥�̇�(𝑡) = ([
0 0
1 0

] − [
1
0
] [0.57 0.16]) 𝑥𝑟(𝑡) + [

1
0
] [0.57 0.16] [

0
1
] 𝑟(𝑡)  

(3.17) 
𝑥�̇�(𝑡) =  [

−0.57 −0.16
1 0

] 𝑥𝑟(𝑡) + [
0.16
0

] 𝑟(𝑡) 
   

 

So the compact form of the specified model is, 

𝑥�̇�(𝑡) = 𝐴𝑟𝑥𝑟(𝑡) + 𝐵𝑟𝑟(𝑡) (3.18) 

 

The nominal controller used in the MRAC is, 

𝑢𝑛(𝑡) = −𝐾𝑟𝑥(𝑡) + 𝐾𝑟𝐻𝑟(𝑡) (3.19) 

 

where the selection matrix is, 

𝐻 = [
0
1
] (3.20) 

 

The nominal controller numerical representation is, 

𝑢𝑛(𝑡) = −[0.57 0.16]𝑥(𝑡) + 0.16𝑟(𝑡) (3.21) 

 

The adaptive control input for the MRAC is computed with, 

𝑢𝑎𝑑(𝑡) = 𝑊 ̂(𝑡) 𝛽(𝑥(𝑡)) (3.22) 
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It is assumed that the vector of parametrization 𝛽(𝑥(𝑡)) is known. The representation 

of the vector with the dimension is 𝛽(𝑥(𝑡)) ϵ R5𝑥1 . The representation of the 

parametrization weightings vector with the dimension is 𝑊 ϵ R1𝑥5 . The law of the 

weight update could be used in the computation of the estimated weights. The law of 

the weight update is as, 

𝑊 ̂̇ (𝑡) = Γ𝛽(𝑡)𝑒(𝑡)𝑇𝑃𝐵 (3.23) 

 

The representation of the learning rate Γ with the dimension in the law of weight 

update is Γ ϵ R5𝑥5 and is chosen as a design selection (Gezer, 2014b). The learning 

rate for the MRAC design in this study is chosen as, 

Γ =

[
 
 
 
 
10 0 0 0 0
0 10 0 0 0
0 0 10 0 0
0 0 0 10 0
0 0 0 0 10]

 
 
 
 

 (3.24) 

 

The selection of learning rate is a design criteria, since it effects the weight update rule 

directly. As the rate of learning rises more than the required value, then robustness of 

the system model declines. The further rise, could also cause instability of the system 

under defined disturbances. On the other hand, the decrease in learning rate leads the 

adaptation to be insensitive to the disturbances. 

The Lyapunov equation given in (3.9) is used in the calculation of the matrix 𝑃 in 

(3.23). Another design selection in the Lyapunov equation is the 𝑅 matrix used. The 

selected matrix is as, (Gezer, 2014b) 

𝑅 = [
1000 0

0 0.01
] (3.25) 
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The selection of the 𝑅 matrix effects the sensitivity level of the adaptation upon the 

term of error. The term of error is defined as the difference between the outputs of the 

reference model and the plant system. Each diagonal element in the 𝑅 matrix effects 

the corresponding element of the error vector. The states of the delta slender wing are 

rate of roll and angle of roll respectively. By regulating the elements on the diagonal 

of the 𝑅 matrix, the magnitude of the effect and the type of the state to effect the 

adaptation law could be determined. As a design selection, in this study, it is 

determined as the value in (3.25). 

For examining the challenging case, two sets of inputs are used. These inputs are stair 

step command shown in Figure 2.3, and the sine wave command shown in Figure 2.4. 

The simulations are done including 𝛿𝑒𝑥(𝑡) which is the random external disturbance 

shown in Figure 3.4, 𝛿𝑤𝑟(𝑥(𝑡)) which is dynamics of wing rock defined in (3.10), and 

the noise in roll rate measurement defined in 2.3. 

The block diagram of the MRAC controlled system is given in Figure 3.. The control 

actuator system is not shown in the figure. It is also not included to the design of the 

controller. However, the control actuator system with the properties defined in 2.1, is 

used in the simulations. 

Since the measurement of the states is assumed to be fast enough, the measurement 

dynamics is neglected. 

Figure 3.7 gives the reply of the MRAC exposed to the given disturbances upon the 

step command input. Figure 3.8 gives the reply of the MRAC exposed to the given 

disturbances upon the sine wave command input. 
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Figure 3.2. Reference Command Input vs time 

 

Figure 3.3. Reference Command Input vs time 
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Figure 3.4. Random External Disturbance vs time 

 

Figure 3.5. Wing Rock Dynamics vs time 
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Figure 3.6.Noise added to Roll Turn Rate vs time 

 

Figure 3.7. MRAC Response to Step Command Input under the Effect of Dynamics 

of Wing Rock, Random External Disturbance and Noise 
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Figure 3.8. MRAC Response to Sine Wave Command Input under the Effect of 

Dynamics of Wing Rock, Random External Disturbance and Noise 

 

As it is seen from both Figure 3.7, and Figure 3.8, the response of the slender delta 

wing controlled with MRAC, exposed to the effect of random external disturbance, 

dynamics of wing rock and noise, is far away from the reference model response. So, 

it is not acceptable behaviour in terms of performance of the controller, though could 

be reasonable in terms of stability since the response is not diverging under the effects 

of mentioned disturbances. The reason of poor performance of the MRAC in this study 

is proposed that, the uncertainty parametrization in MRAC has not been done in terms 

of the structure of the uncertainty. In fact, the divergence is caused from the inclusion 

of the unexpected random external disturbance which depends on time. But in MRAC, 

the parametrization of the uncertainty is done in terms of the system variables. In this 

thesis, it is proposed that each uncertainty should be predicted in terms of its own 

structure. Such that if it is in terms of time, then the uncertainty parametrization should 
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also be done likewise, if it is in terms of state variables, vice versa. The examples will 

be given in the following sections in detail. 

3.3. Concurrent Learning Model Reference Adaptive Control 

The superiority of a control system is its capability to capture the system plant model 

accurately. However the coupled dynamics occuring due to the aerodynamic 

interactions of the body parts of the air vehicle, unmodelled dynamics like the 

measurement dynamics, nonlinearities, could cause unknown plant dynamics. 

Additionally, from the environmental perspective, the events occuring in the open air 

is unpredictable, like the turbulences, or measurement noise, or any other unexpected 

external disturbances. So, both the plant and the environmental dynamics is prone to 

deficiencies in terms of modelling. Adaptive controller or the adaptive element 

inclusion to the basic controller has emerged in order to eliminate this gap in 

modelling, and lead the controller to do its mission thoroughly, like preserving that 

the system model is stable and performs properly. 

Depending on the case whether the parametrization of the uncertainty could linearly 

be done with the known basis functions or not, the uncertainties could be structured 

or unstructured. In the MRAC, if the uncertainty is structured, then, the adaptive 

element is also constructed by the same parametrization function. If the uncertainty is 

unstructured, but is continuous in a restricted domain, then multi layer Neural 

Networks or other polynomial approximation techniques are used as the well known 

regression techniques.  

The general representation of a structured or unstructured uncertainty is defined as, 

Δ(𝑥(𝑡)) = 𝑊𝑇𝑓(𝑥(𝑡)) (3.26) 

 

where a constant matrix of unknown gain is denoted by 𝑊, and the basis function used 

to parameterize the uncertainty is denoted by 𝑓(𝑥(𝑡)). In (3.26), the uncertainty 

parametrization 𝑓(𝑥(𝑡)) could be either in terms of time only, or in terms of system 
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state at first degree, and time in second degree. If it is in terms of system state at first 

degree, it is defined as in terms of system state, in this study. 

If the uncertainty addition into the system is through the control channel, then the 

uncertainty is defined as matched. So, the adaptive control input could cancel the 

uncertainty, in case of appropriate adaptive control input determination. In MRAC, 

appropriate adaptive control input determination is done by the same parametrization 

function used in uncertainty parametrization, as given in (3.27) 

uad(𝑡) = 𝑊𝑇𝑓(𝑥(𝑡)) (3.27) 

 

where 𝑓(𝑥(𝑡)) denotes the basis function used to parametrization of the uncertainty. 

𝑊 denotes the weight matrix that needs to be updated according to Lyapunov stability 

theorem at each time step of the simulation for the weight convergence. Convergence 

of the weights or remaining in a compact domain means that the uncertainty could be 

predicted approximately. 

In MRAC, the main issue is to satisfy asymptotic command tracking, such that the 

system responses in the same way with the reference model upon the reference 

command input despite the uncertainties. This could be in case when the weights do 

not converge. On the other hand, the weights could also converge, while the command 

is tracked also. For the convergence of the weights, the necessary criteria that is to be 

satisfied is PE, meaning persistency of excitation. PE, puts restriction on the reference 

command input, such that reference command input causes all the system states to be 

excited. So, the convergence of the weights and thus uncertainty parametrization 

would be successful. PE condition, both satisfies weight convergence and also 

guarantees the boundedness of the parameters. However it is difficult to put criteria 

on the input to the system which is hard to predict and monitor. It is stated in (Eugene 

Lavretsky, n.d.) that in linear systems, there is no need of PE for weight convergence, 

if the input is summation of sinusoids with different frequencies. However Chowdhary 

(Öveç, 2016), declares that in nonlinear systems, as a proposal, PE condition could be 
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loosen, by the addition of concurrent learning algorithm to the classical MRAC 

scheme. In classical MRAC applications, the adaptive control input is calculated at 

one step of the simulation and assumed to cancel the disturbance at each time step of 

the simulation. On the other hand, the convergence of the weight is not guaranteed in 

this case. In order to solve this, many learning algorithms have evolved. These 

algorithms work to form the adaptive control input iteratively to improve tracking 

accuracy. So, online adaptive control schemes are used by these algorithms to learn 

the disturbance, and some of studies could be found in (Pearlmutter, 1990). The 

algorithm of concurrent learning, is based on usage of the previous and the current 

data together to adapt the law of control weights. The main advantage of this algorithm 

is that, if the recorded data is valuable enough to express the disturbance, then without 

requiring PE condition, the convergence of the weights to their actual values or 

remaining in a restricted region is available. The convergence of weight is desired 

since it guarantees the performance in time that is transient be bounded exponentially 

and the convergence of error exponentially, so both the system behaves as the 

reference model, and the signals do not diverge.  

𝜙(𝑡), is a vector signal that is bounded is exciting persistently if for all 𝑡 > 𝑡0 there 

exists 𝑇 > 0 and 𝛾 > 0 such that, (Öveç, 2016) 

∫ 𝜙(𝜏)𝜙𝑇(𝜏)𝑑𝜏
𝑡+𝑇

𝑡

≥ 𝛾𝐼 (3.28) 

where ∫ 𝜙(𝜏)𝜙𝑇(𝜏)𝑑𝜏 𝜖 𝑅𝑚𝑥𝑚 𝑡+𝑇

𝑡
. 

This condition means that if the exogeneous reference input contains as many spectral 

lines as the number of unknown parameters, then the states of the plant are excited 

persistently. In concurrent adaptive learning, this excitation is satisfied without the 

need of putting restriction on the reference input command, since uses the previous 

and current data at the same time. The history stack is named for the past data. It is 

expected that as many elements 𝜙𝑘 ϵ R𝑚  which are linearly independent as the 

dimension of the basis of the uncertainty should be placed in the history stack. If 𝑍 =
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[𝜙1 𝜙2 … 𝜙𝑝] denotes the history stack, then as the rank condition 𝑟𝑎𝑛𝑘(𝑍) =

𝑚. should be satisfied. It is ensured that by the effect of WCC, the accumulated data 

is valuably sufficient to form an appropriate basis for the linearly parametrized 

uncertainty. 

The main transcedence of WCC to PE condition is its easiness in practical application. 

Calculation the rank of a matrix online is straight while PE condition is hard to confirm 

in most cases. For linear systems, in the case that summation of sinusoids with 

different frequencies is chosen to form the exogeneous reference command, the PE 

conditions are satisfied. A single frequency could satisfy that gains of adaptive 

controller converge to their corresponding actual values exponentially (Öveç, 2016). 

However, for nonlinear systems this is difficult to apply. Since in real life cases 

mostly, the exogeneous input could not be known before priorily, online assesment of 

the PE condition is almost impossible. Additionaly, in real applications, excitation the 

states persistently is not desirable due to adverse effects for instance fuel limitation or 

inessential stress loads application. However, the WCC condition could be satisfied in 

a limited time period without further exciatation effort. 

3.4. Concurrent Learning Weight Update Law 

The law of concurrent weight update is based on adding an augmentation term that is 

recorded data based to the basic law of weight update, given in (3.23).  

The recorded and current data are used at the same time, in concurrent learning 

adaptive control, to ensure tracking the reference exponentially and convergence of 

parameter without the need of excitation of the states persistently. (Chowdhary, 2010), 

(Burak, 2016). 

Adaptive law of the concurrent learning has the representation form,  

𝑊 ̂̇ (𝑡) = Γ(  𝛽(𝑥(𝑡))𝑒(𝑡)𝑇𝑃𝐵 + ∑ 𝛽(𝑥𝑗)𝜖𝑗
𝑇(𝑡)

𝑝

𝑗=1

) (3.29) 
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where 𝑗 represents the recorded data point at time 𝑡𝑗, and 

𝜖𝑗(𝑡) = Δ(xj) − �̂�𝑇(𝑡)𝛽(𝑥𝑗) (3.30) 

 

In order to evaluate (3.30), for the 𝑗𝑡ℎ  data point, 𝛽(𝑥𝑗) and Δ(𝑥𝑗) are required. In a 

history stack, namely 𝑍, the basis vector 𝛽(𝑥𝑗) ϵ R𝑠 is stored. 

𝑍 = [β(x1), β(x2), β(x3), … , β(xp) ] ϵ R𝑠𝑥𝑝  (3.31) 

 

If 𝑍 in (3.31) represents the history stack, then 𝑟𝑎𝑛𝑘(𝑍) = 𝑠. Meaning that, the stored 

data stack includes as many linearly independent columns as the dimension of the 

basis vector. 

In other words, the number of the basis vectors 𝑝 stored in 𝑍 must be at least the 

dimension of the basis vectors 𝑠, i.e. 𝑝 ≥ 𝑠.  Besides the basis vector 𝛽(𝑥𝑗), the related 

model error Δ(𝑥𝑗) needs to be defined for the evaluation of (3.29). (Burak, 2016) 

In case B has full column rank, by utilizing left pseudo inverse of 𝐵, Δ(𝑥𝑗) can be 

observed from (2.2), 

Δ(𝑥𝑗) = (𝐵𝑇𝐵)−1𝐵𝑇[𝑥�̇� − Axj − 𝐵𝑢𝑗]  (3.32) 

 

𝐴, 𝐵, 𝑥𝑗 and 𝑢𝑗 are known, and only the estimation of �̇� is required, for the aim of 

estimating the uncertainty of system. The measurement of �̇� explicitly is assumed to 

be accessible in this thesis, so the estimation of 𝑥�̇� is available. 

3.4.1. Data Selection Algorithm for the History Stack 

It is stated in (3.3) that concurrent adaptive learning guarantees convergence of weight 

without the necessity of the PE restriction. Concurrent adaptive learning does this, 

with the usage of such an algorithm that, it stores the upcoming data in the history 
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stack, as long as it includes the same number of linearly independent parameters with 

the basis of the uncertainty. So, the spectral features of the data should be taken into 

account, during the fill of the history stack. To satisfy the rank condition given in 3.4, 

an algorithm should be constructed in order to avoid useless storage of the data, such 

that the new coming data should be stored only if it is dissimilar from the last recorded 

data point. If it were possible to store all the data, then such an algorithm construction 

would be needless, but the limited capacity of the hardware restricts the real life 

applications. In (Chowdhary & Johnson, 2014), the comparison of the functioning of 

several data point selection algorithms, namely cyclic history-stack, static history-

stack, and singular value maximizing are given. Comparing them, singular value 

maximizing approach is the one that provides the fastest parameter convergence. The 

concept behind the singular value maximizing method is that, the minimum 

eigenvalue of 𝜂 determines the rate of convergence of weight directly proportionally. 

(Burak, 2016) It is formulated as, 

𝜎𝑚𝑖𝑛  (𝑍) = [𝜆𝑚𝑖𝑛 (𝑍𝑍𝑇)]1/2 =  [𝜆𝑚𝑖𝑛 (𝜂)]1/2  (3.33) 

 

It is inferred that, the convergence rate is dependent on the minimum 

eigenvalue 𝜆𝑚𝑖𝑛 of the symmetric matrix Ω = ∑ 𝛽𝑗𝛽𝑗
𝑇  

𝑝
𝑗=1  of which proof is given in 

detail in (Chowdhary & Johnson, 2014). Based on that, for the data selection, at any 

𝑗𝑡ℎ  time step, it is aimed to maximize the minimum eigenvalue 𝜆𝑚𝑖𝑛 of the history 

stack 𝑍𝑗 = [ β1, β2, … , 𝛽𝑝]. In the expressions, the index of the last stored point is 

denoted by 𝑝 ϵ N, the associated stored data stack column that is recorded at the 𝑗𝑡ℎ  

time step is represented by 𝛽𝑗, where the entire stored data stack at the same time 

instant is denoted by 𝑍𝑗. The uppermost allowable value of p, which is the uppermost 

stack span is denoted by �̅�, and �̅� ≥ 𝑠 must be satisfied for the convergence of the 

weights, where 𝑠 is the rank of the basis of uncertainty.(Öveç, 2016). 

The SVM algorithm adds any sufficiently different point to the stack until the stack is 

full. Once the stack is full, the algorithm overwrites only if the upcoming data 
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increases the minimum eigenvalue of the symmetric matrix Ω (and so 𝑍𝑗) when it is 

replaced with one of the existing points. In order to assure whether the upcoming data 

is sufficiently different from the existing data, the following rank condition is checked 

𝑟𝑎𝑛𝑘([𝑍 𝛽] ) > 𝑟𝑎𝑛𝑘 (𝑍) (3.34) 

 

The algorithm of SVM is applied when this rank condition is satisfied. Hence, 

maximization of the minimum singular value of the stored data stack with rich terms 

is aimed during the stack construction. For saving data points, the SVM algorithm is 

used in concurrent adaptive learning algorithm. The SVM algorithm flowchart is given 

as, 
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Figure 3.9. Singular Value Maximizing Algorithm Flow Chart 
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CHAPTER 4  

 

4. TIME AND STATE DEPENDENT PARAMETERIZED MODEL REFERENCE 

ADAPTIVE CONTROL 

 

4.1. Time Dependent Uncertainty Parametrization 

Uncertainty parametrization could be done in terms of time variable, such that the 

basis function 𝛽 given in (4.1), as the same function given in 3, 

𝑢𝑎𝑑(𝑡) = �̂�(𝑡) 𝛽𝑡(𝑡) (4.1) 

 

could be constructed in terms of time variable. Time dependent uncertainty 

parametrization examples are given in 4.1.1, and 4.1.2, as Chebyshev polynomials 

based MRAC and Fourier series based MRAC, respectively. Weight update law for 

time dependent uncertainty parametrization is given in 4.1.3. 

4.1.1. Chebyshev Polynomials Based Model Reference Adaptive Control 

If the exact expression between the input and the output structures is not known, then 

the uncertainty is defined as unstructured uncertainty. In case the uncertainty is 

defined inside a restricted domain region and is continuous, then universal function 

approximators like sigmoidal neural networks or radial basis functions can be used as 

the approximation functions. Neural networks require substantial amount of effort. So, 

as an alternative and easier way, polynomial approximation is the other general 

technique to model the uncertainties. Function approximation could not give 

satisfactory results, since without considering the degree of the polynomial, the 

estimation is not ensured to converge to the true function. In theory, the precision of 

approximation is directly proportional with the degree of polynomial. However, rising 
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the degree of the approximating polynomial beyond a limit, could produce 

overparametrization. 

Usage of Chebyshev polynomial of which terms are orthogonal as the basis functions 

for the approximation of the unstructured uncertainty is a better way for elevation of 

standard polynomial approximation, as stated in (Öveç, 2016). The main advantage of 

an orthogonal function is its better approximation capability compared to a regular 

polynomial function. An available method for approximating functions with a series 

of terms that are linearly independent is provided by orthogonal polynomial basis 

function which satisfies faster convergence. In this section, Chebyshev polynomials 

will be used as the approximating basis function in the case of unstructured uncertainty  

Chebyshev polynomials has an important function in the approximation theory, by 

forming a series of orthogonal polynomials. The polynomials are defined for 

𝑥ϵ [−1 1]. In this thesis, cos (𝑡) is used instead of 𝑥 variable. 

𝑇0(𝑥) = 1  

  𝑇1(𝑥) = 𝑥  

𝑇2(𝑥) = 2𝑥2 − 1 (4.2) 

𝑇3(𝑥) = 4𝑥3 − 3𝑥  

⫶  

 

The explicit formulation for Chebyshev polynomials is defined as, 

𝑇𝑛(𝑥) = cos(𝑛𝑎𝑟𝑐𝑐𝑜𝑠(𝑥)) (4.3) 

 

The Chebyshev polynomials could also be represented by the following recurrence 

relation for 𝑛 ≥ 1, 

𝑇𝑛+1 = 2𝑥𝑇𝑛 − 𝑇𝑛−1 (4.4) 
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The orthogonality property could also be defined for the defined interval 𝑥ϵ [−1 1] 

multiplied by the factor √(1 − 𝑥2)−1 as, 

∫
Ti(𝑥)𝑇𝑗(𝑥)

√1 − 𝑥2

1

−1

 𝑑𝑥 = 

0             𝑖 ≠ 𝑗 

𝜋

2
     𝑖 = 𝑗 ≠ 0 

𝜋    𝑖 = 𝑗 = 0 

  (4.5) 

 

The advantage of the orthogonality property is that, the orthogonal terms are linearly 

independent, and so could cover the uncertainty space more accurately. This causes 

that basis polynomials of which terms are orthogonal converge faster with less terms 

compared to the regular polynomials. 

The unstructured uncertainty could be defined as an arbitrary function 𝑓(𝑡). The 

function 𝑓(𝑡) could be approximated using Chebsyhev polynomials as, 

𝑓(𝑡) = ∑𝑤𝑖𝛽𝑖(𝑡)

𝑁

𝑖=1

 (4.6) 

 

where 𝛽 = [𝛽1  𝛽2  …  𝛽𝑁] is the basis function formed by Chebsyhev polynomials 

array up to degree of 𝑁 − 1. The coefficients of the Chebsyhev polynomials are 

denoted by 𝑊 = [𝑤1  𝑤2  …  𝑤𝑁], and are updated with the following update law of 

weight. 

𝑊 ̂̇ (𝑡) = Γ𝛽(𝑡)𝑒(𝑡)𝑇𝑃𝐵 (4.7) 



 

 

 

54 

 

 

Figure 4.1. Reference Command Input vs time 

 

Figure 4.2. External Disturbance vs time 
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Figure 4.3. Wing Rock Dynamics vs time 

 

Figure 4.4. Noise added to Roll Turn Rate vs time 
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Figure 4.5. Chebsyhev Polynomials Based Model Reference Adaptive Control 

 

Figure 4.6. Chebsyhev Polynomials Based Time Dependent Concurrent Adaptive 

Learning Model Reference Adaptive Control 
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Figure 4.7. Comparison of Chebsyhev Polynomials Based Uncertainty 

Parametrization Methods 

 

Figure 4.8. Zoomed part of the Figure 4.7 
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Figure 4.9 Comparison of Chebsyhev Polynomials Based Uncertainty 

Parametrization Methods 

 

The study is done with the first 20 terms of the Chebsyhev polynomials of the first 

kind, which is given in (4.2). In Figure 4.5, Chebsyhev polynomials based MRAC 

graph, and in Figure 4.6, Chebsyhev polynomials based time dependent concurrent 

adaptive learning model reference adaptive control are given. Since they seem to be 

giving the same results, in Figure 4.7, comparison of the two methods has been done, 

and both of them seem to track the reference model closely exposed to the external 

disturbance, dynamics of wing rock and noise, stimulated with reference command. 

The fluctuations could be due to the cos(𝑡) term in the Chebsyhev polynomials 

parameterization. In Figure 4.8, zoomed part of the Figure 4.7 is given, and it is seen 

that CP TD CCAL MRAC, gives less fluctuated results than the CPBMRAC. It could 

be due to the reason that, the usage of the recorded data in concurrent adaptive learning 

leads to faster learning of the uncertainty, than the solely MRAC. Though, since the 
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uncertainty parametrization is time dependent, as the basis function is formed with 

Chebsyhev polynomials, the system states are perturbed at each time step of the 

simulation, and this made the similar benefit of the concurrent adaptive learning of 

which the key point is to eliminate the PE requirement, for the convergence of the 

weights, and so learning of the uncertainty. This situation led that both of the methods 

cause to learn the uncertainty and make the system model track the reference model 

closely. In Figure 4.9, the roll turn rate of the delta wing, the first system state 𝑥1 of 

(2.1) is inspected. As seen, again both the adaptive learning methods give similar 

results, and cause the system model track the reference model closely. Again CP TD 

CCAL MRAC, gives less fluctuated results than the CPBMRAC, due to its data 

storage capability which leads to faster learning of the uncertainty and so does the 

elimination from the system model. 

4.1.2. Fourier Series Based Model Reference Adaptive Control 

Fourier series could be used in the representation of any periodic function. (Gezer, 

2014) Simple periodic functions usage in the formation of that function means the 

representation of a function by Fourier series. Sine and cosine functions are these 

periodic functions. Any periodic function is formed by summing up these simple sine 

and cosine functions multiplied by a fixed weighing factor. 

The periodic disturbances could also be estimated by Fourier series. Meaning that, 

Fourier series could be used in the parametrization of the uncertainty on the system. 

The trigonometric functions forming the Fourier series, sine and cosine functions, are 

kept as the variable part of the adaptive input, and the weighing factors are used to 

predict the disturbance acting on the system and cancel it. The proof of the stability 

for Fourier series based MRAC is given in (Gezer, 2014a) in detail. 

If the function 𝑓(𝑡) repeats itself in a period, then it is named as periodic. The 

repetitive structure of a function 𝑓(𝑡) could be shown as, 

𝑓(𝑡) = f(t + T) (4.8) 
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In fact any function operating in a limited time duration could be accepted as a periodic 

function, so the statement that only repetitive functions are periodic could be relaxed. 

For instance, assume that the function 𝑓(𝑡) = 𝑡 operating in a limited time duration 

and so is not a periodic function, such that, 𝑓(𝑡) = 𝑡  ⩝ 𝑡 ϵ [0, tf] . Then, the function 

𝑓(𝑡) could be represented with a Fourier series expansion which has enough long 

period and series length. The representation for the Fourier series expansion is shown 

as, 

𝑓(𝑡) ≃  F(t) = a0 + ∑ 𝑎𝑘 cos (𝑘
2𝜋

𝑇
𝑡) + 𝑏𝑘

𝑁

𝑘=1

sin (𝑘
2𝜋

𝑇
𝑡)  (4.9) 

 

The Fourier series coefficients are represented by the coefficients  𝑎0, 𝑎𝑘  and 𝑏𝑘 . The 

coefficient number is represented by index 𝑘, and the series length by 𝑁. The 

coefficients of the Fourier series 𝑎0, 𝑎𝑘 and 𝑏𝑘  could be computed by the equations 

given, 

a0 =
1

𝑇
 ∫ 𝑓(𝑡) 𝑑𝑡

T/2

−𝑇/2

 (4.10) 

𝑎𝑘 =
2

𝑇
 ∫ 𝑓(𝑡) cos (𝑘

2𝜋

𝑇
𝑡) 𝑑𝑡

T/2

−𝑇/2

 (4.11) 

𝑏𝑘 =
2

𝑇
 ∫ 𝑓(𝑡) sin (𝑘

2𝜋

𝑇
𝑡) 𝑑𝑡

T/2

−𝑇/2

 (4.12) 

 

The calculated coefficients are scalar constant for the given function 𝑓(𝑡). 

4.1.2.1. Fourier Series Based MRAC Design for Sample System Model 

The Fourier series based MRAC design is done for the slender delta wing system 

model given in (2.1), 

�̇�(t) = [
0 0
1 0

] 𝑥(𝑡) + [
1
0
] ( 𝑢(𝑡) + 𝛿𝑤𝑟(𝑥(𝑡)) + 𝛿𝑒𝑥(𝑡) ) (4.13) 
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The same desired characteristic criteria are selected, for the reference model design. 

The desired natural frequency and damping ratio for the reference model are selected 

as, 𝜔𝑛 = 0.4 𝑟𝑎𝑑/𝑠 and 𝜁𝑛 = 0.707. The reference model has the same form as (3.5), 

The nominal controller of the plant is the same with the selected specified model in 

other words reference model’s controller. The gains of the nominal controller is 

computed by using the formula belonging to Ackermann. The computed gains for the 

system to have the desirable closed loop response characteristics are, (Gezer, 2014b). 

𝐾𝑟 = [0.57 0.16]  (4.14) 

The nominal controller representation is, 

𝑢𝑛 = −𝐾𝑟𝑥(𝑡) + 𝐾𝑟𝐻𝑟(𝑡) (4.15) 

 

where 𝐻 = [
0
1
]. 

Fourier series is used in the formation of adaptive control element. Combination of 

sine and cosine terms with different frequencies is used in the formation of the Fourier 

series based basis function. The basis function vector for a series length of 𝑁, 

𝛽(𝑡) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

1

cos (1
2𝜋

𝑇
𝑡)

cos (2
2𝜋

𝑇
𝑡)

…

cos (𝑁
2𝜋

𝑇
𝑡)

sin (1
2𝜋

𝑇
𝑡)

sin (2
2𝜋

𝑇
𝑡)

…

sin (𝑁
2𝜋

𝑇
𝑡)]

 
 
 
 
 
 
 
 
 
 
 
 
 

 (4.16) 
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The basis function has the dimension of 2𝑁 + 1. This dimension is formed by N terms 

of cosine functions and 𝑁 terms of sine functions. and 1 term for bias. 

For the design of the controller for delta wing system, the series length of the Fourier 

series is selected as 𝑁 = 10. (Gezer, 2014b). Therefore, the basis function has the 

dimension of 21. 

The Fourier series period is chosen as 𝑇 = 200 𝑠𝑒𝑐, that is 3 times longer than the 

operation time of the simulation, which is 50 𝑠𝑒𝑐 (Gezer, 2014b).  

So, both the series length 𝑁, and the period 𝑇 should be determined for the 

construction of the Fourier series. Then, the parameters of the adaptive controller 

could be selected. 

The learning rate for the update law of weight is chosen as, 

Γ = 2 10−1𝐼21𝑥21 (4.17) 

 

The dimension of the identity matrix 𝐼21𝑥21 is 21x21. 

The selection of 𝑅, the design selection matrix for the Lyapunov equation is as, (Gezer, 

2014b) 

R = [
1000 0

0 0.01
] (4.18) 

 

The same selected matrix 𝑅 used in MRAC design which is given in 3 is used. The 

adaptive control input is calculated as, 

uad = �̂�(𝑡)𝛽(𝑡) (4.19) 

 

The estimation of the ideal weights of the Fourier series, is represented as the weighing 

vector �̂�(𝑡). 
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This vector could be shown as, 

�̂�(𝑡) =  [ 𝑎0̂ 𝑎1̂ 𝑎2̂ … 𝑎10̂ 𝑏1̂ 𝑏2  ̂ … 𝑏10 ̂ ] (4.20) 

 

The update law of weight for MRAC, 

�̇̂�(𝑡) = Γ𝛽(𝑡)𝑒(𝑡)𝑇𝑃𝐵 (4.21) 

 

The block diagram representing the Fourier series based MRAC is given in Figure 

4.10. 

MRAC includes the external disturbance, the dynamics of wing rock and measurement 

noise in the rate of roll angle. 
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Figure 4.10. Fourier Series Based MRAC Block Diagram 

 

As in the section of 4.1.1, where the Chebyshev polynomials based adaptive learning 

methods, CPBMRAC and CP TD CCAL MRAC, are compared through Figure 4.1 

and Figure 4.9, in this section also Fourier series based adaptive learning methods, 

FSBMRAC and FS TD CCAL MRAC, are compared, through Figure 4.15 and Figure 

4.19. As seen in Figure 4.15, and Figure 4.16, the Fourier series based adaptive 

learning satisfies more closer reference model tracking than the Chebyshev 

polynomials based adaptive learning results. This could be an indicator that, Fourier 

series has a faster learning capability than the Chebyshev polynomials, under the case 

given in this study, due to its periodic structure. Although the dynamics of wing rock, 

external disturbance, and the noise applying upon the system model are not periodic 
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disturbances, the Fourier series could learn the uncertainty with its periodic structure, 

by exciting the system states all the time. 

  



 

 

 

66 

 

Figure 4.11. Reference Command Input vs time 

 

Figure 4.12. External Disturbance vs time 
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Figure 4.13. Wing Rock Dynamics vs time 

 

Figure 4.14. Noise vs time 
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Figure 4.15. Fourier Series Based Model Reference Adaptive Control 

 

Figure 4.16 Fourier Series Based Time Dependent Concurrent Adaptive Learning 

Model Reference Adaptive Control 
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Figure 4.17. Comparison of Fourier Series Based Uncertainty Parametrization 

Methods 

 

Figure 4.18. Zoomed part of the Figure 4.17 
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Figure 4.19. Comparison of Fourier Series Based Uncertainty Parametrization 

Methods 

 

Both FSBMRAC and FS TD CCAL MRAC, could lead the system model track the 

reference model closely as seen in Figure 4.17 and Figure 4.18. In case of Chebyshev 

polynomials usage as the basis function, it is seen through Figure 4.7 and Figure 4.8, 

that concurrent adaptive learning caused less fluctuations than the solely model 

reference adaptive control due to its data storage capability. However, in the case of 

Fourier series usage as the basis function, it is seen thorough Figure 4.17 and Figure 

4.18, solely FSBMRAC, could give closer reference model tracking even than the FS 

TD CCAL MRAC, due to the faster learning capability of the Fourier series. In Figure 

4.19, the roll turn rate of the delta wing, the first system state 𝑥1 of (2.1) is inspected. 

Again, it is seen that model reference adaptive control of which basis function is 

Fourier series, could also be used instead of concurrent adaptive learning method. 
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4.1.3. Weight Update Law for Time Dependent Uncertainty Parametrization 

The uncertainty parametrization is whether it is structured or unstructured could be 

done with the basis functions. Adaptive control input is then constructed with the 

multiplication of the basis function, such that 𝛽, and the weighing factor, 𝑊. Since the 

uncertainty is approximated with the adaptive input, then by the application of the 

adaptive input in the control input, the uncertainty could be removed from the system 

model. The weighing factor in the adaptive control is updated at each time step of the 

simulation. The Lyapunov stability theorem dependent law, is used as the law of 

weight update. The law of weight update for the time dependent uncertainty 

parametrization used in this study is given in (4.22). 

𝑊 ̂̇ (𝑡) = Γ(  𝛽𝑡(𝑡)𝑒(𝑡)
𝑇𝑃𝐵 + ∑𝛽𝑡(𝑡)𝜖𝑗

𝑇(𝑡)

𝑝

𝑗=1

) (4.22) 

 

4.2. State Dependent Uncertainty Parametrization 

Uncertainty parametrization could also be done in terms of system state variable, such 

that the basis function 𝛽 given in (4.23) 

𝛽𝑥(𝑥(𝑡)) =

[
 
 
 
 

𝑥2

𝑥1

|𝑥2|𝑥1

|𝑥1|𝑥1

𝑥1
3 ]

 
 
 
 

  (4.23) 

 

which is the same basis function used in the wing rock dynamics equation for the 

defined delta wing, in (3.10). So, the uncertainty parametrization 𝑓(𝑥(𝑡)) could be 

either in terms of time only, or in terms of system state at first degree, and time in 

second degree. If it is in terms of system state at first degree, it is defined as in terms 

of system state, in this study. 
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Law of weight update for the system state dependent uncertainty parametrization is 

given in 4.2.1. 

4.2.1. Weight Update Law for State Dependent Uncertainty Parametrization 

The law of weight update for the state dependent uncertainty parametrization used in 

this study is given in (4.24), of which detailed derivation is given in (Yucelen & 

Haddad, 2012). 

𝑊 ̂̇ (𝑡) = Γ (  𝛽𝑥(𝑥(𝑡))𝑒(𝑡)𝑇𝑃𝐵 − 𝛽𝑥(𝑥(𝑡))𝛽𝑥(𝑥(𝑡))
𝑇
�̂�𝐵𝑇𝐵) (4.24) 

 

4.3. Combination of Time and State Dependent Uncertainty Parametrization 

In 4.1, time dependent uncertainty parametrization is given, and in 0 state dependent 

uncertainty parametrization is given. In this section, as the contribution of this thesis, 

combination of time and state dependent uncertainty parametrization is defined, as the 

part of the adaptive element, to be used in the simulations. In this thesis, it is proposed 

that, whether structured or unstructured, each disturbance should be predicted, in the 

terms of itself variable. Such that, if the uncertainty is in terms of time, then the basis 

function should also be constructed as in terms of time variable. If the uncertainty is 

in terms of state variable, then the parametrization should also be in terms of state 

variable. In case both time dependent and state dependent disturbance enters to the 

system, separately, then each of them should be predicted with the basis function in 

terms of its variable. Then the adaptive control input, should be calculated as the 

summation of each one. For instance for the system model given in 2.3, the external 

disturbance applying upon the system is in terms of time variable, and the dynamics 

of wing rock is in terms of state variable. So, each should be predicted separately. In 

this section, Fourier series is used for time dependent uncertainty parametrization as 

given in (4.25), and state variable dependent basis function as given in (4.26). 
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𝛽𝑡(𝑡) =

[
 
 
 
 
 
 
 
 
 
 
 
 
 

1

cos (1
2𝜋

𝑇
𝑡)

cos (2
2𝜋

𝑇
𝑡)

…

cos (𝑁
2𝜋

𝑇
𝑡)

sin (1
2𝜋

𝑇
𝑡)

sin (2
2𝜋

𝑇
𝑡)

…

sin (𝑁
2𝜋

𝑇
𝑡)]

 
 
 
 
 
 
 
 
 
 
 
 
 

 (4.25) 

 

where 𝑁, the series length is taken as 10; and 𝑇 the Fourier series period is taken as 

200 𝑠𝑒𝑐.  

𝛽𝑥(𝑥(𝑡)) =

[
 
 
 
 

𝑥2

𝑥1

|𝑥2|𝑥1

|𝑥1|𝑥1

𝑥1
3 ]

 
 
 
 

  (4.26) 

 

where the roll turn rate is 𝑥1, and the roll turn of the slender delta wing is 𝑥2 as given 

in 2.1. 

4.3.1. Weight Update Law for Combination of Time and State Dependent 

Uncertainty Parametrization 

In 4.1.3, weight update law for time dependent uncertainty parametrization, and in 

4.2.1, weight update law for state dependent uncertainty parametrization is given. In 

this section, weight update law in case of combination of time and state dependent 

uncertainty parametrization occurrance is given, as the proposal of this thesis. In case 

both time dependent and state dependent disturbance enters to the system, separately, 

then the law of weight update for the adaptive element should be constructed 
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separately for each of them. In this section, (4.27) is the equation of the law of weight 

update for the time dependent uncertainty parametrization, and (4.28) is the equation 

of the law of weight update for the state dependent uncertainty parametrization.  

𝑊 ̂̇ (𝑡) = Γ(  𝛽𝑡(𝑡)𝑒(𝑡)
𝑇𝑃𝐵 + ∑𝛽𝑡(𝑡)𝜖𝑗

𝑇(𝑡)

𝑝

𝑗=1

) (4.27) 

𝑊 ̂̇ (𝑡) = Γ (  𝛽𝑥(𝑥(𝑡))𝑒(𝑡)𝑇𝑃𝐵 − 𝛽𝑥(𝑥(𝑡))𝛽𝑥(𝑥(𝑡))
𝑇
�̂�𝐵𝑇𝐵) (4.28) 

 

So, the adaptive control input for the combination of time and state dependent 

uncertainty parametrization is as given in (4.29), 

𝑢𝑎𝑑(𝑡) = �̂�(𝑡) 𝛽(𝑥(𝑡)) (4.29) 

 

where, 

𝑢𝑎𝑑(𝑡) = 𝑢𝑎𝑑1(𝑡) + 𝑢𝑎𝑑2(𝑡) (4.30) 

 

Assume that 𝑢𝑎𝑑1 eliminates the time dependent uncertainty parametrized 

disturbance, and 𝑢𝑎𝑑2 eliminates the state dependent uncertainty parametrized 

disturbance. Then, 

𝑢𝑎𝑑1(𝑡) = �̂�1𝛽𝑡(𝑡) (4.31) 

 

where, 

�̂�1
̇ (𝑡) = Γ(  𝛽𝑡(𝑡)𝑒(𝑡)

𝑇𝑃𝐵 + ∑𝛽𝑡(𝑡)𝜖𝑗
𝑇(𝑡)

𝑝

𝑗=1

) (4.32) 
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𝛽𝑡(𝑡) = [1 cos (1
2𝜋

𝑇
) ⋯ cos (𝑁

2𝜋

𝑇
) sin (1

2𝜋

𝑇
) ⋯ sin (𝑁

2𝜋

𝑇
)  ]  (4.33) 

𝑢𝑎𝑑2(𝑡) = �̂�2𝛽𝑥(𝑥(𝑡)) (4.34) 

 

where, 

�̂�2
̇ (𝑡) = Γ (  𝛽𝑥(𝑥(𝑡))𝑒(𝑡)𝑇𝑃𝐵 − 𝛽𝑥(𝑥(𝑡))𝛽𝑥(𝑥(𝑡))

𝑇
�̂�𝐵𝑇𝐵) (4.35) 

𝛽𝑥(𝑥(𝑡)) = [𝑥2 𝑥1 |𝑥2|𝑥1 |𝑥1|𝑥1 𝑥1
3]  (4.36) 

 

4.4. Stability Proof 

The stability proof is done by using (Yucelen & Johnson, 2012) and (Yucelen & 

Haddad, 2012). The adaptive control for uncertainty suppression section is used for 

the second reference. We begin by presenting a simple formulation of the adaptive 

control problem without loss of generality (Yucelen & Johnson, 2012). Specifically, 

consider the nonlinear uncertain dynamical system given by, 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵[𝑢(𝑡) + 𝛿(𝑥, 𝑡)], 𝑥(0) = 𝑥0, 𝑡 ∈  𝑅+  (4.37) 

 

where 𝑥(𝑡)  ∈  𝑅𝑛   is the state vector available for feedback, 𝑢(𝑡)  ∈  𝑅𝑚 is the control 

input restricted to the class of admissible controls consisting of measurable functions, 

𝛿: 𝑅𝑛  →  𝑅𝑚 is an uncertainty, 𝐴 ∈  𝑅𝑛𝑥𝑛  is a known system matrix, and 𝐵 ∈  𝑅𝑛𝑥𝑚 

is a known control input matrix such that det(𝐵𝑇𝐵) ≠ 0 and the pair (𝐴, 𝐵) is 

controllable.  

Assumption 1.  The uncertainty in (4.37) is parametrized as, 

𝛿(𝑥) = 𝑊1
𝑇𝛽𝑡(𝑡)  +  𝑊2

𝑇𝛽𝑥(𝑥(𝑡)) + 𝜖, 𝑥 ∈ 𝑅𝑛
 (4.38) 
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where 𝑊1  ∈  𝑅𝑝𝑥𝑚 , 𝑊2   ∈  𝑅𝑠𝑥𝑚 are unknown weight matrixes, and 𝛽𝑡: 𝑅
𝑛 →

 𝑅𝑝 ,  𝛽𝑥: 𝑅
𝑛 → 𝑅𝑠 are known basis functions of the form, 𝛽𝑡(𝑡) =

[𝛽1(𝑡), 𝛽2(𝑡), 𝛽3(𝑡),… , 𝛽𝑝(𝑡)]
𝑇
, 

𝛽𝑥(𝑥(𝑡)) =  [𝛽𝑥1(𝑥(𝑡)), 𝛽𝑥2(𝑥(𝑡)), 𝛽𝑥3(𝑥(𝑡)),… , 𝛽𝑥𝑠(𝑥(𝑡))]𝑇 respectively. 

It is assumed that the approximation error 𝜖, is bounded and the following inequality 

is hold ‖𝜖‖ ≤  𝜖𝑏1 where 𝜖𝑏1 ∈ 𝑅 is known positive constant. (Patre, 2009) 

Next, consider the ideal reference system capturing a desired closed loop dynamical 

system performance given by, 

𝑥�̇�(𝑡) = 𝐴𝑟𝑥𝑟(𝑡) + 𝐵𝑟𝑟(𝑡), 𝑥𝑟(0) = 𝑥𝑟0, 𝑡 ∈  𝑅+  (4.39) 

 

where 𝑥𝑟(𝑡)  ∈  𝑅𝑛 is the state reference vector, 𝑟(𝑡)  ∈  𝑅𝑚 is a bounded command 

for tracking (or 𝑟(𝑡) ≡ 0 𝑓𝑜𝑟 𝑠𝑡𝑎𝑏𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛), 𝐴𝑟  ∈  𝑅𝑛𝑥𝑛 is the Hurwitz reference 

system matrix, and 𝐵𝑟  ∈  𝑅𝑛𝑥𝑚is the command input matrix. The objective of the 

adaptive control problem is to construct a feedback control law 𝑢(𝑡) such that the state 

vector 𝑥(𝑡), asymptotically follows the reference state vector 𝑥𝑟(𝑡) subject to 

Assumption 1.  

For the purpose of solving the adaptive control problem, consider the feedback control 

law given by, 

𝑢(𝑡) = 𝑢𝑛(𝑡) + 𝑢𝑎𝑑(𝑡) (4.40) 

 

where 𝑢𝑛(𝑡) and 𝑢𝑎𝑑(𝑡) are the nominal feedback control law and the adaptive 

feedback control law, respectively. Let the nominal control law be given by, 

𝑢𝑛(𝑡) = 𝐾1𝑥(𝑡) + 𝐾2𝑟(𝑡) (4.41) 
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where, 𝐾1  ∈  𝑅𝑚𝑥𝑛 and 𝐾2  ∈  𝑅𝑚𝑥𝑚are the nominal feedback and the nominal 

feedforward gains, respectively, such that 𝐴𝑟 = 𝐴 + 𝐵𝐾1, 𝐵𝑟 = 𝐵𝐾2, and det (𝐾2) ≠

0 hold. Now, using (4.40), (4.41) in (4.37) with the Assumption 1 yields, 

�̇�(𝑡) = 𝐴𝑥(𝑡) + 𝐵[𝐾1𝑥(𝑡) + 𝐾2𝑟(𝑡) + 𝑢𝑎𝑑(𝑡) + 𝛿(𝑥(𝑡))]   (4.42) 

= [𝐴 + 𝐵𝐾1]𝑥(𝑡) + 𝐵𝐾2𝑟(𝑡) + 𝐵[𝑢𝑎𝑑 + 𝑊1
𝑇𝛽𝑡(𝑡) + 𝑊2

𝑇𝛽𝑥(𝑥(𝑡)) + 𝜖] 

          = 𝐴𝑟𝑥(𝑡) + 𝐵𝑟𝑟(𝑡) + 𝐵[𝑢𝑎𝑑(𝑡) + 𝑊1
𝑇𝛽𝑡(𝑡) + 𝑊2

𝑇𝛽𝑥(𝑥(𝑡)) + 𝜖] 

 

Next, let the adaptive feedback control law be given by, 

𝑢𝑎𝑑(𝑡) = −�̂�1
𝑇
(𝑡)𝛽𝑡(𝑡) − �̂�2

𝑇
(𝑡)𝛽𝑥(𝑥(𝑡)) (4.43) 

 

where �̂�1  ∈  𝑅𝑝𝑥𝑚 , �̂�2   ∈  𝑅𝑠𝑥𝑚  are the estimates of 𝑊1, 𝑊2 respectively, satisfying 

the weight update laws, 

�̂�1
̇ (𝑡) = Γβ𝑡(𝑡)𝑒

𝑇(𝑡)𝑃𝐵,     �̂�1(0) = �̂�10,     𝑡 ∈  𝑅+ (4.44) 

 

�̂�2
̇ (𝑡) = Γβ𝑥(𝑥(𝑡))𝑒𝑇(𝑡)𝑃𝐵 − Γβ𝑥(𝑥(𝑡))𝛽𝑥(𝑥(𝑡))

𝑇
�̂�2𝐵

𝑇𝐵,   (4.45) 

                                               �̂�2(0) = �̂�20,     𝑡 ∈  𝑅+  

 

where Γ ∈   𝑅+
𝑠𝑥𝑠 ∩  𝑆𝑠𝑥𝑠  is the learning rate matrix, 𝑒(𝑡) ≜ 𝑥(𝑡) − 𝑥𝑟(𝑡) is the 

system error state vector, and 𝑃 ∈   𝑅+
𝑛𝑥𝑛 ∩  𝑆𝑛𝑥𝑛 is a solution of the Lyapunov 

equation, 

0 = 𝐴𝑟
𝑇𝑃 + 𝑃𝐴𝑟 + 𝑅 (4.46) 

 

where 𝑅 ∈   𝑅+
𝑛𝑥𝑛 ∩  𝑆𝑛𝑥𝑛 can be viewed as an additional learning rate. Since 𝐴𝑟 is 

Hurwitz, it follows from converse Lyapunov theory that there exists a unique 𝑃 

satisfying for a given 𝑅. 

Now, using (4.43) in (4.42) yields,  
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�̇�(𝑡) = 𝐴𝑟𝑥(𝑡) + 𝐵𝑟𝑟(𝑡) + 𝐵[ −�̂�1
𝑇
(𝑡)𝛽𝑡(𝑡) − �̂�2

𝑇
(𝑡)𝛽𝑥(𝑥(𝑡)) (4.47) 

         +𝑊1
𝑇(𝑡)𝛽𝑡(𝑡) + 𝑊2

𝑇(𝑡)𝛽𝑥(𝑥(𝑡)) + 𝜖]  

 
�̇�(𝑡) = 𝐴𝑟𝑥(𝑡) + 𝐵𝑟𝑟(𝑡) − 𝐵�̃�1

𝑇
(𝑡)𝛽𝑡(𝑡) − 𝐵�̃�2

𝑇
𝛽𝑥(𝑥(𝑡)) + 𝜖 

 

and the system error dynamics is given by using (4.39) and as 

�̇�(𝑡) = −𝐴𝑟𝑥𝑟(𝑡) − 𝐵𝑟𝑟(𝑡) +    

(4.48) 
+𝐴𝑟𝑥(𝑡) + 𝐵𝑟𝑟(𝑡) − 𝐵�̃�1

𝑇
(𝑡)𝛽𝑡(𝑡) − 𝐵�̃�2

𝑇
𝛽𝑥(𝑥(𝑡)) + 𝜖 

         = 𝐴𝑟𝑒(𝑡) − 𝐵�̃�1
𝑇
(𝑡)𝛽𝑡(𝑡) − 𝐵�̃�2

𝑇
(𝑡)𝛽𝑥(𝑥(𝑡)) + 𝜖,    

             𝑒(0) = 𝑒0,     𝑡 ∈  𝑅+ 
 

where �̃�(𝑡) ≜  �̂�(𝑡) − 𝑊, and 𝑒0 ≜ 𝑥0 − 𝑥𝑟0. 

The weight update law given by (4.44) and (4.45), can be derived using Lyapunov 

analysis by considering the Lyapunov function candidate, 

𝑉(𝑒, �̃�1, �̃�2) = 𝑒𝑇𝑃𝑒 + 𝑡𝑟 �̃�1
𝑇
Γ−1�̃�1 + 𝑡𝑟 �̃�2

𝑇
Γ−1�̃�2 (4.49) 

 

Note that 𝑉(0,0,0) = 0 and 𝑉(𝑒, �̃�1, �̃�2) > 0 for all (𝑒, �̃�1, �̃�2) ≠ (0,0,0). Now, 

differentiating (4.49) yields step by step, 

First take the derivative of the first term 𝑒𝑇𝑃𝑒 of (4.49) by the chain rule, 

  
𝑑

𝑑𝑡
(𝑒𝑇𝑃𝑒) =  �̇�𝑇𝑃𝑒 + 𝑒𝑇𝑃�̇� 

      

  =  (𝐴𝑟𝑒(𝑡) − 𝐵�̃�1
𝑇
(𝑡)𝛽𝑡(𝑡) − 𝐵�̃�2

𝑇
(𝑡)𝛽𝑥(𝑥(𝑡)) + 𝜖)

𝑇

𝑃𝑒(𝑡) +   

     + 𝑒𝑇(𝑡)𝑃 (𝐴𝑟𝑒(𝑡) − 𝐵�̃�1
𝑇
(𝑡)𝛽𝑡(𝑡) − 𝐵�̃�2

𝑇
(𝑡)𝛽𝑥(𝑥(𝑡)) + 𝜖)  

= 𝑒𝑇(𝑡)𝐴𝑟
𝑇𝑃𝑒(𝑡) − 𝐵�̃�1(𝑡)𝛽𝑡(𝑡)𝑃𝑒(𝑡) − 𝐵�̃�2(𝑡)𝛽𝑥(𝑥(𝑡))𝑃𝑒(𝑡) (4.50) 

            + 𝑒𝑇(𝑡)𝑃𝐴𝑟𝑒(𝑡) − 𝑒𝑇(𝑡)𝑃𝐵�̃�1
𝑇
(𝑡)𝛽𝑡(𝑡) − 𝑒𝑇(𝑡)𝑃𝐵�̃�2

𝑇
(𝑡)𝛽𝑥(𝑥(𝑡)) + 𝜖   

 = 𝑒𝑇(𝑡)(𝐴𝑟
𝑇𝑃 + 𝑃𝐴𝑟)𝑒(𝑡) − 2𝑒𝑇(𝑡)𝑃𝐵�̃�1

𝑇
(𝑡)𝛽𝑡(𝑡) − 2𝑒𝑇(𝑡)𝑃𝐵�̃�2

𝑇
(𝑡)𝛽𝑥(𝑥(𝑡)) + 𝜖 

       = −𝑒𝑇(𝑡)𝑅𝑒(𝑡) − 2𝑒𝑇(𝑡)𝑃𝐵�̃�1
𝑇
(𝑡)𝛽𝑡(𝑡) − 2𝑒𝑇(𝑡)𝑃𝐵�̃�2

𝑇
(𝑡)𝛽𝑥(𝑥(𝑡)) + 𝜖    
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Second take the derivative of the second term 𝑡𝑟 �̃�1
𝑇
Γ−1�̃�1of (4.49) by the chain rule, 

(it is assumed that �̇̃� =  �̇̂�) 

  
𝑑

𝑑𝑡
(𝑡𝑟�̃�1

𝑇
Γ−1�̃�1) =  

𝑑

𝑑𝑡
(𝑡𝑟(�̂�1 − 𝑊1)

𝑇
Γ−1(�̂�1 − 𝑊1))  

 

                                               = 𝑡𝑟�̂�1
̇ 𝑇

(𝑡)Γ−1�̃�1(𝑡) + 𝑡𝑟�̃�1
𝑇
(t)Γ−1�̂�1

̇ (𝑡) 
(4.51) 

                                                = 𝑡𝑟�̃�1
𝑇
(𝑡)Γ−1�̂�1

̇ (𝑡) + 𝑡𝑟�̃�1
𝑇
(𝑡)Γ−1�̂�1

̇ (𝑡)  

                            = 2𝑡𝑟�̃�1
𝑇
(𝑡)Γ−1�̂�1

̇ (𝑡)    

 

Third take the derivative of the third term 𝑡𝑟 �̃�2
𝑇
Γ−1�̃�2of (4.49) by the chain rule, 

  
𝑑

𝑑𝑡
(𝑡𝑟�̃�2

𝑇
Γ−1�̃�2) =  

𝑑

𝑑𝑡
(𝑡𝑟(�̂�2 − 𝑊2)

𝑇
Γ−1(�̂�2 − 𝑊2))  

 

                                               = 𝑡𝑟�̇̂�2

𝑇
(𝑡)Γ−1�̃�2(𝑡) + 𝑡𝑟�̃�2

𝑇
(𝑡)Γ−1�̇̂�2(𝑡) 

(4.52) 
                                                = 𝑡𝑟�̃�2

𝑇
(𝑡)Γ−1�̇̂�2(𝑡) + 𝑡𝑟�̃�2

𝑇
(𝑡)Γ−1�̇̂�2(𝑡)  

                       = 2𝑡𝑟�̃�2
𝑇
(𝑡)Γ−1�̇̂�2(𝑡)    

 

By adding (4.50), (4.51), and (4.52), the differentiation of (4.49) is get as given in 

(4.53), 

       �̇�(𝑒, �̃�1, �̃�2) =  −𝑒𝑇(𝑡)𝑅𝑒(𝑡) − 2𝑒𝑇(𝑡)𝑃𝐵�̃�1
𝑇
(𝑡)𝛽𝑡(𝑡) − 2𝑒𝑇(𝑡)𝑃𝐵�̃�2

𝑇
(𝑡)𝛽𝑥(𝑥(𝑡))+ 

                        +2𝑡𝑟�̃�1
𝑇
(𝑡)Γ−1�̂�1

̇ (𝑡) + 2𝑡𝑟�̃�2
𝑇
(𝑡)Γ−1�̇̂�2(𝑡) + 𝜖  (4.53) 

 

where using (4.44) and (4.45) in (4.53) results in,  

       �̇�(𝑒, �̃�1, �̃�2) =  −𝑒𝑇(𝑡)𝑅𝑒(𝑡) − 2𝑒𝑇(𝑡)𝑃𝐵�̃�1
𝑇
(𝑡)𝛽𝑡(𝑡) − 2𝑒𝑇(𝑡)𝑃𝐵�̃�2

𝑇
(𝑡)𝛽𝑥(𝑥(𝑡))+ 

+2𝑡𝑟�̃�1
𝑇
(𝑡)Γ−1(Γβ𝑡(𝑡)𝑒

𝑇(𝑡)𝑃𝐵)  (4.54) 

                                 +2𝑡𝑟�̃�2
𝑇
(𝑡)Γ−1(Γβ𝑥(𝑥(𝑡))𝑒𝑇(𝑡)𝑃𝐵 − Γβ𝑥(𝑥(𝑡))𝛽𝑥

𝑇(𝑥(𝑡))�̂�2 𝐵
𝑇𝐵) + 𝜖 
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       �̇�(𝑒, �̃�1, �̃�2) =  −𝑒𝑇(𝑡)𝑅𝑒(𝑡) − 2𝑒𝑇(𝑡)𝑃𝐵�̃�1
𝑇
(𝑡)𝛽𝑡(𝑡) − 2𝑒𝑇(𝑡)𝑃𝐵�̃�2

𝑇
(𝑡)𝛽𝑥(𝑥(𝑡))+ 

     +2𝑡𝑟�̃�1
𝑇
(𝑡)𝛽𝑡(𝑡)𝑒

𝑇(𝑡)𝑃𝐵   (4.55) 

                           +2𝑡𝑟�̃�2
𝑇
(𝑡)𝛽𝑥(𝑥(𝑡))𝑒𝑇(𝑡)𝑃𝐵 − 2𝑡𝑟 �̃�2

𝑇
(𝑡)𝛽𝑥(𝑥(𝑡))𝛽𝑥

𝑇(𝑥(𝑡))�̂�2𝐵
𝑇𝐵 + 𝜖 

 �̇�(𝑒, �̃�1, �̃�2) =   −𝑒𝑇(𝑡)𝑅𝑒(𝑡)      

(4.56) 
                             −2𝑡𝑟�̃�2

𝑇
(𝑡)𝛽𝑥(𝑥(𝑡))𝛽𝑥

𝑇(𝑥(𝑡))�̂�2𝐵
𝑇𝐵 + 𝜖 

 

�̇�(𝑒, �̃�1, �̃�2) = −𝑒𝑇(𝑡)𝑅𝑒(𝑡)    

(4.57)                    −2𝑡𝑟�̃�2
𝑇
(𝑡)𝛽𝑥(𝑥(𝑡))𝛽𝑥

𝑇(𝑥(𝑡))�̃�2(𝑡)𝐵
𝑇𝐵  

                        −2𝑡𝑟�̃�2
𝑇
(𝑡)𝛽𝑥(𝑥(𝑡))𝛽𝑥

𝑇(𝑥(𝑡))𝑊2(𝑡)𝐵
𝑇𝐵 + 𝜖 

 

�̇�(𝑒, �̃�1, �̃�2) =  −𝑒𝑇(𝑡)𝑅𝑒(𝑡)   

(4.58)                      −2𝛽𝑥
𝑇(𝑥(𝑡))�̃�2(𝑡)(𝐵

𝑇𝐵)
1
2 (𝐵𝑇𝐵)

1
2�̃�2

𝑇
(𝑡)𝛽𝑥(𝑥(𝑡)) 

                       −2𝛽𝑥
𝑇(𝑥(𝑡))𝑊2(𝐵

𝑇𝐵)
1
2 (𝐵𝑇𝐵)

1
2�̃�2

𝑇
(𝑡)𝛽𝑥(𝑥(𝑡)) + 𝜖 

 

    ≤ −𝜆𝑚𝑖𝑛(𝑅)‖𝑒(𝑡)‖2
2 − 2𝛾 ‖(𝐵𝑇𝐵)

1
2�̃�2

𝑇
(𝑡)𝛽𝑥(𝑥(𝑡))‖

2

2

 (4.59) 

+2𝛾 ‖(𝐵𝑇𝐵)
1
2�̃�2

𝑇
(𝑡)𝛽𝑥(𝑥(𝑡))‖

2
‖(𝐵𝑇𝐵)

1
2𝑊2

𝑇𝛽𝑥(𝑥(𝑡))‖
2
+ 𝜖𝑏1 , 𝑡 ≥ 0 

 

Furthermore, using Young’s inequality in the last term of (4.59) gives, (Yucelen & 

Haddad, 2012) 

2𝛾 ‖(𝐵𝑇𝐵)
1
2�̃�2

𝑇
(𝑡)𝛽𝑥(𝑥(𝑡))‖

2
‖(𝐵𝑇𝐵)

1
2𝑊2

𝑇(𝑡)𝛽𝑥(𝑥(𝑡))‖
2
 (4.60) 

 
≤ 𝜎𝛾 ‖(𝐵𝑇𝐵)

1
2𝑊2

𝑇(𝑡)𝛽𝑥(𝑥(𝑡))‖
2

2

+
𝛾

𝜎
‖(𝐵𝑇𝐵)

1
2�̃�2

𝑇
(𝑡)𝛽𝑥(𝑥(𝑡))‖

2

2

, 𝑡 ≥ 0, 𝜎 > 0. 

 

Next, setting 𝜎 =
1

2
, yields  

�̇� (𝑒(𝑡), �̃�1(𝑡), �̃�2(𝑡))    (4.61) 
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≤ −𝜆𝑚𝑖𝑛(𝑅)‖𝑒(𝑡)‖2
2 + 

𝛾

2
‖(𝐵𝑇𝐵)

1

2𝑊2
𝑇(𝑡)𝛽𝑥(𝑥(𝑡))‖

2

2

+ 𝜖𝑏1 , 𝑡 ≥ 0 

 

Since ‖𝛽𝑥(𝑥(𝑡))‖
2

≤ 𝑙𝛽𝑥0 + 𝑙𝛽𝑥1‖𝑥‖2 ≤ 𝑙𝛽𝑥0 + 𝑙𝛽𝑥1‖𝑒‖2 + 𝑙𝛽𝑥1‖𝑥𝑟‖2 ≤ 𝑙�̅�𝑥0 +

𝑙𝛽𝑥1‖𝑒‖2 and ‖𝛽𝑥(𝑥(𝑡))‖2
2 ≤  𝑙�̅�𝑥0

2 + 2𝑙�̅�𝑥0𝑙𝛽𝑥1‖𝑒‖2 + 𝑙𝛽𝑥1
2  ‖𝑒‖2

2 , it follows that 

𝛾

2
‖(𝐵𝑇𝐵)

1
2𝑊2

𝑇𝛽𝑥(𝑥(𝑡))‖
2

2

≤  
𝛾

2
‖(𝐵𝑇𝐵)

1
2‖

𝐹

2

𝜔2( 𝑙�̅�𝑥0
2 + 2𝑙�̅�𝑥0𝑙𝛽𝑥1‖𝑒‖2 + 𝑙𝛽𝑥1

2 ‖𝑒‖2
2) 

(4.62) 

 

Substituting (4.62) into (4.61) yields, 

    �̇� (𝑒(𝑡), �̃�1(𝑡), �̃�2(𝑡)) ≤ −𝑐1‖𝑒(𝑡)‖2
2 + 𝑐2‖𝑒(𝑡)‖2 + 𝑐3  (4.63) 

                              = − [√𝑐1‖𝑒(𝑡)‖2 −
𝑐2

2√𝑐1

]
2

+
𝑐2

2

4𝑐1
+ 𝑐3 + 𝜖𝑏1 , 𝑡 ≥ 0 

 

Let 𝑣 be given as, 

𝑣 ≜ [
𝑐2

2

4𝑐1
2 +

𝑐3

𝑐1

]

1
2

+
𝑐2

2𝑐1
 (4.64) 

 

where, 𝑐1 ≜ 𝜆𝑚𝑖𝑛(𝑅) −
1

2
𝛾 ‖(𝐵𝑇𝐵)

1

2‖
𝐹

2

𝜔2𝑙𝛽𝑥1
2 > 0, 𝑐2 ≜ 𝛾 ‖(𝐵𝑇𝐵)

1

2‖
𝐹

2

𝜔2𝑙�̅�𝑥0𝑙𝛽𝑥1,  

𝑐3 ≜
1

2
𝛾 ‖(𝐵𝑇𝐵)

1

2‖
𝐹

2

𝜔2𝑙𝛽x0
2 , 𝑙�̅�𝑥0  ≜ 𝑙𝛽𝑥0 + 𝑙𝛽𝑥1𝑥𝑟

∗, and ‖𝑥𝑟(𝑡)‖ ≤ 𝑥𝑟
∗ , 𝑡 ≥ 0. and 

recall that ‖�̃�2(𝑡)‖𝐹
≤ �̃�𝑚𝑎𝑥 , 𝑡 ≥ 0. Now, for ‖𝑒‖2 ≥ 𝑣, it follows that 

�̇� (𝑒(𝑡), �̃�1(𝑡), �̃�2(𝑡)) ≤ 0 for all (𝑒(𝑡), �̃�1(𝑡), �̃�2(𝑡)) ∈ 𝐷𝑒\𝐷𝑟 and 𝑡 ≥ 0, where 

 𝐷𝑒 ≜ {(𝑒, �̃�1(𝑡), �̃�2(𝑡)) ∈ 𝑅𝑛 𝑥 𝑅𝑝𝑥𝑚  𝑥𝑅𝑠𝑥𝑚 } : 𝑥 ∈   𝑅𝑛 (4.65) 

𝐷𝑟 ≜ {(𝑒, �̃�1(𝑡), �̃�2(𝑡)) ∈ 𝑅𝑛 𝑥 𝑅𝑝𝑥𝑚  𝑥𝑅𝑠𝑥𝑚 }: ‖𝑒‖2 ≤ 𝑣 (4.66) 

 

Finally, define  
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𝐷𝛼 ≜  {(𝑒, �̃�1(𝑡), �̃�2(𝑡)) ∈ 𝑅𝑛 𝑥 𝑅𝑝𝑥𝑚  𝑥𝑅𝑠𝑥𝑚 } : 𝑉 (𝑒, �̃�1(𝑡), �̃�2(𝑡)) ≤ 𝛼, where 𝛼 

is the maximum value such that 𝐷𝛼 ⊆ 𝐷𝑒, and define 𝐷𝛽 ≜ {(𝑒, �̃�1(𝑡), �̃�2(𝑡)) ∈

𝑅𝑛  𝑥 𝑅𝑝𝑥𝑚 𝑥𝑅𝑠𝑥𝑚 } : 𝑉 (𝑒, �̃�1(𝑡), �̃�2(𝑡)) ≤ 𝛽, where 𝛽 > �̂�(𝜇) = 𝜇2 =

𝜆𝑚𝑎𝑥(𝑃)𝑣2 + 𝜆𝑚𝑎𝑥(Γ
−1)�̃�2

𝑚𝑎𝑥 . 

To show ultimate boundedness of the closed loop system (4.44) (�̇̂�1), (4.45) (�̇̂�2), 

(4.48) (�̇�(𝑡)), note that 𝐷𝛽 ⊂ 𝐷𝛼, since the approximation Δ(𝑥) = 𝑊𝑇𝛽(𝑥), 𝑥 ∈

𝑅𝑛  holds in 𝑅𝑛. Now, since �̇� (𝑒(𝑡), �̃�1(𝑡), �̃�2(𝑡)) ≤ 0, 𝑡 ≥  0, for all 

(𝑒(𝑡), �̃�1(𝑡), �̃�2(𝑡)) ∈ 𝐷𝑒\𝐷𝑟 and 𝐷𝑟 ⊂ 𝐷𝛼, it follows that 𝐷𝛼 is positively invariant. 

Hence, if (𝑒(0), �̃�1(0), �̃�2(0)) ∈ 𝐷𝛼, then it follows from Corollary 4.4 of (H. K. 

Khalil, Nonlinear Systems, Upper Saddle River, NJ: Prentice Hall, 1996, n.d.) that the 

solution (𝑒(𝑡), �̃�1(𝑡), �̃�2(𝑡)) , 𝑡 ≥ 0, to (4.44) (�̇̂�1), (4.45) (�̇̂�2), (4.48) (�̇�(𝑡)) is 

ultimately bounded with respect to (𝑒(𝑡), �̃�1(𝑡), �̃�2(𝑡)) with ultimate bound given by 

�̂�−1(𝛽) = √𝛽, which yields  

𝜖 > [𝜆𝑚𝑎𝑥(𝑃)𝑣2 + 𝜆𝑚𝑎𝑥(Γ
−1)�̃�2

𝑚𝑎𝑥]
1
2 (4.67) 

 

Over the interval 𝑡 ∈ [0, 𝑇), �̇� (𝑒(𝑡), �̃�1(𝑡), �̃�2(𝑡)) ≤ 0  since 

(𝑒(𝑡), �̃�1(𝑡), �̃�2(𝑡)) ∈ 𝐷𝑒\𝐷𝑟 . This implies that  

𝑉 (𝑒(𝑡), �̃�1(𝑡), �̃�2(𝑡)) ≤ 𝑉(𝑒(0), �̃�1(0), �̃�2(0))      𝑡 ϵ [0, T)  (4.68) 

 

Using the inequalities 𝜆𝑚𝑖𝑛(𝑃)‖𝑒‖2
2 ≤ 𝑉(𝑒, �̃�1, �̃�2) and 𝑉 (𝑒(0), �̃�1(0), �̃�2(0)) =

𝑡𝑟�̃�𝑇(0)Γ−1�̃�(0) ≤ ‖Γ−1‖𝐹‖�̃�(0)‖
𝐹

2
 in (4.68) gives 

‖�̃�(𝑡)‖
𝐹

≤ ‖�̃�(0)‖
𝐹
[

‖Γ−1‖𝐹

𝜆𝑚𝑖𝑛(Γ−1)
]

1
2

  (4.69) 
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This completes the proof. 

To sum up, 

�̇� (𝑒(𝑡), �̃�1(𝑡), �̃�2(𝑡)) ≤ 0, 𝑡 ≥  0  (4.70) 

 

which guarantees that the system error state vector 𝑒(𝑡) and the weight error �̃�(t) are 

Lyapunov stable, and hence are bounded for all 𝑡 ϵ 𝑅+.  Since 𝛽(𝑥(𝑡)) is bounded for 

all 𝑡 ϵ 𝑅+, it follows from (4.48) that �̇�(t) is bounded, and hence �̈�(𝑒(𝑡), �̃�(𝑡)) is 

bounded for all 𝑡 ϵ 𝑅+.  Now, it follows from Barbalat’s lemma that, 

lim
𝑡→∞

𝑉 ̇ (𝑒(𝑡), �̃�(t)) = 0,  (4.71) 

 

which consequently shows that 𝑒(𝑡) → 0 as 𝑡 → ∞. 

For the case when the nonlinear uncertain dynamical system given by (4.37) includes 

bounded exogenous disturbances, measurement noise, and/or the uncertainty in (4.37) 

cannot be perfectly parameterized, then Assumption 1 can be relaxed by considering  

𝛿(𝑡, 𝑥) = 𝑊(𝑡)𝑇𝛽(𝑥(𝑡)) + 𝜖(𝑡, 𝑥),   𝑥 ∈  𝐷𝑥 (4.72) 

 

where 𝑊(𝑡)  ∈  𝑅𝑠𝑥𝑚  is an unknown time-varying weight matrix satisfying 

‖𝑊(𝑡)‖𝐹 ≤ 𝜔 and ‖�̇�(𝑡)‖
𝐹

≤ �̇� with 𝜔 ϵ R+ and �̇� ϵ R+ being unknown scalars, 

𝛽:𝐷𝑥 → 𝑅𝑠 is a known basis function of the form 𝛽(𝑥) =

[1, 𝛽1(𝑥), 𝛽2(𝑥),… , 𝛽(𝑠−1)(𝑥)]
𝑇
, 𝜖: 𝑅+ 𝑥 𝐷𝑥  → 𝑅𝑚 is the system modeling error 

satisfying ‖𝜖(𝑡, 𝑥)‖2 ≤ 𝜖 with 𝜖 ∈ 𝑅+ being an unknown scalar, and 𝐷𝑥 is a compact 

subset of 𝑅𝑛. In this case, the weight update law given by (4.44) can be replaced by 
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�̇̂�(𝑡) = Γ𝑃𝑟𝑜𝑗[�̂�(𝑡), 𝛽(𝑥(𝑡))𝑒𝑇(𝑡)𝑃𝐵] 
(4.73) 

   �̂�(0) = �̂�0,       𝑡ϵ 𝑅+  

 

with Γ = 𝛾𝐼𝑠,   𝛾 ∈  𝑅+, to guarantee the uniform boundedness of the system error 

state vector 𝑒(𝑡) and the weight error �̃�(𝑡), where 𝑃𝑟𝑜𝑗 denotes the projection 

operator. 

Remark 1. Even though the above analysis shows that the state vector 𝑥(𝑡) 

asymptotically converges to the reference state vector 𝑥𝑟(𝑡) (in steady-state), 𝑥(𝑡) can 

be far different from 𝑥𝑟(𝑡) in transient time. High-gain learning rates can be used in 

(4.44) in order to achieve fast adaptation and to minimize the distance between 𝑥(𝑡) 

and 𝑥𝑟(𝑡) in transient time. However, update law with high-gain learning rates 

possibly yield to high-frequency oscillations especially during the transient system 

response resulting in system instability for real applications. 
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CHAPTER 5  

 

5. SIMULATION RESULTS 

 

In this thesis, it is proposed that in model reference adaptive control, each uncertainty 

parametrization should be constructed in terms of the uncertainty parametrization type 

that it is aimed to predict. In other words, the time dependent uncertainty should be 

predicted with the time dependent parametrized adaptive element, and the state 

dependent uncertainty should be predicted also, with the state dependent parametrized 

adaptive element. Then, the summation of these elements should be formed to be the 

adaptive control input of the MRAC. To reach this result, MFC, MRAC, CPBMRAC, 

CP TD CCAL MRAC, FSBMRAC, FS TD CCAL MRAC, FS TSD CCAL MRAC 

are studied. The system model given in 2.1, is presumed to be subjected to the 

reference command input given in Figure 2.3, and under the effect of external 

disturbance which is random given in Figure 2.5, and wing rock dynamics of which is 

given in (2.4), and noise is added to the roll turn rate as given in Figure 2.2. The results 

of the simulations are given in this section, sequentially. In 5.1, comparison of MRAC 

and FS TSD CCAL MRAC, in 5.2 comparison of FSBMRAC; and FS TSD CCAL 

MRAC, in 5.3 comparison of FS TD CCAL MRAC and FS TSD CCAL MRAC, in 

5.4 comparison of all controllers, in 5.5 max disturbance elimination, in subparts 5.5.1 

FS TD CCAL MRAC in case of multiplication term of external disturbance and wing 

rock dynamics is 2, in 5.5.2 FS TSD CCAL MRAC in case of multiplication term of 

external disturbance and wing rock dynamics is 2, and in 5.5.3 FS TSD CCAL MRAC 

in case of multiplication term of external disturbance and wing rock dynamics is 100 

is given. 
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5.1. Comparison of MRAC and FS TSD CCAL MRAC 

 

Figure 5.1. Reference Command Input vs time 

 

Figure 5.2. External Disturbance vs time 
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Figure 5.3. Wing Rock Disturbance vs time 

 

Figure 5.4. Noise vs time 
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Figure 5.5.Roll Turn Rate vs time  

 

Figure 5.6. Error in Roll Turn Rate vs time 
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Figure 5.7. Roll Turn vs time  

 

Figure 5.8 Error in Roll Turn vs time 
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Figure 5.9. Predicted Adaptive Weight Coefficients vs time 

In this section comparison of MRAC and FS TD CCAL MRAC is done. As seen from 

Figure 5.5, and Figure 5.6, roll turn rate, the response of the state variable 𝑥1 of the 

system model, slender delta wing, of which model equation is given in 2.1, subjected 

to the reference command input given in Figure 2.3, and under the disturbance 

conditions given in Figure 2.2, is drawn. It is seen that MRAC gives some fluctuated 

results compared to the FS TD CCAL MRAC, while closing the reference model 

response. This could be due to its lack of prediction capability of the time dependent 

random external disturbance, due to the state dependent uncertainty parametrization 

structure of the MRAC. As seen from Figure 5.7, and Figure 5.8, roll turn, the reply 

of the state variable 𝑥2 of the system model, is drawn. The shift in the response of the 

MRAC from the reference model is more obvious in these figures, which is an 

indication that the roll turn state 𝑥2 is more prone to the disturbances, since it is the 

direct integral of the 𝑥1, as given in (2.1), the disturbance effects are accumulated. As 

seen in Figure 5.9, the predicted adaptive weights stay in a more compact region, in 

FS TD CCAL MRAC than the MRAC, which is an indication of better uncertainty 

parametrization. 
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5.2. Comparison of FSBMRAC and FS TSD CCAL MRAC 

 

Figure 5.10. Reference Command Input vs time 

 

Figure 5.11. External Disturbance vs time 
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Figure 5.12. Wing Rock Dynamics vs time 

 

Figure 5.13. Noise vs time 
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Figure 5.14. Roll Turn Rate vs time 

Figure 5.15. Error in Roll Turn Rate vs time 
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Figure 5.16. Roll Turn vs time 

Figure 5.17. Error in Roll Turn vs time 
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Figure 5.18. Predicted Adaptive Weight Coefficients vs time 

In this section comparison of  FSBMRAC and FS TSD CCAL MRAC is done. As 

seen from Figure 5.14, and Figure 5.15, that, roll turn rate, the response of the state 

variable 𝑥1 of the system model, is drawn. Though the higher uncertainty capability 

of the FSBMRAC, due to the periodic structure of the Fourier series, the FS TSD 

CCAL MRAC, gives close reference model tracking than the FSBMRAC. The 

periodic structure of the Fourier series, could eliminate the need for the concurrent 

adaptive learning, as could be seen in Figure 4.17, such that the persistent excitation 

of the learning mechanism of the adaptive control could show similar results with the 

concurrent adaptive learning though its valuable data storage capability which could 

enhance uncertainty prediction. Though the superior capability of the FSBMRAC, as 

seen from Figure 5.16, and Figure 5.17, the slight difference between the results of 

FSBMRAC and FS TSD CCAL MRAC, could be explained as the lack of prediction 

capability of the state dependent structured uncertainty the wing rock dynamics, due 

to the solely time dependent uncertainty parametrization structure of the FSBMRAC. 

As seen from Figure 5.18, the predicted adaptive weights stay in a more compact 
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region, in FS TSD CCAL MRAC than the FSBMARC, which is an indication of better 

uncertainty parametrization.  

5.3. Comparison of FS TD CCAL MRAC and FS TSD CCAL MRAC 

 

Figure 5.19. Reference Command vs time 
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Figure 5.20. External Disturbance vs time 

 

Figure 5.21. Wing Rock Dynamics vs time 
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Figure 5.22. Noise vs time 

Figure 5.23. Roll Turn Rate vs time 



 

 

 

99 

 

Figure 5.24. Error in Roll Turn Rate vs time 

 

Figure 5.25. Roll turn vs time 
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Figure 5.26. Error in Roll Turn vs time 

 

Figure 5.27. Predicted Adaptive Weight Coefficients 
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In this section comparison of FS TD CCAL MRAC and FS TSD CCAL MRAC is 

done. Figure 5.23, and Figure 5.24, shows similar pattern as the results shown in 

Figure 5.14, and Figure 5.15, which are the responses of the roll turn rate, 𝑥1, of the 

system model. Similarly, Figure 5.25 and Figure 5.26. , shows similar pattern as the 

results shown in Figure 5.16, and Figure 5.17, which are the responses of the roll turn, 

𝑥2, of the system model. The progress in uncertainty prediction success, through from 

the FSBMRAC to FS TSD CCAL MRAC, is similar to, through from the FS TD 

CCAL MRAC to FS TSD CCAL MRAC. As seen in Figure 4.17, FSBMRAC gives 

similar results to the FS TD CCAL MRAC, due to its periodic structure. Though, from 

the figures through Figure 5.23 to Figure 5.27, FS TSD CCAL MRAC gives closer 

reference model tracking than the FS TD CCAL MRAC, since it could predict both 

state dependent structured and time dependent random unstructured external 

disturbance, due to having uncertainty parametrization structure for both of them 

separately. As seen in Figure 5.27, the predicted adaptive weights stay in a more 

compact region, in FS TSD CCAL MRAC than the FS TD CCAL MRAC, which is 

an indication of better uncertainty parametrization.  
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5.4. Comparison of all Controllers 

 

Figure 5.28. Reference Command Input vs time 

 

Figure 5.29. External Disturbance vs time 
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Figure 5.30. Wing Rock Dynamics vs time 

 

Figure 5.31. Noise vs time 
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Figure 5.32. Roll Turn Rate vs time 

Figure 5.33. Error in Roll Turn Rate 
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Figure 5.34. Roll Turn vs time 

Figure 5.35. Error in Roll Turn vs time 
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Figure 5.36. Predicted Adaptive Weight Coefficients vs time 

 

Figure 5.37. Predicted Adaptive Weight Coefficients vs time 
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Figure 5.38. Predicted Adaptive Weight Coefficients vs time 

 

 

 

 

 

 

 

 

 

 

Figure 5.39. Comparison of Control Surface Deflection vs time for all Controllers  
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It is seen from Figure 5.32, that as proposed in this thesis, the best method at tracking 

the reference model, is FS TSD CCAL MRAC, since each uncertainty is parametrized 

in its own dependent variable. By the way, FSBMRAC gives as close results as FS 

TD CCAL MRAC, as was the case in Figure 4.17. This could be explained such that, 

concurrent adaptive learning expedites learning of the uncertainty and elimination, by 

storing valuable data. By the way, there should be similar property in Fourier series 

characteristic, so that both of them show close tracking performance. In Fourier series 

based MRAC, the parametrization part of the uncertainty in the adaptive element is 

time dependent, not dependent on system states. So, the part of the adaptive element 

that is related with parametrization of uncertainty, which is constructed with the 

periodic elements, is persistently excited, in order to learn the uncertainty. The 

learning mechanism of the adaptive control is active, so that it is prone to learn any 

disturbance acting on the system and eliminate it. Chebyshev polynomial based 

MRAC, however is not as successful as the Fourier series based MRAC, as seen in 

Figure 5.32. This could be due to its structure being more suitable for state dependent 

parameterization, though is preferred in this study, taking the advantage of the series 

structure of the Chebyshev polynomial, to use in the prediction of unstructured random 

external time dependent disturbance. CP TD CCAL MRAC shows more fluctuations 

diverging from the reference model, than the FS TD CCAL MRAC, due to the cos(𝑡) 

term used in Chebyshev polynomial parameterization in this study. Since both of them 

are used as time dependent uncertainty parametrization methods, they are expected to 

predict especially time dependent external random disturbance. However, it is seen 

that Fourier series is better than the Chebyshev polynomials in this case. It could also 

be due to the periodic structure of the Fourier series to be good at time dependent 

uncertainty prediction. Though the Chebyshev polynomials are constructed with the 

linearly independent terms, to be good at uncertainty prediction, periodic structure 

could be better way. Since it is time dependent, and is persistently excited at each time 

step of the simulation. Figure 5.32 shows that, the MRAC is slightly fluctuating 

around the reference model, not seen from the figure though. Also, in Figure 5.34 

MRAC is shifted around the reference model, compared to the other controllers. It 
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could be due to the reason, that since the uncertainty parametrization part of the 

MRAC is system state dependent, it is successful at prediction of the state dependent 

uncertainty, such that the wing rock dynamics. However, it is not good at prediction 

of time dependent random external disturbance, which is unstructured disturbance 

case in this study. So, MRAC could predict the structured state dependent uncertainty, 

due to state dependent uncertainty parametrization part of the MRAC. However, it 

could not predict the unstructured time dependent random external disturbance, which 

is the key point of this study. Since the random external disturbance is unstructured 

and random, it is more realistic and chaotic case for this study than the structured wing 

rock dynamics. So, this could be the reason why MRAC diverges from the reference 

model more than the other controllers. 

As seen from Figure 5.33, and Figure 5.35, also FS TSD CCAL MRAC, gives the 

least error, in tracking the reference model response. As seen from Figure 5.36, Figure 

5.37, Figure 5.38, the predicted adaptive weights stay in a more compact region, in FS 

TSD CCAL MRAC than the other controllers, which is an indication of better 

uncertainty parametrization. 

In Figure 5.39, the comparison of control surface deflection for all controllers is given. 

Since it is better to have a requirement for lesser control surface deflection, resulting 

in less energy consumption, and delayed material fatigue, it is seen that FS TSD CCAL 

MRAC gives better control input deflection values than the other controllers. 

 

5.5. Max Disturbance Elimination 

In this section, max disturbance elimination capabilities of the controllers are 

examined. The aim of the study in this section is, to force the limits of the controller 

system, under the excessive disturbance case. In 5.5.1, the response of the FS TD 

CCAL MRAC is studied, under the case where, both the dynamics of wing rock and 

the random external disturbance is multiplied by 2. In 5.5.2, the response of the FS 

TSD CCAL MRAC is studied, under the case where, both the dynamics of wing rock 
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and the random external disturbance is multiplied by 2. In 5.5.3, the response of the 

FS TSD CCAL MRAC is studied, under the case where, both the dynamics of wing 

rock and the random external disturbance is multiplied by 100. Of course, since it is 

assumed that the uncertainty acting to the system is matched, all the disturbance is 

entering to the system through the control channel, which means that both the random 

external disturbance and the wing rock dynamics, could be thought as the increase in 

the aileron command input to the system. So, they are also in the terms of degrees. In 

the max disturbance case, speculative disturbances are given upon the system without 

considering the real physical limits of the control actuator system. The excessive 

disturbances, could be thought as unexpected excessive nonlinearities, which is hard 

to occur in real life. 

5.5.1. FS TD CCAL MRAC (Disturbation Factor=2) 

In this section, the response of the FS TD CCAL MRAC is examined in case of 

multiplication term of external disturbance and wing rock=2. If random external 

disturbance acts to the system as given in Figure 5.40, and the wing rock dynamics as 

given in Figure 5.41, and the noise added to the roll turn rate as given in Figure 5.42, 

the results of the system response are get as given through the Figure 5.43, to the 

Figure 5.47. In case of increase in the multiplication term, the system model becomes 

unstable, and the response of the system states could go to infinity. This is the indicator 

that, the FS TD CCAL MRAC, could eliminate up to the disturbances given through 

the Figure 5.40 to the Figure 5.42. Though the divergence is seen in Figure 5.44, the 

reference model tracking still continues at Figure 5.45, and Figure 5.46. In Figure 

5.47, the predicted adaptive weight coefficients also diverge. 
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Figure 5.40. External Disturbance Added to Aileron Input vs time 

 

Figure 5.41. Wing Rock Disturbance Added to Aileron Input vs time 
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Figure 5.42. Noise Added to Roll Turn Rate vs time 

 

Figure 5.43. Roll Turn Rate vs time 
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Figure 5.44. Error in Roll Turn Rate vs time 

 

Figure 5.45. Roll Turn vs time 
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Figure 5.46. Error in Roll Turn vs time 

Figure 5.47. Predicted Adaptive Weight Coefficients vs time 
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5.5.2. FS TSD CCAL MRAC (Disturbation Factor=2) 

In this section, the response of the FS TSD CCAL MRAC is examined in case of 

multiplication term of external disturbance and wing rock=2. In case of external 

disturbance which is random acting to the system as given in Figure 5.48, and the 

dynamics of wing rock as given Figure 5.49, and the noise added to the roll turn rate 

as given in Figure 5.50, the results of the system response are get as given through the 

Figure 5.51 to the Figure 5.55. The reason for choosing the disturbation factor as 2, is 

to compare the results of FS TSD CCAL MRAC with the results of the FS TD CCAL 

MRAC under the same disturbation factor conditions given in 5.5.1. It is seen that in 

Figure 5.51, Figure 5.52, Figure 5.53, and Figure 5.54 the fluctuations are less than 

the results compared to, Figure 5.43, Figure 5.44, Figure 5.45, and Figure 5.46. Also 

the predicted adaptive weight coefficients remain in a narrower region in Figure 5.55, 

compared to Figure 5.47. 

 

Figure 5.48. External Disturbance vs time 
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Figure 5.49. Wing Rock Disturbance Added to Aileron Input vs time 

 

Figure 5.50. Noise vs time 
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Figure 5.51. Roll Turn Rate vs time 

 

Figure 5.52. Error in Roll Turn Rate vs time 
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Figure 5.53. Roll Turn vs time 

 

Figure 5.54. Error in roll turn vs time 
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Figure 5.55. Predicted Adaptive Weight Coefficients vs time 

5.5.3. FS TSD CCAL MRAC (Disturbation Factor=100) 

In this section, the response of the FS TSD CCAL MRAC is examined in case of 

multiplication term of external disturbance and wing rock=100. If random external 

disturbance acts to the system as given in Figure 5.56, and the wing rock dynamics as 

given in Figure 5.57, and the noise added to the roll turn rate as given in Figure 5.58, 

the results of the system response are get as given through the Figure 5.59, to the 

Figure 5.63. The multiplication term being 100 is a good indicator that, the FS TSD 

CCAL MRAC is good at prediction of the uncertainties acting on the system, and 

removing them. It should not be thought as an unrealistic case of having 100 multiplied 

external disturbance and dynamics of wing rock acting on the system. Since both the 

disturbance and the control input enters through the same channel to the system, the 

adaptive control input could eliminate the disturbance according to its own prediction, 

at the same simulation step without permitting it enter to the system. So, since it is an 

algebraic operation, 100 times disturbance could be eliminated by the application of 
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the adaptive control input of magnitude -100 times the disturbance magnitudewise. 

The key point is the success of the adaptive element to predict the disturbance 

thoroughly. As seen in this study, in FS TSD CCAL MRAC, time dependent random 

unstructured uncertainty could be predicted by the time dependent uncertainty 

parameterized adaptive element, and system state dependent structured uncertainty, 

that is wing rock dynamics, could be predicted by the state dependent uncertainty 

parameterized adaptive element. So, whatever the magnitude of the disturbance 

applying on the system is, it could be predicted by its own adaptive element. As soon 

as the prediction mechanism works, at the same time step, the disturbance could be 

eliminated by the adaptive control input. So, it will be as if no disturbance has entered 

to the system, since the disturbance is predicted, and eliminated, at the same time step 

of the simulation, as the disturbance enters to the system. In Figure 5.59, and Figure 

5.61, the fluctuations around the reference model are seen, but still there is no 

divergence. In Figure 5.60, and Figure 5.62, also the error figures are given, so that it 

is acceptable as a good tracking performance. In Figure 5.63, predicted adaptive 

weights stay in a more compact region. Weight convergence or staying in a compact 

region, means that the uncertainty is predicted approximately. 
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Figure 5.56. External Disturbance Added to Aileron Input vs time 

 

Figure 5.57. Wing Rock Disturbance Added to Aileron Input vs time 
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Figure 5.58. Noise Added to Roll Turn Rate vs time 

 

Figure 5.59. Roll Turn Rate vs time 
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Figure 5.60. Error in Roll Turn Rate vs time 

 

Figure 5.61. Roll Turn vs time 
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Figure 5.62. Error in Roll Turn vs time 

Figure 5.63. Predicted Adaptive Weight Coefficients vs time 
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5.6. Comparison of Disturbance and Control Input 

In this section, the results of FS TSD CCAL MRAC is studied. It is assumed in this 

thesis that each disturbance should be predicted in its own dependent variable, and 

then the adaptive input control should be determined separately, depending on the 

disturbance variable. In this section the graphs of 𝑢𝑎𝑑 , 𝑢𝑎𝑑𝑡, and 𝑢𝑎𝑑𝑥 are examined, 

separately. The disturbances, time dependent random external disturbance, state 

dependent dynamics of wing rock, and noise are given. It is studied whether the time 

dependent adaptive control input eliminates the time dependent disturbances, and the 

state dependent adaptive control input eliminates the state dependent disturbances. 

External disturbance is given in Figure 5.64, wing rock dynamics is given in Figure 

5.65, noise is given in Figure 5.66. Figure 5.67 shows that the time dependent random 

external disturbance given in Figure 5.64 could be removed up to a large extent. Figure 

5.68 shows the state dependent adaptive control input fluctuates around [-20 20] 

degrees, and could remove the state dependent disturbances given in, Figure 5.65 and 

Figure 5.66, which is around [-1 1] degrees. Figure 5.69, gives the total 𝑢𝑎𝑑 input 

which is algebraic summation of , 𝑢𝑎𝑑𝑡, and 𝑢𝑎𝑑𝑥, is also around [-20 20] degrees. 

Figure 5.70 gives 𝑢𝑛 which is normal input graph, it is around [-3 3] degrees. Figure 

5.71, gives the total control input 𝑢, which is algebraic subtraction of 𝑢𝑎𝑑 from the 

𝑢𝑛, is also around [-20 20] degrees. 
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Figure 5.64. External Disturbance vs time 

 

Figure 5.65. Wing Rock Dynamics vs time 
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Figure 5.66. Noise vs time 

 

Figure 5.67. 𝑢𝑎𝑑𝑡 vs time 
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Figure 5.68. 𝑢𝑎𝑑𝑥 vs time 

 

Figure 5.69. 𝑢𝑎𝑑vs time 
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Figure 5.70. 𝑢𝑛 vs time 

 

Figure 5.71. 𝑢 vs time 
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Figure 5.72. Comparison of Time Dependent Adaptive Control Input and Random 

External Disturbance 

It is seen in Figure 5.72, that time dependent adaptive control input 𝑢𝑎𝑑𝑡 could 

estimate the time dependent random external disturbance, successfully. 

5.7. Concurrent Adaptive Learning Effect 

In this section the effect of concurrent adaptive learning on the MRAC is studied. In 

Figure 5.73, and Figure 5.74, the comparison of 𝑢𝑎𝑑𝑡 and random external disturbance 

is given. FS TSD CCAL MRAC model is used and, concurrent adaptive learning is 

closed and opened, to see the effect on the MRAC. In Figure 5.75, and Figure 5.76, 

the same results are given under the effect of 2 times multiplied random external 

disturbance. 
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Figure 5.73. Comparison of Time Dependent Adaptive Control Input and Random 

External Disturbance when Concurrent Adaptive Learning is Closed 

Figure 5.74. Comparison of Time Dependent Adaptive Control Input and Random 

External Disturbance when Concurrent Adaptive Learning is Open 
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Figure 5.75. Comparison of Time Dependent Adaptive Control Input and Random 

External Disturbance when Concurrent Adaptive Learning is Closed 

 

Figure 5.76. Comparison of Time Dependent Adaptive Control Input and Random 

External Disturbance when Concurrent Adaptive Learning is Open 
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Figure 5.77. Adaptive Weight Coefficients when Concurrent Adaptive Learning is 

Closed 

Figure 5.78. Adaptive Weight Coefficients when Concurrent Adaptive Learning is 

Open 
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It is seen that, although the FS TSD CCAL MRAC could predict and eliminate the 

time dependent random external disturbance successfully, whether the CCAL 

algorithm is opened or closed, there is a positive effect of CCAL algorithm. That is, 

by the application of CCAL algorithm, the control actuator mechanism needs less 

deflection angle, for the elimination of the disturbance, at the beginning of the 

simulation, which is good for reducing energy consumption and delaying material 

fatigue. In Figure 5.73, 𝑢𝑎𝑑𝑡 is above 15 [deg] at the beginning of the simulation while 

in Figure 5.74, 𝑢𝑎𝑑𝑡 is below 15 [deg], by the application of CCAL algorithm. The 

time dependent random external disturbance is multiplied by 2, and again the same 

pattern is seen at the simulation results, such that, in Figure 5.75, 𝑢𝑎𝑑𝑡 is above 30 

[deg] at the beginning of the simulation while in Figure 5.76, 𝑢𝑎𝑑𝑡 is below 30 [deg], 

by the application of CCAL algorithm. Though the external disturbance is random and 

time dependent, not periodic, the Fourier series is good at prediction of the uncertainty, 

with its periodic structure. This could be explained as, though the structure of the 

Fourier series is periodic, but the disturbance is random, the calculated control input 

could track the reference command, at a global perspective. Since the main aim is to 

track the reference command at a global perspective, Fourier series usage is 

acceptable. In the Figure 5.77, and Figure 5.78, when the CCAL is closed and opened, 

adaptive weights remain in a bounded region. So, both the weights remain bounded 

and the reference command tracking is satisfied. Also, though it seems as if in Figure 

5.77, and Figure 5.78, the CCAL usage effect on weight converge is similar with the 

nonused case, as mentioned above, the CCAL usage lessens the control actuator 

deflection angle, as a positive effect. 
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CHAPTER 6  

 

6. CONCLUSION 

 

In this thesis, a novel approach for the model reference adaptive control, is given, of 

which is time and state dependent parameterized MRAC. In this method, it is proposed 

that, the parameterization part of the MRAC should be done according to the type of 

the uncertainty, whether it is structured or unstructured. If the acting disturbance is 

defined in terms of time variable, then the adaptive part should also be constructed in 

terms of time variable. If the acting disturbance is defined however in terms of system 

state variable, then the adaptive part should be constructed in terms of the state 

variable, too. The adaptive weight coefficient update laws should also be constructed 

in the same manner. In the end, for the determination of the adaptive control input, 

each type of the adaptive control input should be summed. It is proposed that, the 

separate adaptive control determination causes to predict the related uncertainty, more 

approximately. In this thesis, the unstructured random external time dependent 

uncertainty, and structured system state dependent wing rock dynamics, and also noise 

added to the state could be predicted with the new, time and state dependent 

parameterized model reference adaptive control, and could be removed from the 

system, successfully. 

In the control design process, as the system model a slender delta wing is used. The 

reference model is determined during the model following control design. The 

reference model states are determined by the pole placement method, and then by 

using the formula belonging to Ackermann, the full state feedback gains are 

calculated. By using the calculated gains, the nominal control input is determined. By 

the application of the nominal control input, the response of the system model in 

closed loop structure, is resembled to the transient response of the specified in other 

words reference model. In the MRAC, for the determination of the nominal control 
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input, the same full state feedback gains are used as in the model following controller. 

The adaptive control input is determined by the multiplication of the basis function 

which is state dependent, and the update law of weight, which relies on Lyapunov 

stability theorem. 

In the time and state dependent parameterized model reference adaptive control, first 

time dependent parameterized model reference adaptive control is given. Time 

dependent series are used as the basis function, like the Chebsyhev polynomials, and 

the Fourier series, respectively. First the Chebsyhev polynomials based MRAC is 

given. Though the structure of the Chebsyhev polynomials is more suitable for state 

dependent parameterization, it is used in this study as the time dependent 

parameterization, by taking the cosine of the time variable as the variable. The reason 

for that usage is that, since the random external disturbance is unstructured and time 

dependent in this study, the series structure of the Chebsyhev polynomials is used by 

differing the dependent variable as the cosine of the time variable. Secondly, the 

Fourier series based MRAC is given. It is seen that Fourier series based MRAC gives 

more close reference model tracking, due to its periodic structure, than the Chebsyhev 

polynomials based model reference adaptive control, though its forming from the 

linearly independent terms structure. This could be an indicator that, Chebsyhev 

polynomials is better at prediction of state dependent uncertainty parametrization, 

rather than time dependent uncertainty parametrization. To improve the MRAC, 

concurrent adaptive learning algorithm is added to the MRAC. The key advantage of 

the concurrent adaptive learning is the exclusion of the PE requirement for the 

convergence of the adaptive weights. This is done by storing only the valuable data, 

which enhances the uncertainty prediction, at last. The storage of the predicted 

uncertainty is done according to the singular value maximizing algorithm. Secondly 

state dependent parameterized model reference adaptive control is given. State 

dependent basis function is used as the prediction of the uncertainty. In the end, time 

and state dependent parameterized model reference adaptive control is designed, 

which uses both time and state dependent basis functions to predict the related 
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uncertainties. In the end, the adaptive control inputs are summed, to eliminate the total 

disturbances from the system model. The results of the designed controllers are 

compared to determine which one is better at uncertainty prediction and elimination. 

MFC, MRAC, CPBMRAC, CP TD CCAL MRAC, FSBMRAC, FS TD CCAL 

MRAC, FS TSD CCAL MRAC are studied. It is seen that, Fourier series based time 

and state dependent concurrent adaptive learning model reference adaptive control 

gives best reference model tracking, for the conditions given in this study. This led to 

the dissertation of each uncertainty should be predicted by its own uncertainty 

parameterization method. 

The designed controller’s robustness is tested by the Lyapunov stability theorem and 

the performance of the designed controller is also viewed by the graphs which 

compares the responses of the specified model states and the plant model states on the 

same graph. 

To sum up, in this study prediction of the unstructured time dependent random 

external disturbance and structured state dependent wing rock dynamics, is studied. 

Also, state dependent noise addition to the roll turn rate is included as the uncertainty 

case. Since the random external disturbance is unstructured and random, it is more 

realistic and chaotic case for this study than the structured wing rock dynamics. So, as 

a future study, the response of the time and state dependent parametrized model 

reference adaptive control, to the structured time dependent external disturbance, and 

unstructured random state dependent disturbance could be studied.  
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