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ABSTRACT 

 

DETECTION OF RESERVOIR WATER LEVELS USING LANDSAT 

REMOTE SENSING DATA OVER ERMENEK AND ALTINKAYA DAMS 

 

Şenocak, Ali Ulvi Galip 

Master of Science, Civil Engineering 

Supervisor: Assoc. Prof. Dr. M. Tuğrul Yılmaz 

 

September 2019, 129 pages 

 

Detection of water border using remote sensing observations at the visible bands and 

incorporating them with the digital elevation map is a useful approach for detecting 

water volume of dams and the water bodies with existing DEM images. In this study, 

NDWI, NDPI, WI2015 and AWEI indices retrieved using Landsat 8 images and 

ASTER/SRTM DEM maps are utilized to infer about the water levels of Ermenek and 

Altınkaya dams’ reservoir water levels. To reduce the water level retrieval errors 

during the cloudy and the snow-covered areas, F-Mask cloud masking algorithm and 

a TCW-based custom index with optimized parameters have been introduced. 

Moreover, in order to prevent the affection of pixels that are located far away from the 

area of interest, a water-area-based shape file and proximity buffer have been 

introduced. Lastly, after the completion of the analysis, a statistical model has been 

applied to combine the results with DEM to get the elevation value as a result. Results 

show RMSE of the water level estimation over Ermenek and Altınkaya are 3.63 m and 

3.34 m, respectively for the best index/DEM scenario when the models are trained and 

calibrated over the same dam. On the other hand, the errors increase to 5.13 m and 

5.09 m respectively for Ermenek and Altınkaya dams when the validation and the 

calibration are done over different dams . 
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ÖZ 

 

ERMENEK VE ALTINKAYA BARAJ REZERVUARLARININ SU 

YÜKSEKLİKLERİNİN LANDSAT KULLANILARAK UZAKTAN 

ALGILAMA İLE TESPİT EDİLMESİ 

 

Şenocak, Ali Ulvi Galip 

Yüksek Lisans, İnşaat Mühendisliği 

Tez Danışmanı: Doç. Dr. M. Tuğrul Yılmaz 

 

 

Eylül 2019, 129 sayfa 

 

Görülebilir bantları, sayısal yükseklik haritası ile birlikte kullanarak su seviyesini 

tespit etmek, sayısal yükseklik harita görüntülerine ulaşılabilen barajlar için kullanışlı 

bir yaklaşımdır. Bu çalışmada, Ermenek ve Altınkaya ve Ermenek barajlarının 

göllerindeki su seviyelerinin tahmin edilmesi için   Landsat 8 görüntüleri kullanılarak 

hesaplanmış olan AWEI, NDPI, NDWI ve WI2015 indeksleri ve ASTER/SRTM 

DEM verileri kullanılmıştır. Su seviyesi tahmininde bulut ve kar kaplı alanlar 

sebebiyle oluşabilecek hataları azaltmak için F-Mask bulut tespit algoritması ile 

parametreleri optimize edilmiş, TCW bazlı yeni oluşturulmuş bir indeks 

kullanılmıştır. Ayrıca, coğrafi olarak çalışmanın ilgi alanı ile alakasız olan piksellerin 

etkilerini ortadan kaldırmak için çalışma alanına dayalı bir sınırlama ve yakınlık bazlı 

ikinci bir sınırlama kesiti kullanılmıştır. Son olarak, çalışmanın tamamlanmasının 

ardından, istatistiksel bir model vasıtası ile sonuçların DEM ile kombinasyonu 
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sonrasında yükseklik değerinin elde edilmesi gerçekleştirilmiştir. Sonuçlar 

göstermektedir ki Ermenek ve Altınkaya baraj göllerinde (en başarılı model ve DEM 

kombinasyonunun) kök ortalama kare hatası değerleri sırası ile 3.63 ve 3.34 metredir. 

Ancak, doğrulama ve kalibrasyon işlemleri farklı barajlar ile yapıldığında bu hata 

değerlerinin Ermenek ve Altınkaya barajları için sırası ile 5.13 m ve 5.09 m olduğu 

gözlemlenmiştir.   

Anahtar Kelimeler: Su Yüksekliği, Landsat, Sayısal Yükseklik Haritası, Uzaktan 

Algılama, Baraj Rezervuarı 
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CHAPTER 1  

 

1. INTRODUCTION 

 

 Goal of This Study 

Water is an important commodity for maintaining the existence of human life 

and its accumulated civilization. In the modern world water is used for irrigation, 

hydropower generation, sanitation and sustaining human life among others. However, 

as the cities grow, natural water budget can be expected to be stretched to the point 

that it cannot be considered as sufficient and water transportation may be needed. This 

transportation requires delicate assessment of water budgets of both providing and 

receiving areas. Moreover, in addition to irrigation and sustaining human life, 

hydropower is an important energy source for countries including Turkey that has 

27,912 Megawatts (MW) of installed capacity shared among 636 facilities that covers 

32% of country’s total installed capacity as of June, 2018 (T.R. Ministry of Energy 

and Natural Resources, 2018). In order to maximize its usage and prevent scarcities, 

detecting water storage is an important aspect of water body management.  

Water storage detection has been performed by using various methods, such 

as use of   ground observations and remote sensing methods. Among these models, 

manual inspection of remote reservoirs (e.g., lakes) may not be technically easy (i.e., 

particularly under harsh winter or storm conditions) and cost effective. Besides, there 

could be some limitations about the water level observations in case the water body 

of interest lays in another country than the user lives. On the other hand, remote 

sensing-based observations have the ability to infer about the ground conditions with 

more conveniently than ground observations. Such remote sensing-based 

methodologies rely on various methods involving Synthetic-Aperture Radar (SAR) or 

Interferometric SAR (InSAR) images (Du et al., 2016; Huang, Nguyen, Zhang, Cao, 
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& Wagner, 2017; Karaman, Özelkan, & Taşdelen, 2018; Okeowo, Lee, Hossain, & 

Getirana, 2017; Wdowinski et al., 2008) or combination of Digital Elevation Model 

(DEM) raster images with remote sensing observations at the visible (VIS) and short 

wave infrared (SWIR) bands of the spectrum (Avisse, Tilmant, François Müller, & 

Zhang, 2017; Tseng et al., 2016). SAR and InSAR models can penetrate through the 

atmospheric clouds but are either depend on platforms like JASON (which was 

designed to operate over the oceans without ice cover (ESA, n.d.-a))  or JERS-1 (now 

dysfunctional) that have a lower temporal resolution of 44 days (Kramer, 2002) than 

Landsat’s temporal resolution of 16 days (Department of the Interior U.S. Geological 

Survey, 2019). Moreover, SAR based models’ data acquisition process includes side-

looking geometry and topographical obstacles such as mountains and dense forests 

may interfere with the microwave pulses with a consequence of introducing blind 

areas on the resultant images (Huang et al., 2017). Accordingly, VIS&SWIR bands 

combination incorporated with DEM have high potential to estimate the water levels 

over remote locations.  

Water detection methods based on Landsat images are widely used to infer 

about the extent of water bodies utilizing Landsat’s VIS, near infrared (NIR), SWIR 

and thermal infrared (TIR) bands. Using these bands, various indices have been 

developed to detect water extent (e.g., Automated Water Extraction Index, AWEI; 

Normalized Difference Water Index, NDWI; Water Index 2015, WI2015; and 

Normalized Difference Pond Index, NDPI). Since water extent datasets alone do not 

have sufficient information to infer about the water level estimations, and studies 

generally utilize also DEM datasets to get water level estimates (Avisse et al., 2017; 

Tseng et al., 2016). 

Among satellite-based images at the visible portion of the spectrum Sentinel 

based models have the advantage of being higher resolution (10 m) and may utilize 

the C-SAR band of Sentinel-1 (ESA, n.d.-b). Sentinel’s resolution is better than the 

500 m  resolution of The Moderate Resolution Imaging Spectroradiometer (MODIS)  

and 30 m resolution of Landsat but Sentinel also have disadvantage of having a smaller 
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(5 years) historical archive (ESA, n.d.-c) compared to ~47 years of Landsat archive 

(Earth Resources Technology Satellite, EROS, renamed to Landsat later, was 

launched in 1972, while the most recent Landsat mission continues to retrieve 

observations in 2019) (USGS, 2008). Landsat platform with such a long historical 

archive with high spatial resolution, offers a very unique and valuable opportunity to 

study historical conditions. Accordingly, studies utilize Landsat datasets to obtain 

water level estimates are needed to understand the utility of acquired historical water 

level estimates.  

There are various variables impacting the accuracy of the final water level 

estimates using Landsat & DEM image combination, such as remote sensing image-

based indices, DEM dataset selection, and the training dataset. More specifically, there 

are different water detection indices that are used in the literature (e.g., AWEI, NDWI, 

WI2015, and NDPI). Similarly, there are different DEM images available that the 

literature utilizes to obtain water level estimation (e.g., The Advanced Spaceborne 

Thermal Emission and Reflection Radiometer, ASTER and Shuttle Radar Topography 

Mission, SRTM). Training data to improve the accuracy of the water level estimates 

may not be always available at the region of interest; instead for such cases remote 

datasets (i.e., obtained from different regions) are used to obtain water level estimates. 

Such factors may significantly impact the accuracy of the water level estimates. 

Accordingly, relative added benefits of different indices, DEM datasets, and 

local/remote validation datasets in the framework of water level estimation need to be 

explicitly investigated in dedicated studies. 

 Studies Focusing on Water Level Detection using VIS/NIR/SWIR Images 

and DEMs 

Water level detection by utilizing remote sensing, especially with Landsat and 

Sentinel images have been researched globally. One notable study is the one 

performed over Hoover Dam of the United States of America (U.S.A.) by using a 

statistical model that utilizes Generalized Extreme Value (GEV) distribution in 

https://en.wikipedia.org/wiki/Shuttle_Radar_Topography_Mission
https://en.wikipedia.org/wiki/Shuttle_Radar_Topography_Mission
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combination of recreating reservoir bathymetry by using average slopes and triangular 

topography assumption (Tseng et al., 2016). Landsat imagery, in addition to ASTER 

and SRTM DEMs were utilized in this study. They found 1.90 ± 0.45 m of root mean 

square error (RMSE) in estimation of the water level of the dam. The region that this 

study had focused on has warm climate and have hardly any snow cover (i.e., close to 

Nevada Desert). Accordingly, this study had not implemented any snow mask. On the 

other hand, water levels of dams that are fed by snow-melt could be severely impacted 

from the snow cover around the dam area. Hence, an explicit snow cover mask should 

be implemented in addition to such water level estimation methodologies. 

Additionally, this study only investigates the Hoover Dam, where their water level 

estimation methodology is calibrated and validated over the same area. Given that, it 

is viable that independent validation over different regions may yield higher errors, 

such methodologies should be implemented with selection of different calibration and 

validation regions.  

Another notable study has been performed over the water bodies of Jordan by 

combining Landsat imagery with DEMs and using frequency based statistical model 

to obtain the water elevation of the water bodies (Avisse et al., 2017). This study had 

separated the calibration and the validation implementation of their water level 

estimation methodology. As a result, they have found correlations with the ground 

observations between 0.31 and 0.98, depending on the water body. On the other hand, 

similar to Hoover Dam case this study did not implement any snow cover mask in 

their methodologies too. 

Here above only two studies are given as an example for the combination of 

Landsat & DEM images to retrieve dam water levels. On the other hand, there are not 

many other studies investigated this potential of Landsat & DEM images particularly 

over regions with seasonal snow cover (similar to Turkey). Hence, more dedicated 

studies are necessary in this topic. 
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Even though indices like AWEI, NDWI, WI2015, and NDPI are particularly 

used for water area extent estimation (Feyisa, Meilby, Fensholt, & Proud, 2014; 

Fisher, Flood, & Danaher, 2016; Lacaux, Tourre, Vignolles, Ndione, & Lafaye, 2007; 

Xu, 2006), their potential in water level estimation has not been investigated in detail 

with a study that compares their relative utility. Accordingly, more studies over 

different locations are necessary to clearly highlight the added utility of these indices 

in water level estimation.   

 Relevant Studies over Turkey 

Because this study has been carried out using datasets obtained over Turkey, 

it is relevant to revıse the literature about the studies focusing over regions of interests 

laying over Turkey. Here, under this sub-section brief information about the studies 

using remote sensing-based images to infer about the water area extent in addition to 

water level estimates is given, as the number of studies focused on water level 

estimation is very limited.   

There are some studies focused on water extent estimation over various regions 

in Turkey (Bahadır, 2013; Geymen, 2017; Karabulut, 2015; Peker, 2019). However, 

there are only a few studies so far focused on the estimation of water level using 

remote sensing data (Ataol, 2010; Ozdemir & Leloglu, 2014), while combination of 

Landsat datasets with DEM images to get water level estimation has not been 

investigated so far. Overall, the studies implemented so far with a study area over 

Turkey focus more on water area extent estimation rather than water level estimation. 

Accordingly, there is still a need for more studies investigating estimation of water 

levels using remote sensing datasets over Turkey. 

Lake Burdur is one of the regions with a lake area extent that is very sensitive 

to seasonal and inter-annual climate variability. There are various studies over the lake 

area estimation using different methodologies. Among them, the study  

by Ataol (2010) used two Landsat images (obtained in 1987 and 2000), one SPOT 

image (obtained in 2008), ground observations acquired from The General Directorate 
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of State Hydraulic Works of Turkey (DSI), DEM images with spatial resolution of 90 

m., and 1:100.000 topography map to get the lake water area extent. They concluded 

that the lake water extent has dropped 9.50 m. from year 1987 to 2000. 

In another study used 5 Landsat TM images (1975, 1987, 1990, 2000 and 2002) 

and 1 SPOT XS (1996) images and the bathymetry map to determine the lake area 

extent of Burdur Lake and later validated them using ground observations of water 

area extent (Şener, Davraz, & İsmailov, 2005). This study concluded that the area of 

the lake has dropped from 210 km2 to 153 km2 and the lake water level has dropped 

10 m from year 1975 to 2002. 

Elmalı Basin, one of the drinking water sources of İstanbul, was studied in 

terms of land usage by utilizing 3 Landsat Enhanced Thematic Mapper (ETM) images 

for the dates of 1995, 2005 and 2013, in combination with Geographic Information 

Systems (Geymen, 2017). They found the basin has increasing water risk in years. 

If scope of inspecting local studies is expended in a way that it covers 

bathymetry mapping of shallow waters by utilizing remote sensing, a research about 

bathymetry mapping of Serçin Lake by utilizing Hyperion images in combination with 

statistical error correction and optimization algorithms (Ozdemir & Leloglu, 2014) 

can be included. This study not only maps the bathymetry but finds chlorophyll 

content of the water and concluded that the depth estimates are consistent with visual 

information. 

Among aforementioned local studies, even the ones implementing areal 

measurements do not utilize any statistical models, they have the limitations of area 

detection algorithms such as blocked areas by clouds and they, except Peker (2019), 

utilize only a handful of Landsat images since their time series is based on change of 

water content in terms of years and even half a decade. The water area extent change 

is investigated over 16 lakes using Landsat and Sentinel images and found major 

lakes’ (Burdur and Akşehir) water area extent shrunk (i.e., water levels dropped) 

between 1987 and 2017 (Peker, 2019). 
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There are other studies as well investigated the water area extent using remote 

sensing based datasets (Bahadır, 2013; Demirkesen, 2003; Karabulut, 2015; Özdemir, 

2008) and found satisfactory results. However direct water level estimation related 

studies over Turkey have not been investigated in detail so far; hence there is still a 

need for such studies. 

 Added Utility of This Study 

This study focuses on monthly water level measurements over Ermenek and 

Altınkaya dams using Landsat 8 images between May 2013 and May 2019, while 

these estimates were validated using ground measurements (provided by DSI) as the 

truth. Here, the added utility of four different indices (AWEI, NDWI, WI2015, and 

NDPI), two different DEM datasets (ASTER and SRTM), two training datasets (i.e., 

local and remote) and five different statistical model (Empirical Cumulative 

Distribution Function, ECDF; GEV, mean, mode and median based models) are 

investigated. F-Mask cloud detection algorithm is utilized and a Modified Tasseled 

Cap Wetness (mTCW) algorithm is developed for snow and shadow detection.  

One of the premises of the remote sensing-based methodologies is the ability 

to infer over regions that ground observations are not available. Accordingly, error 

estimates of the remote sensing-based methodologies that do not rely on observations 

obtained directly over the region-of-interest is needed. On the other hand, earlier 

studies in the literature estimated water level change via VIS/SWIR observations and 

DEM images mostly use the same site to train their algorithms and validate their 

results (i.e., error statistics might suffer from overfitting; Tseng et al., 2016), while 

only a few studies (Avisse et al., 2017) investigate the impact of training models on 

different sites. By explicitly investigating the performance of the estimation 

methodologies over independent regions (i.e., independent validation), this study 

contributes significantly to the existing literature.  

Existing snow/cloud/shadow filters used in the studies in the literature may not 

necessarily perform well in discriminating snow and shadow covered areas from other 
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regions. Tasseled Cap Wetness (TCW) index classifies the soils based on their wetness 

using 6 different (Red Green Blue, RGB; 1 NIR; and 2 SWIR) bands of Landsat 

images. In this study, a modified version of Tasseled Cap Wetness (mTCW) index 

that uses 6 different (RGB, 1 NIR, 1 SWIR and 1 TIR) bands of Landsat 8 images is 

developed to detect snow and shadow covered areas. With this aspect, this study 

contributes to the existing literature by introducing a new snow and shadow filter. 

Below Chapter 2 gives the details about the methodology and the datasets used 

in this study, Chapter 3 presents the results, and Chapter 4 gives the discussion and 

the conclusion of these results. 
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CHAPTER 2  

 

2. METHODOLOGY 

 

 Definitions 

Used terminology among this study should be explained before going into the 

details of the study.  

Raster: Rectangular (satellite for this study) image that has been computerized 

and consisting of pixels (Cambridge University Press, 2013). 

Spatial Resolution: A numerical value that is defined for a standard unit 

(meters in this study) and defines the ground area that each pixel in the raster covers. 

For example, a raster image with a spatial resolution of 30 m covers an area of 900 

square kilometers for each pixel. 

Temporal Resolution: A numerical value that is defined for a standard unit 

(days in this study) and defines the revisit time of the satellite platform. For example, 

a temporal resolution of 16 days means that a new raster is generated every 16 days.  

Aerosol – Ultraviolet Band: Band-1 of Landsat-8 platform that covers the 

0.433–0.453 µm interval of the electromagnetic spectrum (Department of the Interior 

U.S. Geological Survey, 2019). 

Blue Band: Band-2 of Landsat-8 platform that covers the 0.450–0.515 µm 

interval of the electromagnetic spectrum (Department of the Interior U.S. Geological 

Survey, 2019).  

Green Band: Band-3 of Landsat-8 platform that covers the 0.525–0.600 µm 

interval of the electromagnetic spectrum (Department of the Interior U.S. Geological 

Survey, 2019).  
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Red Band: Band-4 of Landsat-8 platform that covers the 0.630–0.680 µm 

interval of the electromagnetic spectrum (Department of the Interior U.S. Geological 

Survey, 2019).  

Near Infrared (NIR): Band-5 of Landsat-8 platform that covers the 0.845–

0.885 µm interval of the electromagnetic spectrum (Department of the Interior U.S. 

Geological Survey, 2019). 

Short Wave Infrared (SWIR): Band-6 (SWIR-1) and Band-7 (SWIR-2) of 

Landsat-8 platform that covers the 1.560–1.660 µm (Band-6) and 2.100–2.300 µm 

(Band-7) intervals of the electromagnetic spectrum (Department of the Interior U.S. 

Geological Survey, 2019). 

Cirrus Band: Band-9 of Landsat-8 platform that covers the 1.360–1.390 µm 

interval of the electromagnetic spectrum (Department of the Interior U.S. Geological 

Survey, 2019).  

Thermal Infrared (TIR): Band-10 (TIR-1) and Band-11 (TIR-2) of Landsat-

8 platform that covers the 10.6-11.2 µm (Band-10) and 11.5-12.5 µm (Band-11) 

intervals of the electromagnetic spectrum (Department of the Interior U.S. Geological 

Survey, 2019). 

RGB: An image that combines blue, green and red bands in a single image. 

VIS: An image or matrix that includes the bands that operate within the visible 

parts of the electromagnetic spectrum. VIS, covers blue, green and red bands.  

Sub-Pixel: Spatial area that is smaller than the spatial resolution of raster and 

hence cannot be represented in the image although it exists and affects the digital 

number (DN) value. For example, for a platform with 30 m of spatial resolution, sub-

pixel means an object that is smaller than 30 m. 

Half Pixel: Sub pixel, that covers an area equal to half of the spatial resolution 

of the raster image. For example, for a platform with 30 m of spatial resolution, half a 
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pixel means an object that is 15 m long. See Figure 2.1 for elevation change 

demonstration and relation between whole pixel and half pixel.  

Binary Mask, Binary Image: An image or mask that includes only zero or 

one valued pixels. 

Local Dataset/Model: Case, where the ground data used for model training is 

the same with the dam that the model is used to estimate its water level (ex. Using 

models trained with Ermenek Dam’s ground measurements to estimate the Ermenek 

Dam’s water level) 

Remote Dataset/Model: Case, where the ground data used for model training 

is not the same with the dam that the model is used to estimate its water level (ex. 

Using models trained with Altınkaya Dam’s ground measurements to estimate the 

Ermenek Dam’s water level) 

 

Figure 2.1 Demonstration of Elevation Change Within a Pixel and Half Pixel with respect to Slope 

 

 Overview of the Study 

This study focuses on estimation of water levels over Ermenek and Altınkaya 

dams using Landsat 8 images between May 2013 and May 2019. In order to estimate 

the water level of these dams for each Landsat 8 image date, first the Landsat image 

and the DEM maps are post-processed (Section 2.6) so that they could all be input to 

the Nelder-Mead Simplex (NMS) optimization methodology (Section 2.7). Initially, 
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the Landsat and the DEM datasets are cropped to a region (Section 2.6.2.1) that 

contains the dams to reduce the computational time and to improve the accuracy of 

the cloud filter applied later. Then proximity mask is calculated to prevent water 

bodies that are around the dam but not part of the dam reservoir to impact the results 

(Section 2.6.2.2). Similarly, cloud mask (Section 2.6.2.3), snow and shadow mask 

(Section 2.6.2.4), and water detection indices (Section 2.6.1) are calculated.  

All of these masks and indices (before threshold application) are static and are 

not impacted from the implemented NMS methodology that uses these masks and 

indices as input. Here, this optimization uses several different thresholds (water area 

extent detection threshold, water level detection threshold, and statistical outlier 

detection threshold) as parameters to minimize the errors of the water elevation. NMS 

at the same time also estimates the water area extent as an intermediate product, which 

is used as input to water-land border detection within the NMS methodology.  

The water level detection methodology introduced in this study relies on 

estimation of water-land border first using NMS methodology, then retrieval of DEM 

values at the water-land border pixels again using NMS methodology, and then 

utilizing several different methods (ECDF, GEV, mean, median, and mode) to obtain 

the water level estimate. Here, the method ECDF also relies on NMS for the estimation 

of water level elevation detection threshold. In other words, other four statistical 

methods (GEV, mean, median, and mode; explained in Section 2.8) obtain the water 

level estimates using the histograms of the DEM values of the pixels at the water-land 

border estimated via NMS methodology. Here GEV, mean, median and mode 

statistics-based methodologies require water-land discrimination before they can be 

implemented to obtain water level estimates. There could be other methods 

independent from NMS to obtain water-land border (e.g., directly using the Landsat-

based index results to acquire water-land delineation); however such methodologies 

might introduce high errors as the index values over different dates might have very 

different values. Accordingly, in this study NMS methodology based water-land 
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discrimination results are used in GEV, mean, median, and mode statistics-based 

water level estimations.  

Sensitivity of the water level results to the utilized indices, DEM images, and 

the selection of training dataset is investigated. Above methodologies are repeated for 

different scenarios using four indices (AWEI, NDWI, WI2015, and NDPI), two DEM 

images (ASTER and SRTM), two training datasets (i.e., local and remote), and five 

statistical approaches to retrieve water level from water extent (i.e., ECDF, GEV, 

mean, median, mode), and two dams. Accordingly, in this study 4*2*2*5*2=160 

scenarios are investigated.  

 Flow of The Model 

Main flow of the model is explained with 3 flow charts (Figure 2.2, Figure 2.3 

and Figure 2.4). The predictive model in this research includes Landsat and DEM 

(from ASTER and SRTM) raster images as input. Both Landsat and DEM images 

have been obtained by Earth Explorer web portal of USGS. Downloading of the DEM 

images was performed manually but the Landsat images were downloaded via Bulk 

Download Application (BDA) software of the United States Geological Survey 

(USGS).  
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Figure 2.2 Flow Chart of the Model up to the Calculation of Cropped DEM 

 

 

Figure 2.3 Flow Chart of the Model up to the Calculation of Final Water Area Mask 
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Figure 2.4 Flow Chart of the Model about Water Elevation Detection 

Each Landsat-8 image contains approximately 1.70 Gigabytes (GB) of 

unzipped data including 11 band (1 of them is panchromatic), 1 quality assessment 

raster, 1 angle coefficient file (ANG) and 1 Landsat Metadata File (MTL) file 

containing the Sun Elevation Angle, Top Of Atmosphere (TOA) reflectance and 

radiance coefficients, K1 and K2 values that are used throughout the calculations.  

DEM raster images contain 30-40 Mb of data and ASTER Global Digital 

Elevation Map (GDEM) contains a quality assessment raster in addition to the 

elevation raster. Downloaded DEM file projections are based on Geographic 

Coordinate Reference System (CRS) and in order to be able to incorporate them with 

Landsat images, they have been reprojected on Universal Transverse Mercator (UTM) 

based CRS. This reprojection was performed with QGIS.  

 Landsat images contain more than 60 million pixels over an area larger than 

34.000 𝑘𝑚2. To reduce the computational time, Landsat images are first cropped to 
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smaller subsets containing the dam that is being investigated. Borders of this subset 

area was defined visually using Google Earth Pro by ensuring no other major water 

body will lay within this subset area.  

 In addition to the subset images, buffer masks are further used to further reduce 

the errors by eliminating the possibility of misclassification of remote locations as 

water. Here buffer masks are created using DEM images that pixels having higher 

elevation than the dam’s highest elevation (i.e., theoretical maximum lake area extent) 

are labeled as 0 while pixels having elevation lower than the dam’s highest elevation 

are labeled as 1. Later such buffer masks are multiplied by the water area extent 

estimations so that water area extent is limited with the theoretical maximum lake 

area. 

 Cloud and mTCW masks have been generated for each date of the Landsat 

images and stored in the computer in raster form. Initial shape file was read and band 

raster images were cropped with respect to the initial shape file before calculation of 

these masks. These masks are independent from the parameter optimization steps and 

hence calculating them before running the main function shortens computational time. 

Cloud and mTCW mask values are stored as raster images containing values either 1 

or 0. 

 Results of water detection indices (NDWI, NDPI, AWEI and WI2015) were 

calculated and stored in the computer. Initial shape file was read and band rasters were 

cropped with respect to the initial shape file before calculation of these results. Results 

of the indices were not converted into a binary mask at this step since that conversion 

requires a threshold value that defines what is water and what is not, and that threshold 

is one of the parameters that have been optimized. Hence, the stored images of this 

step include complete range of results in terms of pixel values.  

Assigning binary values to the pixels based on a threshold takes shorter time 

than recalculating the index results and applying the threshold. That is the reason of 
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this calculation and saving in the computer. After completing these steps, the main 

function is run in order to calculate the results.  

Main function takes path of water index, DEM file, initial shape file, cloud 

masks, mTCW results, proximity buffer mask raster in addition to the values of water 

detection threshold, which (smaller or bigger) part of the histogram to label as water 

with respect to threshold, elevation detection threshold, outlier elimination threshold, 

talveg elevation and top of the crest elevation as parameters.  

Water detection threshold value is an either integer or decimal value, 

depending on the water area detection index. Initial assessment of this threshold is 

defined by inspecting the histogram of the water index result raster. After the initial 

assessment, the value is optimized in order to minimize the RMSE value.  

Decision of labeling which part of the image as water has been made based on 

a threshold (whose initial value was provided by inspection of histogram and then 

final value is obtained by optimization) parameter, where 1 means that any value 

smaller than or equal to the water detection threshold is water and 0 means that any 

value greater than or equal to the water detection threshold is water.  

Elevation detection threshold is a floating-point numeric value that is between 

0.0 and 1.0. This value defines the quantile percent that is returned as the final water 

elevation.  

Outlier elimination threshold is used to eliminate the extreme values that may 

be caused by either the error related to the DEM or complications due to Landsat’s 

spatial resolution. Values to be eliminated are selected with Eqn-(1, where µ is the 

mean and 𝜎 is the standard deviation of the values. 
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𝜀 =  µ ± 𝛽 ∗ 𝜎 

 

(1) 

where 𝜀 is the limit for values to eliminate, 𝛽 is the outlier elimination threshold. Here 

values 𝛽 ∗ 𝜎 away from the mean are considered as outliers, where 𝛽 is selected as 

1.75 in this study.  

Talveg (of the downstream) and top of the crest elevations are used as the 

physical limits of the water level elevations and as thresholds to filter unrealistically 

low or high elevations.  

Main function initially reads sample raster and initial shape file. These datasets 

are later utilized to transform shape file’s CRS into UTM. Then, DEM file is read, and 

this file’s CRS has also been converted into UTM. Afterwards, DEM file and the crop 

extent (CRS-corrected-shapefile) have been incorporated to have a raster named 

“Cropped DEM”. 

After producing the cropped DEM raster, the algorithm proceeds to read water 

area detection index results. Type of the water area detection method was provided by 

the user before the run of the main function by providing the related folder. After the 

reading process, algorithm proceeds to transform the results into a binary mask with 

respect to the provided water threshold and the value of the parameter that defines the 

relation of water labeling and threshold in terms of being smaller or greater than the 

threshold. The result of this step is named as initial water mask.  

After generating the initial water mask, algorithm proceeds and reads the 

related cloud and mTCW masks. Both cloud and mTCW masks had been saved as a 

binary mask and hence this step deducts these masks from the initial water mask. The 

negative valued pixels are the ones that do not have right to be classified as water and 

their values are set to 0 in order not to have underestimation problems in the upcoming 

steps due to their negativity. The result of this step is named as refined water area 

mask.  
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Proximity buffer mask of binary values are read after the generation of the 

refined water area mask. Buffer mask defines the area of interest in a narrower manner 

than the initial shape file. Pixels in the buffer zone have their values assigned as 1 and 

the others have their values assigned as 0. After reading the mask file, buffer mask is 

multiplied with refined water area mask. This multiplication eliminates the false 

positive values in addition to the statistical interference of other genuine water areas 

that are located further than the buffer distance. Result of this step is named as final 

water area mask.  

Water area mask is a binary mask which have all of the pixels located in the 

water body valued as 1 and the others valued as 0. Dams and other artificial water 

bodies that start their water retention after the construction date of the DEMs may be 

analyzed after this mask by multiplying this mask with cropped DEM but this solution 

cannot be applied for natural or artificial water bodies that have water before the 

construction date of the DEM. Hence, extracting the border line between the land and 

water pixels is a more general approach. This border extraction is done by using R-

Programming Language. After the border extraction, only the border pixels have their 

values assigned as 1 and the others’ values are assigned as 0. Result of this step is 

named as water border mask.  

After water border mask generation, this mask is multiplied with cropped DEM 

values in order to have masked elevation values. Since water border mask is a binary 

mask and the cropped DEM contains the elevation values, multiplication of these two 

provides a result that have elevation values for the water borders and zeros for 

everywhere else.  

It is not physically possible to have water elevation below the talveg elevation 

or above the top of the crest elevation. Hence, values that is out of these boundaries 

are eliminated.  

Even after the elimination of extreme values, the masked elevation values have 

outlier values due to either Landsat’s spatial resolution, standard errors of DEM 
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products, or thin clouds that are not eliminated in the Landsat image. Hence a second 

filter is applied based on statistical analysis of the resultant histogram and based on 

the provided outlier elimination threshold. Result of this process is called as final 

elevation values. Finally, the value belongs to the provided quantile value is returned 

among the final elevation values by the algorithm as the final result.   

 Study Area 

Even though above given methodology can be implemented over any location, in 

this study it is implemented over Ermenek and Altınkaya dams as proof of concept. 

2.4.1. Ermenek Dam 

Ermenek Dam (Figure 2.5) has 58.74 𝑘𝑚2 of reservoir area and is located in a 

basin with an area of 2304 𝑘𝑚2. The maximum depth of  dam reservoir is204.0 m and 

the mean depth of the reservoir is 78.0 m. Total reservoir capacity is 4,582 ℎ𝑚3. Crest 

height of dam is 210 m from the talveg level and 218 m from the foundation level. 

Top of the crest elevation of the dam is 700.0 m (Çevlik, 2013).  

Climate of the area changes from Mediterranean to continental as elevation 

increases. Dominant wind direction is South East (SE) and maximum wind speed has 

been measured as 18.9 m/s as of 2013. The coldest month is January with average 

temperature of 3.3⁰C and the hottest month is July with average temperature of 22.7⁰C. 

Mean temperature is 8.1⁰C for winter and 17.2⁰C for summer. Mean rainfall is  

600 millimeters (mm) per year where the December – February period’s rainfall 

amount is twice of the other months (Çevlik, 2013).  

Main water resource for dam is the Ermenek River, whose most recent mean 

flow amount has been calculated as 1,289.6 ℎ𝑚3/ 𝑦𝑒𝑎𝑟. In addition to the Ermenek 

River, other rivers also carry considerable amount of water to the reservoir: Gevne 

River, Göktepe River, Nadire Spring, Küçüksu River, Zeyve Spring and Zeyve River. 

Among those sources, Nadire Spring have been covered completely by the dam 

reservoir (Çevlik, 2013). 
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Water replenishment time, average amount of time that requires an incoming 

water stream to leave the reservoir lake, was calculated as 3.55 years and this value is 

higher when compared to Hirfanli Dam’s 2.60 years and Kesikköprü Dam’s 0.05 

years. Increased water replenishment time results in increased algae levels and hence 

eutrophication that causes inaccuracies among the results of water detection indices 

that takes green band into account (Çevlik, 2013). 

 Dam lake is located in the mild temperate climate zone; hence, water turbidity 

is increased due to melting of ice that was covering the lake area or circulation due to 

temperature differences. This turbidity may affect temperature-based calculations in a 

negative way.   

 DEM images are cropped to an initial area of interest (section 2.6.2.1). Average 

slope near the Ermenek Dam is calculated as 14.99 degrees using the ASTER DEM 

and 14.54 degrees using the SRTM DEM. Following Eqn-2, a Landsat pixel with 30 

m of spatial resolution may contain an elevation difference of ~7.8 m within the 

respect. These values also mean that even half pixel may contain ~3.90 m of elevation 

difference (Figure 2.1). This elevation difference implies on average 1.95m error may 

just stem from the coarse spatial resolution of Landsat image for mixed pixels that 

contain both water and land areas. Moreover, it can be observed that the slope value 

increases especially through the South Western (SW) part, where the dam is located 

(Figure 2.6 and Figure 2.7).  

𝑀𝑒𝑎𝑛𝐸𝐷 = 𝑆𝑝𝑎𝑅𝑒𝑠 ∗ sin (𝑚𝑒𝑎𝑛𝑆𝑙𝑜𝑝𝑒) (2) 

 

where MeanED denotes average elevation difference per pixel, SpaRes resembles the 

spatial resolution of the platform and meanSlope resembles the average slope 

calculated by using the DEM raster.  
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Figure 2.5 Satellite View of the Ermenek Dam and its Reservoir (Google, n.d.-b) 

 

 

Figure 2.6 Slope Map (in Degrees) of Ermenek Dam Buffer Area Based on SRTM DEM  

(Axes represent UTM coordinates) 
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Figure 2.7 Slope Map (in Degrees) of Ermenek Dam Buffer Area Based on ASTER DEM 

(Axes represent UTM coordinates) 

2.4.2. Altınkaya Dam 

Altınkaya Dam (Figure 2.8) is located 35 km SW of the Bafra province of 

Samsun. The dam is constructed in 1988 on Kızılırmak River, which is the longest 

river in Turkey and has annual flow values as high as  6.0 𝑘𝑚3/ 𝑦𝑒𝑎𝑟. Drainage area 

of the dam, the basin, is 74,515 𝑘𝑚2 and mean yearly flow value is 5.8 𝑘𝑚3/ 𝑦𝑒𝑎𝑟 as 

of 2011. Reservoir capacity of dam is 5.8 𝑘𝑚3, whereas the active volume is half of 

that value. Lake area for the highest water level that the dam has been designed for is 

118.0 𝑘𝑚2. Crest height of the dam is 140.0 m from talveg elevation where talveg 

elevation is 55.0 m. Altınkaya Dam is the 4th biggest dam of Turkey (Öztan, 2011). 

According to the Turkish State Meteorological Service (MGM) statistics, 

average temperature of the Samsun province is 14.5⁰C and the coldest month is 

February with a mean temperature of 3.9⁰C while the hottest month is August with a 
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mean temperature of 19.6 ⁰C. Mean rainfall is 717.1 mm/month and 165.5 mm of that 

rainfall has being observed in months November and December (MGM, 2010). 

Average slope determination and slope mapping processes were carried out for 

Altınkaya Dam by using the same methodology explained in Ermenek Dam  

(Section 2.4.1). According to those calculations, average slope near of the Altınkaya 

Dam is 14.44 degrees for ASTER DEM and 14.38 degrees for SRTM DEM. 

Considering the Eqn-2 these values means that a Landsat pixel with 30 m of spatial 

resolution (Department of the Interior U.S. Geological Survey, 2019) may contain an 

elevation difference ~7.5m. This value implies an error of ~1.9 m might be added just 

because of the local slope and the spatial resolution Landsat images for the water-land 

mixed pixels (See Figure 2.1). The slopes particularly increases along the sides of the 

water body area (Figure 2.9 and Figure 2.10), where the added errors independent 

from the methodology but due to input dataset and the study region might be even 

higher than average 1.9 m. 

Also note that the slope maps of Altınkaya Dam Buffer have zero valued pixels 

over the dam reservoir area because of the water existence preceding the construction 

of DEM images. In order to cope with this problem, an older topographic elevation 

map have been incorporated with DEM raster images so that inner regions of the dam 

reservoir have available DEM values. This new modified DEM image still has missing 

values, however, the dam reservoir water level never drops to the levels that DEM 

data will be missing. 
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Figure 2.8 Satellite View of the Altınkaya Dam and its Reservoir (Google, n.d.-a) 

 

 

Figure 2.9 Slope Map (in Degrees) of Altınkaya Dam Buffer Area Based on SRTM DEM 

(Axes represent UTM coordinates) 
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Figure 2.10 Slope Map (in Degrees) of Altınkaya Dam Buffer Area Based on ASTER DEM 

(Axes represent UTM coordinates) 

 Utilized Input Data 

2.5.1. Ground Data 

Ground data availability plays an important role during the determination of study 

area because of the need of independent data for both training and testing phases of 

the models in this study.  

Monthly reservoir water level data continuously measured by DSI over the two 

dams have been obtained for validation purposes. Data obtained from DSI reflects the 

water levels at the beginning of each month between May 2013 and May 2019. Data 

unit is meters. Accordingly, these datasets are interpolated to retrieve the water levels 

for the same days that 16-daily Landsat datasets are available.  
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2.5.2. Digital Elevation Data 

DEMs are topographic models that provides the elevation value of an area in 

numerical form. DEMs can be produced via stereo or SAR imaging. In this study, the 

required DEM data obtained from ASTER and SRTM platforms were used. Here the 

CRS of these two DEM images is consistent with the CRS of Landsat images, hence 

one to one comparison, or direct calculations, are possible. 

2.5.2.1. ASTER GDEM 

ASTER GDEM (Figure 2.11 and Figure 2.12) is based on stereo images taken by 

satellite platform that had been developed and are being operated by The National 

Aeronautics and Space Administration (NASA) and The Ministry of Economy, Trade 

and Industry of Japan, METI (METI, NASA, & ERSDAC, 2011). Its second version 

(GDEM2) was used in this study. GDEM2 was released in October 2011. It was an 

improved version of the GDEM1, first iteration, that had been released in June 2009 

(METI et al., 2011). Dataset has a spatial resolution of 30 m and each raster file 

published by the operating bodies cover and area of one degree by one degree in terms 

of spatial coverage (METI et al., 2011).  

RMSE value for ASTER raster images can go as high as 15.1 m for 

mountainous areas (Tachikawa, Kaku, & Iwasaki, 2011) and this errors have a 

potential to affect the estimations in a way that they cause higher water level 

estimation error. Hence the effect of these errors should be decreased by utilizing 

higher resolution and/or lower error DEM datasets.  
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Figure 2.11 ASTER DEM over Ermenek Dam 

 

Figure 2.12 ASTER DEM over Altınkaya Dam 
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2.5.2.2. SRTM GDEM 

SRTM GDEM (Figure 2.13 and Figure 2.14) is a DEM that has been constructed 

based on the images taken by the Shuttle Radar Topography Mission in 2000 (Jain, 

Thaker, Chaurasia, Patel, & Singh, 2018). Its DEM with highest resolution, 30 m 

spatial resolution, was released in 2003 (Elkhrachy, 2018). 

Dataset has a spatial resolution of 30 m and each raster file published by the 

operating bodies cover an area of one degree by one degree in terms of spatial 

coverage (NASA, n.d.). However, SRTM is known to include void pixels over 

mountainous areas with steep slopes (Berthier, Arnaud, Vincent, & Rémy, 2006; 

Kolecka & Kozak, 2014). 

 

Figure 2.13 SRTM DEM over Ermenek Dam 
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Figure 2.14 SRTM DEM over Altınkaya Dam 

2.5.3. Landsat Images 

2.5.3.1. Selection of Landsat-8 Images 

In order to detect the clouds, improved F-Mask algorithm (Frantz, Haß, Uhl, & 

Hill, 2018)  was utilized in this study. This algorithm utilizes the Band-9 (Cirrus Band) 

of Landsat-8 that covers the spectral interval of 1.36 - 1.38 µm (Department of the 

Interior, U.S. Geological Survey, 2019). This band has not been included in previous 

Landsat satellites (NASA, 2011) and only available in the Landsat-8 images that are 

used for this research. Having 6 years of data since its launch, the length of available 

Landsat-8 data limits the duration of this study as Scan Line Corrector (SLC) 

malfunction problem of Landsat-7 (USGS, 2003) limits its use in this study. While 

Landsat-6 failed to reach its desired orbit (Viets, 1995), Landsat-5 provides a long 

archive (its datasets are available between 1984 and 2013; Usgs.gov, 2013); yet, in 

this study Landsat 5 datasets are not used along with Landsat 8 images as some bands 

used in this study are only available in Landsat 8 but not in Landsat 5. New Landsat 
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mission, Landsat-9, is planned to be launched in December 2020 and to include 

exactly the same bands and spectral intervals as Landsat-8 (U.S. Geological Survey, 

2019). Availability of Landsat 8 and 9 images simultaneously would reduce the revisit 

time of Landsat over any part of the globe.  

In this study Landsat 8 Level-1 data is utilized instead of higher level datasets. 

Level-1 images have been corrected both geometrically and radiometrically in order 

to get rid of distortions of Level-0 images caused due to sensors, deviations in attitude, 

shape of Earth (Department of the Interior U.S. Geological Survey, 2019).  

 

2.5.3.2. Selection of Digital Numbers Instead of Surface Reflectance 

The decision based on using DN directly versus utilizing surface reflectance (SR) 

first were made on the fact that although the analyses based on SR calculations seem 

to yield a more informative initial results, the proposed methods for Brightness 

Temperature (BT), TOA radiance and reflectance calculation formulas provided in 

data manual of Landsat-8 utilizes DNs (Department of the Interior U.S. Geological 

Survey, 2019). In addition to the SR calculation’s addition of another artificial layer, 

utilization of DN instead of calculating SR is commonly applied in literature (Danaher 

& Collett, 2006). 

To see the difference between SR- and DN-based indices, NDWI water index is 

calculated using both level datasets for Landsat-8 image 

LC08_L1TP_177035_20180418_20180501_01_T1 (below Figure 2.11 and Figure 

2.12). SR-based NDWI images have some artificial strips while DN-based image does 

not. Accordingly, DN-based level 1 datasets are used in this study rather than SR-

based higher level datasets.  
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Figure 2.15 NDWI-XU Result (SWIR = B6) based on DN of Landsat 8 (LS8) Image 

LC08_L1TP_177035_20180418_20180501_01_T1   

 

Figure 2.16 NDWI-XU Result (SWIR = B6) based on SR of LS8 Image 

LC08_L1TP_177035_20180418_20180501_01_T1 
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2.5.3.3. TOA Reflectance, Radiance and Brightness Temperature Calculations 

TOA reflectance calculation before acquisition of indices is performed with  

Eqn-3 proposed by the Data Manual of Landsat 8 (Department of the Interior U.S. 

Geological Survey, 2019). The selected application method included correction for 

solar angle and in order to apply correction for solar angle, reflectance coefficients 

were required. Those required reflectance coefficients were obtained from the MTL 

files related with the raster of interest and had been provided by the USGS.  

𝜌λ =  
𝑀𝑝 ∗ 𝑄𝑐𝑎𝑙 ∗ 𝐴𝜌

sin (𝜃𝑆𝐸)
 

(3) 

 

where 𝜌λ symbolizes TOA Spectral Reflectance with solar angle correction, 𝑀𝑝 

represents reflective multiplicative band scaling factor,  𝑄𝑐𝑎𝑙 represents dynamic 

number regarding to the pixel of interest that belongs to a Level-1 data, 𝐴𝜌 symbolizes 

reflectance additive band scaling factor and 𝜃𝑆𝐸  represents Sun elevation angle. 𝑀𝑝, 

𝐴𝜌 and 𝜃𝑆𝐸  values have been obtained from MTL files of the Landsat images, whereas 

the 𝑄𝑐𝑎𝑙 values are obtained directly from the tif files regarding to the respective 

bands.  

TOA radiance calculation of the DN values of the Landsat raster carried out using 

Eqn-4 proposed by the Data Manual of Landsat 8 (Department of the Interior U.S. 

Geological Survey, 2019) and the required radiance coefficients was obtained from 

the MTL files related with the raster of interest.  

𝐿λ =  𝑀𝐿 ∗ 𝑄𝑐𝑎𝑙 ∗ 𝐴𝐿 (4) 

 

where 𝐿λ symbolizes TOA Spectral Radiance in terms of W/(𝑚2 * sr * μm), 𝑀𝐿 

denotes radiance multiplicative band scaling factor,  𝑄𝑐𝑎𝑙 denotes dynamic number 

regarding to the pixel of interest that belongs to a Level-1 data, 𝐴𝐿 symbolizes radiance 

additive band scaling factor. 𝑀𝐿 and 𝐴𝐿 values have been obtained from MTL files of 



 

 

 

34 

 

the Landsat images, whereas the 𝑄𝑐𝑎𝑙 values are obtained directly from the tif files 

regarding to the respective bands.  

 For BT calculations, the Eqn-5 provided by the Data Manual of Landsat 8 

(Department of the Interior U.S. Geological Survey, 2019) has been used. Since this 

formula requires calculation of surface radiance a priori, surface radiance calculations 

were performed, and the obtained results have been used in the equation. 

𝑇 =
𝐾2

ln (
𝐾1

𝐿λ
+ 1)

 
(5) 

 

 where T denotes TOA BT in terms of Kelvin, 𝐿λ symbolizes TOA Spectral Radiance 

in terms of W/(𝑚2 * sr * μm), 𝐾1 and 𝐾2 represent thermal conversion constants that 

are band specific values. 𝐾1 and 𝐾2 values have been obtained from MTL files of the 

Landsat images.  

 

 Post-Processed Data 

Landsat 8 images (i.e., different bands) are post processed with different combination 

to retrieve products that will be primarily used in the water-land detection algorithm 

as well as mask parts of the images that may not contain useful information and/or add 

high errors.  

 

2.6.1. Selected Water Area Detection Indices 

Different water detection indices have been utilized in this study to see the 

differences that based on formulation of indices. Selected indices are AWEI, NDPI, 

NDWI-MCF and WI2015. 
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2.6.1.1. AWEI 

AWEI is a water detection index that requires cloud free observations. AWEI 

has two variants, AWEI-NS and AWEI-S, where the AWEI-NS (Eqn-6) is a robust 

method that eliminates the non-water pixels for images without shadow problem and  

AWEI-S (Eqn-7) is a refined version that considers shadows too (Feyisa et al., 2014). 

Both AWEI formulations are depended on radiometric resolution and hence their 

thresholds depend on the platform. 

𝐴𝑊𝐸𝐼. 𝑆 = 𝐵𝐿𝑈𝐸 + 2.5 ∗ 𝐺𝑅𝐸𝐸𝑁 − 1.5 ∗ (𝑁𝐼𝑅 + 𝑆𝑊𝐼𝑅1) 

                           −0.25 ∗ 𝑆𝑊𝐼𝑅2 

(6) 

 

𝐴𝑊𝐸𝐼. 𝑁𝑆 = 4 ∗ (𝐺𝑅𝐸𝐸𝑁 − 𝑆𝑊𝐼𝑅1) − (0.25 ∗ 𝑁𝐼𝑅 + 2.75 ∗ 𝑆𝑊𝐼𝑅1) 
 

(7) 

In this study AWEI-S variant is utilized to discriminate the water from the land. 

2.6.1.2. 8 NDPI 

NDPI is a water detection index, developed mainly for pond detection, aims to 

detect small water bodies correctly (Lacaux et al., 2007). The original formulation of 

NDPI uses a MIR band covering interval 1.58 – 1.75 µ𝑚 (Lacaux et al., 2007) that is 

very similar to Landsat-8 SWIR-1 (Band-6) interval 1.57 – 1.65 µ𝑚  (Department of 

the Interior U.S. Geological Survey, 2019). Accordingly, in this study the NDPI 

calculations were performed using below Eqn-8 using Landsat-8 Band-6 images. As 

can be seen from the formula, NDPI results can be negative when the DN of the Green 

Band is greater than the DN of the SWIR band, while it becomes positive when SWIR 

DN values are greater than SWIR DN values. 

𝑁𝐷𝑃𝐼 = (𝑆𝑊𝐼𝑅 − 𝐺𝑅𝐸𝐸𝑁)/ (𝑆𝑊𝐼𝑅 + 𝐺𝑅𝐸𝐸𝑁) 
 

(8) 

2.6.1.3. NDWI 

NDWI is a water detection index is based on NIR and Green bands in a way 

that it divides the difference between Green and NIR to sum of Green and NIR to find 

a ratio (McFeeters, 1996), while several different variations of NDWI has been 
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generated since its initial development (B. Gao, 1996; Xu, 2006). On contrast to 

AWEI, this index resulting interval does not depend on radiometric resolution of the 

platform. NDWI variation used in this study is the McFeeters’ variation and 

calculations were done by using Eqn-9. As can be seen from the formula, Normalized 

Difference Water Index – Mcfeeter’s Variation (NDWI.MCF) results can be negative 

(like the NDPI results) when the DN of the NIR Band is greater than the DN of the 

GREEN band and positive when vice versa. 

𝑁𝐷𝑊𝐼. 𝑀𝐶𝐹 = (𝐺𝑅𝐸𝐸𝑁 − 𝑁𝐼𝑅)/ (𝐺𝑅𝐸𝐸𝑁 + 𝑁𝐼𝑅) (9) 

 

2.6.1.4. WI2015 

WI2015 is a water detection index that its estimation is not based on ratio 

calculation (Fisher et al., 2016). Accordingly, its resulting interval depends on the 

radiometric resolution. In other words, result interval of WI2015 index will be 

different for an 8-bit image (DN range of 0-255) and 16-bit image (DN range of  

0-65535), similar to AWEI. WI2015 calculations were done by using Eqn-10, 

provided below.  

 

𝑊𝐼2015 = 1.7204 + 171 ∗ 𝐺𝑅𝐸𝐸𝑁 + 3 ∗ 𝑅𝐸𝐷 − 70 ∗ 𝑁𝐼𝑅 − 45 ∗ 𝑆𝑊𝐼𝑅1
− 71 ∗ 𝑆𝑊𝐼𝑅2 

(10) 

 

 

2.6.2. Applied Buffers and Masks 

2.6.2.1. Region of Interest Subset 

Two buffer areas (initial subset and proximity mask) are defined and utilized 

in this study. An initial subset (Figure 2.17 and Figure 2.18) is used to reduce the raw 

Landsat image with ~35 million pixels (over an area larger than 34.000 km2) to ~1 

million pixels (~900 km2 area). This subset also reduces the computational time and 

also prevents the overestimation of F-Mask cloud detection algorithm.  
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Figure 2.17 Initial Subset Marked (with Red) over the Altınkaya RGB Image 

 

Figure 2.18 Initial Subset Marked (with Red) over the Ermenek RGB Image 
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2.6.2.2. Proximity Mask 

Initial iterations of the research model had shown that even after the initial 

cropping based on rectangular shape file that has been extracted from Google Earth 

Pro, there exist cases that the results include overestimation of water areas. Some of 

the overestimation is based on cloud, shadow and icy areas and those anomalies can 

be deducted by masks and introduction of additional indices. However, as it can be 

seen from the results section, research model tends to yield better results for hot 

seasons and worse ones for wet seasons. Therefore, some of the overestimation is 

based on soil moisture that cannot be deducted without an extensive and accurate 

modelling of soil moisture. Moreover, there exists some other natural or artificial 

water bodies in the proximity of areas of interest. Hence, a buffer zone is introduced 

to further eliminate the overestimation.  

Proximity buffer area (Figure 2.19 and Figure 2.20) modelling is based on shape 

files of the dam areas. Shape files have been extracted from Google Earth Pro in kml 

format and transformed into shp files via QGIS. Those extracted points represent the 

boundary of water body and hence everything within those points are labeled as area 

of interest. The transformation of projection of shp file to UTM is performed by  

R-Programming Language’s (R) “raster” library. When it comes to the outsider points, 

a proximity limit of 10 pixels (300 meters since each Landsat pixel is equal to 30 

meters) is defined and every point that lays within that proximity limit is added to the 

area of interest. Distance measurement was done based on Euclidian distance formula 

and the reference point is defined as the point in area of interest such that it yields the 

smaller distance for the point that was being inspected. 

Every pixel in the area of interest is labeled with a binary (0 or 1) value. Since the 

final step of this study includes multiplication of final binary image with to DEM 

image and then introducing a statistical model afterwards, this binary mask prevents 

overestimations due to false positive water markings in the areas that are far away 

from the area of interest.     
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Figure 2.19 Proximity Buffer Area for Ermenek Dam 

 

Figure 2.20 Proximity Buffer Area for Altınkaya Dam 
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2.6.2.3. Cloud Mask 

Landsat 8 has been equipped with Band 9, named cirrus band, that covers the  1.36 

- 1.38 µm (Department of the Interior U.S. Geological Survey, 2019). Accordingly, to 

prevent the cirrus clouds interfering the results, either a threshold should be selected 

and Band 9 mask should be applied (to cover some of the cirrus bands) or a mask 

should be calculated via different combinations of Band 9 data as well as whiteness, 

temperature anomalies and other bands datasets.  Although the initial F-Mask cloud 

algorithm  had been developed without the Landsat 8 data (Zhu & Woodcock, 2012), 

the improved iteration of F-Mask takes Band 9 into account to eliminate the 

computational intensity of the Potential Cloud Pixel (PCP) detection step (Zhu, Wang, 

& Woodcock, 2015).  

A threshold needs to be defined in F-mask algorithm for the detection of the 

clouds. Although the threshold 0.01 selected in this study as suggested by a similar 

study (Wilson & Oreopoulos, 2013) is much smaller threshold than the 0.03 value 

used in a similar masking algorithm for MODIS (Ackerman et al., 2010), there still is 

a tendency of overestimation of F-Mask algorithm (Zhu et al., 2015). F-Mask 

algorithm’s results seemed to be highly skewed towards overestimation over the 

Ermenek image that includes almost extensive Mediterranean pixels as well as high 

mountains. F-Mask uses average whiteness and temperature values and having 

unrelated pixels, affect the results in a way that increases errors. 

In fact, since the effect of temperature difference on the final result can be 

considered as high, it is observed that the algorithm has a tendency of producing false 

positives (pixels marked as cloud whereas they are not) within the study area. The 

reasoning behind this is the effect of sea water’s consistent temperature and the 

decrease in temperature with the increase in elevation. Landsat images of the study 

areas cover high mountains, valleys within mountains and plateaus between the 

mountainous area in addition to sea and shore that is included in the Landsat images 

covering Ermenek Dam’s area. Even the border between land and water body of 
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interest was labeled as cloud for some of the images that had their cloud masks 

calculated with the F-Mask algorithm. An example for overestimation over the water 

boundary line has been provided for the Landsat 8 image 

LC08_L1TP_177035_20160802_20170322_01_T1 that covers Ermenek Dam area 

(Figure 2.21). 

 

Figure 2.21 RGB Image (Left) and Related Cloud Mask Result (Right) of the LS8 Image 

LC08_L1TP_177035_20160802_20170322_01_T1 

In order to cope with this problem, cropping with region of interest subset (See 

Section 2.6.2.1) step of the calculations had been performed before the final cloud 

mask was detected and the results were successful in terms of eliminating the false 

positives. This change of order has changed mask algorithm’s adaptive statistical 

thresholds of whiteness and BT steps.   

The final cloud mask still had overestimation based on bidirectional reflectance 

distribution function (BRDF) artifacts but since the further steps of methodology of 

this research calculates the boundary between water and land, the BRDF-based false 

positive cloud pixels over the water area have not affected the results.  

The only change in F-mask algorithm that was made in this study is using a 

shapefile to cut the area of interest (Section 2.6.2.1) and hence getting rid of the 

unrelated pixels’ effect on the results by skewing the statistical values. If this cutting 
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were not performed, than the geographically irrelevant pixels would skew the 

statistical computations of the F-Mask algorithm. All of the remaining calculations 

explained through this study are were performed based on the existing literature that 

introduced and improved the algorithm (Zhu et al., 2015; Zhu & Woodcock, 2012). 

F-Mask algorithm’s first step aims to determine the PCP coverage of the entire 

raster. Initial algorithm design had included complex calculations for this step (Zhu & 

Woodcock, 2012) but the refined algorithm relies on the Landsat-8’s Band-9 that is 

called as Cirrus band and covers  the 1.36 - 1.38 µm interval of the electromagnetic 

spectrum (Department of the Interior U.S. Geological Survey, 2019). PCP result is 

limited to binary values such that, 1 for probable cloud and 0 for not cloud (Figure 

2.22 – Left). 

After PCP calculation, a water mask is generated with a function that utilizes Band 

4 (Red Band) and Band 5 (NIR) bands of Landsat 8. This function calculates 

Normalized Difference Vegetation Index (NDVI) and returns a binary mask with 

respect to the outcome of two initial tests that are based on the TOA reflectance Band-

4 value and NDVI result. Returned result are in binary form (Figure 2.25 – Right). 

Production of water mask enables clear sky water pixel mask generation. The 

function that is used to generate clear sky water pixel mask uses Band 7 (SWIR-2) 

band of Landsat 8 and incorporates this analysis into water mask matrix. Returned 

result is limited to binary values such that, 1 for probable cloud and 0 for not cloud 

(Figure 2.23). 

BT mask is generated with Band-10 (TIR-1) and Band-11 (TIR-2) bands of 

Landsat-8. Final BT matrix has been returned as the simple average of two masks 

calculated with two different bands (Figure 2.24). 
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Figure 2.22 PCP (Left) and Water Mask (Right) results of LS8 Image 

LC08_L1TP_177035_20180402_20180416_01_T1 

 

 

Figure 2.23 Clear Sky Water Mask  results of LS8 Image 

LC08_L1TP_177035_20180402_20180416_01_T1 
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Figure 2.24  Brightness Temperature (Kelvin) Result of LS8 Image 

LC08_L1TP_177035_20180402_20180416_01_T1 (Axes Represent UTM Coordinates) 

Generalized water temperature value is calculated by multiplying clear water mask 

with BT matrix. The returned value is the 0.825th quantile of the resultant matrix. The 

0.825 value has been offered by both the original and the improved algorithms (Zhu 

et al., 2015; Zhu & Woodcock, 2012).  

After calculating a temperature threshold for water pixels, one of the probability 

analysis calculations can be performed and temperature-based cloud probability mask 

for water areas based on temperature analysis has been generated. (Figure 2.25 – Left) 

Before generating a final cloud mask for water areas, a second probability mask 

named as brightness probability mask, based on TOA reflectance values of Band-5 

(NIR) of Landsat-8, has been generated. Returned result includes values limited with 

1 for probable cloud and 0 for not cloud. (Figure 2.25 – Right) 
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Figure 2.25 Temperature Based Water Probability Mask (Left) and Brightness based Probability 

Mask (Right) of LS8 Image LC08_L1TP_177035_20180402_20180416_01_T1 

 

Finalized cloud mask over the water areas have been generated by incorporating 

temperature-based cloud probability mask and brightness probability mask. This result 

includes binary values such that 1 for probable cloud and 0 for not cloud. 

In order to generate a cloud mask for the land areas too, a clear sky land pixels 

mask based on PCP and initial water mask, has been generated. However, calculation 

steps of this method do not just mark intersections of PCP’s 0 (false) pixels with the 

water mask’s 0 (false) ones. Calculation steps also take total number of pixels 

(regardless of being water or land and cloudy or clear sky) and if the number of clear 

sky land pixel count of the result candidate is lower than 1% of the total number of 

pixels of the raster, that result candidate is combined with the clear sky water mask, 

otherwise the result candidate is returned as it is. Returned result is a binary image  

(Figure 2.26 – Left). 

After generating the clear sky land mask, a probability mask based on temperature 

has been generated for land pixels. Calculation of this mask includes BT values that 

had been defined previously and clear sky land pixels (Figure 2.26 – Right). 
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Figure 2.26  Clear Sky Land Mask (Left) and Temperature Based Cloud Probability Mask (Right) of 

LS8 Image LC08_L1TP_177035_20180402_20180416_01_T1 

 

Another step to calculate is whiteness mask. Calculation of this mask includes 

calculating the mean visible matrix which is the arithmetic average of RGB (Band 2, 

Band 3 and Band 4 of Landsat 8) band values. After that differences between DN of 

each band and the mean visible matrix are calculated and returned as result.  

Generating of Cloud Mask for land areas also includes another mask named as 

variability probability mask. This step utilizes Bands 3, 4, 5 and 6 of Landsat 8 and 

whiteness mask. Throughout the calculation, function calculates NDVI and NDPI 

(with Band 6 as SWIR) values and assigns binary values the resultant band based both 

those calculations and whiteness mask (Figure 2.27– Left). 

After calculating clear sky land mask, temperature mask for land pixels, whiteness 

mask and variability probability mask, a second finalized cloud mask can be 

generated, and that new mask will define the cloudy areas for land pixels  

(Figure 2.27- Right). 
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Figure 2.27 Whiteness Mask (Left) and Land Variance Mask (Right) calculations of the Cloud Mask 

of LS8 Image LC08_L1TP_177035_20180402_20180416_01_T1 

 

The final cloud mask is generated by summing finalized cloud mask covering 

water areas and finalized cloud mask covering land areas and assigning 1 (cloud) or 0 

(no cloud) to each pixel. This assignment is based on the result of the summation such 

that every pixel with a value greater than 0 is assigned to be 1 and the ones with a 

value smaller than 0 is assigned to be 0. Reason of the possibility of values being 

greater than one when both water and land masks have values either 0 or 1 is a 

precaution against an overlapping and having a value equal to 2. Since this final mask 

is used in a deductive manner at the water border detection step, having a value equal 

to 2 would result in having a value of -1 in the water border calculations. Those 

possible -1 values would skew the density distribution of the final elevation-

candidates-matrix in an unpredictable and uncorrectable way. 

Considering both the RGB image (Figure 2.28) and the final cloud mask 

(Figure 2.29) together, it can be observed that the cloud mask algorithm overestimates 

the cloud pixels when temperature distribution is skewed. Some of this overestimation 

may be due to occurrence of very thin clouds that cannot be detected during human 

inspection. However, it can also be observed that the algorithm performed better over 
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pixels belonging to Mediterranean Sea.  In the light of the algorithm’s general flow, 

reason of this accuracy is sea pixels’ uniformity and that is the reason of proposing an 

initial cropping with respect to a shape file covering the area of interest.   

 

Figure 2.28 RGB image of LS8 Image LC08_L1TP_177035_20180402_20180416_01_T1 
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Figure 2.29 Final Cloud Mask of LS8 Image LC08_L1TP_177035_20180402_20180416_01_T1 

 

2.6.2.4. Snow and Shadow Mask 

In this study mTCW is used as snow and shadow mask. Tasseled Cap 

Transformations had been introduced in 1976 mainly for agricultural land cover 

classification (Kauth & Thomas, 1976) and derivations have been published to detect 

wet areas and vegetation. (Crist, 1985) 

 

𝑇𝐶𝑊𝐶𝑟𝑖𝑠𝑡−𝐿𝑆8 = 0.0315 ∗ 𝐵2 + 0.2021 ∗ 𝐵3 + 0.3102 ∗ 𝐵4 + 0.1594 ∗ 𝐵5
− 0.6806 ∗ 𝐵6 −  0.6109 ∗ 𝐵7 

 

(11) 

  

 Although TCW method has been used as an input for water area detection 

(Ouma & Tateishi, 2006), its derivatives with different coefficients have also been 

utilized (Bhagat & Sonawane, 2011). A more recent study based on Australia also 

stated that the original 𝑇𝐶𝑊𝐶𝑟𝑖𝑠𝑡 coefficients yield slightly worse performance when 
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it comes to detecting the water area and hence coefficient fine tuning should be 

performed with respect to the study area (Fisher et al., 2016).  

Considering the 𝑇𝐶𝑊𝐶𝑟𝑖𝑠𝑡 calculates the wetness of the surface and even the 

initially equation proposed by 𝑇𝐶𝑊𝐶𝑟𝑖𝑠𝑡 (Eqn-12) was found out to be a  good 

indicator of snowy areas, probably due to highness of its coefficients of SWIR bands 

with respect to VIS and NIR ones,  a modified version of 𝑇𝐶𝑊𝐶𝑟𝑖𝑠𝑡 has been generated 

(for details see Table 2:1) and used in this study as mTCW. Thermal bands have been 

utilized in mTCW when compared to 𝑇𝐶𝑊𝐶𝑟𝑖𝑠𝑡 to generate a more separated set of 

values for ice and water. Resultant mTCW formula has been found to be useful for 

eliminating some of the false positive water area markings due to not only ice and 

snow pixels but also cloud shadow pixels.  

 𝑚𝑇𝐶𝑊 = 0.03 ∗ 𝐵2 + 0.20 ∗ 𝐵3 + 0.41 ∗ 𝐵4 + 0.16 ∗ 𝐵5 − 0.54 ∗ 𝐵7 −
 0.36 ∗ 𝐵11 
 

(12) 

 

 

 
Table 2:1 Band Coefficients of TCW-Crist and mTCW 

Band Number (Landsat 8) 𝑇𝐶𝑊𝐶𝑟𝑖𝑠𝑡 mTCW 

B2 0.0315 0.03 

B3 0.2021 0.20 

B4 0.3102 0.41 

B5 0.1594 016 

B6 -0.6806 NA 

B7 -0.6109 -0.54 

B11 NA -0.36 
∑(|𝑈𝑉| + |𝑉𝐼𝑆| + |𝑁𝐼𝑅|)

∑(|𝑆𝑊𝐼𝑅| + |𝑇𝐼𝑅|)⁄  
1.84 0.89 

 

The image (Figure 2.30 – Left) belongs to the result of AWEI.S (best model for 

water level estimation over Altınkaya Dam, see Section 3.4) application over the 

Landsat 8 Level 1 raster image taken at 19.02.2017  with the name of 

LC08_L1TP_176031_20170219_20170301_01_T1, covering the Altınkaya Dam 

area. As it can be seen in the image (Figure 2.31) from the RGB plotting of the same 
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image that the NDPI application returns both water and icy areas as black. However, 

the image (Figure 2.30 – Right) indicates that the mTCW approach is more sensitive 

to icy areas and combining mTCW application with NDPI application have reduced 

the false positive water markings as it can be seen in the resultant image (Figure 2.32). 

It should also be noted on the upper left part of the resultant image that, unless the 

cloud masking is applied, the clouds’ effect on false positiveness of water detection 

index results may persists through mTCW corrections.  

 

Figure 2.30 Results of AWEI-S (Left) and mTCW (Right) Calculations of Landsat-8 Image  

LC08_L1TP_173033_20180201_20180220_01_T1 
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Figure 2.31 RGB Image of Landsat-8 Image LC08_L1TP_176031_20170219_20170301_01_T1 

(Image obtained from USGS) 
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Figure 2.32 Resultant Image (Introduction of mTCW to Water Detection Index) of Landsat-8 Image 

LC08_L1TP_176031_20170219_20170301_01_T1 

 

 Optimization of Water Level Detection Estimations 

2.7.1. Optimization Method and Design Decisions 

There are numerous kinds of optimization methods and their variants. 

However, NMS method has been selected for optimization tasks of this study. 

However, to check for the difference between a generalized method and a method that 
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is tailored for a specific dam, another approach was also carried out that was based on 

some of Altınkaya Dam’s data as training to model both Altınkaya and Ermenek Dam. 

Initial results with the selected initial parameters have shown that the RMSE 

value changes with respect to time of the year. In order to achieve better results, the 

semiannual (winter and summer) variant and seasonal (winter, spring, summer and 

autumn) variant were tried and results were inspected manually. This manual 

inspection led the decision of using seasonal model with seasons of winter, spring, 

summer and autumn. 

Inspection of the initial results and division of the year into four parts also led 

a requirement of four different thresholds for determining the elevation.  NMS method 

starts with generating at least n+1 random candidates for n number of variables. 

Although division of the year into four equal parts that have their own water thresholds 

and elevation quantile thresholds makes 8 parameters that require an initial pool of at 

least 9 candidates, every season was independent from the others. Moreover, NMS 

algorithm includes finding the centroid of the best candidates and optimizing all parts 

of the year had a probability of undesired changes in unrelated parameters. Hence, 

every season was considered on its own and objective function was calculated only 

for the season-of-interest related data. This decision led to a result that have 3 

parameters (water threshold, statistical outlier threshold and elevation quantile 

threshold) that require an initial pool of 4 candidates. However, in order to have an 

initial pool that has as much variety as it can, size of the initial candidate pool was set 

to be equal to 100. But one of the candidates in the initial candidate pool was entered 

manually with respect to inspection of the histogram and plotting would-be-detected-

water-area based on different water thresholds. Reason of this manual entry is 

providing an anchorage for optimization algorithm to consider and speed up the 

convergence.  

Parameters with respect to water area detection methods kept constant for 

different DEMs in order to observe the differences between DEMs under a constant 
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water body marking. Step sizes for elevation quantile threshold was set to be equal to 

0.025 and step size for water thresholds of different water detection indices  

(Table 2:2) were set based on their initial values obtained from the histogram.   

Minimum and maximum values for elevation quantile threshold were set to be 

equal to 0 and 1 respectively. Whereas, minimum and maximum values for water 

thresholds of water detection indices were set to be equal to minimum and maximum 

values of the histogram of each index. Statistical outlier threshold is not iterated like 

water area detection and water elevation detection parameters. It is hard coded in the 

NMS loop that NMS could decrease the statistical outlier threshold by 0.25 after every 

hundred iterations, as long as the current best model’s RMSE value is larger than 7.50 

m., which is the elevation change within a Landsat pixel over the Ermenek and 

Altınkaya Dams’ areas (See Section 2.41 and Section 2.4.2). 

 

Table 2:2 Predetermined Step Sizes of Applied Water Indices 

Index Name Step Size 

AWEI.S 500 

NDWI.MCF 0.01 

NDPI 0.01 

WI2015 5000 

 

2.7.2. Initial Threshold Selection for Water Detection Indices 

Each water detection index has results scattered among a range of values. 

Indices, like NDPI and NDWI.MCF, that calculates ratio of bands without any 

additional multiplier have result interval that is independent of radiometric resolution. 

Whereas the indices that includes coefficients have results scattered among intervals 

that are closely related with the radiometric resolution. Because Landsat-7, that has a 

radiometric resolution of 8 bits has its pixel values scattered among interval 0-255 but 

Landsat-8, which has a radiometric resolution of 16 bits has its pixel values scattered 

among interval 0-65,536.This difference affects the results greatly and thresholds 
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calculated for this kind of indices for Landsat-7 raster images are useless for  

Landsat 8 images.  

Moreover, existing literature promotes the idea of calculating area specific 

thresholds for classification indices (Avisse et al., 2017; Coltin, McMichael, Smith, & 

Fong, 2016; Liu, Song, Peng, & Ye, 2012). Therefore, instead of using threshold 

values that have been defined in other articles, initial definition was done manual 

calibration by inspecting the histogram of the results (Figure 2.33) and initial plot 

(Figure 2.34) before plotting the resultant binary image based on various threshold 

candidates (Figure 2.35 and Figure 2.36). 

 

 

Figure 2.33 Histogram of NDWI.MCF Result of Ermenek Dam for Date 09.07.2013 

 (Y-Axis is Frequency and X-Axis is Calculated Index Values) 
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Figure 2.34 Plot of NDWI.MCF Result of Ermenek Dam for Date 09.07.2013 

 

Figure 2.35 Result Plots of Ermenek Dam Area based on Different NDWI.MCF Thresholds 

(0.16 on the Left and 0.18 on the Right) 

 

Figure 2.36 Result Plots of Ermenek Dam Area based on Different NDWI.MCF Thresholds 

(0.10 on the Left and 0.05 on the Right) 
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2.7.3. Objective Function 

Error measurement has been done in terms of coefficient of correlation, mean 

error, standard deviation of error and RMSE. The most viable approach would be 

minimizing the RMSE while introducing the mean error as a constant to the 

methodology. However, this would yield methods that are water body specific and 

hence require a bigger data set than the one that had been used in this study in order 

to distinguish the difference between a better model and the overfitted one. 

Therefore, the objective function focused on minimizing the RMSE.  Although 

the initial model tried minimizing the mean error, test results also shown that even 

when the mean error is minimized, there can still be worse performance in terms of 

error standard deviation and RMSE. In order to prevent this problem, minimization of 

absolute mean error could also be selected.  

 RMSE calculations that served as a basis for objective function and hence the 

optimization is calculated with Eqn-13. where N is count of both predicted and actual 

data points, P is the results of model and A is the ground control data points that had 

been obtained from DSI. All RMSE, P and A values’ units are meters.  

 

𝑅𝑀𝑆𝐸 =  √
∑ (𝑃𝑖 − 𝐴𝑖)2𝑁

𝑖=1

𝑁
 

 

(13) 

 

 

Interpolation has been calculated by the Eqn-14 where VP is previous value, 

SOM is the count of days between the next value and 1st of that month, VN is next 

value, EOM is the count of days between the previous value and 1st of the next month 

and IRs is interpolated result. According to this equation if the day belonging to the 

Landsat Image Date is 1, no interpolation has been done and the result belonging to 

that image used directly.  
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𝐼𝑅𝑠 =  {

𝐷𝑎𝑦 𝑂𝑓 𝐿𝑎𝑛𝑑𝑠𝑎𝑡 𝐼𝑚𝑎𝑔𝑒 𝐷𝑎𝑡𝑒 == 1 => 𝐷𝑜 𝑁𝑜𝑡 𝐼𝑛𝑡𝑒𝑟𝑝𝑜𝑙𝑎𝑡𝑒
 

𝑉𝑃 ∗ 𝑆𝑂𝑀 + 𝑉𝑁 ∗ 𝐸𝑂𝑀

𝑆𝑂𝑀 + 𝐸𝑂𝑀 + 1

 

 

(14) 

 

 

2.7.4. Training and Test Data 

Each optimized parameter set is then tested with local (same dam) and remote 

(other dam) data. For the models that were based on both Ermenek and Altınkaya 

Dams data, ground data related with respective dam between 2013 May and 2019 May 

was used for optimization. Here, the use of entire time series for the calibration and 

validation over the same region overfits the results, while the use of entire datasets for 

calibration on one dam and implementation and validation over the other dam provides 

an independent and more realistic check of the methodology.  

 

 Alternative Statistical Methods to Retrieve Water Level Estimation 

NMS methodology used in this study to distinguish the water and the land also 

provides an estimate for the ECDF methodology to acquire the water level estimate. 

Here, the same water-land border estimate obtained from NMS methodology could be 

used together with other statistical methods to obtain the water level estimate. In this 

study, four alternative methods are used (GEV, mean, median, and mode) to compare 

the success of different statistical approaches. Here, all statistical methods, including 

ECDF, use similar masks: cloud mask, snow and shadow mask and proximity buffer 

are applied to all of the alternative methods. 

One alternative approach to ECDF is GEV distribution as a final step for 

elevation detection. This methodology was applied over Hoover Dam’s water level 

detection and have a statistical outlier detection threshold of 2.0 (Tseng et al., 2016).  

Another alternative is using frequency analysis that had been used (with further 

analyses) in the study about Jordan (Avisse et al., 2017). In order to apply this 
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methodology, mode calculations were performed among the elevation arrays. 

Additionally, median and mean values are also checked for their ability to predict 

water level of the reservoir. 

 

 Used Software and Web Apps 

In this study Google Earth Pro, Google Maps Web Site, USGS BDA, QGIS, 

R-Studio, Microsoft Excel, 7-Zip, Notepad, Notepad++ and Firefox software was used 

in addition to the USGS Earth Explorer Web Portal.  

Google Earth Pro was utilized for extracting the shape files in terms of “kml” 

files. Both initial area of interest shape files and the narrower, proximity-based buffer 

zone shape file are drawn on Google Earth Pro and extracted as “kml” files.  

USGS BDA is a software that lets user to download Landsat images in bulk. 

Normally, the USGS Earth Explorer Web Portal has a limitation of 6 concurrent 

downloads. This software has been officially supported and proposed by USGS. 

Dependency of USGS BDA software is the installment of Java language environment. 

Landsat images and DEM files have been selected by using USGS Earth 

Explorer Web Portal and DEM files have been downloaded from this portal directly. 

QGIS is an open source Geographic Information System (GIS) software and 

its use in this study was transforming “kml” files into “shp” format in addition to the 

conversion of CRS of the DEM files in a Landsat-compatible format.  

R-Studio is used for utilization of R-Language in this study. All of the 

computations of this study were done by using R-Language and hence either R-Studio 

or R’s native terminal is essential and irreplaceable for the application of the model 

described in this study. Dependency of R-Studio software is the installment of R-

Language environment. After the installation of the R-Language, those packages 

should also be installed since the methods used in the study depends on them; “sp”, 

“rgdal”, “fields”, “maps”, “magic”, “raster”.  
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CHAPTER 3  

 

3. RESULTS AND DISCUSSION 

The water level detection methodology introduced in this study relies on 

estimation of water-land border first using NMS methodology, then retrieval of DEM 

values at the calculated water-land border pixels, and then utilizing several different 

methods (ECDF, GEV, mean, median, or mode) to obtain the water level estimate 

using the DEM values at the border pixels. Below, first the optimized parameters 

obtained from the NMS methodology is given, then the water-land border based 

detection results are given, later the water level estimate results over Ermenek and 

Altinkaya dams are given.  

 Optimized Parameters 

Optimized parameters obtained from the NMS methodology (Section 2.7) over 

Ermenek and Altınkaya Dams are provided in Table 3:1. Results of water elevation 

estimates in this study are calculated by using those parameters. Although these values 

can also be found by trial and error, using an optimization algorithm provides ability 

to automate the process of threshold calibration.  
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 Water-Land Border Detection  

In order not to include the start of the water retention as a model parameter and 

be able to process all water bodies with the same statistical model, a design decision 

has been made. According to this design decision, only the border lines (Figure 3.2) 

between the water and land pixels have been considered instead of whole water area 

(Figure 3.1). Border line detection has been performed with R Programming 

Language’s image processing functions.  

 

Figure 3.1 Detected Water Area of Ermenek Dam for 18/08/2016 (Green areas are land pixels) 
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Figure 3.2 Detected Water Border of Ermenek Dam for 18/08/2016 

 

Once the water-land border is retrieved via NMS methodology, the actual 

water level estimates of the dam can be obtained via five different methodologies (i.e., 

ECDF, GEV, mean, median, or mode).  or via simple statistics using the histograms 

of the DEM values of the water-land border pixels. Even though the water-land border 

detection from NMS methodology is used in both NMS-based and simple statistic-

based water level estimates, their performances change as these different 

methodologies utilize the histogram of the water-land border DEM differently. 

 

 Ermenek Dam Estimations 

Error statistics (bias, standard deviation and RMSE) and correlation 

coefficients for the water level estimates over Ermenek dam are given in  

Tables 3.2 – 3.5 below. In these tables, the best results for the local (Ermenek Dam) 

training data is shown in blue while the remote (Altınkaya Dam) training data is shown 

in purple. There are total 80 experiments (2 training datasets * 4 indices * 2 DEM * 5 

Statistical Methodologies). Experiments are named as “Training-Indices-DEM-Test 
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Location” where “Training” refers to local/remote training case (i.e., Ermenek or 

Altınkaya dam), “Indices” refer to each utilized index name (AWEI, NDPI, NDWI, or 

WI2015), “DEM” refer to the utilized DEM image (ASTER or SRTM), and “Test 

Location” refers to the site where the water elevation errors are calculated (“E” for 

Ermenek or “A” for Altınkaya). For example, “ErmT-AWEI_S-SRTM-A” refers to 

the experiment utilizes Ermenek dam values to find the necessary parameters in NMS 

optimization, AWEI index, and SRTM DEM where the evaluations are validated over 

Altınkaya dam. Here, if the selected index (e.g., AWEI) has variants in literature, then 

the variant is defined with another substring separated by an underscore. For example, 

for the AWEI index shadow sensitive variant (AWEI_S) is used and for the NDWI 

index McFeeter’s variation (NDWI_MCF) is used.  

Water level estimation error averages (i.e., zero mean error is regarded as 

unbiased) for 16 tested experiments belonging to ECDF statistical approach are shown 

in Table 3.2. Among the tested experiments, WI2015 index & ASTER DEM 

combination provided best results among the local models (0.31 m average error) and 

WI2015 index & SRTM DEM provided best results among the remote models  

(0.18 m average error). Overall, experiments utilized SRTM DEM yield smaller water 

level estimation bias than the ones utilized ASTER DEM. Additionally, local training 

outperforms remote training in terms of average water level error (0.65 m and -1.97 

m for the water level average errors of local and remote training respectively). Overall, 

different months yield different bias values depending on the selected index, training 

dataset and DEM values  (Table 3.2, Figure 3.5 and Figure 3.6). This may be 

researched with a larger dataset to check whether those differences can be utilized for 

decreasing RMSE values. 

Water level estimation error standard deviations for 16 tested experiments 

belonging to ECDF are shown in Table 3.3. Among the tested experiments, AWEI_S 

& ASTER DEM combination provided best results (3.43 m error standard deviation) 

among the local models and NDPI & ASTER DEM among the remote models (5.31 

m error standard deviation). Overall, experiments utilized ASTER DEM yield slightly 
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smaller water level estimation error standard deviation than the ones utilized SRTM 

DEM. Similar to the error average results, local training outperforms remote training 

in terms of water level estimation error standard deviation (on average 4.85 m and 

8.52 m for the water level average errors of local and remote training respectively).  

Additionally, summer months (particularly July – September) yield smaller water 

level estimation error standard deviation (on average ~1.80 m) than winter months (on 

average > 5.0 m) regardless from the index, training location, and DEM selection 

(Table 3.3). 

Water level estimation RMSE for 16 tested experiments belonging to ECDF 

are shown in Table 3.4. Among the tested experiments, NDPI & SRTM DEM 

combination provided best results (3.63 m RMSE) among the local models and  

NDPI & SRTM DEM among the remote models (5.13 m RMSE). Differences between 

remote and local training in terms of RMSE, error mean and error standard deviation 

values are understandable since parameter optimization is performed with one set of 

dam data and then applied to another dam. This enables local models (trained with 

data of dam of interest) to perform better than remote models.  Overall, experiments 

utilized ASTER DEM yield marginally smaller RMSE than the ones utilized SRTM 

DEM. Similar to the error average and standard deviation results, local training clearly 

outperforms remote training in terms of water level estimation RMSE (on average 

5.01 m and 9.51 m for the water level average errors of local and remote training 

respectively).  Again, similar to water level estimation error averages, summer months 

(particularly July – August) yield smaller water level estimation error standard 

deviation (on average ~2.85 m) than winter months (on average ~8.0 m) regardless 

from the index, training location, and DEM selection (Table 3.4). 

 The linear relationship (i.e., correlation coefficient) between the monthly 

remotely sensed water level estimation and ground observations are given in  

Table 3.5. Overall, all local estimates are statistically significant considering the 0.26 

threshold with respect to Fisher’s Test. Among the experiments, ASTER DEM adds 

higher linear predictive capability (i.e., average correlation coefficient of 0.59) than 
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SRTM (i.e., average correlation coefficient of 0.48), while local training estimates 

clearly yield much better predictions (i.e., average correlation coefficient of 0.65) than 

remote training estimates (i.e., average correlation coefficient of 0.43).  

 Time series of the most successful model for water level estimation of 

Ermenek Dam is provided Figure 3.3 in and its scatter plot versus ground data is 

provided in Figure 3.4. Overall, the remote sensing-base estimations accurately 

estimate the timing of increasing and decreasing trends even though there are some 

large errors such as November 2017. Reason of error happened in November 2017 can 

be explained by looking into the details of that estimation. November 2017 estimation 

was calculated by interpolating two Landsat 8 images with dates of 24.10.2017 and 

09.11.2017. Calculated water levels for these two dates are calculated as 659.58 m and 

686.91 m, while the ground data is measured as 682.10 m at 01.11.2017. These 

findings indicate that the source of error is the water level calculation over the 

24.10.2017 image. Further inspection shown that the main reason is the amount of 

cloud cover over the image, reservoir is almost invisible (Figure 3.7). Whereas an 

image belonging to a successful data estimation point show that the water area 

detection functions as expected (  

Figure 3.8).  

 Comparison between the best models of each statistical approaches (ECDF, 

GEV, mean, mode and median) is provided in Table 3:6. Both best models for local 

trained and remote trained approaches are provided for ECDF and as can be observed 

from the table, best model for water elevation detection is local trained ECDF based 

approach. Detailed comparison for a selected date (01.03.2017) is provided in  

Figure 3.11. Where red line (674.29 m) is the result of best local trained model based 

on ECDF approach (NDPI + SRTM), green line (674.25 m) is the ground data, brown 

line (673.17 m) is the result of  best remote trained model based on ECDF approach 

(NDPI + SRTM), magenta line (668.50 m) is the result of best median approach, light 

blue line (667.54 m) is the result of best mean approach, dark blue line (657.45 m) is 
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the result of best mode approach and the orange line (662.96 m) is the result of best 

GEV approach.  
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Table 3:5 Correlation Coefficient of Ermenek Dam Models 

  

Coefficient of 

Correlation 

ErmT-AWEI_S-ASTER-E 0.77 

ErmT-NDPI-ASTER-E 0.74 

ErmT-NDWI_MCF-ASTER-E 0.63 

ErmT-WI2015-ASTER-E 0.78 

ErmT-AWEI_S-SRTM-E 0.64 

ErmT-NDPI-SRTM-E 0.77 

ErmT-NDWI_MCF-SRTM-E 0.44 

ErmT-WI2015-SRTM-E 0.44 

AltT-AWEI_S-ASTER-E 0.51 

AltT-NDPI-ASTER-E 0.60 

AltT-NDWI_MCF-ASTER-E 0.27 

AltT-WI2015-ASTER-E 0.43 

AltT-AWEI_S-SRTM-E 0.31 

AltT-NDPI-SRTM-E 0.20 

AltT-NDWI_MCF-SRTM-E 0.61 

AltT-WI2015-SRTM-E 0.48 

MEAN-ASTER 0.59 

MEAN-SRTM 0.48 

MEAN-LOCAL 0.65 

MEAN-REMOTE 0.43 

MEAN-ALL 0.54 

 

 

 

 



 

 

 

77 

 

    

T
a

b
le

 3
:6

 R
M

S
E

 R
es

u
lt

s 
o

f 
B

es
t 

M
o

d
el

s 
b

a
se

d
 o

n
 D

if
fe

re
n

t 
S

ta
ti

st
ic

a
l 

M
o

d
el

s 
 f

o
r 

E
st

im
a

ti
o

n
 o

f 
W

a
te

r 
L

ev
el

 o
f 

E
rm

en
ek

 D
a

m
. 

 

 



 

 

 

78 

 

 

Figure 3.7 Water Area Detection based on NDPI Index over Ermenek Dam, Before Masking  

(24.10.2017)

  

Figure 3.8 Water Area Detection based on NDPI Index over Ermenek Dam, Before Masking  

(15.07.2017) 
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 Altınkaya Dam Estimations 

Error statistics (bias, standard deviation and RMSE) and correlation 

coefficients for the water level estimates over Altınkaya dam are given in  

Table 3:7, Table 3:8, Table 3:9 and Table 3:10 below. In these tables, the best results 

for the local (Altınkaya Dam) training data is shown in blue while the remote 

(Ermenek Dam) training data is shown in purple. There are total 80 experiments (2 

training datasets * 4 indices * 2 DEM * 5 Statistical Methodologies). Experiments are 

named as “Training-Indices-DEM-Test Location” where “Training” refers to 

local/remote training case (i.e., Ermenek or Altınkaya dam), “Indices” refer to each 

utilized index name (AWEI, NDPI, NDWI, or WI2015), “DEM” refer to the utilized 

DEM image (ASTER or SRTM), and “Test Location” refers to the site where the water 

elevation errors are calculated (“E” for Ermenek or “A” for Altınkaya). For example, 

“ErmT-AWEI_S-SRTM-A” refers to the experiment utilizes Ermenek dam values to 

find the necessary parameters in NMS optimization, AWEI index, and SRTM where 

the evaluations are validated over Altınkaya dam. Here, if the selected index (e.g., 

AWEI) has variants in literature, then the variant is defined with another substring 

separated by an underscore. For example, for the AWEI index shadow sensitive 

variant (AWEI_S) is used and for the NDWI index McFeeter’s variation 

(NDWI_MCF) is used.  

Water level estimation error averages (i.e., zero mean error is regarded as 

unbiased) for 16 tested experiments belonging to ECDF statistical approach are shown 

in Table 3:7. Among the tested experiments, NDPI index & ASTER DEM and 

combination provided best results among the local models (-0.01 m average error) and 

WI2015 index & SRTM DEM provided best results among the remote models  

(-1.58 m average error). Overall, experiments utilized SRTM DEM yield smaller 

water level estimation bias than the ones utilized ASTER DEM. Additionally, local 

training clearly outperforms remote training in terms of average water level error  

(0.09 m and 2.84 m for the water level average errors of local and remote training 

respectively). Overall, autumn months (particularly September and October) and July 
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yield smaller water level estimation bias (~0.75 m error bias) than spring months (~2.5 

m error bias) regardless from the index, training location, and DEM selection (Figure 

3.12 and Figure 3.13). The best month in terms of bias is October with local training 

(0.27 m of bias). 

Water level estimation error standard deviations for 16 tested experiments 

belonging to ECDF are shown in Table 3:8. Among the tested experiments, AWEI-S 

& ASTER DEM combination (just as the case of Ermenek Dam’s water level 

estimation) provided best results (3.33 m error standard deviation) among the local 

models and NDPI & SRTM DEM among the remote models (3.84 m error standard 

deviation). Overall, experiments utilized ASTER DEM yield marginally smaller water 

level estimation error standard deviation than the ones utilized SRTM DEM. Similar 

to the error average results, local training is better than remote training in terms of 

water level estimation error standard deviation (on average 4.67 m and 4.97 m for the 

water level average errors of local and remote training respectively).  The best month 

in terms of error standard deviation is a summer month, August (Error standard  

deviation of 2.52 m).  

Water level estimation RMSE for 16 tested experiments belonging to ECDF 

are shown in Table 3:9. Among the tested experiments, AWEI_S & ASTER DEM 

combination provided best results (3.34 m RMSE) among the local models and 

AWEI_S & ASTER DEM among the remote models (5.09 m RMSE). Overall, 

experiments utilized SRTM DEM yield marginally smaller RMSE than the ones 

utilized ASTER DEM. Similar to the error average and standard deviation results, 

local training clearly outperforms remote training in terms of water level estimation 

RMSE (on average 4.65 m and 5.93 m for the water level average errors of local and 

remote training respectively).  Overall, the best month in terms of RMSE is a summer 

month, August (RMSE of 3.38 m).  

The linear relationship (i.e., correlation coefficient) between the monthly 

remotely sensed water level estimation and ground observations are given in  
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Table 3:10. Overall, all local and remote estimates are statistically significant 

considering the 0.26 threshold with respect to Fisher’s Test. Among the experiments, 

ASTER DEM adds slightly higher linear predictive capability (i.e., average 

correlation coefficient of 0.53) than SRTM (i.e., average correlation coefficient of 

0.49), while local training estimates yield much better predictions (i.e., average 

correlation coefficient of 0.54) than remote training estimates (i.e., average correlation 

coefficient of 0.48).  

Time series of the most successful model for water level estimation of 

Altınkaya Dam is provided in Figure 3.10 in and its scatter plot versus ground data is 

provided in Figure 3.11. Overall, the remote sensing-base estimations accurately 

estimate the timing of increasing and decreasing trends. Higher error in 01.01.2019 

estimation is due to lack of processable image for December 2018 and increased 

duration for interpolation.  

Comparison between the best models of each statistical approaches (ECDF, 

GEV, mean, mode and median) is provided in Table 3:11. Both best models for local 

trained and remote trained approaches are provided for ECDF and as can be observed 

from the table, best model for water elevation detection is local trained ECDF based 

approach. Detailed comparison for a selected date (01.03.2017) is provided in  

Figure 3.14. Where red line (180.15 m) is the result of best local trained model based 

on ECDF approach (AWEI_S + ASTER), green line (179.67 m) is the ground data, 

brown line (182.68 m) is the result of  best remote trained model based on ECDF 

approach (AWEI_S + SRTM), magenta line (169.95 m) is the result of best median 

approach, light blue line (168.97 m) is the result of best mean approach, dark blue line 

(160.0 m) is the result of best mode approach and the orange line (170.97 m) is the 

result of best GEV approach.  
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Table 3:10 Correlation Coefficient of Altınkaya Dam Models 

  

Coefficient of 

Correlation 

AltT-AWEI_S-ASTER-A 0.70 

AltT-NDPI-ASTER-A 0.54 

AltT-NDWI_MCF-ASTER-A 0.48 

AltT-WI2015-ASTER-A 0.54 

AltT-AWEI_S-SRTM-A 0.51 

AltT-NDPI-SRTM-A 0.61 

AltT-NDWI_MCF-SRTM-A 0.49 

AltT-WI2015-SRTM-A 0.47 

ErmT-AWEI_S-ASTER-A 0.56 

ErmT-NDPI-ASTER-A 0.55 

ErmT-NDWI_MCF-ASTER-A 0.38 

ErmT-WI2015-ASTER-A 0.50 

ErmT-AWEI_S-SRTM-A 0.48 

ErmT-NDPI-SRTM-A 0.66 

ErmT-NDWI_MCF-SRTM-A 0.26 

ErmT-WI2015-SRTM-A 0.42 

MEAN-ASTER 0.53 

MEAN-SRTM 0.49 

MEAN-LOCAL 0.54 

MEAN-REMOTE 0.48 

MEAN-ALL 0.51 
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CHAPTER 4  

 

4. SUMMARY AND CONCLUSION  

 

In this study, Landsat 8 images are used to estimate the water levels of 

Ermenek and Altınkaya dam reservoirs between May 2013 and May 2019. Total 

around 269 images are used for both dams. Water levels estimations based on 16-day 

periods are performed using remote sensing datasets and validated using monthly DSI 

observations.  Estimation errors (i.e., performances) of four different indices, 2 

different DEM images, and 2 different training datasets and 5 different statistical 

modelling approaches are studied.  

On average, the water level estimate RMSE values are found as 3.63 m and 

3.34 m over Ermenek and Altınkaya dams, respectively, while correlation coefficient 

values of the best models are found as 0.78 and 0.77 over Ermenek and Altınkaya 

dams, respectively. Even though these statistics imply the estimates are reasonable, 

there still exists room for improvements. Bias could be very easily eliminated in case 

ground observations of the region of interest could be found; elimination of bias would 

also reduce the RMSE to the levels of error standard deviation values.  

Average slope over the Ermenek Dam is calculated as 14.99 degrees when 

ASTER DEM is utilized and 14.54 degrees when SRTM DEM is utilized. Considering 

the spatial resolution of a Landsat pixel is 30 m (Department of the Interior U.S. 

Geological Survey, 2019), this slope implies there is elevation difference of 7.53 or 

7.79 m (for SRTM or ASTER, respectively) within a single Landsat pixel. Around the 

land-water borders, if half of the Landsat pixel contains water and the other half 

contains land, then on average ~1.9 m (quarter of 7.53 or 7.79) error will occur 

regardless from the classification of this pixel as water or land. While 1.9m error is 

the upper limit for the errors for the land-water mixed pixels, steep slopes behave as 
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source of added uncertainty in the water elevation level estimation where the land-

water border does not generally overlap with the Landsat pixel border. Considering 

this upper limit, the RMSE value of 3.63 m for the NDPI & SRTM combination is a 

reasonable accuracy, implying the model performance can be considered as useful. 

Although Landsat has the advantage of large historical data availability, same model 

can be applied to Sentinel platform which has spatial resolution of 10m (ESA, n.d.-d); 

however, an independent parameter tuning step is necessary for this implementation 

as the spectral windows of Landsat 8 and Sentinel images are different. Accordingly, 

above mentioned spatial resolution-based error is expected to decrease when 10m 

resolution Sentinel images are used (i.e., for a product with 10m spatial resolution this 

added error upper limit becomes about 0.60 m). 

Overall, the error statistics show a strong seasonality that errors are lower 

during the summer months than winter months over both Ermenek dam (Figures 3.3 

and 3.4) and Altınkaya dam (Figures 3.10 and 3.11). The reason for this behavior is 

probably due to the fact that the summer months are less cloudy than the winter 

months, where the haze of thin cloud layers contribute considerably to the errors of 

the estimated water levels. Moreover, it should also be noted that ice and snow cover 

increase in winter months. In addition to these, April is a special month for Ermenek 

Dam since it has higher RMSE values than the months before and after it. Reason of 

this can be explained with the limnology report of the Ermenek Dam that concludes 

that, due to melting of snow cover, algae population increases in April (Çevlik, 2013) 

and this affects the results of Green Band of Landsat 8. 

Overall, DEM dataset source (i.e., ASTER or SRTM) selection does not make 

a consistent impact over the water level estimation errors; some estimates benefit from 

ASTER images better than SRTM and some vice versa. Hence, it is not possible to 

make a general conclusion about the added utility of the DEM images used in this 

study. On the other hand, among the four indices used in this study, NDPI performed 

marginally better than other indices over Ermenek dam, while AWEI_S performed 

better than other indices over Altınkaya dam.  
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On the other hand, DEM rasters have zero valued pixels for existing water 

bodies that persist throughout the production of the DEM model. In addition to this, 

SRTM also have problems for mountainous areas. In order to cope with these 

problems an old topographic map is incorporated with DEMs but a bathymetry model 

based on Hyperion images may be developed and utilized too. 

About the different between the local and the remote training data selection, 

models based on local training data are found to be much better (i.e., smaller error 

average, standard deviation, and RMSE). Among the error statistics, the error average 

could be handled by adding/removing a constant in case ground observations are 

available for a limited time period. However, the random errors occur in time and 

contribute to the error standard deviation cannot be handled as easy as the error 

averages. For practical point of view, the temporal variability of the water level 

estimates is more important; accordingly, the local training also considerably reduce 

the error standard deviations. Therefore, consistent with the existing literature, it is 

advised that water level estimation models should be trained for each dam of interest 

with its own historical data. 

 Another source of error is conflict between the data periods provided by 

governmental institutions and Landsat’s temporal resolution. DSI observations are 

representative for the beginning of each month, while Landsat 8 images are only 

available biweekly and are available on various days of the month. This conflict 

required this research to utilize a linear interpolation method based on inverse weights 

assigned with respect to the number of days between the image acquisition date and 

governmental data measurement date. Alternatively, MODIS images could be also 

utilized to reduce the errors added via such linear interpolation. Even though MODIS 

image have much lower spatial resolution (500m) than Landsat 8 image spatial 

resolution (30m), some algorithms can be used to fill in the temporal gap between the 

Landsat images via using MODIS datasets (F. Gao, Masek, Schwaller, & Hall, 2006).  
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 This study should be extended using higher resolution satellite images (i.e. 

Sentinel) over various locations including more lakes and dams (i.e., entire Turkey), 

perhaps using much longer datasets (i.e., using entire Landsat archive), where the 

training should be carried out using local datasets if available.   



 

 

 

97 

 

REFERENCES 

 

Ackerman, S., Strabala, K., Menzel, P., Frey, R., Moeller, C., Gumley, L., … Zhang, 

H. (2010). Discriminating clear-sky from cloud with MODIS algorithm 

theoretical basis document (MOD35). 

Ataol, M. (2010). Burdur Gölü’nde Seviye Değişimleri. Coğrafi Bilimler Dergisi, 

8(1), 077–092. https://doi.org/10.1501/cogbil_0000000105 

Avisse, N., Tilmant, A., François Müller, M., & Zhang, H. (2017). Monitoring small 

reservoirs’ storage with satellite remote sensing in inaccessible areas. Hydrology 

and Earth System Sciences, 21(12), 6445–6459. https://doi.org/10.5194/hess-21-

6445-2017 

Bahadır, M. (2013). Akşehir Gölü’nde Alansal Değişimlerin Uzaktan Algılama 

Teknikleri İle Belirlenmesi. Marmara Coğrafya Dergı̇sı̇, (28), 246–275. 

Berthier, E., Arnaud, Y., Vincent, C., & Rémy, F. (2006). Biases of SRTM in high-

mountain areas: Implications for the monitoring of glacier volume changes. 

Geophysical Research Letters, 33(8). https://doi.org/10.1029/2006GL025862 

Bhagat, V. S., & Sonawane, K. R. (2011). Use of Landsat ETM + data for delineation 

of water bodies in hilly zones. Journal of Hydroinformatics, 661–671. 

https://doi.org/10.2166/hydro.2010.018 

Cambridge University Press. (2013). Cambridge Advanced Learner’s Dictionary (4th 

ed.). Cambridge University Press. 

Çevlik, H. (2013). Ermenek Baraj Gölü Limnolojisi. Ankara. 

Coltin, B., McMichael, S., Smith, T., & Fong, T. (2016). Automatic boosted flood 

mapping from satellite data. International Journal of Remote Sensing, 37(5), 

993–1015. https://doi.org/10.1080/01431161.2016.1145366 



 

 

 

98 

 

Crist, E. P. (1985). A TM Tasseled Cap Equivalent Transformation for Reflectance 

Factor Data. Remote Sensing Of Environment, (17), 301–306. 

Danaher, T., & Collett, L. (2006). Development, optimisation and multi-temporal 

application of a simple Landsat based water index. In 13th Australasian Remote 

Sensing and Photogrammetry Conference. Canberra, Austuralia (Vol.29). 

Demirkesen, A. C. (2003). Sayısal Yükseklik Modellerinin Analizi ve Sel Basman 

Alanlarının Belirlenmesi. In TUJK 2003 Yılı Bilimsel Toplantısı, Coğrafi Bilgi 

Sistemleri ve Jeodezik Ağlar Çalıştayı. Konya. 

Department of the Interior U.S. Geological Survey. (2019). LANDSAT 8 (L8) DATA 

USERS HANDBOOK Version 4.0 April 2019. Retrieved May 15, 2019, from 

https://prd-wret.s3-us-west-

2.amazonaws.com/assets/palladium/production/atoms/files/LSDS-

1574_L8_Data_Users_Handbook_v4.0.pdf 

Du, Y., Zhang, Y., Ling, F., Wang, Q., Li, W., & Li, X. (2016). Water bodies’ mapping 

from Sentinel-2 imagery with Modified Normalized Difference Water Index at 

10-m spatial resolution produced by sharpening the swir band. Remote Sensing, 

8(4). https://doi.org/10.3390/rs8040354 

Elkhrachy, I. (2018). Vertical accuracy assessment for SRTM and ASTER Digital 

Elevation Models: A case study of Najran city, Saudi Arabia. Ain Shams 

Engineering Journal, 9(4), 1807–1817. 

https://doi.org/10.1016/j.asej.2017.01.007 

ESA. (n.d.-a). JASON-2/OSTM. Retrieved July 29, 2019, from 

https://directory.eoportal.org/web/eoportal/satellite-missions/j/jason-2 

ESA. (n.d.-b). SAR Instrument. Retrieved July 29, 2019, from 

https://sentinel.esa.int/web/sentinel/technical-guides/sentinel-1-sar/sar-

instrument 

ESA. (n.d.-c). Sentinel-1 Operations. Retrieved July 29, 2019, from 



 

 

 

99 

 

https://m.esa.int/Our_Activities/Operations/Sentinel-1_operations 

ESA. (n.d.-d). Sentinel-2 Mission Details. Retrieved August 25, 2019, from 

https://earth.esa.int/web/guest/missions/esa-operational-eo-missions/sentinel-2 

Feyisa, G. L., Meilby, H., Fensholt, R., & Proud, S. R. (2014). Automated Water 

Extraction Index: A new technique for surface water mapping using Landsat 

imagery. Remote Sensing of Environment, 140, 23–35. 

https://doi.org/10.1016/j.rse.2013.08.029 

Fisher, A., Flood, N., & Danaher, T. (2016). Comparing Landsat water index methods 

for automated water classification in eastern Australia. Remote Sensing of 

Environment, 175, 167–182. https://doi.org/10.1016/j.rse.2015.12.055 

Gao, B. (1996). NDWI - A Normalized Difference Water Index for Remote Sensing 

of Vegetation Liquid Water From Space. Remote Sensing of Environment, 

58(257), 257–266. 

Gao, F., Masek, J., Schwaller, M., & Hall, F. (2006). On the blending of the landsat 

and MODIS surface reflectance: Predicting daily landsat surface reflectance. 

IEEE Transactions on Geoscience and Remote Sensing, 44(8), 2207–2218. 

https://doi.org/10.1109/TGRS.2006.872081 

Geymen, A. (2017). Coğrafi Bilgi Sistemi Kullanılarak Su Havzalarındaki Arazi 

Kullanım Değişikliği ve Çevresel Etkilerin İzlenmesi : Elmalı Havzası Örneği 

Monitoring of Environmental Impacts and Land-Use Changes in Water Basin 

Using Geographical Information Systems : Elmalı. Iğdır Üni. Fen Bilimleri Enst. 

Der., 7(1), 171–181. 

Google. (n.d.-a). Altınkaya Dam and Its Reservoir. Retrieved July 23, 2019, from 

https://www.google.com/maps/place/Tepebaşı,+Altınkaya+Barajı,+55400+Bafr

a%2FSamsun/@41.3476287,35.2893921,45500m/data=!3m1!1e3!4m5!3m4!1s

0x4086248c7991a785:0x1e5f4e67980e2138!8m2!3d41.3667686!4d35.7245146 

Google. (n.d.-b). Ermenek Dam and Its Reservoir. Retrieved July 23, 2019, from 



 

 

 

100 

 

https://www.google.com/maps/place/Ermenek+Dam,+70402+Ağaççatı%2FErm

enek%2FKaraman/@36.572723,32.8124111,28942m/data=!3m1!1e3!4m5!3m4

!1s0x14dbe45ff494b3b1:0xb4778dbfa526f865!8m2!3d36.5682!4d32.965 

Huang, C., Nguyen, B. D., Zhang, S., Cao, S., & Wagner, W. (2017). A Comparison 

of Terrain Indices toward Their Ability in Assisting Surface Water Mapping from 

Sentinel-1 Data. ISPRS International Journal of Geo-Information, 6(5), 140. 

https://doi.org/10.3390/ijgi6050140 

Jain, A. O., Thaker, T., Chaurasia, A., Patel, P., & Singh, A. K. (2018). Vertical 

accuracy evaluation of SRTM-GL1, GDEM-V2, AW3D30 and CartoDEM-V3.1 

of 30-m resolution with dual frequency GNSS for lower Tapi Basin India. 

Geocarto International (Vol. 33). Taylor & Francis. 

https://doi.org/10.1080/10106049.2017.1343392 

Karabulut, M. (2015). Farklı Uzaktan Algılama Teknı̇klerı̇ Kullanılarak Göksu Deltası 

Göllerinde Zamansal Değı̇şı̇mlerin İncelenmesı̇. The Journal of International 

Social Research, 8(37). 

Karaman, M., Özelkan, E., & Taşdelen, S. (2018). Dar Nehirlerin Sentinel2-A Uydu 

Görüntüleri ile Belirlenebilirliğinde Havza Hidrojeolojisinin Etkisi: 

Karamenderes (Çanakkale) Örneği. Doğal Afetler ve Çevre Dergisi, 90(532), 

140–155. https://doi.org/10.21324/dacd.416514 

Kauth, R. J., & Thomas, G. S. (1976). The Tasselled Cap -- A Graphic Description of 

the Spectral-Temporal Development of Agricultural Crops as Seen by 

LANDSAT. In Symposium on Machine Processing of Remotely Sensed Data 

June. Indiana: The Institute of Electrical and Electronics Engineers, Inc. 

Copyright. 

Kolecka, N., & Kozak, J. (2014). Assessment of the Accuracy of SRTM C- and X-

Band High Mountain Elevation Data: A Case Study of the Polish Tatra 

Mountains. Pure and Applied Geophysics, 171(6), 897–912. 



 

 

 

101 

 

https://doi.org/10.1007/s00024-013-0695-5 

Kramer, H. J. (2002). JERS-1. Retrieved July 29, 2019, from 

https://directory.eoportal.org/web/eoportal/satellite-missions/j/jers-1 

Lacaux, J. P., Tourre, Y. M., Vignolles, C., Ndione, J. A., & Lafaye, M. (2007). 

Classification of ponds from high-spatial resolution remote sensing: Application 

to Rift Valley Fever epidemics in Senegal. Remote Sensing of Environment, 

106(1), 66–74. https://doi.org/10.1016/j.rse.2006.07.012 

Liu, Y., Song, P., Peng, J., & Ye, C. (2012). A physical explanation of the variation 

in threshold for delineating terrestrial water surfaces from multi-temporal 

images: Effects of radiometric correction. International Journal of Remote 

Sensing, 33(18), 5862–5875. https://doi.org/10.1080/01431161.2012.675452 

McFeeters, S. K. (1996). The use of the Normalized Difference Water Index (NDWI) 

in the delineation of open water features. International Journal of Remote 

Sensing, 17(7), 1425–1432. https://doi.org/10.1016/j.epsl.2004.10.018 

METI, NASA, & ERSDAC. (2011). Aster Gdem 2 Readme Advanced Spaceborne 

Thermal Emission And Reflection Radiometer (Aster) Global Digital Elevation 

Model (Gdem) Version 2 October 2011. METI, NASA, ERSDAC. 

MGM. (2010). No Title. Retrieved July 23, 2019, from 

https://www.mgm.gov.tr/veridegerlendirme/il-ve-ilceler-

istatistik.aspx?k=A&m=SAMSUN 

NASA. (n.d.). SRTM Turkey Images. Retrieved August 16, 2019, from 

https://www2.jpl.nasa.gov/srtm/turkey.html 

NASA. (2011). Landsat 7 Handbook, 186. Retrieved from 

http://landsat.gsfc.nasa.gov/wp-

content/uploads/2016/08/Landsat7_Handbook.pdf 

Okeowo, M. A., Lee, H., Hossain, F., & Getirana, A. (2017). Automated Generation 



 

 

 

102 

 

of Lakes and Reservoirs Water Elevation Changes from Satellite Radar 

Altimetry. IEEE Journal of Selected Topics in Applied Earth Observations and 

Remote Sensing, 10(8), 3465–3481. 

https://doi.org/10.1109/JSTARS.2017.2684081 

Ouma, Y. O., & Tateishi, R. (2006). A water index for rapid mapping of shoreline 

changes of five East African Rift Valley lakes : an empirical analysis using 

Landsat TM and ETM + data. International Journal of Remote Sensing, 27(15), 

3153–3181. https://doi.org/10.1080/01431160500309934 

Ozdemir, A., & Leloglu, U. M. (2014). Bathymetry and water quality measurement of 

shallow waters using hyperion: Serçin lake. 2014 22nd Signal Processing and 

Communications Applications Conference, SIU 2014 - Proceedings, (Siu), 2023–

2026. https://doi.org/10.1109/SIU.2014.6830656 

Özdemir, H. (2008). Taşkınların Tahmini ve Risk Analizinde CBS-UZAL ve Hidrolik 

Modellemenin Entegrasyonu. In 5. Dünya Su Forumu İSTANBUL 2009, Taşkın 

Konferansı (pp. 131–143). Edirne. 

Öztan, A. F. (2011). Altınkaya Barajı ve HES Jeoteknik Çalışmaları. Ankara. 

Peker, E. A. (2019). Spatio-Temporal Changes Of Lake Water Extents In Lakes 

Region (Turkey) Using Remote Sensing. Middle East Technical University. 

Şener, E., Davraz, A., & İsmailov, T. (2005). Burdur Gölü Seviye Değişimlerinin Çok 

Zamanlı Uydu Görüntüleri ile İzlenmesi. Türkiye Kuvaterner Sempozyumu 

(TURQUA-V), 148–156. 

T.R. Ministry of Energy and Natural Resources. (2018). Hydraulic. Retrieved July 29, 

2019, from https://www.enerji.gov.tr/tr-TR/Sayfalar/Hidrolik 

Tachikawa, T., Kaku, M., & Iwasaki, A. (2011). ASTER GDEM Version 2 Validation 

Report. International Geoscience and Remote Sensing Symposium (IGARSS), 1–

24. 



 

 

 

103 

 

Tseng, K. H., Shum, C. K., Kim, J. W., Wang, X., Zhu, K., & Cheng, X. (2016). 

Integrating Landsat Imageries and Digital Elevation Models to Infer Water Level 

Change in Hoover Dam. IEEE Journal of Selected Topics in Applied Earth 

Observations and Remote Sensing, 9(4), 1696–1709. 

https://doi.org/10.1109/JSTARS.2015.2500599 

U.S. Geological Survey. (2019). Landsat 9. Reston, VA. 

https://doi.org/https://doi.org/10.3133/fs20193008 

Usgs.gov. (2013). USGS Completes Decommissioning of Landsat 5. Retrieved May 

20, 2019, from https://www.usgs.gov/land-resources/nli/landsat/usgs-completes-

decommissioning-landsat-5?qt-science_support_page_related_con=4#qt-

science_support_page_related_con 

USGS. (2003). 2003 Landsat Updates. 

USGS. (2008). The U.S. House of Representatives honors Landsat on Earth Day. 

Retrieved from https://www.usgs.gov/land-resources/nli/landsat/april-22-2008-

us-house-representatives-honors-landsat-earth-day 

Viets, P. W. (1995, March 10). Landsat 6 Failure Attributed To Ruptured Manifold. 

NOAA. 

Wdowinski, S., Kim, S. W., Amelung, F., Dixon, T. H., Miralles-Wilhelm, F., & 

Sonenshein, R. (2008). Space-based detection of wetlands’ surface water level 

changes from L-band SAR interferometry. Remote Sensing of Environment, 

112(3), 681–696. https://doi.org/10.1016/j.rse.2007.06.008 

Wilson, M. J., & Oreopoulos, L. (2013). Enhancing a Simple MODIS Cloud Mask 

Algorithm for the Landsat Data Continuity Mission. IEEE Transactions on 

Geoscience and Remote Sensing, 51(2), 723–731. 

Xu, H. (2006). Modification of normalised difference water index (NDWI) to enhance 

open water features in remotely sensed imagery. International Journal of Remote 

Sensing, 27(14), 3025–3033. https://doi.org/10.1080/01431160600589179 



 

 

 

104 

 

Zhu, Z., Wang, S., & Woodcock, C. E. (2015). Improvement and expansion of the 

Fmask algorithm: cloud, cloud shadow, and snow detection for Landsats 4–7, 8, 

and Sentinel 2 images. Remote Sensing of Environment, 159, 269–277. 

https://doi.org/10.1016/j.rse.2014.12.014 

Zhu, Z., & Woodcock, C. E. (2012). Object-based cloud and cloud shadow detection 

in Landsat imagery. Remote Sensing of Environment, 118, 83–94. 

https://doi.org/10.1016/j.rse.2011.10.028 

 

 



 

105 

 

APPENDICES 

A. Results Other Statistical Models  

Results of GEV Application: 
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Ermenek Trained Mean Approach Over Altınkaya Dam with ASTER DEM: 
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Ermenek Trained Mean Approach Over Altınkaya Dam with SRTM DEM: 

 



 

108 

 

Ermenek Trained Mode Approach Over Altınkaya Dam with ASTER DEM: 
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Ermenek Trained Mode Approach Over Altınkaya Dam with SRTM DEM: 



 

110 

 

Ermenek Trained Median Approach Over Altınkaya Dam with ASTER DEM: 
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Ermenek Trained Median Approach Over Altınkaya Dam with SRTM DEM: 
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Ermenek Trained Mean Approach Over Ermenek Dam with ASTER DEM: 
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Ermenek Trained Mean Approach Over Ermenek Dam with SRTM DEM: 
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Ermenek Trained Mode Approach Over Ermenek Dam with ASTER DEM: 
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Ermenek Trained Mode Approach Over Ermenek Dam with SRTM DEM: 

 



 

116 

 

Ermenek Trained Median Approach Over Ermenek Dam with ASTER DEM: 
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Ermenek Trained Median Approach Over Ermenek Dam with SRTM DEM: 
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Altınkaya Trained Mean Approach Over Altınkaya Dam with ASTER DEM: 
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Altınkaya Trained Mean Approach Over Altınkaya Dam with SRTM DEM: 
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Altınkaya Trained Mode Approach Over Altınkaya Dam with ASTER DEM: 
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Altınkaya Trained Mode Approach Over Altınkaya Dam with SRTM DEM: 
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Altınkaya Trained Median Approach Over Altınkaya Dam with ASTER DEM: 
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Altınkaya Trained Median Approach Over Altınkaya Dam with SRTM DEM: 
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Altınkaya Trained Mean Approach Over Ermenek Dam with ASTER DEM: 
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Altınkaya Trained Mean Approach Over Ermenek Dam with SRTM DEM: 
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Altınkaya Trained Mode Approach Over Ermenek Dam with ASTER DEM: 

 



 

127 

 

Altınkaya Trained Mode Approach Over Ermenek Dam with SRTM DEM: 
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Altınkaya Trained Median Approach Over Ermenek Dam with ASTER DEM: 
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Altınkaya Trained Median Approach Over Ermenek Dam with SRTM DEM: 

 


