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ABSTRACT

DETECTION OF RESERVOIR WATER LEVELS USING LANDSAT
REMOTE SENSING DATA OVER ERMENEK AND ALTINKAYA DAMS

Senocak, Ali Ulvi Galip
Master of Science, Civil Engineering
Supervisor: Assoc. Prof. Dr. M. Tugrul Yilmaz

September 2019, 129 pages

Detection of water border using remote sensing observations at the visible bands and
incorporating them with the digital elevation map is a useful approach for detecting
water volume of dams and the water bodies with existing DEM images. In this study,
NDW!I, NDPI, WI2015 and AWEI indices retrieved using Landsat 8 images and
ASTER/SRTM DEM maps are utilized to infer about the water levels of Ermenek and
Altinkaya dams’ reservoir water levels. To reduce the water level retrieval errors
during the cloudy and the snow-covered areas, F-Mask cloud masking algorithm and
a TCW-based custom index with optimized parameters have been introduced.
Moreover, in order to prevent the affection of pixels that are located far away from the
area of interest, a water-area-based shape file and proximity buffer have been
introduced. Lastly, after the completion of the analysis, a statistical model has been
applied to combine the results with DEM to get the elevation value as a result. Results
show RMSE of the water level estimation over Ermenek and Altinkaya are 3.63 m and
3.34 m, respectively for the best index/DEM scenario when the models are trained and
calibrated over the same dam. On the other hand, the errors increase to 5.13 m and
5.09 m respectively for Ermenek and Altinkaya dams when the validation and the

calibration are done over different dams .



Keywords: Water Elevation, Landsat, Digital Elevation Map, Remote Sensing, Dam

Reservoir
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0z

ERMENEK VE ALTINKAYA BARAJ REZERVUARLARININ SU
YUKSEKLIKLERININ LANDSAT KULLANILARAK UZAKTAN
ALGILAMA iLE TESPIT EDILMESI

Senocak, Ali Ulvi Galip
Yiiksek Lisans, Insaat Miihendisligi
Tez Danigmant: Dog. Dr. M. Tugrul Yilmaz

Eyliil 2019, 129 sayfa

Gortilebilir bantlari, sayisal yilikseklik haritasi ile birlikte kullanarak su seviyesini
tespit etmek, sayisal yiikseklik harita goriintiilerine ulasilabilen barajlar i¢in kullanisl
bir yaklasimdir. Bu calismada, Ermenek ve Altinkaya ve Ermenek barajlarinin
gollerindeki su seviyelerinin tahmin edilmesi igin Landsat 8 goriintiileri kullanilarak
hesaplanmis olan AWEI, NDPI, NDWI ve WI2015 indeksleri ve ASTER/SRTM
DEM verileri kullanilmistir. Su seviyesi tahmininde bulut ve kar kapli alanlar
sebebiyle olusabilecek hatalar1 azaltmak i¢in F-Mask bulut tespit algoritmasi ile
parametreleri optimize edilmis, TCW bazli yeni olusturulmus bir indeks
kullanilmistir. Ayrica, cografi olarak calismanin ilgi alani ile alakasiz olan piksellerin
etkilerini ortadan kaldirmak i¢in ¢alisma alanina dayali bir sinirlama ve yakinlik bazli
ikinci bir sinirlama kesiti kullanilmistir. Son olarak, ¢alismanin tamamlanmasinin

ardindan, istatistiksel bir model vasitasi ile sonuclarin DEM ile kombinasyonu
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sonrasinda yiikseklik degerinin elde edilmesi gergeklestirilmistir. Sonuglar
gostermektedir ki Ermenek ve Altinkaya baraj gollerinde (en basarili model ve DEM
kombinasyonunun) kok ortalama kare hatas1 degerleri sirasi ile 3.63 ve 3.34 metredir.
Ancak, dogrulama ve kalibrasyon islemleri farkli barajlar ile yapildiginda bu hata
degerlerinin Ermenek ve Altinkaya barajlar1 i¢in sirasi ile 5.13 m ve 5.09 m oldugu
gbzlemlenmistir.

Anahtar Kelimeler: Su Yiiksekligi, Landsat, Sayisal Yiikseklik Haritasi, Uzaktan

Algilama, Baraj Rezervuari
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CHAPTER 1

INTRODUCTION

1.1. Goal of This Study

Water is an important commodity for maintaining the existence of human life
and its accumulated civilization. In the modern world water is used for irrigation,
hydropower generation, sanitation and sustaining human life among others. However,
as the cities grow, natural water budget can be expected to be stretched to the point
that it cannot be considered as sufficient and water transportation may be needed. This
transportation requires delicate assessment of water budgets of both providing and
receiving areas. Moreover, in addition to irrigation and sustaining human life,
hydropower is an important energy source for countries including Turkey that has
27,912 Megawatts (MW) of installed capacity shared among 636 facilities that covers
32% of country’s total installed capacity as of June, 2018 (T.R. Ministry of Energy
and Natural Resources, 2018). In order to maximize its usage and prevent scarcities,

detecting water storage is an important aspect of water body management.

Water storage detection has been performed by using various methods, such
as use of ground observations and remote sensing methods. Among these models,
manual inspection of remote reservoirs (e.g., lakes) may not be technically easy (i.e.,
particularly under harsh winter or storm conditions) and cost effective. Besides, there
could be some limitations about the water level observations in case the water body
of interest lays in another country than the user lives. On the other hand, remote
sensing-based observations have the ability to infer about the ground conditions with
more conveniently than ground observations. Such remote sensing-based
methodologies rely on various methods involving Synthetic-Aperture Radar (SAR) or
Interferometric SAR (INSAR) images (Du et al., 2016; Huang, Nguyen, Zhang, Cao,



& Wagner, 2017; Karaman, Ozelkan, & Tasdelen, 2018; Okeowo, Lee, Hossain, &
Getirana, 2017; Wdowinski et al., 2008) or combination of Digital Elevation Model
(DEM) raster images with remote sensing observations at the visible (VIS) and short
wave infrared (SWIR) bands of the spectrum (Avisse, Tilmant, Frangois Miiller, &
Zhang, 2017; Tseng et al., 2016). SAR and InSAR models can penetrate through the
atmospheric clouds but are either depend on platforms like JASON (which was
designed to operate over the oceans without ice cover (ESA, n.d.-a)) or JERS-1 (now
dysfunctional) that have a lower temporal resolution of 44 days (Kramer, 2002) than
Landsat’s temporal resolution of 16 days (Department of the Interior U.S. Geological
Survey, 2019). Moreover, SAR based models’ data acquisition process includes side-
looking geometry and topographical obstacles such as mountains and dense forests
may interfere with the microwave pulses with a consequence of introducing blind
areas on the resultant images (Huang et al., 2017). Accordingly, VIS&SWIR bands
combination incorporated with DEM have high potential to estimate the water levels

over remote locations.

Water detection methods based on Landsat images are widely used to infer
about the extent of water bodies utilizing Landsat’s VIS, near infrared (NIR), SWIR
and thermal infrared (TIR) bands. Using these bands, various indices have been
developed to detect water extent (e.g., Automated Water Extraction Index, AWEI,
Normalized Difference Water Index, NDWI; Water Index 2015, WI2015; and
Normalized Difference Pond Index, NDPI). Since water extent datasets alone do not
have sufficient information to infer about the water level estimations, and studies
generally utilize also DEM datasets to get water level estimates (Avisse et al., 2017;
Tseng et al., 2016).

Among satellite-based images at the visible portion of the spectrum Sentinel
based models have the advantage of being higher resolution (10 m) and may utilize
the C-SAR band of Sentinel-1 (ESA, n.d.-b). Sentinel’s resolution is better than the
500 m resolution of The Moderate Resolution Imaging Spectroradiometer (MODIS)

and 30 m resolution of Landsat but Sentinel also have disadvantage of having a smaller



(5 years) historical archive (ESA, n.d.-c) compared to ~47 years of Landsat archive
(Earth Resources Technology Satellite, EROS, renamed to Landsat later, was
launched in 1972, while the most recent Landsat mission continues to retrieve
observations in 2019) (USGS, 2008). Landsat platform with such a long historical
archive with high spatial resolution, offers a very unique and valuable opportunity to
study historical conditions. Accordingly, studies utilize Landsat datasets to obtain
water level estimates are needed to understand the utility of acquired historical water

level estimates.

There are various variables impacting the accuracy of the final water level
estimates using Landsat & DEM image combination, such as remote sensing image-
based indices, DEM dataset selection, and the training dataset. More specifically, there
are different water detection indices that are used in the literature (e.g., AWEI, NDWI,
WI2015, and NDPI). Similarly, there are different DEM images available that the
literature utilizes to obtain water level estimation (e.g., The Advanced Spaceborne
Thermal Emission and Reflection Radiometer, ASTER and Shuttle Radar Topography
Mission, SRTM). Training data to improve the accuracy of the water level estimates
may not be always available at the region of interest; instead for such cases remote
datasets (i.e., obtained from different regions) are used to obtain water level estimates.
Such factors may significantly impact the accuracy of the water level estimates.
Accordingly, relative added benefits of different indices, DEM datasets, and
local/remote validation datasets in the framework of water level estimation need to be

explicitly investigated in dedicated studies.

1.2. Studies Focusing on Water Level Detection using VIS/NIR/SWIR Images
and DEMs

Water level detection by utilizing remote sensing, especially with Landsat and
Sentinel images have been researched globally. One notable study is the one
performed over Hoover Dam of the United States of America (U.S.A.) by using a

statistical model that utilizes Generalized Extreme Value (GEV) distribution in
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combination of recreating reservoir bathymetry by using average slopes and triangular
topography assumption (Tseng et al., 2016). Landsat imagery, in addition to ASTER
and SRTM DEMs were utilized in this study. They found 1.90 + 0.45 m of root mean
square error (RMSE) in estimation of the water level of the dam. The region that this
study had focused on has warm climate and have hardly any snow cover (i.e., close to
Nevada Desert). Accordingly, this study had not implemented any snow mask. On the
other hand, water levels of dams that are fed by snow-melt could be severely impacted
from the snow cover around the dam area. Hence, an explicit snow cover mask should
be implemented in addition to such water level estimation methodologies.
Additionally, this study only investigates the Hoover Dam, where their water level
estimation methodology is calibrated and validated over the same area. Given that, it
is viable that independent validation over different regions may yield higher errors,
such methodologies should be implemented with selection of different calibration and

validation regions.

Another notable study has been performed over the water bodies of Jordan by
combining Landsat imagery with DEMs and using frequency based statistical model
to obtain the water elevation of the water bodies (Avisse et al., 2017). This study had
separated the calibration and the validation implementation of their water level
estimation methodology. As a result, they have found correlations with the ground
observations between 0.31 and 0.98, depending on the water body. On the other hand,
similar to Hoover Dam case this study did not implement any snow cover mask in

their methodologies too.

Here above only two studies are given as an example for the combination of
Landsat & DEM images to retrieve dam water levels. On the other hand, there are not
many other studies investigated this potential of Landsat & DEM images particularly
over regions with seasonal snow cover (similar to Turkey). Hence, more dedicated

studies are necessary in this topic.



Even though indices like AWEI, NDWI, WI2015, and NDPI are particularly
used for water area extent estimation (Feyisa, Meilby, Fensholt, & Proud, 2014;
Fisher, Flood, & Danaher, 2016; Lacaux, Tourre, Vignolles, Ndione, & Lafaye, 2007;
Xu, 2006), their potential in water level estimation has not been investigated in detail
with a study that compares their relative utility. Accordingly, more studies over
different locations are necessary to clearly highlight the added utility of these indices

in water level estimation.
1.3. Relevant Studies over Turkey

Because this study has been carried out using datasets obtained over Turkey,
it is relevant to revise the literature about the studies focusing over regions of interests
laying over Turkey. Here, under this sub-section brief information about the studies
using remote sensing-based images to infer about the water area extent in addition to
water level estimates is given, as the number of studies focused on water level

estimation is very limited.

There are some studies focused on water extent estimation over various regions
in Turkey (Bahadir, 2013; Geymen, 2017; Karabulut, 2015; Peker, 2019). However,
there are only a few studies so far focused on the estimation of water level using
remote sensing data (Ataol, 2010; Ozdemir & Leloglu, 2014), while combination of
Landsat datasets with DEM images to get water level estimation has not been
investigated so far. Overall, the studies implemented so far with a study area over
Turkey focus more on water area extent estimation rather than water level estimation.
Accordingly, there is still a need for more studies investigating estimation of water

levels using remote sensing datasets over Turkey.

Lake Burdur is one of the regions with a lake area extent that is very sensitive
to seasonal and inter-annual climate variability. There are various studies over the lake
area estimation using different methodologies. Among them, the study
by Ataol (2010) used two Landsat images (obtained in 1987 and 2000), one SPOT
image (obtained in 2008), ground observations acquired from The General Directorate



of State Hydraulic Works of Turkey (DSI), DEM images with spatial resolution of 90
m., and 1:100.000 topography map to get the lake water area extent. They concluded
that the lake water extent has dropped 9.50 m. from year 1987 to 2000.

In another study used 5 Landsat TM images (1975, 1987, 1990, 2000 and 2002)
and 1 SPOT XS (1996) images and the bathymetry map to determine the lake area
extent of Burdur Lake and later validated them using ground observations of water
area extent (Sener, Davraz, & Ismailov, 2005). This study concluded that the area of
the lake has dropped from 210 km? to 153 km? and the lake water level has dropped
10 m from year 1975 to 2002.

Elmali Basin, one of the drinking water sources of Istanbul, was studied in
terms of land usage by utilizing 3 Landsat Enhanced Thematic Mapper (ETM) images
for the dates of 1995, 2005 and 2013, in combination with Geographic Information

Systems (Geymen, 2017). They found the basin has increasing water risk in years.

If scope of inspecting local studies is expended in a way that it covers
bathymetry mapping of shallow waters by utilizing remote sensing, a research about
bathymetry mapping of Ser¢in Lake by utilizing Hyperion images in combination with
statistical error correction and optimization algorithms (Ozdemir & Leloglu, 2014)
can be included. This study not only maps the bathymetry but finds chlorophyll
content of the water and concluded that the depth estimates are consistent with visual

information.

Among aforementioned local studies, even the ones implementing areal
measurements do not utilize any statistical models, they have the limitations of area
detection algorithms such as blocked areas by clouds and they, except Peker (2019),
utilize only a handful of Landsat images since their time series is based on change of
water content in terms of years and even half a decade. The water area extent change
Is investigated over 16 lakes using Landsat and Sentinel images and found major
lakes’ (Burdur and Aksehir) water area extent shrunk (i.e., water levels dropped)
between 1987 and 2017 (Peker, 2019).



There are other studies as well investigated the water area extent using remote
sensing based datasets (Bahadir, 2013; Demirkesen, 2003; Karabulut, 2015; Ozdemir,
2008) and found satisfactory results. However direct water level estimation related
studies over Turkey have not been investigated in detail so far; hence there is still a
need for such studies.

1.4. Added Utility of This Study

This study focuses on monthly water level measurements over Ermenek and
Altinkaya dams using Landsat 8 images between May 2013 and May 2019, while
these estimates were validated using ground measurements (provided by DSI) as the
truth. Here, the added utility of four different indices (AWEI, NDWI, WI2015, and
NDPI), two different DEM datasets (ASTER and SRTM), two training datasets (i.e.,
local and remote) and five different statistical model (Empirical Cumulative
Distribution Function, ECDF; GEV, mean, mode and median based models) are
investigated. F-Mask cloud detection algorithm is utilized and a Modified Tasseled
Cap Wetness (mTCW) algorithm is developed for snow and shadow detection.

One of the premises of the remote sensing-based methodologies is the ability
to infer over regions that ground observations are not available. Accordingly, error
estimates of the remote sensing-based methodologies that do not rely on observations
obtained directly over the region-of-interest is needed. On the other hand, earlier
studies in the literature estimated water level change via VIS/SWIR observations and
DEM images mostly use the same site to train their algorithms and validate their
results (i.e., error statistics might suffer from overfitting; Tseng et al., 2016), while
only a few studies (Avisse et al., 2017) investigate the impact of training models on
different sites. By explicitly investigating the performance of the estimation
methodologies over independent regions (i.e., independent validation), this study
contributes significantly to the existing literature.

Existing snow/cloud/shadow filters used in the studies in the literature may not

necessarily perform well in discriminating snow and shadow covered areas from other



regions. Tasseled Cap Wetness (TCW) index classifies the soils based on their wetness
using 6 different (Red Green Blue, RGB; 1 NIR; and 2 SWIR) bands of Landsat
images. In this study, a modified version of Tasseled Cap Wetness (MTCW) index
that uses 6 different (RGB, 1 NIR, 1 SWIR and 1 TIR) bands of Landsat 8 images is
developed to detect snow and shadow covered areas. With this aspect, this study

contributes to the existing literature by introducing a new snow and shadow filter.

Below Chapter 2 gives the details about the methodology and the datasets used
in this study, Chapter 3 presents the results, and Chapter 4 gives the discussion and

the conclusion of these results.



CHAPTER 2

METHODOLOGY

2.1. Definitions

Used terminology among this study should be explained before going into the
details of the study.

Raster: Rectangular (satellite for this study) image that has been computerized

and consisting of pixels (Cambridge University Press, 2013).

Spatial Resolution: A numerical value that is defined for a standard unit
(meters in this study) and defines the ground area that each pixel in the raster covers.
For example, a raster image with a spatial resolution of 30 m covers an area of 900

square kilometers for each pixel.

Temporal Resolution: A numerical value that is defined for a standard unit
(days in this study) and defines the revisit time of the satellite platform. For example,

a temporal resolution of 16 days means that a new raster is generated every 16 days.

Aerosol — Ultraviolet Band: Band-1 of Landsat-8 platform that covers the
0.433-0.453 pum interval of the electromagnetic spectrum (Department of the Interior
U.S. Geological Survey, 2019).

Blue Band: Band-2 of Landsat-8 platform that covers the 0.450-0.515 pum
interval of the electromagnetic spectrum (Department of the Interior U.S. Geological
Survey, 2019).

Green Band: Band-3 of Landsat-8 platform that covers the 0.525-0.600 pm
interval of the electromagnetic spectrum (Department of the Interior U.S. Geological
Survey, 2019).



Red Band: Band-4 of Landsat-8 platform that covers the 0.630—0.680 um
interval of the electromagnetic spectrum (Department of the Interior U.S. Geological
Survey, 2019).

Near Infrared (NIR): Band-5 of Landsat-8 platform that covers the 0.845—
0.885 um interval of the electromagnetic spectrum (Department of the Interior U.S.

Geological Survey, 2019).

Short Wave Infrared (SWIR): Band-6 (SWIR-1) and Band-7 (SWIR-2) of
Landsat-8 platform that covers the 1.560-1.660 um (Band-6) and 2.100-2.300 pm
(Band-7) intervals of the electromagnetic spectrum (Department of the Interior U.S.

Geological Survey, 2019).

Cirrus Band: Band-9 of Landsat-8 platform that covers the 1.360-1.390 pm
interval of the electromagnetic spectrum (Department of the Interior U.S. Geological
Survey, 2019).

Thermal Infrared (TIR): Band-10 (TIR-1) and Band-11 (TIR-2) of Landsat-
8 platform that covers the 10.6-11.2 pm (Band-10) and 11.5-12.5 pm (Band-11)
intervals of the electromagnetic spectrum (Department of the Interior U.S. Geological
Survey, 2019).

RGB: An image that combines blue, green and red bands in a single image.

VIS: An image or matrix that includes the bands that operate within the visible

parts of the electromagnetic spectrum. VIS, covers blue, green and red bands.

Sub-Pixel: Spatial area that is smaller than the spatial resolution of raster and
hence cannot be represented in the image although it exists and affects the digital
number (DN) value. For example, for a platform with 30 m of spatial resolution, sub-

pixel means an object that is smaller than 30 m.

Half Pixel: Sub pixel, that covers an area equal to half of the spatial resolution

of the raster image. For example, for a platform with 30 m of spatial resolution, half a
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pixel means an object that is 15 m long. See Figure 2.1 for elevation change

demonstration and relation between whole pixel and half pixel.

Binary Mask, Binary Image: An image or mask that includes only zero or

one valued pixels.

Local Dataset/Model: Case, where the ground data used for model training is
the same with the dam that the model is used to estimate its water level (ex. Using
models trained with Ermenek Dam’s ground measurements to estimate the Ermenek

Dam’s water level)

Remote Dataset/Model: Case, where the ground data used for model training
Is not the same with the dam that the model is used to estimate its water level (ex.
Using models trained with Altinkaya Dam’s ground measurements to estimate the

Ermenek Dam’s water level)

|
|
| Elevation

} Difference x2
|

|

\

Elevation
Difference

Half Pixel Length (15 m)

Full Pixel Length (30 m)

Figure 2.1 Demonstration of Elevation Change Within a Pixel and Half Pixel with respect to Slope

2.2. Overview of the Study

This study focuses on estimation of water levels over Ermenek and Altinkaya
dams using Landsat 8 images between May 2013 and May 2019. In order to estimate
the water level of these dams for each Landsat 8 image date, first the Landsat image
and the DEM maps are post-processed (Section 2.6) so that they could all be input to
the Nelder-Mead Simplex (NMS) optimization methodology (Section 2.7). Initially,
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the Landsat and the DEM datasets are cropped to a region (Section 2.6.2.1) that
contains the dams to reduce the computational time and to improve the accuracy of
the cloud filter applied later. Then proximity mask is calculated to prevent water
bodies that are around the dam but not part of the dam reservoir to impact the results
(Section 2.6.2.2). Similarly, cloud mask (Section 2.6.2.3), snow and shadow mask

(Section 2.6.2.4), and water detection indices (Section 2.6.1) are calculated.

All of these masks and indices (before threshold application) are static and are
not impacted from the implemented NMS methodology that uses these masks and
indices as input. Here, this optimization uses several different thresholds (water area
extent detection threshold, water level detection threshold, and statistical outlier
detection threshold) as parameters to minimize the errors of the water elevation. NMS
at the same time also estimates the water area extent as an intermediate product, which

is used as input to water-land border detection within the NMS methodology.

The water level detection methodology introduced in this study relies on
estimation of water-land border first using NMS methodology, then retrieval of DEM
values at the water-land border pixels again using NMS methodology, and then
utilizing several different methods (ECDF, GEV, mean, median, and mode) to obtain
the water level estimate. Here, the method ECDF also relies on NMS for the estimation
of water level elevation detection threshold. In other words, other four statistical
methods (GEV, mean, median, and mode; explained in Section 2.8) obtain the water
level estimates using the histograms of the DEM values of the pixels at the water-land
border estimated via NMS methodology. Here GEV, mean, median and mode
statistics-based methodologies require water-land discrimination before they can be
implemented to obtain water level estimates. There could be other methods
independent from NMS to obtain water-land border (e.g., directly using the Landsat-
based index results to acquire water-land delineation); however such methodologies
might introduce high errors as the index values over different dates might have very
different values. Accordingly, in this study NMS methodology based water-land

12



discrimination results are used in GEV, mean, median, and mode statistics-based

water level estimations.

Sensitivity of the water level results to the utilized indices, DEM images, and
the selection of training dataset is investigated. Above methodologies are repeated for
different scenarios using four indices (AWEI, NDWI, W12015, and NDPI), two DEM
images (ASTER and SRTM), two training datasets (i.e., local and remote), and five
statistical approaches to retrieve water level from water extent (i.e., ECDF, GEV,
mean, median, mode), and two dams. Accordingly, in this study 4*2*2*5*2=160

scenarios are investigated.
2.3. Flow of The Model

Main flow of the model is explained with 3 flow charts (Figure 2.2, Figure 2.3
and Figure 2.4). The predictive model in this research includes Landsat and DEM
(from ASTER and SRTM) raster images as input. Both Landsat and DEM images
have been obtained by Earth Explorer web portal of USGS. Downloading of the DEM
images was performed manually but the Landsat images were downloaded via Bulk
Download Application (BDA) software of the United States Geological Survey
(USGS).
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Each Landsat-8 image contains approximately 1.70 Gigabytes (GB) of
unzipped data including 11 band (1 of them is panchromatic), 1 quality assessment
raster, 1 angle coefficient file (ANG) and 1 Landsat Metadata File (MTL) file
containing the Sun Elevation Angle, Top Of Atmosphere (TOA) reflectance and

radiance coefficients, K1 and K2 values that are used throughout the calculations.

DEM raster images contain 30-40 Mb of data and ASTER Global Digital
Elevation Map (GDEM) contains a quality assessment raster in addition to the
elevation raster. Downloaded DEM file projections are based on Geographic
Coordinate Reference System (CRS) and in order to be able to incorporate them with
Landsat images, they have been reprojected on Universal Transverse Mercator (UTM)

based CRS. This reprojection was performed with QGIS.

Landsat images contain more than 60 million pixels over an area larger than

34.000 km?. To reduce the computational time, Landsat images are first cropped to
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smaller subsets containing the dam that is being investigated. Borders of this subset
area was defined visually using Google Earth Pro by ensuring no other major water

body will lay within this subset area.

In addition to the subset images, buffer masks are further used to further reduce
the errors by eliminating the possibility of misclassification of remote locations as
water. Here buffer masks are created using DEM images that pixels having higher
elevation than the dam’s highest elevation (i.e., theoretical maximum lake area extent)
are labeled as 0 while pixels having elevation lower than the dam’s highest elevation
are labeled as 1. Later such buffer masks are multiplied by the water area extent
estimations so that water area extent is limited with the theoretical maximum lake

area.

Cloud and mTCW masks have been generated for each date of the Landsat
images and stored in the computer in raster form. Initial shape file was read and band
raster images were cropped with respect to the initial shape file before calculation of
these masks. These masks are independent from the parameter optimization steps and
hence calculating them before running the main function shortens computational time.
Cloud and mTCW mask values are stored as raster images containing values either 1

or 0.

Results of water detection indices (NDWI, NDPI, AWEI and WI12015) were
calculated and stored in the computer. Initial shape file was read and band rasters were
cropped with respect to the initial shape file before calculation of these results. Results
of the indices were not converted into a binary mask at this step since that conversion
requires a threshold value that defines what is water and what is not, and that threshold
is one of the parameters that have been optimized. Hence, the stored images of this

step include complete range of results in terms of pixel values.

Assigning binary values to the pixels based on a threshold takes shorter time

than recalculating the index results and applying the threshold. That is the reason of
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this calculation and saving in the computer. After completing these steps, the main

function is run in order to calculate the results.

Main function takes path of water index, DEM file, initial shape file, cloud
masks, mTCW results, proximity buffer mask raster in addition to the values of water
detection threshold, which (smaller or bigger) part of the histogram to label as water
with respect to threshold, elevation detection threshold, outlier elimination threshold,

talveg elevation and top of the crest elevation as parameters.

Water detection threshold value is an either integer or decimal value,
depending on the water area detection index. Initial assessment of this threshold is
defined by inspecting the histogram of the water index result raster. After the initial

assessment, the value is optimized in order to minimize the RMSE value.

Decision of labeling which part of the image as water has been made based on
a threshold (whose initial value was provided by inspection of histogram and then
final value is obtained by optimization) parameter, where 1 means that any value
smaller than or equal to the water detection threshold is water and O means that any

value greater than or equal to the water detection threshold is water.

Elevation detection threshold is a floating-point numeric value that is between
0.0 and 1.0. This value defines the quantile percent that is returned as the final water

elevation.

Outlier elimination threshold is used to eliminate the extreme values that may
be caused by either the error related to the DEM or complications due to Landsat’s
spatial resolution. Values to be eliminated are selected with Eqn-(1, where p is the

mean and o is the standard deviation of the values.
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where ¢ is the limit for values to eliminate, £ is the outlier elimination threshold. Here
values 8 * o away from the mean are considered as outliers, where g is selected as
1.75 in this study.

Talveg (of the downstream) and top of the crest elevations are used as the
physical limits of the water level elevations and as thresholds to filter unrealistically
low or high elevations.

Main function initially reads sample raster and initial shape file. These datasets
are later utilized to transform shape file’s CRS into UTM. Then, DEM file is read, and
this file’s CRS has also been converted into UTM. Afterwards, DEM file and the crop
extent (CRS-corrected-shapefile) have been incorporated to have a raster named
“Cropped DEM”.

After producing the cropped DEM raster, the algorithm proceeds to read water
area detection index results. Type of the water area detection method was provided by
the user before the run of the main function by providing the related folder. After the
reading process, algorithm proceeds to transform the results into a binary mask with
respect to the provided water threshold and the value of the parameter that defines the
relation of water labeling and threshold in terms of being smaller or greater than the

threshold. The result of this step is named as initial water mask.

After generating the initial water mask, algorithm proceeds and reads the
related cloud and mTCW masks. Both cloud and mTCW masks had been saved as a
binary mask and hence this step deducts these masks from the initial water mask. The
negative valued pixels are the ones that do not have right to be classified as water and
their values are set to 0 in order not to have underestimation problems in the upcoming
steps due to their negativity. The result of this step is named as refined water area

mask.
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Proximity buffer mask of binary values are read after the generation of the
refined water area mask. Buffer mask defines the area of interest in a narrower manner
than the initial shape file. Pixels in the buffer zone have their values assigned as 1 and
the others have their values assigned as 0. After reading the mask file, buffer mask is
multiplied with refined water area mask. This multiplication eliminates the false
positive values in addition to the statistical interference of other genuine water areas
that are located further than the buffer distance. Result of this step is named as final

water area mask.

Water area mask is a binary mask which have all of the pixels located in the
water body valued as 1 and the others valued as 0. Dams and other artificial water
bodies that start their water retention after the construction date of the DEMs may be
analyzed after this mask by multiplying this mask with cropped DEM but this solution
cannot be applied for natural or artificial water bodies that have water before the
construction date of the DEM. Hence, extracting the border line between the land and
water pixels is a more general approach. This border extraction is done by using R-
Programming Language. After the border extraction, only the border pixels have their
values assigned as 1 and the others’ values are assigned as 0. Result of this step is

named as water border mask.

After water border mask generation, this mask is multiplied with cropped DEM
values in order to have masked elevation values. Since water border mask is a binary
mask and the cropped DEM contains the elevation values, multiplication of these two
provides a result that have elevation values for the water borders and zeros for

everywhere else.

It is not physically possible to have water elevation below the talveg elevation
or above the top of the crest elevation. Hence, values that is out of these boundaries

are eliminated.

Even after the elimination of extreme values, the masked elevation values have

outlier values due to either Landsat’s spatial resolution, standard errors of DEM
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products, or thin clouds that are not eliminated in the Landsat image. Hence a second
filter is applied based on statistical analysis of the resultant histogram and based on
the provided outlier elimination threshold. Result of this process is called as final
elevation values. Finally, the value belongs to the provided quantile value is returned
among the final elevation values by the algorithm as the final result.

2.4. Study Area

Even though above given methodology can be implemented over any location, in

this study it is implemented over Ermenek and Altinkaya dams as proof of concept.
2.4.1. Ermenek Dam

Ermenek Dam (Figure 2.5) has 58.74 km? of reservoir area and is located in a
basin with an area of 2304 km?. The maximum depth of dam reservoir is204.0 m and
the mean depth of the reservoir is 78.0 m. Total reservoir capacity is 4,582 hm3. Crest
height of dam is 210 m from the talveg level and 218 m from the foundation level.
Top of the crest elevation of the dam is 700.0 m (Cevlik, 2013).

Climate of the area changes from Mediterranean to continental as elevation
increases. Dominant wind direction is South East (SE) and maximum wind speed has
been measured as 18.9 m/s as of 2013. The coldest month is January with average
temperature of 3.3°C and the hottest month is July with average temperature of 22.7°C.
Mean temperature is 8.1°C for winter and 17.2°C for summer. Mean rainfall is
600 millimeters (mm) per year where the December — February period’s rainfall
amount is twice of the other months (Cevlik, 2013).

Main water resource for dam is the Ermenek River, whose most recent mean
flow amount has been calculated as 1,289.6 hm?3/ year. In addition to the Ermenek
River, other rivers also carry considerable amount of water to the reservoir. Gevne
River, Goktepe River, Nadire Spring, Kiiciiksu River, Zeyve Spring and Zeyve River.
Among those sources, Nadire Spring have been covered completely by the dam
reservoir (Cevlik, 2013).
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Water replenishment time, average amount of time that requires an incoming
water stream to leave the reservoir lake, was calculated as 3.55 years and this value is
higher when compared to Hirfanli Dam’s 2.60 years and Kesikkoprii Dam’s 0.05
years. Increased water replenishment time results in increased algae levels and hence
eutrophication that causes inaccuracies among the results of water detection indices

that takes green band into account (Cevlik, 2013).

Dam lake is located in the mild temperate climate zone; hence, water turbidity
is increased due to melting of ice that was covering the lake area or circulation due to
temperature differences. This turbidity may affect temperature-based calculations in a

negative way.

DEM images are cropped to an initial area of interest (section 2.6.2.1). Average
slope near the Ermenek Dam is calculated as 14.99 degrees using the ASTER DEM
and 14.54 degrees using the SRTM DEM. Following Eqgn-2, a Landsat pixel with 30
m of spatial resolution may contain an elevation difference of ~7.8 m within the
respect. These values also mean that even half pixel may contain ~3.90 m of elevation
difference (Figure 2.1). This elevation difference implies on average 1.95m error may
just stem from the coarse spatial resolution of Landsat image for mixed pixels that
contain both water and land areas. Moreover, it can be observed that the slope value
increases especially through the South Western (SW) part, where the dam is located
(Figure 2.6 and Figure 2.7).

MeanED = SpaRes * sin (meanSlope) )

where MeanED denotes average elevation difference per pixel, SpaRes resembles the
spatial resolution of the platform and meanSlope resembles the average slope

calculated by using the DEM raster.
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Figure 2.5 Satellite View of the Ermenek Dam and its Reservoir (Google, n.d.-b)
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Figure 2.6 Slope Map (in Degrees) of Ermenek Dam Buffer Area Based on SRTM DEM

(Axes represent UTM coordinates)
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Figure 2.7 Slope Map (in Degrees) of Ermenek Dam Buffer Area Based on ASTER DEM

(Axes represent UTM coordinates)

2.4.2. Altinkaya Dam

Altinkaya Dam (Figure 2.8) is located 35 km SW of the Bafra province of
Samsun. The dam is constructed in 1988 on Kizilirmak River, which is the longest
river in Turkey and has annual flow values as high as 6.0 km3/ year. Drainage area
of the dam, the basin, is 74,515 km? and mean yearly flow value is 5.8 km3/ year as
of 2011. Reservoir capacity of dam is 5.8 km3, whereas the active volume is half of
that value. Lake area for the highest water level that the dam has been designed for is
118.0 km?. Crest height of the dam is 140.0 m from talveg elevation where talveg

elevation is 55.0 m. Altinkaya Dam is the 4™ biggest dam of Turkey (Oztan, 2011).

According to the Turkish State Meteorological Service (MGM) statistics,
average temperature of the Samsun province is 14.5°C and the coldest month is

February with a mean temperature of 3.9°C while the hottest month is August with a
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mean temperature of 19.6 °C. Mean rainfall is 717.1 mm/month and 165.5 mm of that

rainfall has being observed in months November and December (MGM, 2010).

Average slope determination and slope mapping processes were carried out for
Altinkaya Dam by using the same methodology explained in Ermenek Dam
(Section 2.4.1). According to those calculations, average slope near of the Altinkaya
Dam is 14.44 degrees for ASTER DEM and 14.38 degrees for SRTM DEM.
Considering the Eqn-2 these values means that a Landsat pixel with 30 m of spatial
resolution (Department of the Interior U.S. Geological Survey, 2019) may contain an
elevation difference ~7.5m. This value implies an error of ~1.9 m might be added just
because of the local slope and the spatial resolution Landsat images for the water-land
mixed pixels (See Figure 2.1). The slopes particularly increases along the sides of the
water body area (Figure 2.9 and Figure 2.10), where the added errors independent
from the methodology but due to input dataset and the study region might be even

higher than average 1.9 m.

Also note that the slope maps of Altinkaya Dam Buffer have zero valued pixels
over the dam reservoir area because of the water existence preceding the construction
of DEM images. In order to cope with this problem, an older topographic elevation
map have been incorporated with DEM raster images so that inner regions of the dam
reservoir have available DEM values. This new modified DEM image still has missing
values, however, the dam reservoir water level never drops to the levels that DEM

data will be missing.
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Figure 2.8 Satellite View of the Altinkaya Dam and its Reservoir (Google, n.d.-a)
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Figure 2.9 Slope Map (in Degrees) of Altinkaya Dam Buffer Area Based on SRTM DEM

(Axes represent UTM coordinates)
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Figure 2.10 Slope Map (in Degrees) of Altinkaya Dam Buffer Area Based on ASTER DEM

(Axes represent UTM coordinates)

2.5. Utilized Input Data
2.5.1. Ground Data

Ground data availability plays an important role during the determination of study
area because of the need of independent data for both training and testing phases of

the models in this study.

Monthly reservoir water level data continuously measured by DSI over the two
dams have been obtained for validation purposes. Data obtained from DSI reflects the
water levels at the beginning of each month between May 2013 and May 2019. Data
unit is meters. Accordingly, these datasets are interpolated to retrieve the water levels

for the same days that 16-daily Landsat datasets are available.

26



2.5.2. Digital Elevation Data

DEMs are topographic models that provides the elevation value of an area in
numerical form. DEMs can be produced via stereo or SAR imaging. In this study, the
required DEM data obtained from ASTER and SRTM platforms were used. Here the
CRS of these two DEM images is consistent with the CRS of Landsat images, hence

one to one comparison, or direct calculations, are possible.
25.2.1. ASTER GDEM

ASTER GDEM (Figure 2.11 and Figure 2.12) is based on stereo images taken by
satellite platform that had been developed and are being operated by The National
Aeronautics and Space Administration (NASA) and The Ministry of Economy, Trade
and Industry of Japan, METI (METI, NASA, & ERSDAC, 2011). Its second version
(GDEMZ2) was used in this study. GDEM2 was released in October 2011. It was an
improved version of the GDEML1, first iteration, that had been released in June 2009
(METI et al., 2011). Dataset has a spatial resolution of 30 m and each raster file
published by the operating bodies cover and area of one degree by one degree in terms
of spatial coverage (MET]I et al., 2011).

RMSE value for ASTER raster images can go as high as 15.1 m for
mountainous areas (Tachikawa, Kaku, & Iwasaki, 2011) and this errors have a
potential to affect the estimations in a way that they cause higher water level
estimation error. Hence the effect of these errors should be decreased by utilizing
higher resolution and/or lower error DEM datasets.

27



Figure 2.11 ASTER DEM over Ermenek Dam

Figure 2.12 ASTER DEM over Altinkaya Dam
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2.5.2.2. SRTM GDEM

SRTM GDEM (Figure 2.13 and Figure 2.14) is a DEM that has been constructed
based on the images taken by the Shuttle Radar Topography Mission in 2000 (Jain,
Thaker, Chaurasia, Patel, & Singh, 2018). Its DEM with highest resolution, 30 m
spatial resolution, was released in 2003 (Elkhrachy, 2018).

Dataset has a spatial resolution of 30 m and each raster file published by the
operating bodies cover an area of one degree by one degree in terms of spatial
coverage (NASA, n.d.). However, SRTM is known to include void pixels over
mountainous areas with steep slopes (Berthier, Arnaud, Vincent, & Rémy, 2006;
Kolecka & Kozak, 2014).

Figure 2.13 SRTM DEM over Ermenek Dam
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Figure 2.14 SRTM DEM over Altinkaya Dam

2.5.3. Landsat Images
2.5.3.1. Selection of Landsat-8 Images

In order to detect the clouds, improved F-Mask algorithm (Frantz, Hal3, Uhl, &
Hill, 2018) was utilized in this study. This algorithm utilizes the Band-9 (Cirrus Band)
of Landsat-8 that covers the spectral interval of 1.36 - 1.38 um (Department of the
Interior, U.S. Geological Survey, 2019). This band has not been included in previous
Landsat satellites (NASA, 2011) and only available in the Landsat-8 images that are
used for this research. Having 6 years of data since its launch, the length of available
Landsat-8 data limits the duration of this study as Scan Line Corrector (SLC)
malfunction problem of Landsat-7 (USGS, 2003) limits its use in this study. While
Landsat-6 failed to reach its desired orbit (Viets, 1995), Landsat-5 provides a long
archive (its datasets are available between 1984 and 2013; Usgs.gov, 2013); yet, in
this study Landsat 5 datasets are not used along with Landsat 8 images as some bands
used in this study are only available in Landsat 8 but not in Landsat 5. New Landsat
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mission, Landsat-9, is planned to be launched in December 2020 and to include
exactly the same bands and spectral intervals as Landsat-8 (U.S. Geological Survey,
2019). Availability of Landsat 8 and 9 images simultaneously would reduce the revisit

time of Landsat over any part of the globe.

In this study Landsat 8 Level-1 data is utilized instead of higher level datasets.
Level-1 images have been corrected both geometrically and radiometrically in order
to get rid of distortions of Level-0 images caused due to sensors, deviations in attitude,
shape of Earth (Department of the Interior U.S. Geological Survey, 2019).

2.5.3.2. Selection of Digital Numbers Instead of Surface Reflectance

The decision based on using DN directly versus utilizing surface reflectance (SR)
first were made on the fact that although the analyses based on SR calculations seem
to yield a more informative initial results, the proposed methods for Brightness
Temperature (BT), TOA radiance and reflectance calculation formulas provided in
data manual of Landsat-8 utilizes DNs (Department of the Interior U.S. Geological
Survey, 2019). In addition to the SR calculation’s addition of another artificial layer,
utilization of DN instead of calculating SR is commonly applied in literature (Danaher
& Collett, 2006).

To see the difference between SR- and DN-based indices, NDWI water index is
calculated using both level datasets for Landsat-8 image
LCO8_L1TP_177035 20180418 20180501 01 T1 (below Figure 2.11 and Figure
2.12). SR-based NDWI images have some artificial strips while DN-based image does
not. Accordingly, DN-based level 1 datasets are used in this study rather than SR-

based higher level datasets.
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Figure 2.15 NDWI-XU Result (SWIR = B6) based on DN of Landsat 8 (LS8) Image
LCO8_L1TP_177035_20180418 20180501 01_T1

Figure 2.16 NDWI-XU Result (SWIR = B6) based on SR of LS8 Image
LCO8 L1TP_ 177035 20180418 20180501 01 T1
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2.5.3.3. TOA Reflectance, Radiance and Brightness Temperature Calculations

TOA reflectance calculation before acquisition of indices is performed with
Eqn-3 proposed by the Data Manual of Landsat 8 (Department of the Interior U.S.
Geological Survey, 2019). The selected application method included correction for
solar angle and in order to apply correction for solar angle, reflectance coefficients
were required. Those required reflectance coefficients were obtained from the MTL
files related with the raster of interest and had been provided by the USGS.

My % Qe * Ap 3)
Pr = :
sin (Osg)

where p, symbolizes TOA Spectral Reflectance with solar angle correction, M,,
represents reflective multiplicative band scaling factor, Q. represents dynamic
number regarding to the pixel of interest that belongs to a Level-1 data, A4, symbolizes
reflectance additive band scaling factor and 65 represents Sun elevation angle. M,
A, and O values have been obtained from MTL files of the Landsat images, whereas

the Q.q; Vvalues are obtained directly from the tif files regarding to the respective
bands.

TOA radiance calculation of the DN values of the Landsat raster carried out using
Eqn-4 proposed by the Data Manual of Landsat 8 (Department of the Interior U.S.
Geological Survey, 2019) and the required radiance coefficients was obtained from

the MTL files related with the raster of interest.

L?\ = ML * Qcal * AL (4)

where L, symbolizes TOA Spectral Radiance in terms of W/(m? * sr * um), M,
denotes radiance multiplicative band scaling factor, Q.,; denotes dynamic number
regarding to the pixel of interest that belongs to a Level-1 data, A; symbolizes radiance

additive band scaling factor. M; and A, values have been obtained from MTL files of
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the Landsat images, whereas the Q.,; values are obtained directly from the tif files

regarding to the respective bands.

For BT calculations, the Eqn-5 provided by the Data Manual of Landsat 8
(Department of the Interior U.S. Geological Survey, 2019) has been used. Since this
formula requires calculation of surface radiance a priori, surface radiance calculations

were performed, and the obtained results have been used in the equation.

T = Ifz (5)
In (L—i +1)

where T denotes TOA BT in terms of Kelvin, L, symbolizes TOA Spectral Radiance
in terms of W/(m? * sr * um), K; and K, represent thermal conversion constants that
are band specific values. K; and K, values have been obtained from MTL files of the

Landsat images.

2.6. Post-Processed Data

Landsat 8 images (i.e., different bands) are post processed with different combination
to retrieve products that will be primarily used in the water-land detection algorithm
as well as mask parts of the images that may not contain useful information and/or add

high errors.

2.6.1. Selected Water Area Detection Indices

Different water detection indices have been utilized in this study to see the
differences that based on formulation of indices. Selected indices are AWEI, NDPI,
NDWI-MCF and WI12015.
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2.6.1.1. AWEI

AWEI is a water detection index that requires cloud free observations. AWEI
has two variants, AWEI-NS and AWEI-S, where the AWEI-NS (Eqgn-6) is a robust
method that eliminates the non-water pixels for images without shadow problem and
AWEI-S (Eqgn-7) is a refined version that considers shadows too (Feyisa et al., 2014).
Both AWEI formulations are depended on radiometric resolution and hence their

thresholds depend on the platform.

AWEI.S = BLUE + 2.5 x GREEN — 1.5 * (NIR + SWIR1) (6)
—0.25 * SWIR2
AWEI.NS = 4 * (GREEN — SWIR1) — (0.25 * NIR + 2.75 * SWIR1) ()

In this study AWEI-S variant is utilized to discriminate the water from the land.
2.6.1.2. 8 NDPI

NDPI is a water detection index, developed mainly for pond detection, aims to
detect small water bodies correctly (Lacaux et al., 2007). The original formulation of
NDPI uses a MIR band covering interval 1.58 — 1.75 um (Lacaux et al., 2007) that is
very similar to Landsat-8 SWIR-1 (Band-6) interval 1.57 — 1.65 um (Department of
the Interior U.S. Geological Survey, 2019). Accordingly, in this study the NDPI
calculations were performed using below Eqn-8 using Landsat-8 Band-6 images. As
can be seen from the formula, NDPI results can be negative when the DN of the Green
Band is greater than the DN of the SWIR band, while it becomes positive when SWIR
DN values are greater than SWIR DN values.

NDPI = (SWIR — GREEN)/ (SWIR + GREEN) ®)

2.6.1.3. NDWI

NDWI is a water detection index is based on NIR and Green bands in a way
that it divides the difference between Green and NIR to sum of Green and NIR to find

a ratio (McFeeters, 1996), while several different variations of NDWI has been
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generated since its initial development (B. Gao, 1996; Xu, 2006). On contrast to
AWEI, this index resulting interval does not depend on radiometric resolution of the
platform. NDWI variation used in this study is the McFeeters’ variation and
calculations were done by using Eqn-9. As can be seen from the formula, Normalized
Difference Water Index — Mcfeeter’s Variation (NDWI.MCF) results can be negative
(like the NDPI results) when the DN of the NIR Band is greater than the DN of the

GREEN band and positive when vice versa.

NDWI.MCF = (GREEN — NIR)/ (GREEN + NIR) )

2.6.1.4. WI2015

WI2015 is a water detection index that its estimation is not based on ratio
calculation (Fisher et al., 2016). Accordingly, its resulting interval depends on the
radiometric resolution. In other words, result interval of WI2015 index will be
different for an 8-bit image (DN range of 0-255) and 16-bit image (DN range of
0-65535), similar to AWEI. WI2015 calculations were done by using Eqn-10,

provided below.

WI2015 = 1.7204 + 171 * GREEN + 3 * RED — 70 « NIR — 45 « SWIR1 (10)
— 71 % SWIR2

2.6.2. Applied Buffers and Masks
2.6.2.1. Region of Interest Subset

Two buffer areas (initial subset and proximity mask) are defined and utilized
in this study. An initial subset (Figure 2.17 and Figure 2.18) is used to reduce the raw
Landsat image with ~35 million pixels (over an area larger than 34.000 km?) to ~1
million pixels (~900 km? area). This subset also reduces the computational time and

also prevents the overestimation of F-Mask cloud detection algorithm.
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Figure 2.17 Initial Subset Marked (with Red) over the Altinkaya RGB Image

Figure 2.18 Initial Subset Marked (with Red) over the Ermenek RGB Image
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2.6.2.2. Proximity Mask

Initial iterations of the research model had shown that even after the initial
cropping based on rectangular shape file that has been extracted from Google Earth
Pro, there exist cases that the results include overestimation of water areas. Some of
the overestimation is based on cloud, shadow and icy areas and those anomalies can
be deducted by masks and introduction of additional indices. However, as it can be
seen from the results section, research model tends to yield better results for hot
seasons and worse ones for wet seasons. Therefore, some of the overestimation is
based on soil moisture that cannot be deducted without an extensive and accurate
modelling of soil moisture. Moreover, there exists some other natural or artificial
water bodies in the proximity of areas of interest. Hence, a buffer zone is introduced

to further eliminate the overestimation.

Proximity buffer area (Figure 2.19 and Figure 2.20) modelling is based on shape
files of the dam areas. Shape files have been extracted from Google Earth Pro in kml
format and transformed into shp files via QGIS. Those extracted points represent the
boundary of water body and hence everything within those points are labeled as area
of interest. The transformation of projection of shp file to UTM is performed by
R-Programming Language’s (R) “raster” library. When it comes to the outsider points,
a proximity limit of 10 pixels (300 meters since each Landsat pixel is equal to 30
meters) is defined and every point that lays within that proximity limit is added to the
area of interest. Distance measurement was done based on Euclidian distance formula
and the reference point is defined as the point in area of interest such that it yields the
smaller distance for the point that was being inspected.

Every pixel in the area of interest is labeled with a binary (0 or 1) value. Since the
final step of this study includes multiplication of final binary image with to DEM
image and then introducing a statistical model afterwards, this binary mask prevents
overestimations due to false positive water markings in the areas that are far away

from the area of interest.
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Figure 2.19 Proximity Buffer Area for Ermenek Dam
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Figure 2.20 Proximity Buffer Area for Altinkaya Dam
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2.6.2.3. Cloud Mask

Landsat 8 has been equipped with Band 9, named cirrus band, that covers the 1.36
- 1.38 um (Department of the Interior U.S. Geological Survey, 2019). Accordingly, to
prevent the cirrus clouds interfering the results, either a threshold should be selected
and Band 9 mask should be applied (to cover some of the cirrus bands) or a mask
should be calculated via different combinations of Band 9 data as well as whiteness,
temperature anomalies and other bands datasets. Although the initial F-Mask cloud
algorithm had been developed without the Landsat 8 data (Zhu & Woodcock, 2012),
the improved iteration of F-Mask takes Band 9 into account to eliminate the
computational intensity of the Potential Cloud Pixel (PCP) detection step (Zhu, Wang,
& Woodcock, 2015).

A threshold needs to be defined in F-mask algorithm for the detection of the
clouds. Although the threshold 0.01 selected in this study as suggested by a similar
study (Wilson & Oreopoulos, 2013) is much smaller threshold than the 0.03 value
used in a similar masking algorithm for MODIS (Ackerman et al., 2010), there still is
a tendency of overestimation of F-Mask algorithm (Zhu et al., 2015). F-Mask
algorithm’s results seemed to be highly skewed towards overestimation over the
Ermenek image that includes almost extensive Mediterranean pixels as well as high
mountains. F-Mask uses average whiteness and temperature values and having

unrelated pixels, affect the results in a way that increases errors.

In fact, since the effect of temperature difference on the final result can be
considered as high, it is observed that the algorithm has a tendency of producing false
positives (pixels marked as cloud whereas they are not) within the study area. The
reasoning behind this is the effect of sea water’s consistent temperature and the
decrease in temperature with the increase in elevation. Landsat images of the study
areas cover high mountains, valleys within mountains and plateaus between the
mountainous area in addition to sea and shore that is included in the Landsat images

covering Ermenek Dam’s area. Even the border between land and water body of
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interest was labeled as cloud for some of the images that had their cloud masks
calculated with the F-Mask algorithm. An example for overestimation over the water
boundary line has been provided for the Landsat 8 image
LC08_L1TP_177035 20160802 20170322_01_T1 that covers Ermenek Dam area
(Figure 2.21).

Figure 2.21 RGB Image (Left) and Related Cloud Mask Result (Right) of the LS8 Image
LCO08 L1TP_177035_20160802_20170322_01_T1

In order to cope with this problem, cropping with region of interest subset (See
Section 2.6.2.1) step of the calculations had been performed before the final cloud
mask was detected and the results were successful in terms of eliminating the false
positives. This change of order has changed mask algorithm’s adaptive statistical

thresholds of whiteness and BT steps.

The final cloud mask still had overestimation based on bidirectional reflectance
distribution function (BRDF) artifacts but since the further steps of methodology of
this research calculates the boundary between water and land, the BRDF-based false

positive cloud pixels over the water area have not affected the results.

The only change in F-mask algorithm that was made in this study is using a
shapefile to cut the area of interest (Section 2.6.2.1) and hence getting rid of the

unrelated pixels’ effect on the results by skewing the statistical values. If this cutting
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were not performed, than the geographically irrelevant pixels would skew the
statistical computations of the F-Mask algorithm. All of the remaining calculations
explained through this study are were performed based on the existing literature that
introduced and improved the algorithm (Zhu et al., 2015; Zhu & Woodcock, 2012).

F-Mask algorithm’s first step aims to determine the PCP coverage of the entire
raster. Initial algorithm design had included complex calculations for this step (Zhu &
Woodcock, 2012) but the refined algorithm relies on the Landsat-8’s Band-9 that is
called as Cirrus band and covers the 1.36 - 1.38 um interval of the electromagnetic
spectrum (Department of the Interior U.S. Geological Survey, 2019). PCP result is
limited to binary values such that, 1 for probable cloud and 0 for not cloud (Figure
2.22 — Left).

After PCP calculation, a water mask is generated with a function that utilizes Band
4 (Red Band) and Band 5 (NIR) bands of Landsat 8. This function calculates
Normalized Difference Vegetation Index (NDVI) and returns a binary mask with
respect to the outcome of two initial tests that are based on the TOA reflectance Band-
4 value and NDVI result. Returned result are in binary form (Figure 2.25 — Right).

Production of water mask enables clear sky water pixel mask generation. The
function that is used to generate clear sky water pixel mask uses Band 7 (SWIR-2)
band of Landsat 8 and incorporates this analysis into water mask matrix. Returned
result is limited to binary values such that, 1 for probable cloud and 0 for not cloud
(Figure 2.23).

BT mask is generated with Band-10 (TIR-1) and Band-11 (TIR-2) bands of
Landsat-8. Final BT matrix has been returned as the simple average of two masks

calculated with two different bands (Figure 2.24).
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Figure 2.22 PCP (Left) and Water Mask (Right) results of LS8 Image
LCO8 L1TP_177035_20180402_20180416 01_T1

Figure 2.23 Clear Sky Water Mask  results of LS8 Image
LCO08 L1TP_177035_20180402_20180416 01 T1
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Figure 2.24 Brightness Temperature (Kelvin) Result of LS8 Image
LCO08 L1TP_177035_20180402_20180416 01 T1 (Axes Represent UTM Coordinates)

Generalized water temperature value is calculated by multiplying clear water mask
with BT matrix. The returned value is the 0.825" quantile of the resultant matrix. The
0.825 value has been offered by both the original and the improved algorithms (Zhu
etal., 2015; Zhu & Woodcock, 2012).

After calculating a temperature threshold for water pixels, one of the probability
analysis calculations can be performed and temperature-based cloud probability mask

for water areas based on temperature analysis has been generated. (Figure 2.25 — Left)

Before generating a final cloud mask for water areas, a second probability mask
named as brightness probability mask, based on TOA reflectance values of Band-5
(NIR) of Landsat-8, has been generated. Returned result includes values limited with
1 for probable cloud and 0 for not cloud. (Figure 2.25 — Right)
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Figure 2.25 Temperature Based Water Probability Mask (Left) and Brightness based Probability
Mask (Right) of LS8 Image LC08_L1TP_177035_20180402_20180416 01 T1

Finalized cloud mask over the water areas have been generated by incorporating
temperature-based cloud probability mask and brightness probability mask. This result

includes binary values such that 1 for probable cloud and 0 for not cloud.

In order to generate a cloud mask for the land areas too, a clear sky land pixels
mask based on PCP and initial water mask, has been generated. However, calculation
steps of this method do not just mark intersections of PCP’s 0 (false) pixels with the
water mask’s 0 (false) ones. Calculation steps also take total number of pixels
(regardless of being water or land and cloudy or clear sky) and if the number of clear
sky land pixel count of the result candidate is lower than 1% of the total number of
pixels of the raster, that result candidate is combined with the clear sky water mask,
otherwise the result candidate is returned as it is. Returned result is a binary image
(Figure 2.26 — Left).

After generating the clear sky land mask, a probability mask based on temperature
has been generated for land pixels. Calculation of this mask includes BT values that
had been defined previously and clear sky land pixels (Figure 2.26 — Right).
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Figure 2.26 Clear Sky Land Mask (Left) and Temperature Based Cloud Probability Mask (Right) of
LS8 Image LC08_L1TP_177035_20180402_20180416 01 T1

Another step to calculate is whiteness mask. Calculation of this mask includes
calculating the mean visible matrix which is the arithmetic average of RGB (Band 2,
Band 3 and Band 4 of Landsat 8) band values. After that differences between DN of

each band and the mean visible matrix are calculated and returned as result.

Generating of Cloud Mask for land areas also includes another mask named as
variability probability mask. This step utilizes Bands 3, 4, 5 and 6 of Landsat 8 and
whiteness mask. Throughout the calculation, function calculates NDVI and NDPI
(with Band 6 as SWIR) values and assigns binary values the resultant band based both
those calculations and whiteness mask (Figure 2.27— Left).

After calculating clear sky land mask, temperature mask for land pixels, whiteness
mask and variability probability mask, a second finalized cloud mask can be
generated, and that new mask will define the cloudy areas for land pixels
(Figure 2.27- Right).
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Figure 2.27 Whiteness Mask (Left) and Land Variance Mask (Right) calculations of the Cloud Mask
of LS8 Image LC08_L1TP_177035_20180402_20180416_01 T1

The final cloud mask is generated by summing finalized cloud mask covering
water areas and finalized cloud mask covering land areas and assigning 1 (cloud) or 0
(no cloud) to each pixel. This assignment is based on the result of the summation such
that every pixel with a value greater than 0 is assigned to be 1 and the ones with a
value smaller than O is assigned to be 0. Reason of the possibility of values being
greater than one when both water and land masks have values either O or 1 is a
precaution against an overlapping and having a value equal to 2. Since this final mask
is used in a deductive manner at the water border detection step, having a value equal
to 2 would result in having a value of -1 in the water border calculations. Those
possible -1 values would skew the density distribution of the final elevation-

candidates-matrix in an unpredictable and uncorrectable way.

Considering both the RGB image (Figure 2.28) and the final cloud mask
(Figure 2.29) together, it can be observed that the cloud mask algorithm overestimates
the cloud pixels when temperature distribution is skewed. Some of this overestimation
may be due to occurrence of very thin clouds that cannot be detected during human

inspection. However, it can also be observed that the algorithm performed better over
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pixels belonging to Mediterranean Sea. In the light of the algorithm’s general flow,
reason of this accuracy is sea pixels’ uniformity and that is the reason of proposing an

initial cropping with respect to a shape file covering the area of interest.

Figure 2.28 RGB image of LS8 Image LCO8_L1TP_177035_20180402_20180416_01_T1
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Figure 2.29 Final Cloud Mask of LS8 Image LC08_L1TP_177035_20180402_20180416_01 T1

2.6.2.4. Snow and Shadow Mask

In this study mTCW is used as snow and shadow mask. Tasseled Cap
Transformations had been introduced in 1976 mainly for agricultural land cover
classification (Kauth & Thomas, 1976) and derivations have been published to detect

wet areas and vegetation. (Crist, 1985)

TCWerist—rss = 0.0315 % B2 + 0.2021 * B3 + 0.3102 * B4 + 0.1594 * B5
—0.6806 * B6 — 0.6109 * B7 (11)

Although TCW method has been used as an input for water area detection
(Ouma & Tateishi, 2006), its derivatives with different coefficients have also been
utilized (Bhagat & Sonawane, 2011). A more recent study based on Australia also

stated that the original TCW,,;; coefficients yield slightly worse performance when
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it comes to detecting the water area and hence coefficient fine tuning should be
performed with respect to the study area (Fisher et al., 2016).

Considering the TCW_,;s: calculates the wetness of the surface and even the
initially equation proposed by TCW; s+ (EQn-12) was found out to be a good
indicator of snowy areas, probably due to highness of its coefficients of SWIR bands
with respect to VIS and NIR ones, a modified version of TCW,,;s: has been generated
(for details see Table 2:1) and used in this study as mTCW. Thermal bands have been
utilized in mTCW when compared to TCW,;s: t0 generate a more separated set of
values for ice and water. Resultant mTCW formula has been found to be useful for
eliminating some of the false positive water area markings due to not only ice and
snow pixels but also cloud shadow pixels.

mTCW = 0.03* B2+ 0.20 * B3+ 0.41 * B4+ 0.16 *x B5 — 0.54 « B7 — (12
0.36 * B11

Table 2:1 Band Coefficients of TCW-Crist and mTCW

Band Number (Landsat 8) TCWerist mTCW

B2 0.0315 0.03

B3 0.2021 0.20

B4 0.3102 0.41

B5 0.1594 016

B6 -0.6806 NA

B7 -0.6109 -0.54

B11 NA -0.36

X(UV] + |VIS| + |NIR|)/ 1.84 0.89

S (ISWIR| + |TIR]|)

The image (Figure 2.30 — Left) belongs to the result of AWEL.S (best model for
water level estimation over Altinkaya Dam, see Section 3.4) application over the
Landsat 8 Level 1 raster image taken at 19.02.2017  with the name of
LCO8 LITP 176031 20170219 20170301 01 TI1, covering the Altinkaya Dam

area. As it can be seen in the image (Figure 2.31) from the RGB plotting of the same
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image that the NDPI application returns both water and icy areas as black. However,
the image (Figure 2.30 — Right) indicates that the mTCW approach is more sensitive
to icy areas and combining mTCW application with NDPI application have reduced
the false positive water markings as it can be seen in the resultant image (Figure 2.32).
It should also be noted on the upper left part of the resultant image that, unless the
cloud masking is applied, the clouds’ effect on false positiveness of water detection

index results may persists through mTCW corrections.

Figure 2.30 Results of AWEI-S (Left) and mTCW (Right) Calculations of Landsat-8 Image
LCO08_L1TP_173033_20180201_20180220_01_T1
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Figure 2.31 RGB Image of Landsat-8 Image LC08_L1TP_176031_20170219_20170301_01_T1
(Image obtained from USGS)
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Figure 2.32 Resultant Image (Introduction of mTCW to Water Detection Index) of Landsat-8 Image
LC08_L1TP_176031_20170219 20170301 01 T1

2.7. Optimization of Water Level Detection Estimations
2.7.1. Optimization Method and Design Decisions

There are numerous kinds of optimization methods and their variants.
However, NMS method has been selected for optimization tasks of this study.

However, to check for the difference between a generalized method and a method that
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is tailored for a specific dam, another approach was also carried out that was based on

some of Altinkaya Dam’s data as training to model both Altinkaya and Ermenek Dam.

Initial results with the selected initial parameters have shown that the RMSE
value changes with respect to time of the year. In order to achieve better results, the
semiannual (winter and summer) variant and seasonal (winter, spring, summer and
autumn) variant were tried and results were inspected manually. This manual
inspection led the decision of using seasonal model with seasons of winter, spring,

summer and autumn.

Inspection of the initial results and division of the year into four parts also led
a requirement of four different thresholds for determining the elevation. NMS method
starts with generating at least n+1 random candidates for n number of variables.
Although division of the year into four equal parts that have their own water thresholds
and elevation quantile thresholds makes 8 parameters that require an initial pool of at
least 9 candidates, every season was independent from the others. Moreover, NMS
algorithm includes finding the centroid of the best candidates and optimizing all parts
of the year had a probability of undesired changes in unrelated parameters. Hence,
every season was considered on its own and objective function was calculated only
for the season-of-interest related data. This decision led to a result that have 3
parameters (water threshold, statistical outlier threshold and elevation quantile
threshold) that require an initial pool of 4 candidates. However, in order to have an
initial pool that has as much variety as it can, size of the initial candidate pool was set
to be equal to 100. But one of the candidates in the initial candidate pool was entered
manually with respect to inspection of the histogram and plotting would-be-detected-
water-area based on different water thresholds. Reason of this manual entry is
providing an anchorage for optimization algorithm to consider and speed up the

convergence.

Parameters with respect to water area detection methods kept constant for

different DEMSs in order to observe the differences between DEMSs under a constant
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water body marking. Step sizes for elevation quantile threshold was set to be equal to
0.025 and step size for water thresholds of different water detection indices

(Table 2:2) were set based on their initial values obtained from the histogram.

Minimum and maximum values for elevation quantile threshold were set to be
equal to 0 and 1 respectively. Whereas, minimum and maximum values for water
thresholds of water detection indices were set to be equal to minimum and maximum
values of the histogram of each index. Statistical outlier threshold is not iterated like
water area detection and water elevation detection parameters. It is hard coded in the
NMS loop that NMS could decrease the statistical outlier threshold by 0.25 after every
hundred iterations, as long as the current best model’s RMSE value is larger than 7.50
m., which is the elevation change within a Landsat pixel over the Ermenek and
Altinkaya Dams’ areas (See Section 2.41 and Section 2.4.2).

Table 2:2 Predetermined Step Sizes of Applied Water Indices

Index Name Step Size
AWEI.S 500
NDWI.MCF 0.01
NDPI 0.01
WI2015 5000

2.7.2. Initial Threshold Selection for Water Detection Indices

Each water detection index has results scattered among a range of values.
Indices, like NDPI and NDWI.MCF, that calculates ratio of bands without any
additional multiplier have result interval that is independent of radiometric resolution.
Whereas the indices that includes coefficients have results scattered among intervals
that are closely related with the radiometric resolution. Because Landsat-7, that has a
radiometric resolution of 8 bits has its pixel values scattered among interval 0-255 but
Landsat-8, which has a radiometric resolution of 16 bits has its pixel values scattered

among interval 0-65,536.This difference affects the results greatly and thresholds

55



calculated for this kind of indices for Landsat-7 raster images are useless for

Landsat 8 images.

Moreover, existing literature promotes the idea of calculating area specific
thresholds for classification indices (Avisse et al., 2017; Coltin, McMichael, Smith, &
Fong, 2016; Liu, Song, Peng, & Ye, 2012). Therefore, instead of using threshold
values that have been defined in other articles, initial definition was done manual
calibration by inspecting the histogram of the results (Figure 2.33) and initial plot
(Figure 2.34) before plotting the resultant binary image based on various threshold
candidates (Figure 2.35 and Figure 2.36).
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Figure 2.33 Histogram of NDWI.MCF Result of Ermenek Dam for Date 09.07.2013

(Y-Axis is Frequency and X-Axis is Calculated Index Values)
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Figure 2.34 Plot of NDWI.MCF Result of Ermenek Dam for Date 09.07.2013
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Figure 2.35 Result Plots of Ermenek Dam Area based on Different NDWI.MCF Thresholds

(0.16 on the Left and 0.18 on the Right)
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Figure 2.36 Result Plots of Ermenek Dam Area based on Different NDWI.MCF Thresholds

(0.10 on the Left and 0.05 on the Right)
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2.7.3. Objective Function

Error measurement has been done in terms of coefficient of correlation, mean
error, standard deviation of error and RMSE. The most viable approach would be
minimizing the RMSE while introducing the mean error as a constant to the
methodology. However, this would yield methods that are water body specific and
hence require a bigger data set than the one that had been used in this study in order

to distinguish the difference between a better model and the overfitted one.

Therefore, the objective function focused on minimizing the RMSE. Although
the initial model tried minimizing the mean error, test results also shown that even
when the mean error is minimized, there can still be worse performance in terms of
error standard deviation and RMSE. In order to prevent this problem, minimization of

absolute mean error could also be selected.

RMSE calculations that served as a basis for objective function and hence the
optimization is calculated with Egn-13. where N is count of both predicted and actual
data points, P is the results of model and A is the ground control data points that had

been obtained from DSI. All RMSE, P and A values’ units are meters.

N (p. — A4.)2
RMSE = j “1(;\, ) (13)

Interpolation has been calculated by the Eqn-14 where VP is previous value,
SOM is the count of days between the next value and 1% of that month, VN is next
value, EOM is the count of days between the previous value and 1% of the next month
and IRs is interpolated result. According to this equation if the day belonging to the
Landsat Image Date is 1, no interpolation has been done and the result belonging to

that image used directly.
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Day Of Landsat Image Date == 1 => Do Not Interpolate

IRs = VP * SOM + VN x EOM (14)
SOM + EOM + 1

2.7.4. Training and Test Data

Each optimized parameter set is then tested with local (same dam) and remote
(other dam) data. For the models that were based on both Ermenek and Altinkaya
Dams data, ground data related with respective dam between 2013 May and 2019 May
was used for optimization. Here, the use of entire time series for the calibration and
validation over the same region overfits the results, while the use of entire datasets for
calibration on one dam and implementation and validation over the other dam provides

an independent and more realistic check of the methodology.

2.8. Alternative Statistical Methods to Retrieve Water Level Estimation

NMS methodology used in this study to distinguish the water and the land also
provides an estimate for the ECDF methodology to acquire the water level estimate.
Here, the same water-land border estimate obtained from NMS methodology could be
used together with other statistical methods to obtain the water level estimate. In this
study, four alternative methods are used (GEV, mean, median, and mode) to compare
the success of different statistical approaches. Here, all statistical methods, including
ECDF, use similar masks: cloud mask, snow and shadow mask and proximity buffer
are applied to all of the alternative methods.

One alternative approach to ECDF is GEV distribution as a final step for
elevation detection. This methodology was applied over Hoover Dam’s water level

detection and have a statistical outlier detection threshold of 2.0 (Tseng et al., 2016).

Another alternative is using frequency analysis that had been used (with further

analyses) in the study about Jordan (Avisse et al., 2017). In order to apply this
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methodology, mode calculations were performed among the elevation arrays.
Additionally, median and mean values are also checked for their ability to predict

water level of the reservoir.

2.9. Used Software and Web Apps

In this study Google Earth Pro, Google Maps Web Site, USGS BDA, QGIS,
R-Studio, Microsoft Excel, 7-Zip, Notepad, Notepad++ and Firefox software was used
in addition to the USGS Earth Explorer Web Portal.

Google Earth Pro was utilized for extracting the shape files in terms of “kml”
files. Both initial area of interest shape files and the narrower, proximity-based buffer

zone shape file are drawn on Google Earth Pro and extracted as “kml” files.

USGS BDA is a software that lets user to download Landsat images in bulk.
Normally, the USGS Earth Explorer Web Portal has a limitation of 6 concurrent
downloads. This software has been officially supported and proposed by USGS.
Dependency of USGS BDA software is the installment of Java language environment.

Landsat images and DEM files have been selected by using USGS Earth
Explorer Web Portal and DEM files have been downloaded from this portal directly.

QGIS is an open source Geographic Information System (GIS) software and
its use in this study was transforming “kml” files into “shp” format in addition to the

conversion of CRS of the DEM files in a Landsat-compatible format.

R-Studio is used for utilization of R-Language in this study. All of the
computations of this study were done by using R-Language and hence either R-Studio
or R’s native terminal is essential and irreplaceable for the application of the model
described in this study. Dependency of R-Studio software is the installment of R-
Language environment. After the installation of the R-Language, those packages
should also be installed since the methods used in the study depends on them; “sp”,

2 ¢ 29 <¢

“rgdal”, “fields”, “maps”, “magic”, “raster”.
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CHAPTER 3

RESULTS AND DISCUSSION

The water level detection methodology introduced in this study relies on
estimation of water-land border first using NMS methodology, then retrieval of DEM
values at the calculated water-land border pixels, and then utilizing several different
methods (ECDF, GEV, mean, median, or mode) to obtain the water level estimate
using the DEM values at the border pixels. Below, first the optimized parameters
obtained from the NMS methodology is given, then the water-land border based
detection results are given, later the water level estimate results over Ermenek and

Altinkaya dams are given.
3.1. Optimized Parameters

Optimized parameters obtained from the NMS methodology (Section 2.7) over
Ermenek and Altinkaya Dams are provided in Table 3:1. Results of water elevation
estimates in this study are calculated by using those parameters. Although these values
can also be found by trial and error, using an optimization algorithm provides ability

to automate the process of threshold calibration.
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3.2. Water-Land Border Detection

In order not to include the start of the water retention as a model parameter and
be able to process all water bodies with the same statistical model, a design decision
has been made. According to this design decision, only the border lines (Figure 3.2)
between the water and land pixels have been considered instead of whole water area
(Figure 3.1). Border line detection has been performed with R Programming

Language’s image processing functions.

Figure 3.1 Detected Water Area of Ermenek Dam for 18/08/2016 (Green areas are land pixels)
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Figure 3.2 Detected Water Border of Ermenek Dam for 18/08/2016

Once the water-land border is retrieved via NMS methodology, the actual
water level estimates of the dam can be obtained via five different methodologies (i.e.,
ECDF, GEV, mean, median, or mode). or via simple statistics using the histograms
of the DEM values of the water-land border pixels. Even though the water-land border
detection from NMS methodology is used in both NMS-based and simple statistic-
based water level estimates, their performances change as these different

methodologies utilize the histogram of the water-land border DEM differently.

3.3. Ermenek Dam Estimations

Error statistics (bias, standard deviation and RMSE) and correlation
coefficients for the water level estimates over Ermenek dam are given in
Tables 3.2 — 3.5 below. In these tables, the best results for the local (Ermenek Dam)
training data is shown in blue while the remote (Altinkaya Dam) training data is shown
in purple. There are total 80 experiments (2 training datasets * 4 indices * 2 DEM * 5

Statistical Methodologies). Experiments are named as “Training-Indices-DEM-Test
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Location” where “Training” refers to local/remote training case (i.e., Ermenek or
Altinkaya dam), “Indices” refer to each utilized index name (AWEI, NDPI, NDWI, or
WI2015), “DEM” refer to the utilized DEM image (ASTER or SRTM), and “Test
Location” refers to the site where the water elevation errors are calculated (“E” for
Ermenek or “A” for Altinkaya). For example, “ErmT-AWEI_S-SRTM-A” refers to
the experiment utilizes Ermenek dam values to find the necessary parameters in NMS
optimization, AWEI index, and SRTM DEM where the evaluations are validated over
Altinkaya dam. Here, if the selected index (e.g., AWEI) has variants in literature, then
the variant is defined with another substring separated by an underscore. For example,
for the AWEI index shadow sensitive variant (AWEI_S) is used and for the NDWI
index McFeeter’s variation (NDWI_MCF) is used.

Water level estimation error averages (i.e., zero mean error is regarded as
unbiased) for 16 tested experiments belonging to ECDF statistical approach are shown
in Table 3.2. Among the tested experiments, WI2015 index & ASTER DEM
combination provided best results among the local models (0.31 m average error) and
WI2015 index & SRTM DEM provided best results among the remote models
(0.18 m average error). Overall, experiments utilized SRTM DEM vyield smaller water
level estimation bias than the ones utilized ASTER DEM. Additionally, local training
outperforms remote training in terms of average water level error (0.65 m and -1.97
m for the water level average errors of local and remote training respectively). Overall,
different months yield different bias values depending on the selected index, training
dataset and DEM values (Table 3.2, Figure 3.5 and Figure 3.6). This may be
researched with a larger dataset to check whether those differences can be utilized for

decreasing RMSE values.

Water level estimation error standard deviations for 16 tested experiments
belonging to ECDF are shown in Table 3.3. Among the tested experiments, AWEI_S
& ASTER DEM combination provided best results (3.43 m error standard deviation)
among the local models and NDPI & ASTER DEM among the remote models (5.31
m error standard deviation). Overall, experiments utilized ASTER DEM vyield slightly

65



smaller water level estimation error standard deviation than the ones utilized SRTM
DEM. Similar to the error average results, local training outperforms remote training
in terms of water level estimation error standard deviation (on average 4.85 m and
8.52 m for the water level average errors of local and remote training respectively).
Additionally, summer months (particularly July — September) yield smaller water
level estimation error standard deviation (on average ~1.80 m) than winter months (on
average > 5.0 m) regardless from the index, training location, and DEM selection
(Table 3.3).

Water level estimation RMSE for 16 tested experiments belonging to ECDF
are shown in Table 3.4. Among the tested experiments, NDPI & SRTM DEM
combination provided best results (3.63 m RMSE) among the local models and
NDPI & SRTM DEM among the remote models (5.13 m RMSE). Differences between
remote and local training in terms of RMSE, error mean and error standard deviation
values are understandable since parameter optimization is performed with one set of
dam data and then applied to another dam. This enables local models (trained with
data of dam of interest) to perform better than remote models. Overall, experiments
utilized ASTER DEM yield marginally smaller RMSE than the ones utilized SRTM
DEM. Similar to the error average and standard deviation results, local training clearly
outperforms remote training in terms of water level estimation RMSE (on average
5.01 m and 9.51 m for the water level average errors of local and remote training
respectively). Again, similar to water level estimation error averages, summer months
(particularly July — August) yield smaller water level estimation error standard
deviation (on average ~2.85 m) than winter months (on average ~8.0 m) regardless

from the index, training location, and DEM selection (Table 3.4).

The linear relationship (i.e., correlation coefficient) between the monthly
remotely sensed water level estimation and ground observations are given in
Table 3.5. Overall, all local estimates are statistically significant considering the 0.26
threshold with respect to Fisher’s Test. Among the experiments, ASTER DEM adds

higher linear predictive capability (i.e., average correlation coefficient of 0.59) than
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SRTM (i.e., average correlation coefficient of 0.48), while local training estimates
clearly yield much better predictions (i.e., average correlation coefficient of 0.65) than

remote training estimates (i.e., average correlation coefficient of 0.43).

Time series of the most successful model for water level estimation of
Ermenek Dam is provided Figure 3.3 in and its scatter plot versus ground data is
provided in Figure 3.4. Overall, the remote sensing-base estimations accurately
estimate the timing of increasing and decreasing trends even though there are some
large errors such as November 2017. Reason of error happened in November 2017 can
be explained by looking into the details of that estimation. November 2017 estimation
was calculated by interpolating two Landsat 8 images with dates of 24.10.2017 and
09.11.2017. Calculated water levels for these two dates are calculated as 659.58 m and
686.91 m, while the ground data is measured as 682.10 m at 01.11.2017. These
findings indicate that the source of error is the water level calculation over the
24.10.2017 image. Further inspection shown that the main reason is the amount of
cloud cover over the image, reservoir is almost invisible (Figure 3.7). Whereas an
image belonging to a successful data estimation point show that the water area

detection functions as expected (
Figure 3.8).

Comparison between the best models of each statistical approaches (ECDF,
GEV, mean, mode and median) is provided in Table 3:6. Both best models for local
trained and remote trained approaches are provided for ECDF and as can be observed
from the table, best model for water elevation detection is local trained ECDF based
approach. Detailed comparison for a selected date (01.03.2017) is provided in
Figure 3.11. Where red line (674.29 m) is the result of best local trained model based
on ECDF approach (NDPI + SRTM), green line (674.25 m) is the ground data, brown
line (673.17 m) is the result of best remote trained model based on ECDF approach
(NDPI + SRTM), magenta line (668.50 m) is the result of best median approach, light
blue line (667.54 m) is the result of best mean approach, dark blue line (657.45 m) is
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the result of best mode approach and the orange line (662.96 m) is the result of best

GEV approach.
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ERMENEK TRAINED [LOCAL] ESTIMATION (ERMENEK DAM)
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Figure 3.5 Average Statistics of Local Models © Results over Ermenek Dam
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Table 3:5 Correlation Coefficient of Ermenek Dam Models

Coefficient of

Correlation
ErmT-AWEI_S-ASTER-E 0.77
ErmT-NDPI-ASTER-E 0.74
ErmT-NDWI_MCF-ASTER-E 0.63
ErmT-WI12015-ASTER-E 0.78
ErmT-AWEI_S-SRTM-E 0.64
ErmT-NDPI-SRTM-E 0.77
ErmT-NDWI_MCF-SRTM-E 0.44
ErmT-WI12015-SRTM-E 0.44
AltT-AWEI_S-ASTER-E 0.51
AltT-NDPI-ASTER-E 0.60
AltT-NDWI_MCF-ASTER-E 0.27
AltT-WI12015-ASTER-E 0.43
AltT-AWEI_S-SRTM-E 0.31
AltT-NDPI-SRTM-E 0.20
AltT-NDWI_MCF-SRTM-E 0.61
AltT-WI12015-SRTM-E 0.48
MEAN-ASTER 0.59
MEAN-SRTM 0.48
MEAN-LOCAL 0.65
MEAN-REMOTE 0.43
MEAN-ALL 0.54
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Figure 3.7 Water Area Detection based on NDPI Index over Ermenek Dam, Before Masking

Figure 3.8 Water Area Detection based on NDPI Index over Ermenek Dam, Before Masking
(15.07.2017)
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3.4. Altinkaya Dam Estimations

Error statistics (bias, standard deviation and RMSE) and correlation
coefficients for the water level estimates over Altinkaya dam are given in
Table 3:7, Table 3:8, Table 3:9 and Table 3:10 below. In these tables, the best results
for the local (Altinkaya Dam) training data is shown in blue while the remote
(Ermenek Dam) training data is shown in purple. There are total 80 experiments (2
training datasets * 4 indices * 2 DEM * 5 Statistical Methodologies). Experiments are
named as “Training-Indices-DEM-Test Location” where “Training” refers to
local/remote training case (i.e., Ermenek or Altinkaya dam), “Indices” refer to each
utilized index name (AWEI, NDPI, NDWI, or WI2015), “DEM” refer to the utilized
DEM image (ASTER or SRTM), and “Test Location” refers to the site where the water
elevation errors are calculated (“E” for Ermenek or “A” for Altinkaya). For example,
“ErmT-AWEI_S-SRTM-A” refers to the experiment utilizes Ermenek dam values to
find the necessary parameters in NMS optimization, AWEI index, and SRTM where
the evaluations are validated over Altinkaya dam. Here, if the selected index (e.g.,
AWEI) has variants in literature, then the variant is defined with another substring
separated by an underscore. For example, for the AWEI index shadow sensitive
variant (AWEI S) is used and for the NDWI index McFeeter’s variation
(NDWI_MCEF) is used.

Water level estimation error averages (i.e., zero mean error is regarded as
unbiased) for 16 tested experiments belonging to ECDF statistical approach are shown
in Table 3:7. Among the tested experiments, NDPI index & ASTER DEM and
combination provided best results among the local models (-0.01 m average error) and
WI2015 index & SRTM DEM provided best results among the remote models
(-1.58 m average error). Overall, experiments utilized SRTM DEM vyield smaller
water level estimation bias than the ones utilized ASTER DEM. Additionally, local
training clearly outperforms remote training in terms of average water level error
(0.09 m and 2.84 m for the water level average errors of local and remote training

respectively). Overall, autumn months (particularly September and October) and July
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yield smaller water level estimation bias (~0.75 m error bias) than spring months (~2.5
m error bias) regardless from the index, training location, and DEM selection (Figure
3.12 and Figure 3.13). The best month in terms of bias is October with local training
(0.27 m of bias).

Water level estimation error standard deviations for 16 tested experiments
belonging to ECDF are shown in Table 3:8. Among the tested experiments, AWEI-S
& ASTER DEM combination (just as the case of Ermenek Dam’s water level
estimation) provided best results (3.33 m error standard deviation) among the local
models and NDPI & SRTM DEM among the remote models (3.84 m error standard
deviation). Overall, experiments utilized ASTER DEM yield marginally smaller water
level estimation error standard deviation than the ones utilized SRTM DEM. Similar
to the error average results, local training is better than remote training in terms of
water level estimation error standard deviation (on average 4.67 m and 4.97 m for the
water level average errors of local and remote training respectively). The best month
in terms of error standard deviation is a summer month, August (Error standard

deviation of 2.52 m).

Water level estimation RMSE for 16 tested experiments belonging to ECDF
are shown in Table 3:9. Among the tested experiments, AWEI_S & ASTER DEM
combination provided best results (3.34 m RMSE) among the local models and
AWEI_S & ASTER DEM among the remote models (5.09 m RMSE). Overall,
experiments utilized SRTM DEM yield marginally smaller RMSE than the ones
utilized ASTER DEM. Similar to the error average and standard deviation results,
local training clearly outperforms remote training in terms of water level estimation
RMSE (on average 4.65 m and 5.93 m for the water level average errors of local and
remote training respectively). Overall, the best month in terms of RMSE is a summer
month, August (RMSE of 3.38 m).

The linear relationship (i.e., correlation coefficient) between the monthly

remotely sensed water level estimation and ground observations are given in
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Table 3:10. Overall, all local and remote estimates are statistically significant
considering the 0.26 threshold with respect to Fisher’s Test. Among the experiments,
ASTER DEM adds slightly higher linear predictive capability (i.e., average
correlation coefficient of 0.53) than SRTM (i.e., average correlation coefficient of
0.49), while local training estimates yield much better predictions (i.e., average
correlation coefficient of 0.54) than remote training estimates (i.e., average correlation
coefficient of 0.48).

Time series of the most successful model for water level estimation of
Altinkaya Dam is provided in Figure 3.10 in and its scatter plot versus ground data is
provided in Figure 3.11. Overall, the remote sensing-base estimations accurately
estimate the timing of increasing and decreasing trends. Higher error in 01.01.2019
estimation is due to lack of processable image for December 2018 and increased

duration for interpolation.

Comparison between the best models of each statistical approaches (ECDF,
GEV, mean, mode and median) is provided in Table 3:11. Both best models for local
trained and remote trained approaches are provided for ECDF and as can be observed
from the table, best model for water elevation detection is local trained ECDF based
approach. Detailed comparison for a selected date (01.03.2017) is provided in
Figure 3.14. Where red line (180.15 m) is the result of best local trained model based
on ECDF approach (AWEI_S + ASTER), green line (179.67 m) is the ground data,
brown line (182.68 m) is the result of best remote trained model based on ECDF
approach (AWEI_S + SRTM), magenta line (169.95 m) is the result of best median
approach, light blue line (168.97 m) is the result of best mean approach, dark blue line
(160.0 m) is the result of best mode approach and the orange line (170.97 m) is the
result of best GEV approach.
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Table 3:10 Correlation Coefficient of Altinkaya Dam Models

Coefficient of

Correlation
AltT-AWEI_S-ASTER-A 0.70
AltT-NDPI-ASTER-A 0.54
AltT-NDWI_MCF-ASTER-A 0.48
AltT-WI2015-ASTER-A 0.54
AltT-AWEI_S-SRTM-A 0.51
AltT-NDPI-SRTM-A 0.61
AItT-NDWI_MCF-SRTM-A 0.49
AltT-WI2015-SRTM-A 0.47
ErmT-AWEI_S-ASTER-A 0.56
ErmT-NDPI-ASTER-A 0.55
ErmT-NDWI_MCF-ASTER-A 0.38
ErmT-WI2015-ASTER-A 0.50
ErmT-AWEI_S-SRTM-A 0.48
ErmT-NDPI-SRTM-A 0.66
ErmT-NDWI_MCF-SRTM-A 0.26
ErmT-WI2015-SRTM-A 0.42
MEAN-ASTER 0.53
MEAN-SRTM 0.49
MEAN-LOCAL 0.54
MEAN-REMOTE 0.48
MEAN-ALL 0.51
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CHAPTER 4

SUMMARY AND CONCLUSION

In this study, Landsat 8 images are used to estimate the water levels of
Ermenek and Altinkaya dam reservoirs between May 2013 and May 2019. Total
around 269 images are used for both dams. Water levels estimations based on 16-day
periods are performed using remote sensing datasets and validated using monthly DSI
observations. Estimation errors (i.e., performances) of four different indices, 2
different DEM images, and 2 different training datasets and 5 different statistical

modelling approaches are studied.

On average, the water level estimate RMSE values are found as 3.63 m and
3.34 m over Ermenek and Altinkaya dams, respectively, while correlation coefficient
values of the best models are found as 0.78 and 0.77 over Ermenek and Altinkaya
dams, respectively. Even though these statistics imply the estimates are reasonable,
there still exists room for improvements. Bias could be very easily eliminated in case
ground observations of the region of interest could be found; elimination of bias would

also reduce the RMSE to the levels of error standard deviation values.

Average slope over the Ermenek Dam is calculated as 14.99 degrees when
ASTER DEM is utilized and 14.54 degrees when SRTM DEM is utilized. Considering
the spatial resolution of a Landsat pixel is 30 m (Department of the Interior U.S.
Geological Survey, 2019), this slope implies there is elevation difference of 7.53 or
7.79 m (for SRTM or ASTER, respectively) within a single Landsat pixel. Around the
land-water borders, if half of the Landsat pixel contains water and the other half
contains land, then on average ~1.9 m (quarter of 7.53 or 7.79) error will occur
regardless from the classification of this pixel as water or land. While 1.9m error is

the upper limit for the errors for the land-water mixed pixels, steep slopes behave as
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source of added uncertainty in the water elevation level estimation where the land-
water border does not generally overlap with the Landsat pixel border. Considering
this upper limit, the RMSE value of 3.63 m for the NDPI & SRTM combination is a
reasonable accuracy, implying the model performance can be considered as useful.
Although Landsat has the advantage of large historical data availability, same model
can be applied to Sentinel platform which has spatial resolution of 10m (ESA, n.d.-d);
however, an independent parameter tuning step is necessary for this implementation
as the spectral windows of Landsat 8 and Sentinel images are different. Accordingly,
above mentioned spatial resolution-based error is expected to decrease when 10m
resolution Sentinel images are used (i.e., for a product with 10m spatial resolution this

added error upper limit becomes about 0.60 m).

Overall, the error statistics show a strong seasonality that errors are lower
during the summer months than winter months over both Ermenek dam (Figures 3.3
and 3.4) and Altinkaya dam (Figures 3.10 and 3.11). The reason for this behavior is
probably due to the fact that the summer months are less cloudy than the winter
months, where the haze of thin cloud layers contribute considerably to the errors of
the estimated water levels. Moreover, it should also be noted that ice and snow cover
increase in winter months. In addition to these, April is a special month for Ermenek
Dam since it has higher RMSE values than the months before and after it. Reason of
this can be explained with the limnology report of the Ermenek Dam that concludes
that, due to melting of snow cover, algae population increases in April (Cevlik, 2013)

and this affects the results of Green Band of Landsat 8.

Overall, DEM dataset source (i.e., ASTER or SRTM) selection does not make
a consistent impact over the water level estimation errors; some estimates benefit from
ASTER images better than SRTM and some vice versa. Hence, it is not possible to
make a general conclusion about the added utility of the DEM images used in this
study. On the other hand, among the four indices used in this study, NDPI performed
marginally better than other indices over Ermenek dam, while AWEI_S performed

better than other indices over Altinkaya dam.
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On the other hand, DEM rasters have zero valued pixels for existing water
bodies that persist throughout the production of the DEM model. In addition to this,
SRTM also have problems for mountainous areas. In order to cope with these
problems an old topographic map is incorporated with DEMs but a bathymetry model
based on Hyperion images may be developed and utilized too.

About the different between the local and the remote training data selection,
models based on local training data are found to be much better (i.e., smaller error
average, standard deviation, and RMSE). Among the error statistics, the error average
could be handled by adding/removing a constant in case ground observations are
available for a limited time period. However, the random errors occur in time and
contribute to the error standard deviation cannot be handled as easy as the error
averages. For practical point of view, the temporal variability of the water level
estimates is more important; accordingly, the local training also considerably reduce
the error standard deviations. Therefore, consistent with the existing literature, it is
advised that water level estimation models should be trained for each dam of interest
with its own historical data.

Another source of error is conflict between the data periods provided by
governmental institutions and Landsat’s temporal resolution. DSI observations are
representative for the beginning of each month, while Landsat 8 images are only
available biweekly and are available on various days of the month. This conflict
required this research to utilize a linear interpolation method based on inverse weights
assigned with respect to the number of days between the image acquisition date and
governmental data measurement date. Alternatively, MODIS images could be also
utilized to reduce the errors added via such linear interpolation. Even though MODIS
image have much lower spatial resolution (500m) than Landsat 8 image spatial
resolution (30m), some algorithms can be used to fill in the temporal gap between the
Landsat images via using MODIS datasets (F. Gao, Masek, Schwaller, & Hall, 2006).
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This study should be extended using higher resolution satellite images (i.e.
Sentinel) over various locations including more lakes and dams (i.e., entire Turkey),
perhaps using much longer datasets (i.e., using entire Landsat archive), where the

training should be carried out using local datasets if available.
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APPENDICES

A. Results Other Statistical Models

Results of GEV Application:

Water Index GEV+SRTM (Ermenek)

i o RMSE i o RMSE
AllMonths 2366 1146 2625 All Months -23.85 12.56 2691
Combined Combined
Month Month
Based Based
January  -23.92 455 2428 Jamwary  -19.97 771 21.17
February -2386 746 24 81 February -18.09 8.04 1952
March -1942 1059 2169 March 2285 781 2393
April -3249 1760 3625 April -3832 18.70 4195
May -2419 1035 2590 May 2207 540 2260
June <2391 595 2452 June -2363 249 2374
July -1850 8.06 1991 July -24 96 1531 2861
Auvgust -1999 §.07 2131 Auvgust -2233 676 2317
September -22.01 1352 2524 September -27.69 1431 30.62
October -17.56 6.48 18.53 October -17.23 578 18.02
November -24.24 338 2444 November -19.75 5.01 20.28
December -33.88 22.71 39.71 December -2899 2571 37.30
MODEL INFO MODEL INFO

Water Index GEV+ASTER (Ermenek)

Water Index GEV+SRTM (Altinkaya)

039

Correlation
Coefficient

Correlation 0.16 Correlation 0.08
Coefficient Coefficient
L o RMSE L o RMSE
All Months -11.60 7.82 1396 All Months -11.18 7.39 1337
Combined Combined
Month Month
Based Based
January -7T46 682 9.72 January -7.55 637 9.53
February 993 6.79 11.70 February 962 643 11.27
March -1439 1422 19.38 March -13.48 1332 18.16
Apnl -7.25 405 8.14 Apnl -699 343 7.66
May -11.42 344 11.85 May 989 497 10.90
June -B68 582 1022 June 831 532 975
July -12.66 478 13 .40 July -12.82 435 1342
August  -1668 599 17.53 August  -1568 364 16.03
September -12.03 380 1252 September -11.77 433 1242
October -1563 991 1797 October -1502 872 16.92
November -13.56 1183 1733 November -13.72 11.81 1745
December -1075 999 14.10 December -1059 928 13.56
MODEL INFO MODEL INFO

Water Index GEV+ASTER (Altinkaya)

0.40

Correlation
Coefficient
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Ermenek Trained Mean Approach Over Altinkaya Dam with ASTER DEM:

u o RMSE u o RMSE
AllMonths  -15.08 978 1793 | AllMonths -1053 724 1273
Combined Combined
Month Based Month Based
January -11.35 842 1388 January 1165 421 1227
February -1409 761 1370 February 9058 769 1187
March -15.86 10.01 1830 March -1042 430 11.13
Apnl -19.27 11.12 21.78 Apnl 507 550 713
May -836 366 902 May 671 607 875
June -17.01 1941 2475 June 335 475 553
July -16.49 860 1826 Tuly -1803 11.13 2070
Aungust -2033 432 2071 August 1160 427 1224
September  -1429 718 1572 | September -1263 691 1412
October -1534 11.19 1831 October -11.02 557 1209
November -1437 893 1632 | November -1064 303 1099
December -14.79 943 1712 | December -1764 826 1918
MODEL INFO MODEL INFO
Water Index AWELS Water Index NDPI
Correlation 0.22 Correlation .49
Coefficient Coefficient
T o EMSE T o EMSE
AllMonths  -13.73 952 1667 | AllMonths -1346 811 1569
Combined Combined
Month Based Month Based
January 358 786 80 January -11.18 674 1276
February 028 875 1224 February 954 804 1203
March -803 890 1142 March 953 855 1232
April 1711 513 1774 April 1542 496 1608
May 1217 362 1262 May 1143 410 1203
June -1598 1288 1994 June -1486 1336 1934
July -1514 666 1631 July -1586 815 1752
August -1216 709 1378 August 1331 513 1411
September  -16.70 995 1901 | September -1532 952 1761
October 2033 741 2158 October -1715 918 1902
November -18.14 641 1906 | November -1637 1067 19.04
December  -17.00 1610 2247 | December -1233 693 1385
MODEL INFO MODEL INFO
Water Index NDWILMCF Water Index WI2013
Correlation 011 Correlation 0.29
Coefficient Coefficient
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Ermenek Trained Mean Approach Over Altinkaya Dam with SRTM DEM:

u G EMSE u G EMSE
All Months -16.48 10.28 1939 | All Months -11.35 732 1348
Combined Combined
Month Month
Based Based
January -1323 894 15.55 January -1298 416 1352
February  -16.40 717 17.66 February -11.19 7.35 13.05
March -17.32 10,77 19.92 March -10.71 411 11.35
Apnl -20.77 1141 2323 April -5.51 521 7.28
May -9.10 424 991 May -841 455 941
June -1855 2087 26.79 June -327 538 5.96
July -17.24 9.23 19.18 July -18.71 12.17 21.76
August -20.81 436 21.19 August -11.90 441 12.57
September -15.84 7.02 17.09 | September -13.68 6.56 1494
October -16.82 12.07 19.99 October -11.92 6.10 13.11
November -13.88 979 18.22 | November -11.12 257 11.37
December -16.80 961 1895 | December -1873 797 20.09
MODEL INFO MODEL INFO
Water Index AWELS Water Index NDPI
Correlation 0.22 Correlation 0.52
Coefficient Coefficient
u T BMSE u T BMSE
All Months  -15.30 9588 18.18 | All Months -15.00 877 17.35
Combined Combined
Month Month
Based Based
January -4 81 6.30 7.49 January -13.47 6.24 14.63
February  -11.39 842 13.74 February -12.13 8.16 1423
March 944 8.70 1233 March -10.94 929 1384
Apnl -19.05 5.59 19.72 April -17.34 5972 18.11
May -1333 440 1394 May -12.18 463 1292
June -18.04 1478 2264 June -16.46 15.19 2165
Tuly -16.17 712 17.43 Tuly -16.76 8.74 18.56
August -12.90 788 1478 August -13 88 5.38 14.72
September -18.64 9589 20.71 | September -17.35 931 1932
October -22.50 847 2374 October -18.32 959 2035
November -19.74 682 2070 | November -18.04 12.01 21.11
December -18.69 15.90 2366 | December -1396 8.81 16.11
MODEL INFO MODEL INFO
Water Index NDWIMCE Water Index WI2015
Correlation 0.13 Correlation 0.29
Coefficient Coefficient
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Ermenek Trained Mode Approach Over Altinkaya Dam with ASTER DEM:

u o EMSE u o EMSE
All Months  -8.10 11.62 1410 | All Months -7.92 8.03 11.24
Combined Combined
Month Month
Based Based
January -3.59 5.05 5.84 January -0 88 6.98 11.76
February -4.00 6.93 7.48 February  -1346 1737 20.80
March 1126 12.63 16.11 March -13.19 3.20 1351
April -11.58 1468 17.71 April -2.47 4.78 5.01
May -4.95 5.24 6.93 May -1.63 4.69 4.64
June 1726 2742 30.70 June -2.50 3.10 381
July -7.64 5.42 911 July -7.50 5.26 8.90
August -7.38 5.02 §.68 August -7.23 9.28 11.14
September  -10.88 11.63 1520 | September  -6.61 4 89 798
October -3.87 5.73 6.42 October -12.63 5.78 13.65
November  -8.00 6.85 10.16 | November 97 5391 11.11
December  -5.09 7.58 8.59 December -10.94 7.84 13.07
MODEL INFO MODEL INFO
Water Index AWELS Water Index NDPI
Correlation 0.17 Correlation 0.49
Coefficient Coefficient
u a EMSE T o BEMSE
All Months  -8.40 961 12.71 | All Months -5.29 7.59 921
Combined Combined
Month Month
Based Based
January -4.03 991 991 January -3.19 7.76 7.7
February -6.55 8.55 10.19 February -0.56 4.27 393
March -8.24 7.10 10.48 March -6.12 731 905
Aprnl -9.96 12.01 14.81 April -9.21 11.07 13.67
May -5.63 6.56 828 May -3.75 4 46 558
June -3.64 5.02 5.90 June -5.27 6.48 7.99
Tuly -4.51 3.16 6.52 Tuly -4.41 351 6.69
August -12.33 .78 15.22 August -7.08 5.13 8.49
September -10.81 13.51 1640 | September -972 15.44 17.13
October -12.29  16.89 19.47 October -3.87 5.73 6.42
November -11.77 5.96 12.97 | November -7.66 5.77 930
December -12.93 12.01 16.95 | December -2.67 6.75 6.71
MODEL INFO MODEL INFO
Water Index NDWILMCFE Water Index WI2013
Correlation 031 Correlation 0.25
Coefficient Coefficient
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Ermenek Trained Mode Approach Over Altinkaya Dam with SRTM DEM:

n G RMSE n G RMSE
All Months  -15.14 1338 20.14 | All Months  -11.73 837 1438
Combined Combined
Month Month
Based Based
January -13.31 9.06 1567 January -1335 5.57 14.29
February -8.96 8.23 11.70 February -1728 14 42 21.72
March -15.53 12.99 1954 March -12 85 361 13.27
Apnl -16.88 11.47 19 86 Apnl -592 3.24 6.61
May -10.64 480 11.53 May -4 B7 6.76 7.93
Tune -1839  26.76 30.86 June -335 441 5.28
July -11.39 843 13.74 July -1421 891 1638
August -14.10 6.68 1536 August -13.55 782 1532
September -13.17 11.48 16.83 | September -12.97 6.54 1428
October -9 82 5.24 10.89 October -14.14 6.70 1536
November -25.73 18.03 3054 | November -14.37 .66 16.57
December -23.06 16.97 27.78 | December -16.66 832 18.31
MODEL INFO MODEL INFO
Water Index AWELS Water Index NDPI
Correlation 017 Correlation 0.55
Coefficient Coefficient
W T RMSE W a RMSE
All Months  -15.23 13.87 2054 | All Months -12 82 10.58 16.58
Combined Combined
Month Month
Based Based
January -6.24 10.80 11.67 January -11.15 6.04 12.44
February  -11.89 13.25 16.97 February -5.46 7.60 8.83
March -10.46 540 11.57 March -8.58 849 11.56
Apnl -1831 22.24 27.34 Apnl -15.12 7.65 16.65
May -10.02 531 11.16 May -11.95 5.97 1316
Tune -2202 2372 31.10 June 2172 2384 3097
July -1328 449 13.90 July -12.54 336 12.90
August -12.76 8.74 15.05 August -12.58 711 14.16
September  -17.07 12.08 2032 | September -14.68 1494 20.04
October -20.65 17.86 26.11 October -12.32 6.97 1381
November -21.76 11.06 2399 | November -1427 3.94 14.72
December -18.96 16.16 24.03 | December -12.09 10.29 1531
MODEL INFO MODEL INFO
Water Index NDWIMCFE Water Index WI2015
Correlation 0.20 Correlation 0.35
Coefficient Coefficient
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Ermenek Trained Median Approach Over Altinkaya Dam with ASTER DEM:

uw g RMSE u o BRMGSE
All Months  -13.73 1028 1711 | AllMonths -943 486 1163
Combined Combined
Month Based Month Based
January -1035 784 1259 January 1100 336 1142
February -1335 671 1468 February 912 860 1203
March 1377 1008 16.56 March 973 5306 1077
April -1738 1164 2038 April 440 546 664
May 682 375 T66 May 543 623 792
June -17.07 2173 2638 June -2.55 442 482
July -1588 B89 17383 July -1482 993 1738
August -18.07 569 1880 August 924 344 976
September  -12.86 680 1428 | September -11.19 673 1276
October -1360 1305 1792 October -1064 484 1149
November -1283 904 1525 | November -1064 293 1097
December -1333 B79 1556 | December -lod4d 774 1790
MODEL INFO MODEL INFO
Water Index AWELS Water Index NDPI
Correlation 0.22 Correlation 0.54
Coefficient Coefficient
1 g ERMSE i o BRMSE
Al Months 1274 885 1547 | AllMonths -1232 814 1474
Combined Combined
Month Based Month Based
January 334 720 737 January 987 643 1149
February -898 792 1133 February -8.12 658 1010
March -716 812 1031 March 133 7684 1012
Apnl -1587 493 1649 Aprl -14 87 489 1553
May -1096 446 11.72 May -1045 483 1137
June -1489 1245 18.83 June 1405 13.02 1831
July -13.15 718 1467 July -1423 9219 16352
August -11.57 730 1335 August -1183 619 1311
September  -1592 930 1804 | September -1471 884 1678
October -1838 782 1967 October -1583 1103 18635
November  -17.67 512 1828 November -1540 1024 18.01
December -15.84 1328 1994 | December -11.75 6532 1318
MODEL INFO MODEL INFO
Water Index NDWIMCF Water Index WI2015
Correlation 0.19 Correlation 0.32
Coefficient Coefficient
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Ermenek Trained Median Approach Over Altinkaya Dam with SRTM DEM:

u G EMSE u G EMSE
All Months  -15.35 10.99 18.84 | All Months -10.36 7.09 12.33
Combined Combined
Month Month
Based Based
January -11.89 8.685 1427 January -12.42 348 12.82
February  -13.78 .76 17.30 February -10.74 8.37 13.28
March -13.79 11.22 18.82 March -1025 438 11.07
Apnl -18.76 11.76 2161 Aprnil -5.15 536 7.10
May -7.83 398 .65 May -7.58 438 8.60
June -19.12 2366 29.07 June -2.32 521 5.36
July -16.52 952 18.67 July -1598 1141 19.08
August -18.79 5.22 1938 August -9.47 337 9.96
September -14.41 745 1593 | September -12.11 7.50 1391
October -15.48 1335 19.55 October -11.46 5.88 1261
November -1492 9.94 1746 | November -11.03 2.52 11.27
December -1558 948 1782 | December -17.84 7.08 18.97
MODEL INFO MODEL INFO
Water Index AWEILS Water Index NDPI
Correlation 0.20 Correlation 0.55
Coefficient Coefficient
u a RMSE U T BRMSE
All Months  -13.97 9.a7 16.96 | All Months -13.84 913 16.54
Combined Combined
Month Month
Based Based
January -3.55 6.86 719 January -11.67 7.02 1331
February  -10.10 8.07 12.51 February -1026 8.18 12.69
March -8.01 875 11.31 March -9.65 .39 12.43
Apnl -17.19 5.53 17.92 Aprnil -17.20 581 18.00
May -11.94 431 12.59 May -10.97 4 66 11.79
June -16.47 14 48 21.24 June -15.68 1511 21.01
July -14.30 718 15.73 July -1543 957 17.73
August -12.02 6.96 13.60 August -12.45 6.01 13.60
September -17.40 9.82 1958 | September -16.00 990 1838
October -20.90 945 22.55 October -17.42 11.54 2025
November -19.43 6.28 2026 | November -1721 11.79 2030
December -1742 14 .55 2190 | December -1286 973 1563
MODEL INFO MODEL INFO
Water Index NDWIMCE Water Index WI2015
Correlation 0.19 Correlation 0.30
Coefficient Coefficient

111




Ermenek Trained Mean Approach Over Ermenek Dam with ASTER DEM:

u G EMSE u o EMSE
All Months -18.39 15.09 23.72 | All Months  -25.50 14.74 2940
Combined Combined
Month Month
Based Based
January 2580 2298 3326 January -23.58 1597 2773
February  -11.96 8.35 1428 February -16.86 10.10 19.22
March 2098 2518 31.11 March -17.90 5.66 18.63
Apnl -25.55 16.63 2072 Apnl -3866 2410 44 48
May -17.36 6.66 1835 May -26.18 919 2744
June -25.17 14.12 28.28 June -3798 17.09 41.06
July -23.72 841 2493 July -28.49 7.98 2941
August -23 66 6.01 2429 August 2765 10.24 2919
September  -14.07 1432 1921 | September -1431 8.73 16.37
October -9.29 5.59 10.60 October 2413 11.82 2643
November  -7.81 223 8.07 November -26.77 11.10 2862
December -1508 2269 2562 | December -2363 2166 3081
MODEL INFO MODEL INFO
Water Index AWEILS Water Index NDPI
Correlation 0.02 Correlation 0.08
Coefficient Coefficient
1l 9] EMSE 1l a EMSE
All Months  -29.03 18.53 3437 | All Months -18.77 16.63 25.00
Combined Combined
Month Month
Based Based
January -34.92 17.59 3843 January -16.94 17.75 2372
February  -29.07 15.20 3221 February -18.31 17.93 24 56
March -2953 2404 36.79 March -2542 2155 3214
Apnl -34 .32 19.65 38.72 Apnl -32.17 17.97 3612
May -20.18 561 20.80 May -19.74 14.62 2345
June 4670 2468 51.85 June -3095 2050 36.16
July -31.75 16.87 3528 July -8.16 435 9.07
August -2829 417 2855 August -11.00 7.51 1296
September -12.18 6.72 1364 | September -826 942 1192
October -19.51 1742 2517 October -10.80 947 13.83
November -22.19 19.64 2853 | November -1568 14 98 20.80
December -3824 2205 4322 | December -2333 2308 31.15
MODEL INFO MODEL INFO
Water Index NDWIMCFE Water Index WI2015
Correlation -0.12 Correlation 011
Coefficient Coefficient
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Ermenek Trained Mean Approach Over Ermenek Dam with SRTM DEM:

u o REMSE u a REMSE
AllMonths  -10.75 1471 18.14 | All Months -1590 14.08 21.17
Combined Combined
Month Month
Based Based
January -2034 2381 2977 January -16.13 1636 2198
February -4.51 6.78 7.66 February -9.32 964 12.81
March -1530 2666 2875 March 945 405 10.14
April -19.13  17.57 2498 Aprnl -30.19  24.10 37.386
May -9.10 338 10.29 May -14.93 713 16.23
June -1533 1362 19.74 June 2644 1918 317
July -11.89 440 12.55 Tuly -1539 414 1585
August -11.54 3.15 11.89 August -15.21 7.92 16.85
September -7 .40 11.52 1286 | September -723 553 882
October -2.46 2.44 332 October -13 88 8.6l 15.95
November  -1.80 0.87 197 November -1688 12.33 2029
December  -9.93 23.04 23.26 | December -1559 2218 25.56
MODEL INFO MODEL INFO
Water Index AWELS Water Index NDPI
Correlation 0.09 Correlation 0.10
Coefficient Coefficient
1 o RMSE 1 [ RMSE
AllMonths  -2035 1835 27.31 | Al Months -11.57 16.05 19.69
Combined Combined
Month Month
Based Based
January -27.00 1835 31.78 January -10.538 1534 17.83
February  -19.64 1337 23.12 February  -11.18  18.60 20.33
March -22.18 2484 31.72 March -18.73 2208 2751
April -2672 18861 3167 Apnl -2343 1921 2927
May -10.71 351 11.79 May -11.15 1097 14.65
June -36.11 2890 44.72 June -2137 2093 28.68
July 2159 1475 2544 Tuly -2.10 275 327
August -17.72 3.68 15.03 August -3.69 3.85 5.10
September  -4.56 396 5.82 September  -1.71 536 518
October -13.17 1601 19.67 October -5.20 8.75 853
November -1544 18.70 2302 | November -0 89 15.06 1694
December -2776 2362 35.15 | December -17.10 2317 26.86
MODEL INFO MODEL INFO
Water Index NDWIMCFE Water Index WI2015
Correlation -0.09 Correlation 0.11
Coefficient Coefficient
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Ermenek Trained Mode Approach Over Ermenek Dam with ASTER DEM:

u o EMSE u o EMSE
All Months -54.88  35.19 65.06 | All Months -69.45  40.52 80.26
Combined Combined
Month Month
Based Based
January -58.53 2933 64.36 January -67.33 4478 7877
February  -34.00 2921 60.22 February  -39.29 2644 64.02
March -48.03  47.02 64.41 March -65.51 4874 79.19
Aprnil -69.61  40.28 78.72 April 9373 4722 10317
May -55.23 4313 67.36 May 9496 3754 108.01
June -7298 3902 81.21 June -7896 5711 94 .62
July -71.53 2748 75.80 July -84.66 3585 90.77
August -79.80 3849 87.19 August -76.53  28.16 80.73
September -27.94 5.50 2839 | September -3126 6.06 31.74
October -3530 2511 42.09 October -60.07 3491 6800
November -31.79 543 3217 | November -61.88 1922 6432
December  -33.89 4560 68.09 | December -6345 4626 7622
MODEL INFO MODEL INFO
Water Index AWELS Water Index NDPI
Correlation -0.30 Correlation 027
Coefficient Coefficient
il o EMSE 1l 9] EMSE
AllMonths  -72.72 3982 §2.78 | All Months -38.26  41.65 71.44
Combined Combined
Month Month
Based Based
January -8471 4319 93 44 January -5591 6085 79.78
February 7444  27.86 78.66 February 6235 4499 74.66
March -6991 5598 86.60 March -67.94  50.03 81.87
Apnl -B526 4086 93 .06 Apnil 9269 4449 10120
May -BR3R 34536 93 64 May -79.54 4639 8911
June 9486 5102 10568 Tune -B860 4357 9712
July -80.95  40.08 88.83 July -2082 1454 32.64
August -71.88 2908 76.62 August -4379 2923 51.28
September -38.47 8.36 3922 | September -28.71 6.98 2941
October -43.26  26.86 4972 October -40.19 2424 4587
November -33.73 2423 58.11 | November -4244  21.09 46.60
December -8941 5351  101.88 | December -55.08 49.02 70.40
MODEL INFO MODEL INFO
Water Index NDWI MCF Water Index WI2015
Correlation -0.34 Correlation -0.15
Coefficient Coefficient
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Ermenek Trained Mode Approach Over Ermenek Dam with SRTM DEM:

1l 3] EMSE 1l ] EMSE
All Months  -18.17  23.50 2958 | AllMonths -2722 2332 35374
Combined Combined
Month Month
Based Based
January -26.58 3719 4312 January -2055 3162 4131
February  -11.13 17.86 19.74 February  -16.26 1976 24.29
March -2339 3169 37.20 March -2270 1278 25.52
April -3593  26.87 4351 Apnl -45 83 2466 51.06
May 1869 11.66 2141 May -2026 1896 3382
June 2696 2638 36.15 June 4706 2502 5231
July -22.090  16.14 26.55 July -2383 1578 27.84
August -1543 1061 1821 August -2739 1968 3276
September -1379 1924 2233 | September -1207 1242 16.56
October -3.15 5.98 7.50 October -19.64 1545 2418
November -2 89 381 452 November -24 .61 1873 2097
December -16.12 3897 3906 | December -2878 4149 4757
MODEL INFO MODEL INFO
Water Index AWELS Water Index NDPI
Correlation -0.02 Correlation 0.05
Coefficient Coefficient
u o BMSE u o BMSE
All Months  -36.75  31.05 4796 | AllMonths -2226 2775 3542
Combined Combined
Month Month
Based Based
January 4708 3703 3796 January -22.17 3384 3865
February  -36.83 3396 48.14 February  -22.05 3773 4091
March -35.10 4486 5394 March -35322  37.00 4880
April 4713 2634 5291 April -4500 2633 51.02
May -2327 1031 2503 May -2379 2122 30.07
Tune -63.26 3931 7273 June -353.19 3547 47.82
July -42.02 2313 47.03 July -7.46 2.82 7.89
August -3097 1135 32.65 August -9.07 5.68 10.45
September -11.51 £.59 13.93 | September  -8.27 10.80 12.86
October -2199 2580 3222 October -10.80 1436 17.12
November -25.13  30.30 37.37 | November -1478  20.82 24.08
December -5441  37.30 64.18 | December -27.28 3988 4491
MODEL INFO MODEL INFO
Water Index NDWILMCFE Water Index WI2015
Correlation -0.13 Correlation 0.01
Coefficient Coefficient
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Ermenek Trained Median Approach Over Ermenek Dam with ASTER DEM:

1! G EMSE 1! o EMSE
All Months  -14.50 13.49 19.74 | All Months -1888 1347 2314
Combined Combined
Month Month
Based Based
January -2298 2085 2084 January -17.85 1344 21.66
February -843 5.13 9.64 February  -12.97 8.16 14 96
March -1997  26.09 31.08 March -11.02 387 11.58
Aprnl -21.18 16.07 2576 Aprnl -3202 2326 39 46
May -11.85 404 1238 May -15.07 6.99 16.31
June -19.09 12.58 2228 June -29.10 1899 3387
Tuly -1520 324 15.49 Tuly -18.03 306 18.25
August -15.11 2.81 1533 August -1827 6.05 19.08
September -11.52 954 14.44 | September -11.84 469 12.59
October -7.29 1.84 748 October -1823 8.56 19.83
November  -6.68 0.69 6.71 November -21.66 12.70 2457
December -1428 2154 2430 | December -1985 2008 27.02
MODEL INFO MODEL INFO
Water Index AWELS Water Index NDPI
Correlation -0.30 Correlation 0.15
Coefficient Coefficient
1 a RMSE Tl o RMSE
All Months -22.92 17.42 2871 | All Months -1502 1513 2125
Combined Combined
Month Month
Based Based
January -28 86 16.41 3252 January -1136 1368 1711
February  -21.88 11.55 2429 February  -14.81 16.38 21.18
March -2534 2298 32.90 March -22.13 2019 28.80
Apnil -28.32 18.92 3317 Apnl 2484 2046 31.08
May -12.90 499 13.65 May -1324 8.56 1517
June -38.51 2059 47.04 June -2521 2017 3122
July -23 64 13.53 26.67 July -6.31 3.40 7.03
August -20.50 298 2068 August -7.86 402 8.68
September  -846 362 908 September  -5.64 499 7.25
October -16.70 14.37 2123 October -9.54 8.03 12.03
November -19.21 16.86 24 62 | November -1486 1535 2042
December -2906 2285 3577 | December -2109 2186 28.76
MODEL INFO MODEL INFO
Water Index NDWILMCF Water Index WI2015
Correlation -0.06 Correlation 0.12
Coefficient Coefficient
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Ermenek Trained Median Approach Over Ermenek Dam with SRTM DEM:

n 5] EMSE n G RMSE
All Months  -9.92 14.44 1743 | All Months -1434  13.89 19.90
Combined Combined
Month Month
Based Based
January -1973 2335 2905 January -14 84 1588 2075
February -3.75 583 6.53 February -8.30 929 11.87
March -1531 2758 2047 March -7.71 3.14 8.23
Apnl -17.79 1688 2354 Apnl 2845 2513 3655
May -8.11 453 9.06 May -12.45 6.34 13.68
June -14.22 1286 18.44 June 2453 19435 30.28
July -10.09 321 10.50 July -12.95 2.97 13.23
August -9.75 2.72 10.06 August -12.73 5.76 13.78
September  -6.50 974 1102 | September -6.61 461 783
October -2.09 1.85 2.69 October -12.53 8.07 14.54
November -1.56 067 168 November -16.05 1314 2004
December  -9.79 2297 23.14 | December -1463 2150 2448
MODEL INFO MODEL INFO
Water Index AWELS Water Index NDPI
Correlation 0.11 Correlation 0.12
Coefficient Coefficient
1l 9] EMSE 1 a RMSE
AllMonths -18.80  18.11 26.02 | AllMonths -10.75 15.71 1894
Combined Combined
Month Month
Based Based
January -24.82 1773 2063 January -8.89 14.01 15.83
February -1730 12.16 2055 February  -1025 1799 19.36
March -21.16 2462 30.87 March -17.99 2184 26.85
Apnl -2523 1875 3049 Apnl 2205 1944 28.30
May -9.87 5.65 11.09 May -9.58 8.68 12.18
June -34.61 3029 4430 June -20.54  20.82 27.98
July 1918 1346 2278 July -1.79 2.67 303
August -15.74 3.07 15.98 August -3.11 339 439
September  -3.82 333 4 88 September  -1.17 458 434
October -12.25 0 15.02 18.38 October -4.84 8.34 9.02
November -14.66 15.06 2206 | November -9.78 15.36 17.09
December -2552 2424 3378 | December -1664 2330 26.67
MODEL INFO MODEL INFO
Water Index NDWIMCF Water Index WI2015
Correlation -0.08 Correlation 0.11
Coefficient Coefficient
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Altinkaya Trained Mean Approach Over Altinkaya Dam with ASTER DEM:

u o EMSE u o EMSE
All Months  -12 68 5.14 15.04 | All Months  -9.04 738 11.64
Combined Combined
Month Month
Based Based
January 911 34 962 January -11.65 421 12.27
Febrary 951 6.48 11.20 Febrary -8.85 8.04 11.49
March -9.50 5.67 10.82 March -2.29 5901 5.86
April -13.71 6.85 15.07 April -2.24 545 546
May -6.81 314 741 May -4 55 5.65 6.93
June -14.15 17.66 21.63 June -5.49 747 8.83
July -12.97 7.74 14.77 July -13.65 847 15.69
August -10.83 4.03 11.44 August -9.60 2.67 991
September  -15.48 8.26 17.22 | September -12.52 7.13 14.11
October -17.41 7.27 18.58 October -11.02 5.57 12.09
November -17.22 746 1852 | November -10.64 3.03 10.99
December -16.96 431 1741 | December -17.64 8.26 19.18
MODEL INFO MODEL INFO
Water Index AWEILS Water Index NDPI
Correlation 011 Correlation 0.48
Coefficient Coefficient
1 5] RMSE T o EMSE
All Months  -15.37 10.23 18.42 | All Months -13.28 8.58 15.78
Combined Combined
Month Month
Based Based
January -10.00 6.34 11.55 January 978 848 12.47
February  -14.15 10.07 16.87 February -12.74 6.79 14.17
March -19.15 18.81 2572 March -10.49 7.37 12 .46
Apnl -17.68 1048 20.10 Apnl -1531 8.05 16.98
May -10.51 421 11.21 May -7.89 326 844
June -14.90 1336 19.37 June -1523 15.09 20.67
July -15.62 823 17.75 July -15.86 8.15 17.532
August -11.63 571 12.75 August -13.31 5.13 14.11
September -15.48 8.6l 17.36 | September -15.32 952 1761
October -20.53 741 21.58 October -17.15 9.18 19.02
November -18.14 6.41 19.06 | November -1637 10.67 19.04
December -18.45 15.19 2308 | December -11.15 721 12.95
MODEL INFO MODEL INFO
Water Index NDWIMCEF Water Index WI2015
Correlation 0.34 Correlation 0.33
Coefficient Coefficient
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Altinkaya Trained Mean Approach Over Altinkaya Dam with SRTM DEM:

u G EMSE u G EMSE
All Months -13.97 8.87 16.52 | All Months -10.34 721 12.58
Combined Combined
Month Month
Based Based
January -10.73 312 11.11 January -12.98 416 13.52
February  -11.52 6.07 12.78 February -10.55 7.74 12.70
March -10.70 6.26 12.13 March -3.74 5.56 6.31
Apnl -15.47 7.19 16.80 Apnl -3.53 477 5.60
May -7.26 395 8.13 May -7.37 342 8.02
June -1320 19.67 23.72 Tune -6.47 822 999
July -1423 845 16.19 July -14 81 973 17.27
August -11.36 4.50 12.07 August -10.65 3.09 11.01
September -17.39 8.15 18.91 | September -13.61 6.69 14.92
October -18.56 834 20.00 October -11.92 6.10 13.11
November -18.35 8.96 2028 | November -11.12 237 11.37
December -1833 5.22 1894 | December -1873 797 20.09
MODEL INFO MODEL INFO
Water Index AWEILS Water Index NDPI
Correlation 037 Correlation 052
Coefficient Coefficient
u o] EMSE 1l o] EMSE
All Months -16.98 10.80 20.08 | All Months -14.72 924 17.35
Combined Combined
Month Month
Based Based
January -12.20 718 1385 January -11.67 823 1388
February  -1693 10.29 1938 Febrary -14 84 6.26 15.90
March -2092 1933 27.36 March -11.94 8.68 14 .33
Aprnil -1925 10.67 2158 Apnl -16.90 838 18.55
May -11.37 487 12.16 May -8.61 388 933
June -16.59 1545 21.90 June -16.76 16.64 2277
July -16.42 10,03 18.80 July -16.76 8.74 18.56
August -12.21 6.11 1342 August -13 88 538 14.72
September -17.22 8.68 1893 | September -17.35 931 19.32
October -22.50 847 2374 October -18.32 9.89 2035
November -19.74 6.82 20,70 | November -18.04 12.01 21.11
December -20.30 15.11 24 54 | December -1285 911 1531
MODEL INFO MODEL INFO
Water Index NDWIMCF Water Index WI2015
Correlation 033 Correlation 023
Coefficient Coefficient
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Altinkaya Trained Mode Approach Over Altinkaya Dam with ASTER DEM:

u o EMSE u o RMSE
All Months  -820 10.85 1354 | All Months -7.64 844 1134
Combined Combined
Month Month
Based Based
January -6.74 965 11.09 January -0 88 6.98 11.76
February  -1022 1239 15.25 Februvary  -12.57  17.57 2038
March -6.76 3.50 7.48 March -5.57 8.10 9.26
April -6.37 9.73 10.93 Aprnil -3.11 6.46 6.66
May -4.95 5.24 6.93 May -4.89 7.94 8.83
June 1134 2590 26.62 June -3.60 598 6.60
July -3.77 5.98 6.64 July -9.70 10.23 13.47
August -7.08 5.13 £.49 August -4.44 5.49 6.69
September -10.31 15.39 17.43 | September -6.61 4.89 7.98
October -5.52 5.15 7.19 October -12.63 5.78 13.65
November -1236 325 13.26 | November 971 5391 11.11
December -12.34 5.85 13.38 | December -10.94 7.84 13.07
MODEL INFO MODEL INFO
Water Index AWEILS Water Index NDPI
Correlation 0.24 Correlation 0.54
Coefficient Coefficient
1 o BEMSE W o RMSE
AllMonths  -10.79  15.78 19.03 | All Months -3.87 1031 11.80
Combined Combined
Month Month
Based Based
January -2.15 431 448 January -0.60 3.06 4 66
February  -17.60 2138 26.28 February -4.38 6.44 7.33
March -1585 27.09 2937 March -5.24 3.97 6.37
April -15.00  24.00 26.55 Aprnl -6.72 9.72 11.14
May 375 4 46 358 May -3.84 445 5.63
June -14.10 2528 2733 June -13.00 2538 2685
July -8.53 7.69 11.04 July -4.41 551 6.69
August -7.08 5.13 £.49 August -7.08 5.13 £.49
September  -8.84 12.11 14.15 | September -9.72 1544 17.13
October -12.29 1689 19.47 October -3.87 5373 6.42
November -11.77 5.96 1297 | November -7.66 377 930
December -13.42 13.89 18.46 | December -2.67 6.75 6.71
MODEL INFO MODEL INFO
Water Index NDWIMCF Water Index WI2015
Correlation 0.38 Correlation 0.15
Coefficient Coefficient
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Altinkaya Trained Mode Approach Over Altinkaya Dam with SRTM DEM:

u o EMSE u o EMSE
All Months  -12.79 11.01 16.83 | All Months -11.55 8.50 1431
Combined Combined
Month Month
Based Based
January -9.53 775 11.87 January -13.35 5.57 14.29
February  -10.51 12.97 15.84 February -16.40 1494 2133
March -11.52 4 66 12.28 March =557 £.10 926
Aprnl -12.65 7.42 1435 April -3.81 6.00 6.67
May -10.22 553 11.43 May -6.62 6.46 892
June -1548 2526 28.04 June -8.54 6.93 10.68
July -993 5.62 11.17 July -15.68 8.13 17.35
August -12.58 7.11 14.16 August -12.06 487 12.79
September -16.13 18.1% 23.16 | September -12.97 6.54 1428
October -10.78 497 11.66 October -14.14 6.70 15.36
November -14.86 324 15.15 | November -14.57 8.66 16.57
December -18.86 8.88 2053 | December -16.66 832 18.31
MODEL INFO MODEL INFO
Water Index AWELS Water Index NDPI
Correlation 037 Correlation 0.58
Coefficient Coefficient
W o BMSE 1l o BMSE
All Months  -12. 82 11.01 16.85 | All Months -11.42 9.67 1491
Combined Combined
Month Month
Based Based
January -7.81 848 10.99 January -789 £34 10.97
February  -13.70 11.30 17.15 February -11.26 6.95 12.93
March -8.48 846 11.47 March -798 7.53 10.53
Aprnl -13.62 7.7 1533 April -12.60 862 14 86
May -10.74 478 11.61 May -529 411 6.52
June -22.81 25.08 32.55 June -14 76 16.90 2151
July -12.54 336 12.90 July -13.46 9.66 16.09
August -12.58 7.11 14.16 August -10.44 6.11 11.84
September  -14.68 14.94 2004 | September -14.04 10.04 16.77
October -12.32 6.97 13.81 October -1548 11.67 18.67
November -1427 394 1472 | November -1528 11.92 18.76
December -803 820 11.65 December 962 997 1324
MODEL INFO MODEL INFO
Water Index NDWIMCF Water Index WI2015
Correlation 038 Correlation 031
Coefficient Coefficient
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Altinkaya Trained Median Approach Over Altinkaya Dam with ASTER DEM:

u G RMSE u G RMSE
All Months  -11.46 8.39 1417 | All Months  -8.31 7.35 11.06
Combined Combined
Month Month
Based Based
January -8.34 3.62 8.97 January -11.00 336 11.42
February -0.22 6.22 10.83 February -8.44 8.84 11.68
March 107 572 936 March -2.01 5.64 353
Aprnl -12.29 7.97 14.28 April -2.33 6.30 6.20
May -5.29 296 5.96 May -4 81 6.87 7.98
June -13.64 1871 22.05 June -4.24 7.22 7.91
Tuly -11.50 819 13.71 July -12.43 944 1512
August -8.98 4.50 9.88 August -1.37 348 8.02
September -14.10 7.89 1583 | September -11.04 6.99 12.75
October -15.67 7.37 17.00 October -10.64 4.84 11.49
November -16.63 718 1788 | November -10.64 293 1097
December -15.46 3.40 15.77 | December -16.44 7.74 17.90
MODEL INFO MODEL INFO
Water Index AWELS Water Index NDPI
Correlation 0.38 Correlation 0.32
Coefficient Coefficient
u G RMSE u G RMSE
AllMonths -14.08 1032 1741 | All Months -11.98 8.74 14.79
Combined Combined
Month Month
Based Based
January -8.34 5.17 9.58 January -8.50 7.70 11.04
February  -13.71 10.32 16.63 February  -11.32 6.32 12.70
March -1839 2093 26.52 March -8.11 6.62 10.12
Aprl -15.83  10.18% 18.35 April -13.79 8.42 15.79
May -8.91 489 10.00 May -6.16 407 722
June -1433 1303 18.73 June -14.63 1510 2023
July -13.72  10.13 1655 July -14.23 919 16.52
August -10.18 6.57 11.82 August -11.83 6.19 13.11
September -1432 234 1622 | September -14.71 284 16.78
October -18.38 7.82 19.67 October 1583 11.03 18.65
November -17.67 512 1828 | November -1340 10.24 18.01
December -16.71 13.06 20.53 | December -1045 6.93 12.22
MODEL INFO MODEL INFO
Water Index NDWILMCFE Water Index WI2015
Correlation 037 Correlation 032
Coefficient Coefficient
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Altinkaya Trained Median Approach Over Altinkaya Dam with SRTM DEM:

u 5] EMSE u ] EMSE
All Months  -12.82 923 15.76 | All Months  -9.67 731 12.09
Combined Combined
Month Month
Based Based
January -9 83 3.60 1036 January -12.42 348 12.82
February  -10.45 6.28 11.92 February -10.03 8.85 12.90
March -932 5.79 10.72 March -239 5.79 5.80
Aprnil -1425 8.15 16.08 April -373 540 6.18
May -5.85 385 6.85 May -8.20 409 9.03
June -1488 2071 2427 June -524 824 925
July -13.04 8.74 15.29 July -13.68 10.34 16.62
August -9.69 425 10.44 August 919 294 9.57
September -16.13 8.66 1797 | September -12.09 7.54 13.91
October -17.07 8.82 18.81 October -11.46 5.88 12.61
November -18.13 924 1999 | November -11.03 2.52 11.27
December -1676 449 17.25 | December -17.84 708 18.97
MODEL INFO MODEL INFO
Water Index AWELS Water Index NDPI
Correlation 038 Correlation 0.54
Coefficient Coefficient
U o RMSE 1l o EMSE
All Months  -15.69 10.94 12.08 | All Months -13.34 9.60 16.41
Combined Combined
Month Month
Based Based
January -10.54 6.49 12.09 January -9 89 827 12.44
Februvary  -15.77 10.71 18.35 February -13.22 6.83 14.62
March -19.70 2080 2736 March -997 749 12.09
Aprnl -16.85 10.19 1925 April -14 36 833 16.51
May -9.90 470 10.81 May -735 409 8.27
June -1594 15.39 2138 June -16.41 17.02 2275
July -15.08 10.37 17.80 July -15.43 957 17.73
August -10.89 6.71 12.49 August -12.45 6.01 13.60
September -16.13 921 18.21 | September -16.00 990 18.38
October -20.90 945 22.55 October -17.42 11.54 2025
November -19.43 6.28 2026 | November -17.21 11.79 2030
December -18.88 13.69 2264 | December -11.61 987 14.70
MODEL INFO MODEL INFO
Water Index NDWIMCF Water Index WI2015
Correlation 0.36 Correlation 031
Coefficient Coefficient
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Altinkaya Trained Mean Approach Over Ermenek Dam with ASTER DEM:

u o EMSE u o RMSE
All Months  -1923 16.36 2517 | All Months -16.79 10.73 19.88
Combined Combined
Month Month
Based Based
January -23.03 16.11 2733 January -19.52 1453 23.60
February  -16.39 4.63 17.12 February -13.79 8.30 15.74
March -2291 20.70 29.70 March -12.90 3.00 13.19
April -19.17 16.17 24.20 April -25.77 12.89 2832
May -2138 2804 32.96 May -12.76 2.55 12.97
Tune -13.14 10.31 16.17 June -18.42 9.99 20.56
July -14.05 457 14.65 July -14.05 4.59 14.66
August -12.22 3.99 12.75 August -12.22 4.03 12.76
September  -7.27 031 7.27 September  -8.36 042 8.56
October -12.95 7.5 14.76 October -19.32 878 2092
November -3296 14.63 3556 | November -22350 12.20 2511
December -3344 2807 4373 | December -2095 2122 28.54
MODEL INFO MODEL INFO
Water Index AWEILS Water Index NDPI
Correlation 032 Correlation 0.33
Coefficient Coefficient
u o BMSE W a RMSE
All Months  -1490 2066 2535 | All Months -14 48 16.84 2212
Combined Combined
Month Month
Based Based
January -14.56 17.49 2161 January -12.12 14 66 18.30
February  -11.60 2411 24 88 February -12.19 10.66 15.60
March 2186 2981 3491 March 2369 2713 3427
April -23.69 17.06 2835 April -15.18 1528 2061
May -2834 4766 51.19 May -24.53 3989 42.37
Tune -14.33 11.79 17.92 June -19.31 17.95 2533
July 243 2.08 3.08 July -6.52 346 7.24
August -3.16 2.11 3.70 August -8.41 457 9.39
September  -2.83 1.67 3.21 September  -6.08 5.85 8.09
October -17.58 1541 22.52 October -9.81 838 12.44
November -19.83 17.54 2549 | November -1496 15.11 2035
December -2084 21.02 2833 | December -2143 2257 20 44
MODEL INFO MODEL INFO
Water Index NDWIMCF Water Index WI2015
Correlation 0.06 Correlation 0.10
Coefficient Coefficient
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Altinkaya Trained Mean Approach Over Ermenek Dam with SRTM DEM:

u o EMSE u 5] RMSE
All Months  -14 .37 17.01 2231 | All Months -12.56 11.22 16.79
Combined Combined
Month Month
Based Based
January -19.67 18.55 2595 January -16.13 16.36 2198
February  -11.83 6.06 13.06 Febrary -932 9. 64 1281
March -18.84 2232 2775 March -9.54 4.09 10.24
Apnl -15.41 17.22 2201 Apnl -22.18 13.12 2521
May -1638  28.00 2992 May -12.25 3.87 12.73
June -843 10.71 1291 June -15.12 10.18 17.75
July 921 451 10.09 July 9122 434 10,10
Angust -1.13 4.03 8.03 Angust -7.13 4.06 8.04
September  -2.17 0.31 2.19 September  -3.42 0.56 346
October -7.86 798 10.72 October -13 88 861 1595
November -27.91 14.79 31.01 | November -16.88 12.33 20.29
December -3036 2919 4039 | December -1559 2218 25.56
MODEL INFO MODEL INFO
Water Index AWEIS Water Index NDPI
Correlation 0.29 Correlation 0.27
Coefficient Coefficient
W a EMSE 1l o RMSE
All Months  -10.81 2132 23.77 | All Months -10.18 1731 19.97
Combined Combined
Month Month
Based Based
January -11.56 19.29 21.06 January -0.68 1535 17.32
Febrary -7.57 24 94 2399 Febrary =795 12.48 13.90
March 1776  30.60 33.10 March -19.15 2782 3181
Apnl -19.96 17.47 2555 Apnl -12.20 15.35 18.72
May 24778 4792 4951 May 20014 4004 40.10
June 974 12.20 14.79 June -14.70 18.41 2233
July 1.76 1.75 238 July -2.10 2.75 3.27
Angust 1.34 1.62 1.99 Angust -3.69 3.85 5.10
September 1.52 1.37 1.97 September  -1.71 536 5.18
October -13.17 16.01 19.67 October -520 8.75 953
November -15.44 18.70 2302 | November -0.89 15.06 16.94
December -1667 2314 2691 | December -1703 2387 2731
MODEL INFO MODEL INFO
Water Index NDWIMCFE Water Index WI2015
Correlation 0.04 Correlation 0.08
Coefficient Coefficient
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Altinkaya Trained Mode Approach Over Ermenek Dam with ASTER DEM:

u 5] EMSE u o EMSE
All Months  -22.64 2225 31.64 | All Months -21.45 14.78 2599
Combined Combined
Month Month
Based Based
January 3403 3306 4549 January 2447 19.35 3018
February  -19.96 845 2140 February -1520 11.70 18.57
March -20.00 16.72 2516 March -2343 14.55 2693
Aprnl 2863 2363 3585 Apnl -39.51 1535 41.92
May 2574 3812 4272 May -35.04 13.97 37.20
June 983 446 10.64 June 2024 8.13 21.56
July -14.67 9.68 17.13 July -14.67 968 17.13
August -13.76 6.36 1493 August -13.81 6.33 1497
September  -9.40 1.62 951 September  -9.66 124 973
October -12.50 6.26 13.74 October -2022 1333 23.60
November -41.51 2328 4663 | November -2624 18.35 31.13
December 4223 3484 5286 | December -17.19 15.64 2235
MODEL INFO MODEL INFO
Water Index AWEILS Water Index NDPI
Correlation 029 Correlation 0.15
Coefficient Coefficient
W o] RMSE W g EMSE
All Months  -1897  26.50 3244 | All Months -19354 2460 31.27
Combined Combined
Month Month
Based Based
January -17.00 13.63 21.06 January 2024 3017 34.73
February  -2037 3668 3919 February -1856 2478 2926
March -3579 4650 5552 March 3654 4140 52.57
Apnl -3998 2871 47 81 Apnl 27000 2392 3472
May 3756 54.00 61.19 May -3223 5108 54.73
Tune -9.49 3.80 10.11 June -19.03 12.31 2210
July -4.07 1.33 430 July -8.30 4 66 950
August -3.59 4.40 5.39 August -8.12 6.44 10.03
September  -4.42 2.77 5.09 September  -7.56 5.82 924
October -12.777 8.12 14.77 October -1097 7.69 13.03
November -2205 2162 2959 | November -17.01 19.45 2459
December -23.66 13.57 2671 | December -2746 3116 3912
MODEL INFO MODEL INFO
Water Index NDWIMCF Water Index WI2015
Correlation 0.02 Correlation 0.03
Coefficient Coefficient
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Altinkaya Trained Mode Approach Over Ermenek Dam with SRTM DEM:

u G RMSE u G RMSE
All Months  -23.32  26.08 3485 | Al Months -2410 23.71 33.69
Combined Combined
Month Month
Based Based
January 2820 3317 4138 January 2955 3162 4131
February  -23.97 16.90 2851 February -16.26 19.76 2429
March -2991 3268 4225 March -23 88 11.51 26.09
Apnl 2803 2797 3792 Aprnl 5405 2993 60.57
May 2105 36467 3897 May -20.63 15.89 3286
June -17.74 2589 2955 June -31.41 2394 38.26
July -19.09 1348 2271 Tuly -19.07 13.49 22.70
August -573 5.88 7.85 August -9.04 7.76 11.49
September  -3.88 321 486 September  -4.16 2.83 4.90
October -13.01 9.64 1571 October -19.64 1545 2418
November -4234 2715 4923 | November -2461 18.73 2097
December -4636 3578 5671 | December -2878 4149 4757
MODEL INFO MODEL INFO
Water Index AWELS Water Index NDPI
Correlation 0.20 Correlation 0.04
Coefficient Coefficient
u 5] FEMSE u o] EMSE
All Months  -20.86  31.74 37.79 | All Months -1885 2651 3237
Combined Combined
Month Month
Based Based
January 2762 3245 40.50 January -20.61 31.92 3628
February -17.64 3734 3838 February -15.60 2578 2824
March 3286 3158 5742 March -3371 46.94 3578
Apnl -36.80 2797 4479 Aprnl -2631 26.64 3583
May 3446 3513 60.16 May -1967 2986 32.49
June -1867  27.06 3096 June -2377 3253 3932
Tuly -1.88 292 326 Tuly -7.46 2.82 7.89
August 227 3.30 377 August -9.07 568 1045
September  -1.97 247 3.00 September  -8.27 10.80 12.86
October -2199 2580 3222 October -10.80 14.56 17.12
November -23.13 30.30 3737 | November -14.78 2082 2408
December -3130 3570 4519 | December -2695 3945 44 40
MODEL INFO MODEL INFO
Water Index NDWILMCF Water Index WI2015
Correlation -0.04 Correlation 0.03
Coefficient Coefficient
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Altinkaya Trained Median Approach Over Ermenek Dam with ASTER DEM:

u o EMSE u o EMSE
All Months  -18.21 16.36 2441 | All Months  -15.04 096 18.00
Combined Combined
Month Month
Based Based
January -2129 1564 2563 January -17.87 1344 21.67
February  -14.73 379 15.13 February  -12.98 8.17 14.97
March -2225 0 2010 28.84 March -10.74 2.79 11.03
April -1763 1539 2254 April -21.14 987 2299
May -21.85 2960 3432 May -9.39 2.87 9.74
June -12.19 8.73 14.57 June -15.79 9.05 17.82
Tuly -12.36 335 12.74 July -12.36 338 12.74
August -11.06 331 1146 August -11.05 335 11.47
September  -7.17 0.32 7.18 September  -8.46 0.42 847
October -12.54 740 1424 October -18.24 8.56 19 .84
November -3145 1563 3453 | November -2168 12,70 2458
December -3463 2874 4344 | December -19.87  20.08 27.03
MODEL INFO MODEL INFO
Water Index AWELS Water Index NDPI
Correlation 0.32 Correlation 0.40
Coefficient Coefficient
u a RMSE u a RMSE
AllMonths  -14.33 2030 2473 | All Months -1392 1676 21.70
Combined Combined
Month Month
Based Based
January 1322 1533 1925 January 1076 1374 16.76
February  -11.62  24.09 24 88 February  -12.13 11.71 16.16
March -21.32 2905 34.03 March -23.53  27.00 34.07
April 2233 1718 2728 Apnl 1347 1506 1925
May -2833 4824 5161 May 2441 3974 42.20
June -12.91 Qg7 15.75 June -18.62  17.72 24.67
Tuly -2.40 2.06 305 Tuly -631 340 7.03
August -3.14 2.10 3.68 August -7.86 4.02 §.68
September  -2.78 1.66 317 September  -5.64 4.99 7.25
October -16.70 1437 2123 October -9.54 8.04 12.03
November -1922  16.86 2462 | November -1486 1535 2043
December  -2033 21.25 28.10 | December -21.06 2268 2024
MODEL INFO MODEL INFO
Water Index NDWILMCF Water Index WI2015
Correlation 0.07 Correlation 0.09
Coefficient Coefficient
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Altinkaya Trained Median Approach Over Ermenek Dam with SRTM DEM:

u o EMSE u G RMSE
All Months -13.56  17.08 21.72 | All Months -10.90 1043 15.04
Combined Combined
Month Month
Baszed Based
January -1826 18.60 2494 January -14.84 1588 2075
February -9.74 5.03 10.77 February -8.30 9.29 11.87
March -1830  22.00 2717 March -7.46 241 7.77
April -1429 1648 2075 Apnl -17.71 997 19.91
May -16.84 2964 3141 May -9.46 2.39 974
June -7.42 918 11.20 June -13.00 9.05 15.40
July 745 329 804 Tuly 747 332 8.06
August -3.86 328 6.538 August -5.87 3.32 6.60
September  -2.01 0.31 2.03 September  -3.24 0.52 3.27
October -7.36 7.5335 10.08 October -12.53 8.07 1454
November -2631 16.02 30,10 | November -16.03 13.14 20.04
December -2943 2983 40.09 | December -1463 2150 24 48
MODEL INFO MODEL INFO
Water Index AWELS Water Index NDPI
Correlation 0.29 Correlation 0.33
Coefficient Coefficient
u ] BRMSE T T RMSE
All Months  -10.25  21.09 23.31 | All Months  -9.52 17.26 19.60
Combined Combined
Month Month
Baszed Based
January 1023 1733 18.85 January -832 1434 15.79
February -741 2469 2373 February -742 12.73 13.79
March -17.35 3012 3251 March -19.02 2791 31.79
April -19.01 17.39 2477 April 991 14.63 16.63
May -2482 4856 50.03 May 2024 4044 40.45
June -8.24 1034 12.53 June -14.00 18.35 21.83
July 1.84 1.68 2.40 Tuly -1.79 2.67 3.03
August 142 1.36 201 August -3.11 3.39 439
September 164 1.32 2.04 September  -1.17 458 434
October -1225 1502 1838 October -4 84 834 9.02
November -14.66 18.06 2206 | November -9.78 1536 17.09
December -1633 2435 2758 | December -l6.66 2420 2732
MODEL INFO MODEL INFO
Water Index NDWI.MCF Water Index WI2015
Correlation 0.05 Correlation 0.08
Coefficient Coefficient
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