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ABSTRACT 

 

AN APPLICATION-AWARE DRAM CONTROLLER 

 

Cilasın, Ramazan 

Master of Science, Electrical and Electronics Engineering 

Supervisor: Assoc. Prof. Dr. Cüneyt Fehmi Bazlamaçcı 

 

September 2019, 91 pages 

 

Considering that emerging technologies have started to require excessive amount of 

memory, with quick response times and low power consumption, more efficient 

memory systems has become a crucial need for almost every system ranging from 

mobile phones to data centers. However, there exists a gap between CPU and memory 

speeds and most application execution times depend almost entirely on the speed at 

which RAM can send data to the CPU. As for the main memory, DDRx DRAM’s 

relatively low-latency, high density and low cost made it the technology choice. 

DRAM market is a cost-sensitive market and architectural changes in DRAM is not 

easily welcomed by the manufacturers. On the other hand, DRAM is managed by 

Memory Controller which provides an interface between requestors and DRAM, and 

changes to the Memory Controller might have considerable effect on mitigating the 

problems incurred by slow memory. In this thesis work, DRAM Controllers for 

general purpose computers are focused on and based on the problem mentioned above 

the following algorithmic contributions and proposals are made: (i) an application 

aware memory scheduling algorithm to reduce the main memory interference and to 

provide fairness (ii) a hybrid page policy to avoid unnecessary activations, (iii) a 

dynamic command scheduling scheme that is essential for providing flexibility, (iv) a 

refresh scheduling method to decrease latency and power consumption, (v) an efficient 

way of using power-down modes to provide balance between latency and power 
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consumption, (vi) integration of a memory access latency reduction method which is 

using the intrinsic DRAM characteristics. This thesis work’s resultant controller 

provides a performance benefit of 9.31% on average compared to a recently proposed 

application aware controller, while serving fairer to applications and consuming lower 

power at the expense of higher storage cost. Proposed methods are simple to 

implement and can be used in a modern memory controller. 

 

Keywords: DRAM, Memory controller, Application awareness, Memory scheduling   
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ÖZ 

 

UYGULAMA FARKINDA DİNAMİK RASTGELE ERİŞİMLİ BELLEK 

KONTROLCÜSÜ  

 

Cilasın, Ramazan 

Yüksek Lisans, Elektrik ve Elektronik Mühendisliği 

Tez Danışmanı: Doç. Dr. Cüneyt Fehmi Bazlamaçcı 

 

Eylül 2019, 91 sayfa 

 

Gelişmekte olan teknolojilerin hızlı tepki süreleri ve düşük güç tüketimi sağlayan 

bellek gereksinimleri göz önünde bulundurulduğunda, daha etkili bellek sistemleri, 

akıllı telefonlardan veri merkezlerine kadar olan bütün sistemlerde çok önemli bir 

ihtiyaç haline gelmiştir. Fakat işlemci ve bellek hızları arasındaki farkın şiddetli 

biçimde artmasıyla çoğu uygulamanın yürütme süreleri neredeyse tamamen Rastgele 

Erişimli Belleklerin işlemcilere veri yollama hızlarına bağlı olacaktır. Ana hafıza 

olarak, düşük gecikme süresi, yüksek yoğunluğu ve düşük maliyetinden dolayı DDRx 

DRAM teknolojisi seçilmiştir. DRAM piyasası, maliyete duyarlı bir pazardır ve 

DRAMdeki değişiklikler üreticiler tarafından kolayca kabullenilmemektedir. Diğer 

yandan DRAM, istemciler ve DRAM arasında arayüz sağlayan bir bellek kontrolcüsü 

tarafından yönetilir ve bellek kontrolcüsünde yapılacak değişikliklerin yavaş belleğin 

sebep olduğu sorunları azaltmada önemli etkileri olabilir. Bu tez çalışmasında genel 

maksatlı bilgisayarlarda bulunan DRAM kontrolcülerindeki muhtemel iyileştirmelere 

odaklanılmıştır ve yukarıda bahsedilen probleme yönelik asağıdaki algoritmik katkılar 

ve öneriler sunulmuştur: (i) ana bellekteki istemci çatışmalarını azaltan ve adil istemci 

servisi sağlayan bir uygulama farkında bellek zaman çizelgeleyicisi algoritması (ii) 

ana bellekteki gereksiz etkinleşmeyi engelleyen karma bir bellek sayfası ilkesi (iii) 

esneklik sağlamak için gerekli olan dinamik bir komut çizelgeleme şeması (iv) 
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gecikme ve güç tüketimini azaltmak için bir yenileme çizelgeleme yöntemi (v) 

gecikme ve güç tüketimi arasında bir denge sağlamak için güç kapatma modlarının 

etkili kullanımı (vi) DRAM iç karakteristiklerini kullanan bir bellek erişim gecikme 

azaltma yönteminin entegrasyonu. Bu tez çalışması sonucunda elde edilen DRAM 

kontrolcüsü, daha fazla bellek kullanım maliyeti karşılığında, yakın zamanda önerilen 

bir uygulama farkında DRAM kontrolcüsüne oranla uygulamalara daha adil servis 

sağlar, daha az güç tüketimi yapar ve  ortalamada %9,31 daha iyi performans sergiler. 

Önerilen yöntemlerin uygulanması kolaydır ve modern bir bellek kontrolcüsünde 

kullanılabilir. 

 

Anahtar Kelimeler: DRAM, Bellek kontrolcüsü, Uygulama farkındalığı, Bellek 

zaman çizelgeleyicisi  
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CHAPTER 1  

 

1. INTRODUCTION 

 

1.1. Overview 

Memory has always been a crucial part of computing systems. In order to handle 

different needs, a memory hierarchy is built based on speed and cost requirements. 

While caches are used for faster movement of data to the CPU with limited capacity 

because of its large area requirement and high-cost, disks on the other hand can 

provide low-cost non-volatile storage at the expense of very slow operation speed. 

Other than these two choices, main memory provides a balance between operation 

speed and cost. Recent developments have been shaping the requirements for memory 

systems. One might think that cloud-data centers seem to need huge amount of 

memory, not only data centers but also autonomous cars and several technologies 

using artificial intelligence need a considerable sized memory. Even smartphones and 

personal computers can process heavy workloads for virtual and augmented reality 

which implies that efficient memory and processing speed should be granted for many 

systems. While computing systems’ CPU speed continues to increase in a satisfactory 

fashion, and the parallel operation for faster execution has become a major issue, the 

main memory has been and will seemingly be the bottleneck for the future systems. 

This bottleneck is also known as the “Memory Wall” [1]. It is a phenomenon 

indicating that no matter how fast CPUs can operate, they will be bounded by how 

fast they can obtain data from the main memory. The above-mentioned problem is 

depicted in Figure 1.1. 
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Figure 1.1. Processor vs Memory performance improvement over the years [40] 

Besides the insufficient core speed of main memory with respect to CPU, current 

systems use mostly chip-multiprocessors which treat main memory as a shared 

resource. The requestors try to issue memory requests in an aggressive manner 

while memory channel capacity is limited. Because of this limitation, applications 

interfere at the main memory resulting in longer execution times and more power 

consumption. 

While choosing the main memory there are different expectations such as 

performance predictability, higher bandwidth and energy efficiency. Among 

different choices for the main memory, DDRx SDRAM (Double Data Rate 

Synchronous Dynamic Random-Access Memory) is the most prominent one. It has 

relatively low latency, high density and low cost. Other than generic main-memory 

specific problems, DRAM has additional drawbacks as follows: 

• Since it is a volatile memory type, it needs refresh operations that incur extra 

latency and power consumption. 

• Regardless of the generation (DDR3, DDR4, etc.) it has a variety of complex 

timing constraints that should be met in order to perform correct operation. 

• DRAMs can be damaged by malicious attacks. 
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• Some additional error-correction mechanisms should be integrated to make 

DRAM more reliable and adding these mechanisms comes with hardware-

software cost. 

• The power-down modes should be handled carefully to provide a balance 

between performance and energy. 

With every new generation DRAM standard, the drawbacks might get worse. Since 

device density increases, the latency and power consumption start to have 

significant effect during memory operations. Two important negative effects are 

illustrated in Figures 1.2 and 1.3. 

 

Figure 1.2 Refresh effect on energy consumption vs device density [41] 

As can be seen in the above figure, refresh effect on energy consumption increases 

drastically as DRAM size increases since more energy is consumed to refresh 

increasing number of rows in DRAM. Whereas, read/write/activate/precharge 

commands and background power continue to have relatively the same share in the 

overall energy consumption. 
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Figure 1.3 Refresh effect on IPC (Instruction Per Cycle) and average latency vs 

device density [41] 

Second important effect of refresh is depicted in Figure 1.3. Refreshing more rows 

means much more time is spent for refresh operations resulting in essential 

operations of DRAM (read/write) to wait more since refresh is mostly 

uninterruptable and stalls the device.  

Another important drawback of DRAMs is its security. Besides what was known, 

in the last couple of years DRAMs were discovered to be extremely vulnerable to 

malicious attacks. As first mentioned in [2] there exists a possibility of harming 

DRAMs that can be done just by reading from the exact same address exhaustively. 

This exhaustive readings from the same address physically harms the nearby rows 

by corrupting their content. In [2], the authors pointed out that they were able to 

induce errors in most DRAM modules (110 out of 129)   from three manufacturers. 

 Researchers continue to seek for solutions to mitigate the effect of drawbacks, 

however DRAM market is a cost-sensitive one and advancements cannot be 

realized in a short time. However, there is another possible area of improvement 

for memory systems containing DRAM. There exists a component called “Memory 

Controller” (MC) for every memory system. In current computing systems, I/O 

devices and processors can target the data in the memory sub-system via using one 
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or several Memory Controllers. They manage the transfer of data in and out of 

DRAM devices, ensure that the protocol specific timing constraints are met, make 

refresh and scheduling decisions, change operation modes and briefly oversee 

almost every aspect of DRAMs. For a single specific DRAM device, there can be 

numerous different design choices for a Memory Controller provided that the 

controller guarantees the correct operation of the main memory in compliance with 

the JEDEC standard. The design choice can vary according to a specific need or a 

general-purpose one. By changing the Memory Controller, power consumption can 

be minimized, memory throughput can be increased, or an optimal operating point 

can be reached. A memory controller can be implemented on a different chip or it 

can be integrated as a part of microprocessor in which case it is called as Integrated 

Memory Controller (IMC). In the case of IMC, the system is forced to use a specific 

memory type and updating for a new one is not trivial. Although Memory 

Controllers should ensure that JEDEC (Joint Electron Device Engineering Council) 

standards are met, their design is mostly proprietary. This situation raises interest 

in the research area resulting in great amount of work to improve the efficiency of 

Memory Controllers. Some works focus on the Real-Time systems which implies 

that the Memory Controller’s main objective should be focusing on providing 

predictable timing bounds for memory access operations. Since a real-time 

application depends mostly on the almost exact timing during operation, memory 

read/write operations should also provide some Worst-Case Execution Time 

(WCET) bounds. Depending on the application needs, Real-Time Systems can be 

Hard-Real Time (HRT), implying that the system is mission critical, or Soft-Real 

Time meaning that the system can tolerate some deadline misses, or even Mixed-

Critical which has HRT and SRT applications running together. Since most of 

Commercial-Off-The-Shelf (COTS) memory controllers cannot provide low-

latency bounds for operation and the work to be done for predictable MCs are 

limited and mostly requires analytical analysis, in the scope of this work predictable 

MCs are mostly omitted. Instead, general purpose MCs are focused on, thoroughly 
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analyzed and possible improvements are proposed. In this thesis work the following 

modifications are made to a general-purpose MC: 

• An application aware memory request scheduling algorithm is proposed, which 

requires relatively low hardware complexity to mitigate the interference at the 

main memory while providing fairness between requestors.  

• A hybrid page policy is used to avoid unnecessary activations and decrease  

latency and power consumption. 

• A dynamic command scheduling is employed to maximize the utilization of the 

memory. 

• A refresh scheduling scheme is used providing a decrease in memory access 

latency. 

• An efficient way to use DRAM power-down modes is proposed to decrease the 

memory system power. 

•  Integration of a memory access latency improvement method using intrinsic 

DRAM characteristics is done resulting in the decrease for some specific timing 

parameters. 

 

1.2. Outline 

The outline of this thesis is as follows. In Chapter 2, background about Memory 

Systems & Hierarchy, DRAM and DDRx SDRAM specific information and some 

important JEDEC standard specifications will be given. Moreover, Memory 

Controller functionality  and details will be elaborated. In Chapter 3, related work 

about memory controller and DRAM improvements will be presented. Chapter 4 will 

clarify the theoretical and practical work, algorithms and approaches we used to 

improve memory systems containing DRAMs. In Chapter 5, a simulation environment 

will be introduced, our evaluation metrics and a thorough analysis of the evaluation 

results will be given. Finally, Chapter 6 concludes the study.  
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CHAPTER 2  

 

2. BACKGROUND 

 

In this chapter a modern memory system architecture and memory hierarchy will be 

explained. Specifically, DDRx SDRAM basics, operation and related JEDEC 

standards will be covered. Memory Controller features in general and some important 

aspects will be pointed out. Covering all aforementioned topics will help to provide a 

background for the remaining work and discussions. 

2.1. Memory System Architecture 

Memory systems are essential parts of modern computers and with the recent 

technological trends such as Big Data, IoT, Cloud-Data Centers, Machine Learning 

etc., memory requirement for future systems is not expected to saturate at some level. 

Ranging from small systems to such huge systems, memory subsystems cannot be 

organized without a hierarchy for several reasons. As explained in [3] a hierarchical 

design gives computer systems enough flexibility to have fastest component 

performance, the minimum expense (the lowest cost per bit) component and the 

minimum energy consuming component. This approach simplifies design process for 

memory systems and provides isolation. Some key actors of a memory hierarchy can 

be listed as follows: 

Register: They hold temporary data during program execution. The fastest possible 

way of accessing data is via registers. However, they have too little capacity when 

compared with other elements in the memory system. 

Cache (SRAM): Caches are very low latency memory elements that give access to 

program instructions and data. They keep frequently used data and is operated with 

the temporal locality principle meaning that if some data is used once, it is likely to be 
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used again. Caching can be done in different levels (L1, L2 & L3), their access time 

and storage capacity varies. 

Main Memory (DRAM): DRAMs are neither cheapest nor fastest elements of a 

memory hierarchy but can feature optimal characteristics for main memory. They 

employ random-access storage relatively large, fast and cheap.  

Disk: Disks are non-volatile elements of the memory hierarchy and can provide 

permanent storage at an extremely low cost per bit. They operate at much lower speed 

when compared to other elements of the hierarchy. 

General purpose computer systems’ memory system can be illustrated in a simplified 

manner as in Figure 2.1 below. 

 

Figure 2.1 Memory components of general-purpose computers 

2.2. Main Memory Organization 

A modern computer typically has JEDEC-style Double Data Rate (DDR) 

Synchronous Dynamic Random-Access Memory (SDRAM). To lay a foundation for 

complete understanding of Main Memory and its components, bottom-up approach 

will be followed. 
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2.2.1. DRAM Basics 

A random-access memory using a single transistor-capacitor (1T-1C) pair to store 

each bit of data is called Dynamic Random-Access Memory (DRAM). An illustration 

of a single DRAM cell can be seen in Figure 2.2 below. 

 

Figure 2.2 DRAM 1-cell structure 

A DRAM cell data depends on whether the capacitor is charged or discharged. DRAM 

is called dynamic because capacitor in a cell have some imperfections and cannot store 

the charge infinitely. Therefore, to hold information for as long as needed, each cell 

should be periodically refreshed. Word lines are used to connect capacitors to bit lines 

by switching the transistor on/off. Bit lines are essential for Read/Write operations by 

sharing its charge with the capacitor.  

DRAM cells together form a grid-like structure and these grid-like structures are 

called memory arrays. Memory arrays contain rows and columns which need to be 

addressed to perform basic READ/WRITE operations. The structure of the memory 

arrays can be deduced from the naming of the DRAM. For example, a “by eight” 

DRAM (x8) implies that the DRAM has 8 memory arrays and that a column width is 

8 bits (meaning Column Write/Read transfers 8 bits of data). In a x8 DRAM, 8 arrays 

each reading 1 data bit in unison and transfer 8 bits of data when a read request is 

received. When multiple DRAM arrays are structured together and work in a 

dependent manner, they form a bank. Banks are the basic component of DRAM that 

can be run independent of each other. They can be activated, read out or written to 

Bitline

Word Line
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without interaction with the other banks. Single bank with multiple arrays (x4 DRAM 

for simplicity) illustration is shown in Figure 2.3. 

 

Figure 2.3 Memory arrays forming a single bank 

In the above figure there exist some components other than memory arrays (bank). 

The important ones are Row Decoder, Column Decoder and Sense Amplifiers. 

Row Decoder: Row Decoders are used to activate (select) a row in the memory array. 

Before any valid operation, a row should be activated, which in turn switches on all 

the transistors in the corresponding row and connects capacitors to bit lines. 

Column Decoder:  Column Decoders select the desired column from the activated 

row and Read/Write operations to selected columns can be done. 

Sense Amplifier (Row Buffer):  Sense amplifiers are effective right after the 

activation of a row. They sense the charge sharing between the capacitors and bit lines 

and amplify the difference, then rows’ initial charge (data 0 or 1) can be acquired. 
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Multiple banks can form together a DRAM device chip and a single rank contain 

several chips. Overall DRAM structure is given in Figure 2.4. 

 

Figure 2.4 Top-level DRAM structure 

In the above figure a memory controller connected to two Dual-Inline Memory 

Modules (DIMM) can be seen. A system might have several DIMMs each of which is 

operated without dependence to each other. Each DIMM can contain multiple ranks 

which in turn are composed of DRAM chips. A channel’s ranks should share the 

adress, command and data buses, so requests can be directed to only one rank at a 

time. This is provided with JEDEC required Chip Select (CS) signal. A typical data 

flow for 64-bit data bus is depicted in Figure 2.5 below.
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Figure 2.5 Typical data flow of 64-bit data bus  
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2.2.1.1. DRAM Commands 

According to JEDEC DDR3 SDRAM standard [4] there are basic commands such as 

Activate, Precharge, Read, Write, Refresh, Power-down and some other commands 

which are not examined in the scope of this work. The simplified version of DRAM 

states and commands can be seen in Figure 2.6. Along with the commands, the 

important timing parameters defined in JEDEC standard will also be presented in the 

following paragraphs. 

ACTIVATE (ACT): This command is used for transferring desired row’s full content 

from cells to the sense amplifiers. When this command is received, word lines switch 

the transistors on, and sensing of the cell capacitor’s charge takes place. The time for 

sensing to be completed is defined as tRCD (Command Delay Row-to-Column). At least 

tRCD time should pass to have the data ready at the sense amplifiers and for following  

read or write commands to be issued. Second important timing parameter associated 

with Activate is tRAS (Row Access Strobe). After issuing ACT command at least tRAS 

time is needed to recover the data back to DRAM cells and another ACT command 

can be issued to some different row in the same bank of the DRAM array. Third timing 

parameters is tFAW (Four bank Activation Window).  This is a sliding time window in 

which four bank activations at maximum can be done. 

COLUMN READ (RD): This command transfers data that are already in the sense 

amplifiers to the memory controller. Important thing to note about read commands is 

that they can happen in bursts which means that with a single RD command more than 

one data word can be transferred. This is enabled by “Core Prefetch” Technology [5]. 

Three timing parameters namely tCAS, tCCD,  tBURST, are related with RD command. tCAS 

is Column Access Strobe Latency parameter and it is the time interval between column 

read/write command and the retrieval of the data onto the data bus. tCCD is Column-to-

Column delay and determined by internal burst length, whereas tBURST is the data burst 

duration. 
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Figure 2.6 DRAM States and Commands 
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COLUMN WRITE (WR): Colum Write transfers the memory content from the 

memory controller to the sense amplifiers of the addressed bank. An important timing 

parameter related with WR is tCWD (Column Write Delay). It defines the delay between 

the delivery of WR command and the data retrieval onto the data bus by the memory 

controller. Second parameter is called as tWR (Write Recovery Time) and is defined as 

the smallest duration between the end of data transmission and the beginning of a 

precharge command. This parameter is needed for restoration of data to the cells. Last 

timing parameter is tWTR (Write-to-Read delay time). It is needed for reversing data 

bus direction and allows I/O gating to overdrive sense amplifiers. 

PRECHARGE (PRE): This command can be thought of as the opposite of the ACT 

command. With its issuance row access is completed, word line voltage level is 

lowered, the bit lines are disconnected from the capacitors and bit line voltage is set 

to VDD/2 for further row activations. Precharge related timing parameters are tRP (Row 

Precharge Time), tRAS (Row Access Strobe) and tRC (Row Cycle Time). tRAS is the time 

interval between ACT and restoration of data in the DRAM array. A bank should not 

be precharged until at least tRAS time passes after activation. tRP is the duration for a 

DRAM array to be precharged before any activation. tRC is the sum of two previous 

timing parameters, it defines the minimum time between distinct row accesses in a 

bank. 

REFRESH (REF): This command prevents electrical charge to decay to some 

indistinguishable levels and does data read-out and recovery in DRAM chips. Systems 

containing DRAM may have different refresh policies but must ensure the data 

integrity. Types of refresh policies will be explained in the upcoming sections. tRFC   

(Refresh Cycle Time) is the timing parameter associated with refresh. This value is 

proportional to device density since with a single refresh command more than one 

rows can be refreshed. 

POWER DOWN (PWR_DN_X): In general, there is no explicit power-down 

command for entering power-down modes. Clock enable (CKE) signal should be 
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lowered and DLL should be in locked or unlocked state to enable power-down in 

DRAM. However, the framework used in this thesis simplifies the process for 

simulation and Power down commands have two types as Power-Down-Fast and 

Power-Down-Slow. The first one can put a rank in a low-power mode with fast exit 

time and can put the rank in Active Power Down. Whereas the latter one can put the 

rank in Precharge Power Down mode which has more power savings at the expense 

of longer exit time from that mode. tXP  (fast exit time from power-down) and tXPDLL 

(slow exit time from power-down) are related timing parameters with Power Down 

commands. 

COMPOUND COMMANDS: These commands are the ones that can be seen in the 

state chart of DRAM in Figure 2.6. Column-Read-and-Precharge (RDA) and Colum-

Write-and-Precharge (WRA) firstly does read or write operation and precharges 

without any additional command.  

A summary of important timing parameters for DDR3 SDRAM can be found in Table 

2.1 in which the values reflect the ones used in our framework also. 
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Table 2.1 Important DRAM timing parameters 

Timing 

Parameter 

Default 

(cycles 

at 800 

MHz) 

Description 

tRCD 11 Row to Column Access Delay. Time between row 

activation and data to be sensed at sense amplifiers. 

tRP 11 Row Precharge. This much time should be waited after 

precharge before any further row activation. 

tCAS 11 Column Access Strobe. Duration between column 

read/write command and beginning of data transfer. 

tRC 39 Row Cycle Time. Time between accessing to distinct 

rows of a bank. Its value is the sum of tRAS and tRP. 

tRAS 28 Row Access Strobe. Duration between row activation 

command and restoration of data at DRAM array. This 

amount of time should be waited after activation to 

precharge that particular row. 

tRRD 5 Distinct rows activation delay. Time between two 

activation commands to same DRAM chip. 

tFAW 32 Four activation window. This is a sliding time window in 

which a maximum of four bank activations can be made. 

This way, peak current profile can be limited. 

tWR 12 Write recovery time. Interval between write data length 
ending and beginning of a precharge issuance. 

tWTR 6 Write-to-Read switching time. It is also known as bus 

turnaround delay. After a write data burst tWTR should be 

waited to issue column read command. 

tRTP 6 Read-to-Precharge. Precharge cannot be issued until this 

much time is waited after a read operation. 

tCCD 4 Column-to-Column Delay. It is determined by burst 

length. 

tRFC  128 Refresh cycle time. 

tREFI 6240 Refresh Interval Period. At most this number of cycle 

should be waited and a refresh command is issued. 

tCWD 5 Column Write Delay. Interval between delivery of 

column-write command and data transfer start from the 

data bus. 

tRTRS 2 Rank-to-rank switching time. 

tPDMIN 4 Minimum time duration in power down. 

tXP 5 Exit time from fast power down. 

tXPDLL 20 Exit time from slow power down. 

tDATATRANS 4 Data transfer duration from memory to CPU or vice 

versa. 
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2.2.1.2. An Example Cycle 

In this subsection a typical DRAM read cycle is explained by elaborating the details 

of request to command interaction, cell capacitor charge state and related timing 

parameters. This subsection is needed to better understand the design details. In Figure 

2.7 a cell that stores a “1” in its initial state is illustrated. Upcoming explanations will 

be made referring to that figure. 

 

Figure 2.7 Typical Read cycle with commands, timing parameters & charge state 

In the initial state (1), the bit line is held at Vdd/2. The capacitor (which stores “1”) and 

bit line is not connected since the word line is at 0V. To access the “1” data in that 

cell, the row containing the cell should be activated by ACT command. ACT 

command raises word line voltage yielding in connection between the capacitor and 

the bit line. When the connection is established in (2) charge sharing phase starts 

between capacitor and bit line, in this example the direction of the flow is from 

capacitor to the bit line since the capacitor stores a “1”. After a short time, sensing 

phase (3) starts in which detection of the small voltage difference on the bit line is 

sensed and amplified by sense amplifiers. As explained in the previous sub-section 

tRCD time should pass after ACT command issuance to complete the sensing phase. 

Now a READ (or WRITE) command can be issued, and original cell state should be 

restored (4). tRAS time should be waited after ACT command before issuing any PRE 

command. Once the original capacitor charge is fully restored, PRE command can be 

issued to set the bit line voltage to Vdd/2 for upcoming row activations (5). Precharging 
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phase takes tRP time and the cell starts to leak charge as can be seen in (6). If it is not 

refreshed until it drops down to Vdd/2, the information will be lost. 

2.2.2. DRAM Memory Controller 

Memory Controller is the “smart” part of the memory subsystem. It lies between the 

last-level cache (LLC) and the main memory and control the data flow and standard 

compliance managing almost every detail about main memory. Every memory request 

to memory controller is transmitted by LLC. Cache misses are converted to memory 

read requests and dirty cache evictions are converted to memory write requests. In 

general, cache and memory controller make independent scheduling decisions (Cache 

Controller & Memory Scheduler) and their internal states are invisible to each other. 

A simple illustration of the interaction between LLC, Memory Controller and DRAM 

is depicted in Figure 2.8. 

 

Figure 2.8 LLC, Memory Controller and DRAM interaction 

In Figure 2.8, LLC is receiving requests directly from I/O device or processor which 

is just a simplification. Moreover, MC and DRAM interface contains not only a simple 

interface but complex electrical signaling, etc. For the rest of this work, Memory 

Controller and DRAM is the main focus, and for simplicity, requests to MC is assumed 

to be received from various requestors (heterogeneous cores, i/o devices etc.) directly, 

instead of LLC.  

Memory Controller has essential functions as (i) Transaction Scheduling, (ii) Address 

Translation, (iii) Command Generation & Scheduling, (iv) Refresh Management and 



 

 

 

19 

 

(v)Error Management. Block diagram of internal structure of a typical Memory 

Controller can be found in Figure 2.9. 

 

Figure 2.9 Memory Controller Internal Structure 

Essential functions mentioned above will be explained comprehensively in the next 

subsections. 

2.2.2.1. Address Translation (Mapping) 

Memory Controller’s one functionality is that it can decompose the arriving physical 

address of a request into channel, rank, bank, row and column bits. How it is done can 

directly impact the DRAM performance. Address Translation should be done in 

accordance with application run-time behavior. If it is done without considering the 

application, consecutive requests can be mapped to distinct rows of the exact bank 

which results in many bank conflicts and decrease the memory system performance. 

Besides, address translation scheme should also consider about some degree of 

parallelism. Basically, the duty is to diminish the likelihood of bank conflicts in 

consecutive requests and since changing address translation scheme in run time is not 

possible, a balance between different approaches should be found. To understand the 
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basics of address translation, parallelism levels in memory system needs to be 

explained first. 

Channel Level: The highest degree of parallelism exists in this level. No restrictions 

are imposed to different channels controlled by memory controllers. 

Rank Level: A MC can access different ranks simultaneously, however command, 

address and data buses are shared by different ranks. Moreover, rank-to-rank 

switching may be a significant time penalty in high frequency DRAMs and decreases 

the desirability of sending successive requests to distinct ranks. 

Bank Level: As in the case of rank level, consecutive memory access to banks can 

proceed in parallel given that the shared address, data and commands buses are 

available. The performance increase can be obtained by pipelining memory requests. 

However, due to time penalties in different levels originated from switching between 

different type of commands, bank-level and rank-level parallelism have their trade-

offs.  

One crucial part of address mapping is to decide partitioning banks or interleaving 

them. In bank partitioning, a bank or set of banks can be assigned to each requestor. 

This method is used mostly in predictable MCs to mitigate the effects of row 

interference since no other requestor can interfere with the other one’s private bank. 

On the other hand, bank interleaving is useful for providing more parallelism since 

consecutive requests to different memory pages are assigned to different banks in the 

memory. The downside is the increase in the interference because any bank in the 

memory system  can be accessed by each requestor. 

2.2.2.2. Transaction Scheduling 

Memory controllers only need to schedule memory request commands (ACT, PRE, 

RD, WR) and not individual requestors’ requests (Read/Write). However, this is not 

the case for most of them and they generally implement front-end request scheduler 

which orders the requests from different requestors to process. This is done to increase 
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the performance, provide fairness and to lower the energy consumption. There are 

mainly three arbitration schemes employed in general purpose MCs. 

1) Time-Division Multiplexing Arbiter: One or more slots are assigned to each 

requestor, and requests from that requestor can only be serviced during its 

assigned slots. This method lacks efficiency since unused slots are wasted. 

2) Round Robin Arbiter: Compared to TDM, unused slots are not wasted and 

made available to the following requestor. 

3) First-Ready First Come First Serve Arbiter: This scheme can be found in 

most of the general-purpose MCs. Apart from being FCFS, first ready means 

the scheduler prioritizes requests that are targeting to an already activated row. 

If there is no such request, the scheduler uses simple FCFS. 

Other than main arbitration methods mentioned above, there are variety of 

scheduling schemes to improve the QoS of the memory controller. Those methods 

will be covered in related work section. The main objective of transaction 

scheduler is to find an optimal point between hardware complexity & cost and 

performance improvement. 

2.2.2.3. Command Generation & Scheduling 

Requests are transmitted to MC as Read or Write requests and corresponding DRAM 

commands are generated. For example, if the targeted row for a Read request is not 

active (closed) PRE, ACT and RD commands are generated sequentially. A row’s 

state (active or not active) is determined by the row policy used by MC. Generally, 

there exists three types of row policies as follows: 

1) Open-Page: This policy favors to take advantage of  row locality by holding 

the row activated after an access. That way the row’s contents are held in the 

row buffer and any further access to that row does not need ACT command 

and access latency decreases. This is useful when different columns in the 

same row are accessed adjacent to each other. However, this policy cannot 

provide any fixed timing guarantee since if the following  command targets a 
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different row, the row should be precharged (closed) and a different row is 

activated which results in longer access times. 

2) Close-Page: This policy favors timing predictability. After a served request, 

the row-buffer is moved to the idle state by using Read/Write commands with 

Auto-Precharge (RDA, WRA). Therefore, every upcoming request must first 

activate a row and place the data in the row buffer using ACT command and 

following RD or WR command can be issued. It may lack to exploit row 

locality but make the access latency predictable by providing bounded WCET. 

Moreover, if a row-miss occurs, the request is serviced in shorter time with 

Close-Page policy since Open-Page policy needs explicit PRE command. 

3) Hybrid-Page: This policy is a mixture of Open and Close Page policies. 

Where large requests requiring multiple memory accesses are needed, some of 

the commands can benefit from row locality by using Open Page policy while 

some others can use RDA, WRA commands. 

 

On the other hand, Command Scheduling handles the proper sending of queued 

commands generated by Command Generator while complying with particular timing 

constraints. There can be two approaches in Command Scheduling as Static and 

Dynamic Command Scheduling. 

1) Static: This type of scheduling is determined off-line as its name implies. 

Commands are grouped together known as bundles and the order is pre-

determined. The advantages are simple analysis of latency and a simple 

controller design. Since row state cannot be determined at run-time, close-

page policy must be used in static command schedulers. 

2) Dynamic: These schedulers treat commands individually. The hardware 

complexity is increased with respect to the static one, since a complex 

sequencer must be included. The advantage of this type of scheduler is its 



 

 

 

23 

 

rapid adaptation to different type of memory workloads and access 

characteristics. 

2.2.2.4. Refresh Management 

All DRAM controllers must ensure the data integrity in DRAM devices and this is 

done via refresh function. Refresh operations must be done periodically to protect the 

data stored. In general, refresh stalls the normal operation and all banks become 

inactive for a period. In conventional  “asynchronous” DRAM there were two types 

of refresh rate as 15.6µs (standard) and 125µs (extended). In modern “synchronous” 

DRAMs the refresh rate depends only on the temperature and it is 7.8 µs at normal 

temperature (0-85ºC), and 3.9 µs at extended temperature (85ºC-95ºC). In DDR4 

standard [6], a new refresh scheme was introduced as fine-granularity refresh which 

permits tREFI to be programmed. This way, user can modify if the device is in normal, 

2x or 4x mode where tREFI is divided by 2 or 4. 2x and 4x modes can decrease the 

number of rows to be refreshed with a single command resulting in the decrease for 

tRFC . SDRAMs use two different refresh schemes as auto-refresh (AR) and self-

refresh (SR). 

Auto-Refresh (AR): Modern DRAM devices have an internal refresh counter which 

keeps track of the last refreshed rows. The MC is in charge of sending AR commands 

at a pre-determined rate to refresh a fixed number of rows in all the banks. This 

operation is called as all-bank auto-refresh. During AR read/write and related memory 

operations are stopped. An example AR cycle can be seen in Figure 2.10. 
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Figure 2.10 Auto-Refresh example cycle 

Figure 2.10 illustrates that the DRAM device should be brought to idle state by 

sending PRE command to all open rows, a REF (AR) command is issued. DRAM 

device determines the rows to be refreshed by its internal counter and AR operation 

continues cyclically. 

Self-Refresh (SR): In Auto-Refresh mechanism, power consumption is significant 

because all the components in SDRAM is active for the whole period. To decrease 

power consumption, SDRAM has an additional refresh mode, in which the device 

internally creates all refresh pulses with a built-in analog timer. That means, in SR 

mode, all clocks and I/O pins are disabled, and the device can maintain its data 

integrity without any intervention from the MC. The device can enter in SR mode by 

lowering clock enable (CKE) signal. 

Mostly, retention times of DRAM cells can vary as inter-cell and even intra-cell due 

to process variations and refresh timings are adjusted for worst case situation and can 

be prolonged. However, standard requirements make refresh timings very important 

since most of COTS DRAM devices have worst case retention periods that are quite 

short (32ms or 64ms).  The essential condition is that a cell should be refreshed at least 

for one time during its retention period. The controller should send tRetention/tREFI 

number of AR commands within a refresh window. The number of rows to be 

refreshed depends on the device density. For instance, a DDR3 device with tREFI of 
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7.8µs and tRetention of 64ms, 8192 refresh commands should be issued and if the device 

is 4Gbx8, with 65536 rows, 8 rows should be refreshed with a single refresh command. 

Device density effect on refresh completion time can be seen in Table 2.2  

Table 2.2 Device density vs Refresh completion time [41] 

Device tREFI (µs) Parameter 1Gb 2Gb 4Gb 8Gb 

DDR2 7.8 tRFC (ns) 127.5 197.5 327.5 --- 

DDR3 7.8 tRFC (ns) 110 160 300 350 

DDR4 1x 7.8 tRFC (ns) --- 160 260 350 

DDR4 2x 3.9 tRFC (ns) --- 110 160 260 

DDR4 4x 1.95 tRFC (ns) --- 90 110 160 

 

In DDRx devices, refresh policy  has some flexibility. 8 AR commands can be issued 

in advance or they can be postponed, which can be decided by the memory controller 

depending on the memory intensity. There are two requirements considering the 

flexible refresh scheme: 

• In 9 * tREFI period, one AR must be sent at minimum. 

• In 2* tREFI  interval, at most  16 AR commands can be sent. 

Other than flexibility, refresh can be done in different granularity levels as Rank, Bank 

or Row-Level. 

Rank-Level: MC can decide to do the refresh operation either at all-ranks or at per-

rank basis. If all-rank refresh is selected, the main memory is down for the whole 

refresh operation, whereas in the latter case some ranks are refreshed while the other 

ones can service memory requests. 

Bank-Level: In DDRx devices, the only option is to refresh all-banks in a rank 

simultaneously which is called as all-bank refresh. Only for LPDDRx devices (which 
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are out of scope for this work) can benefit from per-bank refresh that can make every 

bank available but one, for the refresh period. 

Row-Level: Conventionally, there is no such row-level granularity of refresh 

operation in DDRx devices. Either a command should be added for refreshing a row 

or a row should be activated and then precharged explicitly. However, both 

approaches are barely acceptable since SDRAM AR is optimized in hardware for both 

latency and power and without skipping enormous number of rows, this method 

cannot provide any benefit. 

2.2.2.5. Error Management 

DRAMs are prone to both hard breakdowns and soft errors just like any other 

semiconductor-based devices. Hard failures can stem from breakdown of the device 

physically or a connection, electrostatic discharge, thermal cycling etc. Soft errors are 

caused by random noises corrupting the stored value. In the early 2020s, exascale 

systems will have an estimated 32 to 100 petabytes of main memory which increases 

the need for reliability in main memory [7]. Memory controllers are also responsible 

for handling these different types of errors to increase the memory reliability. General 

purpose error handling mechanism is Single-Bit Error Correction, Double-Bit Error 

Detection (SECDED). This algorithm can distinguish one-bit error from a two-bit 

error, its storage cost is relatively low and uses simple parity checks. For more fatal 

issues, such as total failure of one of the DRAM devices IBM’s chipkill-correct [8] 

can be used by memory controllers. 
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CHAPTER 3  

 

3. RELATED WORK 

 

In this chapter, DRAM Memory Controller related works in recent years will be 

presented. Since there are many works that need attention, they will be divided into 

categories as Scheduling, Bank/Bandwidth Allocation, Power, Refresh, Access 

Latency, DRAM & LLC and Page Policy. 

3.1. Scheduling 

3.1.1. TCM (Thread Cluster Memory Scheduling) 

Proposed by Kim et al. [9], Thread Cluster Memory Scheduling is an algorithm aiming 

to achieve high system throughput and fairness. The basic scheme is to split threads 

into two separate clusters as memory-non-intensive (latency-sensitive) and memory 

intensive (bandwidth-sensitive). Latency-sensitive cluster is given higher priority over 

the bandwidth-sensitive cluster to increase the system throughput.  A “niceness” 

metric is introduced that seizes a thread’s inclination towards interfering with other 

threads. Then this metric is used to periodically shuffle the threads’ priorities to 

improve the fairness. Moreover, within each cluster different scheduling policies are 

used. In latency-sensitive cluster, least memory-intensive thread obtains the highest 

priority. Whereas in bandwidth-sensitive cluster, the memory bandwidth is shared by 

the threads resulting in no starvation or no excessive slowdown. 

3.1.2. Thread Fair Memory Request Reordering  

Proposed by Fang et al. [10], this scheduler’s aim is to provide high fairness among 

multiple requestors competing for main memory. In this method, there are two modes 

called as “read first” and “write first”. Reads are mostly serviced before writes since 

read requests are critical for program execution while write requests are caused by 
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dirty cache line evictions and can be stalled. Writes are only obtaining higher priority 

when a predetermined write queue threshold is exceeded, and they are drained to a 

point where the write queue has enough space in it. In read first mode, row hits have 

the highest priority and Reorder Buffer (ROB) head request is not issued until all row 

hits are consumed. As in read first mode, row hits are issued with high priority in write 

first mode and if there is none, FCFS scheduling policy is applied. Moreover, pending 

requests are monitored and if there are no waiting requests, auto-precharge is used 

with the last column access. For monitoring purposes, different queues are 

implemented as Read Queue (RQ), Write Queue (WQ), Read Row Hit Queue 

(RRHQ), Write Row Hit Queue (WRHQ), Read Pending Queue (RPQ) and Write 

Pending Queue (WPQ). 

3.1.3. LAMS (A Latency-Aware Memory Scheduling Policy) 

Proposed by Liu et al. [11], this scheduler is based on [12]. In [12] DRAM access 

latency’s main cause is referred as long bit lines’ parasitic capacitance and an 

architectural change was proposed as splitting bit lines into two segments as near and 

far segments by an isolation transistor, resulting in a shorter latency for accessing near 

segments. To benefit from this prior work, Latency-Aware Memory Scheduler 

classifies the pending requests into three categories and assign their corresponding 

priority. Highest priority is assigned to row buffer hit requests, medium priority is 

given to near segment requests and lowest priority is assigned to far segment requests. 

This prioritization scheme mitigates the total queueing time of the memory requests 

and increases the performance. An additional precaution is implemented for starvation 

of far segment memory requests by adding a configurable maximum scheduling delay. 

3.1.4. Staged Reads 

Proposed by Chatterjee et al. [13], this work proposes a novel mechanism and some 

architectural changes to increase read-write parallelism and hide the latency caused 

by sharing the memory bus. They claim that, by their method, DRAM writes’ impact 

on DRAM reads can be significantly decreased. In this mechanism, some registers 
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near the memory chip’s I/O pads are allocated as Staged Read Registers (SRR) and 

when some of the banks are dealing with servicing writes, some read requests can be 

issued to other idle banks whose results can be returned to SRRs instead of busy 

memory bus. Right after write operations’ idling the memory bus, results can be sent 

through. Aside from implementing SRR if registers near I/O pads are not enough for 

this algorithm to work, some additional commands should be added since 

conventional RD commands cannot work with newly proposed registers. 

3.1.5. Rank-Level Parallelism in DRAM  

Proposed by Shin et al. [14], this scheme implements a new architecture that enables 

simultaneous operations of multiple rank-level data buses. Like row-buffer structures 

in each bank, a structure called Middle Buffer (MiB) is added to each rank. The new 

parallelism is called as MiB-induced Rank-Level Parallelism (mRLP). With this 

newly introduced parallelism, even if a rank seizes the bus shared by ranks, the other 

ranks can work with their private MiBs. As in [13], new commands should be added 

for this structure, too. Aside from regular read and write commands, Channel-Level 

Read/Write and Rank-Level Read/Write commands are introduced. For example, even 

if a rank is disconnected from the channel, Rank-Level Read (RLR) can be sent and 

can get desired column from the already activated row. Proposed work can reduce 

bank conflict penalty, mitigate write disturbance and can lower refresh overheads. 

3.1.6. MEDUSA (A Predictable and High-Performance DRAM Controller) 

Proposed by Valsan et al. [17], this work’s motivation is the memory interference 

problem at the bank level. Its main inspiration is the work in [16] as OS-level bank 

partitioning, the simple idea that some banks can be assigned as reserved banks to 

some requestors while the others remain as shared banks. If requests are directed to 

the reserved banks, determinism focused memory scheduling techniques (Round-

Robin for Reserved banks) are applied. On the other hand, if requests are directed to 

shared banks, throughput focused scheduling (FR-FCFS) is favored. One the 

difference between MEDUSA and COTS DRAM controllers is that when switched 
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from read batch to write batch a “minimum-writes-per switch” number of writes 

should be serviced. MEDUSA’s OS-based approach has flexibility advantage but can 

incur additional delay until memory allocation is done. 

3.1.7. BLISS (Blacklisting Scheduler) 

Proposed by Subramanian et al. [18], the work’s motivation is solving application 

interference at main memory that unfairly slows down memory request servicing. 

BLISS prioritizes requests from different threads depending on their memory access 

attributes by using some kind of Blacklisting mechanism. They claim that previous 

application aware memory schedulers are complex in hardware and causes unfair 

slowdowns.  Main observations are, unlike traditional application aware memory 

schedulers that ranks all applications, it is sufficient to divide them only into two 

groups as (i) vulnerable-to-interference and (ii) interference-causing, and for this 

approach to work solely counting the number of successive requests served from an 

application during a short duration is enough. Blacklisting mechanism works in the 

following way: Application ID of the last serviced request is kept and new request’s 

application ID is checked, if the two are the same RequestServed counter is 

incremented, if not the counter is reset and last serviced request ID is updated. If 

RequestServed counter reaches to 4 in 10000 cycles (Clearing Interval), the 

application is blacklisted. This counting procedure continues during whole execution 

time, and prioritization is done in the following order: (1) Requests from non-

blacklisted applications, (2) Row-buffer hit requests, (3) Older requests. 

3.2. Bank/Bandwidth Allocation 

3.2.1. BWLOCK (Bandwidth Lock) 

Proposed by Yun et al. [15], it was designed to protect the soft real-time applications’ 

performance from the non-real-time (NRT) applications interference running on 

different cores. Soft Real-Time applications’ (SRT) some code sections that exhibit 

critical performance is called as Memory-Performance Critical sections (MPCSs) and 

Bandwidth Lock (Memory BWLOCK) can present a lock like API for those critical 
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sections. During programming of SRT applications, certain code snippets can be 

marked as MPCS and BWLOCK throttles the amount of memory bandwidth allowed 

for the rest of the cores. Unlike traditional locking, where only one task can obtain the 

lock at a certain time, BWLOCK can be obtained by several tasks on different cores. 

There are only two rules to follow: (i) No SRT task will be throttled under any 

circumstance. (ii) All NRT tasks’ allocated memory bandwidth will be limited to a 

pre-determined threshold. 

3.2.2. PALLOC (DRAM bank-aware memory allocator) 

Proposed by Yun et al. [16], it is a kernel-level memory allocator that takes advantage 

of virtual-to-physical memory translation to allocate different applications memory 

pages to distinct DRAM banks. It is a software-based solution implemented on the 

standard Linux 3.6.0 kernel and fully compatible with COTS HW platforms and works 

seamless to applications. Its main goal is to diminish the memory performance 

unpredictability and provide isolation by controlling applications’ memory locations 

and this is done via partitioning DRAM banks dynamically among multiple 

requestors. 

3.3. Access Latency 

3.3.1. NUAT (A Non-Uniform Access Time Memory Controller) 

Proposed by Shin et al. [19], this work is inspired by the fact that DRAM access 

latency varies due to electric charge variations in cell capacitors. Basic principle is 

that “Row access time is proportional to the elapsed time from the row’s last refresh 

time”. NUAT reduces request access latency with no architectural changes to the 

existing DRAM structure. NUAT implements a scoring algorithm which prioritizes 

requests to recently refreshed rows. Other than refresh time data, operation type, 

pending time in request queue, row-hit rate are variables for this scoring algorithm. If 

the row was recently refreshed, the controller also uses lowered tRCD and tRAS values 

for the upcoming activation. 
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3.3.2. ChargeCache 

Proposed by Hassan et al. [20], this work can be counted as an extension of [19].  

NUAT only uses recently refreshed rows’ lowered access latency, which may have 

too little correlation with the memory access characteristics of the applications, and it 

was found that if that policy is used, only 12% of all memory accesses can benefit 

from low latency. ChargeCache uses not only recently refreshed rows but also recently 

accessed rows since the idea is similar, if a row is recently accessed, its upcoming 

activations in a short time duration can be lowered. In its high-level overview 

ChargeCache implements a small table called as Highly Charged Row Address Cache 

(HCRAC with 128 entry) to the memory controller which tracks the recently accessed 

DRAM rows’ addresses. When a precharge is sent to a bank, the algorithm inserts that 

particular rows’ address to HCRAC and when an ACT command is about to be issued 

the algorithm checks if that address is in HCRAC or not. If so, tRCD and tRAS values 

are lowered. For this method to work properly, HCRAC is updated periodically and 

the address exceeding some pre-determined caching duration (1ms) are invalidated 

from the table. 

3.3.3. AL-DRAM (Adaptive-Latency DRAM) 

Proposed by Lee et al. [21], this work introduces a scheme that adaptively diminishes 

the timing parameters depending on the current device operating condition by 

requiring no changes to the existing DRAM structure or its interface. To achieve this, 

115 DRAM modules from major manufacturers were tested and their excessive 

margin that was built into their timing parameters were characterized. The mechanism 

involves two steps, where in the first step best timing parameters for each 

DIMM/temperature were identified and in the second step memory controller is forced 

to use the best timing parameters depending on the DIMM/temperature variance. Their 

results show that lowered parameters for tRCD, tRAS, tWR, tRP can be used at a maximum 

operating temperature of 55ºC. 
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3.4. Refresh 

3.4.1. A Case for Refresh Pausing in DRAM Memory Systems 

Proposed by Nair et al. [22], this work proposes an interruptible and pausable refresh 

architecture unlike the conventional one. For this purpose, “Refresh Pause Points” 

(RPP) are determined. For example, a DRAM containing 4 or 8 rows can have 3 or 7 

RPP. The method needs only one AND gate and one byte per rank and no additional 

signal pins between the memory interface and processor are necessary. The duty of 

the controller is to determine when to interrupt an ongoing refresh and when to restore 

an interrupted refresh. With RPP, some ongoing refreshes are paused when the 

memory workload is intensive and can be continued when that phase ends. 

3.4.2.  Non-blocking Memory Refresh 

Proposed by Nguyen et al. [23], this work changes DRAM to act like SRAM at the 

system-level by making DRAM to preserve data in the background with no stalls to 

read requests to refresh memory blocks. The method was applied to server memory 

systems where they already have extra data to provide hardware breakdown 

protection. Since redundant data is mostly under-utilized most of the time, this data 

can be securely used to implement non-blocking refresh. To enable the method, the 

devices in each rank are logically partitioned into refresh groups and single non-

blocking refresh operation refreshes a single refresh group. While using redundant 

data, they also implement an algorithm to perform error detection and correction in 

the worst case. For the method to work, significant architectural changes to DRAM is 

needed. 

3.4.3. DTail (A Flexible Approach to DRAM Refresh Management) 

Proposed by Cui et al. [24], this work’s aim is to store refresh data with too little cost, 

track these different types of refresh data and coordinate the controller and every level 

of software to perform necessary refresh with increased efficiency. Stored data types 

are Retention, Error Tolerance, Access Recency, Row Validity and they are all stored 
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in the DRAM itself. Depending on the aforementioned refresh data, automatic or 

custom refresh decisions are made. 

3.4.4. Elaborate Refresh 

Proposed by Seol et al. [25], this work investigates the downsides of weak cell density 

on the retention aware approach and proposes a new retention aware refresh method 

using refresh skipping for significant part of the rows. The basic idea is to seperate the 

retention groups by chip and refresh a different row in each device simultaneously. 

Instead of storing refresh information as in prior works, in Elaborate Refresh (ER) 

only the addresses of weak groups (cells with very low retention time) are stored and 

the other rows are classified as strong groups. ER needs some additional DRAM 

operations for effectively skipping unnecessary strong group refreshes, a mechanism 

to refresh weak groups and a prefetch operation that sends retention information from 

DRAM chips to the integral registers. 

3.4.5. AVATAR (A Variable Retention-Time Aware Refresh) 

Proposed by Qureshi et al. [26], this work has two essential goals as to analyze the 

impact of Variable Retention Time (VRT) on multi-rate refresh by experiments and 

to develop a practical scheme for enabling multi-rate refresh in systems with VRT. 

AVATAR actively monitors the active VRT cells and adaptively changes the refresh 

rate for rows that are affected by VRT failures at runtime. In the implementation, every 

rows’ slow or fast refresh rate need is kept in the controller by one bit and it does so 

by a primary testing of retention time to build a Row Refresh Table. Moreover, 

AVATAR employs ECC DIMMs for detecting and correcting errors due to VRT. 

3.4.6. Improving DRAM Performance by Parallelizing Refreshes with Accesses 

Proposed by Chang et al. [27], this work’s aim is to facilitate the downsides of per-

bank refresh by enabling more effective parallelization of refreshes and access within 

DRAM. Per-bank refresh currently is not allowed in standard DRAMs and can only 

be applicable to LPDDR DRAMs. Two different techniques are used for this purpose 
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that are called as Dynamic Access Refresh Parallelization (DARP) and Subarray 

Access Refresh Parallelization (SARP). In DARP, out-of-order per bank refresh is 

used and write-refresh parallelization is implemented. Out-of-order per bank 

refresh means that bank selection logic is removed from DRAM and MC is delegated 

to refresh idle banks to enhance parallelization of refreshes with accesses. Write-

refresh parallelization is where refresh interference on read requests is avoided and 

the bank with the minimum number of pending requests is selected to preempt the 

bank’s writes with a per-bank refresh. DARP requires no modification to the existing 

DRAM structure, whereas SARP requires modifications to DRAM to provide access 

to subarrays individually. SARP briefly tackles the problem of accessing a bank and 

refreshing it simultaneously. It exploits the fact that each DRAM bank has several 

subarrays in it and they can be used simultaneously with some modification. 

3.4.7. Refresh Aware Write Recovery Memory Controller 

Proposed by Jang et al. [28], this work’s main contributions are examining various 

major barriers to write recovery for DRAM write operation and proposals of two 

mechanisms called Relaxed Refresh with Compensated Write Recovery (RRCW) and 

Refresh-Aware Write Recover (RAWR). First, they observed that DRAM cells have 

longer retention time after activation and refresh when compared to write operation. 

RRCW uses the dependence between tWR and tRET. The retention facility of the weak 

cells can be increased by increasing tWR, for example refresh can be done in every 

2.59* tRET  by increasing tWR to 35 ns from 15ns. RAWR algorithm uses the Refresh 

Distance (RD) metric as the distance between Last Refresh Row and Current Write 

Row and a dynamic tWR value based on Refresh Waiting Time (RWT) which is 

directly proportional to RD. Therefore, if RWT of a written cell is short, RAWR 

performs the write recovery operation with a shorter tWR. 
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3.5. Page Policy 

3.5.1. RBPP (A Row-based DRAM page policy) 

Proposed by Shen et al. [29], this work’s motivation is the relative inefficiency of 

current page policies (close-page & open-page). In this method, row addresses of 

memory requests to each bank are tracked and row address is used as the pointer to 

decide whether or not to close the active row after operation’s completion. For each 

bank, few registers are used to save the most accessed row addresses and a 

corresponding counter is held in each register to invalidate the most accessed row 

register (MARR) entries. Every time a new request comes MARR is checked whether 

it has the current memory request’s address. Briefly, if new address is in MARR, row 

is left open after the operation and if not, the row is closed immediately after the 

operation. 

3.5.2. Closed-yet Open DRAM 

Proposed by Subramanian et al. [30], this work proposes to isolate bit lines and sense 

amplifiers to enable reads and precharges to operate in parallel. The method includes 

overlapping the precharge of the sense amplifiers internal nodes with the charge 

sharing phase of the activate operation by simply adding an equalization transistor.  

Isolation transistor is then resized to decrease activation latency by up to 25%. 

Moreover, there is a scheme called Power-aware row management that tracks the 

number of requests arriving to a row for different durations after the row is last 

activated. This monitored data is used to determine for how long the data should be 

kept in the sense amplifiers to have the most requests as row-hits. Additionally, 

Simple Write-aware Row Management reduces latency by avoiding a precharge to 

a row that is still active for a write request, for as long as there are write row hits to 

the row.  
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3.6. Last-Level Cache and Memory Controller 

3.6.1. Row-Buffer Hit Harvesting 

Proposed by Song et al. [31], this work states a major problem in current 

heterogeneous multicore systems, that is without any organization and visibility of 

memory access with each other, neither LLC Controller nor Memory Controller can 

make optimal decisions about scheduling, therefore, a unified memory controller for 

both LLC and DRAM is proposed. In the unified memory controller, the scheduler 

operates in two different modes as memory scheduling and row-buffer hit 

harvesting. In the first mode, the scheduler does what it does conventionally, and in 

its conventional mode some idle cycles exist which can be utilized by row-buffer hit 

harvesting mode. In harvesting mode, the scheduler seeks through the read requests in 

cache request buffers and if a read request’s target address hits an open row or a row 

to be opened in few cycles, the request is removed from the request buffer by the 

scheduler and it is sent to LLC through a newly proposed structure called fast lane. 

The aim of harvesting mode is to find cache requests that can potentially result in row-

hits and reduce their cache access latency. 

3.6.2. DRAM-Aware Last-Level Cache Writeback 

Proposed by Lee et al. [32], this work proposes a new last-level cache writeback 

policy. The mechanism monitors dirty cache lines (writebacks) which are evicted from 

the LLC and tries to find some other cache lines mapped to the same row as the evicted 

line. If found, the algorithm aggressively sends writebacks for those dirty cache lines 

to DRAM. For this mechanism to be effective, two conditions should be met: (i) LLC 

cache banks should have enough number of idle cycles to be monitored for row hits, 

(ii) rewrites to cache lines should not happen too frequently, since if it happens too 

much the number of DRAM writes increases significantly. 
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3.7. Power 

3.7.1. A Read-write aware DRAM scheduling for power reduction in multi-core 

systems 

Proposed by Lai et al. [33], this work lowers DRAM power consumption with a little 

degradation in performance. It proposes that a throttle delay is set and commands from 

LLC is delayed until that delay value is reached. When the delay value is exceeded, 

commands are clustered into command sets by rank in the Reorder Queue (RQ). A 

rank that is not targeted by any of the command sets is powered down since it becomes 

idle. On the other hand, reads are prioritized over writes and only the command sets 

with read requests are sent to Command Queue and the corresponding ranks are 

powered on. To avoid read-after-write data hazard, rank level read-write reordering is 

checked before performing the operation. 

3.7.2. RAMS (DRAM Rank-Aware Memory Scheduling) 

Proposed by Lee et al. [34], this work’s main goal is the efficient utilization of low-

power modes of DRAM with rank-aware memory scheduling schemes. The first 

method exploits the Cache Block Replacement Policy in static and dynamic 

approaches. In static approach, dirty block to be evicted is chosen in the order of 

active>power-down>self-refresh regions. In dynamic approach Least Recently Used 

(LRU) region is changed dynamically based on cache miss occurrences. The second 

method involves sending batch-writes depending on rank states. This method 

increases the rank idling period of DRAM and decreases transitions to/from power-

down modes. 
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CHAPTER 4  

 

4. AN APPLICATION-AWARE DRAM CONTROLLER 

 

4.1. Introduction 

Memory Controller research has gained much importance in the last decade since the 

memory subsystem has become a bottleneck in “Memory Intensive Applications” era. 

With chip multiprocessors’ wide range of applications, competing for the shared 

resource of memory by many requestors resulted in many problems to deal with. 

Orchestration of such application requests, increasing the throughput while keeping 

the energy consumption as low as possible are not trivial tasks and the design of such 

optimized memory controllers is the main concern in the current memory system 

research trends. Already, many previous works have focused on different aspects of 

memory controllers which were explained in Chapter 3. Besides, in 3rd Journal of 

Instruction Level Parallelism (JILP) Workshop on Computer Architecture 

Competitions (JWAC-3) a Memory Scheduling Championship (MSC) has been held 

in 2012, to encourage and stimulate the work to be done in “Memory Controller 

Optimization” area. One of the recent approaches was proposed by Subramanian et al. 

[18] which was claimed to have low hardware complexity and high performance while 

providing fairness. It was referenced as baseline for this thesis and in that work, the 

applications are separated into two groups without individually ranking each of them. 

The mechanism is called “Blacklisting “and a pre-determined threshold for the number 

of consecutive requests from a single application is set to “4” to blacklist an 

application. The application blacklist status is cleared in every 10000 cycles and 

applications are scheduled based on their blacklist status, row-buffer locality and 

arrival time. The main idea in this scheme is that more memory intensive applications 

need to be throttled in order to allocate bandwidth fairly to non-memory-intensive 

applications. 
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4.2. Motivation 

Application aware memory scheduling (AAMS) is crucial even for general purpose 

computer systems. Memory access characteristics of applications can change during 

program execution and simple FR-FCFS scheduling [36] cannot provide enough 

efficiency for memory subsystem. A thread can make excessive number of requests at 

some point and prioritization of different threads should be provided by the memory 

controller. Prioritization must be as fine-grained as possible while keeping the low 

hardware complexity requirement in mind. Moreover, an AAMS should not  consider 

distinguishing threads according to their memory intensity only as in [18] and most of 

the other works because memory controller bears other several responsibilities. A MC 

should also deal with command & refresh scheduling and efficiently use power-down 

modes if applicable. Additionally, as it was pointed out in [21], some of the DRAM 

parameters are over-safe and does not reflect the DRAM cell characteristics for the 

common case, so these timing parameters can be lowered while ensuring the data 

integrity so an MC design might benefit from implementing approaches similar to 

[20]. 

4.3. Memory Model 

This thesis work is based on the USIMM (Utah Simulated Memory Module) [35] 

simulation framework. The framework simulates a memory subsystem compatible 

with JEDEC DDR3 standard and as stated in [37] USIMM was validated against 

Micron DDR3 Verilog Models without any observable violations. In USIMM, DRAM 

chips ranging from 1Gb to 4Gb with up to total 64GB capacity is supported. 1 to 4 

Channels, 2 ranks per channel, 8 banks per rank are modeled and separate read/write 

queues with configurable storage capacity were implemented. Detailed explanation 

for simulation the framework will be provided in Chapter 5. 
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4.4. Implementation 

In this section, “A Low Power & High Throughput Application Aware Memory 

Controller” design and its details will be elaborated. Reasoning for every design 

choice will be given by comparing particular parts with well-known previous works. 

4.4.1. Memory Access Intensity Detection (MAID) 

In previous works as [11], [18] applications’ memory access characteristics are 

defined as memory-intensive or memory-non-intensive. This is a practical approach 

since memory-non-intensive (compute-intensive) applications mostly suffer from 

being stalled by memory-intensive applications’ aggressive requests yielding in the 

decrease of fairness and throughput. If compute-intensive applications are given 

higher priority, their short-duration memory services can be finished as soon as 

possible, and compute phase of the applications can continue without extreme delays. 

To differentiate between memory-intensive and compute-intensive applications and 

even their different phases during program execution, a monitoring should be applied 

by the memory controller. The hardware cost of this monitoring is dependent on the 

application ranking & prioritization complexity. Monitoring can be done in fine-

grained or coarse-grained intervals, and several structures might need different 

amount of storage for that purpose. BLISS [18] algorithm is depicted as follows: 

Algorithm - BLISS 

Definitions: 

• Application ID register  

• #Requests Served counter 

• Blacklisting Threshold register (set to 4) 

• Blacklist vector for each application 

Blacklisting: 

if  appIdPreviousRequest == appIdCurrentRequest 

      requestsServed++ 

else 

      requestsServed = 0 
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if requestsServed > blacklistThreshold 

     blacklist(appIdCurrentRequest) 

if CYCLE_VALUE % 10000 == 0 

      clearBlacklist() 

 Scheduling: 

Prioritization order: 

 1) Non-blacklisted applications’ requests  

2) Row-buffer hit requests 

 3) Older requests 

BLISS is a simple algorithm addressing the memory intensity differentiation problem 

in memory controllers as can be seen in the above pseudocode. It provides subtle 

performance improvement at the expense of low hardware cost both in storage and 

logic. However, a predetermined threshold for blacklisting decision lacks the 

efficiency that can be obtained with a dynamic differentiation algorithm. 

In memory access intensity detection algorithm of the present work, rather than using 

pre-determined thresholds, applications relative memory access intensity 

characteristics are measured and to realize these, different parameters are used. Those 

parameters and overview of the algorithm is depicted in Figure 4.1. 
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Figure 4.1 Memory Intensity Detection (MAID) Algorithm Overview 

In MAID, all memory intensity parameters and calculations are made for read 

requests. Since reads are critical for program execution and writes do not generally 

stall the processor, read requests are focused as bottlenecks. Moreover, instead of 

focusing on bank-level parallelism or row-buffer locality a resultant of both, that is 

“giving top priority to the least served requestor” is applied. To apply this idea, Read 

Queue Length (RQL) per channel, number of served (read) requests per channel 

(SRPC) and per application (SRPA) and number of pending (read) requests (PRR) 

variables are used. MAID Algorithm is presented below: 

Algorithm - MAID 

Input: 

• RQL (Read Queue Length) 

• SRPC (# of Served Requests Per Channel) 

• SRPA (# of Served Requests Per Application) 

• PRR (#of Pending Read Requests) 

• NUMReqs = Number of requestors  

Output: 

• Memory Access Intensity per application (maid[app]) 
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Memory Access Intensity: 

for  i = 0 to NUMReqs -1 do 

     if SRPC[channel] != 0 and RQL[channel] != 0 

           maid[i]=
SRPA[i]/SPRC[channel]

PRR[i]/RQL[channel]
  

     else if SRPC[channel] == 0 and RQL[channel] != 0 

           maid[i] = PRR[i]/RQL[channel] 

     else if SRPC[channel] != 0 and RQL[channel] == 0 

           maid[i] = (SRPA[i]/SRPC[channel])  

     else 

           maid[i] = 0 

 

The above algorithm provides a measure of  Memory Access Intensity of applications 

as maid[i]=
SRPA[i]/SPRC[channel] 

PRR[i]/RQL[channel]
 and the application with the lowest intensity is given top 

priority. This priority is useful when scheduling read requests. Since every time the 

application with lowest service rate is chosen, starvation is avoided, and a pre-

determined threshold is not needed for computation. The only pre-determined value 

is needed for the computation time window. Since an application’s run-time behavior 

may vary and it can have different phases in terms of memory access intensity, the 

above approach may benefit from using a sliding time window. Fine-grained detection 

of phase changes is inversely proportional to the length of the sliding window. The 

time window value was determined as 1k  in cycles since it provides a fine-grained 

detection. The concept of sliding window is shown in Figure 4.2. 

 

Figure 4.2 Sliding Window for MAID Algorithm 
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4.4.2. Command Scheduling 

Command scheduling is a vital issue in memory controllers since timing parameters 

apply for them, but not for requests that generates commands. Inefficient scheduling 

of commands results in many idle cycles in the memory channel and decreases 

throughput. An efficient command scheduling must do minimum number of read-to-

write or write-to-read switches. The effect of write-to-read switching can be seen in 

Figure 4.3. 

 

Figure 4.3 Write-to-Read Switching effect 

As seen in Figure 4.3 switching between writes and reads (or vice versa) incurs 

additional delays caused by timing parameters. Since bus direction should be reversed, 

these timing parameters cannot be manipulated. For DDR3-800E devices write-to-

read delay can be calculated as:  

tWR-to-RD = tCAS + tCBURST + tWTR = 5 + 4 + 4 (13 cycles) 

whereas if only RD-to-RD or WR-to-WR delay applies without any reversal in the 

bus direction: 

tCCD= 4 cycles 

The above penalty is becoming significant with increasing speed of the devices. 
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A common approach to solve this problem is bundling read and write commands 

together [38]. As long as same type of commands are generated and sent to DRAM, 

bus utilization increases since reversals are decreased. Besides, reads are usually 

processed before writes since they are in the critical path for the program execution. 

To avoid starvation of write requests and balance their excessive successive execution 

two threshold values are used as High Watermark and Low Watermark. Overall 

read-to-write switching’s simple method is proposed to be the following: 

Switching 

Input: 

• High Watermark (HI_WM) 

• Low Watermark (LO_WM) 

• Read Queue Length[channel] (RQL) 

• Write Queue Length [channel] (WQL) 

States: 

• Read Drain[channel] // “1” if it is active, “0” otherwise 

• Write Drain[channel] // “1” if it is active, “0” otherwise  

Decide read/write state (for each channel): 

     if WriteDrain[channel] and WQL[channel] > LO_WM //if in write drain, continue until LO_WM 

           State = WriteDrain[channel] 

     else  

          State = ReadDrain[channel] 

     endif 

     if WQL[channel] > HI_WM //Initiate write drain if HI_WM is reached or there is no pending read 

State = WriteDrain[channel] 

     else if RQL[channel] == 0 

State = WriteDrain[channel] 

     endif 

if State == WriteDrain[channel] and noCommandIssued and read row hit exists 

State = ReadDrain[channel] 

if State == ReadDrain[channel] and noCommandIssued and write row hit exists 

State = WriteDrain[channel] 
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The above method is useful for initiation at each scheduling cycle of the memory 

controller.  It balances write request drain by keeping the Write Queue Length at some 

point between “High Watermark” and “Low Watermark”. Optimal values for these 

values are found to be 62 and 36 heuristically which will be analyzed in Chapter 5.    

In higher-level overview read/write switching is considered to generate extra latency, 

however, a Memory Controller might take advantage of switching at some point. Since 

the switching method coarsely decides whether to drain writes or reads it does not take 

into account the issuable states of those requests. Memory Controller checks if read 

or write requests are issuable after Write Drain / Read Drain modes are entered. If in 

these modes, some requests with additional pending time exist a mode change is 

realized. Otherwise memory bus becomes idle for that scheduling cycle.      

4.4.3. Page Policy Adaptation 

As was explained in Chapter 2, memory controllers can use close-page, open-page or 

hybrid-page policies. Pure close-page policy is mostly beneficial for Real-Time 

systems as in [39]. This favors accesses to random locations in memory and benefits 

from row locality is mostly ignored, providing strict yet possibly pessimistic worst-

case execution times for requests. On the other hand, open-page policy is useful when 

applications have high row-buffer locality. Different policies’ latency for an example 

read request for distinct cases is depicted in Figure 4.4. To understand which policy 

to choose following calculations can be made for simplification: 

Close-page policy read request latency: tRCD + tCAS (average-case) 

Open-page policy read-hit request latency: tCAS (best-case) 

Open-page policy read-miss request latency: tRP + tRCD + tCAS (worst-case) 

r:  represents % of row-hits 

The number r to have the open-page policy more advantageous can be calculated as: 

r * (tCAS) + (1-r) * (tRP + tRCD + tCAS) ≤  tRCD + tCAS 
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r ≥ tRP / tRP + tRCD   

If above values are replaced with the ones in Table 2.1, r value needs to be more than 

50% to benefit from open-page policy and should be less than 50% to use close-page 

policy. 

 

Figure 4.4 Open and Close Page-Policies’ Read Latencies 

Page Policy 

Input: 

• Write Queue (WQ) 

• Read Queue (RQ) 

• Request (with command, channel, rank and bank info) 

States: 

• Read Drain / channel 

• Write Drain / channel 

 

Decide page policy (for each channel): 

     if WriteDrain[channel] 

           tryToIssueWriteCommand(Request) //if it can be issued 

           if no row-hit in WQ and no row-hit in RQ 

    issueAutoPre(channel, rank, bank) //close served request’s target bank 

           if write command was not served and PRE command exists and row-hit in WQ 

    skip AutoPre //leave the row open 
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     else if ReadDrain[channel] 

           tryToIssueReadCommand(Request) //if it can be issued 

           if no row-hit in RQ and no row-hit in WQ 

            issueAutoPre(channel, rank, bank) // close served request’s target bank 

           if read command was not served and PRE command exists and row-hit in RQ 

    skip AutoPre //leave the row open 

     endif 

4.4.4. Refresh Scheduling 

Refresh handling mechanism is becoming extremely important for high density 

DRAM devices with recent advancements in technology. As stated in [41] for 32Gb 

devices, energy and performance penalties reach up to 35% which is extremely high. 

There are different approaches to  design refresh mechanisms as explained in Chapter 

2, which can be summarized as Row-Selective, Retention Aware and Refresh 

Scheduling Flexibility techniques. Row-selective techniques are the least desirable 

ones because of their inability to use built-in Auto-Refresh mechanism optimized for 

power and latency by DRAM vendors. Effect of row-selective algorithms on refresh 

time is depicted in Figure 4.5. For row-selective algorithms to be effective, a huge 

ratio of AR operations should be skipped. So, row-selective refresh mechanism 

approach is not wise because the mechanism both fails to be effective unless huge 

numbers of refresh operations are skipped. Moreover, as the device density increases 

scheduling decisions can get complex and hardware storage overhead increases. On 

the other hand, retention-aware refresh scheduling is still a controversial issue because 

profiling retention periods and variable retention times that might change with the 

operating conditions are hard to verify. Besides, both approaches need modifications 

to both device and controller. 
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Figure 4.5 Refresh-time vs Device Density for row-selective approach [41] 

Refresh Scheduling Flexibility technique is the one with the least hardware storage 

cost and the most applicable one since it requires no change to the existing DRAM 

structure and uses DRAM built-in flexible Auto-Refresh mechanism. Refresh 

flexibility allows up to 8 AR commands to be delayed or issued in-advance as was 

stated in Chapter 2. The concept is illustrated in Figure 4.6. This refreshing scheme 

ensures that all DRAM cells are refreshed in their safe-retention time bounds. 

However, sending consecutive refresh requests is not a must. So, in the present work, 

a simple yet effective method is used, which  can be called as “Refresh when idle” 

as in the following scheme: 

Refresh when idle 

Input: 

• Number of issued refreshes, per channel & rank (numRef) 

• Cycle Value (CYCLE_VAL) 

• Number of commands issued in current scheduling cycle (numCommand) 

Refresh (for each rank): 

     if CYCLE_VAL == refreshDeadline and numRef[channel][rank] < 8 

           issueForcedRefreshes() 

           if CYCLE_VAL != refreshDeadline and numCommand == 0 and numRef[channel][rank] < 8 

        issueIdleRefreshes() 
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Figure 4.6 Flexible Auto-Refresh Scheduling built-in DRAM devices 

4.4.5. Access Latency Mitigation 

DRAM timing parameters are mostly over-safe to ensure correct operation. Some 

reductions in standard parameters were proposed in [19], [20], [21]. In [19], recently 

refreshed rows were referenced as baseline and if an access is targeted to a recently 

refreshed row in a short time interval after last refresh operation, that row is said to 

have lower access latency. Even though this work was one of the first to offer to 

exploit intrinsic DRAM characteristics, it lacks understanding of memory access 

characteristics such that memory access is barely correlated with refresh scheduling 

decisions. In [21], an operating temperature-based solution was proposed. Simple yet 

effective this work lacks the efficiency for memory and compute-intensive 

applications, which raises the operating temperature. Figure 4.7 shows why this 

approach cannot be implemented easily even for desktop PCs. Since [21] uses 

maximum operating temperature of 55 ºC for reduced timing parameters, few 

applications can benefit from timing parameter reduction. 
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Figure 4.7 Temperature variation across a DIMM vs Different Applications running 

on different sides of  DIMM[42] 

Apart from the other two approaches, ChargeCache technique used in [20] is more 

appropriate and can be easily implemented by memory controllers. Its overall diagram 

is depicted in Figure 4.8. Its main motivation is “Rows that are accessed recently can 

have lower access latencies next time since cell charge leakage is low and sensing 

phase takes less time”. Considering row-level temporal locality, a row accessed 

recently is likely to be accessed in short time (unlike recently refreshed rows), this 

approach has considerable effects on performance by shortening tRCD and tRAS timing 

parameters without dependence on operating temperature. 

 

Figure 4.8 ChargeCache Algorithm [20] 

After every precharge command, the closed row address is inserted in High Charged 

Row Table, then for a 1ms duration that address stays in the table. If in that time 
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interval, a request is targeted to a row which is already in the table the row access 

latencies for the upcoming read/write or precharge commands are reduced (tRCD and 

tRAS reduction approximately 25%). For applications with higher row-level temporal 

locality, this approach is more effective. Table size and entry invalidation interval is 

configurable and can be changed before or during run-time which makes the approach 

flexible. 

4.4.6. Power-down Mode Usage 

DRAM has two types of power-down modes in which its power consumption can be 

decreased in exchange of some performance decrease. If all banks are closed and 

precharged in idle state it is in “Precharge Power-Down Mode”.  If at least one bank 

is active the device can be in “Active Power-Down Mode”. For the power-down 

modes to be selected, Clock enable (CKE) signal should be held at 0. Otherwise, the 

device can be in active standby if at least one bank is active or precharge standby if 

all banks are precharged. Power-down modes can be fast or slow meaning that exit 

times from those modes can take less or more time. Before deciding which power-

down mode to use and when, power dissipations in each mode should be understood. 

In [35], background power of DRAM is defined as follows: 

Background Power = activePowerDown+ activeStandby + prechargePower-down-

slow + prechargePower-down-fast + prechargeStandby 

Above five different power dissipations depend on the ratio of the time spent in that 

mode, and their corresponding current and voltage values as given below: 

activePowerDown = IDD3P * Vdd 

activeStandby = IDD3N * Vdd 

prechargePower-down-slow = IDD2P0 * Vdd 

 

prechargePower-down-fast = IDD2P1 * Vdd 
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prechargeStandby = IDD2N * Vdd 

Corresponding current values for different device configurations used in USIMM are 

listed in Table 4.1. 

Table 4.1 Current ratings for background power of chips used in [35] 

Parameter 1Gb x4 

(mA) 

1Gb x8 

(mA) 

1Gb 

x16 

(mA) 

2Gb x4 

(mA) 

2Gb x8 

(mA) 

4Gb x4 

(mA) 

4Gb x8 

(mA) 

IDD3P 35 35 35 22 22 38 38 

IDD3N 45 45 50 35 35 38 38 

IDD2P0 12 12 12 12 12 16 16 

IDD2P1 30 30 30 15 15 32 32 

IDD2N 45 45 45 23 23 28 28 

 

For 4Gb x4 configuration power dissipation values can be ordered as 

“activePowerDown = activeStandby  >  prechargePower-down-fast > 

prechargeStandby > prechargePower-down-slow” depending on current ratings in 

Table 4.1. So prechargePower-down-slow mode is the most effective one for power 

reduction purpose. For other device configurations, the choice might vary since 

prechargePower-down-fast and prechargeStandby current ratings can be lower or 

higher than the other one. This yields to a dynamic power-down mode selector for 

different chips. For devices with higher IDD2P1 rating, prechargePower-down-fast  

mode should not be favored. Another concern is the exit times of power-down modes 

and from Table 2.1 tXP and tXPDLL values are found as 5 and 20 cycles, respectively. 

Due to high difference between the two, power-down modes should not be used 

aggressively. Apart from dynamic use, simple, yet effective use of power-down modes 

can be employed as follows: 
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Power-down usage 

Input: 

• Read Queue Length (RQL) 

Decide page policy (for each channel): 

     if commandIssuedInCurrentCycle == 0 and RQL == 0 

 for i = 0 to NUM_RANKS do  

           tryToIssuePowerDownSlowCommand(channel, i) //if it can be issued 

 

4.4.7. Storage Cost 

Methods proposed and discussed so far incur some storage cost. 

MAID 

Excluding the default configuration storage cost, MAID algorithm requires the 

following variables to be stored: 

• Timing window length (4 bytes) 

• # of served requests per core (# of cores x 4 bytes) 

• #of pending requests per core (# of cores x 4 byes) 

• MAID structure indicating the intensity metric and core id (# of cores x 8 bytes) 

• Serviced request structure per channel, having served read count for maximum 

serviced read length, insertion index and valid served read number (# of 

channels x [100 x 10 bytes + 2 bytes]) 

Having maximum number of cores 16 and maximum number of channels 4, yields 

in a storage cost of 4268 bytes approximately 4KB. This shows that, compared to 

a very low storage cost of BLISS (around 8 bytes), MAID algorithm alone can 

provide better performance without having too much data overhead to store. 
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Command Scheduling 

Command scheduling needs High Watermark and Low Watermark values to be stored 

to decide read or write commands to be drained. Regardless of the workload and the 

system configuration both needs 2 bytes of storage with a total of 4 bytes. 

Additionally, it requires 1 bit indicating whether a request has been served in the 

current cycle or not.  

Page Policy 

Page policy deals with the existence of the row hits both in read and write queues. 

Request address (channel, rank, bank and row) needs 32 bits to check if there is a row 

hit. Row hit results are stored in 2 bits for read and write queue row hits. 

HCRAC 

HCRAC’s storage cost is found in [20]. 

• HCRAC table (#of entries x 32 bits for each entry) 

Taking maximum number of cores as 16 and maximum number of channels 4, the 

storage cost is 16 x 4 x 128 x 4 bytes having a total cost of 32KB. 

Refresh Scheduling 

This scheme needs a number of issued refresh per channel and per rank. The number 

can at most be 8 and considering 4 channels and 2 ranks per channel with 1 bytes of 

storage (for number 8) we need a total of 8 bytes to store. 

Power-down mode usage 

To use power-down modes no explicit storage is needed.  
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CHAPTER 5  

 

5. EVALUATION 

 

5.1. Simulation Environment 

USIMM simulation framework [35] is used to implement our methods presented in 

Chapter 4 and extensive evaluations are carried out with this framework. USIMM was 

designed for Memory Scheduling Championship (MSC) which was a part of Journal 

of Instruction Level Parallelism Workshops on Computer Architecture Competitions 

(JWAC). In its high-level it has a front-end consuming workload trace. A small portion 

of a single workload is as follows: 

2046  R    0x3ac96780 0x114ad 

                                                5  R    0x325d7780 0x114bd 

    4  R    0x3a617680 0x114c9 

            1  W    0x36166580 

First number in a single line denotes the number of no-operation commands to be 

consumed. R and W stands for Read/Write operations and the following hexadecimal 

number is the targeted address for the corresponding request. Read requests have 

program counter fields at the end of the line which may be used for scheduling 

purposes. For every core on the processor a Reorder Buffer (ROB) is modeled and at 

each channel memory requests within each ROB are placed in distinct Read and Write 

queues. It is a cycle-based simulator and at each cycle the main loop searches for each 

read/write queue entries to determine the requests to be issued. A function for 

scheduling is invoked then to pick an available command from the list of candidate 

commands. Since it’s an open-source simulator, it is fully customizable and can be 

elaborated for implementing various algorithms both in scheduler and essential 

memory controller functions. By default, the simulator supports two different 
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configurations as i) 1 channel/ 2 ranks per channel / 8 banks per rank and ii) 4 channels 

/ 2 ranks per channel / 8 banks per rank. Default DDR standard is DDR3. Simulator 

configuration details are given in Table 5.1. 

Table 5.1 Default USIMM configurations used for evaluations 

Parameter Configuration 1-channel Configuration 4-channel 

CPU speed 3.2 GHz 3.2 GHz 

DRAM Bus speed 800 MHz 800 MHz 

ROB Size 128 160 

Write Queue Size 64 96 

Read Queue Size ∞ ∞ 

Retire width 2 4 

Fetch width 4 4 

Cache line size 64B 64B 

Ranks per channel 2 2 

Banks per rank 8 8 

Rows per bank 32768 x # of cores 32768 x # of cores 

Columns per row 128 128 

Mapping row:rank:bank:chnl:col:offset row:col:rank:bank:chnl:offset 

Write queue 

lookup latency 

10 cpu cycles 10 cpu cycles 

 

5.2. Evaluation Workloads 

Multiple input traces can be fed as workloads. Each trace represents a different 

program which runs on a different core and their memory accesses are filtered through 

a 512 KB private last-level cache. A total of eight benchmarks from PARSEC [43], 

and two server-class transaction processing workloads from USIMM default 

workloads are chosen to be used in our study. Workloads are listed in Table 5.2. 

 



 

 

 

59 

 

Table 5.2 Evaluation Workloads 

Trace From 

black PARSEC / blackscholes 

face PARSEC / facesim 

ferret PARSEC / ferret 

fluid PARSEC / fluidanimate 

freq PARSEC / freqmine 

stream PARSEC / streamcluster 

swapt PARSEC / swaptions 

comm1 server-class transaction 

comm2 server-class transaction 

MT-canneal PARSEC / canneal - multithread 

 

Table 5.3 Benchmark Combinations 

name # of ch benchmarks 

w1 1 black-black-freq-freq 

w2 4 black-black-freq-freq 

w3 1 comm1-comm1 

w4 4 comm1-comm1 

w5 1 comm1-comm1-comm2-comm2 

w6 4 comm1-comm1-comm2-comm2 

w7 1 comm2 

w8 4 comm2 

w9 1 face-face-ferret-ferret 

w10 4 face-face-ferret-ferret 

w11 4 fluid-fluid-swapt-swapt-comm2-comm2-ferret-ferret 

w12 4 fluid-fluid-swapt-swapt-comm2-comm2-ferret-ferret-black-

black-freq-freq-comm1-comm1-stream-stream 

w13 1 fluid-swapt-comm2-comm2 

w14 4 fluid-swapt-comm2-comm2 

w15 1 MT0-canneal-MT1-canneal-MT2-canneal-MT3-canneal 

w16 4 MT0-canneal-MT1-canneal-MT2-canneal-MT3-canneal 

w17 1 stream-stream-stream-stream 

w18 4 stream-stream-stream-stream 
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Benchmark combinations we used for our evaluation are listed in Table 5.3. All of the 

above workloads are used for evaluation for all metrics except w7-w8-w15-w16. The 

first two are single application workloads and the last two are multithreaded workloads 

which cannot be used for slowdown/PFP evaluation purposes. 

USIMM can simulate the power consumption of the memory sub-system depending 

on Micron Power Calculator [44]. Thus, this gives us the ability to assess power 

efficiency of our methods implemented to improve the memory controller. An 

example output of an evaluated workload set can be seen in section 5.4. 

5.3. Evaluation Metrics 

The proposed methods are evaluated using different evaluation metrics namely, 

Performance, Energy-Delay Product (EDP) and Performance-Fairness Product (PFP) 

and Power. 

Performance: The efficiency can be defined as the sum of execution of all 

applications in the workload. The lower is better and its unit is in cycles. 

EDP: Multiplication of system power for a simulation and the square of delay to finish 

the total simulation. The lower is better and its unit is in Joules x seconds 

PFP:  For this metric to be evaluated, firstly the maximum slowdown should be 

computed.  Maximum slowdown is the slowdown of each program relative to its 

single-thread execution run with FCFS scheduler.  Then, PFP is defined as the 

multiplication of “average of maximum slowdown across all experiments” and “the 

sum of execution times of all programs in those experiments”. Apart from 

Performance and EDP, PFP is not applicable for single-threaded comm2 workload 

and multi-threaded canneal workload.  For PFP metric the lower is better and its unit 

is in cycles. 

Power: Total memory system power will be used to evaluate the efficiency of the 

power-down mode usage. 
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5.4. Results 

The evaluation results will be given for FCFS, BLISS and the proposed work initially. 

In subsequent parts, effect of every single improvement will be given in a relative 

manner but finally the overall improvement will be presented. Sensitivity to 

parameters will be explained by comparison. USIMM framework provides detailed 

outputs, such as applications’ execution times, per-channel statistics, per-rank 

statistics, power and EDP results as can be seen below: 
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5.4.1. MAID  

MAID algorithm manages the initial reordering of the memory requests at the front-

end and reordering is done based on the read request intensity since reads are critical 

for program execution. The main goal was to decrease the sum of execution times for 

all programs by using MAID. Initially, MAID is compared with FCFS and BLISS for 

Performance, EDP and PFP metrics that are presented in the following Figures. As 

depicted in Figure 5.1, FCFS has the worst performance and BLISS can improve this 

performance from 0.65% to 3.78% (1.38% on average). Moreover, MAID can 

improve BLISS from 0.34% to 2.38% (0.66% on average). MAID is a very simple 

algorithm and favors the applications with the least service rates and does not have 
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pre-determined thresholds for detection except for window length. Instead it can 

dynamically adjust itself to distinguish the access intensity of different applications. 

 

Figure 5.1 Sum of Execution Times vs workloads under different schedulers 

As for EDP, MAID cannot perform as good as BLISS. This is because MAID is 

throughput oriented while BLISS tries to find an optimal operating point in between 

throughput, complexity and fairness. Figure 5.2 shows EDP values for three different 

schedulers under investigation. 
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Figure 5.2 EDP vs workloads under different schedulers 

BLISS has 0 to 7.12% better EDP values than FCFS (2.51% on average), whereas 

MAID has 0.46% worse EDP values than BLISS on average. 

Slowdown of applications does not only depend on the scheduler but also varies 

depending on the application characteristics. Single thread execution of applications 

under FCFS scheduling should be taken as baseline for slowdown measurements. 

Slowdown is depicted in Figure 5.3. 
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Figure 5.3 Slowdown of workloads with MAID and BLISS algorithms 

BLISS has slowdown rates ranging from 1.05% to 1.87% (1.27% on average), 

whereas MAID’s values are in the range of 1.06% to 1.87% (1.28% on average). This 

results in a 0.67% worse slowdown values for MAID algorithm on average when 

compared to BLISS.  

Average slowdown values are used for fairness metrics, and if multiplied with total 

execution times of the corresponding workloads PFP values can be found. BLISS has 

0.17% better PFP value than MAID.  

The only predetermined threshold for MAID is its window length and for fine-grained 

detection of memory access intensity it is obvious to have shorter intervals. The table 

below shows the effect of longer duration for detection on performance, EDP and PFP. 

Table 5.4 Window Length Effect on evaluation metrics for MAID only scheduler 

 Performance (%) EDP (%) PFP (%) 

Window 10k -0,677 0,392 0,183 

Window 50k -1,011 -0,285 -8,201 
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5.4.2. Command Scheduling 

Read/Write scheduling and switching between them is an important issue because 

unless used carefully, it can lead to significant performance decrease due to timing 

constraints. With the method used in our work, commands are scheduled in a flexible 

manner and this flexibility provides improvements in all metrics evaluated. Effect on 

the Performance is illustrated in Figure 5.4. 

 

Figure 5.4 Sum of Execution Times vs workloads reflecting Command Scheduling 

Effect 

Ranging from 0 to 4.47% flexible command scheduling improves MAID algorithm 

(2.10% on average). This shows that scheduling cycles should not be wasted by 

aggressively avoiding read/write switching. 

EDP is improved by flexible command scheduling, too. The extent of EDP 

improvement is depicted in Figure 5.5. Improvement ranges from 0 to 8.29% (4.41% 

on average) proving not only performance but also EDP can benefit from flexible 

command scheduling.  
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Figure 5.5 EDP vs workloads showing Command Scheduling Effect 

 

Figure 5.6 shows the effect of command scheduling on slowdown of the applications. 

When compared to MAID only algorithm, flexible command scheduling can provide 

an improvement from 0.88% to 4.55% (2.4% on average).  

Since both slowdown and sum of execution times are improved, PFP metric is 

improved significantly and the improvement rate is 5.08% compared to MAID only 

algorithm.  
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Figure 5.6 Slowdown of workloads with Command Scheduling Policy 

 

As was mentioned in section 4.4, High Watermark and Low Watermark values are 

chosen as 62 and 36, respectively. These values provide good performance, since 

writes are drained only when the write queue is about to be full and write drain mode 

is ended when about half of the queue is served. Results for different watermark values 

are listed in Table 5.5. 

Table 5.5 Effect of other watermark values on evaluation metrics 

 Performance (%) EDP (%) PFP (%) 

High 62 Low 36 2,107 4,41 5,082 

High 40 Low 20 1,004 2,354 1,611 

High 60 Low 5 -2,366 -4,431 -5,272 

 

It is observed that, lowering High Watermark value – meaning quicker transition to 

Write Drain mode worsens all evaluation metrics. Moreover, over-servicing of write 

requests by draining them for longer durations have more negative effect on all 
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metrics. This is due to reads being stalled by writes for longer period of time which 

shows that reads should be prioritized over writes. 

5.4.3. Page-Policy 

 

Figure 5.7 Sum of Execution Times vs workloads with Dynamic Page-Policy effect 

Dynamic Page-Policy is a vital aspect for a Non-Real Time Memory Controller. Since 

throughput is preferred over predictability, there is no restriction on using such a 

policy. Both leaving the rows open if there are pending requests and closing the rows 

with auto-precharges when there is no pending requests increases the performance of 

the memory controller as can be seen in Figure 5.7. Improvement of performance by 

using dynamic page-policy ranges from 1.02% to 10.99% (5.23% on average). 
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Figure 5.8 EDP vs workloads showing Dynamic Page-Policy Effect 

 

Using this page-policy also improves the EDP metric as illustrated in Figure 5.8. Least 

improved workload has an improvement rate of 1.36% while the most improved 

workload’s rate is 16.99% (10.80% on average). 

Slowdown benefit of dynamic page-policy is depicted in Figure 5.9. While the least 

improvement has a rate of 0.75%, this policy can provide up to 9.05% (5.37% on 

average) improvement with the current configuration. By using the slowdown values, 

PFP metric’s decrease rate was found to be 10.10%. 
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Figure 5.9 Slowdown of workloads with Dynamic Page-Policy 

  

5.4.4. Access Latency Mitigation 

 

Figure 5.10 Sum of Execution Times vs workloads with HCRAC effect 
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Integrated access latency mitigation technique HCRAC did not meet expectations as 

presented in the corresponding work. For example, performance improvement shown 

in Figure 5.10 dictates that, with the current configuration of workloads it can improve 

the performance starting from 0.17% up to 8.05% (1.76% on average). However, in 

their original paper [20], it was claimed that with HCRAC implemented, performance 

can be improved more than 8% on average. 

EDP, on the other side can be improved better with the integration of HCRAC. 

Ranging from 0.12% up to 8.68% this method can have an average of 3.24% effect on 

Energy-Delay Product metric as shown in Figure 5.11. 

 

Figure 5.11 EDP vs workloads showing HCRAC Effect 

 

HCRAC also improves the fairness of a memory controller by decreasing the 

slowdown of applications. As can be seen in Figure 5.12, it has a minimum of 0.29% 

and a maximum of 7.75% improvement in slowdown metric. Using these values PFP 

improvement is found to be 4.52% on average. 
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Figure 5.12 Slowdown of workloads with HCRAC 

 

HCRAC’s table size effect on the evaluation metrics was examined since it is the main 

component incurring storage cost. The table size was increased to 512-entry, and the 

effects are listed in Table 5.6. 

Table 5.6 HCRAC table size effect on the evaluation metrics 

HCRAC Size Performance (%) EDP (%) PFP (%) 

128 (current) 1,76 3,24 4,52 

512 2,63 4,41 6,46 

 

Having 4x larger HCRAC table did not show huge improvement in any of the metrics. 

This result shows parallelism with [20], in which it is claimed that HCRAC with  128 

elements provides a balance between storage cost and performance. The size of the 

HCRAC doesn’t have to be pre-determined and can be configured by the designer 

before run-time since there is a trade-off between performance and storage cost. 
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5.4.5. Refresh Scheduling 

 

Figure 5.13 Sum of Execution Times vs workloads with Refresh Scheduling Effect 

The main focus on refresh scheduling is to decrease the latency and power penalty 

incurred by this vital operation. However, as explained in the previous chapters Auto-

Refresh mechanism should be used to its full-extent since it is an optimized 

mechanism and refresh skipping should be avoided unless there are extremely many 

operations to be skipped. In this work, a simple yet effective refresh scheduling was 

used as “In-advance refresh” and its performance effect can be seen in Figure 5.13. 

In-advance refresh can improve the performance ranging from 0.24% to 1.39% 

(0.58% on average). As little it may seem, it requires no storage cost and almost no 

additional logic cost. Hence this scheduling decision is beneficial for large systems 

with huge performance and power needs. 
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Figure 5.14 EDP vs workloads showing Refresh Scheduling Effect 

 

EDP metrics is slightly improved with in-advance refresh scheduling as depicted in 

Figure 5.14. From 0.12% to 2.73%, this method decreases EDP by 1.15% on average. 
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Figure 5.15 Slowdown of workloads with Refresh Scheduling 

 

Fairness of the memory controller can be enhanced slightly with in-advance refresh 

scheduling. From 0.39% to 1.34% this scheme can improve the slowdown of 

applications by 0.52% on average which can be seen in Figure 5.15. Using  execution 

times and slowdown, PFP metric is found to be improved by 1.09% on average. 

5.4.6. Power-down Usage 

This part of the work mainly focuses on power optimization while sacrificing the 

performance. Power-down slow mode was preferred since it can give the maximum 

power improvement. Performance decrease with Power-down slow mode is depicted 

in Figure 5.16. Ranging from 0.04% to 3.17%, this method can negatively affect the 

performance of the memory controller by 0.84% on average. This is a promising result 

for systems that can sacrifice the performance in exchange of power. 
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Figure 5.16 Sum of Execution Times vs workloads with Power-down usage Effect 

 

 

Figure 5.17 EDP vs workloads showing Power-down usage Effect 
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EDP is an important metric to decide whether or not to use Power-down slow mode 

in a memory controller. Having an effect between 0.11% and 3.02%, using this mode 

can have a negative effect of 1.13% on average which is depicted in Figure 5.17. This 

is an acceptable decrease in the EDP considering the improvement in power 

consumption. 

 

Figure 5.18 Slowdown of workloads with Power-down 

 

Power-down slow mode usage has promising results for fairness of the memory 

controller, too. Ranging from 0.11% to 3.39% it slowdowns applications more at an 

average rate of 0.73%. PFP metric is affected negatively by 1.09% with the current 

scheme.  

The most important results for power-down usage are shown in Figure 5.19. Ranging 

from 0.01% to 17.57%, accurately using Power-down slow mode can decrease the 

power consumption by 5.49% on average. This is an important data for huge systems 

with extremely high-power consumption. 
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Figure 5.19 Memory System Power vs Workloads with Power-down usage 

 

Power-down fast mode’s effects are also observed. Since with different device 

configurations power-down fast modes’ current ratings are not the second smallest, it 

does not provide enough efficiency as power-down slow mode. The effects are listed 

in Table 5.7. 

Table 5.7 Power-down slow and Power-down fast compared with no power-down 

 Performance (%) EDP (%) PFP (%) Power (%) 

PDN_SLOW -0,84 -1,13 -1,09 -5,49 

PDN_FAST -0,81 -1,47 -1,26 -2,88 

 

Replacing the power-down slow mode usage with power-down fast mode in section 

4.4.6, meaning that device is put in power-down mode with fast exit time unless busy, 

performance decrease compared to no power-down is slightly less. However, EDP and 

PFP metrics are negatively affected. Moreover, the essential gain from power 
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consumption is almost halved by using power-down fast mode. Therefore, power-

down fast mode is beneficial to use. 

 

5.4.7. Overall Effects  

 

Figure 5.20 Sum of Execution Times vs Workloads for BLISS and Current Design 

 

Merging all different aspects discussed into a simple solution gives promising results 

for an application-aware DRAM controller. Figure 5.20 illustrates that even when 

using power-down slow mode, the current design outperforms BLISS between 6.90% 

and 14.29% yielding in an average of 9.31% performance improvement. 
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Figure 5.21 Energy Delay Product vs Workloads for BLISS and Current Design 

 

Energy-Delay product results for the overall design in Figure 5.21 shows that, our 

memory controller can have 14.12% to 24.93% improvement in EDP compared to 

BLISS with an average of 17.41%. 

Finally, fairness comparison of the two different solutions is depicted in Figure 5.22. 

PFP metric of the current design is improved by 18.40% in comparison to BLISS. 
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Figure 5.22 Slowdown vs Workloads for BLISS and Current Design 

 

 

With a total storage cost of around 36KB and with the simple schemes used for 

different functionalities of a DRAM memory controller, this  proposed solution in the 

present work can be easily implemented and used in general-purpose computers. The 

controller can be made configurable by turning on and off each feature by simply 

reading from a configuration file and the controller can be initiated accordingly.
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CHAPTER 6  

 

6. CONCLUSION AND FUTURE WORK 

 

 

Main memory is an indispensable part of computing systems. What makes main 

memory research even more crucial is its excessive use in trending technologies. 

Starting with the first DDR debut in 1998, DDR5 compatible SDRAMs are about to 

take place in the market to satisfy requirements of Artificial Intelligence, Machine 

Learning and Big Data applications. Throughput and power efficiency of each DDR 

generation increases which in turn needs more efficient memory controllers.  Memory 

controller enhancements are important since main memory is controlled by one or few 

of them. In this work, main memory for general-purpose computers are focused on, 

however, the methods presented is applicable to many other systems. After an 

extensive literature survey and inspired by Memory Scheduling Championship (MSC) 

held in 2012, this work has its baseline as BLISS, Blacklisting Memory Scheduler.  

In this thesis work, an application aware memory controller with a front-end request 

reordering mechanism, a dynamic command scheduler, a hybrid page-policy, 

integrated with recently explored DRAM timing parameter reduction method, an 

extremely low-cost refresh method using DRAM’s built-in refresh mechanism and 

simple yet effective method of using power-down modes was presented.  

Solely using MAID algorithm improves BLISS algorithm slightly (0.66% on average). 

While incurring higher storage cost, using dynamic command scheduling and hybrid 

page policy shows that they are beneficial (more than 7% of performance 

improvement on average) for almost every system without a need of real-time 

guarantee. Since no architectural change is needed for using those two, they can  easily 

be implemented. Moreover, using methods, such as HCRAC, may become a necessity 
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in the future, since over-safe bounds for timing constraints keep DRAM and memory 

controllers away from reaching to their full potential and yielding in many unused 

memory scheduling cycles. However, a major drawback for using access latency 

mitigation techniques is that they need extensive testing for profiling under different 

operating conditions and with each generation of devices these tests should be re-

performed incurring a higher time-to-market.  

On the other hand, in-advance refresh used in this work provides a slight improvement 

in all metrics while keeping the architecture same. As already examined in many other 

works, there is not a single optimum solution for refresh operations to have a minimum 

effect on the regular operations on DRAM. Using default refresh rates with an 

application-unaware policy is the worst possible solution. Retention time-aware 

techniques might seem encouraging, however, variable retention times in cell-level 

makes them hard to profile and use, while refresh skipping proposals mostly remain 

as conceptual works.  

Lastly, using power-down modes is a must for memory controllers due to increasing 

power needs. Controllers should look for idle cycles and turn off unused devices while 

providing a balance between performance and energy. This work showed that, in 

exchange of a slight performance decrease (around 1% on average), using even 

slowest exit time power-down mode can have a significant effect on the total memory 

system power consumption (around 5% on average). As a result, the work proposed 

improves the BLISS memory controller’s performance by 9.31%, Energy-Delay 

Product by 17.41% and fairness by 18.40% while having 36KB of higher storage cost. 

Excluding the solutions proposed in the scope of Memory Scheduling Championship, 

one lacking point of the previous works is that, they mainly focus on only one part of 

the memory controller and failed to present the cumulative effects of the 

improvements made in distinct sections of a memory controller. This study is believed 

to have a wider point of view about the subject and be an introductory guide for 

memory controller research.  
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For future works, having an RTL implementation of the proposed solution can be 

valuable to validate it in hardware. Besides, examining the memory access 

characteristics of recent technological trends’ applications makes the memory 

controller improvements more realistic and custom solutions to these types of 

applications can be focused on. Finally, co-design of cache and memory controller 

might be considered to increase the efficiency of the memory request scheduling.   
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