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ABSTRACT

HYBRID PROBABILISTIC TIMING ANALYSIS WITH EXTREME VALUE
THEORY AND COPULAS

BEKDEMİR, Levent
M.S., Department of Electrical and Electronics Engineering

Supervisor: Assoc. Prof. Dr. Cüneyt Fehmi Bazlamaçcı

September 2019, 167 pages

The primary challenge of time-critical systems is to ensure that a task completes its

execution before its deadline. In order to ensure that the underlying system comply

with stringent timing requirements, designers ought to analyze the timing behavior

of the software and its sub-components. Worst-Case Execution Time (WCET) repre-

sents the maximum length of time an individual software unit takes to execute and is

the most essential value for schedulability analysis in safety-critical systems. Recent

studies focus on statistical approaches which augments measurement-based timing

analysis with probabilistic confidence level by applying stochastic methods.

Common approaches either utilize Extreme Value Theory(EVT) for end-to-end mea-

surements or convolution techniques for a group of program units to derive absolute

upper distributional bound of the whole program. The former method lacks insurance

of path coverage while the latter one suffers from ignoring possible extreme cases of

program units. Furthermore, current state-of-the-art convolution method that is being

implemented by a commercial WCET analysis tool overestimates the results under

the assumption of worst dependence between the basic blocks.
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In this thesis, we propose a hybrid probabilistic timing analysis framework based on

modeling the program units with EVT to capture extreme cases and Copulas to model

the dependency between the units to derive tighter distributional bounds to mitigate

the effects of comonotonic assumptions. The proposed framework also offers a way

to minimize the instrumentation probe effects which is essential to obtain fine-grained

execution time traces on COTS platforms.

Keywords: Worst-Case Execution Timing Analysis, Measurement-Based Probabilis-

tic Timing Analysis, Copula Theory, Extreme Value Theory, Minimum Probe Effect
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ÖZ

UÇ DEĞER TEOREMİ VE KOPULA İLE HİBRİD OLASILIKSAL
ZAMANLAMA ANALİZİ

BEKDEMİR, Levent
Yüksek Lisans, Elektrik ve Elektronik Mühendisliği Bölümü

Tez Yöneticisi: Doç. Dr. Cüneyt Fehmi Bazlamaçcı

Eylül 2019 , 167 sayfa

Zaman kritik sistemlerde birincil zorluk, bir görevin işlevini tanımlı zaman sınırları

dahilinde tamamlayabilmesidir. Sistem için tanımlanmış olan katı zamanlama gerek-

sinimlerini karşılayabilmek için tasarımcılar tarafından yazılım ve yazılım alt bile-

şenlerinin zamanlama analizlerinin gerçekleştirilmesi gerekmektedir. Yazılım birim-

lerinin fonksiyonlarını gerçekleştirirken harcadıkları en uzun zamana en kötü durum

yürütme süresi denmektedir ve bu değer emniyet kritik sistemlerin zamanlama ana-

lizi için en önemli girdidir. Son yıllarda yapılan çalışmalar istatistiksel metotların

ölçüm tabanlı en kötü durum yürütme süresi analizi çalışmaları üzerinde uygulanma-

sına odaklanmaktadır.

Bu çalışmalarda uygulanan genel yaklaşım programların uçtan uca alınan ölçüm de-

ğerleri üzerinde uç değer teoreminin uygulanması veya küçük program bileşenlerin-

den toplanan ölçüm değerleri üzerinde konvolusyon işlemi uygulanarak tüm progra-

mın en kötü durum yürütme süresi dağılımının üst limitini tahmin etmek olarak ikiye

ayrılmaktadır. Bahsedilen ilk yöntem program yol kapsamasını garanti etmemekte,

ikinci yöntem ise olası uç değerleri göz ardı etmektedir. Ayrıca, mevcut durumda ti-
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cari bir analiz aracında uygulanmakta olan gelişmiş konvolusyon yöntemi, program

birimleri arasındaki bağımlılığın en kötüsü olduğunu varsayarak sonuçların olması

gerekenden fazla hesaplanmasına sebep olmaktadır.

Bu tezde, uç değerlerin göz ardı edilmemesi için program birimlerinin yürütme sü-

relerinin uç değer teoremi ile modellenmesi ve kopulalar yardımıyla program birim-

leri arası bağımlılığın modellenmesini sağlayan hibrid olasılıksal zamanlama analizi

çatısı önerilmektedir. Böylece gelişmiş konvolusyon yönteminde fazla hesaplamaya

sebep olan etkiler azaltılmakta ve daha daraltılmış bir üst limit dağılımı elde edilmek-

tedir. Önerilen bu çatı ayrıca rafta hazır ürünler üzerinde ölçüm tabanlı analizlerde

yapılan kod değişiminin sebep olduğu prob etkilerini en aza indirecek bir yöntem

sunmaktadır.

Anahtar Kelimeler: En Kötü Durum Yürütme Süresi, Ölçüm Tabanlı Olasılıksal Za-

manlama Analizi, Kopula Teorisi, Uç Değer Teoremi, Minimum Prob Etkisi
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CHAPTER 1

INTRODUCTION

1.1 Motivation and Problem Definition

The most distinguishing characteristic of a real-time system is to give correct re-

sponse within its strictly defined deadline. Systems range from personal comput-

ing devices, cellphones, robots, industrial systems to safety-critical systems such as

autonomous vehicles, flight control systems, and satellite control systems contain

examples of real-time applications. In each domain, safety-critical real-time appli-

cations are subject to a certain degree of safety-related software standards such as

DO178B/C(Avionics) [5], ISO26262(Automotive) [6], EN50128(Railway) [7], and

ECSS-E-ST-40C(Space) [8]. In order to satisfy safety related requirements of these

standards, timing characteristics of software units must be estimated to quantify safety

confidence along with the system level requirements.

Decades of research efforts have been devoted to improve computing power. Archi-

tectural optimizations and software abstractions increased the overall performance

and reduced the necessary development and maintenance efforts. However, advances

in technology arose challenges in timing analysis. Performance enhancing features of

modern complex processors such as multi-cores, shared buses, pipelines, out-of-order

execution, branch prediction, and caches made the execution time dependent to the

execution history. These architectural improvements made static analysis techniques

which rely on abstract hardware models inadequate because of the lack of knowledge

of the complete architecture, hence requiring more user interaction.

To bound the execution time of a task, common approach in industry is to obtain sev-

eral measurements and add a safety margin usually about %20 which is scientifically
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inaccurate. In order to obtain sound estimates with measurement-based techniques,

the software needs to be executed under all possible conditions with all possible oper-

ation states which is intractable in practice. Furthermore, measurement-based meth-

ods require an instrumentation code that is to be injected into the program yielding

probe effects.

Increased complexity in hardware and software causes jittery response times. The

variability in execution times makes statistical methods to be applicable in worst-case

execution time analysis. Statistical analysis provides WCET estimates with increased

confidence without the necessity of full path coverage, thus allowing us to obtain only

a few measurements to estimate the worst timing behavior of the system.

Some works have focused on applying algebra of probability distributions (convo-

lutions) to estimate the WCET. Those hybrid approaches aim to combine the struc-

tural information of the analyzed software with the probability distributions of the

measurements of small program units. Convolution of those small blocks yields an

execution time distribution which represents the execution time of different program

paths. Thus, convolving the blocks virtually generates possible paths that are not cov-

ered during the test runs. However, some of those convolution approaches generate

new paths that might be infeasible to reach in reality which leads to overestimation in

the results.

Extreme Value Theory(EVT) is another emerging method in probabilistic timing anal-

ysis domain which can derive estimates for extreme cases. EVT aims to model the

extreme tails of a distribution by fitting a probability distribution to estimate a WCET

with arbitrarily low exceedance probability. EVT is considered reliable only if the

samples given are independent and identically distributed (i.i.d). This assumption

might not hold for simple architectures with simple software, but advanced architec-

tures which generates noise on execution times and complex software with interrupts,

queues, semaphores, etc. makes it possible to analyze through EVT. However, most

of the studies in literature applies EVT to end-to-end measurements of the analyzed

programs which suffers from the path coverage problem during the analysis runs.

Usage of Copulas in Timing Analysis is first and only studied by G. Bernat, A. Burns,

and M. Newby in [9]. In this study they proposed a framework by using copulas for
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probabilistic hard real-time systems. Throughout the case study in that paper, they

mostly examined the Fréchet upper and lower bounds of the copulas and concluded

that the assumption of comonotonicity is the only safe but pessimistic choice. How-

ever, the application procedure to derive the empirical Copulas, determination of the

distributions of the marginals, a computationally tractable solution to estimate the

joint distribution through empirical Copulas and extrapolation of the unobserved tail

behaviors for the marginals were missing in that paper since the paper only focuses

on the theory of using Copulas in the WCET domain. In fact, they addressed these

missing points as the future works. The idea of integrating EVT and Copulas within a

unified framework in the present thesis study stemmed from those future work ideas.

Hence, that paper represents the present basis of this thesis study.

Our team at Turkish Aerospace Industries, Inc. (TAI), has been developing a Satel-

lite Flight Software with Integrated Modular Avionics (IMA) concept. Low-level

abstraction layers have been developed such as Operating System Abstraction Layer

and Hardware Abstraction Layer so that developers can focus only on the Appli-

cation Layer. Underlying hardware is a SPARC V8 based LEON3 processor with

7-stage pipeline and I/D Caches. On top of the Application Layer, Component-Based

software development approach has been adapted, thus scheduled software units are

named as Components in our system. In order to ensure that the time-critical compo-

nents comply with their temporal requirements an industrially-viable and trustworthy

framework is needed.

The only option on the market today based on measurement-based timing analysis

is the RapiTime tool by Rapita Inc. The tool makes use of the hybrid probabilistic

timing analysis approach with conservative convolution method. During the trials it

seemed to overestimate the results by a huge factor. Consequently, an improvement

on top of their approach is needed to decrease the overestimation, but staying in the

safe side not to underestimate the results by relying on the statistical evidences. In

addition to that, a mechanism to get EVT involved for capturing extreme events of

program units would increase the trustworthiness of the results.
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1.2 Proposed Methods and Models

The aim of this study is to provide a hybrid probabilistic measurement based timing

analysis framework for COTS platforms that are being used in the industry. Our

proposed method specifically targets COTS platforms rather than customized ones.

In order to comply with the EVT requirements and decrease the probe effect resulting

from the instrumentation, software components are divided into functional blocks. It

is seen from the demonstrations that dividing the program into basic block granularity

leads to unacceptable probe effects in COTS platforms. Thus, analyzing the programs

with functional block granularity generates less trace data which eases the analysis

phase. Furthermore, functional blocks tend to be more input dependent and multi-

path allowing EVT to be applicable.

In our proposed framework, injected instrumentation code is a collection of General

Purpose I/O (GPIO) driving instructions which is the most non-intrusive mechanism

across the usage of other possible external interfaces on-board. Capturing measure-

ments are done through a custom developed external hardware which monitors the

GPIO pins and time stamps the changes.

Dividing the program into functional blocks also allows to extract static structural

information of the analyzed program. This structure information with the collected

measurements are used to construct a probabilistic WCET (pWCET) distribution by

virtually generating new paths to upper bound all possible execution scenarios. Cal-

culation of the pWCET distribution is basically sum of n random variables from a

mathematical point of view. Random variables represent the execution time of each

functional block and sum of them represents the overall execution time of the pro-

gram. Current state-of-the-art solutions either assume an independence between the

blocks or use a conservative convolution approach named as biased convolution to

upper bound all possible dependence types between the blocks. However, neither

standard convolution(independence) nor the biased convolution reflects the real be-

havior of the programs. In fact, it is possible to model the dependence between the

random variables by using Copulas. Copulas are basically joint probability distri-

bution functions that have uniform marginals. Hence, it allows to simulate the joint
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behavior of the random variables which eases to derive the probability distribution

of their sum. Consequently the overestimation or underestimation resulting from the

assumptions of independence or comonotonic dependence are mitigated.

Additionally, current state-of-the-art method constructs the random variables from

the observed measurements. As our proposed method divides the programs into func-

tional blocks which tend to be multi-path sub-programs, it might be possible to model

those functions with Extreme Value Theory, thus allowing us to predict possible rare

events based on its tails behavior.

In the hybrid framework proposed in this work, software components are executed

several times with different inputs while ensuring functional block coverage and mea-

surement sets are collected for each function. By taking extracted structure of the

program into consideration, copulas are fit between the execution time random vari-

ables of functional blocks. A monte-carlo simulation approach is used to simulate

the possible upcoming behavior of the functional blocks which together represent

the possible upcoming behavior of the program. While doing that, each marginal of

the n-dimensional probability distribution are represented by a parametric continuous

Extreme Value distribution whenever possible.

1.3 Contributions and Novelties

The contributions of this thesis are as follows:

• The identification of a hybrid timing analysis framework for industrial COTS

platforms.

• Application procedures, limitations and assumptions of Measurement-Based

Probabilistic Timing Analysis on an industrial COTS platform are given.

• An improvement over the current state-of-the-art commercial solution which

is based on a conservative convolution mechanism [10] is detailed as the main

scope of this study. Current solution assumes a worst type of dependence be-

tween the random variables that represents the execution time of basic blocks.
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We model the dependence between the random variables which represent the

execution time of functional blocks by using Copulas.

• A Monte-Carlo simulation approach that is widely used in economics [11] is

adapted to simulate the execution of the individual functions inside the program

which together simulates the program itself.

• Current commercial hybrid solution ignores the possible rare cases of individ-

ual software blocks. We introduce a mechanism to represent the execution time

of functional blocks inside the program with Extreme Value distributions to

capture the extreme events.

• Results of the case studies are compared with the results of the RapiTime tool

and widely accepted independent assumptions. It can be seen from the results

that our approach decreases the overestimation by providing tighter bounds and

benefit from EVT whenever possible.

• We also introduce a way to reduce the instrumentation probe effect by mini-

mizing the injected code size and using an external custom developed FPGA

hardware named as TraceBox. Its design details and improvements over widely

used online trace storage method are shown.

• All the timing analysis implementations are done in MATLAB and R envi-

ronments. TraceBox hardware is implemented on an FPGA environment with

VHDL language. All the source codes and design details are provided.

1.4 The Outline of the Thesis

The remainder of this study is organized as follows: chapter 2 presents the back-

ground information, theoretical notions of WCET analysis and literature review. Ap-

plication procedure of EVT in COTS platforms and the main analysis test bench for

the proposed hybrid framework are introduced in chapter 3. Chapter 4 presents the

details of custom developed TraceBox hardware which is the essential part of this

study to capture measurements with minimal probe effect. Proposed hybrid frame-

work with EVT and Copulas are introduced and the results of the case studies are

6



given in the Chapter 5. Chapter 6 gives the summary of this thesis and the possible

extensions are discussed in Chapter 7.
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CHAPTER 2

BACKGROUND AND LITERATURE OVERVIEW

2.1 BACKGROUND INFORMATION

2.1.1 Timing Analysis

A system is defined as real-time system as long as it satisfied the non-functional

timing constraints. However, proving that requirement is not a trivial task. The easiest

and the safest way to find the longest execution time of a program is to measure the

execution time by giving the worst-case input to the program. In reality, knowing

and providing worst-case conditions for the program is not possible [1]. Because of

this obscurity, there have been numerous studies about Worst-Case Execution Time

(WCET) analysis.

Figure 2.1 illustrates fundamental terms in WCET analysis domain. A program, task

or the system as a whole shows different execution times according to its given in-

put. In the figure, lower white filled curve represents measured execution times of a

program under several conditions, it is also the subset off all possible execution times

of the program which is illustrated by upper black filled curve. If it was possible to

plot that upper curve, its starting and ending points in horizontal axis would give the

Best-Case Execution Time (BCET), and WCET respectively. Studies in this domain

focuses on finding a safe and tight upper-bound for the actual WCET which is an

estimation in general case.
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Figure 2.1: Timing Analysis Notions [1]

Although there are vast amount of methods in literature, each belongs to either static

or dynamic timing analysis category. Static methods basically try to analytically cal-

culate a safe upper bound for the actual WCET. These techniques do not rely on

executing the program on a real hardware target, on the contrary they analyze the

program code or executable object statically [12]. However, this method relies heav-

ily on the presence of underlying hardware model. Architectural improvements in

processors recently challenge these approaches which cause them to pessimistically

overestimate WCET upper-bounds or make the cost of computation prohibitive.

The most preferred solution in industry is the end-to-end measurement method which

is also called as dynamic timing analysis [1]. In this approach, programs are tested

under some pre-determined conditions and measurements are taken from the system.

Observed execution times construct the lower white filled curve in Figure 2.1 in which

minimal and maximal observed execution times are detected. Maximal observed ex-

ecution time is also referred as Highest Observed Execution Time (HOET) and the

WCET is calculated by adding a 20% margin to the HOET [13]. This approach is not

based on any scientific justification, but it works in many cases as long as sufficiently

enough conditions are tested. Wilhelm et al. [1] states that measurement-based anal-

ysis results provide actual variability of the execution time and it can also be used as

a validation for static analysis methods. Those results should not be far lower then

the static analysis results which would indicate that the latter are imprecise.
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Both static and dynamic timing analysis methods have some limitations and draw-

backs. Static methods generally suffer from limited access to intellectual property and

complexity of current processor architectures, thus, making static analysis techniques

inaccurate or overly pessimistic. Since the main scope of this thesis is measurement-

based methods, we are not going to give further details about static methods.

On the other hand, the most challenging issue of measurement-based (dynamic) tim-

ing analysis methods is the lack of knowledge about the coverage during analysis

runs. A cartesian product of possible program inputs and initial hardware states are

not feasible to cover in tests. Besides, controlling hardware states in isolation is not

possible for commercial products. Although, it is noted that adding 20% over the

HOET works for the most cases, a scientific justification is needed.

Recently, probabilistic timing analysis (PTA) methods have emerged in order to mit-

igate some of the drawbacks of the existing solutions. Static Probabilistic Timing

Analysis (SPTA) techniques seek to reduce the pessimism due to the incomplete in-

formation about underlying platform by expressing some of its behaviors probabilis-

tically. Measurement-Based Probabilistic Timing Analysis (MBPTA) on the other

hand, seeks to scientifically reason about the worst case events that are are captured

during analysis phase by modeling the execution time behavior of the program based

on widely accepted statistical methods. Output of the MBPTA is not a single valued

WCET, but rather a probability distribution of execution time profile of the program

that is guaranteed to upper bound analysis time observations. Since, this approach is

based on observations as in conventional MBTA methods, it still relies on the quality

of the test scenarios.

2.1.2 Extreme Value Theory

Before going further, we first present the concept of Extreme Value Theory (EVT)

since EVT is the building block of MBPTA [14].

Extreme Value Theory (EVT) is a branch of statistics that was designed to predict

unusual natural events such as extreme floods, tornado outbreaks, and earthquakes.

These extreme events is modeled as probability distributions and EVT deals with
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the extreme deviations from the median of observations associated to phenomena of

interest.

EVT can be though analogues to Central Limit Theory: while the latter focuses on

computing the mean of the normally distributed populations, EVT only concerns the

tail behavior of a given distribution.

In order to obtain trustworthy results from EVT, it requires analyzed observations are

represented as identically distributed independent (i.i.d) random variables. This prop-

erty can be verified by some statistical tests on analyzed data which will be explained

later. Normally, EVT itself cannot detect whether the analyzed data represents the

possible upcoming rare events so the results obtained from EVT is only valid for

samples obtained from the domain of attraction. Assuming the system as a black

box, EVT studies the tail of the distribution of observations taken from the system to

predict the occurrence of rare events with confidence.

According to [15] three major steps are taken when using statistics in any field which

are (1) obtaining data, (2) mathematically formulating or fitting a proper model for

the data, and (3) generalize the behavior of the system by using the fitted model. In

line with [16] and [17], a typical implementation of EVT is described step-by-step in

upcoming subsections.

2.1.2.1 Applicability Evidence

Firstly, it is necessary to obtain samples from the system which are large enough to

be representative of the analyzed event but is still as small as possible to minimize the

analysis cost. Furthermore, i.i.d random variable requirement of EVT is checked in

this step to determine whether the obtained samples will be accepted, which is called

as Applicability Evidence in literature.

In order to show that the i.i.d requirements are met, statistical hypothesis tests are

employed. These tests are based on a null hypothesis H0 which is accepted unless

an adequate evidence is found to reject it, and an opposite hypothesis H1 which is

accepted if only if H0 is rejected. Statistical tests produce p-values which represents

the strength of the evidence against the null hypothesis which is a number in [0,1)
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range.

Statistical tests may produce false positives or false negatives which are controlled by

determination of a significance level α which limits the probability of false negatives.

α is typically kept between [0.01, 0.05], thus the decision result from statistical test

is trusted with a confidence level γ = 1 – α. A p-value smaller than α indicates there

is a strong evidence against the null hypothesis so H0 is rejected. Likewise, a p-value

higher than α indicates a weak evidence againstH0, so you fail to rejectH0. There are

several statistical tests to prove that the random variables are identically distributed

and independent such as Wald-Wolfowitz (WW) and Ljung-Box (LB) for indepen-

dency, and Kolmogorov-Smirnov (KS) and k-sample Anderson-Darling (AD) tests

for identicality. The application of these tests produce p-values, which are expected

to be greater than determined α and are uniformly distributed in [0, 1) interval, hence

proving that the observations (1) were not produced by a non-random process, (2) do

not present a relevant dependency, or (3) were not drawn from different distributions.

2.1.2.2 Data Selection

An extreme value refers to very small or very large values laying on the tails of the

probability distributions. These extremely high or small values in a data set constructs

the behavior of the tails of the distribution so in order to approximate a possible lower

or higher value from the observations, irrelevant data must be eliminated.

Relevant maximum values can be selected either by using Block Maxima (BM) or

Peaks Over Threshold (PoT) approaches in the domain of EVT [18]. BM approach

divides the data into equal size blocks and gets the maximum of each block, thus

the resulting data set represents the higher tail of the distribution. In PoT approach,

only the values exceeding a certain threshold are selected to represent the tail. Figure

2.2 illustrates BM and PoT approaches. Selection of either method depends on the

application area. While using both approaches, block size or exceedance threshold

should be carefully selected which will be explained in the following sections.
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Figure 2.2: Block Maxima and Peaks over Threshold Approaches

2.1.2.3 Model Fitting

The model that represents the observations in EVT domain is called as Extreme Value

Distribution in general. The distribution simply models how large (or small) the ob-

served data will probably get.

Without using statistical models, it is possible to obtain some samples and construct

an empirical distribution function F (x) and by using its inverse one can calculate

w = F−1(1 − pe) where pe corresponds to the probability of exceedance and w is

the estimated value with pe. However, it is not possible to estimate higher values than

already observed highest value with this approach [19]. Furthermore, a vast amount

of observations must be made i.e to estimate w with pe = 10−n, 10n samples are

needed.

When Y = max(X1, X2, ..., Xn) is the random variable which is constructed by

BM, EVT tells that distribution of Y will converge to Generalized Extreme Value

Distribution (GEV) [20].

Generalized Extreme Value distribution is a three-parameter (ξ, µ, σ) distribution which

is capable of representing Gumbel, Fréchet and Weibull distributions depending on

the shape (ξ) parameter and The Cumulative Distribution Function (CDF) of GEV is

defined as follows [20]:

G(x;µ, σ, ξ) = exp

[
−

(
1 + ξ

x− µ
σ

)−1/ξ]
(21)

Gumbel (ξ = 0): The distribution has exponential tail and it is unbounded.

Fréchet (ξ ≥ 0): It has heavy tail and decreases polynomially.
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Weibull (ξ ≤ 0): The distribution has light tail with a sharp slope and has a maximum

value.

When Y = {Xi − u|Xi > u} where u is the threshold which means Y is constructed

by PoT, the distribution converges to Generalized Pareto Distribution (GPD) [20].

The CDF of GPD is defined as:

When µ = 0,

G(x;σ, ξ) =


1−

(
1 + ξ x

σ

)−1/ξ
if ξ 6= 0

1− e−x/σ if ξ = 0

(22)

GPD is also capable of representing Gumbel, Fréchet and Weibull families as GEV

does. Actually, GPD is asymptotically equivalent of GEV thus they can be alternately

used [21].

Figure 2.3a shows typical Probability Distribution Function (PDF) plots of GEV dis-

tributions with µ = 0, σ = 1 and ξ = −0.5, 0, 0.5 respectively. Figure 2.3b illustrates

PDF of GPD with σ = 1 and ξ = −0.25, 0, 1 respectively. Figure 2.3c illustrates

tail shape of GEV/GPD distributions with Complementary Cumulative Distribution

Function (CCDF or exceedance distribution) in logarithmic scale.
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Figure 2.3: Typical PDF and CCDF of GEV and GPD

Shape (ξ) is the most important parameter for both GEV and GPD which determines

the type of distribution that best fits to data. In order to estimate distribution parame-

ters, there are several methods, namely Maximum Likelihood Estimation (MLE) [22],

Generalized Maximum Likelihood Estimation (GMLE) [23], quantile-quantile(QQ)

plots [19], and L-moments [24].

According to [16], while estimating GEV and/or GPD distribution parameters L-

moments outperformed MLE and GMLE in several situations. On the other hand,

QQ-plots are not able to provide confidence intervals about estimated parameters.

However, in order to estimate parameters only for EV distribution, which also known

as a typical Gumbel distribution, MLE provides robust estimations.
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2.1.2.4 Convergence

The continuous probability rank score (CRPS) is a type of converge test, which com-

pares two distributions functions fx and fy, iteratively. It is used to detect whether the

available sample size is enough or not according to a given threshold. CRPS metric

is calculated by
∑∞

i=0(fx(i)− fy(i))2 and if the result is lower than a predetermined

threshold (e.g 0.01 or 0.001), it means that the result is not changing significantly

when further samples are fed to the analysis, thus meaning that enough samples are

assumed to be collected that fits to the model formed [25].

2.1.2.5 Tail Extension

Finally, by using the calculated parameters, the distribution of the sample tail is found.

Inverse cumulative distribution function (ICDF) of the estimated probability distribu-

tion is used to calculate extreme values for the given exceedance probability. Taking

p as the desired probability of exceedance (e.g 10−10), ICDF (p) = x gives the upper

bound value with p. Assuming p = 10−10, there is a 10−10 chance that there will

be a higher value than x. In theory without using EVT, observing x would require

1010 test runs which is infeasible for most of the situations in real world. Of course

this value is an estimation since the parameters calculated in Model Fitting phase is

estimated with a confidence interval (e.g 95% for MLE).

2.1.2.6 Reliability Analysis

The quality of the estimated distribution with EVT is a challenging entity to assess. At

his recent comprehensive survey about probabilistic WCET analysis, Cazorla states

that no universal consensus exists to date on this issue [2]. Since the whole process

is a statistical paradigm, it is reasonable to assess the reliability with some statistical

tests. Some works on WCET domain [26, 27] consider the estimates obtained from

the EVT are reliable only if every hypothesis of the EVT is verified. On the other

hand, other approaches as in [28] propose to use standard statistical tools such as

Quantile-Quantile or Mean-Excess plots to evaluate the reliability of the estimated
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distributions.

2.1.3 Measurement Based Probabilistic Timing Analysis

2.1.3.1 Introduction

Early studies of probabilistic timing analysis date back to 2000s [15, 29, 10, 30, 31, 9].

Burns et. al [15] is considered as the main reference in MBPTA field. They modeled

the program execution time behavior with extreme value statistics and measurements,

hence estimated execution times had very low probability of exceedance.

Independently of underlying assumptions and used methods, there are some princi-

pals in MBPTA which must be conformed in order to have reliable estimates. As

Cazorla et al. [2] stated in his survey, the first one is the Probabilistic Modelling

which basically seeks an assurance that both platform and the program behaves ran-

domly which increases the possibility to observe worst case conditions during analy-

sis runs. The second one is Statistical Modeling which seeks statistical evidences that

the execution-time distributions conform required prerequisites. Application Proce-

dure is the phase of the analysis in which the actual statistical actions are taken. The

last but not the least important principal is the Representativeness which is a chal-

lenging and not a procedural part of the analysis. It basically seeks an evidence that

the analysis observations reflect all possible cases for the operational scenarios.

Reliability of the MBPTA results are dependent on the quality of the measurements

taken from the system. In practice, there are some uncontrollable disturbances on the

execution times which are called as Sources of Execution Time Variability (SETV)

that will be explained in the next sub-section. Therefore, there should be a mechanism

that guarantees the execution time observations taken during the analysis phase upper

bounds all possible operations scenarios. Figure 2.4 distinguishes the differences of

scenarios.
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Figure 2.4: MBPTA Notions [2]

MBPTA requires analysis-time distribution (ATD) as input which should always up-

per bound the operation-time distribution (OTD). Aiming to this purpose is referred

as representativeness. Applicability of MBPTA methods also require to represent the

whole ATD with less samples which are referred as analysis-time samples (ATS).

By using these affordable small number of samples (ATS), pWCET distribution is

calculated which guarantees to upper-bound both OTD and ATD.

2.1.3.2 Source of Execution Time Variability

In complex systems, execution time of a program is affected by several conditions

which are basically called as Source of Jitter (SoJ) [2], or Source of Execution Time

Variability (SETV) [3]. Especially multi-path programs are input dependent so their

execution time highly depends on their inputs. Those inputs do not need to be soft-

ware parameters which only affects the paths exercised or floating-point operations.

Additionally, hardware initial states (Cache state, I/O device state) or software initial

conditions (OS Data structure, Allocation in memory) also affects the execution time.

Figure 2.5 shows some example SETV scenarios. Figure 2.5(a) represents a multi-

path program which the exercised path is changed according to its input, Figure 2.5(b)

shows an example of accessed memory address and whether its a cache hit or miss

depends on the input value, and finally Figure 2.5(c) illustrates different object place-

ments in cache which the latter would result in cache conflicts. Authors of [32] states

that initial cache contents might decrease the overall WCET by up to 20%.
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Figure 2.5: Example SETV Scenarios [3]

As Cazorla et al.[3] explains, there are several SETVs which affects directly the

analysis results. Those are represented as {SETV1, SETV2, ..., SETVj, ..., SETVn}
where jε{1, ..n} and SETVj = {vjk} = {v1j, v2j, ...vkj}. For example, the execu-

tion time of a multiplication unit directly depends on its operands. SETVj for this

resource can take 2m values, where m represents the number of multiplications hap-

pening in the program.

Since we are dealing with the Worst-Case Execution Time, we are only interested in

the maximum values for each SETVj . However, deriving maximum values from each

SETVj independently is not a trivial task. Hence, the user should provide SETV

which guarantees to upper bound all possible Cartesian product of maximum values

of each SETVj .

If SETVj would behave randomly, its effect in all SETV could be ignored, thus

making it independent of other SETV effects. Maximum values of an independent

SETVj can be selected without considering other SETV s. If it is not possible to

make SETVj behave at random, it is necessary to make sure that SETVj works

in worst conditions which guarantees to upper bound all possible SETVj effects.

However, this approach results in pessimistic estimates.

On COTS platforms, making a SETVj to behave randomly is not a trivial task. Ac-

cording to [3], the only solution for COTS platforms is the random selection of inputs

of the program and making some hardware properties to work in their worst condi-

tions. This is referred as Probabilistic Modelling which makes the software program
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behave randomly, and hardware works in its worst conditions which serves for deriv-

ing safe ATD as was illustrated in Figure 2.4.

2.1.3.3 Application of EVT for MBPTA

The study of Cucu-Grosjean [17] is considered as the first source which details the

procedural application of EVT for both single and multi-path programs to estimate

pWCETs. The steps that are followed in that study coheres with the application pro-

cedure of EVT in this thesis work. However, the most significant difference between

their approach and ours is that they take advantage of a randomized hardware plat-

form to meet the i.i.d. requirements while we are obligated to build our work on a

COTS platform.

Since the only solution for COTS platforms to conform the i.i.d. requirements is

randomly selecting program inputs, single-path programs are not suitable to analyze

with sufficient reliability. This leads us to specifically examine the WCET of multi-

path programs in this thesis work. The detailed application of EVT for MBPTA in

COTS platforms are given in chapter 3.

2.1.4 Copula Theory

In statistics, copulas are used to model the dependence of several random variables.

A copula is basically a multivariate probability distribution with uniform marginals.

Let X1 and X2 be two different random variables and their cumulative distribution

functions (cdf) are

F1(x1) = P [X1 ≤ x1]

F2(x2) = P [X2 ≤ x2]

and let H be the joint cumulative distribution function of X1 and X2 which is

H(x1, x2) = FX1,X2(x1, x2) = P [X1 ≤ x1, X2 ≤ x2]

Here, H represents all aspects of the joint behavior of the random variables, but it is

hard to interpret the dependence structure out of H . Copulas make it possible to sep-
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arate the dependence structure and the behavior of the marginals described by F1(x1)

and F2(x2). Note that, the dependence information is different from the correlation.

Correlation is only one type of dependence which is a straight line between two ran-

dom variables.

Let I represent the interval [0, 1]. A d-dimensional copula C is a cumulative distribu-

tion function on Id with uniform marginals with a general notation

C(u) = C(u1, u2, ..., ud)

Sklar’s theorem is the most important result regarding copulas which describes the

relationship between the joint distribution H and a copula C [33].

Let F be a d-dimensional joint distribution function with marginals F1, ..., Fd. Then

there exists a copula C on Id such that, for all x1, ..., xd in R = [−∞,∞],

F (x1, ..., xd) = C(F1(x1), ..., Fd(xd))

or

C(u1, ..., ud) = F (F1
(−1)(u1), ..., Fd

(−1)(ud))

where F1
(−1), ..., Fd

(−1) represent the quasi-inverse of the marginal distribution func-

tions.

There are also bound properties of copulas which are called the Frechet-Hoeffding

bounds. For every copula C and (u, v) in I2,

max(u+ v − 1, 0) ≤ C(u, v) ≤ min(u, v)

or

W (u, v) ≤ C(u, v) ≤M(u, v)

where M is the Frechet upper bound and W is the Frechet lower bound. Any copula

that can be defined lays between the W and M copulas.

Extending the previous results to d-dimensional copulas results in,

W (u1, ..., ud) ≤ C(u1, ..., ud) ≤M(u1, ..., ud)

where

W (u1, ..., ud) = max

{
n∑
i=1

ui − (n− 1), 0

}
, u1, ..., ud ∈ I
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and

M(u1, ..., ud) = min {u1, ..., ud} , u1, ..., ud ∈ I

There are several type of Copulas in the literature. The most preferred ones are shown

in Figure 2.6.

(a) Clayton Copula (b) Frank Copula

(c) Gaussian Copula (d) Gumbel Copula

(e) Joe Copula (f) T Copula

Figure 2.6: Widely Preferred Copulas with Their Density and Scatter Plots

The usage of copulas in order to upper bound the Z = X + Y distribution dates back

to 1980s [34, 35]. However, there are still recent studies on the usage of copulas in

different domains such as timing analysis.

2.2 LITERATURE REVIEW

There have been numerous researches related to measurement-based timing analysis

(MBTA). In this thesis we primarily focus on probabilistic variant of MBTA which is

surveyed excessively in recent papers of Cazorla et al. [2] and Davis et al. [36]. Gil

et al. [37] discussed the open challenges in MBPTA. MBPTA is initially studied by
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Edgar and Burns [15]. They experimentally showed that it is possible to statistically

model the execution time behavior of a software process running on top of a Pentium

II computer with QNX real-time operation system. The input of the program is ran-

domly generated and collected execution time samples are modeled through Extreme

Value distributions [20]. They state that it is possible to predict probabilistic WCET

values independent of the underlying processes and the cause of the execution time

variability. However, they left the scheduling analysis out of the scope of that paper.

In their other study [29], they examined the applicability of similar statistical tech-

niques to estimate the pWCET of a task by fitting execution time observations to a

Gumbel distribution. However, in that study they assumed some statistical require-

ments to be satisfied and used all observations to derive a Gumbel distribution instead

of using block maxima of observations.

Hansen et al. [19] presented the use of Block Maxima method to estimate the pWCET

through Gumbel distribution on top of a PowerPC platform with VxWorks RTOS. The

estimated WCET values are validated by collecting additional millions of measure-

ments. They showed that it is possible to safely predict the WCET values without the

need of large collection of samples.

The work of Cucu-Grosjean et al. [17] is considered as the basis for MBPTA in the lit-

erature. They introduced the methodology of how to apply EVT for both single-path

and multi-path programs on a simulator with random replacement cache. Execution

times are collected end-to-end and applicability tests are applied in order to evidence

the i.i.d. property for EVT. Samples are grouped with Block Maxima method and the

Exponential Tail test is applied to check whether the distribution of maxima fits to

GEV distribution. The authors point out that in order to satisfy the i.i.d. requirements

for multi-path programs, it is reasonable to select the inputs randomly and group the

observations sequentially.

Santinelli et al. [38] studies the effects of dependence between time observations for

EVT on an Intel Xeon platform without a randomized cache or any type of bus. They

experimentally evaluated that the execution time variability resulted from the under-

lying complex hardware architecture and is random enough for the EVT applicability.

They also remark that the derived pWCET distribution is highly affected from the se-
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lected parameters such as block size for BM method or threshold for PoT method.

However, they do not provide any mechanism for selecting those parameter values to

achieve accurate results.

In another study of Santinelli et al. [27], they applied EVT to execution time ob-

servations taken from both time-randomized and time-predictable platforms. One of

the important results of that study is that forcefully fitting distributions to Gumbel

instead of determining the best fit in accordance with the shape parameter decreases

the confidence of the results.

Abella et al. [14] studied the application of EVT for more realistic programs that

would have step like distribution which is also called as mixture distribution. They

argued that any real-time program must be finite and their execution time should not

be heavy tailed so it is reasonable to accept the distributions to have exponential tail

(i.e. Gumbel distribution). They introduced the MBPTA-CV (Coefficient of Varia-

tion) mechanism which continuously apply statistical tests to obtained samples until

the exponentiality test is failed to be rejected. Finally, they fit the observed sample

distribution to an exponential distribution to derive the pWCET values. This method

is also converted to a tool named as chronovise [39]. Furthermore, Milutinovic et

al. [40] discussed that the MBPTA-CV method might produce untrustworthy results

when execution times are collected from different paths of a multi-path program and

analyzed in a single bucket. They introduced a multiple bucket approach in which

each path is analyzed on its own. Reghenzani et al. [21] discussed the misconception

of forcefully fitting exponential tail distribution which supports the main idea behind

MBPTA-CV.

Cazorla et al. [3] defined the general properties of MBPTA with EVT for both time-

deterministic and time-randomized platforms. The authors suggest to randomize the

underlying platform to increase the confidence of the results as studied later in [41].

However, they also mention that it would be possible to derive WCET estimates on

time-deterministic platforms with EVT by randomly generating inputs for the multi-

path programs.

There have been several case studies of MBPTA with EVT in the industry. Wartel

et al. [13] applied the MBPTA procedures which are defined by Cucu-Grosjean on
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a case study which is designed in accordance with the Integrated Modular Avionics.

The underlying platform was a PowerPC simulator with randomized cache behavior.

Silva et al. [16] studied the pWCET estimation by implementing both GEV and Gum-

bel fitting methods. They used L-Moments approach to estimate the parameters for

GEV and MLE approach for Gumbel. Observations are grouped with Block Maxima

method. They collected few samples (106) to estimate the low probability execution

times and tightness assessments are done by comparing the results with 108 samples

that are taken from the system. Their method is later empirically studied on an Intel

platform with Linux operating system in [42].

Instead of using hardware randomized platforms for MBPTA, Curtsinger et al. [43]

introduced the STABILIZER system which is also referred as dynamic software ran-

domization in the literature. It makes use of LLVM compiler toolchain to modify the

binary code during compilation and a runtime library that randomly shuffles the mem-

ory contents during the test runs to indirectly affect the cache behavior. Kosmidis et

al. [44] experimentally evaluate the use of STABILIZER on a cycle-accurate simu-

lator. Furthermore, Cros et al. [45] evaluated the applicability of dynamic software

randomization with STABILIZER for MBPTA on an aerospace case study which is

running on top of a LEON3 platform.

Hybrid probabilistic timing analysis (HYPTA) studies can be divided into two cate-

gories. The first one is related to the development history of RapiTime probabilistic

WCET analysis tool. Years of studies performed by G.Bernat and his team are trans-

ferred into a commercial tool as detailed in [46]. They initially developed a scope-tree

representation method to estimate the WCET of the programs by mitigating the ef-

fects of conventional syntax tree representation [47]. Then, they introduced the state-

of-the-art biased convolution method to derive the WCET of the whole program out

of the observations of small blocks [10]. It is followed by the development of pWCET

tool in [30]. They also examined the use of Copulas for estimating an upper-bound on

WCET [9]. That study forms the basis of this thesis. Throughout the years, the initial

pWCET tool evolved into RapiTime WCET tool which is widely used in the industry

[48, 49]. Law et al. [50, 51] introduced a mechanism to automatically generate test

cases with search algorithms to increase the path coverage along with RapiTime. The
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TACO framework introduced by Lesage et al. [52] presents a measurement frame-

work to increase the path coverage. The authors state that the full path coverage is not

possible in practice. A host computer different than the real target platform is used

to simulate the program and possible input vectors are generated. Then the generated

input vectors are fed into the real system which is a Rolls-Royce processor platform

to collect the time samples. Those time samples are analyzed through RapiTime in

the final phase.

The second group contains the studies related to the path coverage problem in HYPTA.

The most dominant works are presented by Kosmidis et al. [53] and Ziccardi et al.

[54] which are detailed in chapter 5.

Lesage et al. [55] presents a framework that collects measurements of small blocks

from the real target, but the overall program behavior especially the followed paths

are simulated on a host computer. Synthetically generated measurements are then fed

to the standard MBPTA method of Cucu-Grosjean to derive the pWCET values.

Palopoli in his PhD thesis introduced a completely different approach for MBPTA by

using Markov models [56].

27



28



CHAPTER 3

MEASUREMENT-BASED PROBABILISTIC TIMING ANALYSIS ON COTS

PLATFORMS

3.1 Experimental Evaluation of MBPTA on a COTS Platform

In order to evaluate the proposed hybrid framework on COTS platforms, first an em-

pirical assesment of MBPTA with EVT on our time-deterministic COTS platform

should be performed.

3.1.1 Experimental Setup

The platform used in our experimental evaluation phase is a LEON3FT based ASIC

platform. LEON3FT is fault-tolerant version of LEON3 SPARC V8 processor whose

general architecture is presented in Figure 3.1. It is designed for embedded applica-

tions, combining high performance with low complexity and low power consumption.

The CPU is running at 64MHz and it supports most of the functionality of standard

LEON3 processor including the functionality to detect and correct errors in all on-

chip RAM memories. LEON3FT comprise 4 set, 16k bytes/set and 32 bytes/line first

level instruction (IL1) and 4 set, 16k bytes/set and 32 bytes/line data (DL1) caches.

The replacement algorithm which is used in both caches is the Least-Recently-Used

(LRU) replacement algorithm. The processor also implements 7-stage pipeline with

Harvard architecture with the use of an efficient branch-prediction capability. It also

has a high-performance, fully pipelined Floating-Point Unit (FPU). The platform also

has a Memory Management Unit (MMU), but we choose to disable it since the un-

derlying real-time operating system (RTEMS RTOS) does not have virtual address

translation capability, thus does not support MMU.
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LEON3 platforms have a Debug Support Unit (DSU) which is basically a debug mod-

ule for the processor and CPU Advanced High-performance bus (AHB). To simplify

debugging on target hardware, LEON3 processor implements a debug mode during

which the pipeline is idle and the processor is controlled by the DSU. It enables to

control processor execution (hardware breakpoints, single stepping, etc.) and to ac-

cess the registers and the caches of the processor. DSU also provides a trace buffer

for the instructions and a trace buffer for the CPU AHB transfers. However this trace

buffer has only 8k bytes length which is not suitable for long benchmark runs to

collect execution time traces for the whole program. The underlying platform has

256MB on-chip RAM along with the LEON3 CPU which is used to store execution

time traces initially for this work.

Figure 3.1: LEON3 Architectural Blocks

The software side of the platform comprises a real-time operating system (RTOS)

named as RTEMS. The version that we use in our work is a commercially certifiable

version. RTEMS is a widely used RTOS mainly in space flight systems, and also

medical and embedded network systems. In architectural point of view, RTEMS does

not support virtual memory management and processes, but it implements a single

process in a multithreaded environment.

Higher layers of the software environment is constructed in accordance with Inte-
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grated Modular Avionics (IMA) [57, 58] concept which basically divides our so-

called processes into partitions temporally and spatially. Since RTEMS does not sup-

port virtual memory management, spatial partitioning is not possible for now. There

are some ongoing works about implementing ARINC-653 partitioning concept onto

RTEMS [59]. However, this requires altering the RTOS source code which is not

possible in our case due to certification considerations. Temporal partitioning is done

under the priority based preemptive scheduling concept. A non-preemptive scheduler

task partition, which has the highest priority, schedules other so-called processes (pre-

emptive tasks) with a timer. Each so-called process includes components which are

cyclically scheduled inside assigned partition duration. Figure 3.2 represents afore-

mentioned scheduling concept of our running environment. For the simplicity of

experimental evaluation, all partitions except the analyzed one are disabled.

Figure 3.2: Partition Based Scheduling of Components

One of the main purposes of partitioning is to prevent a failure in one partition should

not propagate to the other in timely manner. While this ensures that each partition

will start its duty exactly on-time, it does not consider the timing requirements of

software components inside the partitions. Because of that, processor utilization is

one of the main challenges in partitioned systems. In order to comply with the tim-

ing requirements of the functional behavior of system and increase the utilization,

software components inside the partitions should be distributed carefully. Hence, the

main factor to analyze to overcome this problem is the WCETs of the components

under question [60].
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In order to evaluate and experiment the applicability of MBPTA with EVT in our

time-deterministic COTS platform, several benchmark programs are structurally trans-

lated into components. These components are compiled using RTEMS LEON/ERC32

GNU cross-compiler system (RCC) [61], which basically compiles the program with

GNU GCC and links with RTEMS RTOS which finally generates .ELF object file to

be programmed into the target hardware. Some of the compiler flags used are -O0

which is to explicitly force to compile without any optimization, and -msoft-float to

emulate floating-point operations without any hardware support.

Final representation of our experimental program is shown in Figure 3.3 which is

highly representative of an actual time-critical program running on top of a COTS

platform. For simplicity, all partitions and irrelevant components are disabled, but

underlying layers are left as is in order to reflect the real system as much as possible.

Figure 3.3: Architecture of Experimental Benchmark Program
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3.1.2 Definition of Inputs

As stated before, the population under analysis is the execution time traces drawn

from software components in our system. Before going any further, we need to define

what a component is and how its behavior affects the timing analysis procedure.

Components are composed of several sub-functions which collaboratively operates in

response to the requested function. Their input points and the input definitions are

strictly defined, hence if those inputs do not satisfy the prerequisites, they are basi-

cally rejected and that component does not do anything on its own. This is important

since it means that components are highly input-dependent and more importantly they

are multi-path programs as they are composed of several sub-functions.

In order to experimentally evaluate the conformance of MBPTA on our COTS plat-

form, we chose to implement some of the Mälardalen WCET Benchmarks [62]. The

main drawback of these benchmarks is that their predefined WCET values are only

valid for static analysis approaches and also their input ranges are not given. Because

of these reasons, we carefully examined some of the programs and derived some

bounds on the input parameters to generate random input vectors. In fact, deriving

very accurate parameter bounds are not necessary since we are only dealing with the

execution time behavior of the program and we assume that those programs might

accept those inputs and derived execution times are accepted as long as the programs

do not unexpectedly terminate.

In our EVT experiments we chose to use the following benchmark programs since

they are highly input-dependent and performs floating-point operations on arrays

which makes them sensitive to hardware effects:

1. fir = Finite Impulse Response filter program which has a lot of vector multipli-

cations and array handling. Its structure is composed of nested loops in which

the inner loops depend on the outer loops.

2. select = Selection of Nth largest element from a given floating point array which

has a lot of floating point operations. Its structure is composed of 3-level nested

loops.
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3. janne_complex = It is a nested loop program in which the bounds of the loops

are dependent on the input and inner loops depend on outer loops.

3.1.3 Applying EVT on Time-Deterministic COTS Platform

The stages of experimental evaluation are depicted in Algorithm 1. Each benchmark

program under analysis is translated into a component as explained above. The com-

ponent is encapsulated with benchmarking code instrumentations to randomize inputs

to make the program traverse different paths and to obtain end-to-end measurements

which is explained as Algorithm 1. Encapsulated components are compiled using

RCC toolchain which is finally linked with RTEMS RTOS. Test runs are performed

until they finish, instrumented components are tested for a predefined number of times

i.e 10000 for this experiment.

Algorithm 1 Testbench for MBPTA Trace Capturing
1: buffer ← ALLOCATEMEMORY(for 10000 traces)

2: function TESTBENCH

3: for i = 1 to 10000 do

4: x← GENERATERANDOMINPUT

5: buffer ← GETCURRENTTIME

6: FLUSHCACHES

7: COMPONENT(x)

8: buffer ← GETCURRENTTIME − buffer
. Store the end-to-end time difference

9: end for

. buffer is dumped through GDB interface at this point

10: end function

11: function COMPONENT(x)

. Do something that depends on x

12: end function

In order to randomize any property in software, a reference random number is needed.

Hence, to increase the confidence of randomization process, Mersenne Twister pseudo-
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random number generation method is implemented since it has been proven to be

"more random" than the built-in generators in many common programming languages

including C [63].

Before each run, inputs of the components are shuffled or randomly generated. Then,

caches are flushed as explained in [64] and current time is fetched from RTOS which

basically gets the current time value from a timer in nanoseconds resolution.

Then, the component is executed by using randomized inputs and current time is

fetched once again and finally time difference is stored inside an allocated RAM area,

which is large enough to store 10000 execution time traces.

When the benchmark run is finished, stored traces inside the RAM area is dumped

onto the host computer by using DSU interface. In order to use DSU interface, the

running program must be stopped and the processor should be switched to debug

mode as was explained in Experimental Setup subsection.

Once end-to-end measurements for a component are obtained, implementation of

EVT starts, which is detailed in the subsections below.

3.1.3.1 Initial Observations

Benchmark programs are analyzed and 10000 observations are collected separately.

Figure 3.4 shows the histogram plot of collected execution times for each benchmark

program.

In Figure 3.4, fir looks normally distributed while select tends to have heavy tail.

janne_complex also looks like normally distributed with unusual spikes. However,

we are not interested in their overall shape. Since we are dealing with Worst-Case

Execution Time, we only need a model for their tail behavior which are the values

that are laid on the rightmost parts of the plots. EVT models each tail of distribution

and it does not seek for a good fit for its internals.
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(a) fir (b) select

(c) janne_complex

Figure 3.4: Histogram of Benchmark Programs

Table 3.1 below summarizes the initial statistics of the observations.

Table 3.1: Execution Time Statistics of the Observations

Program Minimum Maximum StdDeviation

fir 8.5357ms 8.722 435ms 0.027 478 5ms

select 0.318 65ms 2.152 825ms 0.246 46ms

janne_complex 2.434 315ms 4.834 29ms 0.331 575ms

3.1.3.2 Applicability Evidence

EVT requires the samples to be i.i.d and in order to verify that assumption several

statistical tests must be performed. Independence means that each sample that is
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observed during the analysis is not affected by another measurement. For provid-

ing evidence of independence we used Wald-Wolfowitz (WW) and Ljung-Box (LB)

statistical tests.

WW, also called as runs test, has the null hypothesis of randomness of the obser-

vations. It marks the observed values as + and - which are greater and lower than

median, respectively. Values that are equal to the median are discarded. It then exam-

ines the normality of the runs (continuous + and - marks) [42].

LB or Box test has the null hypothesis that there are no serial autocorrelation between

observations up to specified lag. There are very little practical advice on how to

choose the number of lags so we have calculated for several lags as in line with Silva

et. al [42].

Identicality evidence can be provided with Two-Sample Kolmogorov-Smirnov (KS)

and the k-sample Anderson-Darling (AD) statistical tests.

KS test is a nonparametric hypothesis test that evaluates the difference between the

cdfs of the distributions of the two sample data vectors. It has the null hypothesis that

the samples in each vector are from the same distribution.

k-sample AD test is also a nonparametric test that checks whether given two or more

groups of data are identical. Each group should be randomly drawn from a population.

It is introduced by Scholz and Stephens [65] and is a generalization of Two-Sample

AD Test. It is also a modification of KS test which gives more weight to the tails.

In order to increase the credibility of these tests, using our 10000 observations, we

formed two randomly selected 1000 sample blocks. After obtaining two groups in

which each of them contains 1000 consecutive observations, they are tested by using

the aforementioned statistical tests. This process is repeated 1000 times, which means

we created two random blocks for 1000 times and obtained 1000 p-values for each

statistical test. Obtained p-values should be uniformly distributed in the range [0, 1)

and tend to be high in order to pass the tests.

Results are presented in Figure 3.5 by using whisker-box plots with the 0%, 5%,

50%, 95%, 100% quantiles which are minimum, 5%, median, 95% and maximum of
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the obtained p-values, respectively. They are much higher than 0.05 and uniformly

distributed which provides enough evidence that the observations conform the i.i.d

requirement in order to apply the EVT.

All the tests are implemented in MATLAB environment and the codes are given in

Appendix A.1.
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Figure 3.5: Statistical Tests of Benchmark Programs

3.1.3.3 pWCET Estimation

Obtained observations represents the ATD which was explained in Figure 2.4. In

order to represent the whole ATD with less samples (ATS), a data selection process

should be performed. We are interested in the WCET which means that we need
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to specially model the rightmost tail behavior of the ATD. As was explained before,

there are two main approaches in EVT to filter out the tail, which are BM and PoT.

Depending on the selected filtering method, obtained ATS either fits to GEV or GPD,

which we already noted that they can be used alternately. We followed the similar

approach as [17] while applying the EVT steps for our COTS platform.

For evaluation purposes, we have selected to use BM approach in this section. Obser-

vations are divided into blocks of 50 samples as proposed in [17] and maximums of

each block are selected to construct ATS of each ATD. Figure 3.6 shows the histogram

of resulting distributions of each ATS.

(a) fir (b) select

(c) janne_complex

Figure 3.6: Filtered Samples with BM Approach and Fitted GEV PDF Plots

After obtaining ATS, the next step is to estimate the model parameters. Because we

used BM approach, ATS should follow a GEV distribution. In our thesis we used

L-Moments approach [24] in order to estimate the model parameters. The estimated

39



GEV parameters for each program are given in Table 3.2. Furthermore, by using

those parameters, fitted GEV PDFs are plotted on Figure 3.6. The MATLAB codes

to get block maxima of ATDs and parameter estimations with L-Moments and MLE

approach are given in the Appendix A.2, A.3 and A.4.

Table 3.2: Estimated GEV Parameters

Program Shape(ξ) Scale(σ) Location(µ)

fir -0.2339 0.0130 8.6864

select -0.0119 0.1463 1.3970

janne_complex -0.1962 0.1452 4.3295

It is worth noting that the shape ξ ≤ 0 for all distributions. It means that they all fit

to a Weibull distribution which has light tail with a sharp slope and has a maximum

value. We mentioned before that select tends to fit to a Fréchet distribution, but its

tail behavior follows a Weibull and almost Gumbel behavior.

EVT aims at deriving a distribution which safely upper-bounds the tails of the obser-

vation distributions. Silva et al. [16] empirically showed that Gumbel is safer than

GEV by providing reliability and tightness results. He states that Gumbel should be

used for timing analysis instead of GEV. Moreover, Abella et al. [14] clearly explains

why Gumbel is more suitable for timing analysis by identifying some constraints as

follows:

1. A program is naturally finite which means that it has some code constraints

such as loop bounds. Especially in a time-critical domain, those constraints are

strictly defined and programs are constructed by limited number of instructions

which have maximum execution times. Because of these reasons, authors of

[14] state that execution time of a time-critical program should not be heavy

tailed (Fréchet). Instead, they should have a maximum execution time.

2. EVT seeks a safe upper-bound and it should prefer pessimism over optimism

when needed. In a time-critical domain, if increasing accuracy also increases

the possibility of optimism, it should stay in the pessimistic side in order not to

lose safeness.
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Abella et al. [14] also propose a method to estimate the parameters for Gumbel

distribution which is basically based on collecting as much observations as possible

until it satisfies the necessary requirements. They state that any time-critical program

should converge to a Gumbel distribution eventually if enough observations are taken

and they check that by applying Exponential Test (ET) [66]. Once ET is satisfied,

they estimate the parameters µ and σ while enforcing ξ = 0.

In our evaluation, we did not follow the same approach. In fact, we assume that

we have collected "enough" observations based on the GEV fitting results given in

Table 3.2 which shows that all distributions are light tailed. It means that if we enforce

any of those distributions to follow a Gumbel model, it will definitely upper-bound

our GEV results. However, this assumption may result in lack of evidence for a good

model fitting, which is explained in the next section in detail.

As we have already calculated the parameters for GEV model. Estimation of Gumbel

parameters is best done with MLE approach [16] so we also calculated the param-

eter values for Gumbel distribution. The Figure 3.7 shows the resulting Empirical

Complementary CDF (ECCDF), CCDF of GEV and CCDF of Gumbel respectively

in logarithmic scale in order to examine the tail behavior in details. Complementary

CDF shows the probability of exceedance for each estimated WCET value.

Blue line represents the empirical CCDF which is a non-parametric distribution and

shows the real sample distribution. Red line represents the CCDF of GEV model

which both with Gumbel upper-bounds the whole ECCDF which is the expected be-

havior since the GEV and Gumbel is constructed by using the tail values of the real

samples.
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Figure 3.7: Complementary CDF Plots in Logarithmic Scale

Table 3.3 summarizes several pWCET estimations for each program. The calculation

is done by using inverse CDF functions of each distribution by using the desired

probability of exceedance parameter.

The MATLAB codes to derive the results in the table are given in Appendix A.6.
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Table 3.3: pWCET Estimates

Program fir select janne_complex

HOET 8.7224ms 2.1528ms 4.8343ms

GEV(10−4) 8.7355ms (0.1%) 2.6731ms (24%) 4.9479ms (2.3%)

GEV(10−6) 8.7397ms (0.2%) 3.2604ms (51%) 5.0202ms (3.8%)

GEV(10−9) 8.7415ms (0.2%) 4.0829ms (89%) 5.0567ms (4.6%)

Gumbel(10−4) 8.8179ms (1%) 3.5591ms (65%) 5.9541ms (23%)

Gumbel(10−6) 8.8779ms (1.7%) 4.5499ms (111%) 6.6971ms (38%)

Gumbel(10−9) 8.9677ms (2.8%) 6.0360ms (180%) 7.8117ms (61%)

10−4, 10−6 and 10−9 probability parameters correspond to the probability of the ex-

ecution time of the program exceeds the estimated value. Result of pWCET(10−6)

states that out of 106 runs of the program, observations should not exceed the calcu-

lated value.

From the table above, results of fir does not change significantly that is because the fir

program has bounded loops which strictly limits the possibility of executing longer

than already observed values. The variations come from the floating point operations

and data accesses during the filtering phase. Even in the worst case which is Gumbel

(10−9), calculated pWCET is only 3% higher than HOET. select on the other hand

shows almost an unbounded behavior. It has a 3-level non-rectangular loop which

has a lot of floating point comparisons and most importantly the loop bounds are not

strictly defined which is iterated until it finds a proper solution. Capturing more ob-

servations would decrease its variable tail behavior, thus might have a sharper slope.

Lastly, janne_complex has the most variation among others for its ATD. That is be-

cause it has nested loops whose bounds are directly dependent on the given input.

Since we have limited the input value range during the random generation phase, its

execution time is bounded from a higher level.

Another important step in measurement-based timing analysis is to decide when to

stop capturing traces. One of the possible numeric techniques is the CRPS test. In our

evaluation we calculated the CRPS values by using both GEV and Gumbel models
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and we set the acceptance threshold as 0.001. As in line with Cucu-Grosjean et al.

[17], in order to eliminate the possible false positive cases, we set the convergence

round limit as 5 which means that the calculated CRPS should be below the threshold

for 5 consecutive rounds. In each round, we increased the sample size by 50 starting

from 100 samples until 10000 which totals to 198 rounds and at each round the data

sampling with BM method and model fitting is done as explained before. Finally,

CRPS value is calculated for each round and checked whether the convergence criteria

is met or not. Figure 3.8 shows the results for each program under analysis for both

GEV and Gumbel models. Blue line plot represents the CRPS change, red dashed

line represents the index value where CRPS test has converged.
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Figure 3.8: CRPS Plots for Both GEV and Gumbel Models

According to the results of CRPS test, it would be enough obtain 3100 (GEV) and

2050 (Gumbel) samples for fir, 9350 (GEV) and 4000 (Gumbel) samples for select

and 3700 (GEV) and 3600 (Gumbel) samples for janne_complex. It can be seen from

the figures that after some point, CRPS values do not change significantly which

means that collecting more values would not affect the fitted model.
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The MATLAB codes to calculate the CRPS values are given in Appendix A.5.

3.2 Reliability and Tightness of the Results

So far, we have applied all the steps of EVT for MBPTA as in line with Cucu-Grosjean

et al. [17] that is considered as one of the pioneers which describes step by step

procedures of applying EVT for both single-path and multi-path programs.

Reliability and tightness of the results is one of the important questions of EVT. Most

of the works in this domain assume that the derived results are reliable and tight.

Cazorla et al. [2] states that there are no universal consensus to date on how to asses

the reliability of the derived results from EVT. However, there are several methods

which are assuming the results are reliable indirectly by trusting the confidence levels

obtained from the applicability statistical tests, or Quantile-to-Quantile plots or the

Mean-Excess plots.

Tightness is another issue since the actual WCET is not known, it is not possible to

derive how tight is the estimated distribution. Silva et al. [16] proposes a solution

which takes advantage of collecting huge number of observations from the system

and marks the highest observed execution time (HOET) and compares that value with

the estimated pWCET result which is derived by using smaller samples.

In this evaluation work, we chose to implement QQ-plot approach for reliability as-

sessment and huge number of sample collection approach for tightness assessment.

QQ-plot is a plot which shows the quantiles of the sample data versus quantiles of

the desired distribution. If the samples fit to the distribution, the plot produces an ap-

proximately straight line, suggesting that the sample data and the desired distribution

have the same behavior.
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Figure 3.9: QQ Plots for Both GEV and Gumbel Models

Figure 3.9 above shows that GEV models fit better than Gumbel to our samples.

However, we already mentioned in the previous section that enforcing the data to fit

to Gumbel would result in lack of good-fit to the model which is illustrated here. This

is because Gumbel stays in the pessimistic side in order to not to lose safety cause, but

its tightness is questionable. On the other hand, GEV is more vulnerable to possible

unusual outcomes of the programs in the future, but provides tight results.

An important reminder is that the results which are derived from EVT is only valid

for the conditions which the analysis runs are taken. Since we do not know the input

which would let the program traverse the worst-case path, randomly generated inputs

are given to the program. Hence, the results are derived by using randomly selected

inputs and hardware variations due to having huge number of floating-point opera-
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tions and several data access patterns. There are also other hardware effects covered

which is not possible to independently mention meaning that the resulting pWCET

distribution is only valid for the given program inputs and tested hardware conditions.

Although we have limited control over the underlying COTS hardware, it is pos-

sible to control the inputs. In order to provide an insight for how tight and reli-

able the results are, we have also stored the randomly generated inputs for each

program during the analysis phase. It means that we have stored 10000 inputs for

each program. By doing that we have extracted which input parameter resulted in the

HOET during the analysis. Hence, we now haveHOET (104), pWCETGEV (10
−4),

pWCETGEV (10
−6), pWCETGEV (10

−9), pWCETGumbel(10
−4),

pWCETGumbel(10
−6), pWCETGumbel(10

−9) and InputHOET (104) for each program

to be used during reliability and tightness analysis.

In order to compare the results, we modified the input generation phase in Algorithm

1, and assigned the same InputHOET (104) which is derived during the analysis phase

for all the iterations. More specifically, we have given the same InputHOET (104)

parameter 106 times to the program. We followed this approach because if we would

continue to generate random inputs, it would be meaningless since it would definitely

generate different inputs other than our tested inputs, which because EVT does not

guarantee providing a safe upper bound for such a case. Coverage is another problem

for Measurement-Based timing analysis, which is covered in Ch. 5 in detail.

Finally, we have collected 106 samples for each benchmark program with the same

given input for comparison. Figure 3.10 shows both the GEV and Gumbel CDFs and

InputHOET (106) which is obtained from 106 runs.
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Figure 3.10: pWCET Reliability and Tightness Analysis Results

Red dashed line represents the obtained HOET (106) and black dashed lines are the

CRPS indexes. It is clearly seen from the figures that GEV models are much tighter

than Gumbel. However, for the fir case GEV is so tight that it sometimes underesti-

mates the WCET. Especially when CRPS is trusted GEV totally underestimated the

WCET which also shows that CRPS is not a highly trustable metric. However, after

the 180th index which corresponds to 9000 samples, GEV tends to stay above the

HOET (106). For the select case, GEV seems to be both tight and reliable since it

stays above theHOET (106) after the 60th index which corresponds to 3000 samples.

In all cases, pWCETGumbel(10
−4) seems to be both tight and reliable.
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3.3 Conclusion

In this chapter, we provided a systematic way to assess Measurement-Based Prob-

abilistic Timing Analysis (MBPTA) with EVT on COTS platforms. Almost all the

studies in literature focuses on randomizing the hardware in order to increase the reli-

ability and representativeness of the samples. However, there are very limited studies

for COTS platforms.

In reality, COTS platforms do not allow for cache policy or bus arbitration modifica-

tions. It is also not possible to obtain measurements in instruction granularity from

COTS platforms as it is possible for simulators or specialized hardware which is to

be studied in chapter 4.

Along with all these limiting factors, we empirically assess the applicability and re-

liability of MBPTA with EVT for some previously selected WCET benchmark pro-

grams. Those programs are specifically selected to get hardware effects involved.

Non-rectangular loops, input dependent data accesses, input dependent conditional

paths and loop bounds made each program to depend heavily on hardware features

and the given software input.

Studies in literature assume that the worst-case path input is already known and by

giving that input to the program they basically eliminate the path effect from SETV s.

However, in reality it is not possible to derive that input which is why there are studies

in order to increase the path coverage in measurement-based timing analysis domain.

In our EVT assessment we have generated random inputs for the test programs which

is a realistic approach to increase path coverage and generate necessary variations in

execution time. Those variations result from the fact that the benchmark programs are

multi-path, which means that they are input dependent. We also selected programs,

which do a lot of complex operations on data in order to be realistic.

We defined the component term in order to explain that in reality program inputs are

strictly defined and their value ranges are known from the design. It makes us to

generate random inputs in accordance with those range constraints.

While applying EVT for MBPTA of our benchmark components we simply followed
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the following steps:

1. Collect 104 measurements and store the generated random inputs for each pro-

gram.

2. Apply statistical tests to the ATD values.

3. Derive ATS from ATD by applying BM method.

4. Estimate the GEV parameters µ, σ and ξ for each ATS.

5. Forcefully fit ATS to Gumbel and estimate the parameters µ and σ while en-

forcing ξ = 0.

6. Derive the CRPS index.

7. Plot the QQ-Plots to check goodness-of-fit of the models.

8. Collect 106 measurements with InputHOET (104) for each program and compare

the pWCET results with HOET (106) .

Some of those steps are done only for experimental evaluation purposes. In reality,

only the 1st, 3rd and 4th or 5th steps are sufficient to estimate the desired pWCET

value with a desired probability of exceedance. We showed that the CRPS index is

not that trustworthy since it may result in underestimations as was shown in Figure

3.10. Furthermore, QQ-plots do not provide numerical results so it may only be

used for visual verification purposes. Finally, collecting 106 measurements just for

checking would not be possible for some realistic programs so that step can also be

omitted.

One important point to consider is that all measurements are taken end-to-end in here.

In reality, programs are not that small as our benchmark programs. On the contrary

the real tasks or functional components are composed of several sub-programs. It is

still possible to apply EVT for such cases, but the more the program complexity in-

creases, the more its path coverage through randomized inputs are decreased. There-

fore, Hybrid Probabilistic Measurement Based Timing Analysis (HYPTA) methods

have emerged which combines some properties of Static Analysis domain and some

properties of MBPTA. Thus, HYPTA seeks to increase path coverage based on static
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properties of the program and measurements obtained for program blocks. Of course

it also has some drawbacks that needs to be studied, which is the main motivation and

direction of this thesis. By using and assuming some of the outputs of the works done

in the present chapter, we present our method in chapter 5 in detail.
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CHAPTER 4

INCREASING CONFIDENCE OF MEASUREMENTS

Collection of measurements from a computing system can be done in several ways.

A simple approach is to instrument the source code to collect time stamps or get CPU

cycle counter values directly from the system. Another widely used method is to use

external hardware such as logic analyzers to capture and time stamp special signals

from the system. There are also non-intrusive ways which require customized hard-

ware tracing mechanisms such as NEXUS standard [67] or Embedded Trace Macro-

cell (ETM) mechanism from ARM [68]. Using simulators to extract measurements

are another non-intrusive method to collect measurements.

Non-intrusive mechanisms require customized hardware support which are not widely

encountered in commercial products. The most commonly used method is injecting

instrumentation points, which are triggered when the program is run to emit an identi-

fier. That identifier is then time stamped to construct the timing trace for the program

segment.

As A.Betts explained in his PhD thesis [69], software only solutions time stamp trace

points on the target and stores the traces inside internal memory. As the memory space

is very limited on embedded systems, this method provides no scalability. Hence in-

jected instrumentation code produces timing penalty and increases overall code size,

which is commonly referred as probe effect.

The main drawback of Measurement Based Timing Analysis is the probe effect gen-

erated in collecting measurements. There have been several studies to eliminate or

minimize the probe effect to derive more confident results. In [70], Betts et al. collect

time stamped traces of objects non-intrusively through special hardware via Nexus
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debug interface which is limited by the size of debug buffer to store huge amount of

trace data. Karlsson [71] in his MSc thesis, developed an FPGA based trace mech-

anism which benefits from open-source SPARC IP-library. Traces are generated on

board and through co-operating SoC on the same board, they are transmitted to a

computer on PCI bus. Dreyer et al. in [72] proposes an FPGA architecture to con-

tinuously collect traces non-intrusively from an Embedded Trace Unit which is again

a specialized hardware property. Commercial Hybrid Measurement Based Analysis

solutions such as RapiTime [49] along with the company’s commercial data logging

solution RTBx provides a measurement-based WCET analysis platform. Traces are

collected with aforementioned software-only solutions or software/hardware mixed

solutions through RTBx.

In this thesis work, we also implement a mixed software/hardware method similar to

the RTBx product of Rapita Inc. The main driving reasons why we implemented this

method are as follows:

1. Non-intrusive trace collection requires a specialized debug hardware unit which

our COTS platform do not provide.

2. Software-only trace solutions incur intolerable timing anomaly in execution

traces.

3. RTBx is not an open source solution moreover it is a commercial product which

is only usable with RapiTime to capture traces from the system.

4. Incurred probe effect with a mixed software/hardware solution is acceptable in

our case.

Consequently, to be able to collect reliable measurements from the system, we needed

to implement our own software/hardware measurement circuit design.

4.1 Minimizing Probe Effect for COTS Platforms

Betts et al. in [69] explain that software/hardware trace generation method is basically

monitoring an outer interface of the platform and time stamping the trace identifiers
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by using an external hardware such as a Logic Analyzer. Instrumentation timing

overhead is minimized since the only mechanism that is needed to be performed by

the software is to output the trace identifier through one of the platform’s output

interfaces. He also states that this method requires accessible I/O ports on the target

which are not always available and not practical to use. However, in our case the only

acceptable solution is to use this software/hardware method along with the use of I/O

ports which are available in our platform anyway.

There are several external interface options in order to output a trace identifier when

a hit occurs. Those are UART, CAN, MIL-STD-1553, and GPIO. Trace identifiers

are simply unique numbers and no other information is needed since time stamping

is done externally hence the only thing that needs to be output are decimal trace

identifiers. Because our main goal was to minimize the probe effect, we chose to

implement a design which is based on GPIO interface. GPIO interface can be driven

more easily rather than other options. Its timing penalty (overhead) and code size

effect are much lower. Our LEON-3 based COTS platform has an 8 bits wide GPIO

port in which each bit of the port can be individually set as input or output and can be

controlled. An output register is used to drive the pin value so in order to output the

trace identifier, the only thing that needs to be done in instrumentation code is writing

a value to the GPIO output register. The limitation here is that we only have 8 GPIO

pins which means our trace identifier can be represented with at most 8 bits.

When a signal appears at the external interface, a mechanism is needed to capture and

time stamp the trace identifier. Mostly Logic Analyzers or Oscilloscopes are used in

embedded systems to observe the signals and sometimes to capture them. However,

in our situation both Logic Analyzers and Oscilloscopes do not have enough memory

space to hold huge amount of trace data. Furthermore, these devices basically are

not designed for that purpose. As a result, we needed to implement our own custom

hardware to monitor the GPIO signals externally to capture, time stamp and store.

4.1.1 Design Overview

Instrumentation of the code side is easily done by just writing an 8-bit trace identi-

fier value to the memory-mapped GPIO output register. However, designing custom
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monitoring hardware is much compelling. In our thesis work, we chose to implement

our hardware with FPGA technology. That way, we could control and be aware of

all the phases of capturing in order to increase reliability and minimize probe effect

stemming from time stamping phase. Figure 4.1 shows the overall architecture of

our trace capturing system. Target platform is connected to the TraceBox through its

8 GPIO pins. Our Host PC and TraceBox communicated through SSH over Ether-

net interface so it is easy to remotely command the TraceBox and dump the logged

traces. GDB Debug interface is used to load the instrumented program into the target

platform and dump log data whenever necessary.

Figure 4.1: Overall Architecture of the Trace Capturing System

4.1.2 TraceBox Hardware Design

Monitoring GPIO signals and time stamping the changes can easily be done with any

FPGA board. However, we also need to store the trace data to examine later after

the tests are finished. Recently, an emerging technology is SoC FPGAs which in-

tegrates high-level management features of processors and real-time data processing

capabilities of FPGAs into a powerful embedded computing platform [73].

In this work, we chose to implement our design on the Terasic DE0-Nano-SoC Kit

which has Altera Cyclone V FPGA along with the 925MHz Dual-core ARM Cortex-

A9 processor. It also has 1GB DDR3 SDRAM which we used to store our trace data
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temporarily until we move it to an external storage [4]. Figure 4.2 shows the block

diagram of the kit.

Figure 4.2: Block diagram of DE0-Nano-SoC [4]

Intel FPGAs have Avalon Interface capability which provides standard interfaces for

designed components thus eases the development of FPGA components without wor-

rying about their interconnections [74]. We designed our necessary components sep-

arately by conforming to Avalon Interface standards which is then connected easily

with Platform Designer tool. Components and their interconnections are shown in

Figure 4.3.

Figure 4.3: TraceBox Design Details
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The main clock of the system is 50Mhz. However, by the help of PLL clock ca-

pability, we increased our system clock to 200Mhz as illustrated in Figure 4.3. All

the components in the system are fed with this PLL clock. HPS-FPGA Bridge com-

ponent provides the necessary mechanisms to access SDRAM at the HPS side of

the board and it is also responsible for transporting commands from ARM processor

to the FPGA fabric. MSGDMA component is basically a DMA which is wrapped

with Avalon Interface standards and it is used to transport trace data directly to the

SDRAM without visiting ARM itself thus minimizing the timing penalty resulting

from storage phase. There are also some custom made components which are Glitch

Filter, Pipelined Counter and Trace Capture.

4.1.2.1 Glitch Filter

Although our target platform’s GPIO pins are equipped with two flip-flops in series

to remove potential meta-stability, output signals might be exposed to environmental

and electrical interferences. During our experiments, we observed too many false

trace data if we splice the cables between the outputs of the onboard computer and

the inputs of the TraceBox hardware. Most of the disturbances were vanished when

we directly connected the pins through one whole wire per pin as shown in Figure

4.4.

Figure 4.4: Connections Between the TraceBox and Satellite Onboard Computer

However, out of several hundreds of traces, there were still unwanted captures at the

results. Glitch filter is designed to remove those unwanted pulse signals from the dig-

ital output signal. Its input signal width and glitch length can be configured through
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ARM processor by the help of Avalon Standard thus relieving us from recompiling

FPGA code for each possible configuration. Glitch length determines the number of

samples that has to be stable before being propagated to the output. Figure 4.5 illus-

trates the filtering phase. As illustrated, received input signal must be stable for N

clock cycles to be accepted where N is configurable through ARM processor.

The VHDL codes of Glitch Filter is given in Appendix B.1.

Figure 4.5: Block diagram of Glitch Filter

4.1.2.2 Pipelined High Speed Counter

FPGAs provide high speed counter capabilities. However, their reliability with higher

speeds are questionable when conventional methods are being used such as defining

a 64-bit signal vector and incrementing its value in each clock cycle. A 64-bit counter

is essentially a 64-bit ripple carry adder which the overflow condition is compared

in 64-bit at each cycle. For a 200Mhz clock source, this counting and comparing

process should fit in 5ns. This would not be possible since the long counters have a

lot of propagation delays. Thus, there needs to be a way to partition the counter signal

into smaller parts and leading the use of faster FPGA counter blocks such as 16-bit

counter blocks. Because of this reason we implemented a pipelined counter which

the total length of the counter is divided into smaller blocks in which state transitions

of blocks trigger subsequent blocks to start counting [75].

In our implementation, we chose to implement a 64-bit pipelined counter because 32-

bit counter would roll over after 21.47 seconds with 200Mhz clock (4,294,967,295 x
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5ns = 21.47s). In order to relieve us from tackling counter overflow issues, we chose

to implement a 64-bit counter which would overflow after almost 3 years. We used 4

16-bit counter blocks in which rightmost 16-bit counter always counting at 200Mhz,

but succeeding 16-bit counter increments only when the first 16-bit counter overflows

and it continues until up to the leftmost 16-bit counter. In each clock cycle, 64-bit

counter output is generated through Avalon interface which will be used by Trace

Capture component.

The VHDL codes of Pipelined Counter is given in Appendix B.2.

4.1.2.3 Trace Capture

Trace Capture component involves the main capturing process of the TraceBox hard-

ware. This component is basically waiting for an input signal transition to be cap-

tured. When the input is ready to be captured, it reads the 8-bit input value and cur-

rent counter value from the Pipelined Counter component at the same time and finally

sends the trace data to the MSGDMA component to be transferred to the SDRAM of

the HPS. The destination address at the SDRAM is controlled from the HPS side of

the system to avoid conflicts.

One important thing to consider in this scenario is how the Trace Capture component

will decide whether the input signal is ready to be captured or not. There is not a

communication protocol on top of the GPIO signaling mechanism. When a value is

written to the GPIO pins, that value is latched until it is changed internally. Consumer

side which is the TraceBox hardware needs to be informed that the data is written to

the GPIO pins. For this reason, one of the GPIO pins is reserved to be the trigger pin

which lowers the number of available pins for trace identification to 7.

In our implementation, most significant bit of the input signal is considered as trigger

signal and rest of them are the trace identifiers. Figure 4.6 shows the timing diagram

of the capturing and state transition phases.
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Figure 4.6: Trace Capture Timing Diagram

The VHDL codes of Trace Capture is given in Appendix B.3.

4.1.2.4 Software Instrumentation

As the most significant bit of the output signal needs to be used as trigger, available 7

pins could be used to identify instrumentation points over the program which makes

it possible to inject up to 128 different points. Instrumentation points on software are

defined as simple macros. The definition of the instrumentation macro is very simple

that is just writing the identifier value to the GPIO output register. Listing 4.1b shows

a simple instrumented program which basically calls IPoint macro two times when

entering and leaving the program. Listing 4.1a shows the definition of IPoint macro

which first writes the trace identifier value x to the output register. After that it toggles

the most significant bit to high and eventually low to inform the external hardware that

it finished writing trace identifier to the port.

Listing 4.1: Instrumentation Macro and Instrumented Program

(a) IPoint Macro

#define IPoint(x)
{
GPIOOutput = (x & 0x7F);
GPIOOutput = GPIOOutput | 0x80;
GPIOOutput = 0;

}

(b) An Instrumented Program

void testProgram()
{

IPoint(1);
//program operations
IPoint(2);

}
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4.1.2.5 Storing and Dumping Traces

Trace Capture FPGA component captures the input signal as 8-bit signal and gets the

current counter values as 64-bit data, but the SDRAM of the HPS side does not accept

64 + 8 = 72-bits of value for each entry. The nearest available option is to store the

data as 128-bit data. For this reason, trace identifier is concatenated with 54 bits of

zeroes to fill the 128-bit along with the counter value so each trace data occupies 128

bits (16 bytes) of space inside the SDRAM.

Our platform has 1GB SDRAM and theoretically it can hold 62,500,000 trace values.

However, in practice this RAM is also used by the ARM processor on the board.

Furthermore, even the 62,5 millions of samples seems enough, we do not want to

limit ourselves with 1GB of space so we implemented a mechanism which fetches

the trace data from SDRAM and writes to a file inside the memory card which is

inserted to the Micro SD Card slot of the SoC board.

FPGA fabric and ARM processor works without disturbing each other in complete

isolation. Hence, the software that is running on top of the ARM processor can work

parallel with FPGA fabric. The only shared resource is the SDRAM between ARM

and FPGA so it needs to be carefully crafted.

We allocated 16Mbytes of continuous ring buffer space from SDRAM since it is

enough to store temporary trace values until they are stored inside the physical mem-

ory disk. A simple concurrent software running on top of the Linux operating system

inside the ARM is responsible for configuring FPGA components through special

Avalon interfaces and arranging MSGDMA destination addresses to avoid conflicts.

In the mean time, it is also responsible for dumping trace values from SDRAM to the

file.

A simple console interface is developed to control the software inside the ARM which

is shown in Figure 4.7.
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Figure 4.7: User Console Interface of TraceBox Software

User can set a sample limit, set the glitch filter length, start/stop capturing, dump

remaining traces, print some debugging logs. It is accessible though SSH interface

and resulting trace file can basically be copied to the host computer to be analyzed.

4.2 Evaluation and Comparison

In this section, we evaluated and compared our solution with widely used software-

only instrumentation solution. Listing 4.2a shows our instrumentation macro, Listing

4.2b shows a widely used software-only instrumentation macro.
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Listing 4.2: Instrumentation Macro Definitions of Compared Solutions

(a) Mixed Sw/Hw

#define IPointGPIO(x)
{
GPIOOutput = (x & 0x7F);
GPIOOutput = GPIOOutput | 0x80;
GPIOOutput = 0;

}

(b) Sw-Only

buffer = allocate some space from
the data memory space

#define IPointSW(x)
{
currentTime = getTimeFromOS();
write x to buffer;
write currentTime to buffer;

}

Software-only solution requires some buffer space to be allocated from the memory

and it makes a function call to the operating system to fetch the current time which

is in general making a lot of inner function calls inside. After that trace identifier

and current time value is written to the allocated buffer space until it is filled. Of

course this software-only solution also requires a mechanism to dump this allocated

buffer space to the host computer which our target platform has through GDB debug

interface.

Out test methodology is to measure the difference of consecutive calls of the IPoint

calls. What we have done is to prepare a test bench as shown in Listing 4.3.

Listing 4.3: Comparision Test Bench for Instrumentation Methods

IPointGPIO(1);
IPointGPIO(2);

IPointSW(1);
IPointSW(2);

As can be seen above, there are no other operations between IPoint calls and the

only delay that incurred is their own execution times. IPointGPIO calls are captured

through TraceBox hardware, IPointSW calls are stored inside the internal memory

and then dumped though GDB debug interface when the test finishes.

We have collected 1000 measurements and the results are shown in Table 4.1.
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Table 4.1: Precision Comparison of Trace Capture Methods

Methods Min Max Avg

IPointSW 17 µs 50 µs 24 µs

IPointGPIO 0.86 µs 0.94 µs 0.89 µs

4.3 Conclusion

In order to collect reliable, minimal intrusive and higher number of traces, we have

implemented an industrially viable solution for our thesis evaluation. Most of the

currently used solutions store trace data in the memory to dump later. Although

this method seems to be acceptable for end-to-end measurements, it is certainly not

scalable and unacceptably intrusive to collect detailed traces, such as our case, where

measurements of functional blocks inside the code is needed.

It is seen in Table 4.1 that our GPIO method outperformed the software-only method.

It is much less intrusive that even in the worst case our method measured below

1 µs while the widely used software-only method took 50 µs to finish. Our mixed

software-hardware solution is also able to capture limitless traces in theory as long as

our storage is enough, which is replaceable (SD Card) while the on-board memory

is not in most cases. Furthermore, the hardware is controllable remotely over SSH

interface which we do not need to tackle the debug interface and stop the software

and put the processor in debug mode in order to dump the traces stored internally.

Hence, this method is used in our evaluation phase during all the experiments we

carried out.

65



66



CHAPTER 5

HYBRID PROBABILISTIC TIMING ANALYSIS WITH EVT AND

COPULAS

Hybrid Probabilistic Timing Analysis (HYPTA) has emerged to mitigate some of

the current problems of measurement-only solutions by combining static properties

with measurements. Static properties expose the structure which makes it possible

to analyze parts of the program individually and possibly increase path coverage by

analytically constructing new paths.

In Static Probabilistic Timing Analysis (SPTA), all the instructions are attached with

an Execution Time Profile (ETP) which the execution times and related probabilities

are assigned under the probabilistic assumptions based on instruction type. For exam-

ple, if an instruction is data dependent, meaning that if it should access to the memory,

its execution time could be hypothetically 1 or 100 cycle when the corresponding data

is already in cache or not. The probabilities of that instruction to execute in 1 or 100

cycles are assigned respectively based on historic assumptions that have been made

before. In any case, probabilities and execution time values inside the ETPs are con-

structed using all static and some probabilistic assets.

HYPTA approach also divides the program into predefined blocks. However, ETPs

are constructed from the measurement observations. After constructing ETPs, an

approach is needed to combine those ETPs to derive an execution time distribution of

the whole program that is being analyzed.

In this chapter, we propose our Hybrid Probabilistic Timing Analysis framework.

Instead of representing each block with their ETPs, we propose to represent them

with continuous parametric probability distribution functions and specifically with
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Extreme Value Distribution functions whenever possible. Since this hybrid approach

is an improvement over a state-of-the-art hybrid probabilistic method, we also pro-

vide mechanisms to use ETPs when the blocks are not suitable to be modeled by an

EV distribution. Furthermore, we provide the details of the application procedure of

Copulas in timing analysis to model the dependency between the blocks.

5.1 Current State-of-the-Art

There are very few studies in HYPTA domain to mention. The most conspicuous

works are done by i) Kosmidis et al. [53] called as Path Upper Bounding (PUB),

which is referred as the main HYPTA technique by Abella et al. [76] and ii) Ex-

tended Path Coverage for MBPTA (EPC) [54]. They both aim at increasing the path

coverage for MBPTA by using static properties of the programs. PUB simply relies

on modifying the source code which requires specialized compiler support to force

the program to traverse uncovered paths during the analysis runs while the EPC syn-

thetically pads the execution time distributions of each block in order to make each

block independent of each other and finally combines them to derive the worst-case

path for the program.

However, our main interest is on the RapiTime tool which is developed by Rapita

Systems Ltd. [49]. RapiTime is an industrial probabilistic WCET solution which its

roots reach originally to the pWCET Tool [30]. It was initially a research project

developed by Real-Time Systems Research Group at the University of York [46].

Throughout several research studies [10, 47, 30, 9, 77], the tool has evolved into a

commercial product now called as RapiTime.

Authors of [2] defines the RapiTime as a hybrid MBTA solution rather than hybrid

MBPTA. They argue that the tool predicates the notion of pWCET, but it does not

apply a predictive model to estimate the distribution. Thus, it should be considered

much more as a SPTA with measurements rather than MBPTA. However, Davis et

al. [46] states that the tool falls into the HYPTA category since it combines the static

structural properties of the program with measurements, but its probabilistic approach

is still questionable. Besides, one of the developers of the tool states that they follow a
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frequentist approach in order to determine the probability values of each measurement

sample [30].

Cazorla et al. [2] describes the ETP for an instruction x as:

ETP (x) =

 px1 px2 .. pxn

etx1 etx2 .. etxn

 ,
n∑
i=1

pxi = 1.

where etxi corresponds to a possible latency of the instruction and pxi represents its

probability of occurrence. The RapiTime tool constructs this ETP for each block but

not for every instruction. etxi values represent the observed unique execution times

and pxi is their observation frequency.

A novel approach to combine ETPs in HYPTA domain is described in [30] and we

use the term HYPTA to represent their approach in our work. They state that any

type of program can be described as a combination of sequential, conditional and

iterative blocks. Their representation method is named as Scope-Tree and described

in [47]. An important criteria in HYPTA different from SPTA is that ETPs do not

represent the execution-time behavior of the individual instructions, but rather basic

blocks or coarse grained functional blocks. One of the main reasons is that capturing

measurements for each instruction is not a trivial task and also there would not be

enough variability in the execution time of all individual instructions during analysis

runs.

They defined a set of rules called as the timing schema of the program in order to

evaluate the WCET as a function of tree nodes [9]. Tree nodes correspond to measur-

able blocks inside the program and each node should have an ETP that will eventually

be combined to construct the overall WCET. The notions that are used to represent a

basic program are given as follows:

• W (A) = X

• W (A;B) = W (A) +W (B)

• W (if E then A else B) = W (E) +max(W (A),W (B))
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• W (for E loop A end loop) = W (E) + n(W (E) + W (A)), where n is the

maximum iteration count

X is a random variable representing the execution time of node A. W (A;B) cor-

responds to sequential execution of nodes A and B. The third notion represents a

conditional statement and the last one is used for sequential blocks. They state that

this scheme (conditional, sequential, iteration) is enough to represent any type of

structured program [9].

Here, the resulting expression will be the probabilistic timing schema of the worst-

case path of the whole program. An important point in here is that the method actually

derives possible worst-case paths and their individual WCETs construct the overall

distribution for the program. However, numerical calculation of the expression is not

an easy task especially for sequential cases.

Since the execution time of the nodes are represented by random variables Xi, the

problem reduces to the calculation of (X1+X2+..+Xn) for sequential blocks. If it is

assumed that Xis are independent of each other, then the standard convolution of the

distributions gives the result easily. However, this assumption do not hold in reality

especially for the perfect positively(comonotonic) or negatively(countercomonotonic)

dependent situations. Petters et al. [78] compares several ETP convolution techniques

and he also remarks the issue of the overestimation of current approaches.

Bernat et al. [9] in their study specifically aim to solve this problem by using copulas.

Copulas are basically used to model the dependency between random variables [79].

The study proposes that the supremal convolution with the assumption of comono-

tonicity between the blocks results in safe estimation for any type of dependence

between them. It means that whether the sequential blocks are independent or not,

comonotonic convolution safely upper bounds the results of any possible degree of

dependence and they experimentally confirmed the idea. Similar to the supremal

convolution, they branded the Biased Convolution technique [10] which still relies on

comonotonicity. Furthermore, their commercial tool RapiTime also implements the

explained Biased Convolution method [49].
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5.2 Open Challenges for HYPTA

There are some problems and open challenges for the current state-of-the-art HYPTA

approach. First, in one of their constituent papers [9], they state that the only ac-

ceptable method is comonotonic convolution for any type of dependence between

basic blocks. They support the idea with some experiments, but the degree of over-

estimation is not mentioned. Actually the results in the paper do not seem to be

overestimated because of the test scenarios which only covers the comonotonic and

independent cases. However, for a countercomonotonic case (perfect negative depen-

dence), the assumption of comonotonicity would result in huge overestimation [10].

Consider the following program:

Listing 5.1: Negatively Dependent Sequential Function Call Example

void f1(x) {
for(int i = 0; i < x; i++)
{

//delay 1ms
}

}

void f2(x) {
for(int i = 0; i < 100 - x; i++)
{

//delay 1ms
}

}

void testProgram()
{

f1(x);
f2(x);

}

It is obvious that the functions f1 and f2 are negatively dependent to each other

meaning that when one of them executes for (n) ms , the other one should execute

for (100 − n) ms which results in testProgram always executing for 100ms. Cur-

rent HYPTA solution tries to estimate the WCET of the testProgram function by

calculating the following expression.

W (testProgram) = W (f1) +W (f2)

Here, W (f1) and W (f2) are the observed execution time distributions that are rep-

resented by random variables. Sequential addition of the random variables with
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comonotomic convolution results in:

W (testProgram) = ETP{testProgram} =

p1 p2 .. pn

2 3 .. 200


The resulting distribution claims that the WCET of testProgram could be 200ms

with a probability of pn or alternatively it claims that there could be an input x which

would lead the program through a worst-case path where both f1 and f2 executes for

100ms. This assumption is far from reality and causes to 100% overestimation of the

actual WCET.

The second problem is related to the construction of ETPs for each basic block. The

method is based on a frequentist approach meaning that the frequency of observation

of each value is assigned as the probability of occurrence for each value. For example,

lets consider the execution time observations for block A corresponds to:

XA = {10, 10, 11, 11, 11, 11, 12, 13, 14, 14}

The ETP for the block A is constructed as:

ETP (A) =

0.2 0.4 0.1 0.1 0.2

10 11 12 13 14


where the values in the first row corresponds to the probabilities and the second row

represents the possible execution times for the block. It is also stated that the distri-

butions for blocks are discrete in nature. This statement holds for fine grained basic

blocks since they are not exposed to huge variations. However, if the blocks are

defined as functions, they are much vulnerable to input and hardware effects, thus

their execution time behavior would result in an asymptotic tail as was examined in

chapter 3.

In practice, it is not feasible to instrument every branching points through the program

in order to construct ETPs for fine grained basic blocks due to increasing probe effects

as was explained in chapter 4. Consider the following program with nested loops:
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Listing 5.2: Function with Nested Loops

void f1() {
for(int i = 0; i < 100; i++)
{

IPoint(1)
for(int j = 0, j < 100; j++)
{
IPoint(2)
...
IPoint(3)

}
IPoint(4)

}
}

For only one call of function f1(), instrumentation methods IPoint(2) and IPoint(3)

are called for 10000 times which exposes the infeasibility of the approach especially

for COTS platforms. The only reasonable solution would be to increase the granu-

larity of the blocks which also brings the variance issue due to multi-path nature of

coarse grained blocks.

RapiTime allows to instrument the program in functional granularity which means

that only the entry and exit points of the functions are instrumented throughout the

program. However, they still construct the ETPs in the same way as basic blocks.

This approach ignores the possible rare events due to hardware and input effects of

the functions which generally have a multi-path nature.

The aim of this present work results from the open challenges of current state-of-the-

art HYPTA solution which eventually turned into a commercial probabilistic WCET

tool named as RapiTime. Those problems are not raised from the nature of the meth-

ods that are being implemented, but the applied domain and system wide constraints

such as hardware/software limitations that result in the lack of applicability and reli-

ability of the obtained results.

The overestimation resulting from the assumption of comonotonicity and the lack of

rare event capturing when functional level instrumentation is performed has emerged

as the main research topic of this study.
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5.3 Estimating Tighter pWCET

The main challenge in measurement based WCET analysis era is to derive reliable

and tighter WCET values or distributions. As the actual WCET value is not known

in practice, there is no known method to validate the estimated value or its tightness.

However, in some cases it is instinctively known that the implemented method results

in overestimation especially when the selected method chooses to stay in the safe side

ignoring the incurred pessimism.

In our case, we aim to decrease the unnecessary overestimation that result from the

comonotonic assumption of the current state-of-the-art HYPTA solution. It is not

our claim that the existing method could result with an overestimation, in fact its

developers also admit it [9, 10]. The main idea behind assuming comonotonicity

arises from the fact that generally the dependence information between the blocks are

not known so the comonotonic convolution is the only safe estimate for finding the

joint distribution of basic blocks.

Consequently, when the dependence between the blocks are known, comonotonic

assumption could be eliminated. Deriving a dependence information for the distribu-

tions is not a trivial task, but possible. If the execution time of the basic blocks are

considered as random variables Xi then the problem reduces to finding a dependence

type between consecutive random variables. Bernat et al. [9] study the issue by using

Copulas, but only examine some specific dependence types. In reality, copulas can

model a wide range of dependencies. Details of the Copulas were already given in

chapter 2.

It is also possible to model each Xi with a parametric distribution such as GEV or

GPD in order to capture possible extreme cases at the tails. Modelling the distribu-

tions were detailed in chapter 3 and the general steps are also valid in this case.

Recently, combining Extreme Value Theory and Copulas became an emerging subject

especially in economics and finance [11, 79]. In our work we followed a similar

approach with [11].
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5.3.1 Proposed Method

In finance, Value-at-Risk (V aR) is an important measure that represents the risk fac-

tor of the portfolio. Basically, V aR is a single number that gives the amount of

potential loss that could happen in an investment or a portfolio of investments over a

given time period. Formally,

V aRα = inf{l ∈ R : P (L > l) 6 1− α} = inf{l ∈ R : FL(l) > α}, α ∈ (0, 1)

gives the V aR of a portfolio at the confidence level α, which is the smallest l such

that the probability of the loss L exceeding l is no larger than (1 − α). Figure 5.1

illustrates the possible loss distribution for a given time period and red dashed line

represents the V aR value with α = 95% meaning that the loss value will not be

greater than V aR with 95% probability. Alternatively the loss to be grater than V aR

by 5% chance.

Figure 5.1: Value at Risk

Deriving the V aR value requires to construct a loss distribution. If the aim was to

estimate the V aR value for only one investment, the problem reduces to model the

loss/return indexes of the investment and calculate the 95% quantile of the distribu-

tion. However, modelling the distribution for a portfolio of investments is a challeng-
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ing task due to the dependency between investment returns.

In order to model the distribution, there are several methods; namely Historical Sim-

ulation, Variance-Covariance Method and Monte-Carlo Simulation. In our work, we

take advantage of Monte-Carlo Simulation approach because it provides probabilistic

results and the interdependence between individuals are taken into account.

There are also other algorithms to numerically calculate the joint distribution of n

dependent random variables in the literature such as the GAEP algorithm by Arbenz,

Embrechts and Pucetti in [80]. However, their method is limited to calculate the joint

distribution of 6 marginals and the results seem to be very similar to Monte-Carlo

method.

Avdulaj in his MSc thesis [11] proposes a procedural approach to estimate the V aR

for an empirical portfolio by using Extreme Value Theory and Copulas. The general

steps that he followed which also concern us are given as follows:

1. Model each investment returns with Piecewise Distribution with Pareto Tails

which fits a Generalized Pareto Distribution (GPD) to the tails and a kernel

distribution to the intermediate part.

2. By using semi-parametric CDF that is derived in the first step, each distribution

is transformed into a uniform one on interval [0, 1].

3. A multivariate t-copula is fit to uniform marginal distributions and its parameter

is estimated.

4. By the help of the t-copula generator function, huge number of uniform variates

are generated randomly.

5. Randomly generated uniform variates are converted back to their real domain

by using the inverse of each semi-parametric distribution which is also called

as Inverse Transform Sampling in the literature [81].

6. A weighted sum is performed to estimate the overall V aR distribution.

7. Finally, the desired V aR value is calculated with the given confidence level α.
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The steps after the 3rd one represents the Monte-Carlo Simulation steps.

An analogy can easily be drawn between V aR analysis and the WCET analysis in

our case. Returns of investments correspond to execution time of blocks and V aR

corresponds to the overall probabilistic WCET of the program.

In our proposed method, we follow a similar approach as Avdulaj used in his MSc the-

sis, but instead of using t-copulas to model the dependence, we chose to use Vine Cop-

ulas. Although the t-copula allows to model symmetric tail dependencies in higher

dimensions, it still relies on a single parameter. In fact, multivariate dependencies are

not necessarily symmetric. Also when the dimensions become more complex, sin-

gle parameter approach might fall behind. For these reasons, Vine Copula approach

is introduced which models the overall dependency by using pair-copulas and a tree

model [82, 83].

Additionally, we also model each block of the program with Extreme Value distribu-

tions. However, there might be some cases when goodness-of-fit tests are not passed

for the fitted models as was explained in chapter 3. In such cases historical simulation

approach is followed which corresponds to using frequentist ETPs that are introduced

before. Modelling the blocks with one of the EVT distributions provides deriving pre-

dictive tail values while current state-of-the-art ETP approach only provides already

observed discrete values.

The most essential step in our method is to derive the copula model which represents

the dependency between scopes of the analyzed program. In order to derive a cop-

ula, marginals must have the same dimensions meaning that the observations of each

scope must be taken at the same time. This is an important criteria especially for con-

ditional and iterative blocks since for a single run of the program, sequential blocks

are visited once, but conditional or iterative blocks might be visited zero or several

times. The main aim of this study is to reason about the dependencies for sequential

blocks and derive tighter bounds for the WCET, thus a special consideration is taken

for the conditional and iterative blocks.

The general steps of our approach is given below.

1. Derive the timing schema of the program and identify the scopes to be analyzed
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separately

2. Determine the random variables that represents the execution time of the scopes

3. From the most inner scope to the outer one, fit the suitable copulas for each

scope that have sequential addition of random variables

4. Simulate next n execution of the scopes out of the copulas by using Monte-

Carlo approach

5. Derive the inverse CDFs of each random variable

6. Transform each uniform margins generated from simulations into their original

domain by using their inverse CDFs

7. Perform a sum operation for all the marginals to derive the overall distribution

of the scope

8. Repeat steps 2− 7 until there are not any scopes left to be analyzed

5.3.2 Experimental Evaluation

The purpose of this section is to identify the experimental setup and detail the ap-

plication steps of our method. In addition, we compare our results with the current

state-of-the-art solutions.

In this chapter we use the same setup as explained in chapter 3 - algorithm 1. How-

ever, in this case traces are not stored internally, but they are captured by using our

custom developed TraceBox device as detailed in chapter 4. Using such a solution is

mandatory since it is necessary to obtain detailed traces instead of end-to-end mea-

surements as in chapter 3. However, as was noted earlier instrumenting every basic

block or every branch point is not feasible due to the possibly incurred probe effect

and hardware limitations (i.e. limited GPIO pins). Therefore, we chose to instrument

the programs in functional block granularity.

Captured traces are analyzed on our host computer after the analysis runs are finished.

MATLAB and R languages are used to analyze the traces and visualize the results.
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Most of the steps in this chapter are done in R environment since it supports a wide

range of statistical algorithms and aesthetic data visualization capabilities [84].

5.3.2.1 Application Procedure

In order to detail the steps, we constructed a program similar to the program given

in Listing 5.1. In that case we already mentioned about the huge overestimation

problem. However, for more realistic scenarios, it would not be easier to reason

about the overestimation cause. In fact, we cannot even be sure about whether there

is an overestimation or not. The only implication could be drawn from a detailed code

analysis of the program. Consider the following program:

Listing 5.3: Sequential Negatively Dependent Insertion Sort

void testProgram()
{

insertSortAsc(x);
insertSortDesc(x);

}

The given program is composed of two consecutive sorting functions both depending

on the given input x. x is a randomly generated array that is composed of 500 float

values. The first function sorts the array in ascending order and the second one sorts

the same array in descending order. Since x is randomly generated for each run, their

execution times would be negatively correlated. In addition to that those functions

are also input dependent multi-path programs which have loops and floating point

comparisons. For reproducibility purposes, the sorting function is realized by the

insertsort program out of the Mälardalen WCET Benchmarks [62].

insertsort is originally an insertion sort program which sorts a reversed array of size

10. It is an input-dependent program with nested loops. For our evaluation we

extended the sort bound from 10 to 500 and for descending ordering case we only

changed the comparison condition from "<" to ">".

Instead of instrumenting only the testProgram, this time we instrumented the program

in functional granularity which means the insertSortAsc and insertSortDesc functions

are also instrumented along with the testProgram itself. Out of 10000 analysis runs,

79



observed statistics is given below.

Table 5.1: Execution Time Statistics of the Observations

Scope Minimum Maximum

insertSortAsc 217.4657ms 272.0894ms

insertSortDesc 212.7195ms 266.9449ms

testProgram 482.2895ms 487.3415ms

It is clearly seen from Table 5.1 that although both sorting functions execute for more

than 260ms, the observed maximum end-to-end execution time for testProgram is

about 487ms. This indicates that the functions are not perfectly positively correlated

(comonotonic), thus the dependency type between them should be taken into account.

The correlation plot given in Figure 5.2 clearly summarizes the case.

Figure 5.2: Correlation Plot of Negatively Dependent Sorting Functions

The distribution of each function in histogram format and kernel density estimation

line is shown on the diagonal. On the bottom of the diagonal, the bivariate scatter
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plots with a fitted line is displayed. On top of the diagonal, the value of the correlation

coefficient and the significance level as stars is shown. The significance level of the

relationship is associated to a symbol: p-values(0, 0.001, 0.01, 0.05, 0.1, 1) <=> (”∗∗∗
”, ”∗∗”, ”∗”, ”.”, ””). Correlations with p-value > 0.01 is considered as insignificant

so the symbols are left blank. Note that the values on both axes correspond to clock

tick counts in which each tick represents 5 ns that is the resolution of our TraceBox

unit.

The plot in Figure 5.2 illustrates the correlation between the functions. However,

our testProgram function also has a self execution time which is the execution time

when the execution time of individual functions are excluded from end-to-end mea-

surements. Since our testProgram is composed of only 2 function calls, that self

execution time is negligible, but we still take that into account.

5.3.2.1.1 Timing Schema of the Program

Next step is to derive the timing schema of our program. The instrumented version of

the program is given below :

Listing 5.4: Instrumented Negatively Dependent Insertion Sort

void insertSortAsc(x)
{

IPoint(29);
//sort x in ascending order
IPoint(28);

}

void insertSortDesc(x)
{

IPoint(27);
//sort x in descending order
IPoint(26);

}

void testProgram()
{

IPoint(31);
insertSortAsc(x);
insertSortDesc(x);
IPoint(30);

}

The timing schema in the form of random variables and their corresponding IPoint

pairs are shown in the following expressions:
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W (insertSortAsc) = W (IPoint29−28) (51)

W (insertSortDesc) = W (IPoint27−26) (52)

W (testProgramentry) = W (IPoint31−29) (53)

W (insertSortAscret) = W (IPoint28−27) (54)

W (insertSortDescret) = W (IPoint26−30) (55)

where

• W (testProgramentry) = Time passed until insertSortAsc starts executing

from the start of the testProgram

• W (insertSortAscret) = Time passed until insertSortDesc starts executing

from the return of the insertSortAsc

• W (insertSortDescret) = Time passed until testProgram returns from the

return of the insertSortDesc

Both W (insertSortAsc) and W (insertSortDesc) are equal to the end-to-end exe-

cution time of the functions since they do not contain sub function calls inside. The

total execution time of the testProgram can be represented as:

W (testProgram) = W (testProgramself )︸ ︷︷ ︸
X

+W (testProgramsub)︸ ︷︷ ︸
Y

(56)

where W (testProgramsub) corresponds to the timing schema of the sub-function

calls inside the testProgram andW (testProgramself ) represents the timing schema

of the main body of the program when sub-functions are excluded. Thus, they can be

expressed as:
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W (testProgramself ) = W (testProgramentry)︸ ︷︷ ︸
X

+W (insertSortAscret)︸ ︷︷ ︸
Y

+W (insertSortDescret)︸ ︷︷ ︸
Z

(57)

W (testProgramsub) = W (insertSortAsc)︸ ︷︷ ︸
X

+W (insertSortDesc)︸ ︷︷ ︸
Y

(58)

5.3.2.1.2 Deriving The Copulas

Each equation 56, 57 and 58 are composed of sub-parts which are represented by

random variables X , Y and Z which might be the nodes or leaves of the program

structure tree. Each random variable represents the execution time of an inner scope

of their parent scope. For example, in equation 56 the program is divided into 2

sub-scopes. Thus, from the scope of testProgram, there are only 2 parts which are

represented by X and Y , respectively. Thus, the problem reduces into the sum of two

random variables where the dependency between them is unknown. Identically, in

equation 57 there are 3 sub-scopes, and in equation 58 there are 2 sub-scopes. Each

equation is a problem of sum of n random variables and the joint distribution H is

needed.

Considering equation 57 which have the highest number of variables, in order to

derive the multivariate joint distribution H(x, y, z) = P [X ≤ x, Y ≤ y, Z ≤ z]

which is necessary to finally derive the J(t) = P [X + Y + Z ≤ t], copulas are

suitable since according to Sklar’s theorem for any (u, v, k) ∼ U(0, 1):

H(x, y, z) = C(F (x), G(y),M(z)) (59)

C(u, v, k) = H(F (−1)(u), G(−1)(v),M (−1)(k)) (510)

where F , G and M corresponds to the cumulative distribution functions of X , Y and

Z, respectively. Additionally u, v and k should have the same dimensions which in

our case are the execution time observations for the corresponding scopes.
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As in line with chapter 3 - algorithm 1, testProgram is run for 10000 times. When

testProgram is run for 10000 times, same amount of observations are collected for

both W (testProgramself ) and W (testProgramsub). Similarly, 10000 samples are

taken for both W (insertSortAsc) and W (insertSortDesc) when

W (testProgramsub) is visited 10000 times. Same logic applies to the sub-scopes of

the W (testProgramself ).

Vine Copula package of R is used to fit a copula to the marginal distributions which

in this case are X , Y and Z. To do this, first the marginals should be converted into

uniform range. Original observations are converted into uniform distribution by using

pobs function which computes the pseudo-observations for the given data matrix in

Vine Copula package. After the conversion, the correlation between the sub-scopes

of each scope becomes:

(a) testProgram (b) testProgramself

(c) testProgramsub

Figure 5.3: Correlation Plot of the Pseudo-Observations
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Note that the dependency between u(pobsinsertSortAsc) and v(pobsinsertSortDesc) in Fig-

ure 5.3c coheres with Figure 5.2. However, the dependency between the sub-scopes

of testProgram in Figure 5.3a seems to be independent because there are no opera-

tions between the functions which might result in any type of behavior. This situation

also results in almost independence between the sub-scopes of testProgramself that

is seen in Figure 5.3b.

Next, RVineStructureSelect function of Vine Copula package is used to fit a

suitable copula model to our program scopes. It also selects the tree structures that are

appropriate for the pair-copula families. The output of the function in R environment

is given below.

Listing 5.5: RVineStructureSelect Results of Each Scope

> RVM_testProgram
C-vine copula with the following pair-copulas:
Tree 1:
1,2 Independence
---
1 <-> u, 2 <-> v

> RVM_testProgramSelf
C-vine copula with the following pair-copulas:
Tree 1:
3,1 Independence
3,2 Gaussian (par = -0.13, tau = -0.09)
Tree 2:
2,1;3 Independence
---
1 <-> u, 2 <-> v, 3 <-> k

> RVM_testProgramSub
C-vine copula with the following pair-copulas:
Tree 1:
1,2 t (par = -0.99, par2 = 30, tau = -0.94)
---
1 <-> u, 2 <-> v

It can be seen from the output that an independence copula is fitted to the sub-scopes

of testProgram and testProgramself as expected. Gaussian copula with parameter

−0.13 corresponds to the almost independence case. Important result is that a t-

copula with parameter {−0.99} is fitted to the (u, v) pairs of testProgramsub which

also coheres with the results given in Figure 5.3c.

Next step is to check whether this copula structure is suitable for the given data sets.

In order to do that the RVineGofTest function is used which performs 15 differ-

ent goodness-of-fit tests for R-Vine copula models. In our evaluation ECP2 method
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is chosen which is a goodness-of-fit test based on the combination of probability in-

tegral transform (PIT) and empirical copula process (ECP) [85]. The output of the

goodness-of-fit for the R-Vine copula is given below.

Listing 5.6: RVineGofTest Results for the derived Vine Copulas

> RVineGofTest(df_testProgram, RVM_testProgram, method="ECP2", statistic =
"CvM")

$CvM
[1] 3.869722
$p.value
[1] 0.57

> RVineGofTest(df_testProgramSelf, RVM_testProgramSelf, method="ECP2",
statistic = "CvM")

$CvM
[1] 236.164
$p.value
[1] 0.445

> RVineGofTest(df_testProgramSub, RVM_testProgramSub, method="ECP2",
statistic = "CvM")

$CvM
[1] 6.837797
$p.value
[1] 0.585

The p-value which is greater than 0.05 indicates that there is no significant evidence

against rejecting the fitted copula that is suitable to model the dependency between

the sub-scopes of the given scopes. Results show that all copulas that are fitted to

testProgram, testProgramself and testProgramsub are valid.

5.3.2.1.3 Simulation From The Copulas

By using these copula models, the Monte-Carlo simulation steps are followed basi-

cally by randomly generating uniform probability values. To do that, RVineSim

function is used which generates desired number of probability value pairs out of

the given R-Vine copula model. In our experiments we generated 1.000.000 sam-

ples which actually represents the next one million possible outcomes of the program

scopes in accordance with the dependency model.

Listing 5.7: Simulation from the R-Vine Copula

> simdata_testProgram <- RVineSim(1000000, RVM_testProgram)
> simdata_testProgramSelf <- RVineSim(1000000, RVM_testProgramSelf)
> simdata_testProgramSub <- RVineSim(1000000, RVM_testProgramSub)
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The results of the simulations are 1.000.000 x n matrices where n corresponds to the

number of marginals of each copula. Simulated uniforms can be illustrated as:

(a) testProgram (b) testProgramself

(c) testProgramsub

Figure 5.4: Simulated Uniform Margins from the Fitted Copula Models

It can be observed from Figure 5.4c that the values of u and v follow a negatively

correlated nature while the pairs in Figure 5.4a and 5.4b behaves independently as

expected. Those simulated uniform values represent possible outcome of the next

execution of the corresponding scope. For example, the first line in Figure 5.4c

states that the next execution of testProgramsub would result in execution time of

insertSortAsc to beF (−1)(0.3318784754) and the execution time of insertSortDesc

to be G(−1)(0.675288088) where F and G corresponds to the CDFs of the scopes.

Thus, it is important to derive the CDFs of each scope in order to construct a safe

upper bound for the testProgram.

87



5.3.2.1.4 Deriving CDFs of the Segments

The total execution time of testProgram that is represented with equation 56 can be

derived by using the equations 510 and 59 :

C(u, v) = H(F (−1)(u), G(−1)(v)) = P [X ≤ x, Y ≤ y] (511)

In order to construct the P [X ≤ x, Y ≤ y] distribution, inverse CDFs F (−1), G(−1)

must be found. F (−1) and G(−1) represents the inverse CDFs of the random variables

X and Y in which they represent the execution time of the testProgramself and

testProgramsub, respectively. Obviously CDFs of the individual scopes are needed.

It is possible to model any random variable with a parametric or non-parametric prob-

ability distribution. However, modelling a random variable with a known parametric

distribution based on the observations is not always possible. Furthermore, random

variables might be composed of several sub random variables as in testProgramself

and testProgramsub. In such cases, modelling them by using their end-to-end mea-

surement observations would result in ignoring both extreme cases and the cases re-

sulting from the hybrid analysis. The idea is to benefit as much as possible from the

observations in each scope. On the other hand, it is always possible to model the

testProgram function by using its end-to-end measurements as in chapter 3, but that

is not the case in hybrid analysis. For the situations where modelling a random vari-

able with a known parametric extreme value distribution is not possible, we propose

to use empirical CDFs instead at the expense of resolution loss and incapability of

prediction of capturing possible rare events.

The highest priority in our approach is to model each random variable with a para-

metric Extreme Value Distribution in order to predict the possible upcoming rare

events based on the precise tail model. The exception is when the random variable is

composed of several sub parts. In such a case, the scope of that random variable is

analyzed based on our proposed method and finally an empirical CDF is derived for

that block.

In accordance with the explanation given above, testProgramself and
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testProgramsub parts of the testProgram should not be modeled via an Extreme

Value Distribution since they are composed of several sub-parts. It is instinctively

known that parts of the testProgramself are not suitable to model with any type

of Extreme Value Distribution since in reality there are no operations between the

function calls and their execution time contribution is negligible. For these reasons

and not to complicate the overall procedure, parts of the testProgramself are not

tried to fit to any parametric continuous distribution. Hence, their empirical CDFs are

constructed out of the historical observations. However, in reality these parts should

also be tried to be modelled with an EV distribution.

On the other hand, the sub-scopes of testProgramsub can be modeled by a parametric

EV distribution since they are not composed of sub-scopes meaning that they both do

not have another function call inside. The primary requirement of EVT is to derive

whether the original data conforms i.i.d assumption. The results of the statistical tests

for insertSortAsc and insertSortDesc are given in Figure 5.5.

(a) insertSortAsc (b) insertSortDesc

Figure 5.5: Statistical Test Results of the testProgramsub Segments

Results show that both X and Y in equation 58 are suitable to be modelled with one

of the EV distributions. X and Y can either fit to a GEV or GPD based on the data

selection method. In chapter 3, all programs were modeled via GEV because only

the rightmost tails were important to derive the possible worst rare cases. However,

in this case lower tails are also significant since there might be countercomonotonic

situations where GEV would result in overestimation. Hence, in the proposed method
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we chose to model each random variable with Semi Parametric Piecewise Distribution

which models each tail with GPD. In order to fit a Piecewise GPD distribution to the

data, spdfit function of spd package is used in R environment [86]. Below is shown

the fitting procedure in R which fits a Generalized Pareto Distribution to both upper

and lower 10% tails of the distribution and fits a kernel distribution to the internals.

Listing 5.8: SPD Fitting Process for the Observations

> tails_insertSortAsc <- spdfit(insertSortAsc, upper = 0.9, lower = 0.1)
> tails_insertSortDesc <- spdfit(insertSortDesc, upper = 0.9, lower = 0.1)

QQ-Plots of the fitted distributions are given below.

(a) insertSortAsc (b) insertSortDesc

Figure 5.6: QQ-Plots of the Fitted Piecewise GPD to testProgramsub Segments

Plots in Figure 5.6 show that the fitted distributions are suitable enough to represent

the whole observation data of the insertSortAsc and insertSortDesc. Thus, qspd

function of spd package serves to represent the F (−1) and G(−1) of X and Y for

testProgramsub.

Therefore, reverting back to Figure 5.4c, possible next execution time of

testProgramsub can be calculated as:

W1(testProgramsub) = F (−1)(0.3318784754) +G(−1)(0.675288088) = 97151546

(512)

where 97151546 is the clock tick count and it represents one possible outcome for
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J(t) = P [X+Y ≤ 97151546]. Deriving the full J(t) distribution is computationally

intractable so the proposed method is used instead. In order to approximate the J(t)

distribution, samples must be generated as much as possible from the copula model.

Applying the methodology in equation 512 to the whole matrix that is shown in Figure

5.4c results in an approximate distribution of J(t) by combining the Extreme Value

Theory and Copulas.

Each X and Y random variable that represents the execution time of insertSortAsc

and insertSortDesc respectively are modeled with an Extreme Value distribution

in order to capture the rare cases instead of using empirical CDF that is constructed

from the historical observations. Benefits of this approach are discussed in chapter 3

and CDF plots for insertSortAsc and insertSortDesc are shown in the following

figure.

(a) CDFs of insertSortAsc (b) CDFs of insertSortDesc

(c) CCDFs of insertSortAsc (d) CCDFs of insertSortDesc

Figure 5.7: CDF Plots of X and Y

Figure 5.7a and 5.7b shows the empirical CDFs of the functions based on observations
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and their model CDFs based on the fitted SPD and GEV distributions. As can be seen

from the plots in the first row SPD models the whole distribution while GEV only

targets the upper tail and overestimates the lower tails. From the Figures 5.7c and

5.7d which shows the Complementary CDF (CCDF) of both functions in logarithmic

scale GEV safely upper bounds the whole distribution, but SPD fails to do so in some

points. However, SPD still provides safe results for the possible extreme cases when

the probability of exceedance is lower than 10−4.

5.3.2.1.5 Estimating the Total Distribution

The equations to derive the total execution time distribution for testProgram be-

comes:

Wi(testProgramsub) = F (−1)(ui) +G(−1)(vi) (513)

where:

i: 1, ..., 1.000.000

Wi(testProgramsub): is the execution time distribution of testProgramsub

F (−1): is the inverse CDF of fitted SPD model of X in eq. 58

G(−1): is the inverse CDF of fitted SPD model of Y in eq. 58

ui: are the simulated uniforms from the copula for insertSortAsc

vi: are the simulated uniforms from the copula for insertSortDesc
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Wi(testProgramself ) = F (−1)(u(i)) +G(−1)(v(i)) +M (−1)(k(i)) (514)

where:

i: 1, ..., 1.000.000

Wi(testProgramself ): is the execution time distribution of testProgramself

F (−1): is the inverse ECDF of X in eq. 57

G(−1): is the inverse ECDF of Y in eq. 57

M (−1): is the inverse ECDF of Z in eq. 57

u(i): are the simulated uniforms from the copula for testProgramentry

v(i): are the simulated uniforms from the copula for insertSortAscret

k(i): are the simulated uniforms from the copula for insertSortDescret

Finally,

Wi(testProgram) = F (−1)(ui) +G(−1)(vi) (515)

where:

i: 1, ..., 1.000.000

Wi(testProgram): is the execution time distribution of testProgram

F (−1): is the inverse of W (testProgramsub)

G(−1): is the inverse of W (testProgramself )

ui: are the simulated uniforms from the copula for testProgramself

vi: are the simulated uniforms from the copula for testProgramsub

Note that F ,G andM in equation 514 and F andG in equation 515 are step functions

so they do not have unique inverse functions. Therefore, their empirical quantile

functions are defined as the right inverse of the CDFs. Hence the quantiles are fetched

from the inverse CDFs with the help of findInterval function of R.

Evaluating the calculations given in equations 513, 514 and 515 results in the follow-

ing distribution which is compared with the observed end-to-end (EE) measurements,
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independent case and comonotonic case that is implemented in RapiTime tool.

Figure 5.8: Estimated pWCET Distributions for testProgram

Following table summarizes some of the pWCET values in millisecond format that

are obtained from the estimated distributions.

Table 5.2: Calculated pWCET Values for testProgram

pWCET EVT-Cop Independent RapiTime EE

pWCET(10−2) 487.2583ms 508.8204ms 518.8532ms 486.7725ms

pWCET(10−4) 488.4709ms 522.6101ms 539.0927ms 487.3415ms

pWCET(10−6) 490.0468ms 539.0927ms 539.0927ms 487.3415ms

pWCET(10−9) 490.0469ms 539.0927ms 539.0927ms 487.3415ms

Clearly, the biased convolution method (comonotonic assumption) and the standard

convolution method (independent assumption) overestimate the results by a factor of

10% in the worst case. On the other hand, our approach based on EVT and Copulas

results in a much tighter upper bound for the overall testProgram. The overestima-
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tion factor of 10% would not seem to be a significant problem, but this only happened

for a very simple program that has only 2 consecutive function calls inside. That fac-

tor increases rapidly when the program structure is composed of more complex blocks

such as iterative and conditional blocks. In the following sections we evaluated and

compared our approach by analyzing more realistic programs.

5.4 Case Study - 1

In the previous section, application procedure of our method is detailed with a basic

program that mainly focuses on the sequential block case. As was stated before,

programs are composed of sequential, iterative and conditional blocks. Hence, a

more realistic program should be composed of all types of blocks.

In this section, we constructed a synthetic and reproducible benchmark program in

which the functions are selected from the Mälardalen WCET Benchmarks again [62].

The code is given below:

Listing 5.9: Synthetically Constructed Structured WCET Benchmark Program

void testProgram(void)
{

float result = 0;
int swapCnt = 0;
vector vecA_tmp;

vecA_tmp = f1(vec_A, 10); // select 10-th greatest element from vec_A

swapCnt = f2(vecA_tmp); // Insert Sort

f3(vec_A); // Insert Reverse Sort

if (_scale > 50)
{

f4(vec_A, vec_C, vec_B, _scale); // FIR filter
}
else
{

f5(mat_A, mat_B, mat_C); // Matrix Multiplication
}

int maxCnt = 100 - (int)(swapCnt/51);
for (int i = 0; i < maxCnt; i++)
{

f6(vec_B[i]); // Square-root
}

}

The inputs vec_A, vec_B, mat_A and mat_B are randomly generated. In fact,

vec_A andmat_A are the same objects, the only difference is their dimensions where
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vec_A is 1 x 100 float array and mat_A is 10 x 10 float matrix. This is also valid for

vec_B and mat_B. vec_C and mat_C are empty array and matrix that are used to

store the results.

The program consists of 6 function calls and each of them depends on an input pa-

rameter which makes them multi-path programs. Additionally some of them depend

on the output of the previous functions which creates a dependency between the exe-

cution time of the blocks. Briefly,

f1: corresponds to the select function which selects the Nth largest number

in a floating point array. While doing that it quick sorts the array up to some

point and returns the sorted array that is stored in vecA_tmp

f2: is the same insertSortAsc function that is used previously

f3: is the insertSortDesc

f4: corresponds to the fir function which is a Finite impulse response fil-

ter over N items long sample. It consists inner loop with varying number of

iterations and loop-iteration dependent decisions.

f5: corresponds to the matmult function which is a basic matrix multiplica-

tion function which has nested loops.

f6: corresponds to the sqrt function that is implemented by Taylor series.

After instrumenting the program, timing schema of the blocks and their corresponding

IPoints are shown in the following expressions:
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W (f1) = W (IPoint27−26) W (f1ret) = W (IPoint26−25)

W (f2) = W (IPoint25−24) W (f2ret) = W (IPoint24−23)

W (f3) = W (IPoint23−22) W (f3ret) = max(W (IPoint22−21),

W (IPoint22−19))

W (f4) = W (IPoint21−20) W (f4ret) = W (IPoint20−17)

W (f5) = W (IPoint19−18) W (f5ret) = W (IPoint18−17)

W (f6) = W (IPoint17−16) W (f6ret) = W (IPoint16−17)

W (testProgramentry) = W (IPoint29−27)

As in line with equation 56, the total execution time of this program can be repre-

sented as:

W (testProgram) = W (testProgramself )︸ ︷︷ ︸
X

+W (testProgramsub)︸ ︷︷ ︸
Y

(516)

However, the expressions W (testProgramself ) and W (testProgramsub) are not

easily decomposed in this case as in equations 57 and 58. That is because we have

conditional and iterative blocks that should be carefully examined.

In our proposed method, conditional and iterative blocks are handled as a whole scope

on the highest level of the program scope. This approach is necessary in order to

derive the copulas which models the dependency between the sub-scopes. This is

best explained by the following expressions:
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W (testProgramsub) = W (f1)︸ ︷︷ ︸
A

+W (f2)︸ ︷︷ ︸
B

+W (f3)︸ ︷︷ ︸
C

+W (condsub)︸ ︷︷ ︸
D

+W (loopsub)︸ ︷︷ ︸
E

(517)

W (testProgramself ) = W (f1ret)︸ ︷︷ ︸
A

+W (f2ret)︸ ︷︷ ︸
B

+W (f3ret)︸ ︷︷ ︸
C

+W (condself )︸ ︷︷ ︸
D

+W (loopself )︸ ︷︷ ︸
E

(518)

W (condsub) = max(W (f4)︸ ︷︷ ︸
A

,W (f5)︸ ︷︷ ︸
B

) (519)

W (condself ) = max(W (f4ret)︸ ︷︷ ︸
A

,W (f5ret)︸ ︷︷ ︸
B

) (520)

W (loopsub) =

A︷ ︸︸ ︷
W (f6)+...+W (f6)︸ ︷︷ ︸

N

(521)

W (loopself ) =

A︷ ︸︸ ︷
W (f6ret)+...+W (f6ret)︸ ︷︷ ︸

N

(522)

Note that W (condsub), W (condself ), W (loopsub) and W (loopself ) expressions are

same as the RapiTime approach [9]. However, while evaluating equations 517 and

518, directly replacing the conditional and iterative block expressions with their cor-

responding equations given in 519, 520, 521 and 522 would result in the same ap-

proach given in [9] which is the comonotonic assumption between the segments.

In our approach, instead of directly convolving all the expressions, a copula is fitted

for the sub-scopes of testProgramsub and testProgramself . After the simulation

phase, the total execution time distribution is calculated by using the derived CDFs

for the sub-scopes. Derivation of the CDFs for the sub-scopes are done in the same

way as in the previous section for sequential blocks (A, B and C). However, for

iterative and conditional blocks a special mechanism is developed.

In order to derive the copula for the sub-scopes of testProgramsub and

testProgramself , observations of the scopes need to be constructed. A, B and C in

equation 517 are constructed with end-to-end measurements of f1, f2 and f3. For

conditional and iterative blocks, their corresponding random variables are represented
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as:

Di = (Obsi(f4) or Obsi(f5)) (523)

Ei =

Ni∑
j=1

Obsj(f6), Ni = current iteration count (524)

where: (525)

i = 1,..,10000

Obsi(f) = ith observed sample of function f

After constructing A, B, C, D and E for testProgramsub, correlation between the

pseudo-observations (u, v, k,m, n respectively) of the sub-scopes are shown in Figure

5.9.

Figure 5.9: Correlation Plot of testProgramsub

Same procedures are applied to testProgramself and testProgram and the correla-
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tion between their scopes are shown in Figure 5.10.

(a) Correlation of testProgramself (b) Correlation of testProgram

Figure 5.10: Correlation Plots of the Program Scopes

A Vine Copula model is fitted to each testProgram, testProgramself and

testProgramsub scope by using the RVineStructureSelect function of R. Af-

ter that goodness-of-fit test is applied to each copula with RVineGofTest function

all the fitted copulas turned out to be valid. For simplicity of this section, results are

not shown, but all the codes are provided.

The challenging part is the derivation of a CDF for each sub-scope of the scopes. For

sequential sub-scopes which correspond to A, B, and C inside the textProgramsub,

same procedure can be applied as in previous section.

However, for conditional blocks, each part of the condition should be considered

as a separate scope and our hybrid approach should be applied as they are separate

programs. The result would be a distribution for each condition block and by using

their inverses, equation 519 or 520 can be calculated. In this case study, condition

blocks only consist of one functional block so it is valid to model them with SPD

method if they conform the requirements.

For iterative blocks, their CDF is calculated by the approach that is detailed in [10]

which is based on checking whether there is an independency across iterations. If so,

then standard convolution is applied. Otherwise, the biased convolution is applied

for equations 521 and 522. Instead of modelling each random variable inside the loop

with their empirical CDFs (ETP), our method primarily aims to model them with SPD
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if possible.

All functions inside the testProgram conform the i.i.d requirements as shown in

Figure 5.11.

(a) f1 (b) f2 (c) f3

(d) f4 (e) f5 (f) f6

Figure 5.11: Statistical Tests of the Sub-Scopes of testProgramsub

(a) f1 (b) f2 (c) f3

(d) f4 (e) f5 (f) f6

Figure 5.12: QQ-Plots of Piecewise GPD Fit for testProgramsub

101



It is clearly seen from the Figure 5.12 that all the functions except f6 are suitable

to be represented by an SPD model. According to our proposed method, if any ran-

dom variable cannot be represented by an Extreme Value distribution, its empirical

distribution would be used. For that reason empirical CDF will be used for f6 case

only.

Sub-scopes of the testProgramself are not suitable to be modeled by an EV distribu-

tion as shown in Figure 5.13. Note that the QQ results for f2, f3 and f5 are missing

because the spdfit function of R could not even estimate suitable parameters for

them. Therefore, empirical CDFs are used to represent the random variables inside

testProgramself .

(a) f1 (b) f4 (c) f6

Figure 5.13: QQ-Plots of Piecewise GPD Fit for testProgramself

Finally, the equations to derive the total execution time distribution for this case study

becomes:

Wi(condsub) = max(F
(−1)
A (mi), F

(−1)
B (mi)) (526)

where:

i: 1, ..., 1.000.000

Wi(condsub): is the execution time distribution of condsub

F
(−1)
A : is the inverse CDF of fitted SPD model of A in eq. 519

F
(−1)
B : is the inverse CDF of fitted SPD model of B in eq. 519

mi: are the simulated uniforms from the copula for D in eq. 517
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Floopsub = FA ~ · · ·~ FA︸ ︷︷ ︸
N

= F~N
A (527)

Wi(loopsub) = F
(−1)
loopsub

(ni) (528)

where:

i: 1, ..., 1.000.000

Floopsub: is the CDF of E in eq. 517

FA: is the ECDF of A in eq. 521

N : is the maximum observed iteration count

~: is the convolution operation (standard or biased) for CDFs

Wi(loopsub): is the execution time distribution of loopsub

ni: are the simulated uniforms from the copula for E in eq. 517

Wi(testProgramsub) =

F
(−1)
A (ui) + F

(−1)
B (vi) + F

(−1)
C (ki) +Wi(condsub) +Wi(loopsub) (529)

where:

i: 1, ..., 1.000.000

Wi(testProgramsub): is the execution time distribution of testProgramsub

F
(−1)
A : is the inverse CDF of fitted SPD model of A in eq. 517

F
(−1)
B : is the inverse CDF of fitted SPD model of B in eq. 517

F
(−1)
C : is the inverse CDF of fitted SPD model of C in eq. 517

Wi(condsub): is the execution time distribution of condsub given in eq. 526

Wi(loopsub): is the execution time distribution of loopsub given in eq. 528

ui: are the simulated uniforms from the copula for A in eq. 517

vi: are the simulated uniforms from the copula for B in eq. 517

ki: are the simulated uniforms from the copula for C in eq. 517

Similar procedure is applied for testProgramself in eq. 518 and its total CDF is
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derived. The only difference is that ECDFs are used to represent the segments because

of the unsuitability of SPD for modelling them as shown in Figure 5.13.

Note that the convolution operation used for loop case is the standard convolution.

The correlation between the iteration index parameter and the execution time of f6 is

shown in Figure 5.14.

Figure 5.14: Correlation Across the Iterations

u represents pseudo-observations of loop iteration index parameter and v represents

pseudo-observations of execution time of f6. It can be seen that there is no corre-

lation between iteration index and execution time of f6. It means that the execution

time of f6 does not increase when loop iteration count increases or vice-versa. In

order to calculate eq. 521 standard convolution of random variable A is sufficient.

This calculation is basically sum of N random variables which is the main problem

of our work. Therefore, the same copula approach could be applied, but in order to

do that 1.000.000 x N simulated uniforms should have been generated with a fitted

copula. Then by using inverse CDF of f6, eq. 521 could have been calculated as

testProgram itself. However, this approach is computationally intractable so for

loop blocks an adequate independence test is sufficient to decide whether to use stan-

dard convolution or biased convolution.

Finally, solving the same equation shown in eq. 515 yields Figure 5.15:
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Figure 5.15: Estimated pWCET Distributions for Case-Study 1

Our main result is shown in Figure 5.15 which is tightest among all methods. Al-

though the standard convolution is used to calculate the execution time distribution of

the loop block, it still stays below the independent method. It can be clearly seen how

the comonotonic assumption of commercial RapiTime tool overestimates the results

by a huge factor.

Following table summarizes some pWCET values that are obtained from the esti-

mated distributions.

Table 5.3: Calculated pWCET Values for Case-Study 1

pWCET EVT-Cop Independent RapiTime EE

pWCET(10−2) 57.272ms 60.219 63ms 79.1122ms 54.848 87ms

pWCET(10−4) 58.195 58ms 63.757 11ms 95.840 14ms 56.323 95ms

pWCET(10−6) 58.678 75ms 67.016 77ms 113.6355ms 56.323 95ms

pWCET(10−9) 58.709 44ms 68.353 41ms 113.6355ms 56.323 95ms
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Results in Table 5.3 show that the RapiTime’s approach overestimates the observed

end-to-end execution time more than 100% for pWCET(10−9) case. This ratio is un-

acceptable for real-time embedded software environments which have limited schedul-

ing resources. However, our results are both safe based on the tail modelling method-

ology (EVT) and tight by the help of proposed dependency modelling approach (Cop-

ulas).

5.4.1 Tightness Assessment

In order to provide the evidence of tightness and reliability of the proposed EVT-

Copula method, 106 additional observations are collected from the same setup. The

maximum observed execution time out of the 106 measurements for the Case Study

- 1 was 57.44 ms. It shows that our EVT-Copula method is both tight and reliable

compared to the Independent and Comonotonic assumptions.

Figure 5.16: Tightness Assessment Results for Case-Study 1

Figure 5.16 shows HOET of 106 observations in black dashed line. It can be clearly
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seen that our EVT-Copula method is both safe and tightest for pWCET(10−6) while

the RapiTime’s approach overestimates by a huge factor.

5.5 Case Study - 2

Our last case study is the analysis of an industrially developed software component.

Because of the confidentiality reasons, the original code of the component function

is not given. However, its pseudo-code which clarifies the structure of the analyzed

function is given.

The analyzed software component is a function of Satellite Flight Control software

that is developed in Turkish Aerospace Industries, Inc. (TAI) which is developed

by conforming to the requirements defined by ECSS-E-ST-70-41C - Packet Utiliza-

tion Standard(PUS) by European Space Agency (ESA) [87]. Each service defined

inside the standard is developed as a separate component and our aim is to analyze a

function of Memory Management (MEMMAN) service which provides the capabil-

ity for loading, dumping and checking the contents of the memories that are present

on-board.

Most of the functionality of the services are triggered by the received telecommands

from the ground control station. MEMMAN service has lots of capabilities, which

can be triggered by different commands and each of the received commands are pro-

cessed by a different function. From the beginning of the function call until its return

specifies the response time for that command.

The relation between the execution time and the response time is out of the scope of

this study. However, in our case the response time is equal to the execution time of

the telecommand processing function. In this case study we analyze the processing

function of Load Raw Memory Data Areas (TC[6,2]) telecommand which commands

to write the specified raw data to specified memory on-board. The telecommand basi-

cally contains the memory ID indicating which memory the data is to be written and

a list of raw data. The structure of the telecommand and the generated telemetries by

the onboard computer conforms to the requirements defined in PUS standard. Based

on the obtained parameters, the processing function performs the task in accordance
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with the requirements. The pseudo-code of the analyzed component function is given

below:

Listing 5.10: Industrially Developed Function of a Software Component

void process_loadRawMemoryDataAreas(Request telecommand)
{

failCode = isRequestValid(telecommand); //telecommand validation

if(failCode == NO_ERROR)
{
send_tm_1_3(telecommand); //Send request acceptance ack telemetry

for(int i = 0; i < telecommand->N; i++)
{

writtenData = writeToMemory(telecommand->memoryID, telecommand->
rawData[i]); //Write raw data to memory

calculatedCRC = calculateCRC(writtenData); //Calculate the CRC of
written data

if(calculatedCRC != telecommand->CRC[i])
{
send_tm_1_4(telecommand); //Send fail telemetry
goto exit;

}
}

send_tm_1_7(telecommand); //Send successful completion telemetry
}
else
{
send_tm_1_4(telecommand); //Send fail telemetry

}

exit: return;
}

The same test bench is used to analyze the function which runs the function 10000

times with randomly generated telecommand input parameter.

Received telecommand message is first checked whether the parameters inside are

valid or not. If the parameters are validated then the process continues, otherwise a

telemetry report is generated and sent to ground to indicate that the request is rejected.

After the request is accepted, a telemetry message is sent to ground to inform that

the received request message is accepted. The main processing task is done inside

the loop that iteratively writes the data to the given memory and after the writing

process finishes, an integrity check is done in order to make sure that written data is

not corrupted during the writing process. If any error happens than a fail report is

generated to be sent to ground while terminating the processing task.

Because we generated the telecommand message randomly, the function sometimes
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accepted the request, but sometimes not. When the request is accepted, the data is

written to a memory which is randomly selected (randomly generated memory ID

parameter for the telecommand message). Furthermore, the N parameter inside the

telecommand message is also randomly generated which makes the loop iterates

dependent to the given telecommand message.

The expressions to derive the execution time distribution are given as:

W (testProgram) = W (testProgramself )︸ ︷︷ ︸
A

+W (testProgramsub)︸ ︷︷ ︸
B

(530)

W (testProgramsub) = W (f1)︸ ︷︷ ︸
A

+W (cond1sub)︸ ︷︷ ︸
B

(531)

W (testProgramself ) = W (testProgramentry)︸ ︷︷ ︸
A

+W (f1ret)︸ ︷︷ ︸
B

+W (cond1self )︸ ︷︷ ︸
C

(532)

W (cond1sub) = max(W (cond1if )︸ ︷︷ ︸
A

,W (f6)︸ ︷︷ ︸
B

) (533)

W (cond1self ) = max(W (cond1ifret)︸ ︷︷ ︸
A

,W (f6ret)︸ ︷︷ ︸
B

) (534)

W (cond1if ) = W (f2)︸ ︷︷ ︸
A

+W (loopsub)︸ ︷︷ ︸
B

+W (f5)︸ ︷︷ ︸
C

(535)

W (cond1ifret) = W (f2ret)︸ ︷︷ ︸
A

+W (loopself )︸ ︷︷ ︸
B

+W (f5ret)︸ ︷︷ ︸
C

(536)

W (loopsub) =

A︷ ︸︸ ︷
W (loopbody)+...+W (loopbody)︸ ︷︷ ︸

N

(537)

W (loopself ) =

A︷ ︸︸ ︷
W (loopbodyret)+...+W (loopbodyret)︸ ︷︷ ︸

N

(538)

W (loopbody) = W (f3)︸ ︷︷ ︸
A

+W (f4)︸ ︷︷ ︸
B

+W (cond2sub)︸ ︷︷ ︸
C

(539)

W (loopbodyret) = W (f3ret)︸ ︷︷ ︸
A

+W (f4ret)︸ ︷︷ ︸
B

+W (cond2self )︸ ︷︷ ︸
C

(540)
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W (cond2sub) = max(W (f6)︸ ︷︷ ︸
A

, 0) (541)

W (cond2self ) = max(W (f6ret)︸ ︷︷ ︸
A

, 0) (542)

Where:

f1: represents the isRequestValid function

f2: represents the send_tm_1_3 function

f3: represents the writeToMemory function

f4: represents the calculateCRC function

f5: represents the send_tm_1_7 function

f6: represents the send_tm_1_4 function

It can be seen from the above equations and the pseudo-code that f6 is called from

two different scopes. However, this does not affect the derivation of W (f6) and

W (f6ret). They are used either in eq. 533, 534 or 541, 542 and the same derived

CDFs for f6 and f6ret are used for both scopes.

Unfortunately, in our experiments no data corruption is observed during the writing

phase. In fact, that conditional control is only coded for defensive reasons. There-

fore, send_tm_1_4 function is not called from the scope of W (cond2sub). On the

other hand, the same function has been called from the scope of W (cond1sub), thus

W (f6) and W (f6ret) exists. Theoretically it is possible to derive the W (cond2sub)

and W (cond2self ), but deriving the CDFs of those scopes are not necessary. This can

be clarified by adapting equation 523 to random variables C inside equations 539 and

540. It can be seen from the results that random variables representing the observed

values for f6 and f6ret under the scope of W (cond2sub) and W (cond2self ) are equal

to 0. Hence, it is not possible to fit a copula for W (cond2sub) and W (cond2self ) in-

side equations 539 and 540. Therefore, W (cond2sub) and W (cond2self ) parameters

are assumed to be neutral elements and are extracted from the equations.

Following the same procedures as before results in the following pWCET distribution.
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Figure 5.17: Estimated pWCET Distributions for Case-Study 2

Table 5.4: Calculated pWCET Values for Case-Study 2

pWCET EVT-Cop Independent RapiTime EE

pWCET(10−2) 182.774ms 182.1895ms 454.5465ms 94.758 63ms

pWCET(10−4) 274.2195ms 272.9592ms 457.6076ms 96.656 38ms

pWCET(10−6) 364.5849ms 362.497ms 458.1172ms 96.656 38ms

pWCET(10−9) 364.6062ms 452.5728ms 458.1172ms 96.656 38ms

It can be seen from the results that all methods overestimated the WCET by a huge

factor. The main reason behind this overestimation results from the derived CDF of

loopsub. loopsub is an iterative block which contains f3 that represents the

writeToMemory function. writeToMemory function performs the main task of

writing raw data to specified memory. As expected, writing data to a memory is an

I/O operation which is excessively dependent to the given memory type and address.

During the analysis runs it is observed that some calls to this function took too much
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time to finish. In fact, the following histogram plots summarizes the issue. The

execution time of f3 is divided into two parts where the majority of the traces are

laid between (16.000, 140.000), but some of the traces are laid around 1.8x107 clock

ticks. It shows that for some parameters inside the telecommand, the execution time

of f3 is 100 times more than the usual.

(a) f3 ≤ 106 (b) f3 > 106

Figure 5.18: Histogram Plots of f3 of Case-Study 2

Combining this effect with an iteration leads to an overestimation up to 400% as

shown in Table 5.4.

Nevertheless, our EVT-Copula method still stays below the state-of-the-art method

of RapiTime’s. It is interesting that our method follows almost the same path with

the standard convolution method. This is because the fitted copulas for the scopes

inside the analyzed program were either independent or gaussian copula with a pa-

rameter close to 0. This results in the independent behavior between the blocks inside

a program, thus resulting a distribution which is very close to the independent case.

5.5.1 Tightness Assessment

As in line with the previous case study, we also collected 106 additional observations

to provide evidence for tightness and reliability. The maximum observed execution

time out of 106 measurements for Case Study - 2 was 133.4 ms. By comparing the

pWCET(10−6) values in Table 5.4 with the HOET value, our EVT-Copula method
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is both safe and tight enough.

Figure 5.19: Tightness Assessment Results for Case-Study 2

Figure 5.19 shows the estimated pWCET values with the observed HOET value out

of 106 observations. It can be clearly seen that all methods safely upper bounds the

HOET value for pWCET(10−6), but they still overestimate by a huge factor.

pWCET(10−9) for the EVT-Copula may provide a tighter result, but it was not feasible

to collect 109 observations from our system since collecting 106 measurements from

the system already took 2 days.

5.6 Conclusion

In this section, we introduced our Hybrid Probabilistic Timing Analysis framework

with EVT and Copulas for COTS platforms which is not only theoretical but also an

industrially viable solution.

Current state-of-the-art hybrid probabilistic approach which is also implemented in
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a commercial tool named as RapiTime divides the programs into basic blocks and

represents each basic block with their ETPs. Those ETPs are constructed with a fre-

quentist approach where each possible execution time of the block is captured through

measurements and their frequency of observations are assigned as their probabilities.

After constructing all ETPs, a biased convolution is performed to estimate the overall

pWCET distribution. However, this method is lack of capturing rare cases for individ-

ual blocks and it overestimates the results with comonotonic dependency assumptions

through biased convolution.

What we propose is to divide the program into functional scopes and derive execution

time distribution for each scope where they are eventually combined to construct the

overall execution time distribution of the analyzed program. Copulas are used to

model the dependency between the sub-scopes inside each scope. Then by using

Monte-Carlo simulation approach, each scope is simulated through copulas and by

the help of Extreme Value Theory extreme events are also captured.

Results of the experimental example and our case studies show that RapiTime’s ap-

proach and independent assumption overestimates the results by a huge factor. Our

method on the other hand provided the tightest results while capturing rare cases for

each individual block inside the scopes.

Of course not all the blocks were suitable to be modelled via EVT. The blocks where

the execution time variability was not sufficient or the variation across different sce-

narios conducted large steps in the distribution namely mixed distributions as detailed

in [14] were unable to be modelled by an EV distribution. writeToMemory func-

tion in Case-Study 2 was an example to that. Modelling such distributions with EVT

is out of the scope of this study, but our approach allows to use standard ETPs as a

backup mechanism. This way, it was not possible to capture rare cases for those type

of functions, but the computation of the overall distribution could proceed.
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CHAPTER 6

RESULTS AND CONCLUSION

This thesis proposed an industrially-viable enhanced hybrid probabilistic timing anal-

ysis framework for time-critical applications running on top of a COTS hardware

platform.

In Chapter 1, the motivation for the development of the proposed framework is given

by noting the following key points:

1. Recent improvements in embedded processor technology compels the static

timing analysis techniques which require to precisely model every aspect of

the underlying platform. Consequently, lack of knowledge about the platform

and unpredictabilities resulting from advanced architectural properties forces

static methods to manage the complexities by making conservative assumptions

which eventually leads to overestimation of the WCET results.

2. Jittery response times of complex hardware allows to apply widely used sta-

tistical methods for the WCET analysis in order to reduce the analysis cost

compared to the conventional measurement-based timing analysis techniques

which theoretically require the full path coverage to be reliable.

3. One of the existing statistical methods makes use of convolution operations to

derive the overall probabilistic WCET distribution with a conservative convo-

lution approach named as biased convolution. However, this approach overes-

timates the results and neglects the extreme cases for individual blocks.

4. The majority of the studies in statistical timing analysis domain utilize a time-

randomized platform to focus on statistical methods and eliminate some of the
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prerequisites of EVT. However, an industrially-viable methodology is needed

to apply those techniques on top of a COTS platform.

Therefore, we proposed a framework which combines EVT and Copulas to decrease

the overestimation while capturing the extreme cases.

In Chapter 2, we gave the basic notions of WCET analysis and current state-of-the-

art techniques. A literature review revealed that there is no known study to this day

which tried a hybrid approach with Copulas and EVT for the timing analysis of the

real-time applications running on top of a COTS platform.

In the same chapter, application prerequisites of EVT and its application details for

measurement-based timing analysis are given. We also highlighted the importance of

source of execution time variability concept and mentioned that the only acceptable

solution for COTS platforms is the random input selection for the programs. This

property is also important for deciding the granularity of the blocks for which the

execution times are collected. Because the only option is to use randomized inputs,

the programs to be analyzed are divided into functional blocks which increases the

possibility of EVT to be applicable, but decreases the available structural information

of the analyzed program. However, dividing the program into functional granularity

is also necessary to decrease the instrumentation overhead resulting from injecting

probes throughout the source code.

In order to decrease the overestimation of the current state-of-the-art solution of

RapiTime’s, Copulas from statistics domain are utilized. Details of the copulas and

their usage in timing analysis domain are also given in Chapter 2.

In Chapter 3, application details of the MBPTA with EVT on our COTS platform

are given. We present the hardware details of our COTS platform which is a widely

preferred solution in aerospace domain. We also introduce the software architecture

and the scheduling mechanism conducted on our platform to clarify the necessity of

WCETs of the software components.

Majority of MBPTA studies in the literature utilize custom-made randomized plat-

forms which especially targets to randomize cache replacement and placement or bus

arbitration policies. However, it is not always possible to construct such randomized
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platforms which are identical to the underlying COTS platform in industry. There are

also software solutions to randomize the cache behavior to increase the applicability

of EVT, but these also require specialized compilers or RTOS source code modi-

fications. These actions are not easy to take in industrial applications. Therefore,

the solutions for COTS platforms reduce to random input selection and cache flush-

ing which we also employed in our framework. All the constraints and assumptions

about the applicability of EVT on a COTS platform are given in the same chapter.

The test bench introduced in that chapter is used throughout this study for the timing

analysis of the software components. In order to increase path coverage and make

programs comply with EVT requirements, a random input generation mechanism

is constructed. We also provide the basic steps to follow to apply EVT in COTS

platforms. The outcomes of that chapter compose the assumptions and required steps

to follow in chapter 5.

In Chapter 4, we introduced our mechanism to increase the confidence of the mea-

surements by decreasing the probe effect along with custom developed TraceBox

hardware. It is one of the building blocks of our analysis framework which allowed

us to capture fine-grained execution time traces rather than end-to-end measurements

of the software components.

The hardware is developed on an Altera Cyclone V based FPGA board along with

an ARM processor. It is considered as a SoC FPGA board which allows to design

low level logic inside the FPGA and management software on the ARM side. De-

veloped trace capturing hardware is able to capture high speed GPIO signals, time

stamp and store them on-board which theoretically can capture forever as long as the

space inside the SDCard suffices. Results show that the proposed hardware&software

mechanism decreased the probe effect by 98% compared to online storage technique

which is a widely used software only approach.

In Chapter 5, the main hybrid probabilistic timing analysis framework is introduced.

The motivation behind the necessity of an improvement over commercial measurement-

based timing analysis tool RapiTime is discussed. Hence, the details of the proposed

framework which is based on a methodology used in economics is adapted to the

timing analysis domain.
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The main principle behind the proposed framework is to model the dependency be-

tween the random variables with Copulas and model each random variable with a

proper Extreme Value distribution whenever possible. This method is not strictly lim-

ited to our proposed definitions. In fact, the mechanism behind the commercial tool

RapiTime is revealed and some improvements and modifications over their method

are done in this study.

In reality, Copulas are also studied by the developers of RapiTime, but that study

is only a demonstration to show that their conservative convolution method safely

upper-bounds all possible cases. However, this approach overestimates the results

tremendously as shown in our experimental evaluations.

Instead of representing the whole program as one syntax tree, a specialized version

similar to the scope-tree approach is followed. In order to fit a copula for each scope

of the program, this representation method was necessary. Basically, the program is

divided into scopes and each scope is analyzed in isolation by using our proposed

methodology.

The application procedure and constraints are detailed by experimental evaluations

and case studies throughout the chapter. While deriving the CDFs for each segment,

procedures defined in Chapter 3 are used and a type of Extreme Value distribution is

fit to represent the random variables if possible.

Results of the experiments show that the proposed EVT with Copula method provides

much tighter results than the comonotonic convolution or standard convolution meth-

ods. More importantly, all the experiments are done on our industrial COTS platform

with real trace data which provides the evidence of applicability of this approach in

the industry.
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CHAPTER 7

FUTURE WORK

In this chapter, the future directions and possible extension points of this study are

given.

First of all, the main aim of this study was to provide a hybrid probabilistic measure-

ment - based timing analysis mechanism for COTS platforms. Because of this the

only applicable source of the execution time variability is the random input genera-

tion. This randomization process can be made more intelligent such as using model

checking or genetic algorithms as explained in [88, 89, 90, 52]. By eliminating the

irrelevant inputs for the analyzed program, path coverage could be increased.

For the application of EVT, most of the procedures are based on visual checking from

the plots in order to conclude that the models are fit to the data or the data conform

the applicability requirements. In fact, there are recent studies which calculates the

applicability of EVT numerically and selects the best distribution to represent the

observed data such as MBPTA-CV [14]. Furthermore, there is also an open-source

study which implemented the MBPTA-CV method in C++ environment named as

chronovise [39]. By adapting more automatic mechanisms like these, the necessity of

user interaction of the proposed framework could be decreased.

We used L-Moments approach to estimate the EVT model parameters in Chapter 3

in MATLAB environment for GEV which proved to outperform the MLE approach

[16]. However, spdfit function of R which fits GPD to both tails of the distributions

estimates the model parameters with MLE approach. Since it is possible to modify

the source codes of the functions of R, spdfit can be modified to utilize L-Moments

instead of MLE to increase the reliability.
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On the other hand, instrumentation points are injected into the source code of the ana-

lyzed program. While the proposed mechanism minimizes the probe effect, injecting

the probes in assembly level would decrease the probe effect much more. However,

in order to do that a specialized compiler or linker support is needed.

The analysis phase in the proposed framework is done offline on a host computer af-

ter the test runs are finished. It is not possible to have an idea whether the collected

trace data are enough or not to apply statistical methods or whether the coverage is

sufficient or not. Therefore, a mechanism could be introduced to make the analysis

online by connecting the TraceBox hardware and the host computer through a net-

work and stream the trace data over the network interface from TraceBox to the host

computer. This way, it would be possible to make sure that enough data is collected

and termination criteria is met.

This thesis study presents a framework which is implemented in MATLAB and R

which are mainly considered as prototyping environments. The experiments and case

studies are analyzed mostly by manual modifications or rewritings of the analysis

code in R or MATLAB. In order to transform this study into a full function and

automatic tool, a number of improvements should be made as follows:

1. An automatic C/C++ source code parser is needed in order to extract the struc-

tural information of the analyzed code and instrument the necessary points au-

tomatically.

2. A trace parser is needed to extract the execution traces of each individual in-

strumentation point and associate them with the corresponding blocks inside

the program.

3. Representation of the analyzed program with our proposed scope tree approach

should be automatized.

4. A fully automatic mechanism to derive the copulas and estimate the extreme

value distributions by testing the applicability is needed.

5. Instead of using Monte-Carlo approach which is basically simulating the scope

behaviors, other numerical methods such as GAEP algorithm [80] could be

used.
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Last but not the least, all these capabilities should be transformed into a more efficient

programming language such as C or C++.
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APPENDIX A

APPENDIX FOR CHAPTER 3

A.1 Independent and Identically Distributed Statistical Tests

Listing A.1: MATLAB Code for iidtest

function [] = iidtest(diff)

diff = reshape(diff,[],1);

sample_size_per_iter = floor(length(diff) * 0.1)

for i = 1:sample_size_per_iter
rng(’shuffle’);
x1_ind = randi(length(diff) - sample_size_per_iter);
x2_ind = randi(length(diff) - sample_size_per_iter);

%Two-sample Kolmogorov-Smirnov test (identicality test)
X1 = double(diff(x1_ind:x1_ind+sample_size_per_iter-1));
X2 = double(diff(x2_ind:x2_ind+sample_size_per_iter-1));
[h,p_ks(i)] = kstest2(X1,X2,’Alpha’,0.05);

%K-Sample Anderson-Darling Test (identicality test)
X1 = double(diff(x1_ind:x1_ind+sample_size_per_iter-1));
X2 = double(diff(x2_ind:x2_ind+sample_size_per_iter-1));
X1(:,2) = 1;
X2(:,2) = 2;
p_ad(i) = AnDarksamtest([X1; X2],0.05);

%LB Test (independency test)
X1 = double(diff(x1_ind:x1_ind+sample_size_per_iter-1));
res = X1 - mean(X1);
[h,p_lb(i,:)] = lbqtest(res,’lags’,[2,5,10,20,50]);

%WW(runs) Test (independency test)
X1 = double(diff(x1_ind:x1_ind+sample_size_per_iter-1));
[h,p_ww(i)] = runstest(X1,median(X1));

end

boxplot([p_ks’, p_ad’, p_lb, p_ww’],
’Labels’,
{’KS’,’AD’,’LB02’, ’LB05’, ’LB10’, ’LB20’, ’LB50’, ’WW’})

xlabel(’Applicability statistical tests’)
ylabel(’p-value distributions)’)
title(’Statistical tests p-values’)

end

AnDarksamtest function is fetched from [91].
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A.2 Block Maxima for GEV

Listing A.2: MATLAB Code for getbm

function [diff_bm] = getbm(diff, bs)
% Example usage : diff_bm_fir = getbm(diff_fir, 50);
% Where diff_fir is the execution time array in clock count
% 50 corresponds to the block size

diff = reshape(diff, [], 1);

remainder = mod(length(diff), bs);

diff_tmp = [diff; zeros(mod(bs - remainder, bs), 1)];

diff_bm = reshape(diff_tmp, bs, []);
diff_bm = max(diff_bm);
diff_bm = double(diff_bm);

end

A.3 L-Moments Parameter Estimation for GEV

Listing A.3: MATLAB Code for lmomgev

function [paramEsts] = lmomgev(diff_bm)
% Example usage : paramEstsLmomFir = lmomgev(diff_bm_fir);
% Where diff_bm_fir is the block maxima of diff_fir

[L] = lmom(diff_bm, 4);

z = 2/(3 + L(3)/L(2)) - (log(2)/log(3));

k = 7.8590*z+ 2.9554*(z^2);

scale = L(2)*k/((1 - (2^(-k)))*gamma(1+k));

M = L(1) + scale*(gamma(1+k) - 1) / k;

k = -k;

paramEsts = [k, scale, M];
end

The formula is taken from [24].
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A.4 MLE Parameter Estimation for Gumbel

Listing A.4: MATLAB Code for mlegumbel

% gevfit function embedded in MATLAB is used to estimate the parameters
with MLE

% Example usage : paramEstsMLFir = gevfit(diff_bm_fir);
% Where diff_bm_fir is the block maxima of diff_fir

A.5 CRPS for GEV and Gumbel

Listing A.5: MATLAB Code for crpsgev

function [crps_values, crps_convergence_index] = crpsgev(diff)
% Example Usage : [crps_values_fir_gev, crps_convergence_index_fir_gev] =

crpsgev(diff_fir);
% Where diff_fir corresponds to the original observations

crps_convergence_index = -1;
crps_values= [];

lowerIndex = 100;
stepSize = 50;
crpsThreshold = 0.001;
crpsConvergenceRound = 5;

xgrid = linspace(floor(min(diff) - (0.1 * min(diff))), floor(max(diff) +
(0.1 * max(diff))), 1000);

j = 1;
convergenceCounter = 0;
for i=lowerIndex:stepSize:length(diff)

diff_bm_current = getbm(diff(1:i), 50);
paramEstsCurrent = lmomgev(diff_bm_current); %GEV with L-Moment
cdfCurrent = gevcdf(double(xgrid),paramEstsCurrent(1),paramEstsCurrent

(2), paramEstsCurrent(3));

if(i > lowerIndex)
crps_values(j) = sum((cdfCurrent - cdfPrev).^2);
if((crps_convergence_index == -1) && (crps_values(j) <

crpsThreshold))
convergenceCounter = convergenceCounter + 1;
if(convergenceCounter == crpsConvergenceRound)

crps_convergence_index = j;
end

else
convergenceCounter = 0;

end

j = j+1;
end

cdfPrev = cdfCurrent;
end
end
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Listing A.6: MATLAB Code for crpsgumbel

function [crps_values, crps_convergence_index] = crpsgumbel(diff)
% Example Usage : [crps_values_fir_gumbel,

crps_convergence_index_fir_gumbel] = crpsgumbel(diff_fir);
% Where diff_fir corresponds to the original observations

crps_convergence_index = -1;
crps_values= [];

lowerIndex = 100;
stepSize = 50;
crpsThreshold = 0.001;
crpsConvergenceRound = 5;

xgrid = linspace(floor(min(diff) - (0.1 * min(diff))), floor(max(diff) +
(0.1 * max(diff))), 1000);

j = 1;
convergenceCounter = 0;
for i=lowerIndex:stepSize:length(diff)

diff_bm_current = getbm(diff(1:i), 50);
paramEstsCurrent = evfit(diff_bm_current); %Gumbel
cdfCurrent = gevcdf(double(xgrid),0,paramEstsCurrent(2),

paramEstsCurrent(1));

if(i > lowerIndex)
crps_values(j) = sum((cdfCurrent - cdfPrev).^2);
if((crps_convergence_index == -1) && (crps_values(j) <

crpsThreshold))
convergenceCounter = convergenceCounter + 1;
if(convergenceCounter == crpsConvergenceRound)

crps_convergence_index = j;
end

else
convergenceCounter = 0;

end

j = j+1;
end

cdfPrev = cdfCurrent;
end
end
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A.6 Estimation of pWCET Values from EVT Distributions

Listing A.7: MATLAB Code for pwcetEVT

pdgev_fir = makedist(’GeneralizedExtremeValue’,’k’,paramEstsLmomFirMs(1),’
sigma’,paramEstsLmomFirMs(2),’mu’,paramEstsLmomFirMs(3));

pdgev_select = makedist(’GeneralizedExtremeValue’,’k’,paramEstsLmomSelectMs
(1),’sigma’,paramEstsLmomSelectMs(2),’mu’,paramEstsLmomSelectMs(3));

pdgev_janne = makedist(’GeneralizedExtremeValue’,’k’,paramEstsLmomJanneMs
(1),’sigma’,paramEstsLmomJanneMs(2),’mu’,paramEstsLmomJanneMs(3));

icdf(pdgev_fir, 0.9999)
icdf(pdgev_select, 0.9999)
icdf(pdgev_janne, 0.9999)
icdf(pdgev_fir, 0.999999)
icdf(pdgev_select, 0.999999)
icdf(pdgev_janne, 0.999999)
icdf(pdgev_fir, 0.999999999)
icdf(pdgev_select, 0.999999999)
icdf(pdgev_janne, 0.999999999)

pdgumb_fir = makedist(’GeneralizedExtremeValue’,’k’,0,’sigma’,
paramEstsMLFir(2),’mu’,paramEstsMLFir(1));

pdgumb_select = makedist(’GeneralizedExtremeValue’,’k’,0,’sigma’,
paramEstsMLSelect(2),’mu’,paramEstsMLSelect(1));

pdgumb_janne = makedist(’GeneralizedExtremeValue’,’k’,0,’sigma’,
paramEstsMLJanne(2),’mu’,paramEstsMLJanne(1));

icdf(pdgumb_fir, 0.9999)
icdf(pdgumb_select, 0.9999)
icdf(pdgumb_janne, 0.9999)
icdf(pdgumb_fir, 0.999999)
icdf(pdgumb_select, 0.999999)
icdf(pdgumb_janne, 0.999999)
icdf(pdgumb_fir, 0.999999999)
icdf(pdgumb_select, 0.999999999)
icdf(pdgumb_janne, 0.999999999)

paramEstsLmomFirMs, paramEstsLmomSelectMs and

paramEstsLmomJanneMs parameters are estimated by using lmomgev function.

However, instead of using diff_bm_fir, diff_bm_select and diff_bm_janne,

those values are converted into milliseconds representations by dividing each ele-

ment to 200000 just to directly obtain the results in milliseconds format. It is also

valid for paramEstsMLFir, paramEstsMLSelect and paramEstsMLJanne.
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APPENDIX B

APPENDIX FOR CHAPTER 4

B.1 Glitch Filter

Listing B.1: VHDL Code for Glitch Filter

-- glitchFilter.vhd
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity glitchFilter is
generic (
gpio_length : integer := 64

);
port (
clock_sink_clk : in std_logic

:= ’0’; -- clock_sink.clk
reset_sink_reset : in std_logic

:= ’0’; -- reset_sink.reset_n
avalon_slave_address : in std_logic_vector(1 downto 0)

:= (others => ’0’); -- avalon_slave.address
avalon_slave_writedata : in std_logic_vector(31 downto 0)

:= (others => ’0’); -- .writedata
avalon_slave_write : in std_logic

:= ’0’; -- .write
avalon_slave_readdata : out std_logic_vector(31 downto 0);

-- .readdata
avalon_slave_read : in std_logic

:= ’0’; -- .read
noisy_input : in std_logic_vector(gpio_length -

1 downto 0) := (others => ’0’); -- conduit_input.
gpio_signal

filtered_output : out std_logic_vector(gpio_length - 1
downto 0) := (others => ’0’) -- conduit_output.gpio_signal

);
end entity glitchFilter;

architecture rtl of glitchFilter is

type sample_reg is array (1 to 3) of std_logic_vector(noisy_input’range)
;

signal samples : sample_reg; -- shift register of sampled inputs

signal state_change : std_ulogic; -- flag for a change in the input
state

signal filter_cycles : unsigned(15 downto 0) := (others => ’0’); --
Number of clock cycles to filter

signal count : unsigned(filter_cycles’range) := (others => ’0’); --
timer count
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signal timer_done : std_ulogic; -- timer flag

function or_reduce( v : std_logic_vector(noisy_input’range) ) return
std_ulogic is

variable result : std_ulogic := ’0’;
begin

for i in v’range loop
result := result or v(i);
end loop;

return result;
end function;

signal cntrl : std_logic_vector(31 downto 0);
signal data : std_logic_vector(31 downto 0);
signal status : std_logic_vector(31 downto 0);

begin

filter_cycles <= unsigned(cntrl(15 downto 0));

-- MM-Slave Write Process
process (clock_sink_clk, reset_sink_reset)
begin

if reset_sink_reset = ’0’ then
cntrl <= (others => ’0’);
data <= (others => ’0’);
status <= (others => ’0’);

elsif rising_edge(clock_sink_clk) then
if (avalon_slave_write = ’1’) then
case avalon_slave_address is
when "00" => cntrl <= avalon_slave_writedata;
when "01" => data <= avalon_slave_writedata;
when others => null;

end case;
end if;

end if;
end process;

-- MM-Slave Read Process
process (clock_sink_clk, reset_sink_reset)
begin

if reset_sink_reset = ’0’ then
avalon_slave_readdata <= (others => ’0’);

elsif rising_edge(clock_sink_clk) then
if(avalon_slave_read = ’1’) then
case avalon_slave_address is
when "00" => avalon_slave_readdata <= cntrl;
when "01" => avalon_slave_readdata <= data;
when "10" => avalon_slave_readdata <= status;
when others => avalon_slave_readdata <= (others => ’X’);

end case;
end if;

end if;
end process;

-- Synchronize the noisy input and detect changes in state

-- This would normally be an inappropriate way to synchronize an array
but

-- since the filter logic is waiting for all inputs to become stable, the
-- usual issues with skewed inputs will not appear at the filtered output

.
sync: process(clock_sink_clk, reset_sink_reset) is
begin

if reset_sink_reset = ’0’ then
samples <= (samples’range => (samples(1)’range => ’0’));

elsif rising_edge(clock_sink_clk) then
samples <= noisy_input & samples(1 to 2);

end if;
end process;

state_change <= ’1’ when or_reduce(to_x01(samples(3)) xor to_x01(samples
(2))) = ’1’ else ’0’;
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-- Run count down continuously. Reset count whenever a state change
occurs.

-- If the count reaches 0 then the input has been stable for the
requested

-- length of time.
timer: process(clock_sink_clk, reset_sink_reset, filter_cycles) is
begin
if reset_sink_reset = ’0’ then

count <= filter_cycles;
elsif rising_edge(clock_sink_clk) then

if state_change = ’1’ then -- unstable, initialize timer
count <= filter_cycles;

else -- counting
count <= count - 1;

end if;
end if;

end process;

timer_done <= ’1’ when count = (count’range => ’0’) else ’0’;

-- Update the filtered output whenever the input has been stable for
enough

-- cycles.
capture: process(clock_sink_clk, reset_sink_reset) is
begin
if reset_sink_reset = ’0’ then

filtered_output <= (filtered_output’range => ’0’);
elsif rising_edge(clock_sink_clk) then

if timer_done = ’1’ then
filtered_output <= samples(3);

end if;
end if;

end process;

end architecture rtl; -- of traceCapture

B.2 Pipelined Counter

Listing B.2: VHDL Code for Pipelined Counter

-- pipelinedCounter.vhd
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity pipelinedCounter is
generic (
width_g : integer := 64;
parts_g : integer := 4

);
port (
avalon_slave_address : in std_logic_vector(1 downto 0) := (

others => ’0’); -- avalon_slave.address
avalon_slave_writedata : in std_logic_vector(31 downto 0) := (

others => ’0’); -- .writedata
avalon_slave_write : in std_logic :=

’0’; -- .write
avalon_slave_readdata : out std_logic_vector(31 downto 0);

-- .readdata
avalon_slave_read : in std_logic :=

’0’; -- .read
avalon_streaming_source_data : out std_logic_vector(width_g - 1 downto

0); -- avalon_streaming_source.data
avalon_streaming_source_valid : out std_logic;

-- .
valid
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avalon_streaming_source_ready : in std_logic :=
’0’; -- .ready

clock_sink_clk : in std_logic :=
’0’; -- clock_sink.clk

reset_sink_reset : in std_logic :=
’0’ -- reset_sink.reset_n

);
end entity pipelinedCounter;

architecture rtl of pipelinedCounter is
constant part_width_c : natural := width_g / parts_g;
signal almost_tick_r : std_logic_vector(parts_g - 1 downto 0);
signal count_r : std_logic_vector(width_g - 1 downto 0);

signal running : std_logic;
signal set_running : std_logic;
signal clear_running : std_logic;
signal enable : std_logic;

signal cntrl : std_logic_vector(31 downto 0);
signal data : std_logic_vector(31 downto 0);
signal status : std_logic_vector(31 downto 0);

begin

avalon_streaming_source_data <= count_r;
avalon_streaming_source_valid <= enable;

set_running <= cntrl(31);
clear_running <= cntrl(31);
enable <= running and avalon_streaming_source_ready;

-- MM-Slave Write Process
process (clock_sink_clk, reset_sink_reset)
begin

if reset_sink_reset = ’0’ then
cntrl <= (others => ’0’);
data <= (others => ’0’);
status <= (others => ’0’);

elsif rising_edge(clock_sink_clk) then
if (avalon_slave_write = ’1’) then
case avalon_slave_address is
when "00" => cntrl <= avalon_slave_writedata;
when "01" => data <= avalon_slave_writedata;
when others => null;

end case;
end if;

end if;
end process;

-- MM-Slave Read Process
process (clock_sink_clk, reset_sink_reset)
begin

if reset_sink_reset = ’0’ then
avalon_slave_readdata <= (others => ’0’);

elsif rising_edge(clock_sink_clk) then
if(avalon_slave_read = ’1’) then
case avalon_slave_address is
when "00" => avalon_slave_readdata <= cntrl;
when "01" => avalon_slave_readdata <= data;
when "10" => avalon_slave_readdata <= status;
when others => avalon_slave_readdata <= (others => ’X’);

end case;
end if;

end if;
end process;

-- Running state process
process (clock_sink_clk, reset_sink_reset)
begin

if reset_sink_reset = ’0’ then
running <= ’0’;

elsif rising_edge(clock_sink_clk) then
if(set_running = ’1’) then
running <= ’1’;

elsif(clear_running = ’1’) then
running <= ’0’;
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end if;
end if;

end process;

-- Main process
process (clock_sink_clk, reset_sink_reset)
variable part_v: unsigned(part_width_c - 1 downto 0);
variable tick_v: std_logic;

begin
if reset_sink_reset = ’0’ then

count_r <= (others => ’0’);
almost_tick_r <= (others => ’0’);
--tick <= ’0’;

elsif rising_edge(clock_sink_clk) then

tick_v := enable;
for i in 0 to parts_g - 1 loop
part_v := unsigned(count_r((i + 1) * part_width_c - 1 downto i *

part_width_c));

if tick_v = ’1’ then
-- Value is max - 1?
if part_v = to_unsigned(2**part_width_c - 2, part_width_c) then
almost_tick_r(i) <= ’1’;

else
almost_tick_r(i) <= ’0’;

end if;

part_v := part_v + 1;
end if;

count_r((i + 1) * part_width_c - 1 downto i * part_width_c) <=
std_logic_vector(part_v);

tick_v := tick_v and almost_tick_r(i);
end loop;
--tick <= tick_v;

end if;
end process;

end architecture rtl; -- of pipelinedCounter

B.3 Trace Capture

Listing B.3: VHDL Code for Trace Capture

-- traceCapture.vhd
library IEEE;
use IEEE.std_logic_1164.all;
use IEEE.numeric_std.all;

entity traceCapture is
generic (
gpio_length : integer := 64;
pipeline_counter_length : integer := 64

);
port (
clock_sink_clk : in std_logic

:= ’0’; -- clock_sink.clk
reset_sink_reset : in std_logic

:= ’0’; -- reset_sink.reset_n
avalon_slave_address : in std_logic_vector(1 downto 0)

:= (others => ’0’); -- avalon_slave.address
avalon_slave_writedata : in std_logic_vector(31 downto 0)

:= (others => ’0’); -- .writedata
avalon_slave_write : in std_logic

:= ’0’; -- .write
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avalon_slave_readdata : out std_logic_vector(31 downto 0);
-- .readdata

avalon_slave_read : in std_logic
:= ’0’; -- .read

pipeline_counter_sink_data : in std_logic_vector(
pipeline_counter_length - 1 downto 0) := (others => ’0’); --
pipeline_counter_sink.data

pipeline_counter_sink_valid : in std_logic
:= ’0’; -- .valid

pipeline_counter_sink_ready : out std_logic;
-- .

ready
input_signal : in std_logic_vector(gpio_length -

1 downto 0) := (others => ’0’); -- conduit_input.
gpio_signal

trace_stream_source_data : out std_logic_vector(127 downto 0);
-- trace_stream_source.data

trace_stream_source_valid : out std_logic;
-- .

valid
trace_stream_source_ready : in std_logic

:= ’0’; -- .ready

output_led : out std_logic_vector(2 downto 0) --debug
purposes

);
end entity traceCapture;

architecture rtl of traceCapture is

TYPE State_type IS (IDLE, STREAM_VALID, ACK_VALID, ACK_INPUT_FALL);
signal capture_state : State_Type;
signal output_aligner : std_logic_vector(63 - gpio_length downto 0);

signal running : std_logic;
signal set_running : std_logic;
signal clear_running : std_logic;

signal current_count : std_logic_vector(pipeline_counter_sink_data
’RANGE);

signal count_sink_ready : std_logic;
signal latch_counter : std_logic;

signal source_valid : std_logic;

signal cntrl : std_logic_vector(31 downto 0);
signal data : std_logic_vector(31 downto 0);
signal status : std_logic_vector(31 downto 0);

begin

pipeline_counter_sink_ready <= count_sink_ready;
latch_counter <= running and pipeline_counter_sink_valid;

set_running <= cntrl(31);
clear_running <= cntrl(31);

trace_stream_source_valid <= source_valid;
trace_stream_source_data <= current_count & input_signal & output_aligner

;
---trace_stream_source_sop <= source_valid;
---trace_stream_source_eop <= source_valid;

output_led(0) <= source_valid;
output_led(1) <= trace_stream_source_ready;
output_led(2) <= (not input_signal(input_signal’HIGH)) and source_valid;

-- MM-Slave Write Process
process (clock_sink_clk, reset_sink_reset)
begin

if reset_sink_reset = ’0’ then
cntrl <= (others => ’0’);
data <= (others => ’0’);
status <= (others => ’0’);
output_aligner <= (others => ’0’);

elsif rising_edge(clock_sink_clk) then
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if (avalon_slave_write = ’1’) then
case avalon_slave_address is

when "00" => cntrl <= avalon_slave_writedata;
when "01" => data <= avalon_slave_writedata;
when others => null;

end case;
end if;

end if;
end process;

-- MM-Slave Read Process
process (clock_sink_clk, reset_sink_reset)
begin
if reset_sink_reset = ’0’ then

avalon_slave_readdata <= (others => ’0’);
elsif rising_edge(clock_sink_clk) then

if(avalon_slave_read = ’1’) then
case avalon_slave_address is

when "00" => avalon_slave_readdata <= cntrl;
when "01" => avalon_slave_readdata <= data;
when "10" => avalon_slave_readdata <= status;
when others => avalon_slave_readdata <= (others => ’X’);

end case;
end if;

end if;
end process;

-- Running state process
process (clock_sink_clk, reset_sink_reset)
begin
if reset_sink_reset = ’0’ then

running <= ’0’;
elsif rising_edge(clock_sink_clk) then

if(set_running = ’1’) then
running <= ’1’;

elsif(clear_running = ’1’) then
running <= ’0’;

end if;
end if;

end process;

-- Pipeline Counter Latch Process
process (clock_sink_clk, reset_sink_reset, pipeline_counter_sink_data)
begin
if reset_sink_reset = ’0’ then

current_count <= (others => ’0’);
count_sink_ready <= ’0’;

elsif rising_edge(clock_sink_clk) then
count_sink_ready <= ’1’;
if(latch_counter = ’1’) then
current_count <= pipeline_counter_sink_data;

end if;
end if;

end process;

-- Capture Process
process (clock_sink_clk, reset_sink_reset, input_signal,

trace_stream_source_ready)
variable cntr: UNSIGNED(1 downto 0);

begin
if reset_sink_reset = ’0’ then

capture_state <= IDLE;
source_valid <= ’0’;
cntr := (others => ’0’);

elsif rising_edge(clock_sink_clk) then
if running = ’1’ then
case capture_state is

when IDLE =>
if input_signal(input_signal’HIGH) = ’1’ and

trace_stream_source_ready = ’1’ then
capture_state <= STREAM_VALID;

end if;
when STREAM_VALID =>
if input_signal(input_signal’HIGH) = ’1’ and

trace_stream_source_ready = ’1’ then
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source_valid <= ’1’; -- Danger
capture_state <= ACK_VALID;

else
capture_state <= IDLE;

end if;
when ACK_VALID =>

if source_valid = ’1’ then
source_valid <= ’0’;
capture_state <= ACK_INPUT_FALL;
cntr := (others => ’0’);

else
capture_state <= STREAM_VALID;

end if;
when ACK_INPUT_FALL =>

if input_signal(input_signal’HIGH) = ’0’ then
if cntr = 3 then
capture_state <= IDLE;
cntr := (others => ’0’);

else
cntr := cntr + 1;

end if;
end if;

end case;
end if;

end if;
end process;

end architecture rtl; -- of traceCapture
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APPENDIX C

APPENDIX FOR CHAPTER 5

C.1 Sequential Negatively Dependent Insertion Sort Program

Listing C.1: R Code for Neg. Dep. Example

library(R.matlab)
library(copula)
library(VineCopula)
library(psych)
library(extRemes)
library(ggplot2)
library(plotly)
library(spd)
library(PerformanceAnalytics)
library(pracma)
library(numbers)
library(data.table)
library(POT)

etp <- function(X)
{

X_hist = as.data.frame(table(X))

X_val <-as.numeric(as.character(X_hist[,1]))
X_p <-as.numeric(as.character(X_hist[,2]))
X_p <- X_p/sum(X_p)

W = cbind(X_val, X_p)
W

}

eecdf <- function(etpX)
{

etpX[,2] = cumsum(etpX[,2])
etpX[,2] = 1-etpX[,2]
etpX

}

reduce_etp <- function(X, binCount)
{

if(binCount == 0)
{
W = X
W

}
else
{
px_p = X[,2]
px_v = X[,1]

stepSize = ceiling((length(px_p) - 1) / binCount)
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remainder = mod(length(px_p) - 1 ,stepSize)

px_v_start = px_v[1]
px_p_start = px_p[1]

px_v_end = tail(px_v, 1)
px_p_end = sum(tail(px_p, remainder))

px_v = matrix(px_v[2:(length(px_v)-remainder)], nrow=stepSize)
px_v = px_v[stepSize,]

px_p = matrix(px_p[2:(length(px_p)-remainder)], nrow=stepSize)
px_p = colSums(px_p)

px_v = c(px_v_start, px_v)
px_p = c(px_p_start, px_p)

if(remainder > 0)
{
px_v = c(px_v, px_v_end)
px_p = c(px_p, px_p_end)

}

px_p = px_p / sum(px_p)

W = cbind(px_v, px_p)
W

}
}

indepConv <- function(etpX, etpY)
{

Z_vals = outer(etpX[,1], t(etpY[,1]), FUN="+")
Z_probs = etpX[,2] %*% t(etpY[,2])

W = data.table(Vals = as.vector(Z_vals), Probs = as.vector(Z_probs), key=
"Vals")

W = W[, list(Probs=sum(Probs)), by=Vals]
W = cbind(W$Vals, W$Probs)
W

}

biasedConv <- function(etpX, etpY)
{

X_val = etpX[,1]
X_p = etpX[,2]

Y_val = etpY[,1]
Y_p = etpY[,2]

i = length(X_p)
j = length(Y_p)

p_x = X_p[i]
p_y = Y_p[j]
val_x = X_val[i]
val_y = Y_val[j]

etpZ = c()

while ((i > 0) || (j > 0))
{

p = min(p_x,p_y)

etpZ = rbind(etpZ, c(val_x + val_y, p))

p_x = p_x - p
p_y = p_y - p

if(i == 1 && j == 1)
{
i = 0;
j = 0;

}
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while((p_x <= 10^(-10)) && (i > 1))
{

i = i - 1;
p_x = X_p[i]
val_x = X_val[i]

}

while((p_y <= 10^(-10)) && (j > 1))
{

j = j - 1;
p_y = Y_p[j]
val_y = Y_val[j]

}
}

etpZ = apply(etpZ,2,rev)

etpZ

}

pwcetComonNegDep <- function(result, etpDownSampling)
{

test_entry = etp(as.vector(result$test_entry))
f1_endtoend = etp(as.vector(result$f1_ee))
f1_ret = etp(as.vector(result$f1_ret))
f2_endtoend = etp(as.vector(result$f2_ee))
f2_ret = etp(as.vector(result$f2_ret))

test_self_pwcet_etp = biasedConv(reduce_etp(test_entry, etpDownSampling),
reduce_etp(f1_ret, etpDownSampling))

test_self_pwcet_etp = biasedConv(reduce_etp(test_self_pwcet_etp,
etpDownSampling),reduce_etp(f2_ret, etpDownSampling))

f1_pwcet_etp = f1_endtoend
f2_pwcet_etp = f2_endtoend

test_pwcet_etp = biasedConv(reduce_etp(test_self_pwcet_etp,
etpDownSampling),reduce_etp(f1_pwcet_etp, etpDownSampling))

test_pwcet_etp = biasedConv(reduce_etp(test_pwcet_etp, etpDownSampling),
reduce_etp(f2_pwcet_etp, etpDownSampling))

test_pwcet_etp = reduce_etp(test_pwcet_etp, etpDownSampling)

test_pwcet_etp
}

pwcetIndepNegDep <- function(result, etpDownSampling)
{

test_entry = etp(as.vector(result$test_entry))
f1_endtoend = etp(as.vector(result$f1_ee))
f1_ret = etp(as.vector(result$f1_ret))
f2_endtoend = etp(as.vector(result$f2_ee))
f2_ret = etp(as.vector(result$f2_ret))

test_self_pwcet_etp = indepConv(reduce_etp(test_entry, etpDownSampling),
reduce_etp(f1_ret, etpDownSampling))

test_self_pwcet_etp = indepConv(reduce_etp(test_self_pwcet_etp,
etpDownSampling),reduce_etp(f2_ret, etpDownSampling))

f1_pwcet_etp = f1_endtoend
f2_pwcet_etp = f2_endtoend

test_pwcet_etp = indepConv(reduce_etp(test_self_pwcet_etp,
etpDownSampling),reduce_etp(f1_pwcet_etp, etpDownSampling))

test_pwcet_etp = indepConv(reduce_etp(test_pwcet_etp, etpDownSampling),
reduce_etp(f2_pwcet_etp, etpDownSampling))

test_pwcet_etp = reduce_etp(test_pwcet_etp, etpDownSampling)

test_pwcet_etp
}

data <- readMat("/Users/lvnt/Desktop/captures/program_reverse_sort.mat")

result <- convertData(data)
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testEE = result$test_ee
testProgramEntry = result$test_entry
insertSortAsc = result$f1_ee
insertSortAscRet = result$f1_ret
insertSortDesc = result$f2_ee
insertSortDescRet = result$f2_ret

testProgramSelf = testProgramEntry + insertSortAscRet + insertSortDescRet
testProgramSub = insertSortAsc + insertSortDesc

df_testProgram <- data.frame(u = pobs(testProgramSelf), v = pobs(
testProgramSub))

df_testProgramSelf <- data.frame(u = pobs(testProgramEntry), v = pobs(
insertSortAscRet), k = pobs(insertSortDescRet))

df_testProgramSub <- data.frame(u = pobs(insertSortAsc), v = pobs(
insertSortDesc))

chart.Correlation(df_testProgram, histogram=TRUE, pch=19)
chart.Correlation(df_testProgramSelf, histogram=TRUE, pch=19)
chart.Correlation(df_testProgramSub, histogram=TRUE, pch=19)

RVM_testProgram <- RVineStructureSelect(df_testProgram, c(1:6), indeptest =
TRUE)

RVM_testProgramSelf <- RVineStructureSelect(df_testProgramSelf, c(1:6),
indeptest = TRUE)

RVM_testProgramSub <- RVineStructureSelect(df_testProgramSub, c(1:6),
indeptest = TRUE)

RVineGofTest(df_testProgram, RVM_testProgram, method="ECP2", statistic = "
CvM")

RVineGofTest(df_testProgramSelf, RVM_testProgramSelf, method="ECP2",
statistic = "CvM")

RVineGofTest(df_testProgramSub, RVM_testProgramSub, method="ECP2",
statistic = "CvM")

simdata_testProgram <- RVineSim(1000000, RVM_testProgram)
simdata_testProgramSelf <- RVineSim(1000000, RVM_testProgramSelf)
simdata_testProgramSub <- RVineSim(1000000, RVM_testProgramSub)

tails_insertSortAsc <- spdfit(insertSortAsc, upper = 0.9, lower = 0.1)
tails_insertSortDesc <- spdfit(insertSortDesc, upper = 0.9, lower = 0.1)

testProgramEntry_cdf = etp(as.vector(testProgramEntry))
testProgramEntry_cdf[,2] = cumsum(testProgramEntry_cdf[,2])

insertSortAscRet_cdf = etp(as.vector(insertSortAscRet))
insertSortAscRet_cdf[,2] = cumsum(insertSortAscRet_cdf[,2])

insertSortDescRet_cdf = etp(as.vector(insertSortDescRet))
insertSortDescRet_cdf[,2] = cumsum(insertSortDescRet_cdf[,2])

testProgramEntry_real = findInterval(simdata_testProgramSelf[,1],
testProgramEntry_cdf[,2])+1

testProgramEntry_real = testProgramEntry_cdf[,1][testProgramEntry_real]

insertSortAscRet_real = findInterval(simdata_testProgramSelf[,2],
insertSortAscRet_cdf[,2])+1

insertSortAscRet_real = insertSortAscRet_cdf[,1][insertSortAscRet_real]

insertSortDescRet_real = findInterval(simdata_testProgramSelf[,3],
insertSortDescRet_cdf[,2])+1

insertSortDescRet_real = insertSortDescRet_cdf[,1][insertSortDescRet_real]

testProgramSelf_W = testProgramEntry_real + insertSortAscRet_real +
insertSortDescRet_real

testProgramSelf_cdf = etp(as.vector(testProgramSelf_W))
testProgramSelf_cdf[,2] = cumsum(testProgramSelf_cdf[,2])

testProgramSub_W = cbind(qspd(simdata_testProgramSub[,1], tails_
insertSortAsc), qspd(simdata_testProgramSub[,2], tails_insertSortDesc))

testProgramSub_W = rowSums(testProgramSub_W)
testProgramSub_cdf = etp(as.vector(testProgramSub_W))
testProgramSub_cdf[,2] = cumsum(testProgramSub_cdf[,2])
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testProgramSelf_real = findInterval(simdata_testProgram[,1],
testProgramSelf_cdf[,2])+1

testProgramSelf_real = testProgramSelf_cdf[,1][testProgramSelf_real]

testProgramSub_real = findInterval(simdata_testProgram[,2], testProgramSub_
cdf[,2])+1

testProgramSub_real = testProgramSub_cdf[,1][testProgramSub_real]

testProgram_W = testProgramSelf_real + testProgramSub_real

testProgram_ee_etp = etp(as.vector(testEE))
testProgram_spdCop_etp = etp(as.vector(testProgram_W))
testProgram_biasedConv_etp = pwcetComonNegDep(result, 0)
testProgram_independent_etp = pwcetIndepNegDep(result, 10000)

ee_x = testProgram_ee_etp[,1]
ee_y = eecdf(testProgram_ee_etp)[,2]

spdcop_x = testProgram_spdCop_etp[,1]
spdcop_y = eecdf(testProgram_spdCop_etp)[,2]

comon_x = testProgram_biasedConv_etp[,1]
comon_y = eecdf(testProgram_biasedConv_etp)[,2]

indep_x = testProgram_independent_etp[,1]
indep_y = eecdf(testProgram_independent_etp)[,2]

p <- plot_ly(x = ee_x, y = ee_y, type = ’scatter’, mode = ’lines’, name = ’
EE’) %>%

add_trace(x = spdcop_x, y = spdcop_y, type = ’scatter’, mode = ’lines
’, name = ’EVT-COP’) %>%

add_trace(x = comon_x, y = comon_y, type = ’scatter’, mode = ’lines’,
name=’RapiTime’) %>%

add_trace(x = indep_x, y = indep_y, type = ’scatter’, mode = ’lines’,
name=’Independent’)

p
layout(p, yaxis = list(type = "log", exponentformat="power", showexponent="

all"))

testProgram_ee_etp[,2] = cumsum(testProgram_ee_etp[,2])
testProgram_spdCop_etp[,2] = cumsum(testProgram_spdCop_etp[,2])
testProgram_biasedConv_etp[,2] = cumsum(testProgram_biasedConv_etp[,2])
testProgram_independent_etp[,2] = cumsum(testProgram_independent_etp[,2])

testProgram_spdCop_etp[,1][findInterval(0.99, testProgram_spdCop_etp[,2])
+1] / 200000

testProgram_independent_etp[,1][findInterval(0.99, testProgram_independent_
etp[,2])+1] / 200000

testProgram_biasedConv_etp[,1][findInterval(0.99, testProgram_biasedConv_
etp[,2])+1] / 200000

testProgram_ee_etp[,1][findInterval(0.99, testProgram_ee_etp[,2])+1] /
200000

testProgram_spdCop_etp[,1][findInterval(0.9999, testProgram_spdCop_etp[,2])
+1] / 200000

testProgram_independent_etp[,1][findInterval(0.9999, testProgram_
independent_etp[,2])+1] / 200000

testProgram_biasedConv_etp[,1][findInterval(0.9999, testProgram_biasedConv_
etp[,2])+1] / 200000

testProgram_ee_etp[,1][findInterval(0.9999, testProgram_ee_etp[,2])+1] /
200000

testProgram_spdCop_etp[,1][findInterval(0.999999, testProgram_spdCop_etp
[,2])+1] / 200000

testProgram_independent_etp[,1][findInterval(0.999999, testProgram_
independent_etp[,2])+1] / 200000

testProgram_biasedConv_etp[,1][findInterval(0.999999, testProgram_
biasedConv_etp[,2])+1] / 200000

testProgram_ee_etp[,1][findInterval(0.999999, testProgram_ee_etp[,2])+1] /
200000

testProgram_spdCop_etp[,1][findInterval(0.999999999, testProgram_spdCop_etp
[,2])+1] / 200000

150



testProgram_independent_etp[,1][findInterval(0.999999999, testProgram_
independent_etp[,2])+1] / 200000

testProgram_biasedConv_etp[,1][findInterval(0.999999999, testProgram_
biasedConv_etp[,2])+1] / 200000

testProgram_ee_etp[,1][findInterval(0.999999999, testProgram_ee_etp[,2])+1]
/ 200000

C.2 Case-Study 1

Listing C.2: R Code for Case-Study 1

library(R.matlab)
library(copula)
library(VineCopula)
library(psych)
library(extRemes)
library(ggplot2)
library(plotly)
library(spd)
library(PerformanceAnalytics)
library(pracma)
library(numbers)
library(data.table)
library(POT)

etp <- function(X)
{

X_hist = as.data.frame(table(X))

X_val <-as.numeric(as.character(X_hist[,1]))
X_p <-as.numeric(as.character(X_hist[,2]))
X_p <- X_p/sum(X_p)

W = cbind(X_val, X_p)
W

}

reduce_etp <- function(X, binCount)
{

if(binCount == 0)
{

W = X
W

}
else
{

px_p = X[,2]
px_v = X[,1]

stepSize = ceiling((length(px_p) - 1) / binCount)

remainder = mod(length(px_p) - 1 ,stepSize)

px_v_start = px_v[1]
px_p_start = px_p[1]

px_v_end = tail(px_v, 1)
px_p_end = sum(tail(px_p, remainder))

px_v = matrix(px_v[2:(length(px_v)-remainder)], nrow=stepSize)
px_v = px_v[stepSize,]

px_p = matrix(px_p[2:(length(px_p)-remainder)], nrow=stepSize)
px_p = colSums(px_p)

px_v = c(px_v_start, px_v)
px_p = c(px_p_start, px_p)
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if(remainder > 0)
{

px_v = c(px_v, px_v_end)
px_p = c(px_p, px_p_end)

}

px_p = px_p / sum(px_p)

W = cbind(px_v, px_p)
W

}
}

eecdf <- function(etpX)
{

etpX[,2] = cumsum(etpX[,2])
etpX[,2] = 1-etpX[,2]
etpX

}

indepConv <- function(etpX, etpY)
{

Z_vals = outer(etpX[,1], t(etpY[,1]), FUN="+")
Z_probs = etpX[,2] %*% t(etpY[,2])

W = data.table(Vals = as.vector(Z_vals), Probs = as.vector(Z_probs), key=
"Vals")

W = W[, list(Probs=sum(Probs)), by=Vals]
W = cbind(W$Vals, W$Probs)
W

}

biasedConv <- function(etpX, etpY)
{

X_val = etpX[,1]
X_p = etpX[,2]

Y_val = etpY[,1]
Y_p = etpY[,2]

i = length(X_p)
j = length(Y_p)

p_x = X_p[i]
p_y = Y_p[j]
val_x = X_val[i]
val_y = Y_val[j]

etpZ = c()

while ((i > 0) || (j > 0))
{
p = min(p_x,p_y)

etpZ = rbind(etpZ, c(val_x + val_y, p))

p_x = p_x - p
p_y = p_y - p

if(i == 1 && j == 1)
{

i = 0;
j = 0;

}

while((p_x <= 10^(-10)) && (i > 1))
{

i = i - 1;
p_x = X_p[i]
val_x = X_val[i]

}

while((p_y <= 10^(-10)) && (j > 1))
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{
j = j - 1;
p_y = Y_p[j]
val_y = Y_val[j]

}
}

etpZ = apply(etpZ,2,rev)

etpZ

}

pwcetComon <- function(result, etpDownSampling)
{

test_entry = etp(as.vector(result$test_entry))
f1_endtoend = etp(as.vector(result$f1_ee))
f1_ret = etp(as.vector(result$f1_ret))
f2_endtoend = etp(as.vector(result$f2_ee))
f2_ret = etp(as.vector(result$f2_ret))
f3_endtoend = etp(as.vector(result$f3_ee))
f3_ret = etp(as.vector(result$f3_ret))
f4_endtoend = etp(as.vector(result$f4_ee))
f4_ret = etp(as.vector(result$f4_ret))
f5_endtoend = etp(as.vector(result$f5_ee))
f5_ret = etp(as.vector(result$f5_ret))
f6_endtoend = etp(as.vector(result$f6_ee))
f6_ret = etp(as.vector(result$f6_ret))
f6_ret[,1] = 95 * f6_ret[,1]

test_self_pwcet_etp = biasedConv(reduce_etp(test_entry, etpDownSampling),
reduce_etp(f1_ret, etpDownSampling))

test_self_pwcet_etp = biasedConv(reduce_etp(test_self_pwcet_etp,
etpDownSampling),reduce_etp(f2_ret, etpDownSampling))

test_self_pwcet_etp = biasedConv(reduce_etp(test_self_pwcet_etp,
etpDownSampling),reduce_etp(f3_ret, etpDownSampling))

test_self_pwcet_etp = biasedConv(reduce_etp(test_self_pwcet_etp,
etpDownSampling),reduce_etp(f5_ret, etpDownSampling))

test_self_pwcet_etp = biasedConv(reduce_etp(test_self_pwcet_etp,
etpDownSampling),reduce_etp(f6_ret, etpDownSampling))

f1_pwcet_etp = f1_endtoend
f2_pwcet_etp = f2_endtoend
f3_pwcet_etp = f3_endtoend
f4_pwcet_etp = f4_endtoend
f5_pwcet_etp = f5_endtoend
f6_pwcet_etp = f6_endtoend

f6_pwcet_etp_in_testProgram = f6_pwcet_etp
f6_pwcet_etp_in_testProgram[,1] = 95 * f6_pwcet_etp_in_testProgram[,1]
test_pwcet_etp = biasedConv(reduce_etp(test_self_pwcet_etp,

etpDownSampling),reduce_etp(f1_pwcet_etp, etpDownSampling))
test_pwcet_etp = biasedConv(reduce_etp(test_pwcet_etp, etpDownSampling),

reduce_etp(f2_pwcet_etp, etpDownSampling))
test_pwcet_etp = biasedConv(reduce_etp(test_pwcet_etp, etpDownSampling),

reduce_etp(f3_pwcet_etp, etpDownSampling))
test_pwcet_etp = biasedConv(reduce_etp(test_pwcet_etp, etpDownSampling),

reduce_etp(f5_pwcet_etp, etpDownSampling))
test_pwcet_etp = biasedConv(reduce_etp(test_pwcet_etp, etpDownSampling),

reduce_etp(f6_pwcet_etp_in_testProgram, etpDownSampling))
test_pwcet_etp = reduce_etp(test_pwcet_etp, etpDownSampling)

test_pwcet_etp
}

pwcetIndep <- function(result, etpDownSampling)
{

test_entry = etp(as.vector(result$test_entry))
f1_endtoend = etp(as.vector(result$f1_ee))
f1_ret = etp(as.vector(result$f1_ret))
f2_endtoend = etp(as.vector(result$f2_ee))
f2_ret = etp(as.vector(result$f2_ret))
f3_endtoend = etp(as.vector(result$f3_ee))
f3_ret = etp(as.vector(result$f3_ret))
f4_endtoend = etp(as.vector(result$f4_ee))
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f4_ret = etp(as.vector(result$f4_ret))
f5_endtoend = etp(as.vector(result$f5_ee))
f5_ret = etp(as.vector(result$f5_ret))
f6_endtoend = etp(as.vector(result$f6_ee))
f6_ret = etp(as.vector(result$f6_ret))

test_self_pwcet_etp = indepConv(reduce_etp(test_entry, etpDownSampling),
reduce_etp(f1_ret, etpDownSampling))

test_self_pwcet_etp = indepConv(reduce_etp(test_self_pwcet_etp,
etpDownSampling),reduce_etp(f2_ret, etpDownSampling))

test_self_pwcet_etp = indepConv(reduce_etp(test_self_pwcet_etp,
etpDownSampling),reduce_etp(f3_ret, etpDownSampling))

test_self_pwcet_etp = indepConv(reduce_etp(test_self_pwcet_etp,
etpDownSampling),reduce_etp(f5_ret, etpDownSampling))

f6_ret_pwcet_etp_in_testProgram = f6_ret
for (i in 2:95)
{
f6_ret_pwcet_etp_in_testProgram = indepConv(reduce_etp(f6_ret_pwcet_etp

_in_testProgram, etpDownSampling),
reduce_etp(f6_ret,

etpDownSampling))
}

test_self_pwcet_etp = indepConv(reduce_etp(test_self_pwcet_etp,
etpDownSampling),

reduce_etp(f6_ret_pwcet_etp_in_
testProgram, etpDownSampling))

f1_pwcet_etp = f1_endtoend
f2_pwcet_etp = f2_endtoend
f3_pwcet_etp = f3_endtoend
f4_pwcet_etp = f4_endtoend
f5_pwcet_etp = f5_endtoend
f6_pwcet_etp = f6_endtoend

f6_pwcet_etp_in_testProgram = f6_pwcet_etp
for (i in 2:95)
{
f6_pwcet_etp_in_testProgram = indepConv(reduce_etp(f6_pwcet_etp_in_

testProgram, etpDownSampling),
reduce_etp(f6_pwcet_etp,

etpDownSampling))
}
test_pwcet_etp = indepConv(reduce_etp(test_self_pwcet_etp,

etpDownSampling),reduce_etp(f1_pwcet_etp, etpDownSampling))
test_pwcet_etp = indepConv(reduce_etp(test_pwcet_etp, etpDownSampling),

reduce_etp(f2_pwcet_etp, etpDownSampling))
test_pwcet_etp = indepConv(reduce_etp(test_pwcet_etp, etpDownSampling),

reduce_etp(f3_pwcet_etp, etpDownSampling))
test_pwcet_etp = indepConv(reduce_etp(test_pwcet_etp, etpDownSampling),

reduce_etp(f5_pwcet_etp, etpDownSampling))
test_pwcet_etp = indepConv(reduce_etp(test_pwcet_etp, etpDownSampling),

reduce_etp(f6_pwcet_etp_in_testProgram, etpDownSampling))
test_pwcet_etp = reduce_etp(test_pwcet_etp, etpDownSampling)

test_pwcet_etp
}

data <- readMat("/Users/lvnt/Desktop/captures/program_6func_deploop_indep_
cond_scope.mat")

result <- convertData(data)

testEE = result$test_ee
testProgramEntry = result$test_entry
f1 = result$f1_ee
f1Ret = result$f1_ret
f2 = result$f2_ee
f2Ret = result$f2_ret
f3 = result$f3_ee
f3Ret = result$f3_ret
f4 = result$f4_ee
f4Ret = result$f4_ret
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f5 = result$f5_ee
f5Ret = result$f5_ret
f6 = result$f6_ee
f6Ret = result$f6_ret

cond_sub = rbind(f4, f5)
cond_sub = colSums(cond_sub)
cond_self = rbind(f4Ret, f5Ret)
cond_self = colSums(cond_self)

loop_sub = result$f6_ee_cum
loop_cnt = result$f6_loop_cnt
loop_self = result$f6_ret_cum

testProgramSelf = testProgramEntry + f1Ret + f2Ret + f3Ret + cond_self +
loop_self

testProgramSub = f1 + f2 + f3 + cond_sub + loop_sub

df_testProgram <- data.frame(u = pobs(testProgramSelf), v = pobs(
testProgramSub))

df_testProgramSelf <- data.frame(u = pobs(testProgramEntry), v = pobs(f1Ret
), k = pobs(f2Ret), m = pobs(f3Ret), n = pobs(cond_self), p = pobs(loop
_self))

df_testProgramSub <- data.frame(u = pobs(f1), v = pobs(f2), k = pobs(f3), m
= pobs(cond_sub), n = pobs(loop_sub))

chart.Correlation(df_testProgram, histogram=TRUE, pch=19)
chart.Correlation(df_testProgramSelf, histogram=TRUE, pch=19)
chart.Correlation(df_testProgramSub, histogram=TRUE, pch=19)

RVM_testProgram <- RVineStructureSelect(df_testProgram, c(1:6), indeptest =
TRUE)

RVM_testProgramSelf <- RVineStructureSelect(df_testProgramSelf, c(1:6),
indeptest = TRUE)

RVM_testProgramSub <- RVineStructureSelect(df_testProgramSub, c(1:6),
indeptest = TRUE)

RVineGofTest(df_testProgram, RVM_testProgram, method="ECP2", statistic = "
CvM")

RVineGofTest(df_testProgramSelf, RVM_testProgramSelf, method="ECP2",
statistic = "CvM")

RVineGofTest(df_testProgramSub, RVM_testProgramSub, method="ECP2",
statistic = "CvM")

simdata_testProgram <- RVineSim(1000000, RVM_testProgram)
simdata_testProgramSelf <- RVineSim(1000000, RVM_testProgramSelf)
simdata_testProgramSub <- RVineSim(1000000, RVM_testProgramSub)

f4 = f4[ which(!f4 == 0)]
f5 = f5[ which(!f5 == 0)]

tails_f1 <- spdfit(f1, upper = 0.9, lower = 0.1)
tails_f2 <- spdfit(f2, upper = 0.9, lower = 0.1)
tails_f3 <- spdfit(f3, upper = 0.9, lower = 0.1)
tails_f4 <- spdfit(f4, upper = 0.9, lower = 0.1)
tails_f5 <- spdfit(f5, upper = 0.9, lower = 0.1)
tails_f6 <- spdfit(f6, upper = 0.9, lower = 0.1)

f4Ret = f4Ret[ which(!f4Ret == 0)]
f5Ret = f5Ret[ which(!f5Ret == 0)]
testProgramEntry_cdf = etp(as.vector(testProgramEntry))
testProgramEntry_cdf[,2] = cumsum(testProgramEntry_cdf[,2])

f1Ret_cdf = etp(as.vector(f1Ret))
f1Ret_cdf[,2] = cumsum(f1Ret_cdf[,2])

f2Ret_cdf = etp(as.vector(f2Ret))
f2Ret_cdf[,2] = cumsum(f2Ret_cdf[,2])

f3Ret_cdf = etp(as.vector(f3Ret))
f3Ret_cdf[,2] = cumsum(f3Ret_cdf[,2])

f4Ret_cdf = etp(as.vector(f4Ret))
f4Ret_cdf[,2] = cumsum(f4Ret_cdf[,2])
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f5Ret_cdf = etp(as.vector(f5Ret))
f5Ret_cdf[,2] = cumsum(f5Ret_cdf[,2])

f6Ret_etp = etp(as.vector(f6Ret))
f6Ret_etp = reduce_etp(f6Ret_etp, 1000) #do not call this when biased conv.

is applied
loop_self_cdf = f6Ret_etp

for (i in 2:max(loop_cnt))
{

loop_self_cdf = reduce_etp(loop_self_cdf, 1000)
loop_self_cdf = indepConv(loop_self_cdf,f6Ret_etp)

}

loop_self_cdf[,2] = cumsum(loop_self_cdf[,2])

testProgramEntry_real = findInterval(simdata_testProgramSelf[,1],
testProgramEntry_cdf[,2])+1

testProgramEntry_real = testProgramEntry_cdf[,1][testProgramEntry_real]

f1Ret_real = findInterval(simdata_testProgramSelf[,2], f1Ret_cdf[,2])+1
f1Ret_real = f1Ret_cdf[,1][f1Ret_real]

f2Ret_real = findInterval(simdata_testProgramSelf[,3], f2Ret_cdf[,2])+1
f2Ret_real = f2Ret_cdf[,1][f2Ret_real]

f3Ret_real = findInterval(simdata_testProgramSelf[,4], f3Ret_cdf[,2])+1
f3Ret_real = f3Ret_cdf[,1][f3Ret_real]

f4Ret_real = findInterval(simdata_testProgramSelf[,5], f4Ret_cdf[,2])+1
f4Ret_real = f4Ret_cdf[,1][f4Ret_real]

f5Ret_real = findInterval(simdata_testProgramSelf[,5], f5Ret_cdf[,2])+1
f5Ret_real = f5Ret_cdf[,1][f5Ret_real]

cond_self_W = apply(cbind(f4Ret_real, f5Ret_real), 1, max)

loop_self_W = findInterval(simdata_testProgramSelf[,6], loop_self_cdf[,2])
+1

loop_self_W = loop_self_cdf[,1][loop_self_W]

testProgramSelf_W = testProgramEntry_real + f1Ret_real + f2Ret_real + f3Ret
_real + cond_self_W + loop_self_W

testProgramSelf_cdf = etp(as.vector(testProgramSelf_W))
testProgramSelf_cdf[,2] = cumsum(testProgramSelf_cdf[,2])

loop1_idx = c()
for (i in 1:length(loop_cnt))
{

loop1_idx = c(loop1_idx,1:loop_cnt[i])
}
loop1_idx_pobs = pobs(loop1_idx)
f6_pobs = pobs(f6)

df_loop <- data.frame(u = loop1_idx_pobs, v = f6_pobs)
chart.Correlation(df_loop, histogram=TRUE, pch=19)
BiCopLoop1 <- BiCopSelect(loop1_idx_pobs, f6_pobs, familyset =c(1:6),

indeptest = TRUE)

f6_etp = etp(as.vector(f6))
f6_etp = reduce_etp(f6_etp, 1000) #do not call this when biased conv. is

applied
loop_sub_cdf = f6_etp

for (i in 2:max(loop_cnt))
{

loop_sub_cdf = reduce_etp(loop_sub_cdf, 1000)
loop_sub_cdf = indepConv(loop_sub_cdf,f6_etp)

}

loop_sub_cdf[,2] = cumsum(loop_sub_cdf[,2])

loop_sub_W = findInterval(simdata_testProgramSub[,5], loop_sub_cdf[,2])+1
loop_sub_W = loop_sub_cdf[,1][loop_sub_W]
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cond_sub_W = apply(cbind(qspd( simdata_testProgramSub[,4], tails_f4), qspd(
simdata_testProgramSub[,4], tails_f5)), 1, max)

f1_real = qspd( simdata_testProgramSub[,1], tails_f1)
f2_real = qspd( simdata_testProgramSub[,2], tails_f2)
f3_real = qspd( simdata_testProgramSub[,3], tails_f3)

testProgramSub_W = f1_real + f2_real + f3_real + cond_sub_W + loop_sub_W
testProgramSub_cdf = etp(as.vector(testProgramSub_W))
testProgramSub_cdf[,2] = cumsum(testProgramSub_cdf[,2])

testProgramSelf_real = findInterval(simdata_testProgram[,1],
testProgramSelf_cdf[,2])+1

testProgramSelf_real = testProgramSelf_cdf[,1][testProgramSelf_real]

testProgramSub_real = findInterval(simdata_testProgram[,2], testProgramSub_
cdf[,2])+1

testProgramSub_real = testProgramSub_cdf[,1][testProgramSub_real]

testProgram_W = testProgramSelf_real + testProgramSub_real

testProgram_ee_etp = etp(as.vector(testEE))
testProgram_spdCop_etp = etp(as.vector(testProgram_W))
testProgram_biasedConv_etp = pwcetComon(result, 0)
testProgram_independent_etp = pwcetIndep(result, 10000)

ee_x = testProgram_ee_etp[,1]
ee_y = eecdf(testProgram_ee_etp)[,2]

spdcop_x = testProgram_spdCop_etp[,1]
spdcop_y = eecdf(testProgram_spdCop_etp)[,2]

comon_x = testProgram_biasedConv_etp[,1]
comon_y = eecdf(testProgram_biasedConv_etp)[,2]

indep_x = testProgram_independent_etp[,1]
indep_y = eecdf(testProgram_independent_etp)[,2]

p <- plot_ly(x = ee_x, y = ee_y, type = ’scatter’, mode = ’lines’, name = ’
EE’) %>%

add_trace(x = spdcop_x, y = spdcop_y, type = ’scatter’, mode = ’lines
’, name = ’EVT-COP’) %>%

add_trace(x = comon_x, y = comon_y, type = ’scatter’, mode = ’lines’,
name=’RapiTime’) %>%

add_trace(x = indep_x, y = indep_y, type = ’scatter’, mode = ’lines’,
name=’Independent’)

p
layout(p, yaxis = list(type = "log", exponentformat="power", showexponent="

all"))

testProgram_ee_etp[,2] = cumsum(testProgram_ee_etp[,2])
testProgram_spdCop_etp[,2] = cumsum(testProgram_spdCop_etp[,2])
testProgram_biasedConv_etp[,2] = cumsum(testProgram_biasedConv_etp[,2])
testProgram_independent_etp[,2] = cumsum(testProgram_independent_etp[,2])

testProgram_spdCop_etp[,1][findInterval(0.99, testProgram_spdCop_etp[,2])
+1] / 200000

testProgram_independent_etp[,1][findInterval(0.99, testProgram_independent_
etp[,2])+1] / 200000

testProgram_biasedConv_etp[,1][findInterval(0.99, testProgram_biasedConv_
etp[,2])+1] / 200000

testProgram_ee_etp[,1][findInterval(0.99, testProgram_ee_etp[,2])+1] /
200000

testProgram_spdCop_etp[,1][findInterval(0.9999, testProgram_spdCop_etp[,2])
+1] / 200000

testProgram_independent_etp[,1][findInterval(0.9999, testProgram_
independent_etp[,2])+1] / 200000

testProgram_biasedConv_etp[,1][findInterval(0.9999, testProgram_biasedConv_
etp[,2])+1] / 200000

testProgram_ee_etp[,1][findInterval(0.9999, testProgram_ee_etp[,2])+1] /
200000

157



testProgram_spdCop_etp[,1][findInterval(0.999999, testProgram_spdCop_etp
[,2])+1] / 200000

testProgram_independent_etp[,1][findInterval(0.999999, testProgram_
independent_etp[,2])+1] / 200000

testProgram_biasedConv_etp[,1][findInterval(0.999999, testProgram_
biasedConv_etp[,2])+1] / 200000

testProgram_ee_etp[,1][findInterval(0.999999, testProgram_ee_etp[,2])+1] /
200000

testProgram_spdCop_etp[,1][findInterval(0.999999999, testProgram_spdCop_etp
[,2])+1] / 200000

testProgram_independent_etp[,1][findInterval(0.999999999, testProgram_
independent_etp[,2])+1] / 200000

testProgram_biasedConv_etp[,1][findInterval(0.999999999, testProgram_
biasedConv_etp[,2])+1] / 200000

testProgram_ee_etp[,1][findInterval(0.999999999, testProgram_ee_etp[,2])+1]
/ 200000

C.3 Case-Study 2

Listing C.3: R Code for Case-Study 2

library(R.matlab)
library(copula)
library(VineCopula)
library(psych)
library(extRemes)
library(ggplot2)
library(plotly)
library(spd)
library(PerformanceAnalytics)
library(pracma)
library(numbers)
library(data.table)
library(POT)

eecdf <- function(etpX)
{

etpX[,2] = cumsum(etpX[,2])
etpX[,2] = 1-etpX[,2]
etpX

}

etp <- function(X)
{

X_hist = as.data.frame(table(X))

X_val <-as.numeric(as.character(X_hist[,1]))
X_p <-as.numeric(as.character(X_hist[,2]))
X_p <- X_p/sum(X_p)

W = cbind(X_val, X_p)
W

}

reduce_etp <- function(X, binCount)
{

if(binCount == 0)
{
W = X
W

}
else
{
px_p = X[,2]
px_v = X[,1]
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stepSize = ceiling((length(px_p) - 1) / binCount)

remainder = mod(length(px_p) - 1 ,stepSize)

px_v_start = px_v[1]
px_p_start = px_p[1]

px_v_end = tail(px_v, 1)
px_p_end = sum(tail(px_p, remainder))

px_v = matrix(px_v[2:(length(px_v)-remainder)], nrow=stepSize)
px_v = px_v[stepSize,]

px_p = matrix(px_p[2:(length(px_p)-remainder)], nrow=stepSize)
px_p = colSums(px_p)

px_v = c(px_v_start, px_v)
px_p = c(px_p_start, px_p)

if(remainder > 0)
{
px_v = c(px_v, px_v_end)
px_p = c(px_p, px_p_end)

}

px_p = px_p / sum(px_p)

W = cbind(px_v, px_p)
W

}
}

indepConv <- function(etpX, etpY)
{

Z_vals = outer(etpX[,1], t(etpY[,1]), FUN="+")
Z_probs = etpX[,2] %*% t(etpY[,2])

W = data.table(Vals = as.vector(Z_vals), Probs = as.vector(Z_probs), key=
"Vals")

W = W[, list(Probs=sum(Probs)), by=Vals]
W = cbind(W$Vals, W$Probs)
W

}

biasedConv <- function(etpX, etpY)
{

X_val = etpX[,1]
X_p = etpX[,2]

Y_val = etpY[,1]
Y_p = etpY[,2]

i = length(X_p)
j = length(Y_p)

p_x = X_p[i]
p_y = Y_p[j]
val_x = X_val[i]
val_y = Y_val[j]

etpZ = c()

while ((i > 0) || (j > 0))
{

p = min(p_x,p_y)

etpZ = rbind(etpZ, c(val_x + val_y, p))

p_x = p_x - p
p_y = p_y - p

if(i == 1 && j == 1)
{
i = 0;
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j = 0;
}

while((p_x <= 10^(-10)) && (i > 1))
{

i = i - 1;
p_x = X_p[i]
val_x = X_val[i]

}

while((p_y <= 10^(-10)) && (j > 1))
{

j = j - 1;
p_y = Y_p[j]
val_y = Y_val[j]

}
}

etpZ = apply(etpZ,2,rev)

etpZ

}

pwcetComonCase2 <- function(result, etpDownSampling)
{

f1 = result$f1_ee
f1Ret = result$f1_ret
f2 = result$f2_ee
f2Ret = result$f2_ret
f3 = result$f3_ee
f3Ret = result$f3_ret
f4 = result$f4_ee
f4Ret = result$f4_ret
f5 = result$f5_ee
f5Ret = result$f5_ret
f6 = result$f6_ee
f6Ret = result$f6_ret
f7 = result$f7_ee
f7Ret = result$f7_ret

f1 = f1[ which(!f1 == 0)]
f1Ret = f1Ret[ which(!f1Ret == 0)]
f2 = f2[ which(!f2 == 0)]
f2Ret = f2Ret[ which(!f2Ret == 0)]
f3 = f3[ which(!f3 == 0)]
f3Ret = f3Ret[ which(!f3Ret == 0)]
f4 = f4[ which(!f4 == 0)]
f4Ret = f4Ret[ which(!f4Ret == 0)]
f5 = f5[ which(!f5 == 0)]
f5Ret = f5Ret[ which(!f5Ret == 0)]
f6 = f6[ which(!f6 == 0)]
f6Ret = f6Ret[ which(!f6Ret == 0)]
f7 = f7[ which(!f7 == 0)]
f7Ret = f7Ret[ which(!f7Ret == 0)]

test_entry = etp(as.vector(result$test_entry))
f1_endtoend = etp(as.vector(f1))
f1_ret = etp(as.vector(f1Ret))
f2_endtoend = etp(as.vector(f2))
f2_ret = etp(as.vector(f2Ret))
f3_endtoend = etp(as.vector(f3))
f3_ret = etp(as.vector(f3Ret))
f4_endtoend = etp(as.vector(f4))
f4_ret = etp(as.vector(f4Ret))
f6_endtoend = etp(as.vector(f6))
f6_ret = etp(as.vector(f6Ret))
f7_endtoend = etp(as.vector(f7))
f7_ret = etp(as.vector(f7Ret))

f3_ret[,1] = 5 * f3_ret[,1]
f4_ret[,1] = 5 * f4_ret[,1]
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test_self_pwcet_etp = biasedConv(reduce_etp(test_entry, etpDownSampling),
reduce_etp(f1_ret, etpDownSampling))

test_self_pwcet_etp = biasedConv(reduce_etp(test_self_pwcet_etp,
etpDownSampling),reduce_etp(f2_ret, etpDownSampling))

test_self_pwcet_etp = biasedConv(reduce_etp(test_self_pwcet_etp,
etpDownSampling),reduce_etp(f3_ret, etpDownSampling))

test_self_pwcet_etp = biasedConv(reduce_etp(test_self_pwcet_etp,
etpDownSampling),reduce_etp(f4_ret, etpDownSampling))

test_self_pwcet_etp = biasedConv(reduce_etp(test_self_pwcet_etp,
etpDownSampling),reduce_etp(f6_ret, etpDownSampling))

f1_pwcet_etp = f1_endtoend
f2_pwcet_etp = f2_endtoend
f3_pwcet_etp = f3_endtoend
f4_pwcet_etp = f4_endtoend
f6_pwcet_etp = f6_endtoend

f3_pwcet_etp_in_testProgram = f3_pwcet_etp
f3_pwcet_etp_in_testProgram[,1] = 5 * f3_pwcet_etp_in_testProgram[,1]
f4_pwcet_etp_in_testProgram = f4_pwcet_etp
f4_pwcet_etp_in_testProgram[,1] = 5 * f4_pwcet_etp_in_testProgram[,1]
test_pwcet_etp = biasedConv(reduce_etp(test_self_pwcet_etp,

etpDownSampling),reduce_etp(f1_pwcet_etp, etpDownSampling))
test_pwcet_etp = biasedConv(reduce_etp(test_pwcet_etp, etpDownSampling),

reduce_etp(f2_pwcet_etp, etpDownSampling))
test_pwcet_etp = biasedConv(reduce_etp(test_pwcet_etp, etpDownSampling),

reduce_etp(f3_pwcet_etp_in_testProgram, etpDownSampling))
test_pwcet_etp = biasedConv(reduce_etp(test_pwcet_etp, etpDownSampling),

reduce_etp(f4_pwcet_etp_in_testProgram, etpDownSampling))
test_pwcet_etp = biasedConv(reduce_etp(test_pwcet_etp, etpDownSampling),

reduce_etp(f6_pwcet_etp, etpDownSampling))
test_pwcet_etp = reduce_etp(test_pwcet_etp, etpDownSampling)

test_pwcet_etp
}

pwcetIndepCase2 <- function(result, etpDownSampling)
{

f1 = result$f1_ee
f1Ret = result$f1_ret
f2 = result$f2_ee
f2Ret = result$f2_ret
f3 = result$f3_ee
f3Ret = result$f3_ret
f4 = result$f4_ee
f4Ret = result$f4_ret
f5 = result$f5_ee
f5Ret = result$f5_ret
f6 = result$f6_ee
f6Ret = result$f6_ret
f7 = result$f7_ee
f7Ret = result$f7_ret

f1 = f1[ which(!f1 == 0)]
f1Ret = f1Ret[ which(!f1Ret == 0)]
f2 = f2[ which(!f2 == 0)]
f2Ret = f2Ret[ which(!f2Ret == 0)]
f3 = f3[ which(!f3 == 0)]
f3Ret = f3Ret[ which(!f3Ret == 0)]
f4 = f4[ which(!f4 == 0)]
f4Ret = f4Ret[ which(!f4Ret == 0)]
f5 = f5[ which(!f5 == 0)]
f5Ret = f5Ret[ which(!f5Ret == 0)]
f6 = f6[ which(!f6 == 0)]
f6Ret = f6Ret[ which(!f6Ret == 0)]
f7 = f7[ which(!f7 == 0)]
f7Ret = f7Ret[ which(!f7Ret == 0)]

test_entry = etp(as.vector(result$test_entry))
f1_endtoend = etp(as.vector(f1))
f1_ret = etp(as.vector(f1Ret))
f2_endtoend = etp(as.vector(f2))
f2_ret = etp(as.vector(f2Ret))
f3_endtoend = etp(as.vector(f3))
f3_ret = etp(as.vector(f3Ret))
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f4_endtoend = etp(as.vector(f4))
f4_ret = etp(as.vector(f4Ret))
f6_endtoend = etp(as.vector(f6))
f6_ret = etp(as.vector(f6Ret))
f7_endtoend = etp(as.vector(f7))
f7_ret = etp(as.vector(f7Ret))

test_self_pwcet_etp = indepConv(reduce_etp(test_entry, etpDownSampling),
reduce_etp(f1_ret, etpDownSampling))

test_self_pwcet_etp = indepConv(reduce_etp(test_self_pwcet_etp,
etpDownSampling),reduce_etp(f2_ret, etpDownSampling))

f3_ret_pwcet_etp_in_testProgram = f3_ret
f4_ret_pwcet_etp_in_testProgram = f4_ret
for (i in 2:5)
{
f3_ret_pwcet_etp_in_testProgram = indepConv(reduce_etp(f3_ret_pwcet_etp

_in_testProgram, etpDownSampling),
reduce_etp(f3_ret,

etpDownSampling))
f4_ret_pwcet_etp_in_testProgram = indepConv(reduce_etp(f4_ret_pwcet_etp

_in_testProgram, etpDownSampling),
reduce_etp(f4_ret,

etpDownSampling))
}
test_self_pwcet_etp = indepConv(reduce_etp(test_self_pwcet_etp,

etpDownSampling),
reduce_etp(f3_ret_pwcet_etp_in_

testProgram, etpDownSampling))
test_self_pwcet_etp = indepConv(reduce_etp(test_self_pwcet_etp,

etpDownSampling),
reduce_etp(f4_ret_pwcet_etp_in_

testProgram, etpDownSampling))
test_self_pwcet_etp = indepConv(reduce_etp(test_self_pwcet_etp,

etpDownSampling),reduce_etp(f6_ret, etpDownSampling))

f1_pwcet_etp = f1_endtoend
f2_pwcet_etp = f2_endtoend
f3_pwcet_etp = f3_endtoend
f4_pwcet_etp = f4_endtoend
f6_pwcet_etp = f6_endtoend

f3_pwcet_etp_in_testProgram = f3_pwcet_etp
f4_pwcet_etp_in_testProgram = f4_pwcet_etp
for (i in 2:5)
{
f3_pwcet_etp_in_testProgram = indepConv(reduce_etp(f3_pwcet_etp_in_

testProgram, etpDownSampling),
reduce_etp(f3_pwcet_etp,

etpDownSampling))
f4_pwcet_etp_in_testProgram = indepConv(reduce_etp(f4_pwcet_etp_in_

testProgram, etpDownSampling),
reduce_etp(f4_pwcet_etp,

etpDownSampling))
}

test_pwcet_etp = indepConv(reduce_etp(test_self_pwcet_etp,
etpDownSampling),reduce_etp(f1_pwcet_etp, etpDownSampling))

test_pwcet_etp = indepConv(reduce_etp(test_pwcet_etp, etpDownSampling),
reduce_etp(f2_pwcet_etp, etpDownSampling))

test_pwcet_etp = indepConv(reduce_etp(test_pwcet_etp, etpDownSampling),
reduce_etp(f3_pwcet_etp_in_testProgram, etpDownSampling))

test_pwcet_etp = indepConv(reduce_etp(test_pwcet_etp, etpDownSampling),
reduce_etp(f4_pwcet_etp_in_testProgram, etpDownSampling))

test_pwcet_etp = indepConv(reduce_etp(test_pwcet_etp, etpDownSampling),
reduce_etp(f6_pwcet_etp, etpDownSampling))

test_pwcet_etp = reduce_etp(test_pwcet_etp, etpDownSampling)

test_pwcet_etp
}

data <- readMat("/Users/lvnt/Desktop/captures/program_memman_loadraw.mat")

result <- convertDataCase2(data)

testEE = result$test_ee
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testProgramEntry = result$test_entry
f1 = result$f1_ee
f1Ret = result$f1_ret
f2 = result$f2_ee
f2Ret = result$f2_ret
f3 = result$f3_ee
f3Ret = result$f3_ret
f4 = result$f4_ee
f4Ret = result$f4_ret
f5 = result$f5_ee
f5Ret = result$f5_ret
f6 = result$f6_ee
f6Ret = result$f6_ret
f7 = result$f7_ee
f7Ret = result$f7_ret

loop_cnt = result$loop_cnt
loop_sub = result$loop_ee_cum
loop_self = result$loop_ret_cum

cond1_sub = rbind(f2, loop_sub, f6, f7)
cond1_sub = colSums(cond1_sub)

cond1_self = rbind(f2Ret, loop_self, f6Ret, f7Ret)
cond1_self = colSums(cond1_self)

testProgramSelf = testProgramEntry + f1Ret + cond1_self
testProgramSub = f1 + cond1_sub

f2 = f2[ which(!f2 == 0)]
f2Ret = f2Ret[ which(!f2Ret == 0)]
f3 = f3[ which(!f3 == 0)]
f3Ret = f3Ret[ which(!f3Ret == 0)]
f4 = f4[ which(!f4 == 0)]
f4Ret = f4Ret[ which(!f4Ret == 0)]
f6 = f6[ which(!f6 == 0)]
f6Ret = f6Ret[ which(!f6Ret == 0)]
loop_sub = loop_sub[ which(!loop_sub == 0)]
loop_self = loop_self[ which(!loop_self == 0)]

df_testProgram <- data.frame(u = pobs(testProgramSelf), v = pobs(
testProgramSub))

df_testProgramSub <- data.frame(u = pobs(f1), v = pobs(cond1_sub))
df_testProgramSelf <- data.frame(u = pobs(testProgramEntry), v = pobs(f1Ret

), k = pobs(cond1_self))
df_cond1if <- data.frame(u = pobs(f2), v = pobs(loop_sub), k = pobs(f6))
df_cond1ifret <- data.frame(u = pobs(f2Ret), v = pobs(loop_self), k = pobs(

f6Ret))
df_loopBody <- data.frame(u = pobs(f3), v = pobs(f4))
df_loopBodyRet <- data.frame(u = pobs(f3Ret), v = pobs(f4Ret))

#chart.Correlation(df_testProgram, histogram=TRUE, pch=19)
#chart.Correlation(df_testProgramSub, histogram=TRUE, pch=19)
#chart.Correlation(df_testProgramSelf, histogram=TRUE, pch=19)
#chart.Correlation(df_cond1if, histogram=TRUE, pch=19)
#chart.Correlation(df_cond1ifret, histogram=TRUE, pch=19)
#chart.Correlation(df_loopBody, histogram=TRUE, pch=19)
#chart.Correlation(df_loopBodyRet, histogram=TRUE, pch=19)

RVM_testProgram <- RVineStructureSelect(df_testProgram, c(1:6), indeptest =
TRUE)

RVM_testProgramSub <- RVineStructureSelect(df_testProgramSub, c(1:6),
indeptest = TRUE)

RVM_testProgramSelf <- RVineStructureSelect(df_testProgramSelf, c(1:6),
indeptest = TRUE)

RVM_cond1if <- RVineStructureSelect(df_cond1if, c(1:6), indeptest = TRUE)
RVM_cond1ifret <- RVineStructureSelect(df_cond1ifret, c(1:6), indeptest =

TRUE)
RVM_loopBody <- RVineStructureSelect(df_loopBody, c(1:6), indeptest = TRUE)
RVM_loopBodyRet <- RVineStructureSelect(df_loopBodyRet, c(1:6), indeptest =

TRUE)

#RVineGofTest(df_testProgram, RVM_testProgram, method="ECP2", statistic = "
CvM")
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#RVineGofTest(df_testProgramSub, RVM_testProgramSub, method="ECP2",
statistic = "CvM")

#RVineGofTest(df_testProgramSelf, RVM_testProgramSelf, method="ECP2",
statistic = "CvM")

#RVineGofTest(df_cond1if, RVM_cond1if, method="ECP2", statistic = "CvM")
#RVineGofTest(df_cond1ifret, RVM_cond1ifret, method="ECP2", statistic = "

CvM")
#RVineGofTest(df_loopBody, RVM_loopBody, method="ECP2", statistic = "CvM")
#RVineGofTest(df_loopBodyRet, RVM_loopBodyRet, method="ECP2", statistic = "

CvM")

simdata_testProgram <- RVineSim(1000000, RVM_testProgram)
simdata_testProgramSub <- RVineSim(1000000, RVM_testProgramSub)
simdata_testProgramSelf <- RVineSim(1000000, RVM_testProgramSelf)
simdata_cond1if <- RVineSim(1000000, RVM_cond1if)
simdata_cond1ifret <- RVineSim(1000000, RVM_cond1ifret)
simdata_loopBody <- RVineSim(1000000, RVM_loopBody)
simdata_loopBodyRet <- RVineSim(1000000, RVM_loopBodyRet)

f1_cdf = etp(as.vector(f1))
f1_cdf[,2] = cumsum(f1_cdf[,2])

f1Ret_cdf = etp(as.vector(f1Ret))
f1Ret_cdf[,2] = cumsum(f1Ret_cdf[,2])

f2_cdf = etp(as.vector(f2))
f2_cdf[,2] = cumsum(f2_cdf[,2])

f2Ret_cdf = etp(as.vector(f2Ret))
f2Ret_cdf[,2] = cumsum(f2Ret_cdf[,2])

f3_cdf = etp(as.vector(f3))
f3_cdf[,2] = cumsum(f3_cdf[,2])

f3Ret_cdf = etp(as.vector(f3Ret))
f3Ret_cdf[,2] = cumsum(f3Ret_cdf[,2])

f4_cdf = etp(as.vector(f4))
f4_cdf[,2] = cumsum(f4_cdf[,2])

f4Ret_cdf = etp(as.vector(f4Ret))
f4Ret_cdf[,2] = cumsum(f4Ret_cdf[,2])

f6_cdf = etp(as.vector(f6))
f6_cdf[,2] = cumsum(f6_cdf[,2])

f6Ret_cdf = etp(as.vector(f6Ret))
f6Ret_cdf[,2] = cumsum(f6Ret_cdf[,2])

f7_cdf = etp(as.vector(f7))
f7_cdf[,2] = cumsum(f7_cdf[,2])

f7Ret_cdf = etp(as.vector(f7Ret))
f7Ret_cdf[,2] = cumsum(f7Ret_cdf[,2])

----------------------------------loopBody
----------------------------------

f3_real = findInterval(simdata_loopBody[,1], f3_cdf[,2])+1
f3_real = f3_cdf[,1][f3_real]

f3Ret_real = findInterval(simdata_loopBodyRet[,1], f3Ret_cdf[,2])+1
f3Ret_real = f3Ret_cdf[,1][f3Ret_real]

f4_real = findInterval(simdata_loopBody[,2], f4_cdf[,2])+1
f4_real = f4_cdf[,1][f4_real]

f4Ret_real = findInterval(simdata_loopBodyRet[,2], f4Ret_cdf[,2])+1
f4Ret_real = f4Ret_cdf[,1][f4Ret_real]

loopBody_W = f3_real + f4_real
loopBody_etp = etp(as.vector(loopBody_W))

loopBodyRet_W = f3Ret_real + f4Ret_real
loopBodyRet_etp = etp(as.vector(loopBodyRet_W))
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----------------------------------loopBody
----------------------------------

----------------------------------loopSub----------------------------------
loopBody_etp_tmp = reduce_etp(loopBody_etp, 1000) #do not call this when

biased conv. is applied
loop_sub_cdf = loopBody_etp_tmp

for (i in 2:max(loop_cnt))
{

loop_sub_cdf = reduce_etp(loop_sub_cdf, 1000)
loop_sub_cdf = indepConv(loop_sub_cdf,loopBody_etp_tmp)

}
loop_sub_cdf[,2] = cumsum(loop_sub_cdf[,2])

loopBodyRet_etp_tmp = reduce_etp(loopBodyRet_etp, 1000) #do not call this
when biased conv. is applied

loop_self_cdf = loopBodyRet_etp_tmp

for (i in 2:max(loop_cnt))
{

loop_self_cdf = reduce_etp(loop_self_cdf, 1000)
loop_self_cdf = indepConv(loop_self_cdf,loopBodyRet_etp_tmp)

}
loop_self_cdf[,2] = cumsum(loop_self_cdf[,2])
----------------------------------loopSub----------------------------------

----------------------------------cond1if----------------------------------
f2_real = findInterval(simdata_cond1if[,1], f2_cdf[,2])+1
f2_real = f2_cdf[,1][f2_real]

f2Ret_real = findInterval(simdata_cond1ifret[,1], f2Ret_cdf[,2])+1
f2Ret_real = f2Ret_cdf[,1][f2Ret_real]

loop_sub_real = findInterval(simdata_cond1if[,2], loop_sub_cdf[,2])+1
loop_sub_real = loop_sub_cdf[,1][loop_sub_real]

loop_self_real = findInterval(simdata_cond1ifret[,2], loop_self_cdf[,2])+1
loop_self_real = loop_self_cdf[,1][loop_self_real]

f6_real = findInterval(simdata_cond1if[,3], f6_cdf[,2])+1
f6_real = f6_cdf[,1][f6_real]

f6Ret_real = findInterval(simdata_cond1ifret[,3], f6Ret_cdf[,2])+1
f6Ret_real = f6Ret_cdf[,1][f6Ret_real]

cond1if_W = f2_real + loop_sub_real + f6_real
cond1if_cdf = etp(as.vector(cond1if_W))
cond1if_cdf[,2] = cumsum(cond1if_cdf[,2])

cond1ifret_W = f2Ret_real + loop_self_real + f6Ret_real
cond1ifret_cdf = etp(as.vector(cond1ifret_W))
cond1ifret_cdf[,2] = cumsum(cond1ifret_cdf[,2])
----------------------------------cond1if----------------------------------

----------------------------------testProgramSub
----------------------------------

f1_real = findInterval(simdata_testProgramSub[,1], f1_cdf[,2])+1
f1_real = f1_cdf[,1][f1_real]

f1Ret_real = findInterval(simdata_testProgramSelf[,1], f1Ret_cdf[,2])+1
f1Ret_real = f1Ret_cdf[,1][f1Ret_real]

condif_real = findInterval(simdata_testProgramSub[,2], cond1if_cdf[,2])+1
condif_real = cond1if_cdf[,1][condif_real]

condifRet_real = findInterval(simdata_testProgramSelf[,2], cond1ifret_cdf
[,2])+1

condifRet_real = cond1ifret_cdf[,1][condifRet_real]

f7_real = findInterval(simdata_testProgramSub[,2], f7_cdf[,2])+1
f7_real = f7_cdf[,1][f7_real]

f7Ret_real = findInterval(simdata_testProgramSelf[,2], f7Ret_cdf[,2])+1
f7Ret_real = f7Ret_cdf[,1][f7Ret_real]
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cond1_sub_W = apply(cbind(condif_real, f7_real), 1, max)

cond1_self_W = apply(cbind(condifRet_real, f7Ret_real), 1, max)

testProgramSub_W = f1_real + cond1_sub_W
testProgramSub_cdf = etp(as.vector(testProgramSub_W))
testProgramSub_cdf[,2] = cumsum(testProgramSub_cdf[,2])

testProgramSelf_W = f1Ret_real + cond1_self_W
testProgramSelf_cdf = etp(as.vector(testProgramSelf_W))
testProgramSelf_cdf[,2] = cumsum(testProgramSelf_cdf[,2])
----------------------------------testProgramSub

----------------------------------

testProgramSelf_real = findInterval(simdata_testProgram[,1],
testProgramSelf_cdf[,2])+1

testProgramSelf_real = testProgramSelf_cdf[,1][testProgramSelf_real]

testProgramSub_real = findInterval(simdata_testProgram[,2], testProgramSub_
cdf[,2])+1

testProgramSub_real = testProgramSub_cdf[,1][testProgramSub_real]

testProgram_W = testProgramSelf_real + testProgramSub_real

testProgram_ee_etp = etp(as.vector(testEE))
testProgram_spdCop_etp = etp(as.vector(testProgram_W))
testProgram_biasedConv_etp = pwcetComonCase2(result, 0)
testProgram_independent_etp = pwcetIndepCase2(result, 10000)

ee_x = testProgram_ee_etp[,1]
ee_y = eecdf(testProgram_ee_etp)[,2]

spdcop_x = testProgram_spdCop_etp[,1]
spdcop_y = eecdf(testProgram_spdCop_etp)[,2]

comon_x = testProgram_biasedConv_etp[,1]
comon_y = eecdf(testProgram_biasedConv_etp)[,2]

indep_x = testProgram_independent_etp[,1]
indep_y = eecdf(testProgram_independent_etp)[,2]

p <- plot_ly(x = ee_x, y = ee_y, type = ’scatter’, mode = ’lines’, name = ’
EE’) %>%

add_trace(x = spdcop_x, y = spdcop_y, type = ’scatter’, mode = ’lines
’, name = ’EVT-COP’) %>%

add_trace(x = comon_x, y = comon_y, type = ’scatter’, mode = ’lines’,
name=’RapiTime’) %>%

add_trace(x = indep_x, y = indep_y, type = ’scatter’, mode = ’lines’,
name=’Independent’)

p
layout(p, yaxis = list(type = "log", exponentformat="power", showexponent="

all"))

testProgram_ee_etp[,2] = cumsum(testProgram_ee_etp[,2])
testProgram_spdCop_etp[,2] = cumsum(testProgram_spdCop_etp[,2])
testProgram_biasedConv_etp[,2] = cumsum(testProgram_biasedConv_etp[,2])
testProgram_independent_etp[,2] = cumsum(testProgram_independent_etp[,2])

testProgram_spdCop_etp[,1][findInterval(0.99, testProgram_spdCop_etp[,2])
+1] / 200000

testProgram_independent_etp[,1][findInterval(0.99, testProgram_independent_
etp[,2])+1] / 200000

testProgram_biasedConv_etp[,1][findInterval(0.99, testProgram_biasedConv_
etp[,2])+1] / 200000

testProgram_ee_etp[,1][findInterval(0.99, testProgram_ee_etp[,2])+1] /
200000

testProgram_spdCop_etp[,1][findInterval(0.9999, testProgram_spdCop_etp[,2])
+1] / 200000
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testProgram_independent_etp[,1][findInterval(0.9999, testProgram_
independent_etp[,2])+1] / 200000

testProgram_biasedConv_etp[,1][findInterval(0.9999, testProgram_biasedConv_
etp[,2])+1] / 200000

testProgram_ee_etp[,1][findInterval(0.9999, testProgram_ee_etp[,2])+1] /
200000

testProgram_spdCop_etp[,1][findInterval(0.999999, testProgram_spdCop_etp
[,2])+1] / 200000

testProgram_independent_etp[,1][findInterval(0.999999, testProgram_
independent_etp[,2])+1] / 200000

testProgram_biasedConv_etp[,1][findInterval(0.999999, testProgram_
biasedConv_etp[,2])+1] / 200000

testProgram_ee_etp[,1][findInterval(0.999999, testProgram_ee_etp[,2])+1] /
200000

testProgram_spdCop_etp[,1][findInterval(0.999999999, testProgram_spdCop_etp
[,2])+1] / 200000

testProgram_independent_etp[,1][findInterval(0.999999999, testProgram_
independent_etp[,2])+1] / 200000

testProgram_biasedConv_etp[,1][findInterval(0.999999999, testProgram_
biasedConv_etp[,2])+1] / 200000

testProgram_ee_etp[,1][findInterval(0.999999999, testProgram_ee_etp[,2])+1]
/ 200000
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