

DESIGN OF LOOPED WATER DISTRIBUTION NETWORKS USING A

HEURISTIC APPROACH

A THESIS SUBMITTED TO

THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF

MIDDLE EAST TECHNICAL UNIVERSITY

BY

 HALIL İBRAHIM ATEŞ

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS

FOR

THE DEGREE OF MASTER OF SCIENCE

IN

CIVIL ENGINEERING

AUGUST 2019

Approval of the thesis:

DESIGN OF LOOPED WATER DISTRIBUTION NETWORKS USING A

HEURISTIC APPROACH

submitted by HALIL İBRAHIM ATEŞ in partial fulfillment of the requirements for

the degree of Master of Science in Civil Engineering Department, Middle East

Technical University by,

Prof. Dr. Halil Kalıpçılar

Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Ahmet Türer

Head of Department, Civil Engineering

Assoc. Prof. Dr. Nuri Merzi

Supervisor, Civil Engineering, METU

Examining Committee Members:

Prof. Dr. Ali Melih Yanmaz

Civil Engineering Dept., METU

Assoc. Prof. Dr. Nuri Merzi

Civil Engineering, METU

Prof. Dr. Zuhal Akyürek

Civil Engineering Dept., METU

Prof. Dr. Elçin Kentel Erdoğan

Civil Engineering Dept., METU

Assoc. Prof. Dr. Yakup Darama

Civil Engineering Dept., Atılım University

Date: 26.08.2019

iv

I hereby declare that all information in this document has been obtained and

presented in accordance with academic rules and ethical conduct. I also declare

that, as required by these rules and conduct, I have fully cited and referenced all

material and results that are not original to this work.

Name, Surname:

Signature:

 Halil İbrahim Ateş

v

ABSTRACT

DESIGN OF LOOPED WATER DISTRIBUTION NETWORKS USING A

HEURISTIC APPROACH

Ateş, Halil İbrahim

Master of Science, Civil Engineering

Supervisor: Assoc. Prof. Dr. Nuri Merzi

August 2019, 92 pages

This study aims to design pipe diameters of a water distribution network using a

heuristic approach algorithm. The heuristic approach algorithm aims to maximize the

reliability of the network while minimizing the total cost of the water distribution

network, which is a multi-objective optimization problem. In a water distribution

network, the resilience index is defined as network reliability (Todini, 2000). The cost

of the water distribution network is the total cost of the network pipes. In this heuristic

approach, the minimum required pressure limit, water flow velocity upper limit and

reliability index are considered. In this study, the heuristic approach algorithm

developed by Todini (2000) is coded as a computer software by the integration of

hydraulic network solution software (EPANET) calculate engine and C#. A case study

is performed in a DMA of N8.3 pressure zone of Ankara network. In this study, the

effect of the change in resilience index on Yayla network pipe diameters is surveyed.

As a result, it is observed that network reliability can be increased by 7%, increasing

the network cost by only 3.5%. The resilience index value of the current Yayla District

network is 0.95 and it can be said that existing Yayla District network is overdesigned.

Keywords: Water Distribution Networks, Optimization Methods, Heuristic Approach,

Ankara Water Distribution Network

vi

vii

ÖZ

SU DAĞITIM ŞEBEKELERİNİN SEZGİSEL YAKLAŞIMLA TASARIMI

Ateş, Halil İbrahim

Yüksek Lisans, İnşaat Mühendisliği

Tez Danışmanı: Doç. Dr. Nuri Merzi

Ağustos 2019, 92 sayfa

Bu çalışmanın amacı bir sezgisel yaklaşım algoritması kullanarak su dağıtım şebekesi

boru çaplarını tasarlamaktır. Sezgisel yaklaşım algoritması, çok amaçlı bir

optimizasyon problemi olan su dağıtım şebekesinin toplam maliyetini minimize

ederken şebeke güvenilirliğini maksimize etmeyi amaçlar. Su dağıtım şebekesinde

şebeke güvenilirliği olarak “resilience index” kullanılmıştır (Todini, 2000). Su

dağıtım şebekesinin maliyeti şebeke borularının maliyeti olarak tanımlanmıştır.

Sezgisel yaklaşım uygulanırken gerekli minimum basınç limiti, su akış hızı üst limiti

ve güvenilirlik indeksi göz önünde bulundurulmuştur. Bu çalışmada Todini (2000)

tarafından önerilen sezgisel yaklaşım algoritması hidrolik şebeke çözüm yazılımının

(EPANET) hesap motoru ve C# entegrasyonu ile bir bilgisayar programı olarak

kodlanmıştır. Geliştirilen bilgisayar programı ile Ankara’nın su dağıtım şebekesinin

N8.3 basınç bölgesinde uygulanmıştır. Bu çalışmada resilience index değerindeki

değişimin Yayla Mahallesi su dağıtım boru çaplarına olan etkisi araştırılmıştır.

Yapılan hesaplamada şebeke maliyetinin 3.5% arttırılmasıyla, şebeke güvenilirliğinin

7% yükseltilebildiği gözlemlenmiştir. Şu andaki Yayla mahallesi şebekesinin

resilience index değeri 0.95 bulunmuş olup bu şebekenin aşırı tasarım olduğu

söylenebilir.

Anahtar Kelimeler: Su Dağıtım Sistemleri, Optimizasyon Yöntemleri, Sezgisel

Yaklaşım, Ankara Su Dağıtım Şebekesi

viii

To my lovely wife “Seda” and my sweetie girl “Meryem”

ix

ACKNOWLEDGEMENTS

I would like to express my deepest respect and gratitude to Assoc. Prof. Dr. Nuri

Merzi. I am grateful for his guidance, support and invaluable encouragement to

complete this study.

Finally, I thank my family for their support. This study is dedicated to all those who

support science.

x

TABLE OF CONTENTS

ABSTRACT .. v

ÖZ .. vii

ACKNOWLEDGEMENTS .. ix

TABLE OF CONTENTS .. x

LIST OF TABLES .. xiii

LIST OF FIGURES .. xiv

LIST OF ABBREVIATIONS... xvi

LIST OF SYMBOLS ... xvii

1. INTRODUCTION .. 1

1.1. The Aim of the Study .. 3

2. LITERATURE REVIEW ... 5

3. COMPONENTS OF WATER DISTRIBUTIONS SYSTEMS 7

3.1. Transmission Lines ... 7

3.2. Pipes .. 7

3.3. Reservoirs.. 8

3.4. Tanks ... 8

3.5. Pumps .. 8

3.6. Valves.. 9

3.6.1. Isolation Valves .. 9

3.6.2. Directional Valves .. 9

3.6.3. Altitude Valves ... 10

3.6.4. Air Release and Air Vacuum Valves ... 10

xi

3.6.5. Control Valves .. 10

3.6.6. Pressure Reducing Valves (PRVs) ... 11

3.6.7. Flow Control Valves (FCVs) .. 11

3.7. Fire Hydrants ... 11

3.8. Junctions .. 12

4. STRUCTURE OF THE HEURISTIC APPROACH FOR THE DESIGN OF A

WATER DISTRIBUTION NETWORK ... 13

4.1. Concept of Resilience index .. 13

4.2. Heuristic Approach for the Design of WDNs ... 15

4.3. Pareto Optimal Set ... 19

5. PROGRAMMING THE HEURISTIC OPTIMIZATION PROCESS 21

5.1. Overview of Software Developed for This Study and Operating Logic 21

5.2. Hydraulic Network Solver – EPANET ... 27

5.3. HALO Operation Logic Application on Simple Two-loop Network 29

5.4. HALO Operation Steps ... 30

5.5. Result of Two-looped Network Solved by HALO .. 33

5.6. Visualization of Iteration Steps of Two-loop Network 34

6. CASE STUDY .. 43

6.1. Case Study: Ankara Network, N8.3 Yayla District ... 43

6.2. Application of The Methodology on N8.3 Yayla District 46

6.3. Comparing the Results of Heuristic Approach with Existing Yayla Network 52

7. DISCUSSION OF THE RESULTS .. 59

8. CONCLUSIONS AND RECOMMENDATIONS ... 61

REFERENCES ... 65

xii

xiii

LIST OF TABLES

Table 5.1. Cost of pipes defined in (Todini, 2000) .. 29

Table 5.2. Nodal Demands and Elevations for (Alperovits et al, 1977) 29

Table 5.3. Pipe diameters are set 609.6mm (first situation)....................................... 32

Table 5.4. Pipe diameters are set 558.8mm–one size reduced (second situation) 32

Table 5.5. Cost/Power dissipation ratio calculation for Pipe 6 32

Table 5.6. Ranked pipes according to Cost/Power dissipation ratio 33

Table 5.7. Comparison of two-loop network result of Todini (2000) vs cost

optimization vs HALO ... 34

Table 6.1. Comparison of current Yayla DMA pipe diameters vs HALO results. 53

Table 7.1. Pipe diameters of two-loop network resilience indices 0.41 to 0.44. 59

xiv

LIST OF FIGURES

Figure 4.1. Flow chart of the heuristic optimization process (Todini, 2000). 18

Figure 4.2. Pareto Optimal Set .. 19

Figure 5.1. Procedure of HALO .. 22

Figure 5.2. User interface of HALO .. 23

Figure 5.3. Flowchart of HALO and EPANET integration according to Todini (2000)

 ... 25

Figure 5.4. inp extended file example ... 26

Figure 5.5. Exporting a network file as “.inp” extension format from EPANET 27

Figure 5.6. EPANET user interface (Rossman et al., 2011) 28

Figure 5.7. Simple two-loop network created by (Alperovits et al, 1977) 30

Figure 5.8. Pipe diameters of two loop network end of the 1st iteration.................... 34

Figure 5.9. Pipe diameters of two loop network end of the 2nd iteration 35

Figure 5.10. Pipe diameters of two loop network end of the 3rd iteration 35

Figure 5.11. Pipe diameters of two loop network end of the 4th iteration 36

Figure 5.12. Pipe diameters of two loop network end of the 5th iteration 36

Figure 5.13. Pipe diameters of two loop network end of the 6th iteration 37

Figure 5.14. Pipe diameters of two loop network end of the 7th iteration 37

Figure 5.15. Pipe diameters of two loop network end of the 8th iteration 38

Figure 5.16. Pipe diameters of two loop network end of the 9th iteration 38

Figure 5.17. Pipe diameters of two loop network end of the 10th iteration 39

Figure 5.18. Pipe diameters of two loop network end of the 11th iteration 39

Figure 5.19. Pipe diameters of two loop network end of the 12th iteration 40

Figure 5.20. Pipe diameters of two loop network end of the 13th iteration 40

Figure 5.21. Pipe diameters of two loop network end of the 14th and final iteration 41

Figure 6.1. Layout of N8.3 Yayla Network ... 44

Figure 6.2. Pipe Diameters of Current Yayla DMA .. 45

xv

Figure 6.3. Costs corresponding to resilience index values between 0 and 1 of Ankara

N8.3 Yayla DMA ... 46

Figure 6.4. Diameters of the N8.3 Yayla DMA (Resilience index = 0.4) 48

Figure 6.5. Diameters of the N8.3 Yayla DMA (Resilience index = 0.5) 48

Figure 6.6. Diameters of the N8.3 Yayla DMA (Resilience index = 0.6) 49

Figure 6.7. Diameters of the N8.3 Yayla DMA (Resilience index = 0.8) 49

Figure 6.8. The system N8.3 Yayla DMA (demands are doubled)............................ 50

Figure 6.9. Pareto Set N8.3 Yayla.. 51

Figure 6.10. Pareto Set N8.3 Yayla (Demands are doubled) 51

Figure 6.11. Pareto Set N8.3 Yayla (Demands are tripled) 52

xvi

LIST OF ABBREVIATIONS

DMA: District Metered Area

WDN: Water Distribution Network

xvii

LIST OF SYMBOLS

𝑃𝑡𝑜𝑡 : Total energy of a water distribution network

𝑃𝑖𝑛𝑡 : Dissipated power in a water distribution network pipe

𝑃𝑒𝑥𝑡: The energy of water delivered to consumers

ɣ : The specific weight of the water

𝑄𝑘 : Discharge values of 𝑘𝑡ℎ reservoir

𝐻𝑘 : Pressure head values of 𝑘𝑡ℎ reservoir

𝑞𝑖: Discharge values of 𝑖𝑡ℎ node

𝑞𝑑𝑒𝑚,𝑖 : Water demand at node i

ℎ𝑖 : Pressure head values of 𝑖𝑡ℎ node

ℎ𝑑𝑒𝑠,𝑖 : The minimum required head pressure

𝐻𝑑𝑒𝑠,𝑖 : Hydraulic head elevation of 𝑖𝑡ℎ node

𝐼𝑟 : Resilience index

𝐼𝑠 : Surplus index

𝐼𝑓 : Failure index

𝐼𝑓𝑖 : Failure index of 𝑖𝑡ℎ node

Cij
λ−1 : Cost of (λ − 1)𝑡ℎ pipe between i and j points

Cij
λ : Cost of λ𝑡ℎ pipe between i and j points

Pij
λ−1 : Power of (λ − 1)𝑡ℎ pipe between i and j points

 Pij
λ : Power of λ𝑡ℎ pipe between i and j points

1

CHAPTER 1

1. INTRODUCTION

Water is the most essential component of life. Throughout history, people have lived

close to water resources. Due to the increase in the human population, areas close to

water resources became insufficient for living. For this reason, water has started to be

transported to where it is needed by water supply systems including water distribution

networks (WDN).

WDNs are infrastructure systems that allow water to be collected to sources,

transported from sources to storage tanks and distributed water from storage tanks to

consumers. The essential objective of WDNs is to ensure that the required pressures

and required amount of potable water is delivered to consumers.

Water demand is increasing day by day with the human population. Providing water

to the ever increasing human population is one of the main tasks of water utilities in

modern cities. The water supply must be provided in a manner that ensures continuous,

adequate pressure and sufficient water quality. An overdesigned system caused budget

deficit. On the contrary, water utilities may not be able to deliver sufficient pressure

and desired quantity of water to customers while aiming to reduce costs. Considering

low investment cost and high reliability, all costs and requirements from design to

operation of WDNs must be meticulously calculated by water utilities.

WDNs are very costly structures. Many factors affect the optimum design of WDNs;

system hydraulics, reliability, diameter of pipes, availability of necessary materials,

water quality, population distribution, future population estimation, geographical

conditions, number and locations of pipes, pumps, tanks and valves.

In this study, reliability and pipe diameters are considered as design parameters.

Required data of elements are given except pipe diameters; reservoir water elevation,

2

layout and length of distribution pipes, nodes’ desired demands and topographic

elevations are given.

Reliability can be defined as a guarantee for the continuation of the distribution of

water to consumers even during local failures of the WDN. In a WDN, cost of the

network decreases as the pipe diameters decrease. However, as pipe diameters in the

network decrease, head losses increase, and node pressures decrease in the network.

Pipe diameters must be large enough to satisfied adequate pressures and desired

demands in a WDN. On the other hand, the WDN should be the lowest possible cost.

This is a multi-objective optimization problem. The first objective is to maximize

reliability of the network, while the second objective is to minimize cost of network.

It is possible to solve a non-linear multi-objective optimization problem using

different techniques. Heuristic approach (Todini, 2000) is one of the methods

developed to solve the multi-objective problem defined as minimum cost and

maximum reliability in a WDN. In optimization problems, heuristic approaches are

considered as a quick and practical solution with the near-optimal results. If the

problem is too complex to find the optimal solution, heuristic approach does not give

optimal results, but the results are satisfactory.

In this thesis, a computer code is written using the heuristic approach algorithm

developed by Todini (2000). The software developed in this study will be called as

HALO (Heuristic Approach Logic Optimization).

HALO presented in this study is developed by the heuristic approach algorithm

proposed by Todini (2000) study. The purpose of developing HALO is to easily

implement Todini (2000) heuristic approach to a real WDN in Ankara (N8.3 pressure

zone Yayla District).

In Chapter 2 contains literature review. In Chapter 3, components of a WDN is

explained. Structure of the heuristic approach are explained in Chapter 4.

Then, programming of HALO that is created for this study based on heuristic approach

(Todini, 2000) is presented in Chapter 5.

3

The existing network N8.3 Ankara Yayla DMA is designed by using HALO in

Chapter 6. Discussions and recommendation are presented in Chapter 7. Conclusion

of the study is presented in Chapter 8.

1.1. The Aim of the Study

In this study, a software called HALO is developed to implement heuristic approach

described by Todini (2000) to Yayla District network of N8.3 region in Keçiören,

Ankara.

System reliability is defined by resilience index according to (Todini, 2000).

Resilience index (Ir) is related to the hydraulic head surplus at nodes rather than the

minimum required pressure head under normal loading. This head surplus represents

energy storage in critical situations (segment isolations such as pipe failure and repair.)

which increases head losses. Head surplus prevents water cut due to pressure

reduction. In other words, in case of pressures reduction in WDN, pressure surplus at

nodes compensate it to some extent.

WDNs are very costly structures that need to be designed with high reliability. This is

a multi-objective non-linear problem. The problem objectives are to maximize

reliability and to minimize cost. In this study, multi- objective non-linear optimization

problem is solved using by a methodology developed based on the heuristic approach

in (Todini, 2000).

The aim of this study is to develop a software called HALO which is developed based

on the methodology described by (Todini, 2000). The purpose of developing HALO

is to ensure that the method described by (Todini, 2000) can be easily applied to the

desired networks. Hence, the methodology developed in (Todini, 2000) is applied by

HALO to the Yayla District in Ankara, Keçiören and the results are compared with

the current pipe diameters of the Yayla District end of this study.

5

CHAPTER 2

2. LITERATURE REVIEW

WDNs are costly structures. Therefore, it is necessary to use an optimization method

during network design for decreasing the cost. Researchers have used various methods

to design an optimized WDN.

Approaches are divided into two classes to facilitate optimization studies. The first

class includes approaches that reduce number of linear programming problems

(Alperovits et al, 1977). Instead of evaluating a pipe between adjacent nodes as a

single diameter, it splits the pipe into pieces. In the other class, a pipe is thought to

have a single diameter value (Todini, 2000).

On the other hand, considering real complex systems in the context of optimization,

there are studies that do not require statistical / probabilistically analysis of network

performance under various scenarios (Creaco et al., 2016a; Gessler et al., 1985;

Prasadet al., 2003; Todini, 2000; Wang et al., 2014).

Studies on WDN optimization can be examined as head-energy and flow-path:

pressure head-energy related studies (Gessler et al., 1985; Prasad et al., 2003; Todini,

2000) and flow-path related studies (Tanyimboh et al., 2000; Tanyimboh et al., 2011).

Many studies are argued that head-energy based studies yield better results in terms

of reliability than flow-path based studies. (Creaco et al., 2014; Greco et al., 2012;

Raad et al., 2010).

Cost optimization is not enough when designing a WDN (Todini, 2000). The hydraulic

and physical conditions and restrictions of the network must be considered. The

surplus index is defined to evaluate the pressure/energy relationship (Gessler et al.,

1985). There is a minimum pressure head that is set by water utilities: the pressure at

6

any node in the network cannot be lower than the specified pressure head. Thus, the

required pressure is satisfied to all nodes in a WDN (İlbank, 2013).

Surplus Index is the difference between the required pressure (determined by the water

authorities) and the lowest pressure head of node in the network. The required pressure

is determined as the third story of a building which is equal about 30 meters in Turkey

(İlbank, 2013). The surplus index does not give information about the amount of flow

delivered to nodes, but only deals with the pressures at the nodes.

Considering the need for an index for an entire network, “resilience index” can be

considered (Todini, 2000). According to (Todini, 2000), the resilience index can be

defined as the ability to overcome sudden failures in WDNs.

The resilience index described in (Todini, 2000) considers a network as a whole.

However, it is observed that more reliable loops are provided when a relationship is

established between the diameters of the pipes connected to a node (Prasad et al.,

2003). The study of (Creaco et al., 2016a) proves that the modified resilience index

that is defined by (Prasad et al., 2003) is a better performance than the resilience index

(Todini, 2000). According to (Creaco et al., 2016a), pipe diameters in a loop represent

a complementary component for the network reliability.

7

CHAPTER 3

3. COMPONENTS OF WATER DISTRIBUTIONS SYSTEMS

3.1. Transmission Lines

Transmission line is the name of the pipes that bring water from the water source to

the beginning of the city pipe network. The diameters of the transmission line pipes

are the largest in the WDNs as they transmit the whole flow to be delivered to the city.

Technical and economic conditions should be considered when determining the

transmission line route. By making the necessary calculations, the flow style of the

water is determined; gravity flow, pumped flow or mixed flow. Additional structures

(bridges, etc.) should be avoided when determining the route. The transmission line

must be short. It should be planned for ease of transportation, operation, and

maintenance (İlbank, 2013).

3.2. Pipes

Pipes are elements that carry water from one point to other one in WDNs. Pipes are

produced in certain 6 meters of lengths to ease of transportation. There are also elbows

in a pipeline. Elbow is used to change the direction of the line.

For modeling purposes, a very long pipeline can be modeled as a single pipe.

However, the pipe characteristics should be the same throughout this length (diameter,

material, etc.).

The pipe length indicates the entire distance from one node to the other. This length

does not have to be straight.

The pipe’s nominal diameter indicates the generic name of the pipe, such as 16 inches

(400 mm). Due to manufacturing standards, the inner diameter may differ from the

8

nominal diameter. Most pipes’ nominal diameters are smaller than the internal

diameters.

3.3. Reservoirs

A reservoir is a network element that can supply or receive large volumes of water in

a water network, although elevation of the water in the reservoir does not change.

Although theoretically, reservoirs can provide an infinite volume of water, there is no

endless source in real life. In general, when the network is modeled, it is assumed that

the water level of the reservoir does not change.

3.4. Tanks

Unlike reservoirs, storage tanks are structures with limited water volume. They can be

completely filled or discharged. In tanks, the water level fluctuates according to water

inlet and outlet.

Depending on the shape of the tank, some elevations should be assigned for modeling.

Maximum elevation; indicates the maximum level of the water the tank can store.

Overflow elevation; means that the tank is overflowing after this level. Similarly, the

minimum elevation indicates the minimum water level the tank can supply water to

the consumer. The basic elevation is the datum where the other elevations of the tank

are measured. There are various tank types: elevation tanks, standpipes,

hydropneumatic tanks, ground and buried tanks.

3.5. Pumps

Pumps are vital for WDN. The pumps provide the energy required to transport the

water to the service tank and distribute the water within the WDNs. Pumps ensure that

the required amount of water is delivered to the WDN with sufficient pressure.

Minimum operating pressures in the network are taken up to 20 m in places with a

population up to 50,000 and 30 m in larger populations (İlbank, 2013).

9

3.6. Valves

Valves are WDN elements that can be opened and closed. Thus, their resistance to

water can be changed and the movement of the water in the pipe can be controlled.

Valves can be divided into five general groups:

• Isolation valves

• Altitude valves

• Air release and vacuum breaking valves

• Control valves

• Directional valves

3.6.1. Isolation Valves

Isolation valves are presumably the most widely used valves in WDNs. Isolation

valves can be controlled manually. Thus, they block or release the flow of water. The

word "isolation" fully describes the way these valves are used. For example, it may be

necessary to shut down part of the system to replace a broken pipe or a leaking joint.

With the isolation valves, the water flow is cut off and allows maintenance.

There should be isolation valves in a well-designed WDN. Thus, an emergency or

repair cases affect very few users. In some systems, the isolation valve is used to

determine the pressure zone limits.

3.6.2. Directional Valves

In systems with directional valves, also called one-way valves, water can flow in one

direction. However, it does not allow reverse flow (backflow). If water tries to flow

backward, the valve closes. The water flow remains closed until it moves in the

appropriate direction.

Pumps have a check valve on the discharge side. This check valve ensures that the

reverse flow does not damage the pump. In most hydraulic models, pumps are

regarded as a check valve. Check valve does not need to be redefined for calculation

10

models. If a pump does not have a check valve at the discharge side, water will come

back when the pump stops.

3.6.3. Altitude Valves

Many water utilities use altitude valves at the point of entry of the pipe into the water

tank. The valve closes when the water level of the tank reaches a specific level. This

prevents further inflow and prevents overflow. If the flow reverses, the valve opens

again. This allows the water to drain from the tank.

Recently developed hydraulic calculation software automatically assigns altitude

valves of minimum and maximum tank levels. It does not require a reassignment of

minimum and maximum water levels.

However, if the tank does not have a height control valve, tank overflow is possible.

This behavior should be included in the model.

3.6.4. Air Release and Air Vacuum Valves

In WDNs, air release valves are used to release trapped air within the system. Trapped

air reduces the pressure of the system below the required pressure level. Air release

and air vacuum valves are not included in standard water distribution modeling. There

are also valve types that perform the functions of both air release and air vacuum

valves.

3.6.5. Control Valves

WDNs should provide proper service under a wide range of loading and failure.

Control valves are used to manage flows and pressures under many conditions.

Control valves can be controlled mechanically or hydraulically. This allows local or

remote control of the control valves.

11

3.6.6. Pressure Reducing Valves (PRVs)

Water authorities use pressure control to reduce the probability of leaks and pipe

failures. Control is applied in limited areas. These areas are determined by pressure-

reducing valves (PRVs) and similar other limiters.

The use of a single feeding is generally preferred because of its ease of control and

monitoring. However, in case of failure, the water supply service is cut. Multi-feed

systems increase supply reliability. However, the system becomes complicated and

causes instability in the use of PRV.

Pressure Reducing Valves (PRVs) ensure that there is always a convenient and

comfortable water usage pressure. These valves provide control of the pressure from

the increased cold-water supply to the field requirements.

3.6.7. Flow Control Valves (FCVs)

Pressure control valve; ensure that the pressure caused by impact or any reason in the

lifting line does not exceed a predetermined value. It works with the hydraulic energy

of the water and does not need any other energy. Opening and closing speed settings

can be made with needle valve. It can also be used as a warning valve in some systems.

FCVs fully close and provide complete sealing. Additional parts can be installed for

variable flow rates.

It can be converted into different functions with additional control elements. Some of

those; Pressure reducer, level controls, impact prevention, pump control, and quick

relief valve.

3.7. Fire Hydrants

The fire hydrant is called to the system that distributes water and the most important

part of fire extinguishing. A fire hydrant that helps spray water all over the area. It is

important to intervene externally in the event of uncontrolled fires as a result of the

first intervention in the fire hazard. There are two types of underground and surface

types.

12

Besides, fire hydrants are used to prevent sedimentation in the network in areas where

the flow rate of water is low. The high flow rate drawn from the fire hydrant is

discharged into the sewer system. Thus, high flow water, both the water network is

cleaned and the sewage system.

3.8. Junctions

Junctions are meeting points where two or more pipes meet. In some cases, it may also

be the endpoint of a pipe (dead-end). Junction points are not actually a component of

real water networks. However, it is used as demand points in water networks for

modeling of the system.

13

CHAPTER 4

4. STRUCTURE OF THE HEURISTIC APPROACH FOR THE DESIGN OF A

WATER DISTRIBUTION NETWORK

In this section, the structure of the heuristic approach described by Todini (2000) will

be discussed.

4.1. Concept of Resilience index

In a WDN, there are two different costs. The first is the capital cost of the WDN,

which is required only at the time of initial construction. The other cost is caused by

operation of WDNs. Small diameter pipes should be selected to reduce the initial

investment costs of the WDN. However, as the diameter of the pipes in a network

decreases, the head loss at nodes increases. Besides, the amount of energy used for

pumping also increases. The increase of energy used for pumping increases operating

costs. But, since there is no pump in gravity-driven WDNs, no energy is required for

operation. There are only initial investment costs in gravity-driven WDNs.

In a WDN where only pipe diameters are considered, a guaranteed way to minimize

costs is to form a branched shape WDN. If a WDN is designed as cost-optimized

branched shape, the transmission of water can be severely disrupted in case of possible

failure. If any pipe isolation occurs in a looped-shape WDN, water can be delivered

to more nodes by using alternative routes. Thereby, the WDN can be deliver water to

all nodes, even if some pipes are not used. Because of failure case changed water flow

velocities and nodal pressures, the network may not be able to provide the pressures

and water velocities as before. In other words, this network becomes a different

network entirely. As it is seen, it is not enough that a network is designed as a loop to

continue to provide water for failure cases.

14

In a looped WDN, there must be a pressure surplus in addition to required pressure. It

means that more energy is needed than required at each node of the WDN. This surplus

energy can be defined as the ability to overcome sudden failures in WDNs. This

definition also can be used to explain the resilience index in looped networks (Todini,

2000).

A compact form of resilience index can be defined as follows (Creaco et al, 2016a):

𝐼𝑟 =
∑ 𝑞𝑑𝑒𝑚,𝑖(ℎ𝑖−ℎ𝑑𝑒𝑠,𝑖)

𝑛𝑛

𝑘=1

∑ 𝑄𝑘𝐻𝑘

𝑛𝑟

𝑘=1
−∑ 𝑞𝑑𝑒𝑚,𝑖𝐻𝑑𝑒𝑠,𝑖

𝑛𝑛

𝑘=1

 (4.1)

The resilience index is the ratio of the power excess supplied to the users to the power

excess leaving the sources.

ℎ𝑖 represents head at node i. ℎ𝑑𝑒s,𝑖 is the minimum required head pressure that must

be at 𝑖𝑡ℎ node. The minimum required head pressure is 30 meters in Turkey (İlbank,

2013); 𝑞𝑑𝑒𝑚,𝑖 is water demand at node i. 𝐻𝑑𝑒𝑠,𝑖 is the hydraulic head elevation of

𝑖𝑡ℎ node from the datum.

Surplus index 𝐼𝑠 is formulated in (Todini, 2000) as follows:

𝐼𝑠 = min {ℎ𝑖 − ℎ𝑑𝑒s,𝑖} (4.2)

The surplus index is not used numerically in the optimization process. The surplus

index is used to check whether the calculated WDN provides the minimum pressure

or not. In other words, the surplus index is the difference between the required

minimum head of the node and the minimum head in the WDN. If this difference is

less than zero, the WDN cannot meet the required pressure and desired demands. On

the other hand, in the case of failure, the pressures in the network decrease. Therefore,

surplus head pressure gives the network the ability to tolerate possible pressure

reductions.

15

Failure index 𝐼𝑓 is formulated in (Todini, 2000) as follows:

𝐼𝑓 =
∑ 𝐼𝑓𝑖

𝑛𝑛

𝑘=1

∑ 𝑞𝑑𝑒𝑚,𝑖 ℎ𝑑𝑒𝑠,𝑖
𝑛𝑛
𝑘=1

 (4.3)

Where

𝐼𝑓𝑖 = 𝑓(𝑥) = {
0, ∀i ∶ ℎ𝑖 ≥ ℎ𝑑𝑒𝑠,𝑖

𝑞𝑑𝑒𝑚,𝑖 , ∀i ∶ ℎ𝑖 ≤ ℎ𝑑𝑒𝑠,𝑖

According to (Todini, 2000), failure index can be used to identify infeasibility and

compare the effect of pipe failures to the system.

Three indices described above: resilience index, surplus index, and failure index are

used in (Todini, 2000) during the heuristic approach. In the next section, the usage of

these indices is shown during the heuristic approach.

4.2. Heuristic Approach for the Design of WDNs

Heuristic algorithms are capable of convergence. Heuristic approach algorithms

cannot guarantee the exact solution for a problem, but the result is satisfactory (Akyol

et al., 2012).

Systems supplying water to cities are designed according to the configuration of cities.

Generally, the network layout is predetermined by roads, buildings, industrial zones

etc. Therefore, the optimal design has some preliminary constraints, such as demands

at nodes, the layout of the network, and the minimum required pressures.

Design demands are determined by population, industrial development, water volume

required in case of fire. In this study, daily water consumption per capita is accepted

as 170 liters.

In this heuristic approach process, all pipes in the WDN are assigned the largest

possible diameters. Thus, the reliability of the network is maximized. In other words,

16

the resilience index of the WDN is about 1. The following steps presented by (Todini,

2000) are followed to reduce to find optimal pipe diameters.

i. A resilience index is specified by the user (Figure 4.1 – step 3).

ii. All pipes in the network are assigned the largest commercially possible

diameter by HALO.

iii. The network is calculated with a hydraulic network solver (step 4 in Figure

4.1). In this study, the EPANET library (Rossman, 1993) is used to code

HALO.

iv. According to the analysis results, if the failure index (4.3) is null, the procedure

starts to reduce the pipe diameters; otherwise the pipe diameters should be

increased.

v. In an iteration step, the cost/power dissipation ratio is checked to rank the

pipes, whose diameter is reduced first (step 6 in Figure 4.1). The cost/power

dissipation ratio is calculated using the formula (4.4).

vi. {i∗, j∗} = max{i,j} [−
Cij

λ−1 − Cij
λ

Pij
λ−1 − Pij

λ] (4.4)

 {i∗, j∗} represents the starting and ending points of a pipe. Pipe diameters are reduced

by following the ranking list that is calculated according to formula (4.4).

There are three controls must be checked before the reduction is accepted (step 9 in

Figure 4.1). The first one is velocity the water in pipes. The water velocity in the pipes

should not be higher than a predetermined value (2m/s in this study). The second

control is the resilience index. The resilience index value must be higher than the

resilience index value specified by the user. The third control is the failure index.

Failure index value must be negative.

When the procedure described above is finished, only one pipe diameter is reduced

and evaluated whether the reduction is accepted or not (step 10 in Figure 4.1). The

above procedure applies to all pipes. It is a loop that starts from step 13 to step 8 in

Figure 4.1.

17

After step 8 (Figure 4.1), it is said that there is no need to recalculate the WDN

hydraulically after pipe reductions in (Todini, 2000). However, within the scope of

this thesis, the WDN is recalculated hydraulically at this step. Therefore, the results of

HALO and (Todini, 2000) differ, which can be seen numerically in Section 5.5. The

steps shown above are repeated iteratively.

As a result of the heuristic approach, a cost vs. resilience relationship graph can be

created. This graph shows all possible solutions of WDN. Due to the nature of the

heuristic approach, it can be said that the results of heuristic approach do not have a

mathematical certainty, but it is an adequate approach to show a reasonable range of

solutions. In this thesis, a heuristic approach study is made considering only pipe

diameters of WDN.

However, if any component is added like a pump, the total power of the network is

increased. So, it has a positive effect on the resilience index. However, it should not

be forgotten to add pump costs.

18

Figure 4.1. Flow chart of the heuristic optimization process (Todini, 2000).

19

4.3. Pareto Optimal Set

Conflicting objectives increasing difficulty of the multi-objective optimization

problems. If there are conflicting objectives in a multi-objective optimization problem,

the difficulty of the problem increases further. Trying to maximize one of the

objectives while minimizing other objective increases the complexity of the problem.

(Kaya et al., 2016).

The Pareto optimal method is one of the solution techniques used in multi-objective

optimization problems. Pareto dominance method can be used to select the most

appropriate results for multi-purpose optimization problems (Kaya et al., 2016).

However, in this study, which solution is preferable is not considered. In this study, a

solution cloud graph is obtained that shows only the relationship between the

objectives.

It is important to find all possible solutions. This allows the system designer (or

decision maker) to evaluate all possible results. The Pareto optimal set of the two-

objective optimization problem is shown in Figure 4.2 (Kaya et al., 2016).

Figure 4.2. Pareto Optimal Set

20

In this study, there are two objective functions: cost and resilience index. The first

objective is to minimize the cost, while the second objective is to maximize the

resilience index.

21

CHAPTER 5

5. PROGRAMMING THE HEURISTIC OPTIMIZATION PROCESS

The heuristic approach is described in Chapter 4 in detail. It would be the right choice

to implement the heuristic approach and related iterations using a computer software.

This section describes the development process, flowchart, and qualification of

computer software that applies the heuristic approach method described by (Todini,

2000). In order to apply the heuristic method (Todini, 2000) quickly and accurately, it

is necessary to develop computer software in this study.

5.1. Overview of Software Developed for This Study and Operating Logic

In this section, the software developed for this thesis is submitted. HALO is a desktop

software developed on the heuristic approach algorithm.

HALO development language is C # (pronounced as C Sharp). Microsoft Visual

Studio 2017 is used as a software development environment. The author of this thesis

creates HALO by writing approximately three thousand lines of code to implement

the heuristic approach of (Todini, 2000). Code of HALO is shared in the Appendices

section. Furthermore, the GitHub link is shared in (Web 1).

When describing HALO, it is necessary to mention about the hydraulic network solver

calculation library (Web 2). The C # EPANET library is developed on the open-source

code of EPANET software developed by (Rossman et al., 2011). It is possible to code

EPANET with various programming languages (Web 3). The most important reason

for using C# in this study is that C# language has a useful EPANET library.

HALO includes the EPANET calculation engine and the classes in which the

necessary hydraulic calculations are made and can run without additional software.

HALO can only run on Microsoft Windows operating systems.

22

Figure 5.1. Procedure of HALO

Flowchart of HALO provided in Figure 5.1 has a user-friendly interface (Figure 5.2).

In the third step of HALO flowchart in Figure 5.1, the flow chart of the heuristic

optimization process (Figure 5.3) developed by (Todini, 2000) is implemented to the

network provided by HALO. Figure 5.3 is the flow chart of HALO and EPANET

integration according to Todini (2000), however Figure 4.1 represents the procedure

of Todini (2000).

23

Figure 5.2. User interface of HALO

HALO can only use inp extension files. Inp files that contain all the informations of a

WDN are files that can be created by a text editor or hydraulic network solver (Figure

5.4). As shown in Figure 5.4, an inp file contains all the information of a water

network, such as reservoir water elevations, node demands and elevations, diameters

and lengths of pipes.

The purpose of HALO which is using the method developed by (Todini, 2000) that is

described in detail in Chapter 4 is to minimize the costs and to maximize reliability of

a WDN. Only pipe diameters are used as variables during the process of HALO.

Changes in pipe diameters in a WDN affect both the costs of the system and head

losses. If the pipe diameters increase, the head loss in the WDN is reduced. Thus, the

network has more surplus heads against pressure reductions in case of failure.

As described above, HALO can work on a network that's coordinates and elevations

of demand points, reservoir location and reservoir water level pre-assigned. (Figure

5.1-first step). Due to the heuristic approach, only the pipe diameters in the network

24

are changed. Besides, the EPANET library can perform all hydraulic calculations of a

WDN (e.g., water velocity in pipes, pressures at nodes).

The network file whose coordinates and elevations of nodes, reservoir location,

reservoir water elevation and nodal demands are assigned by EPANET should be

made available to use by HALO. In other words, the WDN should be saved as an inp

file (Figure 5.5). Thus, the second step of Figure 5.1 is completed. When the HALO

is run, a user-friendly interface opens in which the inp file is first selected (Figure 5.2).

The user must define a resilience index. The default value of the minimum required

head pressure that can be changed is 30 meters. After the required fields are filled,

click the ‘Calculate’ button. HALO applies the approach defined by (Todini, 2000) to

the given network inp file, changes the required pipe diameters, and finally saves the

changes in the inp file. A text editor or EPANET can be used to view the final pipe

diameters of the given network.

25

Figure 5.3. Flowchart of HALO and EPANET integration according to Todini (2000)

26

Figure 5.4. inp extended file example

27

Figure 5.5. Exporting a network file as “.inp” extension format from EPANET

5.2. Hydraulic Network Solver – EPANET

EPANET is software that performs the simulation of hydraulic and water quality

behavior in pressurized pipe networks as extended period simulation. In a network, it

consists of pipes, pumps, valves and storage tanks or reservoirs. EPANET monitors

the flow of water in pipes, pressures at nodes, the water level in tanks and

concentration of chemical species (Rossman, 1993).

EPANET is widely used open-source software to simulate the hydraulic and water

quality behavior of WDNs over a long period of time (Rossman, 1993). EPANET can

be used as a desktop application with a user interface (Figure 5.6) and a Programmer’s

Toolkit is available to specialize the hydraulic solver for programmers (Rossman et

al., 2011).

28

HALO, which is a software, developed for this study to work properly, an under static

loading condition WDN is required. Using the calculation engine of EPANET, HALO

can perform the network under static loading.

Figure 5.6. EPANET user interface (Rossman et al., 2011)

29

5.3. HALO Operation Logic Application on Simple Two-loop Network

The logic of HALO is explained in detail on a simple two-loop network created by

(Alperovits et al, 1977). This two-loop simple network is a gravity-driven network

under single loading (Figure 5.7).

This network consists of 8 pipes. 14 different pipe diameters from 6 nodes, 1 reservoir,

and two loops. The pipe lengths are 1000 meters for each pipe and the Haizen-William

coefficient is taken as 130 in all pipes. Demands and elevations in the nodes can be

seen in the Table 5.2.

Table 5.1. Cost of pipes defined in (Todini, 2000)

Diameters Costs

(mm) ($/m)

25.4 2000

50.8 5000

76.2 8000

101.6 11000

152.4 16000

203.2 23000

254 32000

304.8 50000

355.6 60000

406.4 90000

457.2 130000

508 170000

558.8 300000

609.6 550000

Table 5.2. Nodal Demands and Elevations for (Alperovits et al, 1977)

Node
Node

Elevations

Node

Demands

 [m] [m3/s]

1 (reservoir) 210 -0.3111

2 150 0.0278

3 160 0.0278

4 155 0.0333

5 150 0.0750

6 165 0.0917

7 160 0.0556

30

Figure 5.7. Simple two-loop network created by (Alperovits et al, 1977)

5.4. HALO Operation Steps

After clicking the ‘Calculation’ button in HALO interface, the following steps are

performed;

1. The user-defined resilience index is considered by HALO. User-defined

resilience index indicates the minimum limit value of the resilience index of

the WDN.

2. HALO sets the diameter of all pipes in the network as the largest commercially

possible diameters (Table 5.1). For this case, all pipe diameters in the network

are set to 609.6 mm (Table 5.1).

3. System hydraulic calculation is done by using EPANET (Rossman, 1993)

calculation engine.

4. One size smaller diameter is set to pipes (588.5 mm for this case) according to

Table 5.1. Then the hydraulical calculation is performed.

31

5. The head losses and flow velocities in Table 5.3 and Table 5.4 obtained in

steps 3 and 4 are calculated as shown in Table 5.5.

6. According to the cost/power dissipation values obtained in step 5, pipes are

ordered by descending (Table 5.6).

7. The diameter of the pipe with the largest value in the ranked list (Table 5.6) is

reduced first. In this example, pipe-6 is reduced to one step from the list of

commercially available pipe diameters (Table 5.1). For this case, Pipe-6 is set

a value of 558.8mm.

8. The network is calculated hydraulically.

9. Three checks are made before the reduction is accepted for Pipe-6.

a. Velocity (It should be less than 2 m/s in this study.)

b. Resilience index (It must be greater than the resilience index defined

by the user in step 1.)

c. Failure index (It should be negative.)

10. If all the controls in step 9 are correct, the diameter of the Pipe-6 is set to

558.8mm.

11. Step 7, step 8, step 9 and step 10 are applied to all pipes individually. It should

be applied to 8 pipes for this case.

12. If at least one of the controls in step 9 is not satisfied, the reduction of the

diameter is denied. The pipe whose diameter reduction is rejected is never

included in an iteration.

13. The above steps are repeated until there are no more pipes to be reduced in

diameter.

14. Last iteration diameters are assigned to the pipes by HALO and saved on the

inp file.

32

Table 5.3. Pipe diameters are set 609.6mm (first situation)

First situation

Label Diameter (mm) Flow (m³/h) Velocity (m/s) Head loss (m)

Pipe-1 609.6 1,120 1.27 2.54

Pipe-2 609.6 455 0.51 0.48

Pipe-3 609.6 565 0.64 0.72

Pipe-4 609.6 153 0.17 0.06

Pipe-5 609.6 293 0.33 0.21

Pipe-6 609.6 37 0.04 0.004

Pipe-7 609.6 355 0.40 0.30

Pipe-8 609.6 237 0.27 0.14

Table 5.4. Pipe diameters are set 558.8mm–one size reduced (second situation)

Second situation

Label Diameter (mm) Flow (m³/h) Velocity (m/s) Head loss (m)

Pipe-1 558.8 1,120 1.53 4.04

Pipe-2 558.8 455 0.62 0.76

Pipe-3 558.8 565 0.77 1.14

Pipe-4 558.8 153 0.21 0.10

Pipe-5 558.8 293 0.40 0.34

Pipe-6 558.8 37 0.05 0.01

Pipe-7 558.8 355 0.49 0.48

Pipe-8 558.8 237 0.33 0.23

Table 5.5. Cost/Power dissipation ratio calculation for Pipe 6

Pipe 6

 Diameter FLOW Head loss COST

 (mm) (m^3/h) (m) ($/m)

 situation 1 609.6 37 0.004 550 000

 situation 2 558.8 37 0.01 300 000

First situation P1= 9.81*(1000/3600) * 37 * (0.004) = 0.403 Watt

Second situation P2= 9.81*(1000/3600) * 37 * (0.01) = 1.008 Watt

First situation Pipe cost=1000 * 550= $550,000.00

Second situation Pipe cost=1000 * 300= $300,000.00

 -(300000-550000) / (1.00825-0.403) = 413052.458

33

Table 5.6. Ranked pipes according to Cost/Power dissipation ratio

Pipe order of diameter reduction

Pipe-6 413052.458

Pipe-4 14991.155

Pipe-8 4301.168

Pipe-5 2408.582

Pipe-7 1435.734

Pipe-2 720.119

Pipe-3 386.612

Pipe-1 54.609

5.5. Result of Two-looped Network Solved by HALO

In this section, the two-loop network created by (Alperovits et al, 1977) is solved by

HALO. For this case study (Todini, 2000), solution A with a resilience index of 0.41

is used (Table 5.7 – Second column). The resilience index 0.41 is used in HALO to

compare solution of (Todini, 2000).

Comparison of (Alperovits et al, 1977) network calculated by (Todini, 2000) vs.

HALO can be seen in Table 5.7. As shown in Table 5.7, there are differences between

the results of HALO solution and (Todini, 2000). This difference is due to the

assumption made by (Todini, 2000) in Step 8 of HALO operating method described

in section 5.4. However, in step 8, HALO calculates the network hydraulically. In

Table 5.7, it can be clearly seen in the third column that system reliability is not

considered in the classical cost optimization method.

34

Table 5.7. Comparison of two-loop network result of Todini (2000) vs cost optimization vs HALO

Pipes
 Solution A (Todini,

2000)
Cost Optimization

This Study

[HALO]

pipe 1 457.2 457.2 457.2

pipe 2 406.4 254 355.6

pipe 3 355.6 406.4 355.6

pipe 4 152.4 101.6 304.8

pipe 5 355.6 406.4 406.4

pipe 6 25.4 254 25.4

pipe 7 355.6 254 355.6

pipe 8 254 25.4 406.4

Resilience index 0.41 0.22 0.411

Head difference 1.08 0.5 0.57

Cost of the system $ 450,000 $ 419,000 $ 542,000

5.6. Visualization of Iteration Steps of Two-loop Network

Pipe diameters in the iteration steps in a two-loop network applied the heuristic

approach (Todini, 2000) visualized by HALO.

Figure 5.8. Pipe diameters of two loop network end of the 1st iteration

35

Figure 5.9. Pipe diameters of two loop network end of the 2nd iteration

Figure 5.10. Pipe diameters of two loop network end of the 3rd iteration

36

Figure 5.11. Pipe diameters of two loop network end of the 4th iteration

Figure 5.12. Pipe diameters of two loop network end of the 5th iteration

37

Figure 5.13. Pipe diameters of two loop network end of the 6th iteration

Figure 5.14. Pipe diameters of two loop network end of the 7th iteration

38

Figure 5.15. Pipe diameters of two loop network end of the 8th iteration

Figure 5.16. Pipe diameters of two loop network end of the 9th iteration

39

Figure 5.17. Pipe diameters of two loop network end of the 10th iteration

Figure 5.18. Pipe diameters of two loop network end of the 11th iteration

40

Figure 5.19. Pipe diameters of two loop network end of the 12th iteration

Figure 5.20. Pipe diameters of two loop network end of the 13th iteration

41

Figure 5.21. Pipe diameters of two loop network end of the 14th and final iteration

43

CHAPTER 6

6. CASE STUDY

In this chapter, on a existing network in Ankara (Yayla District) is studied using

HALO which implements the heuristic approach presented by (Todini, 2000), whose

usage and working logic are detailed in Chapter 5 and Chapter 6. At the end of this

section, the optimal diameter for different resilience index value of the current Yayla

District is indicated (Table 6.1).

6.1. Case Study: Ankara Network, N8.3 Yayla District

The N8.3 network is located in Ankara, Keçiören serves approximately 40,000 people

(Gençoğlu, 2015). In order to increase the comprehensibility of this study, only a part

of N8.3 pressure zone is Yayla District is considered in this chapter.

There are 158 demand nodes and 176 pipes in the model of Yayla network. The layout

of Yayla DMA network is shown in Figure 6.1. The current pipe diameters of Yayla

DMA is shown in Figure 6.2 (Gençoğlu, 2015).

The current Yayla DMA has a resilience index of 0.95 and a surplus head is 13.55

meters. Considering that the resilience index can take a value between 0 and 1 (Todini,

2000), it can be easily said that current Yayla DMA has very high reliability.

In this study, considering that Yayla DMA is overdesigned, the effect of increasing

demand values on pipe diameters is also investigated. In other words, doubled and

tripled nodal demands are assigned to Yayla DMA calculated by HALO.

Consequently, pipe diameters and cost vs. resilience index values are shown at the end

of this section (Figure 6.9, Figure 6.10 and Figure 6.11).

Another issue that must be addressed, current Yayla DMA pipe diameters can be

found in the commercial Turkey market. However, in this section, Yayla DMA pipe

44

diameters are designed by selecting from the diameter and price list given in (Todini,

2000).

The pipe diameters and prices inputted in HALO developed to implement the heuristic

approach described by (Todini, 2000) can be changed, added or removed.

Figure 6.1. Layout of N8.3 Yayla Network

45

Figure 6.2. Pipe Diameters of Current Yayla DMA

46

6.2. Application of The Methodology on N8.3 Yayla District

N8.3 Yayla DMA is solved by HALO developed by coding the heuristic approach

algorithm described by (Todini, 2000).

As described before (Figure 5.3 Step number 3), an initial resilience index must be

defined. The user-defined resilience index specifies the minimum resilience index

value of the WDN. It would be more practical to show the design engineer (or

decision-maker) the graph of the costs corresponding to all resilience index values.

Otherwise, the design engineer must apply the heuristic approach, one by one to the

WDN for each resilience index value. Therefore, in HALO, cost values corresponding

to all resilience index values are calculated between 0 and 1, with a precision of 1%.

resilience vs cost is shown graphically (Figure 6.3).

Figure 6.3. Costs corresponding to resilience index values between 0 and 1 of Ankara N8.3 Yayla

DMA

40000

60000

80000

100000

120000

140000

160000

180000

200000

220000

0.4 0.45 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

C
o

st
 o

f

N
et

w
o

rk
($

)

Resilience Index

Cost of Ankara N8.3 Yayla DMA Network

corresponding to Resilience index value from 0 to 1 of

$68,558

$71,082

0.60 0.64

$170,670

Existing Yayla DMA
Resilience index:0.95
Cost of the system: $170,670

0.95

47

Figure 6.3 shows the cost values corresponding to all resilience index values that

Yayla DMA can take between 0 and 1. Figure 6.3 shows a solution cloud containing

all possible reliability values for Yayla DMA. Figure 6.3 does not indicate which

resilience index value is the optimal result to design the Yayla DMA. Figure 6.3 can

show the rate of increase in budget to change network reliability to decision-makers.

For example, two different resilience indices vs. cost values are shown with arrows in

Figure 6.3 shows that decision-maker must pay $ 68,558 to a system with a reliability

index of 0.60. However, the purpose of Figure 6.3 (also this study) is to show that it

can increase the reliability rate to 0.64 by increasing cost of this network only $ 2,500.

Decision-makers can see that a 3.5% increase in the cost versus a 6.7% increase in

reliability can be achieved for this example.

Current Yayla DMA’s resilience index value is 0.95 (Figure 6.3) and the total cost of

the network is $ 170,670. Figure 6.3 shows that the minimum resilience index value

of Yayla DMA is approximately 0.45. Minimum resilience index means that the

diameters of Yayla are set to minimum pipe diameters that can meet nodal demands.

If Yayla DMA’s pipe diameters are designed to provide, for example, 0.3 resilience

index, then the required demands on the nodes cannot be satisfied.

The pipe diameters when Yayla DMA has resilience index values of 0.4, 0.5, 0.6 and

0.8 are shown in Figure 6.4, Figure 6.5, Figure 6.6 and Figure 6.7, respectively. It can

be observed that the pipe diameters increase according to the resilience index values

of Yayla DMA in the figures.

48

Figure 6.4. Diameters of the N8.3 Yayla DMA (Resilience index = 0.4)

Figure 6.5. Diameters of the N8.3 Yayla DMA (Resilience index = 0.5)

49

Figure 6.6. Diameters of the N8.3 Yayla DMA (Resilience index = 0.6)

Figure 6.7. Diameters of the N8.3 Yayla DMA (Resilience index = 0.8)

50

Current Yayla DMA resilience index value is 0.95. It would not be wrong to say that

current Yayla DMA is overdesigned. Because current demands in Yayla DMA are

much lower than the capacity of the Yayla network. Although only pipe diameters are

used as variables in this study, if the nodal demands of a WDN are increased, the effect

on the pipe diameters of the Yayla network is investigated. The results obtained by

using doubled and tripled demands of current Yayla demands are shown graphically

in Figure 6.9, Figure 6.10 and Figure 6.11. Besides, Figure 6.8 shows the pipe

diameters of Yayla network visually by using doubled demand in resilience index

values of 0.4, 0.5, 0.6 and 0.8.

Considering Figure 6.9, Figure 6.10 and Figure 6.11, the increase in nodal demands

in a WDN increases the minimum pipe diameters and costs. Besides, when Figure 6.9

and Figure 6.11 are considered simultaneous, the resilience index vs. cost value graph

fluctuates less if the capacity of a WDN is approached in terms of demand.

Figure 6.8. The system N8.3 Yayla DMA (demands are doubled)

51

Figure 6.9. Pareto Set N8.3 Yayla

Figure 6.10. Pareto Set N8.3 Yayla (Demands are doubled)

30000

50000

70000

90000

110000

130000

150000

170000

190000

0.0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0

C
o

st
 (

$)

Resilience Index

30000

50000

70000

90000

110000

130000

150000

170000

190000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o

st
 (

$)

Resilience Index

52

Figure 6.11. Pareto Set N8.3 Yayla (Demands are tripled)

6.3. Comparing the Results of Heuristic Approach with Existing Yayla Network

The first four columns of Table 6.1 represent the pipe diameters of the Yayla DMA

with resilience index values of 0.4, 0.5, 0.6 and 0.8, respectively calculated by HALO.

It is noted that existing Yayla DMA pipes can be found in the Turkey market.

However, the pipe list (Table 5.1) given by (Todini, 2000) is used in this study. It

should also be considered that there are some limitations when designing pipe

diameters of a WDN (e.g., minimum pipe diameter, diameters of transmission-line

pipes). Since the methods given in (Todini, 2000) are used to develop HALO, there

is no restriction in HALO on behalf of pipe diameters.

Table 6.1 shows that the current Yayla DMA pipe diameters are larger than even the

diameters in the fourth column with a resilience index of 0.8, which is another proof

that the current Yayla DMA is overdesigned.

30000

50000

70000

90000

110000

130000

150000

170000

190000

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

C
o

st
 (

$)

Resilience Index

53

Table 6.1. Comparison of current Yayla DMA pipe diameters vs HALO results.

Resilience

Index: 0.4

Resilience

Index: 0.5

Resilience

Index: 0.6

Resilience

Index: 0.8

Current

Diameters

76.2 76.2 101.6 101.6 125

50.8 50.8 50.8 76.2 100

76.2 76.2 101.6 101.6 200

76.2 76.2 76.2 101.6 200

76.2 76.2 76.2 101.6 200

76.2 76.2 76.2 76.2 100

76.2 76.2 76.2 76.2 100

76.2 76.2 76.2 76.2 100

50.8 50.8 50.8 76.2 100

50.8 50.8 50.8 76.2 125

50.8 76.2 50.8 76.2 125

76.2 76.2 76.2 76.2 100

50.8 76.2 76.2 76.2 100

76.2 76.2 50.8 76.2 200

76.2 76.2 50.8 76.2 200

50.8 50.8 76.2 76.2 125

50.8 50.8 50.8 76.2 100

25.4 25.4 50.8 25.4 100

50.8 76.2 50.8 76.2 100

76.2 76.2 76.2 76.2 125

76.2 76.2 76.2 76.2 125

76.2 76.2 76.2 101.6 125

76.2 76.2 76.2 101.6 200

50.8 50.8 50.8 50.8 200

50.8 50.8 50.8 76.2 300

50.8 50.8 50.8 50.8 300

50.8 50.8 50.8 76.2 100

50.8 50.8 50.8 76.2 100

50.8 50.8 50.8 76.2 100

76.2 76.2 76.2 76.2 100

50.8 50.8 50.8 76.2 100

76.2 76.2 76.2 76.2 100

50.8 50.8 50.8 76.2 100

54

Table 6.1.(cont’d) Comparison of current Yayla DMA pipe diameters versus HALO results.

Resilience

Index: 0.4

Resilience

Index: 0.5

Resilience

Index: 0.6

Resilience

Index: 0.8

Current

Diameters

50.8 76.2 50.8 76.2 100

50.8 50.8 50.8 50.8 200

76.2 76.2 76.2 76.2 200

50.8 50.8 50.8 76.2 200

76.2 76.2 76.2 76.2 200

76.2 76.2 76.2 76.2 125

76.2 76.2 76.2 76.2 125

76.2 76.2 76.2 101.6 125

76.2 76.2 76.2 101.6 125

76.2 76.2 76.2 101.6 100

76.2 76.2 76.2 101.6 125

50.8 50.8 76.2 76.2 300

76.2 101.6 101.6 101.6 200

76.2 101.6 101.6 101.6 200

101.6 101.6 101.6 101.6 125

76.2 76.2 76.2 101.6 100

76.2 101.6 101.6 101.6 250

76.2 101.6 101.6 101.6 250

76.2 101.6 101.6 101.6 125

76.2 101.6 101.6 101.6 125

76.2 101.6 101.6 101.6 125

50.8 25.4 50.8 76.2 100

50.8 50.8 50.8 76.2 100

76.2 76.2 76.2 101.6 100

76.2 76.2 76.2 76.2 100

50.8 50.8 50.8 76.2 125

50.8 50.8 50.8 76.2 125

50.8 50.8 50.8 76.2 125

76.2 76.2 76.2 101.6 200

76.2 76.2 76.2 101.6 200

50.8 50.8 76.2 76.2 200

50.8 50.8 50.8 76.2 200

76.2 76.2 76.2 76.2 125

55

Table 6.1 (cont’d) Comparison of current Yayla DMA pipe diameters versus HALO results.

Resilience

Index: 0.4

Resilience

Index: 0.5

Resilience

Index: 0.6

Resilience

Index: 0.8

Current

Diameters

76.2 76.2 76.2 76.2 125

25.4 50.8 25.4 76.2 200

50.8 25.4 50.8 25.4 200

76.2 76.2 76.2 101.6 125

50.8 50.8 76.2 76.2 125

50.8 76.2 76.2 76.2 125

76.2 76.2 76.2 76.2 100

50.8 50.8 50.8 76.2 100

50.8 50.8 50.8 76.2 100

76.2 76.2 76.2 76.2 125

76.2 76.2 76.2 50.8 125

76.2 76.2 76.2 101.6 200

76.2 76.2 76.2 101.6 200

76.2 76.2 76.2 101.6 200

76.2 76.2 76.2 101.6 200

50.8 50.8 50.8 76.2 100

50.8 50.8 76.2 76.2 100

76.2 76.2 76.2 76.2 100

50.8 50.8 50.8 76.2 100

50.8 50.8 50.8 76.2 100

76.2 76.2 76.2 76.2 100

50.8 50.8 50.8 76.2 100

50.8 50.8 50.8 76.2 100

50.8 50.8 50.8 76.2 100

50.8 50.8 50.8 76.2 100

76.2 76.2 76.2 76.2 100

76.2 76.2 76.2 76.2 100

50.8 50.8 50.8 76.2 100

50.8 50.8 50.8 76.2 100

76.2 76.2 50.8 76.2 100

50.8 50.8 50.8 76.2 200

76.2 76.2 76.2 76.2 200

76.2 76.2 76.2 76.2 200

56

Table 6.1.(cont’d) Comparison of current Yayla DMA pipe diameters versus HALO results.

Resilience

Index: 0.4

Resilience

Index: 0.5

Resilience

Index: 0.6

Resilience

Index: 0.8

Current

Diameters

76.2 76.2 76.2 76.2 100

76.2 76.2 76.2 101.6 125

76.2 76.2 76.2 101.6 125

50.8 50.8 50.8 76.2 300

50.8 50.8 50.8 76.2 300

101.6 101.6 101.6 101.6 125

76.2 76.2 76.2 101.6 100

101.6 101.6 101.6 101.6 125

101.6 101.6 101.6 101.6 125

76.2 76.2 76.2 101.6 100

76.2 76.2 76.2 76.2 100

76.2 76.2 76.2 76.2 100

76.2 76.2 50.8 76.2 125

76.2 76.2 76.2 76.2 125

76.2 76.2 76.2 101.6 125

25.4 50.8 50.8 50.8 100

50.8 50.8 50.8 25.4 100

76.2 76.2 76.2 76.2 100

76.2 76.2 76.2 76.2 100

50.8 76.2 76.2 76.2 100

76.2 76.2 76.2 76.2 100

50.8 76.2 50.8 76.2 100

50.8 76.2 76.2 76.2 100

50.8 50.8 50.8 76.2 100

76.2 76.2 76.2 76.2 200

76.2 76.2 76.2 76.2 200

76.2 76.2 76.2 76.2 100

101.6 101.6 101.6 101.6 125

76.2 76.2 76.2 101.6 100

76.2 76.2 76.2 101.6 100

76.2 76.2 76.2 101.6 100

76.2 76.2 76.2 101.6 125

76.2 76.2 76.2 101.6 125

57

Table 6.1.(cont’d) Comparison of current Yayla DMA pipe diameters versus HALO results.

Resilience

Index: 0.4

Resilience

Index: 0.5

Resilience

Index: 0.6

Resilience

Index: 0.8

Current

Diameters

76.2 76.2 76.2 76.2 100

50.8 76.2 76.2 76.2 100

76.2 76.2 76.2 76.2 100

101.6 101.6 101.6 101.6 125

76.2 76.2 76.2 101.6 100

76.2 76.2 76.2 76.2 100

101.6 101.6 101.6 101.6 125

76.2 76.2 76.2 76.2 100

50.8 50.8 76.2 76.2 100

101.6 101.6 101.6 101.6 125

101.6 101.6 101.6 101.6 125

101.6 101.6 101.6 101.6 125

101.6 101.6 101.6 101.6 125

101.6 101.6 101.6 101.6 125

50.8 50.8 50.8 76.2 125

50.8 50.8 50.8 76.2 100

101.6 101.6 101.6 152.4 300

101.6 101.6 101.6 101.6 300

101.6 101.6 101.6 101.6 300

101.6 101.6 101.6 101.6 300

101.6 101.6 101.6 101.6 300

101.6 101.6 152.4 152.4 300

101.6 101.6 101.6 152.4 500

25.4 25.4 25.4 76.2 500

101.6 101.6 101.6 101.6 500

101.6 152.4 101.6 152.4 300

101.6 152.4 152.4 152.4 300

152.4 152.4 152.4 152.4 300

101.6 152.4 101.6 101.6 300

50.8 50.8 76.2 76.2 300

76.2 76.2 76.2 76.2 100

76.2 76.2 76.2 101.6 125

76.2 76.2 76.2 101.6 100

58

Table 6.1.(cont’d) Comparison of current Yayla DMA pipe diameters versus HALO results.

Resilience

Index: 0.4

Resilience

Index: 0.5

Resilience

Index: 0.6

Resilience

Index: 0.8

Current

Diameters

76.2 76.2 76.2 101.6 100

76.2 76.2 76.2 101.6 100

76.2 76.2 76.2 101.6 125

76.2 76.2 76.2 101.6 125

101.6 101.6 101.6 101.6 125

50.8 50.8 50.8 76.2 100

76.2 50.8 25.4 76.2 100

76.2 76.2 76.2 101.6 200

76.2 76.2 76.2 76.2 125

76.2 76.2 76.2 101.6 300

50.8 50.8 50.8 76.2 200

101.6 152.4 152.4 101.6 100

59

CHAPTER 7

7. DISCUSSION OF THE RESULTS

Resilience index is too sensitive to be used alone in WDN design. Because of the small

changes in the resilience index value affect the pipe diameters in the network too much

(Table 7.1). In Table 7.1, it is seen that the cost change is very high in even small

change in the resilience index. Only a 1% increase in the resilience index, for example,

from 0.44 to 0.45, leads to a 5% increase cost of the system. Aside from the cost

increase, there is a big difference between Pipe-6 diameter for nearby resilience index

values. In another case, the resilience index is 0.42 and 0.43, while the network costs

are the same. However, in both networks, there is a huge difference between Pipe-6

pipe diameters. It should be considered that some of these results may be eliminated

in Pareto analysis. Within the scope of this study, Pareto analysis is not performed to

eliminate some results. Choosing the appropriate solution among the results is left to

the decision-makers.

Table 7.1. Pipe diameters of two-loop network resilience indices 0.41 to 0.44.

Pipes Numbers
Results 1

(mm)

Results 2

(mm)

Results 3

(mm)

Results 4

(mm)

Results 5

(mm)

pipe 1 457.2 457.2 457.2 457.2 457.2

pipe 2 355.6 355.6 355.6 355.6 355.6

pipe 3 355.6 355.6 355.6 406.4 406.4

pipe 4 304.8 304.8 304.8 304.8 355.6

pipe 5 406.4 355.6 406.4 355.6 355.6

pipe 6 25.4 254 25.4 76.2 203.2

pipe 7 355.6 406.4 406.4 304.8 304.8

pipe 8 406.4 406.4 406.4 304.8 304.8

Resilience index 0.41 0.42 0.43 0.44 0.45

Surplus (m) 0.57 0.63 1.05 1.40 1.50

Cost of System ($) 542,000 572,000 572,000 498,000 523,000

60

The velocity check (Chapter 5.4. HALO Operation Steps - Step 9) of the heuristic

approach described in (Todini, 2000) is never come into play in this case study. Flow

velocities in Yayla DMA never approached 2 m/s.

The failure index (formula 4.3) described in (Todini, 2000) is never used during the

heuristic approach method. Failure index refers to the degree of impact of pipes when

the minimum required pressure cannot be achieved. Consequently, the failure index is

not required if a network provides the minimum required pressure.

61

CHAPTER 8

8. CONCLUSIONS AND RECOMMENDATIONS

In this study, the heuristic approach described in (Todini, 2000) is applied to Ankara,

Keçiören, Yayla DMA by using HALO. The resilience index of current Yayla DMA

is 0.95. Considering that the resilience index value is between 0 and 1, the water

distribution pipe diameters of the current Yayla DMA are overdesigned.

At the end of this study, Figure 6.3 graph is obtained. Figure 6.3 shows the cost of the

Yayla DMA network versus the resilience index values increasing by 1% between 0

and 1. Each of the points in Figure 6.3 shows a valid and usable solution but does not

indicate which solution is optimal. Figure 6.3 shows a solution cloud in terms of pipe

diameters of Yayla DMA.

All results may not be available in the graph (Figure 6.3) with network diameters

corresponding to resilience index values between 0 and 1. Due to pressure and speed

constraints, some results may need to be eliminated. It is possible to eliminate some

solutions by applying the ultimate Pareto curve technique to Figure 6.3 (Deb, 2001).

The ultimate Pareto curve technique produces a Pareto optimal set. Which solution

should be preferred can be determined by this method (Deb, 2001). However, within

the scope of this thesis, all network solutions are shown to the decision-maker. In

future studies, HALO can be developed to draw the ultimate Pareto curve to make it

a choice.

The decision-maker to determine the dimensions of the Yayla DMA pipe diameters

must make a trade-off between cost and reliability, according to Figure 6.3. In the

example on the Figure 6.3 graph, a 3.5% increase in the design cost of a network with

a resilience index of 0.60 can make the resilience index 0.64, which means a rise of

62

7% resilience index. Compared to the classical cost optimization technique, the 7%

cost increase can increase the 86% resilience index (Table 5.7).

As the resilience index value presented in (Todini, 2000) increases, the surplus

pressure value stored by the system against possible failures increases (Table 7.1 -

Surplus values). In other words, the reliability of the system increases.

This study aims to provide the decision-maker with the opportunity to compare as

described in the example above. At the end of the study, HALO is developed to enable

the heuristic approach (Todini, 2000) to be implemented easily to real complex

networks.

This multi-objective study aims to maximize reliability in case of failure in a WDN

while minimizing the cost of the WDN. Reliability is defined as the resilience index

(Todini, 2000). The resilience index is a good guideline for designing a WDN, if

supported by some other indices to be well-controlled. The heuristic approach also

works reasonably to design of a WDN. HALO that works successfully developed in

this study can be used to apply Todini's heuristic approach to any desired WDN.

There may be some restrictions when designing pipe diameters for WDNs; for

example, the minimum pipe diameters to be used on the streets and the main

transmission line. The minimum pipe diameter of the Yayla DMA is 100 mm (Figure

6.2). However, the minimum pipe diameter used in this study is 25.4 mm (Table 5.1).

In actual projects, pipe diameters are grouped to certain values in a WDN (see Figure

6.2). Since HALO is based on the algorithm and data described in (Todini, 2000), for

this reason, no restrictions are imposed explained above. However, the restrictions

mentioned can be easily implemented if desired in HALO.

It is not practical for adjacent pipes to have different diameter values. Therefore, when

designing the WDN, the grouping of pipe diameters should be taken into consideration

(Gençoğlu, 2007). In future studies, HALO can be developed for pipe grouping.

63

The resilience index represents the reliability of the system very well, but it needs to

be supported by some other indices. There are some studies to improve the resilience

index. For example (Creaco et al., 2016a), the relationship between loop diameter

uniformity and pipes in the network is defined as a C coefficient of resilience index

(Todini, 2000). In future studies, Creaco’s (2016a) loop uniformity method can be

implemented to HALO.

In this study, the resilience index and failure index are introduced as a compact tool

in terms of surplus head and delivered power of the water distribution network. In the

formulations used in this study, the demand-driven modeling approach without leaks

is considered. However, the resilience index and failure index formulations can be

generalized to provide a more appropriate definition of leaking effect when dealing

with pressure-driven running modeling (Creaco, 2016b).

In this study, a multi-objective optimization problem is considered with objective

functions, resilience index and cost. However, components such as pumps, tanks and

valves can also be found in a WDN. For example, many different parameters can be

defined, such as operating times of pumps, location and number of valves and tanks.

Although rising parameter numbers increases the computational load, allows for more

realistic modeling of the network. In further studies, software that considers some

other parameters on HALO can be developed.

65

REFERENCES

Alperovits, E. and Shamir, U. 1977. Design of optimal water distribution systems.

Water Resources Research, 13(6), 885-900, doi:10.1029/WR013i006p00885.

Akyol, S. and Alataş, B. 2016. Güncel sürü zekâsi optimizasyon algoritmalari.

Nevşehir Üniversitesi Fen Bilimleri Enstitü Dergisi, 5(2), 9-18.

Creaco, E., Fortunato, A., Franchini, M. and Mazzola, M. R. 2014. Comparison

between entropy and resilience as indirect measures of reliability in the

framework of water distribution network design. Procedia Engineering, 70, 379-

388. doi:10.1016/j.proeng.2014.02.043.

Creaco, E., Franchini, M. and Todini, E. 2016a. The combined use of resilience and

loop diameter uniformity as a good indirect measure of network reliability. Urban

Water Journal, 13(2), 167–181. doi:10.1080/1573062X.2014.949799.

Creaco, E., Franchini, M. and Todini, E. 2016b. Generalized resilience and failure

indices for use with pressure-driven modeling and leakage. J. Water Resour.

Plann. Manage., 142(8). DOI: 10.1061/(ASCE)WR.1943-5452.0000656

Deb, K., Multi-Objective optimization using evolutionary algorithms. John Wiley &

Sons, 2001, England.

Gençoğlu, G. 2007. Developing a methodology for the design of water distribution

networks using genetic algoritm. METU Department of Civil Engineering, thesis

of the degree of master of science, Ankara.

Gençoğlu, G. 2015. Optimizing pump schedule and valve characteristics of water

distribution networks. METU Department of Civil Engineering, thesis of the

degree of doctor of philosophy, Ankara. doi.org/10.1145/3132847.3132886.

Gessler, J., and Walski, T. M. 1985. Water distribution system optimization. Technical

Report, Department of the US Army, Mississippi, USA.

Greco, R., Di Nardo, A., and Santonastaso, G. 2012. Resilience and entropy as indices

of robustness of water distribution networks. Journal of Hydroinformatics, 14(3),

761–771. doi:10.2166/hydro.2012.037.

İller Bankası Anonim Şirketi, 2013. İçmesuyu tesisleri etüt, fizibilite ve projelerinin

hazirlanmasina ait teknik şartname.

Kaya, S., and Kocaeli, L. 2016. Usage of pareto optimal in multi objective

optimization problems. Social Sciences Research Journal, 5(2), 9–18.

66

Prasad, T. D., and Park, N. S. 2003. Multiobjective genetic algorithms for design of

water distribution networks. Journal of Water Resources Planning and

Management, 130(1), 73–82. doi:10.1061/(asce)0733-9496(2004)130:1(73).

Raad, D. N., Sinske, A. N. and Vuuren, J. H. 2010. Comparison of four reliability

surrogate measures for water distribution systems design. Water Resources

Research, 46(5), 1–11. doi:10.1029/2009wr007785.

Rossman, L. A., 1993. EPANET, Users manual. Risk reduction engineering

laboratory, office of research and development, US Environmental Protection

Agency, Cincinnati, Ohio.

Rossman, L. A., and Van Zyl, J. E. 2011. The open sourcing of EPANET. 19–28.

doi:10.1061/41203(425)4.

Tanyimboh, T. T. and Templeman, A. B. 2000. A quantified assessment of the

relationship between the reliability and entropy of water distribution systems.

Engineering Optimization, 33(2), 179–199. doi:10.1080/03052150008940916.

Tanyimboh, T. T., Tietavainen, M. T. and Saleh, S. 2011. Performance assessment of

water distribution systems. Water Science and Technology, 11(4), 437–443.

Todini, E. 2000. Looped water distribution networks design using a resilience index

based heuristic approach. Urban Water, 2(2), 115–122. doi:10.1016/s1462-

0758(00)00049-2.

Wang, Q., Savić, D. A., and Kapelan, Z. 2014. Hybrid metaheuristics for multi-

objective design of water distribution systems. Journal of Hydroinformatics, Vol.

16, 165–177. doi:10.2166/hydro.2013.009

(Web 1) The Source code of HALO, 2019.

 https://github.com/hibrahimates/HALO-software-Epanet-CSharp.

(Web 2) EPANET library for C#, 2014.

http://www.water-simulation.com/wsp/2014/02/25/epanet-class-for-c-sharp.

(Web 3) Programmer’s Toolkits of EPANET, 2007.

http://epanet.de/developer/index.html.en.

https://github.com/hibrahimates/HALO-software-Epanet-CSharp

67

APPENDICES

SOURCE CODE OF HALO

In this study, 12 class objects (for C#) is created for HALO

1. AnaMetod.cs: The class object in which the program is triggered.

2. Iterations.cs: The iteration procedure is defined in this class.

3. DonguClass.cs: It is the class in which iteration steps are managed.

4. NetworkOp.cs: The class in which the inp file is selected and the calculation

outputs are managed.

5. NodeOp.cs: The class where all calculations related to nodes are made.

6. PipeOp.cs: The class in which all calculations for the pipes are made.

7. ReservoirOp.cs: The class in which all calculations for the reservoir are

made.

8. ResIndexClass: The class in which the resilience index is calculated.

9. FailureIndexClass.cs: The class in which the failure index and Surplus index

calculations are calculated.

10. Sabitler.cs: The class in which all constants used in the software are defined.

11. PublicListeler.cs: This is the class where the arrays used in the software are

stored.

12. UnsafeNativeMethods.cs: The class which is contains EPANET calculation

engine codes is downloaded from (Web 2).

A. AnaMetod.cs

using System;

using System.IO;

using System.Reflection;

using Epanet.Examples;

using System.Data.OleDb;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Collections;

68

using System.Windows.Forms;

using System.Drawing.Drawing2D;

namespace Epanet

{

 public partial class AnaMetod

 {

 private Button button1;

 private Label label1;

 private TextBox txt_resindex;

 private TextBox txt_minPressure;

 private Label label2;

 public static int sayac = 0;

 public static void Main(string[] args)

 {

 Application.EnableVisualStyles();

 Application.SetCompatibleTextRenderingDefault(false);

 Application.Run(new Form1());

 Console.ReadLine();

 }

 public static float ToSingle(double value)

 {

 return (float)value;

 }

 private static void Error(string format, params object[]

args)

 {

 Console.ForegroundColor = ConsoleColor.Red;

 Console.Error.WriteLine(format, args);

 Console.Error.WriteLine("Aborting.");

 Console.ResetColor();

 Console.ReadLine();

 }

 private void InitializeComponent()

 {

 this.button1 = new System.Windows.Forms.Button();

 this.label1 = new System.Windows.Forms.Label();

 this.txt_resindex = new System.Windows.Forms.TextBox();

 this.txt_minPressure = new

System.Windows.Forms.TextBox();

 this.label2 = new System.Windows.Forms.Label();

 //

 // button1

 //

 this.button1.Location = new System.Drawing.Point(64,

108);

 this.button1.Name = "button1";

 this.button1.Size = new System.Drawing.Size(156, 65);

 this.button1.TabIndex = 0;

 this.button1.Text = "Calculate";

 this.button1.UseVisualStyleBackColor = true;

 this.button1.Click += new

System.EventHandler(this.button1_Click);

 //

69

 // label1

 //

 this.label1.AutoSize = true;

 this.label1.Location = new System.Drawing.Point(42, 29);

 this.label1.Name = "label1";

 this.label1.Size = new System.Drawing.Size(156, 13);

 this.label1.TabIndex = 1;

 this.label1.Text = "User Defined Resilience Index :";

 //

 // txt_resindex

 //

 this.txt_resindex.Location = new

System.Drawing.Point(204, 26);

 this.txt_resindex.Name = "txt_resindex";

 this.txt_resindex.Size = new System.Drawing.Size(63,

20);

 this.txt_resindex.TabIndex = 2;

 this.txt_resindex.Text = "0,4122522";

 this.txt_resindex.TextAlign =

System.Windows.Forms.HorizontalAlignment.Center;

 //

 // txt_minPressure

 //

 this.txt_minPressure.Location = new

System.Drawing.Point(204, 61);

 this.txt_minPressure.Name = "txt_minPressure";

 this.txt_minPressure.Size = new System.Drawing.Size(63,

20);

 this.txt_minPressure.TabIndex = 4;

 this.txt_minPressure.Text = "29.5";

 this.txt_minPressure.TextAlign =

System.Windows.Forms.HorizontalAlignment.Center;

 //

 // label2

 //

 this.label2.AutoSize = true;

 this.label2.Location = new System.Drawing.Point(101,

61);

 this.label2.Name = "label2";

 this.label2.Size = new System.Drawing.Size(97, 13);

 this.label2.TabIndex = 3;

 this.label2.Text = "Minimum pressure :";

 //

 // AnaMetod

 //

 }

 private void button1_Click(object sender, EventArgs e)

 {

 DonguClass.DonguGiris();

 DonguClass.DonguCalistir();

 }

 }

}

70

B. Iterations.cs

using System;

using System.Collections.Generic;

using System.Linq;

namespace Epanet

{

 class Iterations

 {

 public static bool Kontroller(int b) ///b. boru için kontrol

yapar\\\

 {

 float[] Velocityler = PipeOp.Get_Velocity();

 float f_index =

FailureIndexClass.Calculate_Failureindex();

 float r_index = ResIndexClass.Calculate_Resindex();

 PublicListeler.resres.Add(r_index);

 if (Velocityler.Max() <= 2 && r_index >

ResIndexClass.Kullanıcı_ResilienceIndex && f_index >= 0)

 {

 return true;

 }

 return false;

 }

 public static Dictionary<int, float>

Iteration_ILK(Dictionary<int, float> icListem)

 {

 PipeOp.Calculate_PowDis_ILK(icListem);

 var RankedList =

PublicListeler.Powdis_Dict_ILK.OrderByDescending(x =>

x.Value).ToList();

 foreach (var itemq in RankedList.ToList())

 {

 UnsafeNativeMethods.ENgetlinkvalue(itemq.Key + 1,

LinkValue.Diameter, out float valueDiam);

 PublicListeler.List_BoruvCap.Add(itemq.Key,

valueDiam);

 }

 RankedList.Clear(); // RANKEDLIST ICINI TEMIZLIYORUM

BURDA1

 NetworkOp.SaveAndRun();

 foreach (var FLitemler in PublicListeler.List_BoruvCap)

 {

 int a = (Array.FindIndex(Sabitler.Pipe_Diameters, x

=> x.Equals(FLitemler.Value)));

 float b = Sabitler.Pipe_Diameters[a - 1];

 UnsafeNativeMethods.ENsetlinkvalue(FLitemler.Key +

1, LinkValue.Diameter, b); //Diameter Reduction

 if (Iterations.Kontroller(FLitemler.Key) == true)

 {

71

 Console.WriteLine(FLitemler.Key + 1 + ". pipe

will be Reduced.....");

 UnsafeNativeMethods.ENgetlinkvalue(FLitemler.Key

+ 1, LinkValue.Diameter, out float valueDiaa);

PublicListeler.AraList_kontrolSonrasi.Add(FLitemler.Key, valueDiaa);

 }

 else

 {

 int d =

(Array.FindIndex(Sabitler.Pipe_Diameters, x =>

x.Equals(FLitemler.Value)));

 float e = Sabitler.Pipe_Diameters[d];

 UnsafeNativeMethods.ENsetlinkvalue(FLitemler.Key

+ 1, LinkValue.Diameter, e);

 UnsafeNativeMethods.ENgetlinkvalue(FLitemler.Key

+ 1, LinkValue.Diameter, out float valueDiaa2);

 Console.WriteLine(FLitemler.Key + 1 + ". pipe

will be remained SAME");

PublicListeler.AraList_kontrolSonrasi.Add(FLitemler.Key,

valueDiaa2);

 NetworkOp.SaveAndRun();

 PublicListeler.SabitListe.Add(FLitemler.Key,

valueDiaa2); //boru çapı azalmayacağı için Sabit listeye

atanıyor.

 }

 }

 NetworkOp.OnlySave();

 Console.WriteLine("_____________________________");

 var yazdirilk = PublicListeler.List_BoruvCap.OrderBy(x

=> x.Key);

 foreach (KeyValuePair<int, float> kvp in yazdirilk)

 {

 UnsafeNativeMethods.ENsetlinkvalue(kvp.Key + 1,

LinkValue.Diameter, kvp.Value);

 Console.WriteLine("iterasyon sonucunda > Boru = {0}

= {1}", kvp.Key + 1, kvp.Value);

 }

 PublicListeler.List_BoruvCap.Clear();// List_BoruvCap

LISTESINI TEMIZLIYORUM BURDA

 return PublicListeler.AraList_kontrolSonrasi;

 }

 public static Dictionary<int, float>

Iteration(Dictionary<int, float> icListe)

 {

 PipeOp.Calculate_PowerDissipation(icListe);

 var RankedList =

PublicListeler.Powdis_Dict.OrderByDescending(x => x.Value).ToList();

 foreach (var itemq in RankedList.ToList())

 {

 UnsafeNativeMethods.ENgetlinkvalue(itemq.Key + 1,

LinkValue.Diameter, out float valueDiam);

72

 PublicListeler.List_BoruvCap.Add(itemq.Key,

valueDiam);

 }

 RankedList.Clear(); // RANKEDLIST ICINI TEMIZLIYORUM

BURDA

 PublicListeler.Powdis_Dict.Clear();//Powdis_Dict ICINI

TEMIZLIYORUM

 foreach (var FLitemler in PublicListeler.List_BoruvCap)

//kontroller ve azaltmalar

 {

 if

(PublicListeler.SabitListe.ContainsKey(FLitemler.Key))//Eğer test

edilen eleman Sabit listede varsa

 {

 UnsafeNativeMethods.ENgetlinkvalue(FLitemler.Key

+ 1, LinkValue.Diameter, out float c2);

PublicListeler.AraList_kontrolSonrasi.Add(FLitemler.Key, c2);

 }

 else

 {

 if (Array.FindIndex(Sabitler.Pipe_Diameters, x

=> x.Equals(FLitemler.Value)) == 0)

 {

 int a =

(Array.FindIndex(Sabitler.Pipe_Diameters, x =>

x.Equals(FLitemler.Value)));

UnsafeNativeMethods.ENsetlinkvalue(FLitemler.Key + 1,

LinkValue.Diameter, a); //AZALTMAYI BURDA YAPIYORUM\\\

 }

 else

 {

 int a =

(Array.FindIndex(Sabitler.Pipe_Diameters, x =>

x.Equals(FLitemler.Value)));

 float b = Sabitler.Pipe_Diameters[a -

1];//bu son boruya gelince saçmalıyor düzeltmemiz lazım

UnsafeNativeMethods.ENsetlinkvalue(FLitemler.Key + 1,

LinkValue.Diameter, b); //AZALTMAYI BURDA YAPIYORUM\\\

 }

 if (Iterations.Kontroller(FLitemler.Key) ==

true)

 {

 Console.WriteLine(FLitemler.Key + 1 + ".

pipe will be Reduced.....");

UnsafeNativeMethods.ENgetlinkvalue(FLitemler.Key + 1,

LinkValue.Diameter, out float valueDiaa);

PublicListeler.AraList_kontrolSonrasi.Add(FLitemler.Key, valueDiaa);

 }

73

 else

 {

 int a =

(Array.FindIndex(Sabitler.Pipe_Diameters, x =>

x.Equals(FLitemler.Value)));

 float c = Sabitler.Pipe_Diameters[a];

UnsafeNativeMethods.ENsetlinkvalue(FLitemler.Key + 1,

LinkValue.Diameter, c);

 Console.WriteLine(FLitemler.Key + 1 + ".

pipe will be remained SAME");

PublicListeler.AraList_kontrolSonrasi.Add(FLitemler.Key, c);

 NetworkOp.SaveAndRun();

 }

 }

 }

 NetworkOp.SaveAndRun();

 foreach (var eleman in

PublicListeler.AraList_kontrolSonrasi)

 {

 if (eleman.Value ==

PublicListeler.List_BoruvCap[eleman.Key]) //&&

 {

 if

(PublicListeler.SabitListe.ContainsKey(eleman.Key))

 {

 //null

 }

 else

 {

 PublicListeler.SabitListe.Add(eleman.Key,

eleman.Value);

 }

 }

 }

 Console.WriteLine("_____________________________");

 var yazdir = PublicListeler.List_BoruvCap.OrderBy(x =>

x.Key);

 foreach (KeyValuePair<int, float> kvp in yazdir)

 {

 UnsafeNativeMethods.ENsetlinkvalue(kvp.Key + 1,

LinkValue.Diameter, kvp.Value);

 Console.WriteLine("iterasyon sonucunda > Boru = {0}

= {1}", kvp.Key + 1, kvp.Value);

 }

 PublicListeler.List_BoruvCap.Clear();// List_BoruvCap

LISTESINI TEMIZLIYORUM BURDA

 return PublicListeler.AraList_kontrolSonrasi;

 }

 }

}

74

C. DonguClass.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace Epanet

{

 class DonguClass

 {

 public static void DonguGiris()

 {

 NetworkOp.StartSimulation(); // Networkü perform eder

 NetworkOp.SaveAndRun();

 NetworkOp.SaveAndRun();

 ResIndexClass.SetResindex();

 NetworkOp.SaveAndRun();

 PipeOp.Get_numofPipe();

 Console.WriteLine("Current Resilience index: " +

ResIndexClass.Calculate_Resindex());

 Console.WriteLine("Current Surplus value: " +

FailureIndexClass.Calculate_Failureindex());

 }

 public static void DonguCalistir()

 {

 int sayac = 0;

//LOOP////////////////////////

//

 for (int i = 0; i < PipeOp.Get_numofPipe(); i++)

 {

 PublicListeler.ANALISTE.Add(i,

Sabitler.Pipe_Diameters[Sabitler.Pipe_Diameters.Length - 1]);//yani

558,8

 UnsafeNativeMethods.ENsetlinkvalue(i + 1,

LinkValue.InitSetting, 130);

 }

 Console.WriteLine(1 + ". Döngü Başlangıcı");

 PublicListeler.DonguListesi =

Iterations.Iteration_ILK(PublicListeler.ANALISTE).ToDictionary(entry

=> entry.Key, entry => entry.Value);

 Console.WriteLine("-------1. iterasyon sonucu Reilience

index: " + ResIndexClass.Calculate_Resindex());

 Console.WriteLine("-------1. iterasyon sonucu head

difference: " + FailureIndexClass.Calculate_Failureindex());

 Console.WriteLine("Hizlar ");

 var hizlar = PipeOp.Get_Velocity();

 for (int i = 0; i < PipeOp.Get_numofPipe(); i++)

 {

 Console.WriteLine(hizlar[i]);

 }

75

 PublicListeler.AraList_kontrolSonrasi.Clear();

 do

 {

 sayac = sayac + 1;

 Console.WriteLine("---------------------------------

---");

 Console.WriteLine(sayac + 1 + ". Döngü Başlangıcı");

 PublicListeler.DonguListesi =

Iterations.Iteration(PublicListeler.DonguListesi).ToDictionary(entry

=> entry.Key, entry => entry.Value);

 int say = sayac + 1;

 Console.WriteLine("-------" + say + ". iterasyon

sonucu Reilience index: " + ResIndexClass.Calculate_Resindex());

 Console.WriteLine("-------" + say + ". iterasyon

sonucu head difference: " +

FailureIndexClass.Calculate_Failureindex());

 Console.WriteLine("Hizlar ");

 var hizlar2 = PipeOp.Get_Velocity();

 for (int i = 0; i < PipeOp.Get_numofPipe(); i++)

 {

 Console.WriteLine(hizlar2[i]);

 }

 PublicListeler.AraList_kontrolSonrasi.Clear();

 } while (PublicListeler.SabitListe.Count <

PublicListeler.ANALISTE.Count);

//LOOP////////////////////////

//

/

 Console.WriteLine(" ");

 var sonhal = PublicListeler.SabitListe.OrderBy(x =>

x.Key).ToList();

 Console.WriteLine(" ");

 Console.WriteLine("-----------SON DURUMDA ÇAPLAR--------

-------");

 foreach (KeyValuePair<int, float> kvp in sonhal)

 {

 UnsafeNativeMethods.ENsetlinkvalue(kvp.Key + 1,

LinkValue.Diameter, kvp.Value);

 Console.WriteLine("Son hal > Boru = {0}, Çap = {1}",

kvp.Key + 1, kvp.Value);

 }

 Console.WriteLine(" ");

 float min = FailureIndexClass.Calculate_Failureindex();

 float rez = ResIndexClass.Calculate_Resindex();

 PipeOp.CostCalculation(PublicListeler.SabitListe);

 Console.WriteLine("Pressure-30m= " + min);

 Console.WriteLine("Resilience index: " + rez);

 }

 }

}

76

D. NetworkOp.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace Epanet

{

 class NetworkOp

 {

 public string f1 = "net10.inp";

 public static void StartSimulation()

 {

 string f1 = "net10.inp"; //Defining the INP file

 string f2 = "outDos.txt";

 string f3 = "repDos2.txt";

 UnsafeNativeMethods.ENopen(f1, f2, f3); //Opening

the INP file

 UnsafeNativeMethods.ENgetcount(CountType.Link, out int

numofPipe);

 UnsafeNativeMethods.ENgetcount(CountType.Node, out int

numofNode);

 UnsafeNativeMethods.ENsolveH(); // Solving

hydraulically

 }

 public static void OnlySave()

 {

 UnsafeNativeMethods.ENsaveinpfile("net10.inp");

 }

 public static void SaveAndRun()

 {

 UnsafeNativeMethods.ENsaveinpfile("net10.inp");

 UnsafeNativeMethods.ENsolveH(); // Solving

hydraulically

 }

 }

}

E. NodeOp.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace Epanet

{

77

 class NodeOp

 {

 public static int Get_numofNode()

 {

 UnsafeNativeMethods.ENgetcount(CountType.Node, out int

numofNode);

 return numofNode;

 }

 public static float[] Get_NodeElev()

 {

 float[] NodeElevs = new float[Get_numofNode()];

 for (int i = 0; i < Get_numofNode(); i++)

 {

 UnsafeNativeMethods.ENgetnodevalue(i + 1,

NodeValue.Elevation, out float NodeElev);

 NodeElevs[i] = NodeElev;

 }

 return NodeElevs;

 }

 public static float[] Get_NodeHead()

 {

 float[] NodeHeads = new float[Get_numofNode()];

 for (int i = 0; i < Get_numofNode(); i++)

 {

 UnsafeNativeMethods.ENgetnodevalue(i + 1,

NodeValue.Head, out float NodeHead);

 NodeHeads[i] = NodeHead;

 }

 return NodeHeads;

 }

 public static float[] Get_Pressure()

 {

 float[] Pressures = new float[Get_numofNode()];

 for (int i = 0; i < Get_numofNode(); i++)

 {

 UnsafeNativeMethods.ENgetnodevalue(i + 1,

NodeValue.Pressure, out float Pressure);

 Pressures[i] = Pressure;

 }

 return Pressures;

 }

 public static float[] Get_NodeDemand()

 {

 float[] NodeDemands = new float[Get_numofNode()];

 for (int i = 0; i < Get_numofNode(); i++)

 {

 UnsafeNativeMethods.ENgetnodevalue(i + 1,

NodeValue.Demand, out float NodeDemand);

 NodeDemands[i] = NodeDemand * ((float)3.6);

 }

 return NodeDemands;

 }

 public static float[] Get_Hdesign()

78

 {

 float[] Hdesigns = new float[Get_numofNode()];

 for (int i = 0; i < Get_numofNode(); i++)

 {

 UnsafeNativeMethods.ENgetnodevalue(i + 1,

NodeValue.Elevation, out float Hdesign);

 Hdesigns[i] = Hdesign + Sabitler.MinHead;

 }

 return Hdesigns;

 }

 }

}

F. PipeOp.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace Epanet

{

 class PipeOp

 {

 public static int Get_numofPipe()

 {

 UnsafeNativeMethods.ENgetcount(CountType.Link, out int

numofPipe);

 return numofPipe;

 }

 public static void Set_PipeDia(float Dia)

 {

 for (int i = 0; i < Get_numofPipe(); i++)

 {

 UnsafeNativeMethods.ENsetlinkvalue(i + 1,

LinkValue.Diameter, Dia);

 }

 }

 public static float[] Get_Flow()

 {

 float[] Flowlar = new float[Get_numofPipe()];

 for (int i = 0; i < Get_numofPipe(); i++)

 {

 UnsafeNativeMethods.ENgetlinkvalue(i + 1,

LinkValue.Flow, out float valueFlow);

 Flowlar[i] = Math.Abs(valueFlow);//Flow negatif

olamıyor ve birimi m3/h

 }

 return Flowlar;

 }

 public static float[] Get_HeadLoss()

 {

 float[] HeadLosslar = new float[Get_numofPipe()];

79

 for (int i = 0; i < Get_numofPipe(); i++)

 {

 UnsafeNativeMethods.ENgetlinkvalue(i + 1,

LinkValue.HeadLoss, out float valueHloss);

 HeadLosslar[i] = valueHloss;

 }

 return HeadLosslar;

 }

 public static float[] Get_Velocity()

 {

 float[] Velocityler = new float[Get_numofPipe()];

 for (int i = 0; i < Get_numofPipe(); i++)

 {

 UnsafeNativeMethods.ENgetlinkvalue(i + 1,

LinkValue.Velocity, out float valueVelocity);

 Velocityler[i] = valueVelocity;

 }

 return Velocityler;

 }

 public static void Calculate_PowDis_ILK(Dictionary<int,

float> icListem)

 {

 int[] boruIndex1 = new int[icListem.Count];

 int[] boruIndex2 = new int[icListem.Count];

 float[] boruFiyat1 = new float[icListem.Count];

 float[] boruFiyat2 = new float[icListem.Count];

 float[] Cap1 = new float[icListem.Count]; //8 elemanlı

dizi oluşturdu

 float[] Cap2 = new float[icListem.Count];

 float[] boruLenght1 = new float[icListem.Count];

 float[] boruLenght2 = new float[icListem.Count];

 float[] Pipe_Start_Point = new float[icListem.Count];

 float[] Pipe_End_Point = new float[icListem.Count];

 //listeyi sıralıyor..

 var iclistSirali = icListem.OrderBy(x =>

x.Key).ToList();

 Cap1 = iclistSirali.Select(z => z.Value).ToArray();

 //Boruların başlangıç ve bitiş noktalarını bulup dizi

haline getiriyor..

 for (int i = 0; i < icListem.Count; i++)

 {

 UnsafeNativeMethods.ENgetlinknodes(i + 1, out int

NodeS, out int NodeF);

 Pipe_End_Point[i] = NodeS;

 Pipe_Start_Point[i] = NodeF;

 }

 //boruların CAP1 ve CAP2 olarak uzunluk ve fiyatlarını

buluyor..

 for (int k = 0; k < icListem.Count; k++)

 {

 UnsafeNativeMethods.ENgetlinkvalue(k + 1,

LinkValue.Length, out float lenght1);

 boruLenght1[k] = lenght1;

80

 }

 for (int k = 0; k < icListem.Count; k++)

 {

 boruIndex1[k] =

Array.IndexOf(Sabitler.Pipe_Diameters, Cap1[k]);

 boruFiyat1[k] = Sabitler.Pipe_Cost[boruIndex1[k]] *

boruLenght1[k];

 Cap2[k] =

Sabitler.Pipe_Diameters[Array.IndexOf(Sabitler.Pipe_Diameters,

Cap1[k]) - 1];

 boruIndex2[k] =

Array.IndexOf(Sabitler.Pipe_Diameters, Cap2[k]);

 boruFiyat2[k] = Sabitler.Pipe_Cost[boruIndex2[k]] *

boruLenght1[k];

 }

 // Junctionların demandlerini alıyoruz.//BUNU SADECE 1

kere yapıyoruz...

 for (int i = 0; i < NodeOp.Get_numofNode(); i++)

 {

 UnsafeNativeMethods.ENgetnodevalue(i + 1,

NodeValue.Demand, out float DemandValue);

 if (DemandValue < 0)

 {

 PublicListeler.Node_Demand_list.Add(i + 1, 0);

 }

 else

 {

 float deger = DemandValue * (float)3.6;

 PublicListeler.Node_Demand_list.Add(i + 1,

deger);

 }

 }

 //////////////////////////GAMA DURUMU İÇİN

(CAP2)//////////////////////

 // Start_Point noktası için HGL-Demand

 float[] Start_Point_HGL_CAP2 = new

float[icListem.Count];

 float[] End_Point_HGL_CAP2 = new float[icListem.Count];

 //Networke CAP2'yi atayıp sistemi analiz ediyoruz...

 for (int i = 0; i < icListem.Count; i++)

 {

 UnsafeNativeMethods.ENsetlinkvalue(i + 1,

LinkValue.Diameter, Cap2[i]);

 }

 NetworkOp.SaveAndRun();

 // HGL değerlerini çekiyoruz... node numarasına denk

gelen HGL leri listeliyoruz.

 for (int i = 0; i < NodeOp.Get_numofNode(); i++)

 {

 UnsafeNativeMethods.ENgetnodevalue(i + 1,

NodeValue.Head, out float HGL);

 PublicListeler.Node_HGL_list_CAP2.Add(i + 1, HGL);

 }

81

 //////////////////////////GAMA DURUMU İÇİN

(CAP1)//////////////////////

 // Start_Point noktası için HGL-Demand

 float[] Start_Point_HGL_CAP1 = new

float[icListem.Count];

 float[] End_Point_HGL_CAP1 = new float[icListem.Count];

 //Networke CAP1 i atayıp sistemi analiz ediyoruz...

 for (int i = 0; i < icListem.Count; i++)

 {

 UnsafeNativeMethods.ENsetlinkvalue(i + 1,

LinkValue.Diameter, Cap1[i]);

 }

 NetworkOp.SaveAndRun();

 // HGL değerlerini çekiyoruz...

 for (int i = 0; i < NodeOp.Get_numofNode(); i++)

 {

 UnsafeNativeMethods.ENgetnodevalue(i + 1,

NodeValue.Head, out float HGL);

 PublicListeler.Node_HGL_list_CAP1.Add(i + 1, HGL);

 }

 //power dissipationlar hesaplanacak ve Ratio bulunacak

 float[] PowDisp_1 = new float[icListem.Count];

 float[] PowDisp_2 = new float[icListem.Count];

 float[] Ratio = new float[icListem.Count];

 for (int t = 0; t < icListem.Count; t++)

 {

 UnsafeNativeMethods.ENgetlinknodes(t + 1, out int

NodeS, out int NodeF);

 if (PublicListeler.Node_HGL_list_CAP1[NodeS] >

PublicListeler.Node_HGL_list_CAP1[NodeF])

 {

 PowDisp_1[t] =

(PublicListeler.Node_Demand_list[NodeS] *

PublicListeler.Node_HGL_list_CAP1[NodeS] -

PublicListeler.Node_Demand_list[NodeF] *

PublicListeler.Node_HGL_list_CAP1[NodeF]) / 3600;

 }

 else

 {

 PowDisp_1[t] = -

(PublicListeler.Node_Demand_list[NodeS] *

PublicListeler.Node_HGL_list_CAP1[NodeS] -

PublicListeler.Node_Demand_list[NodeF] *

PublicListeler.Node_HGL_list_CAP1[NodeF]) / 3600;

 }

 if (PublicListeler.Node_HGL_list_CAP2[NodeS] >

PublicListeler.Node_HGL_list_CAP2[NodeF])

 {

 PowDisp_2[t] =

(PublicListeler.Node_Demand_list[NodeS] *

PublicListeler.Node_HGL_list_CAP2[NodeS] -

82

PublicListeler.Node_Demand_list[NodeF] *

PublicListeler.Node_HGL_list_CAP2[NodeF]) / 3600;

 }

 else

 {

 PowDisp_2[t] = -

(PublicListeler.Node_Demand_list[NodeS] *

PublicListeler.Node_HGL_list_CAP2[NodeS] -

PublicListeler.Node_Demand_list[NodeF] *

PublicListeler.Node_HGL_list_CAP2[NodeF]) / 3600;

 }

 Ratio[t] = -(boruFiyat2[t] - boruFiyat1[t]) /

((PowDisp_2[t] - PowDisp_1[t]) * Sabitler.g * 1000);

 PublicListeler.Powdis_Dict_ILK.Add(t, Ratio[t]);

 }

 for (int i = 0; i < icListem.Count(); i++)

 {

 UnsafeNativeMethods.ENsetlinkvalue(i + 1,

LinkValue.Diameter, Cap1[i]);

 }

 NetworkOp.SaveAndRun();

 PublicListeler.Node_HGL_list_CAP1.Clear();

 PublicListeler.Node_HGL_list_CAP2.Clear();

 }

 public static void

Calculate_PowerDissipation(Dictionary<int, float> icListe) //Burdaki

Dictionarylerde sorun yokz

 {

 PublicListeler.Powdis_Dict.Clear();//Her sefer yeniden

eleman ekleneceği için listeleri temizliyorum.

 int[] boruIndex1 = new int[icListe.Count];

 int[] boruIndex2 = new int[icListe.Count];

 float[] boruFiyat1 = new float[icListe.Count];

 float[] boruFiyat2 = new float[icListe.Count];

 float[] Cap1 = new float[icListe.Count]; //8 elemanlı

dizi oluşturdu

 float[] Cap2 = new float[icListe.Count];

 float[] boruLenght1 = new float[icListe.Count];

 float[] boruLenght2 = new float[icListe.Count];

 float[] Pipe_Start_Point = new float[icListe.Count];

 float[] Pipe_End_Point = new float[icListe.Count];

 var iclistSirali = icListe.OrderBy(x => x.Key).ToList();

 Cap1 = iclistSirali.Select(z => z.Value).ToArray();

 //Boruların başlangıç ve bitiş noktalarını bulup dizi

haline getiriyor..

 for (int i = 0; i < icListe.Count; i++)

 {

 UnsafeNativeMethods.ENgetlinknodes(i + 1, out int

NodeS, out int NodeF);

 Pipe_End_Point[i] = NodeS;

 Pipe_Start_Point[i] = NodeF;

 }

 for (int k = 0; k < icListe.Count; k++)

83

 {

 UnsafeNativeMethods.ENgetlinkvalue(k + 1,

LinkValue.Length, out float lenght1);

 boruLenght1[k] = lenght1;

 }

 for (int k = 0; k < icListe.Count; k++)

 {

 boruIndex1[k] =

Array.IndexOf(Sabitler.Pipe_Diameters, Cap1[k]);

 boruFiyat1[k] = Sabitler.Pipe_Cost[boruIndex1[k]] *

boruLenght1[k];

 if (PublicListeler.SabitListe.Count == 0)

 {

 Cap2[k] =

Sabitler.Pipe_Diameters[Array.IndexOf(Sabitler.Pipe_Diameters,

Cap1[k]) - 1];

 }

 else

 {

 if (PublicListeler.SabitListe.ContainsKey(k))

 {

 Cap2[k] =

Sabitler.Pipe_Diameters[Array.IndexOf(Sabitler.Pipe_Diameters,

Cap1[k])];

 }

 else

 {

 if (Array.IndexOf(Sabitler.Pipe_Diameters,

Cap1[k]) == 0)

 {

 Cap2[k] =

Sabitler.Pipe_Diameters[Array.IndexOf(Sabitler.Pipe_Diameters,

Cap1[k])];

 }

 else

 {

 Cap2[k] =

Sabitler.Pipe_Diameters[Array.IndexOf(Sabitler.Pipe_Diameters,

Cap1[k]) - 1];

 }

 }

 }

 boruIndex2[k] =

Array.IndexOf(Sabitler.Pipe_Diameters, Cap2[k]);

 boruFiyat2[k] = Sabitler.Pipe_Cost[boruIndex2[k]] *

boruLenght1[k];

 }

 for (int i = 0; i < icListe.Count(); i++)

 {

 UnsafeNativeMethods.ENsetlinkvalue(i + 1,

LinkValue.Diameter, Cap1[i]);//Eski haline getirdi sistemi

 }

 NetworkOp.SaveAndRun();

84

 //////////////////////////GAMA DURUMU İÇİN

(CAP2)//////////////////////

 float[] Start_Point_HGL_CAP2 = new float[icListe.Count];

 float[] End_Point_HGL_CAP2 = new float[icListe.Count];

 //Networke CAP2'yi atayıp sistemi analiz ediyoruz...

 for (int i = 0; i < icListe.Count; i++)

 {

 UnsafeNativeMethods.ENsetlinkvalue(i + 1,

LinkValue.Diameter, Cap2[i]);

 }

 NetworkOp.SaveAndRun();

 // HGL değerlerini çekiyoruz...

 for (int i = 0; i < icListe.Count; i++)

 {

 UnsafeNativeMethods.ENgetnodevalue(i + 1,

NodeValue.Head, out float HGL);

 PublicListeler.Node_HGL_list_CAP2.Add(i + 1, HGL);

 }

 //////////////////////////GAMA DURUMU İÇİN

(CAP1)//////////////////////

 // Start_Point noktası için HGL-Demand

 float[] Start_Point_HGL_CAP1 = new float[icListe.Count];

 float[] End_Point_HGL_CAP1 = new float[icListe.Count];

 //Networke CAP1 i atayıp sistemi analiz ediyoruz...

 for (int i = 0; i < icListe.Count; i++)

 {

 UnsafeNativeMethods.ENsetlinkvalue(i + 1,

LinkValue.Diameter, Cap1[i]);

 }

 NetworkOp.SaveAndRun();

 // HGL değerlerini çekiyoruz...

 for (int i = 0; i < icListe.Count; i++)

 {

 UnsafeNativeMethods.ENgetnodevalue(i + 1,

NodeValue.Head, out float HGL);

 PublicListeler.Node_HGL_list_CAP1.Add(i + 1, HGL);

 }

 ///Power Dissipation Calculation\\\

 float[] PowDisp_1 = new float[icListe.Count];

 float[] PowDisp_2 = new float[icListe.Count];

 float[] Ratio = new float[icListe.Count];

 for (int t = 0; t < icListe.Count; t++)

 {

 UnsafeNativeMethods.ENgetlinknodes(t + 1, out int

NodeS, out int NodeF);

 if (PublicListeler.Node_HGL_list_CAP1[NodeS] >

PublicListeler.Node_HGL_list_CAP1[NodeF])

 {

85

 PowDisp_1[t] =

(PublicListeler.Node_Demand_list[NodeS] *

PublicListeler.Node_HGL_list_CAP1[NodeS] -

PublicListeler.Node_Demand_list[NodeF] *

PublicListeler.Node_HGL_list_CAP1[NodeF]) / 3600;

 }

 else

 {

 PowDisp_1[t] = -

(PublicListeler.Node_Demand_list[NodeS] *

PublicListeler.Node_HGL_list_CAP1[NodeS] -

PublicListeler.Node_Demand_list[NodeF] *

PublicListeler.Node_HGL_list_CAP1[NodeF]) / 3600;

 }

 if (PublicListeler.Node_HGL_list_CAP2[NodeS] >

PublicListeler.Node_HGL_list_CAP2[NodeF])

 {

 PowDisp_2[t] =

(PublicListeler.Node_Demand_list[NodeS] *

PublicListeler.Node_HGL_list_CAP2[NodeS] -

PublicListeler.Node_Demand_list[NodeF] *

PublicListeler.Node_HGL_list_CAP2[NodeF]) / 3600;

 }

 else

 {

 PowDisp_2[t] = -

(PublicListeler.Node_Demand_list[NodeS] *

PublicListeler.Node_HGL_list_CAP2[NodeS] -

PublicListeler.Node_Demand_list[NodeF] *

PublicListeler.Node_HGL_list_CAP2[NodeF]) / 3600;

 }

 if (PowDisp_1[t] == PowDisp_2[t] || boruFiyat1[t] ==

boruFiyat2[t])//veya borufiyatlar eşitse

 {

 PublicListeler.Powdis_Dict.Add(t, -9999999);

 }

 else

 {

 Ratio[t] = -(boruFiyat2[t] - boruFiyat1[t]) /

((PowDisp_2[t] - PowDisp_1[t]) * Sabitler.g * 1000);

 PublicListeler.Powdis_Dict.Add(t, Ratio[t]);

 }

 }

 for (int i = 0; i < icListe.Count(); i++)

 {

 UnsafeNativeMethods.ENsetlinkvalue(i + 1,

LinkValue.Diameter, Cap1[i]);

 }

 NetworkOp.SaveAndRun();

 PublicListeler.Node_HGL_list_CAP1.Clear();

 PublicListeler.Node_HGL_list_CAP2.Clear();

 }

86

 public static float CostCalculation(Dictionary<int, float>

icListem)

 {

 float toplamfiyat = 0;

 int[] boruIndex = new int[Get_numofPipe()];

 float[] boruFiyat = new float[Get_numofPipe()];

 float[] Cap = new float[icListem.Count];

 float[] boruLenght = new float[icListem.Count];

 var iclistSirali = icListem.OrderBy(x =>

x.Key).ToList();

 Cap = iclistSirali.Select(z => z.Value).ToArray();

 for (int k = 0; k < icListem.Count; k++)

 {

 UnsafeNativeMethods.ENgetlinkvalue(k + 1,

LinkValue.Length, out float lenght);

 boruLenght[k] = lenght;

 }

 for (int k = 0; k < Get_numofPipe(); k++)

 {

 boruIndex[k] =

Array.IndexOf(Sabitler.Pipe_Diameters, Cap[k]);

 boruFiyat[k] = Sabitler.Pipe_Cost[boruIndex[k]] *

boruLenght[k];

 toplamfiyat = toplamfiyat + boruFiyat[k];

 // return toplamfiyat;

 }

 Console.WriteLine("Total Price :" + toplamfiyat);

 return toplamfiyat;

 }

 }

}

G. ReservoirOp.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace Epanet

{

 class ReservoirOp

 {

 public static Dictionary<int, float> RezKotlari = new

Dictionary<int, float>();

 public static Dictionary<int, float> Rezbosaltim = new

Dictionary<int, float>();

 public float[] ResNodeElevations = new

float[RezKotlari.Count];

87

 public float[] ResNodeDischarges = new

float[RezKotlari.Count];

 public static String ChkNodeType = "Reservoir";

 public static float[] Get_ResElevations()

 {

 for (int i = 0; i < NodeOp.Get_numofNode(); i++)

 {

 UnsafeNativeMethods.ENgetnodetype(i + 1, out

NodeType kontrol);

 if (kontrol.ToString() == ChkNodeType)

 {

 UnsafeNativeMethods.ENgetnodevalue(i + 1,

NodeValue.Head, out float ResHead);

 if (ResHead > 0)

 {

 if (RezKotlari.ContainsKey(i))

 {

 //null

 }

 else

 {

 RezKotlari.Add(i, ResHead);

 }

 }

 }

 }

 float[] ResNodeElevations = RezKotlari.Select(z =>

z.Value).ToArray();

 return ResNodeElevations;

 }

 public static float[] Get_ResNodeDischarges()

 {

 for (int i = 0; i < NodeOp.Get_numofNode(); i++)

 {

 UnsafeNativeMethods.ENgetnodetype(i + 1, out

NodeType kontrol);

 if (kontrol.ToString() == ChkNodeType)

 {

 UnsafeNativeMethods.ENgetnodevalue(i + 1,

NodeValue.Head, out float ResHead);

 UnsafeNativeMethods.ENgetnodevalue(i + 1,

NodeValue.Demand, out float ResDischarge);

 if (ResHead > 0)

 {

 if (Rezbosaltim.ContainsKey(i))

 {

 //null

 }

 else

 {

88

 Rezbosaltim.Add(i,

Math.Abs(ResDischarge));

 }

 }

 }

 }

 float[] ResNodeDischarges = Rezbosaltim.Select(z =>

z.Value).ToArray();

 return ResNodeDischarges;

 }

 public static float Calculate_TotalPowerofSystem()

 {

 float H_Q = 0;

 float[] resyukseklikleri =

ReservoirOp.Get_ResElevations();

 float[] rezbosaltimlari =

ReservoirOp.Get_ResNodeDischarges();

 for (int i = 0; i < resyukseklikleri.Length; i++)

 {

 float TotalPower = rezbosaltimlari[i] *

resyukseklikleri[i] * (float)3.6;

 H_Q = H_Q + TotalPower;

 }

 return H_Q;

 }

 }

}

H. ResIndexClass.cs

using System;

using System.IO;

using System.Reflection;

using Epanet.Examples;

using System.Data.OleDb;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Collections;

namespace Epanet

{

 class ResIndexClass

 {

 public static float Kullanıcı_ResilienceIndex;

 public static void SetResindex()

 {

 Console.WriteLine("Resilience Index: ");//Kullanıcıdan

Resilience index alınır

 if (Kullanıcı_ResilienceIndex < 1.0 &&

Kullanıcı_ResilienceIndex > 0.0)

 {

 //null

 }

89

 else

 {

 throw new Exception("Resilience Index must be

between 0-1 and use comma to define decimal");

 }

 Console.WriteLine("USER DEFINED RESILIENCE INDEX IS: " +

Kullanıcı_ResilienceIndex);

 }

 public static float Calculate_Resindex()

 {

 float T_demand_carp_h_eksi_hstar = 0;

 float T_demand_carp_Hdesign = 0;

 float[] Hdesignlar = NodeOp.Get_Hdesign();

 float[] Elevler = NodeOp.Get_NodeElev();

 float[] Demandler = NodeOp.Get_NodeDemand();

 float[] Pressurelar = NodeOp.Get_Pressure();

 float[] h_eksi_hstar = new

float[NodeOp.Get_numofNode()];

 float[] demand_carp_h_eksi_hstar = new

float[NodeOp.Get_numofNode()];

 float[] demand_carp_Hdesign = new

float[NodeOp.Get_numofNode()];

 for (int i = 0; i < NodeOp.Get_numofNode(); i++)

 {

 UnsafeNativeMethods.ENgetnodetype(i + 1, out

NodeType kontrol);

 if (kontrol.ToString() !=

ReservoirOp.ChkNodeType)//reservuar değilse

 {

 if (Demandler[i] > 0)

 {

 h_eksi_hstar[i] = Pressurelar[i] -

Sabitler.MinHead;

 demand_carp_h_eksi_hstar[i] = Demandler[i] *

h_eksi_hstar[i];

 T_demand_carp_h_eksi_hstar =

T_demand_carp_h_eksi_hstar + demand_carp_h_eksi_hstar[i];

 demand_carp_Hdesign[i] = Demandler[i] *

Hdesignlar[i];

 T_demand_carp_Hdesign =

T_demand_carp_Hdesign + demand_carp_Hdesign[i];

 }

 }

 }

 double ResHesaplanmis = (T_demand_carp_h_eksi_hstar) /

(ReservoirOp.Calculate_TotalPowerofSystem() -

T_demand_carp_Hdesign);

 double rounded = Math.Round(ResHesaplanmis, 8);

 return (float)rounded;

 }

 }

}

90

İ. FailureIndexClass.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace Epanet

{

 class FailureIndexClass

 {

 public static float Calculate_Failureindex()

 {

 float[] minDeger = new float[NodeOp.Get_numofNode()];

 float[] Pressurelar = NodeOp.Get_Pressure();

 for (int i = 0; i < NodeOp.Get_numofNode(); i++)

 {

 UnsafeNativeMethods.ENgetnodetype(i + 1, out

NodeType kontrol);

 if (kontrol.ToString() !=

ReservoirOp.ChkNodeType)//reservuar control

 {

 minDeger[i] = Pressurelar[i] - Sabitler.MinHead;

 }

 }

 float minimumDeger = minDeger.Where(a => a > 0).Min();

 return minimumDeger;

 }

 }

}

J. Sabitler.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace Epanet

{

 class Sabitler

 {

 public static float g = (float)9.81;

 public static float MinHead = (float)29.5;

 public static float[] Pipe_Diameters = new float[14]

 {

 (float)25.4 ,

 (float)50.8 ,

 (float)76.2 ,

 (float)101.6 ,

 (float)152.4 ,

 (float)203.2 ,

91

 (float)254.0 ,

 (float)304.8 ,

 (float)355.6 ,

 (float)406.4 ,

 (float)457.2 ,

 (float)508.0 ,

 (float)558.8,

 (float)609.6

 };

 public static float[] Pipe_Cost = new float[14]

 {

 2 ,

 5 ,

 8 ,

 11 ,

 16 ,

 23 ,

 32 ,

 50 ,

 60 ,

 90 ,

 130 ,

 170 ,

 300,

 550

 };

 }

}

K. PublicListeler.cs

using System;

using System.Collections.Generic;

using System.Linq;

using System.Text;

using System.Threading.Tasks;

namespace Epanet

{

 class PublicListeler

 {

 public static List<float> resres = new List<float>();

 public static Dictionary<int, float> IterListesi = new

Dictionary<int, float>();

 public static Dictionary<int, float> ANALISTE = new

Dictionary<int, float>();

 public static Dictionary<int, float> Powdis_Dict = new

Dictionary<int, float>();

 public static Dictionary<int, float> Powdis_Dict_ILK = new

Dictionary<int, float>();

 public static Dictionary<int, float> AraList = new

Dictionary<int, float>();

92

 public static Dictionary<int, float> GuncelBoruListesi = new

Dictionary<int, float>();

 public static Dictionary<int, float> List_BoruvCap = new

Dictionary<int, float>();

 public static Dictionary<int, float> AraList_kontrolSonrasi

= new Dictionary<int, float>();

 public static Dictionary<int, float> dongu = new

Dictionary<int, float>();

 public static Dictionary<int, float> SabitListe = new

Dictionary<int, float>();

 public static Dictionary<int, float> DonguListesi = new

Dictionary<int, float>();

 public static Dictionary<int, float> Node_Demand_list = new

Dictionary<int, float>();

 public static Dictionary<int, float> Node_HGL_list_CAP1 =

new Dictionary<int, float>();

 public static Dictionary<int, float> Node_HGL_list_CAP2 =

new Dictionary<int, float>();

 }

}

L. UnsafeNativeMethods.cs

Unlicensed code of the UnsafeNativeMethods.cs class which is contains EPANET

calculation engine codes is downloaded from (Web 2).

