
MULTI-VIEW SUBCELLULAR LOCALIZATION PREDICTION OF HUMAN
PROTEINS

A THESIS SUBMITTED TO
THE GRADUATE SCHOOL OF NATURAL AND APPLIED SCIENCES

OF
MIDDLE EAST TECHNICAL UNIVERSITY

BY

GÖKHAN ÖZSARI

IN PARTIAL FULFILLMENT OF THE REQUIREMENTS
FOR

THE DEGREE OF MASTER OF SCIENCE
IN

COMPUTER ENGINEERING

SEPTEMBER 2019





Approval of the thesis:

MULTI-VIEW SUBCELLULAR LOCALIZATION PREDICTION OF
HUMAN PROTEINS

submitted by GÖKHAN ÖZSARI in partial fulfillment of the requirements for the
degree of Master of Science in Computer Engineering Department, Middle East
Technical University by,

Prof. Dr. Halil Kalıpçılar
Dean, Graduate School of Natural and Applied Sciences

Prof. Dr. Halit Oğuztüzün
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ABSTRACT

MULTI-VIEW SUBCELLULAR LOCALIZATION PREDICTION OF
HUMAN PROTEINS

Özsarı, Gökhan
M.S., Department of Computer Engineering

Supervisor: Prof. Dr. M. Volkan Atalay

September 2019, 92 pages

Determining the subcellular localization of proteins is crucial for understanding the

functions of proteins, drug targeting, systems biology, and proteomics research. Ex-

perimental validation of subcellular localization is an expensive and challenging pro-

cess. There exist several computational methods for automated prediction of protein

subcellular localization; however, there is still room for better performance. Here, we

propose a multi-view SVM-based approach that provides predictions for human pro-

teins. We represent each protein sequence by multi-view features; i.e., physicochem-

ical properties, amino acid compositions, and homology-based features. Our classi-

fication model contains seven classifiers for each localization, where each classifier

provides a probabilistic result. To develop a multi-view voting classifier, we employ

a weighted classifier combination method that assigns different weights to classifiers

based on their discriminative strengths. We evaluated the described method on pre-

viously used datasets, as well as on our in-house dataset, called Trust dataset. Trust

dataset is created by using a new subcellular localization hierarchy which merges

UniProt Subcellular Location hierarchy and GO Cellular Component hierarchy by ap-
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plying it on only manual experimental annotations in UniProtKB. We compared our

results with five state-of-the-art methods, which are SubCons, LocTree2, CELLO2.5,

MultiLoc2, and DeepLoc. Our approach outperformed the others with 59%, 61%,

68% overall Matthews correlation coefficient (MCC) scores on Trust, Golden (Sub-

Cons benchmark dataset), Golden-Trust (refined Golden dataset) datasets, respec-

tively where SubCon’s MCC scores were 43%, 53%, and 56%.

Keywords: subcellular localization, prediction, human proteins, svm, multi-view
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ÖZ

İNSAN PROTEİNLERİNİN ÇOKLU GÖRÜNÜM YOLUYLA HÜCRE İÇİ
YERLEŞİMLERİNİN TAHMİNİ

Özsarı, Gökhan
Yüksek Lisans, Bilgisayar Mühendisliği Bölümü

Tez Yöneticisi: Prof. Dr. M. Volkan Atalay

Eylül 2019 , 92 sayfa

Protinlerin hücre içi yerleşimlerinin belirlenmesi proteinlerin fonksiyonlarını anla-

makta, ilaç belirleme çalışmalarında, sistem biyolojide ve protemik araştırmalarda

büyük önem arz etmektedir. Proteinlerin hücre içi yerleşimlerini otomatik olarak tah-

min eden bir çok hesaba dayalı metot vardır. Fakat hala daha iyi performans verebile-

cek çalışmalara ihtiyaç vardır. Biz çalışmamızda çoklu görünüme ve destek vektör

makinalarına dayalı insan proteinlerinin hücre içi yerleşimlerini tahmin eden yeni

bir yöntem ortaya koyuyoruz. Her bir proteini çoklu görünüm sağlayan birden fa-

zla özellik ile ifade ediyoruz. Bu özellikler fiziko kimyasal özellikler, amino asit

bileşimleri ve homoloji tabanlı özelliklerdir. Bizim sınıflandırma modelimiz her bir

yerleşim için ihtimal belirten sonuç veren yedi sınıflandırma içerir. Çok görünümlü

sistem geliştirme amacıyla sınıflandırıcıları ayırıcı gücüne dayalı olarak farklı ağırlık-

lar veren ağırlıklı sınıflandırma metodunu kullandık. Bu yöntemimizi data önce test

amaçlı kullanılmış veriler üzerinde ve kendi geliştirdiğimiz yeni veri üzerinde değer-

lendirdik. Kendi oluşturduğumuz Trust (Güven) veri kümesini UniProtKB hücre içi

hiyerarşisini ve GO (gen ontoloji) hücresel bileşenler hiyerarşisini birleştirerek oluş-
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turduğumuz özgün hücre içi yerleşim hiyerarşisini otomatik olmayan şerhlere sahip

proteinlere uygulayarak elde ettik. Sonuçlarımızı en gelişkin beş metot olan Sub-

Cons, LocTree2, CELLO2.5, MultiLoc2 ve DeepLoc yöntemleri ile karşılaştırdık.

Bizim ortaya koyduğumuz yaklaşım test için kullandığımız üç veri kümesi olan Trust

(biz oluşturduk), Golden(Subcons’un veri kümesi) ve Golden-Trust (iyileştirdiğimiz

Golden veri kümesi) üzerinde sırasıyla 59%, 61%, 68% ortalama Matthews correla-

tion coefficient (MCC) skorları elde ederken diğer beş metotta bize en yakın ortalama

skorlara ulaşan Subcons 43%, 53%, and 56% MCC skorlarına ulaşmıştır.

Anahtar Kelimeler: hücre içi yerleşim, tahmin, insan proteinleri, destek vektör maki-

naları, çoklu görünüm
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par. It has always been exceptional to spend time with you.

Finally, I would like to thank my family for their continuous support during my study.

I’m especially grateful to my wife Tülay Özsarı and my children, Hüsnü Musab

Özsarı, Hüma Elif Özsarı, and Hayme Erva Özsarı.

x



TABLE OF CONTENTS

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

ÖZ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

ACKNOWLEDGMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xi

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xviii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xxii

LIST OF ABBREVIATIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . xxv

CHAPTERS

1 INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation and Problem Definition . . . . . . . . . . . . . . . . . . 1

1.2 Proposed Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2

Prediction Step-1. Feature extraction and selection: . . . . . . . 2

Prediction Step-2. Obtaining probabilistic scores: . . . . . . . . 2

Prediction Step-3. Weighted-mean voting: . . . . . . . . . . . . 3

Prediction Step-4. Thresholding: . . . . . . . . . . . . . . . . . 3

1.3 Improvements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3

2 BACKGROUND INFORMATION AND RELATED WORK . . . . . . . . 5

2.1 Biological background . . . . . . . . . . . . . . . . . . . . . . . . . 5

xi



2.1.1 Cells and Organelles . . . . . . . . . . . . . . . . . . . . . . 5

2.1.2 Proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

2.1.3 Subcellular localization of proteins . . . . . . . . . . . . . . . 9

2.2 Related Work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2.2.1 CELLO . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.2.2 MultiLoc2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2.3 LocTree2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.4 SubCons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12

2.2.5 DeepLoc . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13

3 DATASETS AND FEATURE EXTRACTION METHODS . . . . . . . . . 15

3.1 Subcellular Location Hierarchy . . . . . . . . . . . . . . . . . . . . 15

Hier-1: Mapping UniProtKB SL identifiers to Gene Ontology(GO)
CC terms: . . . . . . . . . . . . . . . . . . . . . 15

Hier-2: Forming the subcellular location hierarchy: . . . . . . . 16

3.2 Mapping of subcellular locations . . . . . . . . . . . . . . . . . . . . 16

3.3 Universal Protein Resource Knowledge Base (UniProtKB) . . . . . . 18

3.4 Gene Ontology (GO) database and informatics resource . . . . . . . 18

3.5 Datasets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

3.5.1 Trust dataset . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

Trust-1: Generating the subcellular location hierarchy: . . . . . 20

Trust-2: Obtaining protein sequences: . . . . . . . . . . . . . . 20

Trust-3: Filtering with UniRef50: . . . . . . . . . . . . . . . . . 20

Trust-4: Experimental evidence filter: . . . . . . . . . . . . . . 20

xii



Trust-5: Cleaning protein sequences in negative dataset: . . . . . 21

Trust-6: Balancing the number of protein sequences in the dataset
of positive class and the dataset of negative class: 21

3.5.1.1 Multiple Localized Proteins . . . . . . . . . . . . . . . 21

3.5.2 Golden Dataset . . . . . . . . . . . . . . . . . . . . . . . . . 22

3.5.3 Golden-Trust Dataset . . . . . . . . . . . . . . . . . . . . . . 22

3.6 Feature Extraction . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

3.6.1 iFeature Tool . . . . . . . . . . . . . . . . . . . . . . . . . . 24

3.6.2 POSSUM Tool . . . . . . . . . . . . . . . . . . . . . . . . . 25

3.6.3 SPMAP . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7 Normalization methods . . . . . . . . . . . . . . . . . . . . . . . . . 27

3.7.1 Standardization (Z-score normalization) . . . . . . . . . . . . 28

3.7.2 MinMax normalization . . . . . . . . . . . . . . . . . . . . . 28

3.7.3 Power Transformation . . . . . . . . . . . . . . . . . . . . . . 28

3.7.4 Robust scaler normalization . . . . . . . . . . . . . . . . . . . 29

4 PROPOSED METHOD . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

4.1 Construction of classification models . . . . . . . . . . . . . . . . . 32

Construction Step-1. Generating the training datasets: . . . . . . 33

Construction Step-2. Feature extraction: . . . . . . . . . . . . . 33

Construction Step-3. Feature normalization: . . . . . . . . . . . 33

Construction Step-4. Hyperparameter optimization of SVMs: . . 33

Construction Step-5. Determining the weight of feature-based
probabilistic prediction models: . . . . . . . . . 34

Construction Step-6. Search for the best seven protein descriptors: 34

xiii



Construction Step-6.1: Finding the best performing combi-
nation of three protein descriptors: . . . . 35

Construction Step-6.2: Finding the best performing combi-
nation of five protein descriptors: . . . . . 35

Construction Step-6.3: Finding the best performing combi-
nation of seven protein descriptors: . . . . 36

4.2 Classification models for nine subcellular location groups . . . . . . 36

4.2.1 Classification model to predict subcellular localization of NUC
proteins: . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

Prediction Step-1: Feature extraction: . . . . . . . . . . . . . . 37

Prediction Step-2: Feature normalization: . . . . . . . . . . . . 37

Prediction Step-3: Obtaining probabilistic scores: . . . . . . . . 37

Prediction Step-4: Weighted-Mean Voting: . . . . . . . . . . . . 38

Prediction Step-5: Thresholding: . . . . . . . . . . . . . . . . . 38

4.2.2 Classification model to predict subcellular localization of CYT
proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

4.2.3 Classification model to predict subcellular localization of MEM
proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.4 Classification model to predict subcellular localization of EXC
proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

4.2.5 Classification model to predict subcellular localization of MIT
proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.6 Classification model to predict subcellular localization of ERE
proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

4.2.7 Classification model to predict subcellular localization of GLG
proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

4.2.8 Classification model to predict subcellular localization of LYS
proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

xiv



4.2.9 Classification model to predict subcellular localization of PEX
proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

4.3 Prediction by the classification models . . . . . . . . . . . . . . . . . 42

Prediction Step-1. Feature extraction and normalization: . . 42

Prediction Step-2. Feature normalization: . . . . . . . . . . 42

Prediction Step-3. Obtaining probabilistic scores: . . . . . . 42

Prediction Step-4. Weighted-mean voting: . . . . . . . . . . 43

Prediction Step-5. Thresholding: . . . . . . . . . . . . . . . 43

4.4 Performence metrics . . . . . . . . . . . . . . . . . . . . . . . . . . 43

5 RESULTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.1 10-fold cross-validation results in Trust-Train datasets of nine sub-
cellular location groups . . . . . . . . . . . . . . . . . . . . . . . . . 47

5.2 Performance comparison of CanSLPred with the other five methods: . 48

5.2.1 Performance evaluation and comparison of the methods for
NUC proteins . . . . . . . . . . . . . . . . . . . . . . . . . . 49

5.2.1.1 Performance evaluation in Trust-Test dataset of NUC . . 49

5.2.1.2 Performance evaluation in Golden dataset of NUC . . . 50

5.2.1.3 Performance evaluation in Golden-Trust dataset of NUC 51

5.2.2 Performance evaluation and comparison of CanSLPred for CYT
proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

5.2.2.1 Performance evaluation in Trust dataset of CYT . . . . 52

5.2.2.2 Performance evaluation in Golden dataset of CYT . . . 52

5.2.2.3 Performance evaluation in Golden-Trust dataset of CYT 53

5.2.3 Performance evaluation and comparison of CanSLPred for MEM
proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

xv



5.2.3.1 Performance evaluation in Trust-Test dataset of MEM . 54

5.2.3.2 Performance evaluation in Golden dataset of MEM . . . 55

5.2.3.3 Performance evaluation in Golden-Trust dataset of MEM 55

5.2.4 Performance evaluation and comparison of CanSLPred for EXC
proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

5.2.4.1 Performance evaluation in Trust-Test dataset of EXC . . 56

5.2.5 Performance evaluation and comparison of CanSLPred for MIT
proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

5.2.5.1 Performance evaluation in Trust-Test dataset of MIT . . 57

5.2.5.2 Performance evaluation in Golden dataset of MIT . . . 58

5.2.5.3 Performance evaluation in Golden-Trust dataset of MIT 59

5.2.6 Performance evaluation and comparison of CanSLPred for ERE
proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

5.2.6.1 Performance evaluation in Trust-Test dataset of ERE . . 60

5.2.6.2 Performance evaluation in Golden dataset of ERE . . . 60

5.2.6.3 Performance evaluation in Golden-Trust dataset of ERE 61

5.2.7 Performance evaluation and comparison of CanSLPred for GLG
proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

5.2.7.1 Performance evaluation in Trust-Test dataset of GLG . . 62

5.2.7.2 Performance evaluation in Golden dataset of GLG . . . 63

5.2.7.3 Performance evaluation in Golden-Trust dataset of GLG 63

5.2.8 Performance evaluation and comparison of CanSLPred for LYS
proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

5.2.8.1 Performance evaluation in Trust-Test dataset of LYS . . 65

5.2.8.2 Performance evaluation in Golden dataset of LYS . . . . 65

xvi



5.2.8.3 Performance evaluation in Golden-Trust dataset of LYS 66

5.2.9 Performance evaluation and comparison of CanSLPred for PEX
proteins . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

5.2.9.1 Performance evaluation in Trust-Test dataset of PEX . . 67

5.2.9.2 Performance evaluation in Golden dataset of PEX . . . 68

5.2.9.3 Performance evaluation in Golden-Trust dataset of PEX 68

5.2.10 Comparison of the predictors in terms of MCC scores for all
subcellular locations . . . . . . . . . . . . . . . . . . . . . . . 69

6 CONCLUSION, DISCUSSION AND FUTURE WORK . . . . . . . . . . . 83

6.1 Conclusion and Discussion . . . . . . . . . . . . . . . . . . . . . . . 83

6.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

xvii



LIST OF TABLES

TABLES

Table 2.1 The predictors that we employed to compare the proposed predictor. 10

Table 3.1 Number of multiple localized protein sequences in Trust dataset

with respect to the number of SLs. . . . . . . . . . . . . . . . . . . . . . 22

Table 3.2 Number of protein sequences in the datasets with respect to their

subcellular location groups. . . . . . . . . . . . . . . . . . . . . . . . . . 23

Table 3.3 Protein descriptors that we used from iFeature tool. . . . . . . . . . 25

Table 3.4 Protein descriptors that we use from POSSUM. . . . . . . . . . . . 26

Table 4.1 Hyperparameter space of SVM. . . . . . . . . . . . . . . . . . . . . 34

Table 4.2 The components for the classification model to predict subcellular

localization of NUC proteins. . . . . . . . . . . . . . . . . . . . . . . . . 38

Table 4.3 The components for the classification model to predict subcellular

localization of CYT proteins. . . . . . . . . . . . . . . . . . . . . . . . . 38

Table 4.4 The components for the classification model to predict subcellular

localization of MEM proteins. . . . . . . . . . . . . . . . . . . . . . . . . 39

Table 4.5 The components for the classification model to predict subcellular

localization of EXC proteins. . . . . . . . . . . . . . . . . . . . . . . . . 39

Table 4.6 The components for the classification model to predict subcellular

localization of MIT proteins. . . . . . . . . . . . . . . . . . . . . . . . . 40

xviii



Table 4.7 The components for the classification model to predict subcellular

localization of ERE proteins. . . . . . . . . . . . . . . . . . . . . . . . . 40

Table 4.8 The components for the classification model to predict subcellular

localization of GLG proteins. . . . . . . . . . . . . . . . . . . . . . . . . 41

Table 4.9 The components for the classification model to predict subcellular

localization of LYS proteins. . . . . . . . . . . . . . . . . . . . . . . . . 41

Table 4.10 The components for the classification model to predict subcellular

localization of PEX proteins. . . . . . . . . . . . . . . . . . . . . . . . . 42

Table 4.11 Confusion Matrix. . . . . . . . . . . . . . . . . . . . . . . . . . . . 44

Table 5.1 Performance results of CanSLPred by employing 10-fold cross-

validation in Trust-Train datasets of nine subcellular location groups. . . . 48

Table 5.2 Performance results of the methods for the proteins in Trust-Test

dataset of NUC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Table 5.3 Performance results of the methods for the proteins in Golden dataset

of NUC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Table 5.4 Performance results of the methods for the proteins in Golden-Trust

dataset of NUC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 52

Table 5.5 Performance results of the methods for the proteins in Trust-Test

dataset of CYT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Table 5.6 Performance results of the methods for the proteins in Golden dataset

of CYT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Table 5.7 Performance results of the methods for the proteins in Golden-Trust

dataset of CYT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

Table 5.8 Performance results of the methods for the proteins in Trust-Test

dataset of MEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

xix



Table 5.9 Performance results of the methods for the proteins in Golden dataset

of MEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Table 5.10 Performance results of the methods for the proteins in Golden-Trust

dataset of MEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Table 5.11 Performance results of the methods for the proteins in Trust-Test

dataset of EXC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Table 5.12 Performance results of the methods for the proteins in Trust-Test

dataset of MIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

Table 5.13 Performance results of the methods for the proteins in Golden dataset

of MIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Table 5.14 Performance results of the methods for the proteins in Golden-Trust

dataset of MIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Table 5.15 Performance results of the methods for the proteins in Trust-Test

dataset of ERE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Table 5.16 Performance results of the methods for the proteins in Golden dataset

of ERE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

Table 5.17 Performance results of the methods for the proteins in Golden-Trust

dataset of ERE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Table 5.18 Performance results of the methods for the proteins in Trust-Test

dataset of GLG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Table 5.19 Performance results of the methods for the proteins in Golden dataset

of GLG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Table 5.20 Performance results of the methods for the proteins in Golden-Trust

dataset of GLG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

Table 5.21 Performance results of the methods for the proteins in Trust-Test

dataset of LYS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

xx



Table 5.22 Performance results of the methods for the proteins in Golden dataset

of LYS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Table 5.23 Performance results of the methods for the proteins in Golden-Trust

dataset of LYS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Table 5.24 Performance results of the methods for the proteins in Trust-Test

dataset of PEX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Table 5.25 Performance results of the methods for the proteins in Golden dataset

of PEX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Table 5.26 Performance results of the methods for the proteins in Golden-Trust

dataset of PEX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Table 5.27 Comparison of the predictors in terms of MCC scores for all sub-

cellular locations by using Trust-Test dataset. . . . . . . . . . . . . . . . . 79

Table 5.28 Comparison of the predictors in terms of MCC scores for all sub-

cellular locations by using Golden dataset. . . . . . . . . . . . . . . . . . 80

Table 5.29 Comparison of the predictors in terms of MCC scores for all sub-

cellular locations by using Golden-Trust dataset. . . . . . . . . . . . . . . 81

xxi



LIST OF FIGURES

FIGURES

Figure 2.1 Human cell and its organelles [1] . . . . . . . . . . . . . . . . . 7

Figure 2.2 An illustration of a part of protein sequence and its three-dimensional

view [8] . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

Figure 3.2 Mapping of subcellular locations formed by using ’is_a’ and

’part_of’ relations. . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18

Figure 3.1 A part of the proposed subcellular location hierarchy . . . . . . . 30

Figure 4.1 Shematic representation of the classification models for the sub-

cellular localization prediction of human proteins. . . . . . . . . . . . . 32

Figure 5.1 Performance results of CanSLPred by employing 10-fold cross-

validation in Trust-Train dataset of nine subcellular location groups. . . 49

Figure 5.2 Performance results of the methods for the proteins in Trust-Test

dataset of NUC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51

Figure 5.3 Performance results of the methods for the proteins in Golden

dataset of NUC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53

Figure 5.4 Performance results of the methods for the proteins in Golden-

Trust dataset of NUC. . . . . . . . . . . . . . . . . . . . . . . . . . . . 54

Figure 5.5 Performance results of the methods for the proteins in Trust-Test

dataset of CYT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

xxii



Figure 5.6 Performance results of the methods for the proteins in Golden

dataset of CYT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

Figure 5.7 Performance results of the methods for the proteins in Golden-

Trust dataset of CYT. . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

Figure 5.8 Performance results of the methods for the proteins in Trust-Test

dataset of MEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

Figure 5.9 Performance results of the methods for the proteins in Golden

dataset of MEM. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

Figure 5.10 Performance results of the methods for the proteins in Golden-

Trust dataset of MEM. . . . . . . . . . . . . . . . . . . . . . . . . . . 63

Figure 5.11 Performance results of the methods for the proteins in Trust-Test

dataset of EXC. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65

Figure 5.12 Performance results of the methods for the proteins in Trust-Test

dataset of MIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

Figure 5.13 Performance results of the methods for the proteins in Golden

dataset of MIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 68

Figure 5.14 Performance results of the methods for the proteins in Golden-

Trust dataset of MIT. . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

Figure 5.15 Performance results of the methods for the proteins in Trust-Test

dataset of ERE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 5.16 Performance results of the methods for the proteins in Golden

dataset of ERE. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Figure 5.17 Performance results of the methods for the proteins in Golden-

Trust dataset of ERE. . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

Figure 5.18 Performance results of the methods for the proteins in Trust-Test

dataset of GLG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

xxiii



Figure 5.19 Performance results of the methods for the proteins in Golden

dataset of GLG. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 5.20 Performance results of the methods for the proteins in Golden-

Trust dataset of GLG. . . . . . . . . . . . . . . . . . . . . . . . . . . . 74

Figure 5.21 Performance results of the methods for the proteins in Trust-Test

dataset of LYS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

Figure 5.22 Performance results of the methods for the proteins in Golden

dataset of LYS. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

Figure 5.23 Performance results of the methods for the proteins in Golden-

Trust dataset of LYS. . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 5.24 Performance results of the methods for the proteins in Trust-Test

dataset of PEX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

Figure 5.25 Performance results of the methods for the proteins in Golden

dataset of PEX. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78

Figure 5.26 Performance results of the methods for the proteins in Golden-

Trust dataset of PEX. . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

Figure 5.27 Comparison of the predictors in terms of MCC scores for all

subcellular locations by using Trust-Test dataset. . . . . . . . . . . . . 80

Figure 5.28 Comparison of the predictors in terms of MCC scores for all

subcellular locations by using Golden dataset. . . . . . . . . . . . . . . 81

Figure 5.29 Comparison of the predictors in terms of MCC scores for all

subcellular locations by using Golden-Trust dataset. . . . . . . . . . . . 82

xxiv



LIST OF ABBREVIATIONS

SVM Support Vector Machine

SL Subcellular Location

UniProtKB Universal Protein Knowledge Base

GO Gene Ontology

CNN Convolutional neural network

LSTM Long-short-term memory

CC Cellular component

NUC Nucleus

CYT Cytoplasm

MEM Cell membrane

EXC Secreted

MIT Mitochondrion

ERE Endoplasmic reticulum

GLG Golgi apparatus

LYS Lysosome

PEX Peroxisome

MF Molecular Function

BP Biological Process

Mass-Spec Mass spectrometry

C/T/D Composition, Transition and Distribution

PSSM Position Specific Scoring Matrix

MCC Mathews Correlation Coefficient

TP True positive

FN False negative

xxv



FP False positive

TN True negative

PPI Protein-protein interactions

xxvi



CHAPTER 1

INTRODUCTION

Extensive genomic and proteomic studies have contributed a colossal amount of se-

quence data. The sequence of a protein is an essential factor in molecular and compu-

tational biology. In order to annotate protein functions, the potential roles of proteins

in a cellular context, such as metabolic pathways and interaction networks, must be

elucidated.

Cells can synthesize a different type of proteins that are generated to function in the

target organelles or subcellular locations within cells. Therefore, the transportation

of a protein to its final destination (target organelle) is required for performing its

function. The failure to transport a protein has proven to be a vital issue for a variety

of human diseases, such as cancer and Alzheimer’s disease.

In silico (computational) methods, to predict subcellular localization of a protein,

provide prior knowledge for in vivo and in vitro (experimental) studies. Therefore,

various subcellular localization prediction tools have been developed in recent years.

1.1 Motivation and Problem Definition

Cells are the basic units of life consisting of organelles and having different tasks

for the survival of living things. The biological functions in the cell are carried out

by the proteins in the organelles. Organelles are also the location for proteins. Pro-

teins are the result of amino acids coming together to form protein sequences. The

sequence of amino acids and the structure of amino acid compounds in the sequence

are the most critical factors that determine the function and localization of proteins.
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Besides, if the function of a protein is unknown, the subcellular location of a protein

is a very significant clue about its function. Therefore, to identify the function of a

protein, it is crucial to know its subcellular localization. There are in vivo and in vitro

methods to determine the subcellular localization of proteins. However, the experi-

mental methods are expensive and time-consuming. Therefore, several computational

methods are proposed in the last two decades to predict the subcellular localization

of proteins; yet, there is still room for better performance. Here, we propose a multi-

view Support Vector Machine (SVM)-based approach that provides predictions for

the subcellular localization of human proteins.

1.2 Proposed Method

There are three major parts that we describe in this study. We first create a new subcel-

lular location hierarchy that merges Universal Protein Knowledge Base (UniProtKB)

Subcellular Location (SL) hierarchy [2] and Gene Ontology (GO) Cellular Compo-

nent (CC) hierarchy [3]. We then form a dataset that is called Trust dataset since

it contains only the proteins which have experimental evidence for the subcellular

localization. We finally propose a multi-view classification approach that represents

each protein by using multiple protein descriptors and employs weighted mean voting

based on Support Vector machines (SVM). The proposed approach has four steps to

predict the subcellular localization of human proteins over nine groups of subcellular

locations. The proposed classification models work as follows :

Prediction Step-1. Feature extraction and selection: In this step, we represent the

protein sequence by employing seven protein descriptors that form the best combina-

tion with their features. Therefore, we employ three feature extraction tools: iFeature

tool [4], POSSUM tool [5], andSPMAP [6] from which forty protein descriptors are

employed to select the best representative seven of them.

Prediction Step-2. Obtaining probabilistic scores: In this step, there are seven

pre-trained SVMs by using the training dataset whose features are extracted by the
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selected seven protein descriptors. Each SVM gives a probabilistic score that indi-

cates the localization probability for a query protein sequence.

Prediction Step-3. Weighted-mean voting: We add-up the products of probabilis-

tic scores and weights where each weight represents the discriminative power of the

SVM based on the MCC score.

Prediction Step-4. Thresholding: The weighted-score above the pre-determined

threshold indicates positive predictions, whereas the equal or below is predicted as

negative.

The predictor that we propose includes nine independently constructed classification

models where each model provides binary predictions for one of the nine subcellular

localizations of human proteins. These locations are CYT(Cytoplasm), NUC(Nuclear),

MEM(Membrane), MIT(Mitochondrion), ERE(Endoplasmic reticulum), EXC(Secreted),

GLG(Golgi apparatus), LYS(Lysosome) and PEX(Peroxisome).

1.3 Improvements

In this study, we describe a multi-view subcellular localization prediction method

where it outperforms existing methods with 82% overall precision and overall 63%

MCC score out of three datasets Trust-Test, Golden and Golden-Trust. Our method

is called as multi-view approach since we employ multiple protein descriptors to ex-

tract the features of protein sequences. The protein descriptors are selected out of 160

cases of the protein descriptors and normalization methods. Besides, due to the lack

of sufficent information about the relations among subcellular location (SL) terms in

UniProtKB SL hierarchy, to use UniProtKB annotations with a better SL hierarchy

we employ Gene Ontology Cellular Component hierarchy. We describe a newly gen-

erated SL hierarchy which utilizes UniProtKB subcellular location terms and Gene

Ontology cellular component hierarchy. Moreover, one of the most important con-

tribution of our study is Trust dataset of human proteins. We present a carefully

prepared dataset, Trust dataset, that can be used in both training and test for future
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studies. Trust dataset includes protein sequences that cover almost all the subcellular

locations in a human cell. The foremost difference of Trust dataset is the experimental

evidence for the subcellular localization annotations of the proteins. Also, we refined

the Golden dataset(benchmark dataset of Subcons) [7] by using the way we formed

the Trust dataset and introduced a new dataset which is called as the Golden-Trust

dataset.
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CHAPTER 2

BACKGROUND INFORMATION AND RELATED WORK

This chapter presents an overview of the biological background and related work

about the subcellular localization of proteins.

2.1 Biological background

In this section, we explain the biological background of our work. Cells and or-

ganelles are first defined. Proteins and types of proteins are then presented. Finally,

the subcellular localization of proteins is introduced.

2.1.1 Cells and Organelles

Cells are the smallest living units. It is a closed system, can replicate themselves

and are the building blocks of our body. To understand how these small organisms

work, we examine the internal components of a cell. We will focus on eukaryotic

cells, nucleus-containing cells, whereas prokaryotic cells are structured differently

from nucleus-free cells. A cell consists of two main regions, the cytoplasm, and the

nucleus. The nucleus is enclosed by a nuclear envelope and contains chromosomal

DNA. The cytoplasm is a liquid matrix that surrounds the nucleus and is bound by

the outer cell membrane. Organelles are the components of cells within the cytoplasm

that perform functions necessary to sustain homeostasis in the cell. They are involved

in various processes, such as energy production, protein, and secretory production,

the destruction of toxins, and the response to external signals.

Organelles are examined either membranous or non-membranous. Membranous or-
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ganelles have their plasma membranes to produce a lumen separated from the cyto-

plasm while non-membranous organelles are not surrounded by a plasma membrane.

Most non-membranous organelles are part of the cell skeleton, the primary carrier

structure of the cell, which are filaments, microtubes, and centrifuges.

The nucleus can be considered as the center of operations in the cell. There is usually

one nucleus per cell, but this is not always the case, for example, skeletal muscle cells

have two. The nucleus contains most of the DNA in the cell while a small amount

is in the mitochondria. The nucleus sends messages to instruct, grow, share, or die.

The nucleus is isolated from the rest of the cell by a membrane called the nuclear

envelope. The nuclear pores in the membrane pass through small molecules and ions,

while larger molecules require transport proteins to penetrate them.

The cytoplasm dwells in the cell that encloses the nucleus and consists of about 80

percent water. It includes organelles and a gelatinous fluid called cytosol. Many of

the essential reactions within the cell happen in the cytoplasm.

The plasma membrane assures that each cell remains shielded from its neighbor. This

membrane is mainly composed of phospholipids, which prevents water-based sub-

stances from entering the cell. The plasma membrane comprises a series of receptors

that perform various tasks.

Mitochondrion, commonly known as the cell’s power, help transform the energy of

food into the energy (adenosine triphosphate) that can be used in the cell. However, it

has also other roles such as including the storage of calcium and a role in cell death.

The endoplasmic reticulum (ER) is an extensive membrane network responsible for

protein production, metabolism and lipid transport, as well as detoxification of poi-

sons. Two types of endoplasmic reticulum are rough endoplasmic reticulum and

smooth endoplasmic reticulum. The type of ER is determined according to the exis-

tence of ribosomes in the plasma membrane of the ER.

The Golgi apparatus is regarded as the post office of the cell in which the proteins are

modified, classified, packaged, and labeled for secretion. Besides, it is involved in the

transportations of lipids within the cell and the creation of lysosomes. The sacks or

folds of the Golgi apparatus are called cisternae.
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The lysosome is one of the organelles which play a significant role in waste disposal,

whereas there are also other organelles to remove wastes. The lysosome contains

digestive enzymes where excessive organelles, food particles, and entangled viruses

or bacteria are digested.

Peroxisomes are single membrane-bound organelles that contain enzymes. Peroxi-

somes have two functions: they break down the fatty acids used to form membranes

and used as a fuel for breathing and transfer hydrogen from the compounds to oxygen

to form hydrogen peroxide and then convert the hydrogen peroxide into water.

Figure 2.1 illustrates a schematic representation of a human cell and its organelles.

Figure 2.1: Human cell and its organelles [1]

2.1.2 Proteins

Proteins are large and complex molecules that play essential roles in the body. They

perform most of the activities in the cells and are necessary for the structure, function,

and regulation of body tissues and organs. Proteins comprise hundreds or thousands

of small units called amino acids that link together in long chains. Amino acids are
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the primary compounds of proteins that play an essential role in living organisms.

Twenty different types of amino acids can be used to form proteins. Each amino acid

is composed of an amino group and a carboxyl group bonded to a tetrahedral carbon,

which is called alpha carbon. The amino acids vary in terms of their side chains,

which are called R groups. The R group for each of the amino acids diversifies in

structure, electrical charge, and polarity. The amino acid sequence determines the

unique three-dimensional structure and specific function of each protein. Proteins

can be listed according to their scope of functions as described below:

• Enzymes perform almost all chemical reactions within the cells. Besides, they

read the genetic information stored in the DNA to generate new molecules.

• Structural component proteins provide structure and support for cells. Compre-

hensively they also enable the body to move.

• Antibodies bind to foreign particles such as viruses and bacteria to protect the

body.

• Transport and storage proteins bind and transport small atoms and molecules in

cells.

• Messenger proteins transmit signals to organize biological processes between

different cells, tissues, and organs.

Figure 2.2: An illustration of a part of protein sequence and its three-dimensional

view [8]
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2.1.3 Subcellular localization of proteins

Subcellular localization of the protein is one of the essential aspects that must be char-

acterized to comprehend cell biology. Identifying subcellular localization of a protein

presents a beginning which gives lues about its functions and interaction partners for

the proteins with limitations, or there is no information available. The definition of

proteins of subcellular structures and organelles is a fundamental step towards the

understanding of cell anatomy. Protein localization can be identified by using in vivo

and in vitro methods such as mass spectrometry or immunofluorescent imaging and

fluorescent protein labeling as well as by utilizing in silico methods (computational

methods). The computational methods are described in the section of related work.

2.2 Related Work

Identifying the subcellular localization of proteins by in vivo and in vitro methods

is an expensive and time-consuming process. Hence, various computational methods

are proposed to predict the subcellular localization of proteins in the last two decades.

These methods can be categorized as sequence-based, annotation-based, and hybrid

methods. Sequence-based methods includes the following categories:

• sorting-signals based methods: PSORT [9], WoLF PSORT [10], TargetP [11]

and SignalP [12].

• composition-based methods, such as amino-acid compositions [13], amino-

acid pair compositions, gapped amino-acid pair compositions (GapAA) [14],

and pseudo-amino-acid composition [15].

• homology-based methods: Proteome Analyst [16], PairProSVM [17], and other

predictors [18].

Annotation-based methods employ the correlation between annotations of a protein

and its subcellular location. The most used Gene Ontology (GO) information. GO-

based predictors can be categorized into three categories:

• InterProScan [19] is a database of protein signatures [20],
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• employ protein access numbers to seek the GO annotation database such as

Hum-PLoc [21], Euk-mPLoc [22], and Greg-PLoc [23],

• utilizing homologous protein access numbers from BLAST [24] to seek for

the GO annotation database such as ProLoc-GO [25], Cell-PLoc 2.0 [35], and

mGOASVM [26].

There are also hybrid approaches that unite the characteristics of sequence-based

mathods and annotation-based methods such as Cello2GO [27], SherLoc2 [28], and

MultiLoc2 [29].

Table 2.1: The predictors that we employed to compare the proposed

predictor.

Predictors Year Category ML method Organism Number of SLs

CELLO2.5 2006 Sequence-based SVM Eukaryotes, bacteria 12

MultiLoc2 2009 Hybrid SVM Eukaryotes 11

LocTree2 2012 Sequence-based SVM Eukaryotes 18

SubCons 2017 Hybrid Combines four predictors Human 9

DeepLoc 2017 Sequence-based RNN Eukaryotes 9

We give an overview of the predictors that we employed to compare the proposed

predictor, CanSLPred, as described below.

2.2.1 CELLO

CELLO [30] is a subcellular localization predictor that provides multi-class predic-

tions for the proteins of three organisms: Gram-negative, Gram-positive, and Eukary-

otes. It consists of two-layers of Support Vector Machine (SVM) that present proba-

bilistic predictions for 12 subcellular localizations in Eukaryotes, 5 in Gram-positive

and Gram-negative organisms. In the first layer of the predictor, the protein features

are extracted by using four protein descriptors: amino acid composition, dipeptide

composition, partitioned amino acid composition, and sequence composition based

on the physicochemical properties of amino acids. Four SVMs are trained by using

the features of the corresponding protein descriptors to give probabilistic predictions

for all localizations where each trained SVM provides probabilistic scores for all sub-
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cellular localizations. In the second layer, an SVM is employed for jury voting that

combines all probabilistic predictions from four SVMs and produces a final proba-

bilistic distribution on all localizations.

CELLO employs two datasets in training: a dataset for Gram-negative bacteria covers

five subcellular locations that are extracellular, cytoplasmic, cytoplasmic membrane,

periplasmic, outer membrane and a dataset for Eukaryotes includes the proteins from

12 subcellular locations: chloroplast, cytoplasmic, cytoskeleton, ER, extracellular,

Golgi apparatus, lysosomal, mitochondrial, nuclear, peroxisomal, plasma membrane,

vacuolar.

2.2.2 MultiLoc2

MultiLoc2 [29] is a subcellular localization predictor (the developed version of Mul-

tiLoc), which has two versions: one is LowRes (low resolution) version, the other one

is HighRes (high resolution) version. LowRes (low resolution) version is for global

proteins that provide predictions for five localizations whereas HighRes version pre-

dicts up to 11 subcellular localizations for eukaryotic proteins: nuclear, cytoplasmic,

mitochondrial, chloroplast, extracellular, plasma membrane, peroxisomal, endoplas-

mic reticulum, Golgi apparatus, lysosomal and vacuolar proteins. MultiLoc2 has

two layers: the first layer consists of six subpredictors: SVMTarget, SVMSA, SV-

MAaac, MotifSearch, PhyloLoc, and GOLoc. SVMTarget employs N-terminal tar-

geting to predict the categories of a protein (mitochondrial, secretory pathway, or

other). SVMSA is to detect the existence of a signal anchor. SVMaac consists of a

set of SVMs that uses amino acid compositions of the proteins to give binary predic-

tions for each localization. MotifSearch is to identify sequence motifs and structural

domains that provide essential information for proteins. PhyLoc relies on phyloge-

netic profiles of the proteins in 78 fully sequenced genomes, and it employs SVMs as

classifiers to predict all of the subcellular localization. GOLoc calculates Gene On-

tology (GO) terms of proteins by using InterProScan [19] and forms a binary-coded

vector for each protein that is generated by considering the presence of GO terms.

The output of six subpredictors creates a protein profile vector which is used as in-

put to the second-layer SVMs (one vs. one). SVMs in the second-layer provide the
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probabilistic predictions for the localizations.

2.2.3 LocTree2

LocTree2 [31] is a subcellular localization predictor that provides predictions for

archeal, bacterial and eukaryotic proteins in a hierarchical manner. It is a tree of

16 binary SVM classifiers which classify the eukaryotic proteins to 18 subcellular

locations: chloroplast, chloroplast membrane, cytosol, endoplasmic reticulum, endo-

plasmic reticulum membrane, extracellular, fimbrium, Golgi apparatus, Golgi appara-

tus membrane, mitochondria, mitochondria membrane, nucleus, nucleus membrane,

outer membrane, periplasmic space, peroxisome, peroxisome membrane, plasma mem-

brane, plastid, vacuole, vacuole membrane.

Protein sequence profiles are created by using BLAST [24] and are employed to cal-

culate the kernel matrices of the protein sequences. The calculated kernel matrices

are used as an input to SVMs.

2.2.4 SubCons

Subcon [7] is an ensemble predictor that combines the previously proposed four pre-

dictors: CELLO2.5 [30], LocTree2 [31], MultiLoc2 [29], and SherLoc2 [28]. It has

two levels in the classification of human proteins into nine subcellular locations that

are nucleus, cytoplasm/cytoskeleton, mitochondria, peroxisome, ER, Golgi appara-

tus, lysosome, plasma membrane, secreted. In the first level, the predictions are col-

lected from four predictors where CELLO2.5, MultiLoc2, and SherLoc2 give prob-

abilistic predictions, and LocTree gives a binary prediction. In the second level, the

predictions from four predictors are combined and used as input to the Random Forest

classifier. Finally, subcellular localization prediction is provided with a probabilistic

distribution on nine cellular compartments.

Moreover, a benchmark dataset of human proteins is generated by SubCons develop-

ers, which is called Golden dataset. This dataset consists of the proteins which are

experimentally annotated in at least two data resources out of three: Mass Spectrom-
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etry, SLHPA, and UniProt.

2.2.5 DeepLoc

DeepLoc [32] is a subcellular localization predictor that employs deep learning meth-

ods (recurrent neural networks with long-short-term memory cells, attention models,

convolutional neural networks). It provides predictions for eukaryotic proteins on ten

subcellular locations: nucleus, cytoplasm, extracellular, mitochondrion, cell mem-

brane, ER, plastid, Golgi apparatus, lysosome/vacuole, peroxisome. Convolutional

neural networks (CNNs) utilizes 120 filters to extract short motifs from protein se-

quences. Recurrent neural networks (RNNs) employs 256 long-short-term memory

(LSTM) units to scan the protein sequence in both directions and outputs in 512,000

dimensions. The attention decoding layer utilizes an LSTM with 512 units through 10

decoding steps, and the attention mechanism feedforward neural network holds 256

units. The final fully connected dense layer is constituted by 512, and the two output

layers have one unit for membrane-bound and ten units for the subcellular locations.

The above mentioned five predictors provide subcellular localization predictions for

eukaryotic and human proteins. DeepLoc is one of the state-of-the-art methods which

employs a deep-learning approach and presents other perspectives of protein sequences

provided by its online version. On the other hand, SubCons is a hybrid method

which combines four powerful prediction tools: LocTree2, MultiLoc2, Sherloc2, and

CELLO2.5 that unite different aspects of proteins based on the sequences and GO

annotations.
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CHAPTER 3

DATASETS AND FEATURE EXTRACTION METHODS

In this chapter, we first explain how we create the new subcellular location hierarchy.

The specifications and the steps to generate the datasets are then introduced. Further,

the feature extraction tools and the information about the protein descriptors to extract

the features are presented. Feature normalization methods are described at the end.

3.1 Subcellular Location Hierarchy

In our study we want to use UniProtKB annotations due to its realibility. How-

ever, UniProtKB Subcellular Location (SL) hierarchy is not sufficient to cover all

relations among SL terms. Therefore, we come with an idea of integrating UniPro-

tKB SL terms to Gene Ontology Cellular Component hierarchy and introduce a new

subcellular location hierarchy that combines Universal Protein Resource Knowledge

Base(UniProtKB) Subcellular Location (SL) hierarchy and Gene Ontology (GO) Cel-

lular Component (CC) hierarchy. Our goal is to have a SL hierarchy which covers all

relations (is_a relations) since it is vital to have a realiable hierarchy in the genera-

tion of the protein datasets. Some of the studies make use of UniProtKB Subcellular

Location Hierarchy, whereas the others employ GO CC Hierarchy. To the best of our

knowledge, it is the first time that these two hierarchies are combined. Two steps to

create the proposed subcellular location hierarchy are described below:

Hier-1: Mapping UniProtKB SL identifiers to Gene Ontology(GO) CC terms:

This step is to map UniProtKB subcellular location identifiers to G0 terms. We

use a mapping of UniProtKB SL identifiers to GO CC terms which are defined in
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the ’uniprotkb_sl2go’ file. For instance, SL-091 the subcellular location identifier

for nucleus in UniProtKB and GO:0005634 term for nucleus in GO were decided

to be equivalent by the curator after comparing the definitions of both. Therefore,

G0:0005634 is manually mapped to SL-091.

Hier-2: Forming the subcellular location hierarchy: To form a new subcellular

location hierarchy, we consider the subcellular location terms from UniProtKB and

’is_a’ relations of cellular components in GO hierarchy. For example, GO:0005634

’is_a’ GO:0043231 means that GO:0043231 is a parent of GO:0005634 in GO hier-

archy. We first extract GO CC hierarchy by using the document ’go-basic.obo’ [33]

where GO terms definitions and the hierarchical relationships with other GO terms

are defined. We then replace all GO CC terms with the subcellular locations using

the mapping in the document (uniprotkb_sl2go). There are 517 subcellular location

identifiers in UniProtKB, but only 437 subcellular locations are mapped in ’unipro-

tkb_sl2go’ document. Therefore, the missing subcellular locations in the mapping

document are inserted into the hierarchy by using the subcellular localization hierar-

chy in the document ’subcell.txt’ [2] which contains subcellular location terms, their

definitions, and their hierarchical relationships with other subcellular locations, which

are described in UniProtKB. Finally, we form the proposed subcellular location hier-

archy, which Figure 3.1 depicts a part of it.

3.2 Mapping of subcellular locations

We consider the nine organelles of a human cell in our study where proteins perform

their functions mainly within these organelles to sustain the life of a human cell.

An organelle is a subcellular location in terms of the localization of proteins. Nine

organelles that UniProtKB/SwissProt provides an adequate number of proteins for

both training and test of machine learning methods are indicated as follows:

• Nucleus (NUC)

• Cytoplasm (CYT)

• Cell membrane (MEM)
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• Secreted (EXC)

• Mitochondrion (MIT)

• Endoplasmic reticulum (ERE)

• Golgi apparatus (GLG)

• Lysosome (LYS)

• Peroxisome (PEX)

Moreover, the organelles consist of parts which are defined as a ’part_of’ relation in

both subcellular location hierarchies. For example, the mitochondrion envelope is a

part of the mitochondrion. Therefore we include the mitochondrion envelope to MIT

subcellular location group which can be defined as group of main organelle and its

parts.

Consequently, it is inevitable to consider the parts of an organelle which form the

complete structure of the organelle. Therefore, we define a mapping by considering

’part_of’ relations in the two subcellular location hierarchies (UniProtKB SL hierar-

chy and GO CC hierarchy) and by including ’is_a’ relations in the proposed subcel-

lular location hierarchy. A schematic representation of the mapping is illustrated in

Figure 3.2.
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Figure 3.2: Mapping of subcellular locations formed by using ’is_a’ and ’part_of’

relations.

3.3 Universal Protein Resource Knowledge Base (UniProtKB)

Universal Protein Resource Knowledge Base (UniProtKB) [2] is a protein resource

that provides a well-built, complete, freely available data on protein sequences and

their functional annotations. UniProtKB contains the following information regarding

a protein: "function(s), enzyme-specific information, biologically relevant domains,

and sites, post-translational modifications, subcellular location(s), tissue specificity,

developmentally specific expression, structure, interactions, splice isoform(s), dis-

eases associated with deficiencies or abnormalities" [2]. UniProtKB has two databases,

which are UniProtKB/Swiss-Prot and UniProtKB/TrEMBL. UniProtKB/Swiss-Prot

includes manually annotated entries by expert curators, whereas UniProtKB/TrEMBL

stores automatically annotated and unreviewed entries.

3.4 Gene Ontology (GO) database and informatics resource

The Gene Ontology (GO) [33] is a bioinformatics database that presents an ontology

for the attributes of genes across all species. This ontology includes three domains

that are Molecular Function (MF), Biological Process (BP), and Cellular Components
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(CC). MF describes properties for the activities of genes at the molecular level. BP

describes molecular events that process at living units (cells, tissues, organs). CC

describes cellular components and their relationships by providing a unified repre-

sentation for biological or molecular studies.

3.5 Datasets

We use three datasets for training and evaluation of our system. These datasets

are Trust dataset, Golden dataset [7], Golden-Trust dataset. Trust dataset contains

only manually annotated proteins from UniProtKB/Swiss-Prot [2]. Golden dataset

is a benchmark dataset that is generated by SubCons developers, and Golden-Trust

dataset is a refined version of Golden dataset by us. These datasets and their construc-

tion processes are explained in the following sections, and their usages are described

in Chapter 4.

3.5.1 Trust dataset

Trust dataset is our in-house dataset, which is generated using manually annotated

subcellular localizations in UniProtKB/Swiss-Prot and comprises nine parts that in-

dicate independently generated datasets for nine subcellular location groups (NUC,

CYT, MEM, EXC, MIT, ERE, GLG, LYS, PEX) displayed in Figure 3.2

Since we construct our method as a binary predictor for the subcellular localization

prediction of proteins, Trust dataset is generated independently for all subcellular

location groups in a binary form of one-SL vs. all other SL, where SL indicates

the subcellular location groups. Trust dataset for each subcellular location group

includes a dataset of positive class and a dataset of negative class where the dataset

of positive class contains protein sequences that localize the subcellular location of

positive class, and the dataset of negative class contains protein sequences for the

other eight subcellular location groups. For instance, Trust dataset for subcellular

locations in the group of CYT consists of two datasets which are the dataset of the

positive class and the dataset of the negative class. These datasets can be defined as

follows:
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1. The dataset of the positive class includes protein sequences that localize at least

one of the subcellular locations in CYT (positive class).

2. The dataset of the negative class comprises protein sequences that have subcel-

lular localization annotations including at least one of the subcellular locations

in the remaining eight subcellular location groups: NUC, MEM, EXC, MIT,

ERE, GLG, LYS, and PEX (negative class) but not including any of the subcel-

lular locations in CYT (positive class).

The construction steps of Trust dataset for each subcellular location group are de-

scribed below:

Trust-1: Generating the subcellular location hierarchy: We create a new sub-

cellular location hierarchy which merges UniProtKB subcellular location and Gene

Ontology cellular component hierarchy. For more details, please refer to Section 3.1.

Trust-2: Obtaining protein sequences: We download all human protein sequences

from UniProtKB/SwissProt that provides a well-built, comprehensive, freely avail-

able data on protein sequences and their functional annotations.

Trust-3: Filtering with UniRef50: The UniRef databases cluster the protein se-

quences in UniProtKB/SwissProt based on sequence similarities. There are three

levels of clustering in UniRef [34] where UniRef50 is the one that contains the least

similar protein sequences in comparison with UniRef90 and UniRef100. Therefore

we employ the representative protein sequences from UniRef50 to reduce the redun-

dancy which causes bias in the training process of machine learning methods.

Trust-4: Experimental evidence filter: The protein sequences that have experi-

mentally annotated subcellular localization information are preferably taken UniProtKB/Swiss-

Prot. If the number of protein sequences is not sufficient (number of protein sequences

is less than 500), we also include the protein sequences from UniProtKB/SwissProt,

which have manually curated information concerning the subcellular localization.
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Trust-5: Cleaning protein sequences in negative dataset: We eliminate the pro-

tein sequences from the dataset of negative class if a protein has any subcellular lo-

calization annotation with the subcellular location of positive class or its offsprings

regarding GO hierarchy, UniProtKB subcellular location hierarchy, and the proposed

subcellular location hierarchy.

Trust-6: Balancing the number of protein sequences in the dataset of positive

class and the dataset of negative class: After completing the previous steps, we

may observe that the dataset of positive class and the dataset of negative class are

imbalanced. Most of the machine learning algorithms are sensitive to the imbalanced

datasets, which cause bias favoring the majority class. Therefore, the dataset of pos-

itive class and the dataset of negative class are balanced by considering the cases

explained below:

The first case is that the number of protein sequences in the dataset of positive class

is higher than the number of protein sequences in the dataset of negative class. In

this case, we randomly eliminate some of the protein sequences from the dataset of

positive class.

The second case is that the number of protein sequences in the negative dataset is

higher than the number of protein sequences in the positive dataset. We determine

the number of protein sequences independently from each of the eight subcellular

location groups in negative class that add up to the number of protein sequences in

the dataset of positive class.

3.5.1.1 Multiple Localized Proteins

Trust dataset contains multiple localized proteins according to UniProtKB annota-

tions. These protein sequences are used in both training and test process. It is also a

significant difference of Trust dataset from other datasets. Since multiple SL predic-

tion is also needed in biological studies, Trust dataset presents a benchmark dataset

for testing multiple localization prediction of the proteins. The following table depicts

the number of multiple localized proteins with respect to the number of locations.
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Table 3.1: Number of multiple localized protein sequences in Trust

dataset with respect to the number of SLs.

Number of SLs Dataset Number of protein sequences

at least six Training 9

at least five Training 81

at least four Training 382

at least four Test 3

at least three Training 255

at least three Test 39

at least two Training 3277

at least two Test 318

3.5.2 Golden Dataset

Golden dataset is the benchmark dataset of SubCons [7]. It comprises the protein

sequences that localize the eight groups of subcellular locations: NUC, CYT, MEM,

MIT, ERE, GLG, LYS, and PEX. To form Golden dataset, three data resources are

used: mass spectrometry(Mass-Spec) [35], SLHPA [36] [37], and UniProtKB [2].

The proteins that have an experimental annotation of subcellular localization are re-

trieved from three data resources. The protein sequences are eliminated according

to their homology by using BLASTClust [15]. The protein sequences that have a

common subcellular localization annotation in at least two out of the three resources

are selected. Eventually, Golden dataset contains a total of 1226 protein sequences

that cover the eight subcellular location groups. The number of protein sequences for

each subcellular location is given in Table 3.2

3.5.3 Golden-Trust Dataset

Golden-Trust dataset is a refined version of Golden dataset where the steps we fol-

low to create Trust dataset are applied for the protein sequences in Golden dataset.

Our goal in refining Golden dataset is to generate a dataset that is up-to-date con-
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cerning the developments about the subcellular localization annotations in the protein

sequence databases.

Table 3.2: Number of protein sequences in the datasets with respect to their subcellu-

lar location groups.

Groups of SLs Class Trust-All Trust-Train Trust-Test Golden Golden-Trust

CYT
positive 738 605 133 159 95

negative 738 605 133 1067 95

NUC
positive 1599 1299 300 733 198

negative 1599 1299 300 493 198

MEM
positive 858 685 144 47 22

negative 858 685 133 1179 22

EXC
positive 385 311 63 NA NA

negative 387 312 67 NA NA

MIT
positive 399 319 80 202 126

negative 399 319 80 1024 126

ERE
positive 456 366 55 46 25

negative 456 366 87 1180 25

GLG
positive 389 314 75 21 13

negative 388 314 74 1205 13

LYS
positive 263 210 53 11 10

negative 263 210 53 1215 10

PEX
positive 80 64 16 7 7

negative 80 64 16 1216 7

3.6 Feature Extraction

Feature extraction is a fundamental step to develop a successful machine learning-

based model. In the last two decades, various feature extraction methods and tools

are developed which exploit patterns from the arrangement of amino acids in protein

sequences [4] [5] [6] [38] [39] [40]. Feature extraction methods are also called as pro-

tein descriptors that are to represent protein sequences with numerical features. In our

study, we employ three tools, which are iFeature [4], POSSUM [5], and SPMAP [6].

The protein descriptors in these tools provide features in different aspects that are
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amino-acid composition-based, homology-based, mixture of these two, and subse-

quence based. We utilize 40 protein descriptors to extract protein features which 18

of them from iFeature, 21 from POSSUM and 1 from SPMAP.

3.6.1 iFeature Tool

iFeature is a Python-based toolkit that offers 48 protein descriptors to extract different

numerical representations from protein and peptide sequences. iFeature also provides

more functionalities that are five feature clustering algorithms, four feature selection

algorithms, and three dimensionality reduction algorithms.

We employ 18 protein descriptors offered by iFeature to extract protein features that

provide a numerical representation of protein sequences at different lengths. The rest

of the protein descriptors in iFeature expects to have the same length of protein se-

quences. These 18 protein descriptors are categorized into seven groups. The first

category, Amino Acid Composition, contains the descriptors which are created by

producing the counts of amino acids in different ways. The descriptors in the second

category, Grouped Amino Acid Composition, are generated by grouping amino acid

types regarding different properties of amino acid types. The third category is Au-

tocorrelation whose descriptors define the distribution of amino acid properties. The

descriptors in fourth category C/T/D are to represent the composition, transition and

distribution of amino acid patterns according to structural and physicochemical prop-

erties. The fifth category (Conjoint triad) includes the descriptors whose features are

generated by considering three neighbor amino acids as a single unit. The descrip-

tors in Quasi-sequence-order category examine the distance between the amino acid

pairs in different ways. The last category Pseudo-amino acid composition contains

descriptors whose features are obtained regarding "hydrophobicity values, the origi-

nal hydrophilicity values and the original side chain masses of the 20 natural amino

acids". The categories, the descriptors, and their properties are displayed in Table 3.3.
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Table 3.3: Protein descriptors that we used from iFeature tool.

Descriptor group Descriptor Number of features

Amino acid composition

Amino acid composition (AAC) 20

Composition of k-spaced amino acid pairs (CKSAAP) 2400

Dipeptide composition (DPC) 400

Grouped amino acid composition

Grouped amino acid composition (GAAC) 5

Composition of k-spaced amino acid group pairs (CKSAAGP) 150

Grouped dipeptide composition (GDPC) 25

Autocorrelation

Moran (Moran) 240

Geary (Geary) 240

Normalized Moreau-Broto (NMBroto) 240

C/T/D

Composition (CTDC) 39

Transition (CTDT) 39

Distribution (CTDD) 195

Conjoint triad
Conjoint triad (CTriad) 343

Conjoint k-spaced triad (KSCTriad) 343x(k+1)

Quasi-sequence-order
Sequence-order-coupling number (SOCNumber) 60

Quasi-sequence-order descriptors (QSOrder) 100

Pseudo-amino acid composition
Pseudo-amino acid composition (PAAC) 50

Amphiphilic PAAC (APAAC) 80

3.6.2 POSSUM Tool

POSSUM [5] is another Python-based toolkit that allows users to use 21 Position

Specific Scoring Matrix (PSSM)-based protein descriptors to extract protein features.

PSSM can be defined as a profile that is extracted from aligned protein sequences.

The protein sequences are aligned by using either BLAST or PSI-BLAST. The profile

indicates the number of occurrences of amino acids for each position in the alignment

of protein sequences. PSSM-based feature extraction descriptors can be grouped into

three categories: row transformations, column transformations, or a mixture of row

and column transformations. The descriptors generated by POSSUM are categorized

PSSM-based features into four groups with the other one protein descriptor that is a

combination of the other descriptors in POSSUM. In the feature extraction level of our

study, we use all descriptors offered by POSSUM. Table 3.4 depicts the information

about the descriptors.

POSSUM [5] is another Python-based toolkit that allows users to use 21 Position

Specific Scoring Matrix(PSSM)-based protein descriptors to extract protein features.
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PSSM [41] can be defined as a profile that is extracted from aligned protein sequences.

The protein sequences are aligned by using either BLAST or PSI-BLAST. The PSSM

profile of the aligned sequences indicates the number of occurrences of amino acids

for each position in the alignment of protein sequences. PSSM-based feature extrac-

tion descriptors can be grouped into three categories: row transformations, column

transformations, or a mixture of row and column transformations. The descriptors

generated by POSSUM are categorized PSSM-based features into four groups with

one extra protein descriptor that is a combination of the other descriptors in POS-

SUM. In the feature extraction level of our study, we use all descriptors offered by

POSSUM. Table-3.3 depicts the information about the descriptors.

Table 3.4: Protein descriptors that we use from POSSUM.

Descriptor group Descriptor Number of features

Row transformations

AAC-PSSM 20

D-FPSSM 20

smoothed-PSSM 1000

AB-PSSM 400

PSSM-composition 400

RPM-PSSM 400

S-FPSSM 400

Column transformations

DPC-PSSM 400

k-separated-bigrams-PSSM 400

tri-gram-PSSM 8000

EEDP 400

TPC 400

Mixture of row and column transformations

EDP 20

RPSSM 110

Pse-PSSM 40

DP-PSSM 240

PSSM-AC 200

PSSM-CC 3800

Combination of above descriptors

AADP-PSSM 420

AATP 420

MEDP 420

26



3.6.3 SPMAP

SPMap [6] is a subsequence-based protein descriptor that is composed of two parts.

The first part is subsequence profile map construction, which has three stages: extract-

ing the subsequences, clustering the subsequences based on their pairwise similari-

ties, and generating probabilistic profiles of the clusters. The steps that are followed

in SPMap are as follows:

• Overlapping fixed-length subsequences are first extracted from protein sequences

in the training dataset. In this study, we used 5 as a subsequence length.

• The clusters of subsequences are then created: The first subsequence in the

protein sequence constitutes the representative subsequence of the first clus-

ter. For each next subsequence, the similarity scores between the representative

subsequences and the new subsequence are calculated using BLOSUM62 [42]

matrix. If the similarity score of the new subsequence is higher than the pre-

defined threshold, it is included in the most similar cluster. Otherwise, the new

subsequence creates its own cluster.

• Next, position-specific scoring matrices(PSSM) are created based on the gen-

erated clusters. These PSSMs are used as a profile at the feature generation

part.

• Finally, SPMap features are generated from protein sequences in two steps:

Subsequences of query sequences are extracted, and the feature vectors are

created based on the previously created PSSMs.

3.7 Normalization methods

Feature normalization is a process that scales features of data within a particular

range. Normalization may have a significant impact on the performance of a ma-

chine learning application since most of the machine learning algorithms are quite

sensitive to the distribution of features. For instance, the normalization of feature

vectors before feeding to the SVM is critical since SVM assumes that the features are

within a standard range.
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In this section, we introduce four normalization methods that we employ in the con-

struction of our subcellular localization prediction model.

3.7.1 Standardization (Z-score normalization)

Standardization [43] is a way of rescaling data so that they form a Gaussian-like

distribution. Z-score for each sample is calculated using Equation 31.

y′i =
yi − µ(y)
σ(y)

, (31)

where i = 1, 2, ..., n, n is number of data points, y′i represents normalized value, yi
indicates the values of protein features, µ(y) is the mean of y, and σ(y) is the standard

deviation of y from the mean.

3.7.2 MinMax normalization

Min-Max normalization rescales data in the range of [0, 1] where the minimum value

is normalized to 0, and the maximum value is normalized to 1. Equation 32 to calcu-

late each normalized value of a feature is

y′i =
yi −min(y)

max(y)−min(y)
, (32)

where i = 1, 2, ..., n, n is number of data points, y′i represents normalized value, yi
indicates the values of protein features, min(y) is minimum value of y, and max(y)

is maximum value of the feature values (y).

3.7.3 Power Transformation

Power transformations are useful to transform data distribution into a Gaussian-like

form and to stabilize the variance of data. There are two types of this transforma-

tion which are Box-Cox transformation [44] and Yeo-Hohson transform [45]. We

employed Yeo-Hohson transformation, which can be defined as follows:
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y′i =



(yi+1)λ

λ
, if λ 6= 0, yi ≥ 0

log(yi + 1), if λ = 0, yi ≥ 0

−[(−yi+1)(2−λ)−1]
2−λ , if λ 6= 2, yi < 0

log(−yi + 1), if λ = 2, yi < 0

where i = 1, 2, ..., n, n is number of data points, y′i represents normalized value, yi
indicates the values of protein features, and λ represents the power to which data

should be raised in the range of [0, 2].

3.7.4 Robust scaler normalization

Robust scalers are designed to produce statistical methods that are not affected by

outliers. Commonly used robust scalers are the interquartile range(IQR) [46] and the

median absolute deviation (MAD) [47]. In our study, we applied the interquartile

range(IQR) that is also called as midspread, middle 50% or H-spread. IQR is a mea-

sure of statistical dispersal, and it defines quartiles to separate the dataset into four

equal parts that are 25th, 50th, 75th quartiles denoted by Q1, Q2, and Q3 respec-

tively. IQR can be defined as the subtraction of Q1 from Q3. Equation 33 to scale the

data as follows:

y′i =
yi −Q1(y)

Q3(y)−Q1(y)
, (33)

where i = 1, 2, ..., n, n is number of data points, y′i represents normalized value, yi
indicates the values of protein features, Q1(y) is first-quartile and Q3(y) is third-

quartile in the distribution of feature values (y).
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Figure 3.1: A part of the proposed subcellular location hierarchy
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CHAPTER 4

PROPOSED METHOD

We propose a method to predict the subcellular localization of human proteins. The

proposed method consists of nine independently constructed classification models

where each model gives binary predictions for the protein sequences that localize to

one of the nine subcellular location groups: CYT, NUC, MEM, MIT, ERE, EXC,

GLG, LYS, and PEX. The classification models are developed by considering the

subcellular localization problem as a binary classification problem where each of the

models decides if a protein localizes to any of the subcellular locations in the cor-

responding subcellular location group (explained in Chapter 3) or not. Each classi-

fication model predicts subcellular localization of proteins by following four steps:

Feature extraction and normalization, prediction by probabilistic models, weighted-

mean voting, and thresholding. In the feature extraction process, 7 protein descriptors

are selected out of 160 cases (40 descriptors from three tools: iFeature, POSSUM,

SPMap and 4 normalization methods), which contribute the best in the combination

of probabilistic prediction models. Support Vector Machine (SVM) is used to con-

struct probabilistic prediction models, which produces probabilistic scores indicating

the localization probability for a query protein sequence. A weighted score is calcu-

lated based on the obtained probabilistic scores from seven feature-based probabilistic

prediction models (SVMs) by employing weighted mean voting. Binary prediction is

given by applying thresholding on the weighted score.

In this chapter, the following topics are explained in detail:

• Construction of the classification models.

• Components of the constructed classification models for nine subcellular loca-
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Figure 4.1: Shematic representation of the classification models for the subcellular

localization prediction of human proteins.

tion groups.

• Prediction process of the constructed classfication models.

• Performance metrics to evaluate the performance of the classification models.

4.1 Construction of classification models

The methodology behind the classification models is to find the best combination

of protein descriptors that represent the protein sequences with the most discrimina-

tive combination of features. Therefore, we first find the best combinations of three

descriptors. We then repeatedly search two more most contributing descriptors that

significantly increase classification performance to find the most discriminative com-

binations of five, seven, even nine descriptors. However, after finding the combina-

tions of nine descriptors, the classification performance decreases. Hence we decided
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on using the features of seven descriptors to represent protein sequences. The details

to construct classification models are explained as follows:

Construction Step-1. Generating the training datasets: We generate Trust dataset

and divide it into Trust-Train and Trust-Test. Trust-Train dataset is employed in the

development and validation process of the classification models. Since the classifica-

tion models are constructed to give binary predictions, Trust-Train dataset is designed

accordingly, which consists of two datasets: a dataset of positive class and a dataset

of negative class. For more details, please refer to Chapter 3.

Construction Step-2. Feature extraction: 40 protein descriptors from three fea-

ture extraction tools (iFeature, POSSUM, SPMap) are employed to extract protein

features. These descriptors provide numerical representations of protein sequences,

which can mainly be categorized as amino acid composition-based, homology-based,

mixture of these two, and subsequence based. For more information please refer to

Chapter 3

Construction Step-3. Feature normalization: The feature normalization is vital

to develop accurate classification models since most of the machine learning algo-

rithms assume that features of a dataset are within a standard range. Therefore, we

utilize four different feature normalization methods which are explained in Section-

3.6.

Construction Step-4. Hyperparameter optimization of SVMs: The choice of hy-

perparameters has a high impact on the classification performance of SVMs. There-

fore a grid search is performed to find the best values for C and γ hyperparameters

of SVMs for each of 160 different numerical representations of the proteins (4 nor-

malization methods applied on the features of 40 protein descriptors) where radial

basis function(RBF) is used for kernel. Protein features are formed by applying 4

normalization methods on the features of 40 protein descriptors. Accordingly, a grid

search on SVM hyperparameters for all 160 cases (4 normalization methods apllied

on 40 descriptors) is conducted by employing the k-fold cross-validation technique in
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Trust-Train dataset, where k is used as 10. The values that we use in the grid search

of hyperparameters are depicted in Table 4.1. scale value of γ indicates 1
n∗var(X)

,

where n represents number of features in the protein descriptor and var(X) variance

of the data formed by using the corresponding protein descriptor.

Table 4.1: Hyperparameter space of SVM.

Hyperparameter Values

C 0.01, 0.1, 1, 10, 100, 1000, 10000

γ scale, 100, 10, 1, 0.1, 0.01, 0.001, 0.0001, 0.00001

Construction Step-5. Determining the weight of feature-based probabilistic pre-

diction models: After deciding on the hyperparameter values of SVMs, we train

and evaluate the performances of feature-based probabilistic prediction models (SVMs)

by employing the k-fold cross-validation technique (k=10) in Trust-Train dataset. We

obtain the probabilistic scores by feeding the protein features of the corresponding

protein descriptors to SVMs for the validation datasets. Binary classification is per-

formed on the probabilistic scores of the proteins in the validation datasets by apply-

ing thresholding for the threshold values from 0 to 1 increased by 0.01. The perfor-

mance of each feature-based probabilistic prediction model is calculated for different

threshold values based on the prediction results after the thresholding. Overall Math-

ews Correlation Coefficient(MCC) scores are calculated to evaluate the performance

of each feature-based probabilistic prediction models for all validation datasets by us-

ing k-fold cross-validation in Trust-Train dataset. Finally, these overall MCC scores

are used as the weights of the feature-based probabilistic prediction models.

Construction Step-6. Search for the best seven protein descriptors: We aim to

maximize the performance of the classification model by finding the best threshold

and the best combination of seven protein descriptors.

Since it is computationally costly to find the best combination of seven protein de-

scriptors, we employ another approach which has six stages as follows:
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Construction Step-6.1: Finding the best performing combination of three pro-

tein descriptors: In this stage, we aim to find the best combination of three protein

descriptors by employing the k-fold cross-validation technique in Trust-Train dataset.

Compare to the search of seven; it is less costly to search the best combinations of

three for 160 cases (4 normalization methods applied on 40 descriptors), where we

employed an exhaustive search for this process. 10-fold cross-validation technique

in Trust-Train dataset is employed to evaluate performance for each combination of

triple protein descriptors as follows:

1. The protein features from the protein sequences in Trust-Train dataset are ex-

tracted by using the protein descriptors in the triple combination. The features

are scaled by employing the normalization methods that are pre-determined in

the triple combination.

2. The probabilistic prediction models (SVMs) are first trained by using the train-

ing part of Trust-Train dataset, and the probabilistic scores are then obtained

for the sequences in the validation part of Trust-Train dataset by feeding the

protein features to SVMs.

3. The weighted-score is calculated by adding up products of seven pre-determined

weights and the probabilistic scores and dividing the sum of products by the

sum of the weights as diplayed in Equation 41.

4. The protein sequences are classified as a positive prediction or negative predic-

tion by applying thresholding on the weighted-scores for all thresholds from 0

to 1 by increasing 0.01 as depicted in Equation 42.

5. The performance for the triple combination is evaluated by calculating the

overall MCC (Equation 47) for all the validation datasets of the 10-fold cross-

validation in Trust-Train dataset.

6. We select a hundred of the highest MCC scoring combinations of three protein

descriptors.

Construction Step-6.2: Finding the best performing combination of five protein

descriptors: In this stage, to find the best combinations of five protein descriptors,
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we search for the most contributing two more protein descriptors to the selected com-

binations of three protein descriptors. The steps of this process are the same as the

ones defined in Construction Step-6.1. After calculating MCC scores, we select a

hundred of the highest MCC scoring combinations of five protein descriptors.

Construction Step-6.3: Finding the best performing combination of seven pro-

tein descriptors: In this stage, to find the best combinations of seven protein de-

scriptors, we search for the most contributing two more protein descriptors to the

selected combinations of five protein descriptors. The steps for this process are the

same as the ones defined in Construction Step-6.1.

We apply the steps above to construct classification models for nine subcellular lo-

cation groups (NUC, CYT, MEM, EXC, MIT, ERE, GLG, LYS, PEX), and indepe-

dently determine the best combination of seven protein descriptors, the probabilistic

prediction models, the weights and the threshold based on the MCC scores of 10-fold

cross-validation in Trust-Train dataset for each classification model. The following

section illustrates the constructed classification models and their components.

Each classification model gives binary predictions individually for nine subcellular

location groups that are CYT, NUC, MEM, MIT, ERE, EXC, GLG, LYS and PEX.

Figure 4.1 illustrates the schematic representation of the classification model for each

of the subcellular location groups.

4.2 Classification models for nine subcellular location groups

The classification models for nine groups of subcellular locations are constructed by

following the steps in Section 4.1. Each classification model has four components:

the protein descriptors, the hyperparameters of SVM, the weights and the threshold.

The classification models and their components are illustrated in the tables, from

Table 4.2 to Table 4.10. The classification model for NUC proteins is explained in

details. The other classification models and their components are given in the tables.

Since the process of classification is the same as the one in NUC for other locations

we just present the classification process for NUC proteins step by step.
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4.2.1 Classification model to predict subcellular localization of NUC proteins:

The classification model gives binary predictions whether the proteins localize to any

of the subcellular locations in the group of NUC or not. Table 4.2 depicts the em-

ployed protein descriptors, the normalization methods, the hyperparameter of SVMs,

the weights, and the threshold. We explain the prediction process by illustrating the

use of the components as follows:

Prediction Step-1: Feature extraction: Seven protein features are extracted from

the query sequence. These descriptors are PSSM-CC, tri-gram-PSSM, DP-PSSM,

tri-gram-PSSM, SPMAP, smoothed-PSSM, and Pse-PSSM. The feature extraction

methods are detailed in Chapter 3.

Prediction Step-2: Feature normalization: Four normalization methods that we

use are explained in Chapter 3. The protein features were normalized as follows:

1. PSSM-CC features are normalized by using Robust Scaler.

2. tri-gram-PSSM features are normalized by using Power transformation.

3. DP-PSSM features are normalized by using Power transformation.

4. tri-gram-PSSM features are normalized by using Power transformation.

5. SPMAP features are normalized by using MinMax normalization.

6. smoothed-PSSM features are normalized by using Standardization.

7. Pse-PSSM features are normalized by using Power transformation.

Prediction Step-3: Obtaining probabilistic scores: Pre-trained SVMs are fed

with the protein features of the corresponding protein descriptors, and the probabilis-

tic scores are obtained. For instance, PSSM-CC protein features are used to be fed to

SVM whose C hyperparameter is 10, and γ is scale. The same process is applied to

all of the normalized protein features of seven protein descriptors as shown in Table

4.2.
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Prediction Step-4: Weighted-Mean Voting: The weighted score are calculated by

adding the products of the weights and probabilistic scores. For instance, the weight

for PSSM-CC is 0.45, and it is 0.50 for DP-PSSM. The formula to calculate weighted

score is given in Equation 41

Prediction Step-5: Thresholding: The determined threshold is 0.60 (explained in

Section 4.1) to give binary predictions whether query sequence localizes to NUC or

not. Equation 42 illustrates the thresholding process.

Table 4.2: The components for the classification model to predict subcellular local-

ization of NUC proteins.

Components/Models Model-1 Model-2 Model-3 Model-4 Model-5 Model-6 Model-7

Protein features PSSM-CC tri-gram-PSSM DP-PSSM tri-gram-PSSM SPMAP smoothed-PSSM Pse-PSSM

Normalization methods Robust Power Power Standard MinMax Standard Power

SVM
C 10 10 10 10 100 1 1

γ scale scale 0.001 scale 0.1 scale scale

Weights 0.14 0.17 0.15 0.16 0.09 0.13 0.16

Threshold 0.6

4.2.2 Classification model to predict subcellular localization of CYT proteins

The classification model gives binary predictions whether the proteins localize to any

of the subcellular locations in the group of CYT or not. The pediction process (ex-

plained in Section 4.2.1) is followed for subcelllular location prediction of CYT pro-

teins by employing the components illustrated in Table 4.3.

Table 4.3: The components for the classification model to predict subcellular local-

ization of CYT proteins.

Components/Models Model-1 Model-2 Model-3 Model-4 Model-5 Model-6 Model-7

Protein features DP-PSSM tri-gram-PSSM Pse-PSSM DPC-PSSM GDPC SPMAP SPMAP

Normalization methods Standard Standard MinMax Robust MinMax Standard Robust

SVM
C 1 100 10000 1000 1 1 1

γ scale 1e-05 0.01 1e-05 1 0.001 1e-05

Weights 0.18 0.17 0.18 0.16 0.12 0.10 0.10

Threshold 0.63
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4.2.3 Classification model to predict subcellular localization of MEM proteins

The classification model gives binary predictions whether the proteins localize to any

of the subcellular locations in the group of MEM or not. The pediction process (ex-

plained in Section 4.2.1) is followed for subcelllular location prediction of MEM

proteins by employing the components illustrated in Table 4.4.

Table 4.4: The components for the classification model to predict subcellular local-

ization of MEM proteins.

Components/Models Model-1 Model-2 Model-3 Model-4 Model-5 Model-6 Model-7

Protein features SOCNumber PSSM-CC CKSAAP EDP NMBroto CKSAAP PSSM-AC

Normalization methods Power Robust Power Robust Robust MinMax Robust

SVM
C 10 10 1 1000 10 10 1

γ 0.001 0.0001 scale scale 0.001 0.001 0.001

Weights 0.13 0.15 0.16 0.11 0.14 0.16 0.15

Threshold 0.61

4.2.4 Classification model to predict subcellular localization of EXC proteins

The classification model gives binary predictions whether the proteins localize to any

of the subcellular locations in the group of EXC or not. The pediction process (ex-

plained in Section 4.2.1) is followed for subcelllular location prediction of EXC pro-

teins by employing the components illustrated in Table 4.5.

Table 4.5: The components for the classification model to predict subcellular local-

ization of EXC proteins.

Components/Models Model-1 Model-2 Model-3 Model-4 Model-5 Model-6 Model-7

Protein features S-FPSSM CTDD PSE-PSSM PSSM-CC RPSSM EEDP SMOOTHED-PSSM

Normalization methods Power Standard Robust Standard MinMax Standard Standard

SVM
C 10 1 1 100 100 1000 1

γ 0.0001 scale 0.1 0.0001 scale 1e-05 scale

Weights 0.14 0.10 0.16 0.13 0.14 0.16 0.16

Threshold 0.55
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4.2.5 Classification model to predict subcellular localization of MIT proteins

The classification model gives binary predictions whether the proteins localize to any

of the subcellular locations in the group of MIT or not. The pediction process (ex-

plained in Section 4.2.1) is followed for subcelllular location prediction of MIT pro-

teins by employing the components illustrated in Table 4.6.

Table 4.6: The components for the classification model to predict subcellular local-

ization of MIT proteins.

Components/Models Model-1 Model-2 Model-3 Model-4 Model-5 Model-6 Model-7

Protein features SMOOTHED-PSSM PAAC PSSM-CC SMOOTHED-PSSM NMBroto CTDD EEDP

Normalization methods MinMax Power Robust Standard Standard Standard Power

SVM
C 1 1000 100 1 1 100 10

γ 0.1 0.0001 1e-05 scale scale 0.0001 0.001

Weights 0.16 0.15 0.14 0.16 0.09 0.12 0.18

Threshold 0.61

4.2.6 Classification model to predict subcellular localization of ERE proteins

The classification model gives binary predictions whether the proteins localize to any

of the subcellular locations in the group of ERE or not. The pediction process (ex-

plained in Section 4.2.1) is followed for subcelllular location prediction of ERE pro-

teins by employing the components illustrated in Table 4.7.

Table 4.7: The components for the classification model to predict subcellular local-

ization of ERE proteins.

Components/Models Model-1 Model-2 Model-3 Model-4 Model-5 Model-6 Model-7

Protein features MEDP APAAC D-FPSSM SMOOTHED-PSSM AAC-PSSM PSSM-CC SMOOTHED-PSSM

Normalization methods Robust Standard MinMax Power Power Robust Standard

SVM
C 1 1 1 0.1 1 10 1

γ 0.01 0.01 10 scale 0.1 scale 1e-05

Weights 0.16 0.15 0.14 0.12 0.18 0.15 0.12

Threshold 0.61
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4.2.7 Classification model to predict subcellular localization of GLG proteins

The classification model gives binary predictions whether the proteins localize to any

of the subcellular locations in the group of GLG or not. The pediction process (ex-

plained in Section 4.2.1) is followed for subcelllular location prediction of GLG pro-

teins by employing the components illustrated in Table 4.8.

Table 4.8: The components for the classification model to predict subcellular local-

ization of GLG proteins.

Components/Models Model-1 Model-2 Model-3 Model-4 Model-5 Model-6 Model-7

Protein features PSSM-CC SMOOTHED-PSSM Geary k-separated-bigrams-PSSM RPSSM DP-PSSM k-separated-bigrams-PSSM

Normalization methods Robust MinMax Standard Standard MinMax MinMax MinMax

SVM
C 10 1 10 100 10 10 10

γ 1e-05 0.1 0.01 0.1 1 1 10

Weights 0.12 0.16 0.01 0.20 0.14 0.18 0.19

Threshold 0.62

4.2.8 Classification model to predict subcellular localization of LYS proteins

The classification model gives binary predictions whether the proteins localize to any

of the subcellular locations in the group of LYS or not. The pediction process (ex-

plained in Section 4.2.1) is followed for subcelllular location prediction of LYS pro-

teins by employing the components illustrated in Table 4.9.

Table 4.9: The components for the classification model to predict subcellular local-

ization of LYS proteins.

Components/Models Model-1 Model-2 Model-3 Model-4 Model-5 Model-6 Model-7

Protein features PSSM-COMPOSITION NMBroto SPMap EDP SMOOTHED-PSSM CKSAAP S-FPSSM

Normalization methods Standard Robust Power Robust MinMax Standard Standard

SVM
C 10 1 1 1 10 10 100

γ 0.001 0.01 scale scale 0.1 0.0001 0.01

Weights 0.22 0.11 0.14 0.08 0.16 0.15 0.14

Threshold 0.59
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4.2.9 Classification model to predict subcellular localization of PEX proteins

The classification model gives binary predictions whether the proteins localize to any

of the subcellular locations in the group of PEX or not. The pediction process (ex-

plained in Section 4.2.1) is followed for subcelllular location prediction of PEX pro-

teins by employing the components illustrated in Table 4.10.

Table 4.10: The components for the classification model to predict subcellular local-

ization of PEX proteins.

Components/Models Model-1 Model-2 Model-3 Model-4 Model-5 Model-6 Model-7

Protein features SMOOTHED-PSSM EEDP PSSM-CC APAAC SPMap MEDP CTDD

Normalization methods Standard MinMax Power Robust MinMax Standard MinMax

SVM
C 10 100 1000 10 10 1000 100

γ 0.0001 scale 1e-05 0.001 0.1 0.0001 0.1

Weights 0.16 0.15 0.10 0.10 0.22 0.18 0.09

Threshold 0.67

4.3 Prediction by the classification models

After training the constructed classification models, the classification models give

binary predictions

The prediction process of a classification model is as follows:

Prediction Step-1. Feature extraction and normalization: The selected seven

protein descriptors are employed to extract the features from the query protein se-

quence.

Prediction Step-2. Feature normalization: The features are normalized by using

the corresponding normalization method for each of the selected protein descriptors.

Prediction Step-3. Obtaining probabilistic scores: Seven probabilistic scores are

obtained from the seven pre-trained probabilistic prediction models.
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Prediction Step-4. Weighted-mean voting: To calculate the weighted score, we

add-up the multiplication of seven probabilistic scores and pre-determined weights,

and divide by the sum of weights where each weight represents the discriminative

power of the pre-trained probabilistic prediction models as displayed in the following

Equation 41.

ψ(s) =

∑7
i=1 ωi ∗ ηi∑7
i=1 ωi

, (41)

where ψ(s) represents the weighted-score of the query sequence (s), ωi represents the

weights, ηi indicates the probabilistic score obtained from the probabilistic prediction

model.

Prediction Step-5. Thresholding: The calculated weighted-score above threshold

is considered to be a positive prediction or equal or below threshold is considered to

be a negative prediction as illustrated in the following Equation 42.

φ(s) =

positive, if ψ(s) > T

negative, if ψ(s) ≤ T,
(42)

where φ(s) indicates prediction resultof the query sequence (s), ψ(s) represents the

weighted-score and T is the treshold.

4.4 Performence metrics

To evaluate the performance of the classification models, we employ five commonly

used metrics [48], which are accuracy, precision, recall, F1-score, and Mathews cor-

relation coefficient(MCC). These performance measures are calculated using the con-

fusion matrix values which true positive, false negative, true negative, and false posi-

tive:

• True positive(TP) represents the number of positive predictions whose actual-

value is positive.

• False negative(FN) represents the number of negative predictions whose actual-

value is positive.
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• True negative(TN) represents the number of negative predictions whose actual-

value is negative.

• False positive(FP) represents the number of positive predictions whose actual-

value is negative.

Table 4.11: Confusion Matrix.

Predicted

Positive Negative

A
ct

ua
l Positive TP FN

Negative FP TN

The performance measures that we employ describe the different aspects of prediction

performance.

• Accuracy measures the strength of a predictor in classifying all samples cor-

rectly, no matter it is positive or negative. Accuracy can be defined as:

accuracy =
TP + TN

TP + FN + TN + FP
(43)

• Precision answers the question "What proportion of positive predictions was

actually correct?". The formula of precision is as follows:

precision =
TP

TP + FP
(44)

• Recall answers the question "What proportion of actual positives was predicted

correctly?". Recall can be formulated as follows:

recall =
TP

TP + FN
(45)

• F1score is a measure to balance the performance evaluation between precision

and recall. It considers both false positive and false negative in the performance

evaluation. It differs from accuracy because the cost of a false positive and false

negative is different in the calculation of F1 score, while accuracy is the right

choice if both false positive and false negative have similar cost. F1 score can

be calculated as follows:

F1 =
2 ∗ (precision ∗ recall)
precision+ recall

(46)
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• MCC widely applied for evaluation of the classifier when testing datasets are

imbalanced. MCC score ranges between -1 and 1. 0 indicates that the perfor-

mance of the predictor is the same as a random guess, while 1 indicates that

the classification model has a perfect performance of correctly classifying. -

1 means that the classifier gives perfect predictions if the prediction output is

interpreted as the opposite. MCC formula is as follows:

MCC =
(TP ∗ TN − FP ∗ FN)√

(TP + FP ) ∗ (TP + FN) ∗ (TN + FP ) ∗ (TN + FN)
(47)
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CHAPTER 5

RESULTS

In this chapter, we present performance evaluations of the proposed classifica-

tion models for nine subcellular location groups, where the method of the pro-

posed classification models is named as CanSLPred. The classification mod-

els of CanSLPred are independently constructed for nine subcellular location

groups. During the construction process of the classification models, the k-

fold cross-validation (k=10) technique is employed in Trust-Train dataset for

each subcellular location group. Therefore, we first illustrate the 10-fold cross-

validation performances of CanSLPred. We then compare the performances

of CanSLPred for nine subcellular locations groups with five state-of-the-art

methods: MultiLoc2 [29], LocTree2 [31], CELLO2.5 [30], SubCons [7], and

DeepLoc [32]. The performances are evaluated with three datasets: Trust-Test

dataset, Golden dataset, and Golden-Trust datasets (explained in Chapter 3).

DeepLoc is evaluated on only Trust-Test dataset since Trust-Test dataset is

generated by excluding the protein sequences in DeepLoc’s training dataset

whereas Golden dataset is not regenerated accordingly not to ruin the orginality

of the dataset. We employ accuracy, precision, recall, F1-score, and Mathews

Correlation Coefficient(MCC) as performance metrics (explained in Chapter 4).

5.1 10-fold cross-validation results in Trust-Train datasets of nine subcel-

lular location groups

In the construction process of the classification models, we employ k-fold cross-

validation technique (k=10) in Trust-Train dataset of each subcellular location
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group. The 10-fold cross-validation performance of the constructed classifica-

tion models is first evaluated by using Trust-Train dataset. The performance re-

sults are shown in Table 5.1 and Figure 5.1 for nine subcellular location groups.

The results indicate that our method (CanSLPred) achieves 74% average accu-

racy, 87% average precision, 53% average recall, 65% average F1-Score, and

52% average MCC. Moreover, CanSLPred excels in the precision results for

all subcellular locations with more than 79% precisions and the accuracy re-

sults indicate that CanSLPred is capable of classifying correctly 74% of human

proteins in Trust-Train dataset.

Table 5.1: Performance results of CanSLPred by employing 10-fold

cross-validation in Trust-Train datasets of nine subcellular location

groups.

SLs/Metrics TP FN FP TN Accuracy Precision Recall F1-score MCC

NUC 917 382 179 1120 0.78 0.84 0.71 0.77 0.58

CYT 304 305 52 553 0.71 0.85 0.50 0.63 0.45

MEM 440 245 11 674 0.81 0.97 0.64 0.77 0.66

EXC 258 53 32 280 0.86 0.89 0.82 0.85 0.73

MIT 187 132 11 308 0.78 0.94 0.58 0.72 0.59

ERE 156 210 10 356 0.70 0.94 0.43 0.57 0.48

GLG 108 206 7 307 0.66 0.93 0.34 0.50 0.41

LYS 73 137 18 192 0.63 0.79 0.36 0.47 0.32

PEX 29 35 1 63 0.72 0.80 0.41 0.53 0.44

Overall 0.74 0.87 0.53 0.65 0.52

5.2 Performance comparison of CanSLPred with the other five methods:

The performance of our method is compared with five state-of-the-art methods

that are Multiloc2, LocTree2, Cello2.5, SubCons, and Deeploc. The prediction

results for MultiLoc2 [29], LocTree2 [31], CELLO2.5 [30], and SubCons [7]

are obtained from SubCons’ web server, and DeepLoc [32] prediction results

are obtained from its web server.

We employ three datasets (Trust-Test, Golden, Golden-Trust) to evaluate the

performances of the methods mentioned above. Trust-Test is our in-house
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Figure 5.1: Performance results of CanSLPred by employing 10-fold

cross-validation in Trust-Train dataset of nine subcellular location

groups.

dataset whereas Golden dataset is the benchmark dataset of SubCons [7] and

Golden-Trust is a refined version of Golden dataset. The details about the

datasets are explained in Chapter 3. The classification models are indepen-

dently evaluated for nine subcellular location groups as follows:

5.2.1 Performance evaluation and comparison of the methods for NUC

proteins

The performance of CanSLPred is evaluated for classifying NUC proteins by

employing three datasets: Trust-Test dataset, Golden dataset, Golden-Trust

dataset, and is compared with the mentioned five other methods.

5.2.1.1 Performance evaluation in Trust-Test dataset of NUC

Our method (CanSLPred) outperformes the other methods with 0.55 MCC

score and 0.81 precision on Trust-Test dataset since the second-highest scores
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are 0.49 MCC score and 0.77 precision from SubCons Reliability. Trust-Test

dataset of NUC contains 300 positive samples and 300 negative samples where

our method correctly predicted the subcellular localization of 465 out of 600

proteins. Additionally, our method achieves the highest F1-score which indi-

cates the balance between precision and recall. The performance of the predic-

tors in Trust-Test dataset of NUC location is shared in Table 5.2. Figure 5.2

is the column chart to illustrate the performances of the methods where the

methods are put in order according to their MCC scores in Trust-Test dataset of

NUC.

Table 5.2: Performance results of the methods for the proteins in

Trust-Test dataset of NUC.

Methods/Metrics TP FN FP TN Accuracy Precision Recall F1-score MCC

MultiLoc2 57 243 11 286 0.58 0.84 0.19 0.31 0.24

LocTree2 202 98 75 225 0.71 0.73 0.67 0.7 0.42

CELLO2.5 188 112 75 225 0.69 0.71 0.63 0.67 0.38

SubCons Realibity 235 65 90 210 0.74 0.72 0.78 0.75 0.49

SubCons RF 133 167 39 261 0.66 0.77 0.44 0.56 0.35

DeepLoc 136 164 16 284 0.7 0.89 0.45 0.6 0.46

CanSLPred 214 86 49 251 0.78 0.81 0.71 0.76 0.55

5.2.1.2 Performance evaluation in Golden dataset of NUC

Table 5.3 displays the performances of the methods in Golden dataset. Golden

dataset consists of 733 proteins that localize NUC subcellular location and 492

proteins for other locations. Our method (CanSLPred) achieves the highest

MCC of 0.69, whereas SubCons-RF scored 0.68 regarding MCC. In the com-

parison of precision scores, although MultiLoc2 attaines the highest score of

0.92, it fails to predict correctly 443 of NUC proteins out of 733, which re-

sults in a very low recall of 0.40. However, our method accomplishes a balance

between precision and recall with the scores of 0.87 and 0.88 respectively. Fig-

ure 5.3 is the column chart to illustrate the performances of the methods where

the methods are put in order according to their MCC scores in Golden dataset.
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Figure 5.2: Performance results of the methods for the proteins in

Trust-Test dataset of NUC.

5.2.1.3 Performance evaluation in Golden-Trust dataset of NUC

We evaluate the performances of the methods for NUC subcellular localization

prediction in Golden-Trust dataset. The performances are shown in Table 5.4.

SubCons-RF achieved the best MCC(0.72), whereas our method(CanSLPred)

is the second MCC(0.69). Figure 5.4 is the column chart to illustrate the per-

formances of the methods where the methods were put in order according to

their MCC scores in Golden-Trust dataset.

5.2.2 Performance evaluation and comparison of CanSLPred for CYT

proteins

The performance of CanSLPred is evaluated with three datasets: Trust-Test

dataset, Golden dataset, and Golden-Trust dataset, and the results are compared

with the other five predictors. We present CYT performances of the predictors

by using three test datasets as follows:
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Table 5.3: Performance results of the methods for the proteins in

Golden dataset of NUC.

Methods/Metrics TP FN FP TN Accuracy Precision Recall F1-score MCC

MultiLoc2 290 443 24 469 0.62 0.92 0.4 0.56 0.39

LocTree2 650 83 111 382 0.84 0.85 0.89 0.87 0.67

CELLO2.5 638 95 144 349 0.81 0.82 0.87 0.84 0.59

SubCons Realibity 705 27 194 299 0.82 0.78 0.96 0.86 0.63

SubCons RF 626 106 84 409 0.84 0.88 0.86 0.87 0.68

CanSLPred 647 86 97 396 0.85 0.87 0.88 0.88 0.69

Table 5.4: Performance results of the methods for the proteins in

Golden-Trust dataset of NUC.

Methods/Metrics TP FN FP TN Accuracy Precision Recall F1-score MCC

MultiLoc2 79 119 10 188 0.67 0.89 0.4 0.55 0.42

LocTree2 173 25 43 155 0.83 0.8 0.87 0.83 0.66

CELLO2.5 169 29 55 143 0.79 0.75 0.85 0.8 0.58

SubCons Realibity 190 8 72 126 0.8 0.73 0.96 0.83 0.63

SubCons RF 170 28 27 171 0.86 0.86 0.86 0.86 0.72

CanSLPred 172 26 35 163 0.85 0.83 0.87 0.85 0.69

5.2.2.1 Performance evaluation in Trust dataset of CYT

Table 5.5 illustrates the performances of the five predictors as well as CanSL-

Pred for CYT proteins in Trust-Test dataset. CanSLPred achieves the highest

MCC score of 0.45 in the classification of CYT proteins in Trust-Test dataset.

CanSLPred can correctly classify 70% of proteins in Trust-Test of CYT. Sub-

Cons Reliability reaches the highest precision score of 0.93 and Multiloc2 ac-

complishes the highest recall and F1-score. Figure 5.5 depicts the sorted per-

formances of the predictors concerning their MCC scores.

5.2.2.2 Performance evaluation in Golden dataset of CYT

Table 5.6 illustrates the performances of the predictors for the subcellular local-

ization prediction of CYT proteins in Golden dataset. Golden dataset of CYT

consists of 159 CYT protein sequences and 1067 protein sequences from the
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Figure 5.3: Performance results of the methods for the proteins in

Golden dataset of NUC.

other seven location groups. The performance metrics: precision, recall, and

F1-score are sensitive to imbalanced datasets. Therefore, the results of pre-

cision, recall, and F1-score are affected by the imbalanced Golden dataset of

CYT. However, CanSLPred achieves the highest MCC score of 0.39 and the

highest F1-score of 0.46, whereas SubCons Realibity reaches the highest ac-

curacy of 0.87. Figure 5.6 depicts the sorted performances of the predictors

concerning their MCC scores.

5.2.2.3 Performance evaluation in Golden-Trust dataset of CYT

Table 5.7 illustrates the performance results of the predictors. Golden-Trust

dataset of CYT consists of 95 CYT protein sequences and 95 from the other

location groups. The results indicate that our predictor CanSLPred achieves

the highest MCC score of 0.70, whereas the second beat predictor (LocTree2)

reaches 0.56. Additionally, CanSLPred can correctly classify 85% of the pro-

teins in Golden-Trust dataset of CYT. Figure 5.7 depicts the sorted perfor-

mances of the predictors concerning their MCC scores in Golden-Trust dataset.
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Figure 5.4: Performance results of the methods for the proteins in

Golden-Trust dataset of NUC.

5.2.3 Performance evaluation and comparison of CanSLPred for MEM

proteins

5.2.3.1 Performance evaluation in Trust-Test dataset of MEM

Table 5.8 illustrates the performance evaluation of the predictors for the pro-

teins in Trust-Test of MEM. CanSLPred achieves the highest MCC score of

0.67 and can correctly predict 81% of the proteins in Trust-Test dataset of

MEM. DeepLoc reaches the highest and perfect precision score of 1, whereas

CanSLPred accomplishes the precision score of 0.98. Figure 5.8 depicts the

sorted performances of the predictors concerning their MCC scores in Trust-

Test dataset of MEM.
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Table 5.5: Performance results of the methods for the proteins in

Trust-Test dataset of CYT.

Methods/Metrics TP FN FP TN Accuracy Precision Recall F1-score MCC

MultiLoc2 87 46 33 100 0.70 0.72 0.65 0.68 0.41

LocTree2 46 87 9 124 0.64 0.84 0.35 0.49 0.34

CELLO2.5 36 97 9 124 0.60 0.80 0.27 0.4 0.27

SubCons Realibity 26 107 2 131 0.59 0.93 0.20 0.33 0.29

SubCons RF 54 79 11 122 0.66 0.83 0.41 0.55 0.38

DeepLoc 63 70 11 122 0.70 0.85 0.47 0.61 0.44

CanSLPred 63 70 10 123 0.70 0.86 0.47 0.61 0.45

Table 5.6: Performance results of the methods for the proteins in

Golden dataset of CYT.

Methods/Metrics TP FN FP TN Accuracy Precision Recall F1-score MCC

MultiLoc2 129 30 468 599 0.59 0.22 0.81 0.35 0.25

LocTree2 82 77 152 915 0.81 0.35 0.52 0.42 0.32

CELLO2.5 62 97 96 971 0.84 0.39 0.39 0.39 0.30

SubCons Realibity 12 147 10 1057 0.87 0.55 0.08 0.14 0.17

SubCons RF 74 85 97 970 0.85 0.43 0.47 0.45 0.36

CanSLPred 120 39 238 829 0.77 0.34 0.75 0.46 0.39

5.2.3.2 Performance evaluation in Golden dataset of MEM

Table 5.9 illustrates the performance evaluation of the predictors for the pro-

teins in Golden dataset of MEM. Although LocTree2 accomplishes the highest

precision of 0.81, its recall value is lower than the other four predictors. CanSL-

Pred achieves the highest MCC score of 0.65, the highest F1-score of 0.66, the

highest recall of 0.68 and the highest accuracy of 0.97. Figure 5.9 depicts the

sorted performances of the predictors concerning their MCC scores in Golden

dataset of MEM.

5.2.3.3 Performance evaluation in Golden-Trust dataset of MEM

Table 5.10 illustrates the performance evaluation of the predictors for the pro-

teins in Golden-Trust dataset of MEM. CanSLPred outperforms at all perfor-

mance metrics for the classification of the proteins in Golden-Trust dataset
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Figure 5.5: Performance results of the methods for the proteins in

Trust-Test dataset of CYT.

(MEM). Figure 5.10 depicts the sorted performances of the predictors accord-

ing to their MCC scores in Golden-Trust dataset of MEM.

5.2.4 Performance evaluation and comparison of CanSLPred for EXC

proteins

The performances of the predictors are evaluated by using Trust-Test dataset.

Golden dataset does not contain any EXC proteins. Therefore, the perfor-

mances of the predictors are compared by using only Trust-Test dataset as fol-

lows:

5.2.4.1 Performance evaluation in Trust-Test dataset of EXC

Table 5.11 illustrates the performance evaluation of the predictors for the pro-

teins in Trust-Test dataset of EXC. Although DeepLoc accomplishes a perfect

score of precision, CanSLPred outshines all of the methods by achieving an

MCC score of 0.86. Additionally, CanSLPred can correctly classify 93% of
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Figure 5.6: Performance results of the methods for the proteins in

Golden dataset of CYT.

the proteins in Trust-Test dataset of EXC. Figure 5.11 depicts the sorted perfor-

mances of the predictors according to their MCC scores in Trust-Test dataset of

EXC.

5.2.5 Performance evaluation and comparison of CanSLPred for MIT

proteins

The performances of the predictors are evaluated by using three datasets of

MIT: Trust-Test dataset, Golden dataset, and Golden-Trust dataset, and the re-

sults are compared with the other five predictors. We present MIT performances

of the predictors by using three test datasets as follows:

5.2.5.1 Performance evaluation in Trust-Test dataset of MIT

Table 5.12 illustrates the performance evaluation of the predictors for the pro-

teins in Trust-Test dataset of MIT. The results indicate that CanSLPred and

DeepLoc are capable of classifying 96% of the proteins correctly in Trust-Test
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Table 5.7: Performance results of the methods for the proteins in

Golden-Trust dataset of CYT.

Methods/Metrics TP FN FP TN Accuracy Precision Recall F1-score MCC

MultiLoc2 74 17 47 48 0.66 0.62 0.82 0.71 0.34

LocTree2 51 44 3 92 0.75 0.94 0.54 0.69 0.56

CELLO2.5 36 59 9 86 0.64 0.80 0.38 0.52 0.33

SubCons Realibity 7 88 1 94 0.53 0.88 0.07 0.13 0.16

SubCons RF 47 48 6 89 0.72 0.89 0.49 0.63 0.48

CanSLPred 76 19 10 85 0.85 0.88 0.80 0.84 0.70

Table 5.8: Performance results of the methods for the proteins in

Trust-Test dataset of MEM.

Methods/Metrics TP FN FP TN Accuracy Precision Recall F1-score MCC

MultiLoc2 25 119 4 129 0.56 0.86 0.17 0.28 0.23

LocTree2 39 105 4 129 0.61 0.91 0.27 0.42 0.33

CELLO2.5 51 93 4 129 0.65 0.93 0.35 0.51 0.41

SubCons Realibity 78 66 5 128 0.74 0.94 0.54 0.69 0.55

SubCons RF 79 65 6 127 0.74 0.93 0.55 0.69 0.55

DeepLoc 86 58 0 133 0.79 1 0.60 0.75 0.64

CanSLPred 94 50 2 131 0.81 0.98 0.65 0.78 0.67

dataset of MIT. Additionally, CanSLPred reaches the highest MCC score of

0.62 whereas the closest one DeepLoc reaches 0.60 MCC score. Figure 5.12

depicts the sorted performances of the predictors according to their MCC scores

in Trust-Test dataset of MIT.

5.2.5.2 Performance evaluation in Golden dataset of MIT

Table 5.13 illustrates the performance evaluation of the predictors for the pro-

teins in Golden dataset of MIT. The results indicate that SubCons and CanSL-

Pred are capable of classifying 94% of the proteins correctly in Golden dataset

of MIT. Additionally, SubCons reaches the highest MCC score of 0.80, whereas

the most imminent one is our method CanSLPred that reaches 0.79 MCC score.

Figure 5.13 depicts the sorted performances of the predictors according to their

MCC scores in Golden dataset of MIT.
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Figure 5.7: Performance results of the methods for the proteins in

Golden-Trust dataset of CYT.

5.2.5.3 Performance evaluation in Golden-Trust dataset of MIT

Table 5.14 illustrates the performance evaluation of the predictors for the pro-

teins in Golden-Trust dataset of MIT. The results indicate that CanSLPred can

correctly classify 92% of the proteins in Golden-Trust dataset. Additionally,

CanSLPred accomplishes the highest MCC score of 0.84 among all other pre-

dictors. Figure 5.14 depicts the sorted performances of the predictors according

to their MCC scores in Golden-Trust dataset of MIT.

5.2.6 Performance evaluation and comparison of CanSLPred for ERE

proteins

The performances of the predictors are evaluated by using three datasets of

ERE: Trust-Test dataset, Golden dataset, and Golden-Trust dataset, and the

results are compared with the other five predictors. We present ERE perfor-

mances of the predictors by using three test datasets as follows:
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Figure 5.8: Performance results of the methods for the proteins in

Trust-Test dataset of MEM.

5.2.6.1 Performance evaluation in Trust-Test dataset of ERE

Table 5.15 illustrates the performance evaluation of the predictors for the pro-

teins in Trust-Test dataset of ERE. CanSLPred reaches the highest MCC score

of 0.57 and can correctly classify 80% of the protein in Trust-Test dataset,

whereas CELLO2.5 accomplishes the highest score of precision. DeepLoc is

the second-best predictor which has a 0.40 MCC score in classifying ERE pro-

teins. Figure 5.15 depicts the sorted performances of the predictors according

to their MCC scores in Trust-Test dataset of ERE.

5.2.6.2 Performance evaluation in Golden dataset of ERE

Table 5.16 illustrates the performance evaluation of the predictors for the pro-

teins in Golden dataset of ERE. SubCons significantly shows better perfor-

mance than the other methods at all performance metrics but precision. Al-

though Cello2.5 reaches the perfect precision score of 1, its recall score is the

lowest. However, CanSLPred performs better than MultiLoc in terms of preci-

sion scores. Our method, CanSLPred, and MultiLoc have the second-highest
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Table 5.9: Performance results of the methods for the proteins in

Golden dataset of MEM.

Methods/Metrics TP FN FP TN Accuracy Precision Recall F1-score MCC

MultiLoc2 6 41 4 1175 0.96 0.60 0.13 0.21 0.27

LocTree2 13 34 3 1176 0.97 0.81 0.28 0.42 0.46

CELLO2.5 18 29 18 1159 0.96 0.50 0.38 0.43 0.42

SubCons Realibity 27 20 14 1165 0.97 0.66 0.57 0.61 0.60

SubCons RF 30 17 21 1158 0.97 0.59 0.64 0.61 0.60

CanSLPred 32 15 18 1161 0.97 0.64 0.68 0.66 0.65

Table 5.10: Performance results of the methods for the proteins in

Golden-Trust dataset of MEM.

Methods/Metrics TP FN FP TN Accuracy Precision Recall F1-score MCC

MultiLoc2 5 17 0 22 0.61 1 0.23 0.37 0.36

LocTree2 6 16 0 22 0.64 1 0.27 0.43 0.40

CELLO2.5 9 13 1 21 0.68 0.90 0.41 0.56 0.43

SubCons Realibity 14 8 1 21 0.80 0.93 0.64 0.76 0.62

SubCons RF 15 7 1 21 0.82 0.94 0.68 0.79 0.66

CanSLPred 16 6 0 22 0.86 1 0.73 0.84 0.76

MCC score of 0.54. Figure 5.16 depicts the sorted performances of the predic-

tors according to their MCC scores in Golden dataset of ERE.

5.2.6.3 Performance evaluation in Golden-Trust dataset of ERE

Table 5.17 illustrates the performance evaluation of the predictors for the pro-

teins in Golden-Trust dataset of ERE. CanSLPred has the highest performance

scores, but precision. Although Cello2.5 reaches the perfect precision score of

1, its recall score is the lowest (0.12). MultiLoc2 and SubCons accomplish the

second-highest MCC score of 0.50, whereas CanSLPred achieves the highest

MCC score of 0.60. Figure 5.17 depicts the sorted performances of the predic-

tors according to their MCC scores in Golden-Trust dataset of ERE.
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Figure 5.9: Performance results of the methods for the proteins in

Golden dataset of MEM.

5.2.7 Performance evaluation and comparison of CanSLPred for GLG

proteins

The performances of the predictors are evaluated by using three datasets of

GLG: Trust-Test dataset, Golden dataset, and Golden-Trust dataset, and the

results are compared with the other five predictors. We present GLG perfor-

mances of the predictors by using three test datasets as follows:

5.2.7.1 Performance evaluation in Trust-Test dataset of GLG

Table 5.18 illustrates the performance evaluation of the predictors for the pro-

teins in Trust-Test dataset of GLG. CanSLPred accomplishes the highest perfor-

mance scores, but precision. Although MultiLoc2, CELLO2.5, and SubCons

reach a perfect score of precision, they all have meager recall scores. CanSL-

Pred is capable of classifying 65% of the proteins the dataset, whereas DeepLoc

can do 56% of them. Besides, CanSLPred reaches a significantly better MCC

score of 0.36 than all the other methods. Figure 5.18 depicts the sorted perfor-

mances of the predictors according to their MCC scores in Trust-Test dataset of
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Figure 5.10: Performance results of the methods for the proteins in

Golden-Trust dataset of MEM.

GLG.

5.2.7.2 Performance evaluation in Golden dataset of GLG

Table 5.19 illustrates the performance evaluation of the predictors for the pro-

teins in Golden dataset of GLG. CanSLPred reached the highest performance

scores except for precision. Although SubCons accomplishes a perfect preci-

sion score of 1, its recall is lower than our method, CanSLPred. The accuracy

score indicates that CanSLPred and SubCons can correctly classify 99% of the

proteins in the dataset. Figure 5.19 depicts the sorted performances of the pre-

dictors according to their MCC scores in Golden dataset of GLG.

5.2.7.3 Performance evaluation in Golden-Trust dataset of GLG

Table 5.20 illustrates the performance evaluation of the predictors for the pro-

teins in Golden-Trust dataset of GLG. CanSLPred is well ahead of the other

methods in terms of the performance scores. CanSlPred accomplishes 0.67
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Table 5.11: Performance results of the methods for the proteins in

Trust-Test dataset of EXC.

Methods/Metrics TP FN FP TN Accuracy Precision Recall F1-score MCC

MultiLoc2 15 48 0 67 0.63 1 0.24 0.39 0.37

LocTree2 47 16 9 58 0.81 0.84 0.75 0.79 0.62

CELLO2.5 37 26 3 64 0.78 0.93 0.59 0.72 0.59

SubCons Realibity 37 26 0 67 0.80 1 0.59 0.74 0.65

SubCons RF 38 25 0 67 0.81 1 0.60 0.75 0.66

DeepLoc 44 19 0 67 0.85 1 0.70 0.82 0.74

CanSLPred 59 4 5 62 0.93 0.92 0.94 0.93 0.86

Table 5.12: Performance results of the methods for the proteins in

Trust-Test dataset of MIT.

Methods/Metrics TP FN FP TN Accuracy Precision Recall F1-score MCC

MultiLoc2 32 48 5 75 0.67 0.86 0.40 0.55 0.40

LocTree2 30 50 2 78 0.68 0.94 0.38 0.54 0.44

CELLO2.5 34 46 3 77 0.69 0.92 0.42 0.58 0.46

SubCons Realibity 39 41 6 74 0.71 0.87 0.49 0.63 0.46

SubCons RF 42 38 8 72 0.71 0.84 0.53 0.65 0.46

DeepLoc 46 34 2 78 0.78 0.96 0.57 0.72 0.60

CanSLPred 48 32 2 78 0.79 0.96 0.60 0.74 0.62

MCC score, whereas the second-highest ones (MultiLoc2, SubCons) reach

0.20. Moreover, CanSLPred can accurately classify 81% of the proteins in the

dataset. Figure 5.20 depicts the sorted performances of the predictors according

to their MCC scores in Golden-Trust dataset of GLG.

5.2.8 Performance evaluation and comparison of CanSLPred for LYS

proteins

The performances of the predictors are evaluated by using three datasets of

LYS: Trust-Test dataset, Golden dataset, and Golden-Trust dataset, and the re-

sults are compared with the other five predictors. We present LYS performances

of the predictors by using three test datasets as follows:
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Figure 5.11: Performance results of the methods for the proteins in

Trust-Test dataset of EXC.

5.2.8.1 Performance evaluation in Trust-Test dataset of LYS

Table 5.21 illustrates the performance evaluation of the predictors for the pro-

teins in Trust-Test dataset of LYS. The results in the table indicate that CanSL-

Pred’s performance in classifying LYS proteins is significantly better than the

other methods. CanSLPred accomplishes 0.59 MCC score, whereas the second-

highest MCC score is 0.32 by CELLO2.5. Although SubCons and DeepLoc

achieve a perfect precision score, their recall scores are inferior. Moreover,

CanSLPred can accurately classify 76% of the proteins in the dataset. Fig-

ure 5.21 depicts the sorted performances of the predictors according to their

MCC scores in Trust-Test dataset of LYS.

5.2.8.2 Performance evaluation in Golden dataset of LYS

Table 5.22 illustrates the performance evaluation of the predictors for the pro-

teins in Golden dataset of LYS. CanSLPred performs significantly better than

the other predictors at all performance metrics except precision. CanSLPred

achieves 0.67 MCC score and can accurately classify 99% of the proteins in the

65



CanSLPred Deeploc CELLO2.5 SubCons-RF SubCons-Reliab. LocTree2 MultiLoc2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

Accuracy

Precision

Recall

F1-score

MCC

Figure 5.12: Performance results of the methods for the proteins in

Trust-Test dataset of MIT.

dataset whereas MultiLoc2 reaches 0.64 MCC score. Figure 5.22 depicts the

sorted performances of the predictors according to their MCC scores in Golden

dataset of LYS.

5.2.8.3 Performance evaluation in Golden-Trust dataset of LYS

Table 5.23 illustrates the performance evaluation of the predictors for the pro-

teins in Golden-Trust dataset of LYS. All the predictors except LocTree2 reach

a perfect precision score of 1. CanSLPred can accurately classify 85% of the

proteins and reaches the highest MCC score of 0.73, whereas MultiLoc2 has

the second-highest MCC score of 0.65. Figure 5.23 depicts the sorted perfor-

mances of the predictors according to their MCC scores in Golden-Trust dataset

of LYS.
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Table 5.13: Performance results of the methods for the proteins in

Golden dataset of MIT.

Methods/Metrics TP FN FP TN Accuracy Precision Recall F1-score MCC

MultiLoc2 145 57 39 985 0.92 0.79 0.72 0.75 0.71

LocTree2 109 93 14 1010 0.91 0.89 0.54 0.67 0.65

CELLO2.5 149 53 52 971 0.91 0.74 0.74 0.74 0.69

SubCons Realibity 166 36 32 992 0.94 0.84 0.82 0.83 0.80

SubCons RF 175 27 41 982 0.94 0.81 0.87 0.84 0.80

CanSLPred 175 27 47 977 0.94 0.79 0.87 0.83 0.79

Table 5.14: Performance results of the methods for the proteins in

Golden-Trust dataset of MIT.

Methods/Metrics TP FN FP TN Accuracy Precision Recall F1-score MCC

MultiLoc2 92 34 5 121 0.85 0.95 0.73 0.83 0.71

LocTree2 71 55 3 123 0.77 0.96 0.56 0.71 0.59

CELLO2.5 85 41 14 112 0.78 0.86 0.67 0.75 0.58

SubCons Realibity 106 20 6 120 0.90 0.95 0.84 0.89 0.80

SubCons RF 111 15 10 116 0.90 0.92 0.88 0.90 0.80

CanSLPred 107 19 2 124 0.92 0.98 0.85 0.91 0.84

5.2.9 Performance evaluation and comparison of CanSLPred for PEX

proteins

The performances of the predictors are evaluated by using three datasets of

PEX: Trust-Test dataset, Golden dataset, and Golden-Trust dataset, and the

results are compared with the other five predictors. We present PEX perfor-

mances of the predictors by using three test datasets as follows:

5.2.9.1 Performance evaluation in Trust-Test dataset of PEX

Table 5.24 illustrates the performance evaluation of the predictors for the pro-

teins in Trust-Test dataset of PEX. SubCons achieves the highest scores at all

performance metrics. SubCons can accurately classify 84% of the proteins and

reaches 0.72 MCC score whereas CanSLPred achieves 0.81 accuracy score and

0.67 MCC score. Figure 5.24 depicts the sorted performances of the predictors
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Figure 5.13: Performance results of the methods for the proteins in

Golden dataset of MIT.

according to their MCC scores in Trust-Test dataset of PEX.

5.2.9.2 Performance evaluation in Golden dataset of PEX

Table 5.25 illustrates the performance evaluation of the predictors for the pro-

teins in Golden dataset of PEX. CanSLPred reaches the highest MCC score

of 0.43, whereas the second-best predictor CeLLO2.5 has 0.38 MCC score.

Although CanSLPred performs low precision, it accurately classifies 1218 pro-

teins out of 1225 in the dataset. Additionally, MutiLoc and CanSLPred accom-

plish a recall score of 0.43 better than the other methods. Figure 5.25 depicts

the sorted performances of the predictors according to their MCC scores in

Golden dataset of PEX.

5.2.9.3 Performance evaluation in Golden-Trust dataset of PEX

Table 5.26 illustrates the performance evaluation of the predictors for the pro-

teins in Golden-Trust dataset of PEX. CanSLPred and MultiLoc2 perform the
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Figure 5.14: Performance results of the methods for the proteins in

Golden-Trust dataset of MIT.

same in terms of all performance metrics. They reach the highest performance

scores, where the MCC score is 0.52, and the precision score is 1. SubCons

accomplishes 0.41 MCC, whereas CeLLO2.5 achieves 0.38 MCC score. Fig-

ure 5.26 depicts the sorted performances of the predictors according to their

MCC scores in Golden-Trust dataset of PEX.

5.2.10 Comparison of the predictors in terms of MCC scores for all sub-

cellular locations

Since MCC is one of the most reliable performance metrics to evaluate the

reliability and robustness of machine learning-based methods in bioinformat-

ics, we provide the MCC scores of the predictors for all subcellular locations

together to render the comparison of the predictors. Besides, we present the

overall MCC scores of each localization prediction separately for three datasets

(Trust-Test, Golden dataset, Golden-Trust dataset). These overall MCC scores

indicate that CanSLPred is a reliable and robust predictor since it achieves the

highest overall MCC scores for all datasets. CanSLPred accomplishes the over-
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Table 5.15: Performance results of the methods for the proteins in

Trust-Test dataset of ERE.

Methods/Metrics TP FN FP TN Accuracy Precision Recall F1-score MCC

MultiLoc2 16 39 8 79 0.67 0.67 0.29 0.40 0.26

LocTree2 13 42 1 86 0.70 0.93 0.24 0.38 0.37

CELLO2.5 2 53 0 87 0.63 1 0.04 0.08 0.15

SubCons Realibity 8 47 1 86 0.66 0.89 0.15 0.26 0.27

SubCons RF 7 48 1 86 0.65 0.88 0.13 0.23 0.24

DeepLoc 18 37 3 84 0.72 0.86 0.33 0.48 0.40

CanSLPred 31 24 5 82 0.80 0.86 0.56 0.68 0.57

Table 5.16: Performance results of the methods for the proteins in

Golden dataset of ERE.

Methods/Metrics TP FN FP TN Accuracy Precision Recall F1-score MCC

MultiLoc2 30 16 32 1148 0.96 0.48 0.65 0.55 0.54

LocTree2 17 29 9 1171 0.97 0.65 0.37 0.47 0.48

CELLO2.5 4 42 0 1178 0.97 1 0.09 0.17 0.29

SubCons Realibity 22 24 7 1173 0.97 0.76 0.48 0.59 0.59

SubCons RF 25 21 7 1173 0.98 0.78 0.54 0.64 0.64

CanSLPred 26 20 22 1158 0.97 0.54 0.57 0.55 0.54

all MCC scores of 0.59, 0.61 and 0.68 on Trust-Test dataset, Golden dataset,

and Golden-Trust dataset respectively whereas DeepLoc achieves the second-

highest overall MCC score of 0.44 on Trust-Test dataset and SubCons does

the second-highest overall MCC scores of 0.56 and 0.53 on Golden dataset

and Golden-Trust dataset respectively. The MCC scores and the overall MCC

scores are depicted in the Tables form Table 5.27 to Table 5.29 and in the figures

from Figure 5.27 to Figure 5.29.
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Figure 5.15: Performance results of the methods for the proteins in

Trust-Test dataset of ERE.
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Figure 5.16: Performance results of the methods for the proteins in

Golden dataset of ERE.
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Table 5.17: Performance results of the methods for the proteins in

Golden-Trust dataset of ERE.

Methods/Metrics TP FN FP TN Accuracy Precision Recall F1-score MCC

MultiLoc2 15 10 3 22 0.74 0.83 0.60 0.70 0.50

LocTree2 9 16 1 24 0.66 0.90 0.36 0.51 0.40

CELLO2.5 3 22 0 25 0.54 1 0.12 0.21 0.25

SubCons Realibity 11 14 1 24 0.70 0.92 0.44 0.60 0.47

SubCons RF 12 13 1 24 0.72 0.92 0.48 0.63 0.50

CanSLPred 15 10 1 24 0.78 0.94 0.60 0.73 0.60
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Figure 5.17: Performance results of the methods for the proteins in

Golden-Trust dataset of ERE.

Table 5.18: Performance results of the methods for the proteins in

Trust-Test dataset of GLG.

Methods/Metrics TP FN FP TN Accuracy Precision Recall F1-score MCC

MultiLoc2 2 72 0 74 0.51 1 0.03 0.06 0.12

LocTree2 4 71 1 73 0.52 0.80 0.05 0.09 0.11

CELLO2.5 6 69 0 74 0.54 1 0.08 0.15 0.20

SubCons Realibity 7 68 0 74 0.54 1 0.09 0.17 0.22

SubCons RF 6 69 0 74 0.54 1 0.08 0.15 0.20

DeepLoc 10 65 1 73 0.56 0.91 0.13 0.23 0.23

CanSLPred 29 46 6 68 0.65 0.83 0.39 0.53 0.36
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Figure 5.18: Performance results of the methods for the proteins in

Trust-Test dataset of GLG.

Table 5.19: Performance results of the methods for the proteins in

Golden dataset of GLG.

Methods/Metrics TP FN FP TN Accuracy Precision Recall F1-score MCC

MultiLoc2 1 20 4 1201 0.98 0.20 0.05 0.08 0.09

LocTree2 1 20 4 1201 0.98 0.25 0.05 0.08 0.10

CELLO2.5 0 21 0 1205 0.98 0 0 0 0

SubCons Realibity 6 15 0 1205 0.99 1 0.29 0.45 0.53

SubCons RF 7 14 0 1205 0.99 1 0.33 0.50 0.57

CanSLPred 12 9 8 1197 0.99 0.60 0.57 0.59 0.58

Table 5.20: Performance results of the methods for the proteins in

Golden-Trust dataset of GLG.

Methods/Metrics TP FN FP TN Accuracy Precision Recall F1-score MCC

MultiLoc2 1 12 0 13 0.54 1 0.08 0.15 0.20

LocTree2 0 13 0 13 0.50 0 0 0 0

CELLO2.5 0 13 0 13 0.50 0 0 0 0

SubCons Realibity 0 13 0 13 0.50 0 0 0 0

SubCons RF 1 12 0 13 0.54 1 0.08 0.15 0.20

CanSLPred 8 5 0 13 0.81 1 0.62 0.76 0.67
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Figure 5.19: Performance results of the methods for the proteins in

Golden dataset of GLG.
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Figure 5.20: Performance results of the methods for the proteins in

Golden-Trust dataset of GLG.
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Table 5.21: Performance results of the methods for the proteins in

Trust-Test dataset of LYS.

Methods/Metrics TP FN FP TN Accuracy Precision Recall F1-score MCC

MultiLoc2 11 42 2 51 0.58 0.85 0.21 0.34 0.26

LocTree2 0 53 0 53 0.50 0 0 0 0

CELLO2.5 12 41 1 52 0.60 0.92 0.23 0.37 0.32

SubCons Realibity 6 47 0 53 0.56 1 0.11 0.20 0.24

SubCons RF 7 46 0 53 0.57 1 0.13 0.23 0.27

DeepLoc 3 50 0 53 0.53 1 0.06 0.11 0.17

CanSLPred 29 24 1 52 0.76 0.97 0.55 0.70 0.59
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Figure 5.21: Performance results of the methods for the proteins in

Trust-Test dataset of LYS.

Table 5.22: Performance results of the methods for the proteins in

Golden dataset of LYS.

Methods/Metrics TP FN FP TN Accuracy Precision Recall F1-score MCC

MultiLoc2 6 5 2 1213 0.99 0.75 0.55 0.63 0.64

LocTree2 0 11 0 1215 0.99 0 0 0 0

CELLO2.5 5 6 1 1214 0.99 0.83 0.45 0.58 0.61

SubCons Realibity 4 7 0 1215 0.99 1 0.36 0.53 0.60

SubCons RF 4 7 0 1215 0.99 1 0.36 0.53 0.60

CanSLPred 8 13 5 1210 0.99 0.62 0.73 0.67 0.67
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Figure 5.22: Performance results of the methods for the proteins in

Golden dataset of LYS.

Table 5.23: Performance results of the methods for the proteins in

Golden-Trust dataset of LYS.

Methods/Metrics TP FN FP TN Accuracy Precision Recall F1-score MCC

MultiLoc2 6 4 0 10 0.80 1 0.60 0.75 0.65

LocTree2 0 10 0 10 0.50 0 0 0 0

CELLO2.5 5 5 0 10 0.75 1 0.50 0.67 0.58

SubCons Realibity 4 6 0 10 0.70 1 0.40 0.57 0.50

SubCons RF 4 6 0 10 0.70 1 0.40 0.57 0.50

CanSLPred 7 3 0 10 0.85 1 0.70 0.82 0.73

Table 5.24: Performance results of the methods for the proteins in

Trust-Test dataset of PEX.

Methods/Metrics TP FN FP TN Accuracy Precision Recall F1-score MCC

MultiLoc2 8 8 0 16 0.75 1 0.50 0.67 0.58

LocTree2 3 13 0 16 0.59 1 0.19 0.32 0.32

CELLO2.5 2 14 0 16 0.56 1 0.12 0.21 0.26

SubCons Realibity 9 7 0 16 0.78 1 0.56 0.72 0.63

SubCons RF 11 5 0 16 0.84 1 0.69 0.82 0.72

DeepLoc 2 14 0 16 0.56 1 0.12 0.21 0.26

CanSLPred 10 6 0 16 0.81 1 0.62 0.77 0.67
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Figure 5.23: Performance results of the methods for the proteins in

Golden-Trust dataset of LYS.
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Figure 5.24: Performance results of the methods for the proteins in

Trust-Test dataset of PEX.
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Table 5.25: Performance results of the methods for the proteins in

Golden dataset of PEX.

Methods/Metrics TP FN FP TN Accuracy Precision Recall F1-score MCC

MultiLoc2 3 4 32 1187 0.97 0.09 0.43 0.15 0.18

LocTree2 0 7 1 1217 0.99 0 0 0 0

CELLO2.5 1 6 0 1218 1 1 0.14 0.25 0.38

SubCons Realibity 2 5 12 1204 0.99 0.14 0.29 0.19 0.20

SubCons RF 2 5 19 1199 0.98 0.10 0.29 0.15 0.16

CanSLPred 3 4 4 1215 0.99 0.43 0.43 0.43 0.43
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Figure 5.25: Performance results of the methods for the proteins in

Golden dataset of PEX.

Table 5.26: Performance results of the methods for the proteins in

Golden-Trust dataset of PEX.

Methods/Metrics TP FN FP TN Accuracy Precision Recall F1-score MCC

MultiLoc2 3 4 0 7 0.71 1 0.43 0.60 0.52

LocTree2 0 7 0 7 0.50 0 0 0 0

CELLO2.5 1 6 0 7 0.57 1 0.14 0.25 0.38

SubCons Realibity 2 5 0 7 0.64 1 0.29 0.45 0.41

SubCons RF 2 5 0 7 0.64 1 0.29 0.45 0.41

CanSLPred 3 4 0 7 0.71 1 0.43 0.60 0.52
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Figure 5.26: Performance results of the methods for the proteins in

Golden-Trust dataset of PEX.

Table 5.27: Comparison of the predictors in terms of MCC scores

for all subcellular locations by using Trust-Test dataset.

SLs/Predictors CELLO2.5 MultiLoc2 LocTree2 SubCons-Realiab. SubCons-RF DeepLoc CanSLPred

NUC 0.38 0.24 0.42 0.49 0.35 0.46 0.55

CYT 0.27 0.41 0.34 0.29 0.38 0.44 0.45

MEM 0.41 0.23 0.33 0.55 0.55 0.64 0.67

EXC 0.59 0.37 0.62 0.65 0.66 0.74 0.86

MIT 0.46 0.40 0.44 0.46 0.46 0.60 0.62

ERE 0.15 0.26 0.37 0.27 0.24 0.40 0.57

GLG 0.20 0.12 0.11 0.22 0.2 0.23 0.36

LYS 0.32 0.26 0 0.24 0.27 0.17 0.59

PEX 0.26 0.58 0.32 0.63 0.72 0.26 0.67

Overall 0.34 0.32 0.33 0.42 0.43 0.44 0.59
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Figure 5.27: Comparison of the predictors in terms of MCC scores

for all subcellular locations by using Trust-Test dataset.

Table 5.28: Comparison of the predictors in terms of MCC scores

for all subcellular locations by using Golden dataset.

SLs/Predictors CELLO2.5 MultiLoc2 LocTree2 SubCons-Realiab. SubCons-RF CanSLPred

NUC 0.59 0.39 0.67 0.63 0.68 0.69

CYT 0.3 0.25 0.32 0.17 0.36 0.39

MEM 0.43 0.36 0.4 0.62 0.66 0.76

EXC

MIT 0.69 0.71 0.65 0.80 0.80 0.79

ERE 0.29 0.54 0.48 0.59 0.64 0.54

GLG 0 0.09 0.10 0.53 0.57 0.58

LYS 0.61 0.64 0 0.6 0.60 0.67

PEX 0.38 0.18 0 0.20 0.16 0.43

Overall 0.41 0.40 0.33 0.52 0.56 0.61
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Figure 5.28: Comparison of the predictors in terms of MCC scores

for all subcellular locations by using Golden dataset.

Table 5.29: Comparison of the predictors in terms of MCC scores

for all subcellular locations by using Golden-Trust dataset.

SLs/Predictors CELLO2.5 MultiLoc2 LocTree2 SubCons-Realiab. SubCons-RF CanSLPred

NUC 0.58 0.42 0.66 0.63 0.72 0.69

CYT 0.33 0.34 0.56 0.16 0.48 0.70

MEM 0.42 0.27 0.46 0.60 0.60 0.65

EXC

MIT 0.58 0.71 0.59 0.80 0.80 0.84

ERE 0.25 0.5 0.40 0.47 0.50 0.60

GLG 0 0.20 0 0 0.20 0.67

LYS 0.58 0.65 0 0.50 0.50 0.73

PEX 0.28 0.52 0 0.41 0.41 0.52

Overall 0.38 0.45 0.33 0.45 0.53 0.68
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Figure 5.29: Comparison of the predictors in terms of MCC scores

for all subcellular locations by using Golden-Trust dataset.
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CHAPTER 6

CONCLUSION, DISCUSSION AND FUTURE WORK

6.1 Conclusion and Discussion

Determining the subcellular localization of proteins is crucial for understanding

the functions of proteins, drug targeting, systems biology, and proteomics re-

search. The subcellular localization of proteins can experimentally be identified

by purification or imaging methods which are expensive and time-consuming.

Therefore, several computational methods for automated prediction of protein

subcellular localization are proposed in the last two decades; however, there

is still room for better performance. Here, we introduce a multi-view classifi-

cation method (CanSLPred) that provides subcellular localization predictions

for human proteins. In the proposed multi-view approach, we employ seven

feature-based probabilistic prediction models that provide seven distinct rep-

resentations (protein descriptors) and seven probabilistic predictions for each

protein sequence. There are three major parts that we describe in this study:

1. A newly generated subcellular location hierarchy is introduced by inte-

grating Universal Protein Knowledge Base (UniProtKB) Subcellular Lo-

cation (SL) terms to Gene Ontology (GO) Cellular Component (CC) hi-

erarchy.

2. A dataset of protein sequences is generated by taking the proteins whose

subcellular localization is experimentally annotated in UniProtKB/Swis-

sProt and applying the new SL hierarchy to propagate the proteins accord-

ing to their subcellular localization. This dataset is called Trust dataset.

3. A new classification method is described to predict the subcellular local-
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ization of human proteins by employing a weighted mean voting multi-

view Support Vector Machine (SVM) approach.

The new subcellular location hierarchy is formed to unite the characteristics of

both hierarchies: UniProtKB SL hierarchy and GO CC hierarchy. To gener-

ate the new SL hierarchy, UniProtKB SL identifiers are first mapped to GO CC

terms. GO CC hierarchy is then extracted by considering ‘is_a’ relations among

GO CC terms in GO hierarchy. The mapping of UniProtKB SL identifiers to

GO CC terms is applied at the end. CanSLPred consists of nine independently

constructed classification models where each model provides predictions for

one of nine subcellular locations: cytoplasm (CYT), nucleus (NUC), cell mem-

brane (MEM), mitochondrion (MIT), endoplasmic reticulum (ERE), secreted

(EXC), Golgi apparatus (GLG), lysosome (LYS), and peroxisome (PEX). The

classification models are developed by considering the subcellular localization

problem as a binary classification problem where each of the models decides if

a protein localizes to the corresponding subcellular location or not. Each clas-

sification model predicts the subcellular localization of proteins by following

four steps:

1. Feature extraction and normalization

2. Prediction by probabilistic models

3. Weighted-mean voting

4. Thresholding

In the feature extraction process, seven protein descriptors are selected out of

160 cases (40 descriptors from three tools: iFeature [4], POSSUM [5], and

SPMAP [6] and 4 normalization methods: Standard normalization, MinMax

normalization, Robust scaler, Power transformation), where these seven pro-

tein descriptors contribute the best in the combination of probabilistic pre-

diction models. SVM is used to construct probabilistic prediction models,

which produces probabilistic scores indicating the localization probability for a

query protein sequence. A weighted score is calculated based on the obtained

probabilistic scores from seven feature-based probabilistic prediction models
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(SVMs) by employing weighted mean voting. Binary prediction is given by

applying thresholding on the weighted score.

We evaluate CanSLPred by using three datasets: Trust-Test dataset (our in-

house dataset), Golden dataset (SubCons’ benchmark dataset), and Golden-

Trust dataset(a refined version of Golden dataset). Trust dataset is created

by applying the new SL hierarchy on the proteins whose subcellular local-

ization is experimentally annotated in UniProtKB/SwissProt. Golden dataset

consists of protein sequences whose subcellular localization is experimentally

annotated in at least two out of three protein resources: mass spectrometry

(Mass-Spec), SLHPA, and UniProtKB. Golden-Trust dataset is a refined ver-

sion of Golden dataset where the steps we follow to generate Trust dataset are

applied for the protein sequences in Golden dataset. We compare the results of

CanSLPred with five state-of-the-art methods: MultiLoc2 [29], LocTree2 [31],

CELLO2.5 [30], SubCons [7], and DeepLoc [32]. Although CanSLPred draws

back in the classification of the proteins for some locations (PEX in Trust-

Test dataset, MIT and ERE in Golden dataset, NUC in Golden-Trust dataset),

it achieves the highest overall MCC scores on three test datasets, which indi-

cates that CanSLPred shows remarkable achievement in subcellular localiza-

tion prediction of human proteins. CanSLPred’s overall Matthews correlation

coefficient (MCC) scores are 59%, 68%, 61% overall Matthews correlation

coefficient (MCC) scores on Trust-Test dataset, Golden-Trust dataset, Golden

dataset, respectively whereas SubCons’ overall MCC scores are 43%, 53%, and

56% (as illustrated in Chapter 5).

The achievement of CanSLPred is based on the following ideas that we apply

in the construction process :

1. A carefully prepared dataset, Trust dataset, is employed in the training

process.

2. It is crucial to use the most representative protein descriptors in protein

feature extraction. We search for the most representative combination of

seven descriptors out of 160 numerical representations, which renders a

multi-view representation for the protein sequences.
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3. It is essential to adopt the most appropriate machine learning algorithm

for the classification of the proteins. Therefore before deciding on using

SVM, we also try the other machine learning algorithms such as Logistic

Regression, Naive Bayes, Neural Networks, and Tree-based algorithms.

6.2 Future work

As future work, we would like to serve CanSLPred as an online and standalone

prediction tool for human proteins. We also plan to extend our approach and

strengthen the reliability of the predictor by applying the double-threshold in

the thresholding step, which we will leave a gray area (neither a positive pre-

diction nor a negative prediction) and by integrating the information of protein-

protein interactions (PPI) as a post-processing step. Moreover, we want to eval-

uate CanSLPred on all human proteins according to UniProtKB annotations.
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