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ABSTRACT

MULTI-PERSPECTIVE ANALYSIS AND SYSTEMATIC BENCHMARKING
FOR BINARY-CLASSIFICATION PERFORMANCE EVALUATION
INSTRUMENTS

Canbek, Giirol
Ph.D., Department of Information Systems
Supervisor: Assoc. Prof. Dr. Tugba Taskaya Temizel
Co-Supervisor: Prof. Dr. Seref Sagiroglu

September 2019, 136 pages

This thesis proposes novel methods to analyze and benchmark binary-classification
performance evaluation instruments. It addresses critical problems found in the literature,
clarifies terminology and distinguishes instruments as measure, metric, and as a new
category indicator for the first time. The multi-perspective analysis introduces novel
concepts such as canonical form, geometry, duality, complementation, dependency, and
leveling with formal definitions as well as two new basic instruments. An indicator named
Accuracy Barrier is also proposed and tested in re-evaluating performances of surveyed
machine-learning classifications. An exploratory table is designed to represent all the
concepts for over 50 instruments. The table’s real use cases such as domain-specific metrics
reporting are demonstrated. Furthermore, this thesis proposes a systematic benchmarking
method comprising 3 stages to assess metrics’ robustness over new concepts such as meta-
metrics (metrics about metrics) and metric-space. Benchmarking 13 metrics reveals
significant issues especially in accuracy, F1, and normalized mutual information
conventional metrics and identifies Matthews Correlation Coefficient as the most robust
metric. The benchmarking method is evaluated with the literature. Additionally, this thesis
formally demonstrates publication and confirmation biases due to reporting non-robust
metrics. Finally, this thesis gives recommendations on precise and concise performance
evaluation, comparison, and reporting. The developed software library,
analysis/benchmarking platform, visualization and calculator/dashboard tools, and datasets
were also released online. This research is expected to re-establish and facilitate
classification performance evaluation domain as well as contribute towards responsible open
research in performance evaluation to use the most robust and objective instruments.

Keywords: Binary-classification, performance evaluation, performance metrics, machine
learning, artificial intelligence



0z

IKIiLI SINIFLANDIRMA BASARIM DEGERLENDIRME ARACLARI iCIN
COK PERSPEKTIFLI ANALIZ VE SISTEMATIK KIYASLAMA

Canbek, Girol
Doktora, Bilisim Sistemleri Bolumii
Tez Yoneticisi: Dogent Dr. Tugba Taskaya Temizel
Ortak Tez Yoneticisi: Prof. Dr. Seref Sagiroglu

Eylil 2019, 136 sayfa

Bu tez, ikili simiflandirma basarim degerlendirme araglarinin analizi ve kiyaslanmasi igin
yeni yontemler onermektedir. Literatlirden tespit edilen kritik sorunlar: ele alan ¢alisma,
terminolojiyi agikliga kavusturmakta ve araglari ilk kez 6lcu, Olgut ve yeni bir kategori
olarak gosterge seklinde ayirt etmektedir. Cok perspektifli ¢oziimleme; iki yeni aracla
beraber kanonik bigim, geometri, ikilik, timleme, bagimlilik ve seviyelendirme gibi yeni
kavramlar1 resmi tanimlarla tanitmaktadir. Ayrica, Dogruluk Engeli adinda yeni bir gosterge
Onerilmekte ve etiit edilen makine &grenmesi smiflandirma g¢alismalart t{izerinden
degerlendirilmektedir. TUm Onerilen kavramlar1 50 basarim araci igin gdsteren bir kesif
tablosu tasarlanmis ve tablonun sahaya 0zgu olgiitler gibi ger¢ek kullanim durumlari
gosterilmistir. Tez, meta-Ol¢ltler (6l¢iitler hakkinda Olgiitler) ve metrik uzayi gibi yeni
kavramlarla olgiitlerin giirbiizliigiinii degerlendirmek ve karsilastirmak i¢in 3 asamadan
olusan sistematik bir kiyaslama yontemi onermektedir. 13 6l¢utun kiyaslanmasi; dogruluk,
F1 ve normallestirilmis karsilikli bilgi gibi yaygm kullanilan olgiitlerde kayda deger
sorunlar1 ortaya ¢ikarmakta ve Matthews Korelasyon Katsayisini en giirbuz Olgiit olarak
belirlemektedir. Kiyaslama yontemi, literatiir ile karsilastirilarak etrafli bir sekilde
degerlendirilmistir. Tez ¢aligmasinda giirbiiz olmayan 6l¢iitlerin kullanimimdan kaynaklanan
yayin Onyargisi ve dogrulama sapmasi da resmi bir sekilde gosterilmektedir. Son olarak tez;
kesin ve 0z basarim degerlendirme, raporlama ve karsilastirma konusunda oOnerilerde
bulunmaktadir. Gelistirilen yazilim kiitiiphanesi, analiz/kiyaslama platformu, gorsellestirme
ve Olglt hesaplama/gdsterge araglar1 ve veri kiimeleri gevrimigi olarak yaymmlanmistir. Bu
caligmanin, ikili smiflandirma basarim degerlendirme alanini temelden yeniden kurmasi ve
kolaylagtirmasi yaninda basarim degerlendirmesinde en giirbiiz ve nesnel ara¢ kullanimi ile
sorumlu a¢ik aragtirmaya katkida bulunmasi beklenmektedir.

Anahtar Kelimeler: Ikili smiflama, basarim degerlendirme, basarim o&lgiitleri, makine
Ogrenmesi, yapay zeka
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CHAPTER 1

INTRODUCTION

This thesis is the result of a work spanning over five years. As a result of examining the
relevant literature regarding the classification process of machine learning-based Android
mobile malware detection, | saw important problems in applied methodologies and
considerable gaps in the literature within each phase such as classification problem-domain
taxonomies, sample collection and preprocessing, feature extraction and engineering,
building datasets, modeling machine learning algorithms, and finally performance evaluation
and tried to propose a systematic overall process. Afterward, looking further into the
literature for each phase, independent from the classification problem domain, | found that
there are significant problems in performance evaluation and hence focused on the
performance evaluation instruments completely.

Thus, this thesis examines binary-classification performance evaluation instruments that are
accepted as primary references which all researchers use to see what achieved for their
evaluations as well as to refer them in reporting, comparing, and highlighting the
performances. To begin with, briefly, no study in the literature makes a comprehensive
evaluation of binary-classification performance evaluation instruments. Considering my
literature review as well as observations, we (with my advisors) have seen that performance
evaluation instruments should be revised again and so this has become the main motivation
of the thesis.

Due to the new developments and increasing interest in machine learning algorithms such as
deep learning, many researchers use or propose new machine learning algorithms for various
problems. Since the general focus is on improving classification performance in a problem
domain with their proposed methodology, researchers often refer to the metrics previously
utilized in the papers they cited and do not question pertinence of these metrics for their
problem. For example, some might claim 98% success with accuracy but another
classification method in the same dataset could appear to achieve higher performance when a
more appropriate metric is chosen.

With this respect, some practical questions such as “Are we sure of the instrument we used
as a performance metric?”, “What are the drawbacks of specific instruments?”, “Is it an
objective reference?”, “Does it match our specific requirements or goals?”, or “Is there any
aspect that might affect the classification performance other than the metric used?” are not
discussed or addressed in the previous studies.

Hence, researchers continue to use the legacy or stock metrics in existing domains or choose
the metrics reported by previous works in new domains which are also inspired by other
existing domains. For example, it is hardly possible to see a different metric other than F1
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reported in information retrieval domain. At the same time, it is difficult to know the reason
behind using F1 in other domains. Likewise, accuracy is still the most preferred metric in
most of the domains. Note that the same problems are also valid in multi-label and/or multi-
class classification performance evaluation.

Therefore, we can add theoretical or methodological questions about performance evaluation
into the practical ones aforementioned above: “Do we agree on basic concepts, definitions
and methods about performance instruments?”, “How to act while reporting the performance
of a classification study or comparing among studies?”, “What other problems can be
expected in performance evaluation?” or considering a large number of studies in the
literature and ongoing researches and practices within each domain, “How can we be sure
that scientific measurable progress is made?”. The literature does not elaborate on these
questions specifically. Worse, as easily observed in any domain, a wide-spread confusion is
seen even in fundamental terminology. Based on this main motivation, this thesis revisits
performance evaluation more comprehensively and systematically and redefines the
performance evaluation instruments from a broad perspective.

In all these respects, this thesis offers a new perspective to the literature by validating with
scientific methods. The thesis is structured around this motivation and the research is guided
by the following main research question:

RQ: How to establish and improve our knowledge on binary-classification performance
instruments comprehensively and systematically in order to enable researchers to make
informed decisions on choosing the right instrument(s) and follow objective approaches in
performance evaluation, reporting, and comparison?

Binary-classification performance evaluation corresponds to the evaluation phase in CRISP-
DM (CRoss-Industry Standard Process for Data Mining) comprising

business understanding,
data understanding,
data preparation,
modeling,

evaluation, and
deployment

phases (Huber, Wiemer, Schneider, & Ihlenfeldt, 2019).

As anyone who studies and conducts experiments in machine learning (ML) based binary-
classification problems confirms that performance evaluation is an overlooked activity in the
entire knowledge discovery process or ML workflow compared to others including data
preparation/cleaning in preprocessing, feature engineering, and model building. Researchers
usually focus, put efforts, and spends time on collecting samples, preprocessing, building
and mining datasets, and refining the ML algorithms (CrowdFlower, 2016, 2017).

Considering performance evaluation, choice of a performance evaluation metric among a
large number of alternatives is conventional or not explicit in many domains. Practitioners,
as well as researchers, most likely think that performance evaluation is a well-studied and
established topic without any uncertainties. For the practitioners, “accuracy” or “true



positive rate” names might have a clear and convincing meaning for evaluating the
performance of their classification applicationsa.

From the research perspective, on the other hand, performance evaluation as a domain seems
to have no area to improve or no gap to study further. The following headings highlight the
seven main problems that are observed both in the literature and in practice and addressed in
this thesis. Note that most of the problems are also clearly demonstrated over a case study
domain in Section 2.3 and the preliminaries are summarized in Section 2.1. The main
research question was formed based on the prominent arguments in these problems.

Note that italic terms are the performance instruments that have a limited range (e.g., ACC in
[0, 1]) whereas bold-italic terms refer to measures without a lower and/or upper limited (e.g.,
FP = 44) and bold-only terms refer to corresponding metric-space that is proposed in this
study (e.g., MCC, see Section 5.1.1).

1. Confusing terminology: performance measure or performance metric?

In a general perspective, performance instruments are expressed by various terms such as
“performance metrics”, “performance measures”, “evaluation measures”, and “prediction
scores”, etc. Performance evaluation based on 2x2 contingency table is named as “diagnostic
accuracy” or “test accuracy” in medicine (van Stralen et al., 2009) or “skill score” or
“forecast skill” in meteorology (forecast vs. observation classes) (Wilks, 2006).
Classification term itself is called as “categorization” in philosophy and statistics (Sammut &
I.Webb, 2011). The lack of consensus in naming the instruments indicates a fundamental
problem in performance evaluation.

Historically, evaluating the trends of different phrases expressed in the corpus of one million
English books between 1930 and 2008 (Michel et al., 2011); “performance measure(s)”,
“performance indicator(s)’, and ‘“performance metric(s)” are the most frequent
terminologies, which have been used since the 1950s, 1960s, and 1980s, respectively as
shown in Figure 1.12. Other evaluated phrases are “performance score”, “evaluation
measure”, “skill score”, “forecast score”, and “prediction score”. Thus, “performance
metric” is rather a new phrase.

LRI

Concerning the literature in classification scope; it is observed that “measures”, “indicators”,
“metrics”, “scores”, “criteria”, “factors” or “indices” terms are used interchangeably. Even
the studies related to classification performance use the related terms (especially
“performance measures” and “performance metrics”) interchangeably. There are review
studies expressing performance instruments with different notations, abbreviations, and

symbols (Powers, 2011).

1 Nevertheless, confusion might also occur when it comes to different naming of the instruments such as

“precision”, “recall”, “sensitivity”, “specificity”, “strength”, “efficiency”, etc.
2 The books can be in any subject apart from classification performance.
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Figure 1.1 The trend of phrases mentioned in books: “False Positive” vs. “False Negative” and
“Performance Measure” vS. “Performance Indicator” vs. “Performance Metric”.

2. Disregarding negative-class performance, domain-specific tradeoffs, and end-user
requirements

Performance of a classifier can be examined from the standpoint of failure instead of
success. In this case, the number of false-classifications in positive and negative classes
namely type | errors (FP) and type Il errors (FN), respectively, become the foremost
concern. However, it is common that type | errors are the main focus and type Il errors are
disregarded. Interestingly, for instance, people are more interested in type | errors than type
Il errors according to Google search engine trends since 2004 (78:29 on average) as shown

in Figure 1.2.
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Figure 1.2 The search trends showing the interests to “false positive” and “false negative” according
to Google search data worldwide between 2004 and September 2017. Y -axis shows the popularity of

the search between 0% (none) to 100% (maximum)
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The following are the top search suggestions associated with “False Positive in” and “False
Negative in” phrases that I extracted in the Google search engine at the time of writing:

o Typel error/ “False Positive in”: pregnancy test, network security, ELISA or HIV
test, security, Anti-Money Laundering (AML), visual field test, psychology, indirect
Coombs test, logistic regression, and software testing.

e Type Il error / “False Negative in”": security, statics, a classification table, network
security, psychology, software testing, object detection, and early pregnancy.

Each example areas actually shows the performance priorities of the end-users that should be
considered for performance evaluation of the classifiers modeled in that scope. In some
fields such as security, network security, and psychology, the top searches appearing in both
error types suggest that those fields put equal emphasis on both types of errors. Thus, a
successful classifier accepted by end-users in network security (e.g., a network intrusion
detection system), for instance, should minimize both error types, therefore the performance
should be evaluated from both perspectives. Note that the trends can change afterward.

The dominance of type | errors over type Il errors can also be seen in the corpus of English
books from 1930 to 2008 as shown in Figure 1.1 above. Provided figures show that a sort of
related knowledge supply (i.e. written books) and corresponding knowledge demand (i.e.
search queries) attach more importance to false positives (type I errors) than false negatives
(type 1l errors).

Besides, a tradeoff between type | and type Il errors might be observed in each domain and
its specific applications. Such as;

e In critical engineering and especially in medical research, type Il errors can be more
serious or worse than type | errors (e.g., breast cancer diagnosis (N. Liu, Qi, Xu,
Gao, & Liu, 2019)).

o In information retrieval applications such as document filtering, false positives
might be critical (Kenter, Balog, & De Rijke, 2015).

e In malware analysis, it could be better to mistakenly label a “benign” software as
“malign” (also known as malicious software or malware) than miss a malign
software by incorrectly labeling it as benign (lower FP or type | error). Because
labeled malware could be prioritized and an expert could go through further manual
malware analysis to eliminate false positives (Yerima, Sezer, & McWilliams, 2014).

e An anti-malware product should be designed or configured to decrease FP to avoid
annoying interruptions due to excessive malware warnings.

o In law or social perspective, the opposite (i.e. low type Il errors against high type Il
errors) is likely to be valid to ensure the presumption of innocence in the same way
as precautionary logic focuses on more underestimates (FN) than overestimates
(FP) in criminal justice (Lomel, 2012).

Some classification applications might care for both error types equally. Thus, a performance
instrument that is sensitive to both types should be used. Briefly, researchers might choose
instruments without knowing the domain tradeoffs and user requirements and matching them



to the chosen instruments. Hence, the expected performance of a classification application
might not consider domain-specific conditions and end-users’ perspectives.

3. Using instruments without being aware of the pros and cons

The performance instruments are selected according to the conventions per domains (e.g., F1
is frequently used in information retrieval domain) or the researchers unconsciously follow
the practices of previous studies they would like to improve. The weak and strong
characteristics of the instruments are not explicit in a broad perspective. Some instruments
do not behave as expected in certain conditions or from specific aspects and mislead both
authors and readers. For example, accuracy exhibits high performance in class imbalanced
datasets (i.e. the number of positive samples are less than the negative ones).

Continuing using such stock instruments such as true positive rate or accuracy generates a
saturation where the proposed classifiers’ performances become closer to a maximum value
(e.g., 0.99 accuracy) that blurs the distinguished achievement of a remarkable study.
Researchers need more granular instruments to identify the best classifier. Moreover, which
performance instruments should be preferred is unknown if the standpoint of achievement
(i.e. practical goal of a binary classification application) shifts into other aspects instead of in
favor of true positives only such as

o False classifications or error types (false positive and false negative or type | and
type Il errors),

o Negative class performance at the same weight as for positive class, and/or

e Eliminating other external factors such as class imbalance.

The following four problems are especially observed in the literature.

4. Need for explaining performance instruments

In academic publications on binary-classification problems, it is frequently observed that
researchers need explaining performance evaluation for the sake of completeness. Within a
smaller or larger body of text, confusion matrix, performance instruments and their
abbreviations, equations, and brief descriptions are expressed usually in a separate section of
the articles. However, the terminology and notations vary unexpectedly. Moreover, this
repeating section takes considerable space in the text, requires effort in every study, and
takes the time of not only the authors but also the reviewers and readers.

5. Indeterministic performance reporting and comparison

With respect to performance publication, | have not seen any consensus on how many and
what instruments should be used in reporting performances. The number of instruments
reported and the instruments selected vary from study to studys. Because comparisons of
performances of different classifiers in terms of different instruments (e.g., accuracy or F1)
yield different results, it is unclear which instrument should be used for the ultimate ranking.
In a broader scope, the relations among such a large number of instruments are also not truly
explored. Similar metrics might be used redundantly to report the performance.

3 An interactive graphic is prepared and released online at http://bit.ly/performanceranks to show the ranks of
mobile malware classification studies in terms of different performance metrics
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6. The gap in responsible open research

As an up-to-date development in scientific studies, the initiatives such as OpenAlRE4 by
European Union and Zenodos by CERN aim common, responsible, and reproducible open
research approaches where research data become available to all researchers. While these
initiatives encourage researcher community to share their studies along with the datasets to
establish a widely common platform, we could not see the same efforts in developing a
common standard for evaluating the performance of those studies. Yet, scientific progress
cannot be achieved in the right direction unless the objective comparison methodologies are
determined clearly and followed by all the researchers.

7. The complexity of the performance instruments

From the practical point of view, the practitioners who are not experienced in statistics need
assistance to report the classification performance while researchers need also assistance to
deep dive into the instruments' specifications in order to select the most appropriate
performance instrument(s) according to their objectives and/or domain-specific
requirements. For example, which metric or metrics should be used among TPR, PPV, and
ACC and what their differences are not clear.

1.1 Research Questions

As already mentioned at the start of this chapter, this research addressing the problems above
is guided by the following main research question:

e RQ: How to establish and improve our knowledge on binary-classification
performance instruments comprehensively and systematically in order to enable
researchers to make informed decisions on choosing the right instrument(s) and
follow objective approaches in performance evaluation, reporting, and comparison?

The specific research questions for binary-classification performance evaluation as an
enumerated list are as follows:

RQ1:
e What are the problems in performance evaluation reporting?

e Can classification performance evaluation terminology be clarified and improved?
o Are all the performance instruments the same semantically and formally?
e Are there any properties related to performance instruments that reveal and define
their characteristics?
o Are there any similarities, relationships, and dependencies among the performance
instruments?
RQ3:
e How to enhance comprehending, using, representing, reporting, learning, and
teaching binary-classification performance instruments?
RQ4:
o Which instruments are robust to use in binary classification?
e What should be reported for expressing classification performance?

4 https://www.openaire.eu
5 https://zenodo.org



1.2

Research Contributions and Strategy

The thesis provides the following summarized contributions addressing the research
guestions:

First, the problems in performance evaluation terminology and reporting are
revealed specifically via a comprehensive survey in Android mobile malware
detection as a typical and emerging example domain in binary-classification
problems. Such a systematic survey is the first in the literature. The generic findings
that are observed in other domains are clear evidence of the problems
aforementioned above.

Second, novel concepts are introduced via a multi-perspective analysis of
performance evaluation instruments which is conducted on the largest set of
instruments studied in the literature by far. Hence, the foundation of performance
evaluation is completely defined for the first time both in a semantic and formal
manner. The concepts introduce essential properties to comprehend and identify
each of the instruments as well as to see the similarities and differences among them
by categorizing the instruments from different perspectives. As a result of this
breadth and depth analysis, the terminology is also clarified, existing instruments are
categorized as ‘“performance measures” and “performance metrics”, and the
representation of the instruments (e.g., notation and visualizing) is standardized as a
proposal.

Third, two basic instruments, a new instrument category named “performance
indicators”, and a novel indicator called “Accuracy Barrier” as the first example of
the new category are introduced to simplify and enhance the understanding of the
instruments and avoiding common pitfalls that cause misleading performance
evaluation. A case study is conducted to re-evaluate the surveyed classification
studies via the proposed indicator. Moreover, aggregating all the concepts, an
exploratory table for 50 binary-classification performance instruments called
“PToPI” (Periodic Table of Performance Instruments), which is the pictorial
specification or blueprint of instruments and their essential properties, is designed.
The real use-cases of PToPl, which is a unique application of knowledge
organization similar to the periodic table of elements, are also described. A handy
calculator and dashboard tool called “TasKar” e to calculate and visualize
classification results in terms of all the instruments is also designed. To enhance the
interpretation of performance and subsequent performance variations, TasKar also
visualizes the common performance metrics in new types of graphics proposed in
this study. Note that both tools that can also be used for educational purposes are
presented online to the research community.

Forth, a novel systematic benchmarking method named “BenchMetric” for binary-
classification performance metrics is proposed by introducing new concepts such as
meta-metrics (i.e. metrics about performance metrics) and metric-space.
BenchMetric method, tested on thirteen metrics (TPR, TNR, PPV, NPV, ACC,
INFORM, MARK, BACC, G, nMlI, F1, CK, and MCC) reveals interesting robust or
non-robust behaviors even in common and/or suggested metrics. The method is
comprehensively evaluated with the limited comparison approaches offered in the

6 Tasnif Karnesi in Turkish (classification report)



literature and it is also tested with recently proposed metrics in the literature. The
results of both of the tests have shown that MCC is the most robust metric. The
thesis is further notable to suggest what the optimal instruments are in classification
performance reporting in academic or industrial studies. Moreover, it demonstrates
via a case study that reporting biases such as confirmation and publication biases
might occur in the literature where classification performances reported in terms of
non-robust metrics. The last two contributions in performance reporting are expected
to initiate discussions from responsible open research perspectives.

As a summary, this thesis study comprises one exploratory study via multi-perspective
analysis, two complementing tools, three surveys, three case studies, and two experiments
for the benchmarking all of which were performed in order to explore, generalize and
validate the proposed concepts, instruments, tools, and methods.

1.3 Research Objectives
This thesis is intended to

e make the research community understand the criticality of performance evaluation
instruments and aware of the fundamental but overlooked problems in theory and in
practice which cause misleading results,

e provide novel concepts from multiple perspectives to increase our overall
understanding of a large number of performance evaluation instruments and their
characteristics,

e present convenient tools to facilitate performance evaluation activity including
learning and teaching performance evaluation instruments,

o assist the researchers in making informed decisions on choosing the right metrics by
ranking the metrics and showing the robustness issues, and

e introduce a comprehensive systematic method to assess the robustness of any
number of metrics which can also be used to benchmark recently proposed metrics.

Note that this thesis attaches as much importance to organization and representation of the
proposed concepts as the concepts themselves.

More specifically the aims are to describe binary-classification performance evaluation
instruments in a clear and understandable manner and reestablish classification performance
evaluation foundation by clarifying and standardizing the terminology, providing formal
definitions, categorizing the instruments, and providing new instruments,
organization/visualization/calculation tools, and benchmarking methods to facilitate the
overall approach. Hence, researchers will be able to grasp each of 50 instruments without
any doubts or mistakes via the proposed concepts, know their similarities, differences, and
robust/weak behaviors, and select and use the proper instruments conveniently.

The high-level goal of this thesis is to allow researchers to be certain in their classification
performance evaluations and concentrate on the other critical phases of their classification
problems such as ensuring dataset quality or selecting the most optimum ML model and help
to standardize performance evaluation process.



1.4 Research Scope

The scope of this thesis is the instruments summarizing the confusion matrix to evaluate the
classification performance of binary-classifiers. In high level, ML workflow is the problem
domain and performance evaluation is the problem topic of this thesis study.

Including the three additional instruments (TC, FC, and ACCBAR) proposed in this study,
over 50 instruments are covered. The fifteen metrics, namely TPR, TNR, PPV, NPV, ACC,
INFORM, MARK, BACC, G, nMI, F1, CK, and MCC, which are the eventual set of non-
redundant performance instruments, are included in the benchmark. Parametric instruments
such as WACC or Ff and instrument variants such as nMI (nMlari [default], nMlgeo, NMljoi,
nNMImin, NMImax) are also referred for the sake of completeness. Besides, five recently
proposed metrics are also reviewed and two of them included in the second benchmarking
experiment. Note that these new metrics seem not to be accepted by the research community,
therefore they were not included in PToPIl. Moreover, the covered instruments can be
extended in a straightforward manner with the new instruments that will be proposed in the
future.

To the best of my knowledge, the literature does not cover such a great extent of instruments
that are also examined and evaluated with a broad perspective. TPR, PPV, ACC, and F1 are
the most studied instruments as described in Section 2.2 (Literature Review).

Note that Area-Under-ROC-Curve (AUC) metric and instruments based on a probabilistic
interpretation of classification error (i.e. the deviation from the true probability, e.g., mean
squared error and Log Loss) are out of the scope of this study because the former is not
based on single instance of confusion matrix and calculated by varying a decision threshold
for different TPR and False Positive Rate (FPR) pairs in a specific binary-classification
application (Berrar & Flach, 2012) and the later ones are for multi-label classification (Ferri,
Hernandez-Orallo, & Modroiu, 2009).

1.5 Significance of the Study

In general perspective, this thesis is an epistemological study following exploratory research
that focuses and clarifies ““how to know that we know’ about classification performance
evaluation, especially binary-classification performance instruments?” by laying the
foundation of knowledge with the comprehensive formal definitions, organizing the
knowledge, aligning the common approaches resulted from conventions with truths or
objective facts, and avoiding error-prone or misleading conclusions about the performance.
The thesis developed novel methods and concepts with respect to exploratory research.

This thesis is significant from several perspectives.

o First, it revisits and reestablishes the existing literature with comprehensible
concepts along with new clear formal definitions. The proposed concepts will help
to assess the individual performance instruments as well as see the similarities and
subtle differences among instruments conveniently. Even, distinguishing between
“performance measures” and “performance metrics” and naming all kind of items
derived from a confusion matrix as “performance instruments” will clarify and lay
the foundations of classification performance evaluation.
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e Second, the thesis will extend the current literature by proposing a new instrument
category named “performance indicators” and also proposing a novel indicator
named “accuracy barrier” for detecting class imbalance problems. The indicators are
expected to bring a completely new perspective in performance evaluations for
whom wants to quick sense of classification performances or need evaluating the
performances of the bulk of classifiers or presenting them for visualization or
dashboard applications.

e Third, this thesis is notable to present a unique application of knowledge
organization for representing the multi-dimensional concepts in a single picture
called PToPI (periodic table of performance instruments). Similar to the unique de
facto position of the periodic table of elements in chemistry, PToPl is a handful tool
for not only researchers and practitioners but also anyone who wants to learn or
teach performance instrumentsz. The thesis provides another tool called TasKar to
calculate all the instruments as well as visualize the base metrics in new graphics to
enhance the interpretation of classification performance.

o Fourth, this thesis is the only study that answers what the most robust performance
metric is, comprehensively. Furthermore, the thesis points to the insufficiency in
using even a robust metric alone and for the first time suggests additional measures
to avoid misleading conclusions. The holistic performance reporting approach
suggested in this thesis is expected to change the assessments of future applications
in classification problem examples (i.e. switching to using a more robust metric) as
well as make the performances achieved by the existing or previous applications
susceptible to reconsider (e.g., representing the performances in terms of the robust
metric).

e The last but not the least, this thesis is expected to engage the attention of the whole
research community to a possibility of a confirmation or publication bias in
classification performance reporting where the performances are reported in terms of
metrics demonstrating high performance.

The thesis attempts to overcome most of the obstacles in front of precise and concise
objective performance evaluation for all the parties from researchers, practitioners to
students, teachers and align the research community independent from the specific domains
to conduct a common objective and responsible research.

1.6 Online Research Data and Materials

Table 1.1 lists the online data, software, and materials prepared to present extra information
about thesis contributions.

7 The periodic table was also formed by Mendeleyev in a textbook in 1870 to teach students the elements and
facilitate their understanding (Brito, Rodriguez, & Niaz, 2005, p. 85).
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Table 1.1 Online research data and materials

Data / Platform  Contribution Description / Online Access Address

Data 1
(Mendeley Data)

Tool 1
(GitHub)

Tool 2
(GitHub)

Code 1
(GitHub)

Code 2
(GitHub)

APl 1
(GitHub)

Experimenter 1
(CodeOcean)

Data 2
(Mendeley Data)

Data 3
(Mendeley Data)

Visualization 1
(Tableau)

1.7

Survey 1

PToPI

TasKar
Method 1:

ACCBAR

Method 1:
Dependency
Graph
Method 3

Method 3

Method 3

Method 3

Method 2

Binary-Classification Performance Evaluation Reporting Survey
Data with the Findings

The proposed periodic table of (binary-classification) performance
evaluation instruments (PToPI) in full-resolution in various views
(full, plain, simplified, minimal, and minimum).

Binary-Classification Calculator/Dashboard and Metric Graphics

https://github.com/gurol/TasKar

Open-source scripts for calculation Accuracy Barrier indicator.
https://github.com/gurol/PToPI

The full-resolution dependency graph for all the instruments and the
DOT (graph description language) files to produce it via Graphviz.

Open-source performance metrics benchmarking software library. R
scripts of the developed API for conducting the proposed
benchmarking method.

An online interactive experimentation platform running the provided
API for benchmarking of thirteen metrics.
https://doi.org/10.24433/c0.1564477.v2

Metric-spaces data: Base measure permutations and corresponding
metric-spaces for 13 performance metrics per different sample size
values. The data is used in the benchmark.

The detailed benchmarking results data.
http://dx.doi.org/10.17632/2936672s5f.2

Ranks of mobile malware classification studies in terms of different
performance metrics

http://bit.ly/performanceranks

Published Works during the Thesis Study

During the thesis study, five articles were published in peer-reviewed conferences and
journal as listed in Table 1.2. Note that the article (Giirol Canbek, Sagiroglu, Taskaya Temizel, &
Baykal, 2017) directly related to the thesis study has been cited by three works from medicine
(Nnamoko, Hussain, & England, 2018), cyber security (Kaiafas et al., 2018), and software
engineering (Ulysses, 2019)s disciplines.

g At the time of writing, the article is also appeared at the top or in the first page of Google search with the
following queries: binary classification performance, classification performance metrics, etc.
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http://dx.doi.org/10.17632/5c442vbjzg.2
https://github.com/gurol/PToPI
https://github.com/gurol/TasKar
https://github.com/gurol/PToPI
https://github.com/gurol/PToPI
https://github.com/gurol/metametrics
https://doi.org/10.24433/co.1564477.v2
http://dx.doi.org/10.17632/64r4jr8c88.1
http://dx.doi.org/10.17632/2g36672s5f.2
http://bit.ly/performanceranks

Publication title

Table 1.2 Published works in thesis study

Year

Thesis relation

1 New Comprehensive Taxonomies on Mobile Security 2016 Understanding the case study domain
and Malware Analysis (Gurol Canbek, Sagiroglu, & (i.e. ML-based Android mobile
Baykal, 2016) malware detection) (Section 2.3)

2 Clustering and visualization of mobile application 2017
permissions for end users and malware analysts
(Gurol Canbek, Baykal, & Sagiroglu, 2017)

3 Binary classification performance measures/metrics: 2017 Preliminary  work  of  multi-
A comprehensive visualized roadmap to gain new perspective analysis (Chapter 3)
insights (Gurol Canbek, Sagiroglu, et al., 2017)

4 New Techniques in Profiling Big Datasets for 2018 The criticality of sample size in
Machine Learning with a Concise Review of Android precise and concise performance
Mobile Malware Datasets (Gurol Canbek, Sagiroglu, reporting (Section 5.8)

& Taskaya Temizel, 2018)
5 Cyber Security by a New Analogy: "The Allegory of 2018 Understanding the case study domain

the 'Mobile' Cave" (Girol Canbek, 2018)

(Section 2.3) and analogical methods

(Appendix D)

Publication in  multi-perspective
analysis scope (Chapter 3)

6 Canbek, G., Taskaya Temizel, T., & Sagiroglu, S. 2019
(2019). Multi-Perspective  Analysis of Binary-
Classification Performance Evaluation Instruments.
Information Processing and Management (under
review)

1.8 Organization of the Thesis

The rest of the thesis is organized as follows. Chapter 2 gives the preliminaries for the thesis
study and reviews the literature on binary-classification performance evaluation and
instruments. It presents a comprehensive survey (Survey 1) on the performance evaluation
approaches in ML-based Android mobile malware detection as a binary-classification case
study domain. The domain is introduced and the significant findings based on systematically
selected 78 studies are given in Chapter 2.

Chapter 3 clarifies the terminology, introduces categories for performance instruments, and
proposes concepts related to instruments such as formal definitions of measures and metrics,
canonical forms in instrument equations, instrument geometries, dualities, and complements.
Two new measures are introduced in this chapter where dependencies and levels are also
defined. Summary functions, other equations forms (base measures, direct/high-level
dependency and equivalent form), class counterparts and redundancy are also introduced and
described. Chapter 3 also proposes the first example of performance indicators called
“Accuracy Barrier” (ACCBAR) to indicate so-called “accuracy paradox” or class imbalance
effect. As a case study, the proposed indicator is used in re-evaluating performances in
Android mobile malware detection domain.

Chapter 4 designs and proposes a knowledge organization tool called PToPI to represent
over 50 instruments in a single compact picture by employing structural and visual
techniques. Real-world use cases of this exploratory tool that is similar to the periodic table
of elements are presented through the literature examples in various domains. Chapter 4 also
proposes a tool called TasKar complementing PToPI to calculate all the instruments and
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visualize some metrics with three new graphics. The chapter gives a new specification of the
coloring scheme and provides some example usages of TasKar.

Chapter 5 provides a systematic benchmarking method named BenchMetric with three
stages to assess and compare the robustness of performance metrics. The novel concepts
such as universal base measure permutations, metric-space, and meta-metrics (metrics about
performance metrics) are introduced. BenchMetric is described in stage by stage and also
being tested on 13 existing performance metrics. The intermediate results per stage and
overall result are provided and interpreted. The chapter also makes a detailed assessment of
very similar MCC and CK metrics. Further, BenchMetric is evaluated with the literature
comprehensively and tested by including two recently proposed metrics. Finally, Chapter 5
discusses precise and concise performance evaluation and reporting and suggests a proper
approach.

Finally, Chapter 6 summarizes the thesis contributions, discusses the limitations, provides
ongoing and planned future studies, and gives conclusions.

Appendix A gives a complete list of performance instruments along with their names,
abbreviations, alternative names, categories, and levels as well as details of the proposed
color scheme. Appendix B gives a complete list of the equations of the instruments.
Appendix C shows the full view of PToPIl whereas Appendix D gives insights about the
analogy between PToPI and the periodic table of elements by listing and depicting the
similarities among the source and target domain. Appendix E describes the selection
methodology for the survey of 78 ML-based Android mobile malware detection as a case
study domain. Appendix F provides the references of those surveyed studies along what
analyzes are conducted per each study. Appendix G summarizes BenchMetric findings as
well as the overall robustness issues combined per metric sorted in alphabetic order.

Appendix H focuses on a critical aspect of classification performance reporting in the
literature and searches for the potential signs of biases where the performances are reported
in terms of non-robust metrics. In this regard, this thesis introduces some equations to reveal
the confusion matrix of a given study that reports a few metrics. Having performances in
terms of the most robust metric, a case study is conducted and the presence of publication
and confirmation biases are discussed.
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CHAPTER 2

LITERATURE REVIEW

This chapter summarizes the preliminaries for binary-classification performance evaluation
and reviews the related literature in general perspective.

2.1 Preliminaries

Classification and supervised machine learning

Classification is a leading specific problem or task in machine learning (ML) at which a
computer program (i.e. classifier) improves its performance through learning from
experience and it requires a well-specified task, robust performance instruments, and
representative source of training experience (Mitchell, 1997, p. 17). The experience is gained
by providing labeled examples (i.e. training dataset) of one or more classes (e.g., positive or
negative) that share common properties or characteristics to the classifier mapping the
properties into the class labels. The performance of the trained classifier (i.e. in what degree
it predicts the labels of known examples) is optionally re-evaluated and then finalized on
different labeled examples (i.e. validation and test datasets, respectively). After this
supervised learning phase, the classifier is supposed to be ready to predict the class of
additional unknown or unlabeled examples.

Binary-classification and classes

In binary-classification or two-class classification, a classifier separates a given example into
two contrasting classes. In symmetric binary-classification, each class is equally important
(e.g., “female” vs. “male”) whereas in asymmetric binary classification, one class is more
valuable than the other (e.g., “positive” over “negative” for a medical test or a condition in a
disease, “respond” over “no respond” for a treatment, “spam” over ‘“non-spam” for an e-
mail, “malicious” software (i.e. malware) over “benign” software, or “faulty” over “normal”
in fault identification of electric power systems). Such binary classes having one state is
actually called “monary”. Symmetric binary classes are collectively exhaustive (i.e. there is
no possibility except the two classes).

A classification separating more than two mutually exclusive classes is called multi-class
classification. If the classes are not mutually exclusive (i.e. an example could be one or more
of the available classes simultaneously), it is a multi-label classification (or any-of or
multivalue classification). Binary and multi-class classifications are single-label
classifications.
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Confusion matrix

The binary-classification performances in training, validation and test datasets are presented
by a 2x2 contingency table or confusion matrix (i.e. the number of correct and incorrect
classification per positive and negative classes)s. The four figures are the number of TP, TN,
FP, and FN of the classified examples with known labeled Sn samplesao.

Overall machine learning workflow

From a broader perspective, classifier modeling, machine learning, and performance
evaluation are the critical activities of an overall ML workflow (i.e. ML-based
classification). The workflow from start to end comprises staged activities each of which
defines the repeating and/or incremental tasks. Briefly, several ML models are tried and
tested to achieve the best performance.

Performance instruments and evaluation/reporting/comparison

Evaluation and comparison of a binary-classification performance stated in terms of four
figures simultaneously are difficult. Therefore, several classification performance
instruments have been proposed to summarize these four figures as a single figure (i.e. multi-
objective optimization or in other words compressing these values into a single number)az.
This thesis systematically covers and analyzes over 50 performance instruments for the first
time in the literature. Refer to Table 3.1 and Table A.1 in Appendix A for the instruments,
notation, formatting and other related information.

Highlighting that performance instruments are used in the following scopes:

e Performance evaluation in training, validating and testing a classifier
o Performance reporting in publishing the performance of a classifier
e Performance comparison in comparing a classifier with the other proposed ones

2.2 Literature Review

Japkowicz and Shah (2015, p. 45) give a basic taxonomy of performance evaluation
instruments apart from binary-classification instruments based on the confusion matrix.
Considering binary-classification performance evaluation instruments, most of the literature
gives introductory information about common metrics such as their equations. Others
interpret common metrics over a number of common ML algorithms tested on example or
hypothetical datasets to demonstrate the behaviors of different metrics. For example,
Sokolova et al. (2006) cover three measures and six metrics via two classifiers and Tharwat
(2018) addresses four measures and twelve metrics described with a single simple
classification result.

9 Those four elements (TP, FP, FN, and TN) will be named as “base measures” as described in Section 3.2.1.

10 Two terms used especially in clinical research are also related to confusion matrix and classification
performance: “gold standard” and “ground truth”. The former refers to a diagnostic method with the best
performance and the latter the reference values used as standard for comparison. Additionally, prevalence has
also slightly different meaning than it has in general classification context (i.e. positive class ratio): the
probability of an individual to have the disease (based on clinical characteristics and demographic data) in a
population including both newly diagnosed and existing cases (Cardoso et al., 2014, p. 28).

11 Apart from some cost-based approaches (i.e. reward for correct classifications and penalty for incorrect
classifications)
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Most of the related literature partly addresses the issues researchers encounter when they use
binary-classification performance evaluation instruments. The effect of class imbalance (or
“class skew” or “prevalence effect”) on performance metrics is the most studied issue
(Brzezinski, Stefanowski, Susmaga, & Szczech, 2018; Luque, Carrasco, Martin, & de las
Heras, 2019; Straube & Krell, 2014). Most of the performance metrics that are based on
confusion matrix elements from both class are actually sensitive to class skew (Fawcett,
2004, p. 10). Without any change in the classifier, those metrics change as the distribution of
the positive and negative class samples is changed.

The skew sensitivity in metrics is examined in a narrow perspective in the literature. For
example, Straube and Krel (2014) conclude the skew sensitivity of ACC, F metrics, MCC,
and nMI and the skew insensitivity of DPR, BACC, WACC, and Gm based on a single
example via a hypothetical classifier having TPR=0.9 and TNR=0.7. Note that ROC graphs
based on TPR and FPR dimensions where each dimension strictly depends on one class
exclusively (TPR within the positive class, FPR within the negative class) are not sensitive
to class skew.

Valverde-Albacete and Peldez-Moreno (2014) analyze so-called “accuracy paradox” where a
classifier with a lower value of accuracy might have a greater level of predictive power and
vice versa. Other aspects reviewed in the literature are chance correction (Labatut & Cherifi,
2011), cost-based evaluation (Hu & Dong, 2014), constraints (Forbes, 1995), and the
relationship between diversity (i.e. the degree of disagreement within an ensemble) and
performance metrics (Wang & Yao, 2013).

Some studies examine the properties of instruments from specific perspectives such as
invariance in confusion matrix (Sokolova & Lapalme, 2009), chronology of the instruments
(Seung-Seok, Sung-Hyuk, & Tappert, 2010), patterns in the instruments’ equations
(Warrens, 2008), and decomposability into the sum or average of individual losses on each
sample (Yan, Koyejo, Zhong, & Ravikumar, 2018). Multi-class/multi-labelled performance
evaluation is also addressed (Kolo, 2011; Pereira, Plastino, Zadrozny, & Merschmann, 2018;
Sokolova & Lapalme, 2009). Others propose approaches to compare metrics. In a qualitative
approach, Straube and Krell (2014, p. 2) indicate the following criteria for choosing a proper
metric: i) performance-oriented (not data-oriented), ii) intuitive (interpretable), and iii)
comparable (accepted in the literature). In a quantitative approach, Huang and Ling (2005, p.
302) suggest consistency and discriminancy degrees for comparing performance metrics
through ACC and AUC-ROC example metrics in balanced and imbalanced dataset examples.

Some of the binary-classification performance instruments are the same as binary similarity
or distance measures (Kocher & Savoy, 2017) that are also based on a 2x2 contingency
table. For example, F1 and ACC are referred to as Dice and simple matching coefficient,
respectively. Tulloss (1997) first suggests some requirements and recommendations for
similarity measures. Theoretically, performance and similarity instruments can be formed in
numerous ways by changing the coefficients or weights in the equations. Koyejo et al.
(2014) and Paradowski (2015) provides parametric equations that also generalize most of the
performance evaluation instruments.

The literature touches upon problematic performance metrics especially TPR, PPV, ACC,

and F1. The recommended metrics are also varied because of evaluating them from a single
perspective:
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o Valverde-Albacete and Peldez-Moreno (2014) report that higher Accuracy values
could be misleading.

e Powers (2015, p. 5) discusses some fallacies of F1 that come from information
retrieval such as focusing on one class only, assuming prediction and real class
distributions are identical and biased by the majority class.

e Shepperd (2013, p. 16) also indicates that F1 yields significantly high values (about
0.7) on highly skewed datasets and also exhibits a misleading high performance in
low prevalence datasets.

e Labatut and Cherifi (2011, p. 13) recommend ACC as covering both classes
otherwise TPR and PPV.

e Straube and Krell (2014) recommend DPR, BACC, WACC, and G instead of ACC,
F1, MCC, and nMI considering class imbalance effect.

e Schroder, Thiele, and Lehner (2011, p. 6) suggest using INFORM, MARK, and MCC
instead of PPV, TPR, and F1.

o Forbes recommends nMI as a nontraditional metric (Forbes, 1995).

Considering the literature in general, the studies on performance evaluation instruments
examine a small number of issues most of which are related to class imbalance on a few
common metrics especially F1 and ACC. To the best of my knowledge, such a broad
analysis of a large number of performance evaluation instruments as well as a systematic
benchmarking on those instruments has not been conducted in the literature.

The problems in performance evaluation approaches in a case study domain is described via
a survey in the next section. Note that the following comprehensive literature reviews on
specific areas of performance evaluation instruments are expressed and evaluated separately
in the related chapters:

e Survey 2 in Section 4.2.2: Confusion matrix visualization methods.
e Survey 3 in Chapter 5: Metric comparison methods.

The methods reviewed in Survey 2 and Survey 3 are also compared with the methods
proposed in this thesis.

2.3 Survey 1: Problems in Classification Performance Evaluation
Approaches

ML-based binary classification is used in numerous domains such as unusual event
detection, medical diagnosis, customer target marketing, multimedia, biological, and social
media analysis, and document categorization (Aggarwal, 2015). This thesis evaluates the
performance evaluation approaches of some specific classification application examples
such as term extraction in medical records, computer system intrusion detection, e-mail spam
detection, and software design defects detection in Section 4.1.3.

This chapter addresses “What are the problems in performance evaluation reporting?”
research question (RQ1) by systematically surveying ML-based Android mobile malware
detection as a case study domain throughout this thesis. The domain described below was
chosen because it is subject to a rapid change and is one where binary classification
(malicious or benign software) is frequently used. The survey also presents clear evidences
for the problems 1, 2, and 5 below, all of which are described in Chapter 1 above:
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1. Confusing terminology: performance measure or performance metric?

Disregarding negative-class performance, domain-specific tradeoffs, and end-user
requirements

Using instruments without being aware of the pros and cons

Need for explaining performance instruments

Indeterministic performance reporting and comparison

The gap in responsible open research

The complexity of the performance instruments

N

Nogk~w

Note that some findings of Survey 1 that are not expressed here are given in the other
sections where they are related.

2.3.1  Brief introduction to survey domain

Mobile applications are normally expected as benign software satisfying different user
requirements without any implicit/explicit and/or direct/indirect harm. However, they could
be malign software or malware seeming innocent but actually contain payloads besides the
intended purpose to cause harm to end-users in different forms such as sending SMS (Short
Message Service) messages to the premium numbers without users’ consent (Girol Canbek
et al., 2016). The followings give some insights about the domain:

e 6,140 new mobile applications on average are released every day in Google Play
Store (“Average Number of New Android App Releases Per Day,” 2018),

e The official application market includes 3.8 million applications in total in 2018
(“Number of Apps in Leading App Stores,” 2018),

e Many more Android applications are also released in over 300 third-party
application markets worldwide in a rather uncontrolled way (Dogtiev, 2018).

Within this volume and speed, distinguishing whether an existing or new mobile application
is malign or benign is highly challenging. Because, detecting them solely by malware
analysis conducted by a small number of specialists is impossible, ML-based malware
classification is a promising and effective solution. Both in academia and industry,
researchers build and test classifiers trained on labeled mobile application samples to detect
malware in new applications.

Within these conditions along with the increasing threat environments, diversifying risks,
and technical challenges, ML-based mobile malware classification is a prominent research
area. In Android malware classification studies, the number of available malware datasets,
especially positive samples are small, which results in class imbalance. The features which
can be extracted by static (i.e. file/code analysis) and/or dynamic (i.e. run-time) malware
analysis is high dimensional (Gurol Canbek et al., 2016, fig. 11). A very-specific attack
vector (i.e. technique to deliver the malicious payloads) could be embedded into a benign
popular application and transformed into malware (i.e. repackaged apps). Malware writers
(i.e. hackers) alter these vectors and/or combine others that lead to different instances of
malware (i.e. malware variants in malware families).

With respect to these attributes summarized above, we saw that performance evaluation is
the critical part of malware detection studies in the literature where researchers claim their
improvements by comparing different classifiers with performance metrics. Nevertheless,
the problems introduced here can be encountered in any other domain like in software defect
prediction summarized at the beginning of Appendix H.
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2.3.2  Survey scope

Total 78 studies from 2012 to 2018 reporting their binary-classification performances with
different ML algorithms on Android static mobile-malware detection (see Appendix E and F
for the selection methodology and the references of the studies) are surveyed.

2.3.3  Findings: Blurring terminology

The studies use different terms while reporting classification performance evaluation. Of the
surveyed studies, 42% use “metrics” for performance metrics, which is correct as this thesis
will formally define it (see Definition 3.2 in Section 3.2.3), whereas 15% use “measures”
and even 25% use both interchangeably.

Various other phrases such as “accuracies”, “measurements”, “performance indexes”,
“quality measures”, “summary measures”, “assurance scores’, “classification quality”,
“detection performance”, “evaluation criteria or indicator”, etc. are also expressed in 31% of
the studies. The terms for individual metrics also vary as listed in Table 2.1.

Table 2.1 The distribution of alternative terms used in 78 studies for referring to individual metrics.

Metrics Terms

ACC  ACC (80%), Detection Rate (or Ratio) (11%), Detection Accuracy (7%). Success Rate (or
Ratio), Overall Accuracy (or Efficiency), Correctly Classified Instances Rate

F1 F-measure (43%), F-score or F1 score (39%), F1 (22%), Fm

TPR TPR (39%), Recall (26%), TPR and Recall (at the same time) (15%), Detection Rate (9%),
Sensitivity (5%), Accuracy Rate, Fraction of Malware Thread Identified Correctly, Hit Rate,
Rate of Correctly Detection of Malware, Recall Malicious, Recall Malign

PPV Precision (86%), PPV (8%), Precision Malicious, Precision Malign, Detection Rate

FPR FPR (96%), False Alarm Rate (7%), Rate of Incorrectly Detection of Innocent Application
as Malware

TNR TNR (60%), Specificity (27%), Recall Benign (13%), Pass Rate, Benign Application
Recognition Rate

Other metrics: FNR: FNR; NPV: NPV, Precision Benign; MCR: ERR; CK: CK; MCC: MCC

The blurring terminology in a fundamental level is so widespread that the literature even on
performance evaluation sometimes intermingles “performance measures” and “performance
metrics” terms (e.g., (Baldi, Brunak, Chauvin, Andersen, & Nielsen, 2000; Ferri et al., 2009;
Huang & Ling, 2005; Labatut & Cherifi, 2011; Sokolova & Lapalme, 2009)).

The terms commonly used in other domains such as pattern recognition and information
retrieval are also borrowed for use in generic binary-classification context (e.g., “recall” or
“sensitivity” instead of “true positive rate”, “precision” instead of “positive predictive
value”, and “specificity” instead of “true negative rate”). The class relation is also not
explicit (for example, “inverse recall” is used for TNR and “inverse precision” is used for
NPV rather in a compulsory manner (Tharwat, 2018)).

Different terms for the same metrics could be used in the same study. For example, 15% of
the surveyed studies use both “true positive rate” and “recall”, which are commonly used in
information retrieval, at the same time in pure binary-classification context. More
interestingly, even six of the surveyed studies (7.7%) published the same TP /P value two
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times one referring as TPR and one as recall redundantlyi2. In addition, the same terms could
be used for different metrics (e.g., “detection rate” for TPR and ACC). The results suggest
that in order to establish a common approach in scientific studies, the fundamental
terminology should be clarified first and correct terminology should be followed by all the
researchers.

2.34  Findings: Reporting inconsistencies and tendencies

Table 2.2 shows the key findings of our survey in reporting the performance of ML-based
malware classification. As seen in Table 2.2 (a), the number of performance evaluation
instruments reported in a single study is discrepant. The studies tend to report two or three
instruments but they may choose from only one instrument (only ACC or F1) to seven
instruments inclusive. Tough they are primitive; TPR, FPR, and ACC are the most reported
metrics as shown in Table 2.2 (b). Note that the same variance in selected metrics was also
observed in multi-labeled performance reporting (Pereira et al., 2018).

Note that 12% of the studies report the confusion matrix for their best classifier
configurations. Reporting confusion matrix enables calculating all the performance
evaluation instruments but comparisons via the four elements of the matrix are impractical
unless the sample size and class ratios are the same.

Table 2.2 The statistics of performance metrics reported from 69 applicable studies of 78 surveyed
studies: a) the distribution of the number of metrics reported in a study (minimum one metric and
maximum seven metrics were reported in the same study) b) Distribution of the reported 11 metrics
c) Distribution of 31 unique combinations of the reported metrics. For example, out of 69 studies, 14
studies reported only TPR and FPR metrics, 7 studies reported TPR, PPV, and F1. The top six
combinations (53%) are shown (other 25 combinations: 47%) d) The distribution of the components
of the reported metrics according to their distribution in (b) revealing positive-class focus tendency

(@
one two three four five SiX seven -metrics
9% 32% 13% 13% 13% 1% 3%
(b)
TPR FPR ACC PPV F1 FNR TNR NPV, MCR, CK, MCC
75% 64% 55% 36% 30% 20% 17% %
(©
TPR FPR 20%
TPR PPV F1 10%
ACC 7%
0,
FPR ACC FNR 7% 53%
TPR ACC PPV 4%
TPR FPR ACC 4%
(d)
7 FNITE N FPIl 1C Fc
k 6% 36% 2% 15% | 1% 4% 9% 13% | 8% 5%
Y Y
positive-class related negative-class related
60% 27%

12 Studies: #17 (in Table 7); #32 (in Table 6, 7, and 8); #39 (in Table 5); #40 (in Table 1); #57 (in Table 5); and
#18 (in Table 5, TPR and recall equations are given at the same time)
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Table 2.2 (c) shows the most notable finding regarding an inconsistency found in
performance evaluation reporting: in almost half of the surveyed studies, the researchers use
varying combinations of metrics for performance reporting.

When we looked into the roots of the metrics reported (i.e. calculated according to the
canonical measures introduced in Definition 3.1 in Section 3.2.3), 60% of the selected
metrics are positive-class related (i.e. based on TP, FN, P, and OP) whereas 27% are
negative. Interpreting the overall findings in Table 2.2, the performance evaluation reporting
seems discretionary.

Though it is out-of-scope of this study, the performance of a classification workflow and/or a
classifier should be evaluated in time-space. We saw that 35% of the studies publish some
sort of time measures (e.g. classifier training time in seconds). Time performance should be
published and standardized in all the classification studies considering the computational or
time complexity of the machine learning algorithms used. ML algorithm complexity is also a
related subject in time performance (Kearns, 1990).

2.4 Conclusion

Contrary to the common assumption that performance evaluation is a well-understood and
studied area, this chapter reveals fundamental problems in performance evaluation
approaches in ML-based classification studies in the literature. Besides, wide-spread
confused terminology, there is no consensus in performance reporting and publication.

It should be highlighted that performance instruments are also the key to making decisions in
other ML workflow activities besides final performance evaluation and reporting such as

e comparing different feature sets selected for the same ML model,

e comparing different ML models with the same feature sets, and

o finally comparing the best approach achieved overall with other ML studies in the
same context.

The findings have shown that researchers use a different number of metrics selected from a
limited number of conventional ones namely TPR, FPR, ACC, PPV, and F1. On the other
hand, other alternatives covered in this thesis such as BACC, G, nMI, CK, and MCC have not
been commonly used in the literature.

Note that the findings of the survey conducted on a specific domain covering seven years are
actually generic that could be encountered in other domains. In the next sections, the
proposed approach is presented, which aims to help to overcome such problems by clarifying
the fundamental terminology and providing a formal multi-perspective analysis and tools for
binary-classification performance evaluation instruments.
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CHAPTER 3

MULTI-PERSPECTIVE ANALYSIS OF PERFORMANCE INSTRUMENTS

This chapter addresses a group of RQ2 research questions by introducing novel concepts via
a multi-perspective analysis method to

clarify and improve the terminology,

examine whether any difference exists in instruments semantically and formally,
introduce new essential properties uncovering and defining their characteristics, and
reveal their similarities, relationships, and dependencies.

31 Categorization of Instruments: Measure, Metric, and Indicator

As revealed in Survey 1 in Section 2.3.3, terminology confusion is widespread. The first
conceptualization of this thesis is to propose a fundamental terminology in classification
context. For the first time in the literature, this thesis

o refers the references derived from a binary-classification confusion matrix as
“performance instruments”,

e categorizes instruments as “measures” and “metrics, and further

e introduces a new instrument category named “indicators”.

A measure is defined as “the dimensions, capacity, or amount of something ascertained by
measuring”13 and metric (often metrics) is “a standard of measurement”14 according to
Merriam-Webster. A measure is quantitatively derived from measurement while a metric is
close to inferring qualitative subjects. A metric is a calculated or composite measure based
on two or more measures and typically stated as percentages, ratios, or fractions.

Two related works are found in the literature that specifically covers the terminology
confusion observed in software engineering where “measures”, “metrics”, and “indicators”
are also used interchangeably along with other related terms such as “attributes” and
“scales”. Olsina and de los Angeles Martin (2004) points at the lack of consensus in the
terms evaluating related concepts such as quality and productivity. They present an ontology
to suggest clarification based on software-related I1SO standards and recognized research
articles. Similar to the adopted approach described below, they also order the terms as

measures, metrics, and indicators going through distinct activities namely measurement,

13 https://lwww.merriam-webster.com/dictionary/measure
14 https://www.merriam-webster.com/dictionary/metric
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calculation, and decision. Garcia et al. (2006) approach to the terms in a different way and
completely avoid the use of “measures”. Because the term “software metric” seems to be
imprecise to the contrary to any other engineering disciplines.

As specifically examined from the general perspective by Texel (2013), measures, metrics,
and indicators refer to different but dependent concepts. In parallel with the semantic
distinction among instruments proposed in this thesis, measures are numerical values with
little or no context whereas metrics possess a collection of measures in context, and
indicators are the comparison of measures and/or metrics to a baseline. Figure 3.1 illustrates
performance measure-metric—indicator dependencies, their relative characteristics, and
typical values or ranges. The levels per instrument type are described and formally defined
in the next section.

Typical Values/Range A Precision: Coarse, Interpretation: Easy A

‘perfect’
‘good’

<« Dependency
(top to bottom)

‘fair’
‘limited’

| 1 * 2nd Level Metric
{ o Metrics * 1st Level Metrics
\ ity | » Base Metrics

¢ 3rd Level Measures

[ +°; M » 2nd Level Measures
K‘ easures Ist Level Measures
—00
- K * Base Measures

¥V Precision: Fine, Interpretation: Hard ¥

Figure 3.1 Dependency and relative characteristics of performance evaluation instrument types. The
attached semicircles on the left show the typical values or ranges for each instrument type. For binary-
classification performance measures and metrics, the ranges are usually [0, ) and [0, 1] respectively
whereas indicators have nominal values.

3.2 Formal Definition and Organization of Instruments

The following formal definitions are proposed for organizing and describing binary-
classification performance evaluation instruments. Table 3.1 shows the special notation
proposed for differentiating measures and metrics as well as the instrument transformations
described in this study.

Table 3.1 Performance instrument notations

Notation Style Meaning Example

M Italic Any metric/indicator or measures in a limited ACC in [0, 1], MCC in [-1, 1],
range PREV in [0, 1]

M + Bold Measures with no lower and/or upper limit TP, Sn, OR

M= or M+ * superscript Dual of PREV = BIAS+

MorM Overbar  Complement of TPR = FNR

M Regular bold Metric-space of the metric (see Section 5.1.1) MCC
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Note that canonical measures are usually not written in bold in equations.

3.21 The base measures (TP, FP, TN, and FN)

In this thesis, the four conventional direct outputs of classification performance, that are
presented in a 2x2 contingency table or confusion matrix are called base measures because
all other instruments can be expressed by them. The different names of the base measures are
provided in Table A.1 in Appendix A.

3.2.2  First level measures (P, N, OP, ON, TC, FC, and Sn)

The first level measures are the composition of the base measures by summation. P and N
measures that are column totals (also known as marginal totals in probability theory) of a
confusion matrix represent the real or actual sizes of the two classes (i.e. the real labels). For
example, a classification test dataset with 3,000 malign and 2,000 benign application
samples is expressed as P = 3000 and N = 2000. These measures correspond to the reality,
observed or ground truth. OP and ON measures that are row totals (also known as marginal
totals in probability theory) of a confusion matrix represent the prediction (test or
classification result) of the two classes. For the same example, a decision tree classifier
predicting the examples as 3,100 malign and 1,900 benign is expressed as OP = 3100 and
ON =1900. These measures correspond to the prediction, hypothesized or estimated
(classification) output.

Moreover, True Classification (TC) and False Classification (FC) are defined as the totals of
diagonal base measures (TP and TN) and/or off-diagonal ones (FP and FN), respectively.
Substituting those totals have significantly simplified the metrics’ equations and their
interpretation. For instance, ACC that is defined as (TP+TN)/Sn (even as
(TP+TN) /(TP + FP + FN + TN)) could be expressed simply as TC/Sn with TC. Including
TC and FC where appropriate makes the equation easy to interpret (e.g., the ratio of the
number of correct classifications to total sample size instead of the ratio of the number of
positive and negative samples correctly classified to total sample size). Note that this
notation also simplifies the multi-class performance instruments. For example, the accuracy
of a ternary-classification is again TC/Sn.

It may be argued that Sn could be classified as a base measure because sample size is always
available at the very beginning before starting classification. However, our formal
performance evaluation approach in this study is based on direct outputs of classification
performance (TP, FP, FN, and TN) and the leveling is determined by dependencies. Hence,
sample size (Sn = TP + FP + FN + TN) is above base measures like P or N.

3.23 Instrument equations: the canonical form

The terminology confusion described in Section 2.3.3 can be efficiently avoided by defining
a formal logic that determines whether a given equation of a performance evaluation
instrument is a metric or measure. The first step in the proposed formal definition is to
standardize the equations. In canonical form, the equations are expressed with the base
measures and the first level measures (TP, FP, FN, TN, P, N, OP, ON, TC, FC, and Sn).
For example, MCR = FC/Sn and F1 = 2TP / (2TP + FC) are expressed in canonical form.
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Definition 3.1 (Canonical Form).

M is a performance metric or a measure expressed in a canonical form M: X - R
X = {(TP,FP,FN,TN,P,N,0OP,ON,TC,FC,Sn) € Z*'1:[0,)}and Z* = {0} U Z*

where P=TP+FN; N=FP+TN; OP=TP+FP; ON=TN+FN; TC=TP +
TN; FC=FP+FN; Sn=P+N=0P+ON=TC+FC=TP+FP+TN+FN.

Note that any equations listed in Definition 3.1 above must be reduced into total form (P, N,
OP, ON, TC, FC, Sn) while converting an equation into canonical form (e.g., a TP+FN
should always be reduced into P). High-level dependency form is described in “More
Geometries” subheading below.

3.3 Performance Measure/Metric Definition

A binary-classification performance evaluation metric in canonical form is expected to have
at least one of the base measures and its range is limited as dictated in semantic
interpretation described in Section 3.1. Hence, the following definition is applicable to
performance measures. Otherwise, the given equation in the canonical form is called as a
performance metric.

Definition 3.2 (Measure/Metric).

M is a (binary-classification performance) “measure” expressed in canonical form where
M:X >R and ( dom(M) € {P,N,0P,ON,Sn} or ( min(M) = —oo and/ormax(M) =
+00)).

Otherwise, M is a “metric”.

For example, PREV = P/ Sn is a measure because dom(PREV) is equal to {P, Sn} whereas
OR = TP'TN/FP-FN is still a measure even dom(OR) = {TP,FP,FN,TN} &

{P,N,0P,ON, Sn} because range of OR is limitless, i.e. [0, ©). G = /TP ' TN/P .Nisa

metric because neither dom(G) is not subset of {P, N, OP, ON, Sn} (because of TP and TN)
and nor its range is limitless (range(G) = [0, 1]).15

3.4 The Geometry for Measures/Metrics

Figure 3.2 (a) is drawn to depict the geometry of canonical measures defined above. P and N
are column type (total of base measures in vertical cells in confusion matrix) that is related to
reality only, OP and ON are row type (total of base measures in horizontal cells) related to
prediction only, and TC and FC that are named are mixed type (total of base measures in
diagonal or off-diagonal cells). Note that Sn is mixed geometry and has no effect on

15 First measure is defined because metrics are derived from or above measures. Nevertheless, metrics could be
defined explicitly by (dom(M) 2 {TP,FP,FN,TN} and (min(M) # —oo and max(M) # +0)).
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geometry type when it is involved in other instruments’ equations. Figure 3.2 (b) depicting
the geometries of all the measures and metrics is used as a guide for the proposed
exploratory table (PToPl) shown in Figure 4.1 in Chapter 4 to position the different
measures and metrics in the table layout. Note that the geometry type is represented by
dashed and solid edges described in Table 4.1 in Chapter 4.
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(b) Geometry types and layout of all measures and metrics

Figure 3.2 The origin of laying out of performance evaluation instruments in PToPI
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This thesis extends this column/row geometry to any measure/metric as shown in Figure
3.2 (b) apart from P, N, OP, ON, TC, FC, and Sn with the following definitions:

Definition 3.3 (Instrument Geometry).

M is a metric/measure expressed in a canonical form where M: X - R

The geometry of m is ‘Column’ (depicted as M€)

if dom(M) 2 {P,N}and dom(M) 2 {OP,ON,TC,FC}
The geometry of m is “Row” (depicted as M")

if dom(M) 2 {OP,0N}and dom(M) 2 {P,N,TC,FC}

Otherwise, the geometry of M is ‘Mixed’ (depicted as M*)

In our survey, 26% of the studies, published column geometry metrics (e.g., TPR, TNR, FPR,
and/or FNR). 19% published true-classification-only metrics (e.g., TPR, TNR, PPV, NPV,
and/or ACC). Interestingly, 3% published FPR with FNR, which is a subset of false-
classification-only metrics.

35 Transforming Geometry: Metrics/Measures Duality

The extended geometry divides classification performance measures/metrics into two
orthogonal dimensions besides the mixed ones: column (reality only) vs. row (prediction
only). This approach brings about transformations in corresponding measures/metrics.
Essentially, duality is to transform one concept into another concept in a bilateral manner. It
could be perceived as interchanging antecedent and consequent (Powers, 2011).

Definition 3.4 (M+, Duality).

M is a metric/measure expressed in a canonical form where M: X — R and the geometry of
M is “Column”, “Row”, or “Mixed”. The dual of M is M+ where

if the geometry of m is “Column” (M€)

P-OP
dom(M) N-oN dom(M™*)

if the geometry of M is “Row” (M")

OP-P
dom(M) oN-N dom(M™*)
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A transformation via switching the column to row geometries and vice versa corresponds to
reality versus prediction perspective change. The introduced transformation via duality
makes researchers become aware of the special relations in corresponding metrics/measures.
Basically, a dual of a column/row type measure/metric is formed by swapping between {P}
and {OP} and between {N} and {ON} respectively. For instance, TPR =PPV~ or
PPV =TPR=. As seen in the examples, the symmetry (involution) is always valid for the
duality of performance measures/metrics (M;" = M, and M," = My, i.e. if M, is the dual of
M,, then M, is the dual of M;).

The duality is important to transform a mapping in one concept (dimension) to its dual
concept. For example, a function (f) of two column-geometry metrics (M€, and M¢,) could
be transformed or sought in their corresponding dual (i.e. row geometry metrics) metrics
(M™; and M™,) as described as below:

vM; ; € P(TP,FP,FN,TN,P,N,0P,ON,TP,TC,Sn),3f 3M", IM",

FOMELME) = F(ME," M) = F(MTy, MT5) (3)

For example, LRP is a mapping between TPR and TNR. The dual of LRP =TPR /(1 - TNR)
is TPR«/(1—TNR+) = PPV /(1-NPV), which is not common in existing classification
performance evaluations. It is called “Relative Risk™ that is especially used in statistics,
epidemiology, clinical research, and diagnostic tests (Siegerink & Rohmann, 2018). The
relation revealed by duality can connect classification performance evaluation domain with
these domains.

The example given for LRP is related to the transformations of column or row geometry
instruments. As for mixed geometry, duality transformation of high-level mixed-geometry
instruments reveals different dependencies (note that dual of a mixed type metric/measure is
equal to itself). For instance, the following transformation of ACC from Eq. (3.2) showing
PREV dependency reveals BIAS dependency of ACC:

ACC = TNR + PREV - (TPR — TNR) (3.2)
ACC* = TNR* + PREV* - (TPR* — TNR") (3.3)
ACC = ACC* = NPV + BIAS - (PPV — NPV) (3.4)

Increasing the class imbalance leads to a higher performance value via ACC as shown in
Eqg. (3.2), which causes a higher bias as shown in Eq. (3.4). Dual instruments should be
interpreted correctly. For example, Powers’ statement (Powers, 2011, p. 3) that the goal of
the classification model is achieving the equality of dual instruments such as PREV = BIAS,
TPR = PPV, or TNR = NPV should be clarified by adding “in the highest possible metric
values” constraint (e.g., TPR = PPV = TNR = NPV = 1.0). Because a random classifier with
all the base measures equal (e.g., TP = FP = FN = TN = 50) also satisfies all these three
equalities.
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3.6 Instrument Complements

Binary-classification performance metrics and some of the measures are normalized ratios
having ranges in [0, 1] or [-1, 1]. The complement of a measure/metric is defined as follows:

Definition 3.5 (A, Complement)

M is a metric/measure where M: X — R. The complement of the ith value of M is M where

max (M) — M;, M in [0, max(M)]
M; ={min (M) —M;, M in [min(M), 0]
—M;, min(M) < 0 and max(M) > 0

For instance, TPR is a metric M, which has a range [0, max(M) = 1], if TPRi = 0.999, then
the complement of TPRi (i.e. FNRi) is 1 —0.999 = 0.001. Likewise, INFORM is a metric M,
which has a range [min(M) = —1, max(M) = 1]. If INFORMi = 0.500, then the complement of
INFORMi is —0.500. In contrast with duality, having both a measure/metric and its
complement does not contribute any extra information. A complement could be used for
simplification of equations or switching the primary point of view to another one such as
switching from positive class-based view (e.g., TPR or PPV) to a negative one (e.g., FNR or
FDR) or focusing on errors (i.e. MCR) instead of correctness (i.e. ACC). Redundancy in
performance reporting is another issue related to complementation. Out of 51 studies
surveyed in the performance reporting context, 16% have redundant metrics namely TPR
with FNR (14%), TNR with FPR (12%), and ACC with MCR (2%).

3.7 Class Counterparts

Class-specific instruments have counterpart instruments. For example, TPR for positive class
with TNR for negative class (with their complements: FNR with FPR), PPV with NPV (FDR
with FOR), and LRP with LRN. Counterpart relations can be uncommon unless otherwise is
required. For example, the counterpart of PREV (=P/Sn) is NER (=N/Sn) that is not
common. However, the counterpart of BIAS (=OP/Sn), (ON/Sn) or the counterpart of F1
(2TN/ (2TN + FC)) are not used at all. Counterparts are also applicable in multi-class
performance evaluation above binary classification.

3.8 More Geometries: Dependencies, Levels, and High-Level Dependency
Forms

A dependency graph is prepared to show the dependencies among 49 binary classification
measures/metrics and reveals their similarities. Figure 3.3 and Figure 3.4 show a partial and
full view of the dependency graph, respectively. The full-resolution graph and the DOT
(graph description language) files to produce it via Graphviz are provided online at
https://github.com/gurol/PToPl. ~ High-level  equation  forms  (i.e.  substituting
measures/metrics other than base level measures/metrics and 1st level measures) are used
where possible to identify direct dependencies. Otherwise, the dependencies are calculated
based on the equations in canonical form. For example,
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e TPR, TNR, PPV, and NPV metrics and their complements depend on canonical
measures. Therefore, they are considered as base metrics.

e INFORM depends on TPR and TNR; MARK depends on PPV and NPV. Therefore,
they are 1st level metrics.

MCC =+ INFORM - MARK shows that MCC has direct dependencies on INFORM and
MARK metrics in high-level. Therefore, MCC is a 2nd level metric.

-6--. @

( PPI j: -;; TPR ) DR j: ( NPV ) ( TNR ) -:j RR ) 4(( ‘;

Cﬁ@ @@@@

Figure 3.3 Partial view of dependency graph showing non-redundant metrics only (i.e. without FPR,
FNR, and MCR). See https://github.com/gurol/PToPI for source files to generate dependency graphs

Beyond the well-known ones, the literature rarely examines the instrument equations with
different expressions like in Eq. (3.2) and Eq. (3.4). Press (Press, 2008, p. 12), for example,
finds the equivalent form of PPV and NPV by expressing them with TPR and TNR. The
high-level dependency actually reveals another kind of redundancy observed in performance
evaluation reporting (i.e. reporting a metric with its direct dependencies). For example, out
of 51 studies surveyed in the performance reporting context, 27% published F1 along with
the two direct-dependencies (the harmonic mean of TPR and PPV).

3.9 Upper-Level Measures and Metrics Leveling

Applying the leveling approach described above, measures have four levels and metrics have
three levels including base levels as shown in Figure 3.2 (b). The final levels are

e Measures: Base, 1st, 2nd, and 3rd level
e Metrics: Base, 1st, and 2nd level.

The complete list of levels and corresponding instruments in three-dimensional
representation are depicted in Figure 3.5 and listed in alphabetic order in Table A.l in
Appendix A. Note that DP is not in a new level (i.e. 4th-level measures) because it only
transforms OR measure without changing its dependents (LRP and LRN or TPR and TNR).
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3.10 Summary Functions
High-level metrics summarize the dependent metrics into a single figure on:

e Dual dependent metrics for a mixed geometry metric: MCC is the geometric mean of
INFORM and MARK and F1 is the harmonic mean of TPR and PPV. nMI has
various summary functions (e.g., arithmetic/geometric means, minimum and
maximum) applied on HC and HO.

e Class-counterpart metrics for a column geometry metric: INFORM with addition,
BACC with arithmetic mean, WACC with weighted mean, and G with geometric
mean of TPR and TNR.

In parametric instruments such as WACC or F2 (see equations (17") and (20" in Table B.2 in
Appendix B), the summary function depending on two or more instruments can be adjusted
according to the importance given each dependent (Kenter et al., 2015).

Leveling not only allows the researchers to distinguish similar instruments from a large
number of instruments but also shows the dependencies among levels and their
summarization degree. For example, MCC as a 2nd level metric depends on and summarizes
the 1st level metrics that depend on and summarize the base metrics.

2nd level metric (%4
»>

MCcC

zml Ind
1st level metries (15-23)
INFORM, MARK, BACC, (WACC), g Indicators
G, nMI, Fl1,(Ff), F0.5, F2, CK 1st 3"‘ ACCBAR
Base metrics (' -4
TPR, FNR, TNR, FPR, PPV,
FDR, FOR, NPV, HOC, MI, \_ 3rd level measures *?~ 29
DR, CRR, ACC, MCR o=t et HC, HO, OR, DP

Base measures (/9

Confusion Matrix
(2x2 contingency table)
TP, FP, FN, TN

2nd level measures /22D
PREYV, BIAS, SKEW, NIR, NER, CKc,
DPR, LRP, LRN, DET

1st level measures ¢ "’”

Marginal totals: column: P, N, row: OP, ON,
and New Measures (Diagonal Totals): TC, FC,
Sample Size: Sn

Figure 3.5 Three-dimensional representation of levels and dependency of performance instruments

3.11  “Accuracy Barrier” As the First Example of Performance Indicators

Metric or measure values are important particularly for comparison of the performance of
different classifiers. However, they may be limited in terms of interpretability by end-users.
In particular, nonlinear or limitless measures such as OR in [0, «©) are hard to interpret
(Schmidt & Kohlmann, 2008).

33



Indicator is the new category of performance instruments as proposed and described in
Section 3.1 above. Addressing the research question “How to enhance comprehending,
using, representing, reporting, learning, and teaching binary-classification performance
instruments?” (RQ3), this chapter proposes a novel indicator that specifically enhances
performance instrument using and reporting. Those enhancements are demonstrated via a
case study where previously reported binary-classification performances in the literature are
re-evaluated by the novel indicator. A negative result experienced in defining an indicator
summarizing a limitless measure is also shared.

Indicators facilitate the comprehension and comparison of the metrics and measures;
therefore, they are recommended for end-users or public applications. The outputs of an
indicator are qualitative and they are obtained by dividing metric or measure values into
coarse categories. Although categorizing a quantitative variable in a given range via cut
points to facilitate understanding some phenomena and distinguish the specific intervals is
applied in some domains, such as biology (Mayya, Monteiro, & Ganapathy, 2017), only one
attempt of metric categorization is found where CK was divided into the six strength of
agreement with the following half-open intervals:

<0: “poor”,

[0, 0.2): “slight”,

[0.2, 0.4): “fair”,

[0.4, 0.6): “moderate”,

[0.6, 0.8): “substantial”, and
[0.8, 1]: “almost perfect”

by Landis and Koch (1977, p. 165) who stated that the divisions were arbitrary and provided
for benchmarking.

ACC results can be high even for a random classifier (Valverde-Albacete & Pelaez-Moreno,
2014). Therefore, it is essential to define a minimum performance that should be expected
from a binary classifier. NER and NIR, which are not well-known or reported (Bond et al.,
2018, p. S9; Garcia-Magarifio, Chittaro, & Plaza, 2018, p. 35), are two measures that can be
used to define that limit as shown in Eg. (3.6), NER specifies the minimum successful
classification rate of a classifier without a classification model that always labels a given
instance with N. As a class-independent version, NIR specifies the minimum performance by
taking the larger class sample-size as either Positive or Negative into account.

A case of having a classifier with a close performance to NER and NIR measures is called as
“accuracy paradox” from which this thesis introduces and formally defines the “Accuracy
Barrier” indicator:

ACC = NIR > NER (3.5)
e max@®N) N (3.6)
Sn Sn Sn
TC =max (P,N)=N (3.7)
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A classifier with a reasonably high ACC where TC is close to the number of Positives
(TC = P) or Negatives (TC = N) cannot overcome the Accuracy Barrier. Table 3.2 shows the
performance measures and ACC metrics of two hypothetical classifiers tested on 2,200
samples (Sn) with 18% prevalence (as frequently observed in domains having rare positive
samples such as known mobile malware or a specific disease).

When the performance is reported with only ACC metric, both classifiers achieve notable
performances (ACC values are 0.916 and 0.868). Nevertheless, their ACCs are very close to
the ACC of an ordinary classifier (0.818) whose outcome is always “Negative” (N >> P).
Therefore, the Accuracy Barrier is recommended to be checked by either Eq. (3.5) or
Eq. (3.7) (see ACC, TC, NIR, and NER that are shown in PToPl in Figure C.2 in
Appendix C). When the classification performance is reported in terms of other metrics such
as F1, CK, and MCC, the results are lower than ACC as shown in Table 3.2.

You can test different classification results and see the accuracy barrier outputs in the online
extra material provided at https://github.com/gurol/PToPI as well as using the developed tool
TasKar  described in  Section4.2, which is also provided online at
https://github.com/gurol/TasKar.

Table 3.2 Accuracy barriers and other metrics on two example hypothetical classifiers

Classifier-1:

Classifier-2:

Very close Accuracy Barrier

Hit Accuracy Barrier

' ! P Fr|8 | | TP FP| 8
265! 240 25 g 190, 150 40 %
! | FN v 8 | | FN V|8
- 1935 160 1775/ 8 - 2010! 250 1760/ &
TC TC
2015 400 1800 1910 400 1800
— f TIC~N — + .I‘?_Tf_‘.’_._f._.
ACC |8 NIR NER Acc| B NIR NER
0916 E} 0818 0818 0.868 c% 0.818| 0818
___________ __ 088 L osls|  _Osle
ACC = NIR ACC=NIR
CK MCC cK| Mcc
Fi 0675  0.695 FI 0443  0.484
0.722 0.837|  0.847[* 0.508 0.722|  0.742]*
ACCBAR |Very close M ACCBAR |Hit \El‘e:;v' !

ACCBAR delta (A) 0.098
Unit step length (@) 0.05

ACCBAR delta (A) 0.050
Unit step length (8) 0.05

* When CK and MCC ranges [-1,1] are normalized to [0, 1] like in ACC and FI
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Five accuracy barrier categories are defined from the most proper to the least:

e “Over”

e  “Close (to)”

e “Very close (to)”

e “Hit”, and

e  “Under” + the “Accuracy Barrier”

The following equations are proposed to calculate the proposed indicator called ACCBAR.

A= acc — BN (3.8)
Sn
( Over, A> 360
Close, A> 260
ACCBAR = { Very close, A> 0 (3.9)
| Hit, A>=0
k Under, otherwise

The unit step length (6) value is determined as 0.05 by considering the range of related
metrics (ACC, NIR, NER) [0, 1] and the minimum difference in which the performances of
different competing classifiers are compared (i.e. high-performance values between 0.95 and
1.0 that researchers would like to achieve). Note that Figure 4.7 also depicts accuracy barrier
categories in example delta values in TasKar tool.

ACCBAR can give notable insight into the performance by evaluating one metric (ACC) and
one measure (NIR). The indicator is straightforward to calculate and clarify the vague
condition interpretation of Accuracy Paradox in the literature and provide an exact
measurement. ACCBAR can be a significant instrument for classification studies when
publishing their performances via ACC. For example, a classification performance stated as
ACC =0.916 alone cannot be disregarded in especially applications in emerging areas.
Nevertheless, it is actually very close to the Accuracy Barrier as shown in Table 3.2.

3.11.1 Case Study 1: Classification performance re-evaluation via ACCBAR

The ideal approach in ranking different classification studies for the same classification
problem (e.g., ML-based Android mobile malware detection) is to test the classifiers on the
same datasets (i.e. benchmarking datasets) and compare the test results in terms of a chosen
metric. However, this approach could not be possible due to the various reasons. For
example, a researcher could not

e access the datasets used in other compared classifiers to test her/his classifiers or
o build the compared classifiers’ models to test them on her/his own datasets.

ACCBAR actually adds a pre-control for classification performances expressed in terms of
ACC. In order to show the usage of ACCBAR indicator, 28 of the surveyed studies that report
their classification performances in terms of ACC are analyzed via ACCBAR. As there were
more than one alternative classifier models published in most of the studies, the
configurations yielding the highest ACC are chosen. Table 3.3 shows the details of the
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analysis conducted on 28 studies but presents the top 15 of 28 studies having the highest
ACC reported for the sake of space and simplicity (more detailed information for all the
studies are provided in online data).

Unexpectedly, the results show that the top five of the classifications ranked by ACC are
actually at the bottom when the studies are ranked by their ACCBAR category (from best
condition: “Over”, “Close” “Very Close”, “Hit”, and “Under”) then delta (A) values per
ACCBAR category, and then ACC in decreasing order. For example, the #51 study with the
highest ACC (0.9982) is reduced by 23 ranks and to 5th from last. This is also seen in other
studies (for example, #33 study is reduced from 2nd position to 7th from last and #57 study
from 3rd to 3rd from last).

The exact delta (A) values can be used to evaluate and compare the performances of the
classifiers within the same ACCBAR category. The conducted experiment shows that
ACCBAR delta values help in interpreting the overall ranking. If they are not included (i.e.
ranked by ACCBAR category from best then ACC in decreasing) the rankings become
different.

The primary sort field ACCBAR and the secondary sort field ACC (e.g., the sorting of #33,
#1, #2, etc. studies in “Over” accuracy barrier) in Table 3.3 explain this condition. In the
“Over” group, #33 and #1 studies having the highest two ACCs should be the first and
second in the group. However, their delta values (0.22 and 0.19, respectively) are lower (i.e.
closer to accuracy barrier) than the values of the preceding two studies (#2 and #47 with 0.49
and 0.48, respectively). Hence, the #2 and #47 studies are expected to be the first and
second, respectively even their ACCs were lower (i.e. the achieved accuracy can be
considered more credible).

Table 3.3 Performance rankings of different classifications in terms of ACC metric are completely
different when ACCBAR indicator is taken into account.

Sorted: ACC| ACCBAR|, Change
A1, ACC at

Initial Rankbottom / Reported #Study
N P ACC Rank A Rank changetop A ACCBARmetrics/measures reference
8,000 400 0.9860 7 28 the last 21V 0.03 Hit ACC, BM, TPR, FPR, PPV 30
99,037 10,581 0.9982 | 1 24 5thlast 23V 0.09Very close ACC, TPR, FPR, F1 51
107,327 8,701 0.9949 3 26 3rd last -23V 0.07 ACC, TPR, FPR, PPV, F1 57
122,176 9,756 0.9906 4 27 2nd last 23V 0.06 ACC, TPR, FPR, PPV, F1, 27

CK, MCC
1,853 6,909 0.8828 26 25 4th last 1 0.09 ACC, BM, TNR 52
9,804 2,794 0.9970 | 2 22 T7thlast 20V 0.22 Over Only ACC 33
16,000 3,987 0.9900 5 23 6th last -18V 0.19 ACC, TPR 1
7,494 7,494 0.9890 6 1 first 5A 0.49 ACC, FPR, FNR 2
1,260 1,260 0.9840 8 2 second 6A 0.48 ACC, FPR 47
480 743 0.9787 9 17 -8 0.37 ACC, TPR, PPV, F1 13
3,938 2,925 0.9750 10 13 -3 0.40 ACC, TPR, TNR, FPR, FNR, 37

PPV, AUC-ROC

12,026 5,264 0.9740 11 20 -9 0.28 ACC, TPR, FPR 63
3,938 2,925 0.9720 12 14 -2 0.40 ACC, TPR, TNR, FPR, FNR, 66

AUC-ROC
1,250 610 0.9688 14 19 -5 0.30 ACC, TPR, PPV, AUC-ROC 41
5,560 5,560 0.9688 13 3 third 10 A 0.47 Only ACC 6

« Studies are sorted by ACC values from maximum to minimum per ACCBAR category to differentiate the effect of
ACCBAR. «For simplicity, only the top 15 of 28 studies with “hit” and “very close” to ACCBAR. There is no
classification with “under” “close (to)” ACCBAR. The names of the reported metrics are displayed instead of the values.
* Delta (A) values for example misleading ACC ranks are shown in underlined bold against the proper A ranks shown
in bold.
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The possible reduction is not limited to the top-performing classifications. Classification
with a relatively lower ACC can move to the higher ranks as observed for the #6 study that
goes up from rank 13th to 3rd via ACCBAR indicator correction. Future work will evaluate
the performance values of other metrics such as BACC, F1, CK, and MCC for under, hit and
very close to Accuracy Barrier cases and compare the differences with ACC from a broad
perspective as shown in Table 3.2. Note that an open-source R script developed for ACCBAR
is provided at https://github.com/gurol/PToPI.

38



CHAPTER 4

KNOWLEDGE ORGANIZATION AND DASHBOARD/CALCULATOR
TOOLS FOR PERFORMANCE INSTRUMENTS

As mentioned in Chapter 3, novel concepts are proposed to present the essential properties to
distinguish the instruments. As a summary, the followings are some example interpretations
of each concept:

e ACC is a performance metric whereas PREV is a measure (recall that a metric is
directly related to classification performance and a measure in a fixed range is
indirect, related to classification configuration).

e TPR is a base metric whereas BACC is a 1st level metric (i.e. directly depends on
TPR and TNR).

e Of three base metrics; TPR has a column geometry related to reality only, PPV has a
row geometry related to prediction only, and ACC has a mixed geometry covering
both reality and prediction.

e FNR is the complement of TNR whereas PREV is the dual of BIAS. LRP and LRN
are the class counterparts with the same summary function and direct dependents
(for positive and negative class, respectively).

It is expected that all these concepts will establish a well-defined foundation for performance
evaluation instruments from a theoretical point of view.

Beyond defining the concepts such as instrument type, leveling, geometry, complementation,
and duality, this study also focuses on the representation of these concepts for all the
instruments as a practical contribution that addresses the research question “How to enhance
comprehending, using, representing, reporting, learning, and teaching classification
instruments?” (RQ3).

4.1 PToPI: A Knowledge Organization Tool

As an original implementation proposal of knowledge organization in information science, a
compact exploratory table is designed for 50 binary-classification performance evaluation
instruments called PToPI, which is the pictorial specification or blueprint of instruments
from multiple perspectives covering all the proposed concepts that described and formally
defined in Chapter 3. PToPI depicts the patterns among performance evaluation instruments
including 25 measures, 24 metrics, and one indicator by organizing them according to their
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types and relationships. The real-world use cases of PToPI is also demonstrated over the
literature studies.

A simplified version of PToPI is shown in Figure 4.1 and the full view is included in Figure
C.2 in Appendix C. PToPI is presented in an all-in-one style, thus it is a compact schema
resembling the periodic table of elements. A total of 50 classification performance
instruments all of which originated from four base measures are grouped into measures,
metrics, and indicators, then the measures and metrics are divided into a leveled structure,
and positioned according to geometries, similarities, and dependent metrics/measures.

MCC 2nd Level Metric
CK 1st Level Metrics DPR DP
nMI | F 4 |Fos INFORM LRP o
F,|Fg BACC} } G LRN
Base Metrics_ _____________________ - _
ACC ||AccBAR TPR - @
.............. TINR| = _ 5
w | @
DR |CRR 23
(confusion matrix) E § E
[ ] ] L Y]
27 e b FP|g 2| — 3|3
: ' NOPE: g | '3
| ] el TP 3 S |85 3| %
| MaRK || | L E g -
i | i iE|c d u ~
| N i is| FN F %
i i i % b
iNPV P : & TN
Sn DET| 5

e

Figure 4.1 Plain view of PToPI for 50 instruments: 25 measures, 24 metrics, and one indicator for
binary-classification performance. See Figure C.2 in Appendix C for the full view and visit
https://github.com/gurol/PToPI for other views and future updates.

411 Design methodology
PToPI is designed with the following methodology:

1. Reviewing the literature to compile information such as alternative names and
equations of the metrics, measures, and indicators,

2. Equations are converted into different forms where possible such as canonical form
(Definition 3.1) and with high-level dependency form (see Section 3.8, “More
Geometries”)

3. Measure and metrics are identified by canonical equations (via Definition 3.2),
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4. Geometry types are determined as “column”, “row”, or “mixed” (via Definition 3.3),

5. A dependency graph is prepared to formulate the levels and discover the similarities
and dependencies (see Dependency Graph),

6. The determined levels and dependencies along with the geometry types are used to
position and level the measures/metrics around base measures shown in a 2x2
contingency table,

7. After the layout is completed, the dual and complement of measures/metrics are
determined (via Definition 3.4 and Definition 3.5, respectively),

8. The ranges and whether a measure/metric yield not-a-number (division by zero) are
calculated,

9. Special colors are used on text and/or background for distinguishing measures,
metrics, and indicators, their complements (e.g., FDR is grayed out because it is
PPV), and individual base and first level measures (see colors in Table A.2 in
Appendix A),

10. Measures and metrics are separately numbered according to levels and dependencies
from innermost. Within each level, the numbers are assigned from column to row and
mixed geometry and from positive to negative class dependencies. The duals are
numbered in succession.

11. Geometry is depicted by solid and dashed lines (dashed bottom/top edges for column
types, dashed left/right edges for row types, and all solid for mixed geometries, see
Table 4.1), and

12. Canonical and simplified equations are shown around the measures, metrics, and
indicators.

4.1.2 How to interpret PToPI1?

Table 4.1 lists the visual design elements employed in PToPI to represent the properties of
individual instruments and/or instrument types. PToPI in full view also presents abbreviated
names, full names, alternative names, assigned numbering, and some special attributes of
measures and metrics (see also the legend in Figure C.2 in Appendix C) such as duality,
complementation, whether having not-a-number value (i.e. no 0/0), ranges that are different
from [0, 1].

Recall that the names of measures and metrics that have no upper limit are written in bold
and numbering for measures are written in italic as shown in Table 3.1 above. The measures
and metrics above or below the confusion matrix are column geometry type (depended
solely upon base measures and Sn with P and/or N) whereas the ones located on the left or
right of the confusion matrix are row geometry type (the same as row type but with OP
and/or ON). In equations, bold font styles depict canonical forms and normal styles depict
high-level forms.

4.1.3 Applications of PToPIl Use
PToPI facilitates standardized specifications of a large number of performance evaluation
instruments and avoids terminological confusion and uninformed choice of a metric.
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Table 4.1 Descriptions of the visual design elements used in PToPI

Geometries  Position (1) Box edges  Arrows in Equations (2 ‘Example

Column Below / e Up (1) / Down (|)
b .
above M
Row Left/ right ——  Right(—)/Left («)
oy
Mixed Diagonal / Diagonal (NN 7 Y)
Off-diagonal M

TPR | TP /P

TPR has a column
geometry and depends on
TP and P.

PPV — TP /OP

PPV has a row geometry
and depends on TP and
OP.

ACCNTC/Sn

ACC has a mixed geometry
and depends on TC and Sn.

Complements

Complement relations (e.g., TPR vs. FNR) are shown in rightwards
arrows with corner downwards (=) or upwards () in redundant pair

(e.g., FNR) having gray text color.

Leveling Background Colors

Metric Levels

Measure Levels

3rd

2nd

1st

Base

Instrument Boxes (3)

Full Name Fu

Measure

Nr.

Name

Metric

Nr.

Special notes:

Instrument Ranges: £1 or [0, ), otherwise: [0, 1] (not displayed)

Error Types: type | (FP) and/or type Il (FN)
NaN (not have 'not-a-number’, i.e. division by zero);
Dual: M+, Complement: M

(1) According to canonical measures frame (2) Also shows the dependencies (e.g., P =TP + TN 1)
(3) Instruments are numbered (Nr.) per instrument type. Measure numbers are italic.

Seeing the true limitations of the instruments eliminates unnecessary performance reporting
and allows the researchers to select the most appropriate instrument or instruments according
to specific requirements. PToPlI is intended to be a single comprehensive reference that will

be updated upon new instrument proposals.

The practical use of PToPI can be described in two pillars:

e Overall instrument analysis: Seeing and comparing the relationships, differences,

and similarities of all the instruments.
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e The proper metric choice for performance reporting and comparison: Deciding
which instruments are suitable for establishing classification models, comparing
different classifiers, and reporting classification performances.

Overall instrument analysis: PToPI shows the similarity of the instruments. For instance,
comparing INFORM and MARK dual metrics in the 1st level, three additional column-
geometry metrics are shown near INFORM, namely BACC, WACC, and G. However, the
duals of those additional metrics corresponding to row-geometry are not seen near MARK.
For example, there is no metric taking the arithmetic mean of PPV and NPV like BACC
(arithmetic mean of TPR=PPV~and TNR=NPV~).

No metric is found that corresponds to G taking geometric mean of the same dependents.
The reason for the lack of dual metrics in row geometry is attributed to the fact that
performance metrics based on the prediction of a classifier (i.e. depending on OP and ON)
are not as significant as the ones based on the reality (i.e. depending on P and N). The duals
of LRP, LRN, and OR column-type measures are also missing due to the same reason. This
thesis revealed such findings that were not addressed in the literature after seeing the big
picture via PToPI.

The proper metric choice for performance reporting and comparison:

The following performance evaluation example approaches are compiled from different
domains in the recent literature to show the practical assistance of PToPI in selecting an
optimum number of metrics in performance comparison and performance reporting.

e F1is frequently used as a single metric in many domains especially in information
retrieval conventionally (e.g., in extracting medical terms in clinical texts (Matsuo &
Ho, 2018)). Referring to PToPI, we can see that F1 is the harmonic mean of TPR
and PPV, which then depends on positive class only measures (TP, P, and OP).
While using F1 could be acceptable considering the domain requirements focusing
on positive performance, it would be better to report a supportive metric with F1 to
distinguish the negative class performance. The best alternative is TNR or NPV that
are shown near TPR and PPV. Briefly, the main metric (i.e. used as a single figure in
a performance comparison of different classifiers) is F1 and the supportive metric
(i.e. additional metrics used in performance reporting to indicate other perspectives)
is TNR in this case. A classifier with higher performance in terms of a main metric
could have a lower performance in terms of supportive metrics.

e Another common approach in performance reporting as shown in Table 2.2 above is
reporting F1 along with its direct dependencies namely TPR and PPV (e.g., in
predicting hospital admissions from emergency department medical records (Lucini
et al., 2017)). Following the same approach above and addressing the negative class
performance, F1 can be reported as the main metric. Furthermore, TNR and one of
TPR and PPV direct dependent metrics can be reported as supportive metrics. In the
given medical example, PPV can be selected as a supportive metric because PPV
values are less than TPR. Thus, the lower PPV performances are disclosed to the
readers.

e Some domains prioritize false classifications (either or both of FPR and FNR). For
example, an intrusion detection system focuses on and reports FPR (type I error) and
then FNR (type Il error) along with TPR and ACC (Shah & Issac, 2018). Because,
high false positives can be annoying for end-users, in the given example, reporting
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TPR, which is the complement of FNR as shown in PToPlI, is redundant. Note that
reporting a metric (INFORM, BACC, and G groups in PToPI) above FPR and FNR
is also redundant unless focusing on both error types. As an alternative to reporting
ACC, a mixed geometry metric above FPR and FNR level such as CK or MCC can
be used as a main metric besides supportive FPR and FNR metrics (e.g., reporting
three metrics: MCC, FPR, FNR instead of ACC, TPR, FPR, FNR).

e An ad hoc increase in the number of the reported metrics does not necessarily
guarantee the revelation of the superiority of a classification method. It makes the
comparison harder for the readers conversely. For example, an e-mail spam
detection study highlights the performance via three base metrics, namely ACC,
TPR, and PPV (Faris et al., 2019). Besides, TNR, NPV, and G metrics are also
reported in detailed performance tables. As shown in PToPI, having four non-
complement base metrics each of which depends on corresponding base measures is
equivalent to reposting a confusion matrix. Going up in one level per reported
column and row base metrics, INFORM is reported instead of TPR and TNR and
MARK (as the dual of INFORM) is reported instead of PPV and NPV. There is no
need to report G metric because it is similar to INFORM as shown in PToPI.
Reporting MCC is also appropriate by not only summarizing INFORM and MARK
dependents but also including FP and FN as shown in the canonical forms of MCC.
Hence, three metrics are sufficient for this example of performance comparison and
reporting instead of six metrics (MCC as the main metric and INFORM and MARK
as the supportive metric).

e Another binary-classification performance reporting example that classifies code
smells (issues in software codes potentially causing error or failure) reports ten
instruments: ACC, TPR, TNR, FPR, FNR, PPV, TPR, F1, PREV, and NER
(Ubayawardana & Karunaratna, 2019). As shown in PToPlI, three instruments are
redundant: FPR, FNR, and NER. From a class-balanced performance view, CK or
MCC can be used instead of ACC and F1 along with supportive INFORM. PREV
should also be reported as a supportive instrument indicating class-imbalance in
datasets. Hence, three instruments can be reported instead of ten. Supportive
instruments can be further taken into account where ACC and F1 yield the maximum
performance (1.000).

414  Analogy between PToPI and Periodic Table of Elements

From information science perspective, the periodic table of elements can be considered as an
unprecedented example application of information or knowledge organization where the
classification of the elements (i.e. grouping, ordering, positioning the elements) is pragmatic
(e.g., producing the most helpful one), methodological and fruitful suggesting new
hypothesis, explanations, and theories (Hjerland, 2013). Likewise, PToPI is also a schematic
representation of available performance evaluation instruments conveying different forms of
essential properties (i.e. concepts) (Hjgrland, Scerri, & Dupré, 2011).

After designing PToPI, an analogy with the periodic table of elements was also explored. It
is observed that there is a strong analogy among them. Analogy is defined as the inference
that if two or more systems of things agree with one another in some respects, they will
probably agree in others. Generally, there are two specific systems of things: source domain
and target domain where a strong and large number of similar patterns exist from source to
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target (Glrol Canbek, 2018, pp. 65-66)16. The mapping of the analogy is prepared and
summarized in Table D.1 in Chapter D to present the interesting revealed similarities.

Note that the ACCBAR performance indicator, which is shown next to ACC in PToPlI, can
also be used along with ACC so that class imbalance is addressed in performance evaluation.

It is expected that the proposed definitions and PToPI itself will assist researchers in
comprehension, computation, interpretation, selection, and representation of classification
performance evaluation instruments and their relationships. Considering a large number of
available instruments, such a table is essential for not only experienced researchers but also
young academicians and practitioners in machine learning.

42 TasKar: Dashboard and Calculator

Despite PToPI is a convenient tool from theoretical aspects, researchers in practice still need
to calculate and see performances in terms of those large number of instruments. To the best
of my knowledge, there is no convenient tool having this comprehensive capability besides
some engineering packages providing commands to calculate metrics. Such packages
obviously are not compatible with the proposed concepts presented in this thesis.

To address such a need, a compact dashboard and calculator called TasKari7 is designed and
shared with the research community online at https://github.com/gurol/TasKar. TasKar is a
practical tool to calculate and visualize a large number of performance instruments not only
the common and well-known ones but also the others that should be paid strong attention.

Recall that PToPI described above represents the proposed concepts for 50 instruments
described in Chapter 3. As an implementation of knowledge organization, PToPI presents
the instruments in an organized structure with visualization techniques in order to facilitate
learning, comprehending, and teach performance instruments. The concepts and detailed
information about the instruments including the equations are all represented in a single

page.

TasKar complements PToPI by providing a tool to calculate the instruments and visualize
their outputs along with new graphics to interpret the classification results dynamically. In
this regard, this chapter addresses the research question (RQ3) again especially from the
aspects such as using, reporting, learning, and teaching instruments.

Before introducing TasKar tool, the proposed coloring scheme for representing the
instruments and concepts is described in detail. Note that this scheme is applied throughout
this thesis where applicable such as in figures and tables. Likewise, PToPI was also designed
according to this scheme. The colors in this scheme are selected based on the concepts and
their meanings.

421 Proposed coloring scheme
The proposed scheme comprised color palettes designed for distinguishing:

e Instrument types (measure vs. metrics vs. indicators),
e Instrument levels per instrument type (i.e. base measures or 1st level metrics), and

16 Note that this article was prepared during the initial phase of my thesis study.
17 TasKar is the abbreviation of Tasnif Karnesi in Turkish (Classification Report)
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e Canonical measures (i.e. TP, FP, FN, TN, P, N, OP, ON, TC, FC, and Sn).

The color palettes for these items (i.e. text and background colors) are listed and shown in
Table A.2 in Appendix A. These palettes are designated to reflect the notion behind
performance instruments as well as enhance the comprehensibility of the proposed concepts
so that overall perception can be achieved by all the parties (e.g., researchers, practitioners,
students, and teachers) dealing with performance instruments. The coloring scheme also
provides harmony among different tools such as PToPI and TasKar.

A three-dimensional representation shown in Figure 4.2 (a) is prepared as a guide to
describing the scheme of the base and first level measures (i.e. canonical measures). The
figure reflects the view of a researcher who evaluates classification performance by looking
into the confusion matrix above.

4.2.1.1 Color palettes for 1st level measures
The following items describe the color palettes for first level measures (P, N, OP, ON, TC,
FC, and Sn) as depicted in Figure 4.2 (b).

o Red-like for positive: Because the target class is usually more concerned in
classification studies (e.g., malware, spam, illness, or any other rather abnormal
phenomena), it is used for positive-class related canonical measures (P, OP, TP, and
FN). Following the common practices, red-like colors are used to distinguish such
measures.

e Green-like for negative: Negative-class related canonical measures (N, ON, TN, and
FP) are green like colors implying secondary or normal concerns (e.g., benign
software, regular e-mail, or healthy).

In the proposed coloring scheme, foreground colors show the prediction or classification
outcome colors whereas background colors show the reality or actual class colors as depicted
in Figure 4.2 (b).

e Clean background colors for real classes: clean colors are used for depicting reality
classes. Clean red (red berry)is for positive (P) and clean green (camarone) for
negative class (N).

e Dirty background colors for classification outcomes: the background colors of OP
and ON are dirty red and green, respectively, indicating that we do not know the
reality (it can be either positive or negative). Therefore, dirty red (eunry) for
outcome positive and dirty green (de York) for outcome negative.

18 Color names are extracted from http://chir.ag/projects/name-that-color online color approximation tool
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(b) Steps in defining color palettes for (1): P, N, OP, and ON; (2 — 4): TP, FP, FN, and TN; (5): TC,
FC, and Sn

Figure 4.2 Establishing the proposed coloring scheme via the geometries from the three-dimensional
representation where the observer is above into the two-dimensional representations of base measures
(confusion matrix)

Note that TC and FC are the canonical measures introduced in this thesis study enhancing
the readability of the instrument equations (e.g., ACC is defined as TC/Sn instead of
(TP +TN)/Sn. The colors dedicated to these measures should not be similar to red and
green that are class-colors, because TC and FC are class-agnostic.

e Turquoise-like for true classifications: Because TC indicates favorable outputs of

classification performance, turquoise-like colors are selected, namely Monte Carlo
and genoa for the background and foreground colors of TC.
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e Magenta-like for false classification: To the contrary of TC, FC indicates
unfavorable outputs of classification performance. Therefore, magenta-like colors
are selected, namely pink lace and royal purple for the background and foreground
colors of FC.

Brown-like color for sample size: The last 1st level measure is Sn that is the sum of all base
measures (TP + FP+ FN + TN), sum of column and row marginal totals of the base
measures (P + N and OP + ON), and sum of diagonal and off-diagonal totals (TC + FC).
Brown-like color is selected for Sn because it should not be similar to any of those measures
(avocado for background color and Verdun green for foreground color).

4.2.1.2 Color palettes for base measures

Base measures give the classification result by checking the predictions against reality. The
three-dimensional perspective depicted in Figure 4.2 helps to define the color palette
depicting these conformances (i.e. TP and FP) and non-conformances (i.e. FP and FN). For
example, the foreground color of FP is red-like indicating the outcome of the classification
(positive) whereas background color is green-like indicating the reality (negative). Table 4.2
shows the color palette designed for representing the four base measures.

Table 4.2 Color palette for base measures (TP, FP, FN, and TN)

Base Measures | Reality ~ Background | Prediction Foreground | Fore/back-ground

True Positive | Positive  Red-like Positive Red-like TP
False Positive | Negative Green-like | Positive Red-like FP
True Negative | Negative Green-like | Negative  Green-like FN
False Negative | Positive  Red-like Negative  Green-like TN

4.2.1.3 Color palettes for instrument types and their leveling
The following colors are used to indicate instrument types and levels as shown in Figure 4.3.

e Gray-like colors for measures
e Orange-like colors for metrics
o Blue-like colors for indicators

A Ind
Metric Levels Measure Levels F\ /
3rd O & v
2nd
1st & ma
Base
oth 1st v
g
& |1
(a) levels (b) levels and dependencies

Figure 4.3 Color palettes for instrument types and levels
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Note that canonical measures in TasKar are also displayed in bold-italic as listed in Table

3.1. Next section reviews the literature on classification performance instrument
visualization.

4.2.2  Survey 2: Visual representation of confusion matrix

The literature has not addressed the visualization of confusion matrix and performance
metrics adequately. Researchers usually tend to report the success of their classification by
some of the metrics at their choice instead of fully giving the four base measures. If they
report, a 2x2 contingency tabular form is used without any visualization.

Alsallakh et al. (2014) designed a visualization tool called “confusion wheel” in order to
show a multi-class classification confusion matrix. The visualization is based on a chord
diagram having sectors representing the classes. The color palette chosen for representing
base measures for given class against others are green (TP), orange (FP), red (FN), and gray
(TN). To the contrary of the coloring scheme proposed and employed in this study, the
colors do not suggest a semantic interpretation (e.g., red for FN).

Saito and Rehmsmeier (2015) use two semi-oval shapes to visualize the base measures as
well as P, N, OP, ON, and Sn as shown in Figure 4.4 (b). The portion of the base measures
shows the proportion of base measures. The size of P and N semi-ovals are changed for
imbalanced samples.

Some engineering software packages also provide functions for plotting base measures. 3 (a)
shows “plotconfusion” command in MATLAB (“Matlab: plotconfusion,” 2018) whereas
Figure 2 (d) shows “forfoldplot” in R (Friendly, 1995). The former displays the values of
base measures, base measure rates, some base metrics in tabular form whereas the latter
displays the values of base and first level measures along with scaled circular sections for
base measures.

Figure 4.4 (c) and (e) are the examples displaying the base measures with Venn diagrams.
Figure 4.4 (c) shows three cases of classification from top to bottom: regular case, no false
positive, and no false negative (Nicolov, 2012). Figure 4.4 (e) shows an attempt to visualize
performance metrics with Venn diagrams (Massich, 2015). It should be highlighted that the
coloring scheme proposed in this study can also enhance the comprehension and
interpretation of these visualization approaches. As seen in the review above, the
representations of performance instruments are highly limited. The next section introduces a
dashboard and calculator that is accompanied by PToPI for a wide range of performance
instruments that can be used by the researchers, professionals, and students.
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Figure 4.4 Related works on visualization of confusion matrix and performance metrics. (a) the
tabular output of “plotconfusion” command in MATLAB. Only numbers are given (“Matlab:
plotconfusion,” 2018), (b) base measure visualization with semi-ovals (Saito & Rehmsmeier, 2015),
(c) base measure visualization with Venn diagram (Nicolov, 2012), (d) the graphics output of
“forfoldplot” command in R with circular sections (Friendly, 1995), (e) base measure and metrics
visualization with Venn diagram (Massich, 2015)
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423 TasKar overview

Based on the formatting scheme described above, a dashboard/calculator is designed named
TasKar for binary classification performance instruments as shown in Figure 4.6. TasKar is
implemented as an OpenDocument Spreadsheet document file (TasKar.ods) and provided
online. Therefore, it does not require installing extra software besides an office package (the
best viewed with LibreOffice version 6.2).

Figure 4.5 shows the parts and layout of the TasKar that consists of two parts vertically:

e Upper part: performance instruments
e Lower part: base metric graphics

The upper part comprises the instruments that are located as similar to PToPI as possible.
The lower part provides three graphics to summarize base metrics.

The usage is straightforward. After opening the dashboard file, users can enter the
classification results in the cells belonging to the confusion matrix (the cells under TP, FP,
FN, and TN base measure labels). The performance instruments are calculated and the
graphics are updated automatically.

It is possible to compare two classification studies by opening two instances of the
dashboard file and tiled horizontally on the desktop. The researchers can take the screenshot
of the dashboard by adding the citation reference in the reserved cell in upper-middle and
publish it.

Metrics, indicators, LREV
and other measures ACC AL st Level Measures || 4uc
P, N (column) (Optional)
— FCmed ]
Base Metrics (row) Base Metrics (column)
PPV, FDR TPR, FPR
FOR, NPV ON FNR, TNR
| BIAS ' | Sn (column)
% Graphic 1 - Graphic 3 A Graphic 2 5
E (prediction base metrics) (composite base metrics and class sizes) (reality base metrics) E
5} o
E PPV and FDR x=TPR and FPPV(positive class: red circle) TPR and FPR E
g (outer circle) vs. (outer circle) 8
: Vs, x=TNR and FNPV(negative class: green circle) Vs, :
= NPV and FOR with TNR and FNR =
o (inner circle) P vs. N (circle sizes) (inner circle) o

Figure 4.5 The layout of TasKar parts (performance instruments and graphics)
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Figure 4.6 A screenshot of TasKar
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4.2.3.1 TasKar features
Some of the features of TasKar can be summarized as follows:

e Base measure cells are also captioned as “a” (TP), “b” (FP), “c” (FN), and “d” (TN)
notation that is a convention in similarity/dissimilarity (distance) between two binary
matrices, diagnostic tests, association measures, many 2x2 contingency table analysis
such as meteorology forecasting skill scores (Wilks, 2006, p. 261), and even early
classification performance evaluation studies.

e Like PToPI, the first level measures namely P, N, OP, ON, TC, FC, and Sn are
located around the confusion matrix according to their dependencies (e.g., P is above
TP and FN, because P = TP + FN; also, OP is located at the left of TP and FP).

e PREV and BIAS that are the important measures of classification studies are located
near confusion matrix.

e The background color of the values of PREV and BIAS reflect the weight of the class:
small values (less than 0.5) are getting green indicating negative class dominance,
large values (more than 0.5) are getting red indicating the positive class, and values
around middle (about 0.5) is white that is ideal for a classification study.

e Class skewness (SKEW) and class imbalance (IMB) are also displayed at the right-
bottom of the upper part.

e Instrument geometries are depicted via the dashed edges similar to PToPI (see Table
4.1)

e Column geometry base metrics TPR, FNR, TNR, FPR and row geometry base metrics
PPV, FDR, NPV, FOR are presented at the right and left of confusion matrix,
respectively, as shown in Figure 4.519.

e Those eight metrics are also visualized via bar graphs besides their actual values
using the coloring scheme.

e Metric complements are indicated with arrows and gray text color in their labels
denotes redundancy (FDR is the complement of PPV and FPR is the complement of
TNR).

e For the sake of completeness, although it is not based on confusion matrix, AUC can
be entered into the cell at the middle-top for reporting purposes.

e ACCBAR indicator is also integrated into TasKar that shows how the classification is
close to accuracy barrier as described in Section 3.11. Figure 4.7 shows the indicator
categories.

19 The column instruments are not positioned above confusion matrix except P, N, and PREV because of the
design goal of the tool of making a compact tool in a minimum size.
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Figure 4.7 TasKar showing the accuracy barrier indicator categories

The features provided in TasKar can facilitate the performance evaluation phase of binary
classification studies accurately and objectively. Presenting all the instruments together
avoid ignoring the prominent aspects of a specific classification application. For example,
class imbalance and underperformance in terms of specific metrics. If we calculate and see
only some of the metrics such as ACC, F1, PPV, BACC, G, or TPR, the performance
evaluation misleads that the classifier achieves high performance.

Note that TasKar is implemented as a self-contained tool. Due to the lack of space and the
nature of the tool with respect to end-user requirements, it cannot and does not need be as
informative as PToPI.

4.2.3.2 TasKar graphics

The performance values in terms of various instruments are helpful for seeing the complete
results and focusing on different metrics together. However, interpretation of the overall
performance might be difficult by analyzing the numbers only. In order to help researchers
in the interpretation of the metrics and give more insights, the following three kinds of
graphics are developed further in this thesis study:

e Graphic 1 (prediction base metrics)
e Graphic 2 (reality base metrics)
e Graphic 3 (composite base metrics and class sizes)

Figure 4.8 shows these graphics, which are described below, in an example case with
TP =300, FP =25, FN =50, and TN = 475 base measures.

1.00
0.98
0.96
0.94
0.92 350

090 500

088
0.86

0.84
084 086 088 090 082 094 0986 098 1.00

True (Positive/Neqative) Rates (TPR vs. TNR) (Sensitivity vs. Specificity)

Predictive Values (PPV vs. NPV)

Figure 4.8 TasKar graphics for an example classifier with TP = 300, FP = 25, FN =50, and TN = 475

Graphic 1 (prediction base metrics) shows the two complements of two prediction base
metrics (i.e. in row geometry) per each class in two nested circles. The outer circle is for
positive class and the inner circle is for negative class prediction base metrics.
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Graphic 2 (reality base metrics) shows the same graphics for two reality base metrics (i.e. in
column geometry).

Graphic 3 (composite base metrics and class sizes) provides an overall overview of the base
metrics enhanced with the class sample sizes. It is alone a comprehensive graphic to
summarize the overall performance, therefore it could be used in performance reporting in
the literature (the same graphic for the most competing classification in a domain can also be
presented side by side or in the same graphic)

Note that the precision of the base metric values are decreased to two digits to simplify
performance evaluation (four digits are presented in the upper part).

4.2.3.3 Example real-word usage of TasKar graphics
Interpreting the graphics given in Figure 4.8, the followings could be inferred:

e Comparing Graphics 1 and 2 together; positive class performance is less than
negative class in reality (as seen in Graphic 2) while it is better in prediction (as seen
in Graphic 1). More specifically, FNR (14%, type Il error) is higher than all the other
false classifications (FOR = 10%, FDR = 8%, and FPR = 5%):2o.

e Via Graphic 3, the predictive power of the classifiers on both classes is close but this
power does not reflect in reality (the circles are closer in vertical axis than the
horizontal axis).

e Further, the class imbalance can be observed easily via the representation of the
class sizes in Graphic 3.

TasKar graphics can provide different insights on evaluating a classifier’s performance in
other real-world use cases. It is also helpful in comparing two different classifiers to help in
noticing the differences.

The two graphics at the left and right are more detailed and comprehensible comparing a
small number of attempts reviewed above. Graphic 3 especially is informative as it gives a
clear insight by showing the performance in terms of both classes’ reality and prediction
performances and reflecting the class imbalance in a single picture.

20 Reporting PPV as 92% and FPR as 5% only makes this classifier as a promising one.
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CHAPTER 5

BenchMetric: SYSTEMATIC BENCHMARKING OF PERFORMANCE
METRICS

Analyzing performance instruments increase our overall understanding of performance
evaluation and its instruments. The provided tools are also helpful in comprehending the
instruments as well as conducting performance evaluation. Nevertheless, the critical question
is “What is the best metric?”” or put it in a more correct expression, “What is the most robust
metric that should be used in performance evaluation, comparison, and reporting?”
addressing (RQ4). This question must be answered in an incontrovertible proof on behalf of
the researchers who even embrace the concepts and practically use the tools provided in this
thesis. This chapter also addresses the second research question in (RQ4) “What should be
reported for expressing classification performance?” by recommending a proper approach.

In order to answer these key questions, a benchmarking method named BenchMetric is
proposed to evaluate all the performance metrics from a comprehensive perspective in a
methodological manner. BenchMetric comprises the following three stages, which are
described in the following sections:

e Stage-1: Extreme cases: Performance of thirteen extreme classification result cases
are measured by each metric and the outputs are inspected.

e Stage-2: Mathematical evaluation: The equations of each metric and the metric-
spaces are evaluated according to eleven different criteria.

e Stage-3: Meta-metrics: The robustness of each metric is evaluated by seven novel
meta-metrics (i.e. metrics about (performance) metrics) defined formally in metric-
space.

5.1 Benchmarking Data

This section introduces a new aspect of metrics named “metric-space” before describing the
benchmarking method in stages. The benchmark stages are conducted on the metric-spaces.

5.1.1 Metric-space: metric distribution in pseudo-universal “base performance
measure permutations”

A metric-space indicates all possible permutations of base (performance) measures (TP, FP,
FN, and TN) yielding the same Sn. A metric-space (M) holds all possible results of a
hypothetical classification conducted in a dataset with a given sample size in terms of a
specific metric (M). Metric-space provides a pseudo-universal space to analyze and compare
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metrics in the complete coverage. Recall that metric-spaces are represented in bold (e.g.,
ACC metric-space vector for ACC metric), single metric values in italic (e.g., ACC = 0.900),
and set or array of metric values and limitless measures in bold-italic (e.g., BM = {TP =7,
FP =1, FN =0, TN = 2} and Sn = 25). Because metrics are the ratios and sample sizes are
reduced in the numerator/denominator of the metrics' equations, we can calculate metric-
spaces (i.e. all possible values of a given metric per base measure permutation in given
sample size) as formally expressed in Definition 5.1.

Definition 5.1 (Universal Base Measure Permutations).

A vector BMS™ shows all possible base measure permutations with repetition where each it
element of BMS" is BM;™: BM —» Z** and BM = {TP,FP,FN,TN} and TP; + FP; +
FN; + TN; = Snand BM = {bm|0 < bm < Sn}.

Definition 5.2 (Metric-Space).

A metric-space M or MS™ covers the outputs given by an M metric for all the elements of
BMS™ universal base measure permutations.

For example, there is a total of 286 permutations of four base measures with repetition for 10
samples where the sum of the measures is equal to 10. An example permutation might be 10
true positives only (all others are zero) and another example might be 7 true positives, 1 false
positive, and 2 true negatives. The metric-spaces of F1, ACC, and MCC are also calculated
per each permutation.

Note that the size of base-measure permutations and metric-spaces increases exponentially
with Sn. For instance, it is 2,667,126 for 250 samples. When metric-spaces are used in the
experiments, the related benchmarking criteria are tested with different Sn values. It is
observed that the results are the same or converge as Sn increases but they are representative
while comparing a group of metrics or at least consistent within a specific Sn. As a result,
the maximum sample size is limited to 250 in order to keep the permutation size and
calculation time in a reasonable range. Calculation of the meta-metrics in metric-spaces in up
to 250 sample size (except for consistency and discriminancy meta-metrics) takes maximum
one minute on an R version 3.5.2 (2018-12-20) platform on a Darwin 15.6.0 operating
system with 2.3 GHz CPU and 16 GB RAM. The calculation of the proposed meta-metrics
for a single metric takes 21 hours and 45 minutes. Note that detailed time test results and
metric-spaces for different sample sizes between 10 and 250 are provided in the online
material described in Section 1.6.

5.2 Experiment 1: Benchmarking 13 Performance Metrics

The following sections from Section 5.3 and Section 5.6 define and describe the criteria and
stages proposed in BenchMetric method as well as demonstrates them via the
experimentation conducted on benchmarking 13 metrics namely TPR, TNR, PPV, NPV,
ACC, INFORM, MARK, BACC, G, nMI, F1, CK, and MCC. Section 5.6 summarizes the
overall benchmarking result.
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5.3 BenchMetric Stage-1: Extreme Case Benchmarking

Stage-1 gives initial insights about the robustness of the metrics where thirteen extreme
classification result cases are defined on 10.000 samples and the corresponding
performances in terms of each metric are evaluated. Basically, a performance metric should
be accurate in all these extremes. Table 5.1 shows the cases defined by some specific base
measures and corresponding performances calculated in terms of thirteen performance
metrics.

The base measures are calculated based on sample size (Sn) parameter according to the
equations given in the footnote of the table. The performance values are in [0, 1] range
where 0 and 1 denote lowest and highest performances, respectively. Note that the metrics
with apostrophe (e.g., MCC") indicates that bi-directional metric (i.e. [-1, 1]) is normalized
into [0, 1] range to simplify the assessment.

Three benchmark criteria are defined in Stage-1:

1) “Does a metric yield not-a-number (NaN, i.e. 0/0) in extreme cases?”
2) “Are the performance metric values of the cases from 5 to 9 decreasing?”
3) “Are the performance metric values symmetric for both classes?”

The problematic behaviors under those criteria are depicted in bold underlined texts. Note
that the metrics are also sorted horizontally in Table 5.1 according to the total ranking of
their non-conformance with the criteria. The followings are some highlights:

e The first criterion in Stage-1 is that a proper metric should not yield undefined
results. For example, PPV and MARK are NaN for the case 12 on 1 positive 9999
negative samples.

e The second criterion examines the logical performance order of a metric in the same
number of positive and negative samples. The performances for the extreme case 5
to case 9 expressed by a metric should satisfy p4 > p3 > p2 > pl > p0, respectively.
Notably, only nMI does not follow it accurately for case 8 and case 9, which
corresponds to almost and exactly full false-classifications (0.9973 for p1 where TP
=TN =1and 1 for p0 where TP = TN =0).

e The third criterion is that a metric should not differentiate the performances in
symmetric conditions of both classes. In extreme cases 1 and 13 having positive only
and negative only samples and/or extreme cases 2 and 12 having almost positive and
negative samples yield similar performances (i.e. pi = pj, pii = pjj). F1, for example,
yields 0.9999 for positive-only and almost-positive samples whereas it yields 0.0 for
the symmetric cases. Hence, F1 is not sensitive to negative-class performance.

Overall assessment of Stage-1 reveals that ACC, CK, and MCC are the most and nMI is the
least robust performance metrics.
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Table 5.1 Stage-1 benchmarking of 13 performance metrics according to assessment through 13 proposed extreme cases

Case P N| TP* FP* FN* TIN*  Performance| ACC CK' Mcc Fl TPR INR PPV NPV BACC G INFORM' MARK' nMI
1 10000 0] 9999 0 1 0 pil 0.9999 0.5000 0.5000| 0.9999| 0.9999  NaN 1.0000 0.0000 NaN NaN NaN  0.5000 NaN
2 9999 1| 9999 1 0 0 pii| 09999  0.5000 0.5000( 0.9999| 1.0000 0.0000 0.9999 N 0.5000  0.0000 0.5000 NaN| 0.0000
3 9998 2| 9997 1 1 1 0.9998 0.7499 0.7499| 0.9999 0.9999 0.5000 0.9999 0.5000 0.7499  0.7071 0.7499  0.7499| 0.3908
4 6666  3334| 3333 3333 3333 1 0.3334  0.2501 0.2501| 0.5000 0.5000 0.0003 0.5000 0.0003 0.2501 0.0122 0.2501 0.2501| 0.2727
5 5000 0 0 5000 p4| 1.0000 1.0000 1.0000{ 1.0000{ 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000| 1.0000
6 4999 1 1 4999 p3| 09998 0.9998 0.9998| 0.9998| 0.9998 0.9998 0.9998 0.9998 0.9998  0.9998 0.9998 0.9998| 0.9973
7 5000 5000 2500 2500 2500 2500 p2| 0.5000 0.5000 0.5000| 0.5000{ 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000 0.5000( 0.0000
8 1 4999 4999 1 pl| 0.0002 0.0002 0.0002| 0.0002| 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002 0.0002| 0.9973
9 0 5000 5000 0 p0| 0.0000 0.0000 0.0000( 0.0000| 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000/ 1.0000
10 3334 6666 1 3333 3333 3333 0.3334  0.2501 0.2501| 0.0003| 0.0003 0.5000 0.0003 0.5000 0.2501  0.0122 0.2501 0.2501| 0.2727
11 2 9998 1 1 1 9997 0.9998  0.7499 0.7499| 0.5000[ 0.5000 0.9999 0.5000 0.9999 0.7499  0.7071 0.7499  0.7499| 0.3908
12 1 9999 0 0 1 9999 pij| 0.9999  0.5000 0.5000( 0.0000| 0.0000 1.0000 NaN 0.9999 0.5000  0.0000 0.5000 NaN| 0.0000
13 0 10000 0 1 0 9999 pi| 0.9999 0.5000 0.5000| 0.0000f NaN 0.9999 0.0000 1.0000 NaN NaN NaN  0.5000 NaN
™ No not-a-number -1 -1 -1 -1 -2 -2 -2 -2 -2
,m p4>p3>p2>pl>p0d Contradictions -1

¥ lpi=pj, pii= g a 1 a0

Stage-1 Rank 1 4 5 13

* Base measures calculation for each extreme case according to given sample size (Sn). Case 1: TP =Sn — 1; Case 2: TP =Sn— 1; Case 3: TP =Sn - 3; Case 4: TP = FP=FN=(Sn — 1)/3; Case 5: TP
=TN=5n/2; Case 6: TP=TN=_Sn/2 - 1; Case 7. TP = FP = FN=TN = Sn/4; Case 8: FP=FN = 5n/2 — 1; Case 9: FP = FN= Sn/2; Case 10: FP = FN=TN=(Sn-1)/3; Case 11: TN=Sn - 3; Case

12: TN =Sn —1; Case 13: TN = Sn — 1. Other base measures not given here are the same as in the TP, FP, FN, TN columns above. P, N, and metric values are calculated according to four base

measures.
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5.4 BenchMetric Stage-2: Mathematical Evaluation Benchmarking

In Stage-2, eleven criteria are proposed to evaluate different metrics from mathematical
perspectives.

54.1 Criteria 2.1-2.3: All-purpose coverage

A robust metric —by definition— should not have a missing facade of fundamental
performance elements (TP, FP, FN, TN, P, N, OP, ON). Otherwise, they cannot be effective
to summarize the confusion matrix and number of classes and classification outputs. The
following three criteria are provided to distinguish the limitations of metrics by evaluating
the metrics expressed in canonical form defined in Definition 3.1:

e Criterion 2.1 (Outcome/class coverage): Metrics should not be sensitive to outcome
base-measures-only (i.e. includes OP and/or ON without P and N) or class base-
measures-only (i.e. includes P and/or N without OP and ON).

e Criterion 2.2 (Class coverage): Metrics should fully cover the classes (P, N) without
excluding any class.

e Criterion 2.3 (Base measure coverage): Metrics should cover base performance
measures (TP, FP, FN, and TN) without excluding any measure.

54.2  Criteria 2.4-2.6: Variance/invariance

Contrary to other measures/metrics such as association measures, invariance (i.e. not
differentiating the swaps among base measures) might not be a desired characteristic of a
robust performance metric, because any change making four base measures of the confusion
matrix different overall should usually be distinguished. Figure 5.1 depicts the three types of
swaps that are used to assess metrics’ variance in BenchMetric.
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Figure 5.1 Three types of swaps of (a) an original confusion matrix (base measures): (b) class swap
(horizontally: between TP and FP along with FN and TN), (c) outcome swap (vertically: between TP
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and FN along with FP and TN), and (d) class-and-outcome swaps (diagonally: between TP and TN
along with FP and FN)

A toy classification example is provided in Figure 5.1. A robust performance metric should
be variant to class swap and variant to outcome swap because base measures become
different as given in Figure 5.1 (b) and (c) with the original ones in Figure 5.1 (a).
Otherwise, the metric does not differentiate such classification results.

In order to find the variance or invariance of a metric, the base measures in the equation of a
metric should be changed according to the type of swaps as shown in Figure 5.1 (b —d) and
the original and swapped version equations are compared. For example, swapping classes in
TPR =TP/P =TP/(TP + FN) makes the equation FP/(FP+TN) = FP/N = FPR ,
which is different from the original metric. Hence, TPR is variant to class swap. Whereas,
class-and-outcome swaps in MCC = (TP-TN — FP.FN)/NP-N-0P-ON make no

variance: (TN - TP — FN.FP)/~OP -ON - P - N = MCC.

Table 5.2 also shows the known metrics corresponding to each swap. Only two metrics are
identified that contradict these criteria: nMI and F1. F1 is not invariant to class and outcome

swaps because it has no TN coverage as addressed in base measure coverage in Table 5.2.

In the literature, Sokolova (2006) suggests four invariance properties, only one of which
corresponds with the proposed criterion namely class-and-outcome swapping and examines
six metrics only (TPR, TNR, PPV, ACC, INFORM, and F1). The other two actually indicate
the variance by changing TP-only and FP-only that are easily evaluated by our base measure
coverage criterion. Likewise, the fourth property is actually scaling OP components (TP and
FP) and ON components (FN and TN) separately. This also corresponds to Criterion 2.1
(Outcome/class coverage).

54.3 Criteria 2.7-2.11: Descriptive statistics

The general analysis of all possible outcomes of a performance metric can increase the
overall understanding of its behavior in a complete scope. The distribution and descriptive
statistics such as range, mean, median and standard deviation calculated for the metric-space
of a metric give fundamental insights about the dispersions and transitions of metric outputs.

Figure 5.2 illustrates density graphs along with some of the statistics per metric namely
range, mean, median, and mode. Each density graph shows the metric-space in terms of
relative frequencies per equally spaced breaks in the metric’s range. A fitted normal
distribution curve over the mean is also attached where possible (i.e. ACC, INFORM,
BACC, CK, and MCC).

The most important findings shown in Figure 5.2 are that although all the metrics summarize
the four or fewer base measures into a single figure in a specific range, the distributions are
different from each other and not all the performance metrics show smooth and continuous
transitions. The revealed difference could be another motivation to identify the most robust
metric. The following defined criteria are important for metric evaluation:

e Criterion 2.7 (Undefined (NaN) counts): The number of undefined values (not-a-
numbers, NaN) is listed in Table 5.2. The NaN count of MCC is the highest with
proportional to Sn, whereas ACC, F1, and CK have 0, 1, and 2 NaNs, respectively
regardless of Sn. Robust metrics should calculate any base measure permutations,
without any exception. Note that this criterion is different from the first criterion in
Stage-1 that covers only a few extreme cases.

62



Criterion 2.8 (Central tendencies): The central tendency defined by mean, median,
and mode should be examined for metric-spaces. Only INFORM, MARK, and
BACC have exactly the same three central tendencies. However, a mean-median
difference (i.e. arithmetic average vs. positional average in sorted metric-space),
which could be the indication of an imbalance in mapping the uniform classification
performance results (i.e. base measure permutations) to the corresponding uniform
output ranges of a metric-space, was observed in nMI and CK (even though CK is
symmetric).

Criterion 2.9 (Standard deviation): Informatively, the standard deviation of nMI and
CK are the lowest indicating low dispersion around their mean values whereas
others disperse over a higher range of values in metric-space as can be seen in
Figure 5.2.

The shape of distributions: Criterion 2.10 (skewness) and Criterion 2.11 (kurtosis): Table
5.2 shows two values to recognize the shape of metric-space distribution and dispersion
shown in the graphs in Figure 5.2. Most of the metric-spaces are symmetric and platykurtic
(thin-tailed) except CK, F1, G, and nMI. Note that G and F1 metric-spaces exhibit
unexpected distortions by vyielding zero dominantly, which indicates the unusual
accumulation points in metric-space.
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Figure 5.2 Density graphs summarizing each of the 9 metric-spaces (TNR, PPV, and NPV are the
same as TPR; MARK is the same as INFORM). The area under curves are one.

Table 5.2 shows the results of the Stage-2 benchmarking along with the metrics’ ranks. Note
that underlined bold texts depict the deficiencies and each criterion is taken as equally
important and the last three criteria (standard deviation, skewness, and kurtosis) are
informative and not included in benchmarking evaluations.

63



Table 5.2 Stage-2 benchmarking of 13 performance metrics according to 8 proposed criteria along with three informative criteria

Stage-1 Criteria CK MCC F1 INFORM MARK BACC G ACC TPR PPV TNR NPV nMI
2.1 Outcome/class coverage Yes Yes Yes Class-only Outcome-only Class-only Class-only None Class-only Outcome-only Class-only Qutcome-only Yes
2.2 Class coverage (P and N) Yes Yes Yes Yes None P-only N-only Yes
2.3 Base measure coverage Yes Yes No IN TP, TN IP. TN e IN Yes
2.4 Variant to class swap Yes Yes Yes Yes Yes (MCR) | Yes (FPR) Yes(FDR)  Yes(FNR)  Yes(FOR) | No(nMl]
2.5 Variant to outcome swap Yes Yes Yes Yes Yes (MCR) | Yes (FNR) Yes (FOR) Yes (FPR) Yes (FDR) No (nMI)
2.6 Invariant to class-and- Yes Yes No Yes Yes Yes Yes
outcome swaps
2.7 Undefined (NaN) count 2 48n 1 2(Snt+1) 0 Sn+1 4
2.8 Central tendencies (mean-|M # M = Mo M~ M =Mo|M ~ M + Mo M=M= Mo M=~M# Mo|/M=M =~ Mo M = M # Mo M # M # Mo
median difference)!”
Stage-1 Rank 1 3 4 8 9 13
Other informative Criteria (i.c. not used in ranking)
2.9 Standard Deviation 0.18% 0.20@ 022 0.21@ 0.21@ 02 0.23 0.26 0.29 0.29 0.29 0.29 0.17
2.10 Skewness Slightly ~ Symmetric ~ Slightly ~Symmetric Symmetric (0) Symmetric Slightly =~ Symmetric Symmetric Symmetric (0) Symmetric Symmetric (0) Highly
positive® ()] positive® 0) (0) positive® (0) 0) (0) positive®
(0.16) (0.05) (0.18) (1.69)
2.11 Kurtosis¥ Platykurtic Platykurtic Platykurtic Platykurtic Platykurtic Platykurtic Platykurtic Platykurtic Platykurtic Platykurtic  Platykurtic  Platykurtic Leptokurtic
(-0.2) (-0.6) (-1.07) (-0.6) (-0.6) (-0.6) (-0.85) (-0.86) (-1.2) (-1.2) (-1.2) (-1.2) (2.75)

Notes:

(1) M: Mean, M: Median, and Mo Mode of a metric-space

(2) When normalized into [0, 1].

(3) Slightly or highly positive: right skewed

(4) Kurtosis types: Platykurtic: thin-tailed, Leptokurtic: fat-tailed, Mesokurtic (normal tail shape)
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5.4.4  Detailed mathematical assessment of MCC and CK

This subsection is devoted to a further separate assessment of CK and MCC metrics that are
the top-ranked metrics equally in both Stage-1 and Stage-2. The following arranged
equations are introduced to reveal the subtle difference between them. As seen in the
equations in Table B.2 in Appendix B, both CK and MCC have a determinant of base
measures as a matrix in nominators. Rearranging the denominators, CK and MCC are
inversely proportional to arithmetic mean (Arithmean) and geometric mean (Geomean) of the
same coefficients, respectively:

CK = DET 5.1

" Arithy,e,(P - ON, N - OP) (5.1)
DET

McC = (5.2)

GeOean (P - ON, N - OP)

As the nominators are the same, the only difference is the mean expressions in the
denominators where x = P - ON and y = N - OP are multiplication of two performance
dimensions (i.e. column and row geometries or reality and prediction) for opposite classes
(i.e., cross-geometry margins in cross-class) as shown in the following equations.

x =P-0Nandy = N - OP and class={positive, negative} (5.3)
x and y: 1st_level_col_measure 4z - 1st_level_row_measure,pposite class (5.4)
x and y: reality g - predictiongyposite _class (5.5)

Hence, the mathematical assessment of MCC and CK comes down to a comparison of
arithmetic mean with geometric mean.

CK o Arith .0 (%, ¥) 7 GeOpean (X, ¥) < MCC (5.6)

First of all, as two of the Pythagorean means, arithmetic means are always greater or equal to
the geometric means for the same pair of values. Thus:

Remark. CK is always less than or equal to MCC though this does not imply any superiority.

Arithpean = Ge0oppean = Harmonic .,y = CK < MCC (5.7)
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Findings based on a toy example:

Figure 5.3 depicts the interpretation of the two types of means corresponding to CK and
MCC metrics based on an example classification as shown in Figure 5.3 (a). The
interpretation is conducted by using geometric modeling for the family of means (Maor,
1977). Note that the geometric elements are scaled to sense the given values, lengths and
areas.

Bm(ll\::l)asms Metrics
MCC |-0,167
o P
55, TIP FIP CK |-0.154
=5 ;
EE EN | TV FI 10400
S a G 10408
=l 3 2 1 ;
BACC|0.417
DET ACC 10400
-1 3 2
Column Margins
£ Reality >

(a) A toy example classification measures and metrics

Column (reality) x=9
> TN T T
o = x+y
T %= . Y= 4 Arithmcan(xl y) =—==6.5
2
B @ e >
., —
-=2 Geonludn(xl y) = W =6
— @20 e s s >
-5
I N

x=P-ON=9 4=N- =y y=4

N_ Areas of the rectangles A

(b) Geometric interpretation of x and y coefficients  (c) Arithmetic and geometric mean of x and y
in the denominators of CK and MCC coefficients (one-dimensional representation)

x+y

Arithm(‘an(xl y) = 2

Ge{)mv.-m (xl y) = vx_y = 65
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i

! : i 1
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Iy } oquare:6.0x65 g

(d) Arithmetic and geometric mean of x and y coefficients (two-dimensional representation)

Figure 5.3 Geometric interpretation of arithmetic mean in CK and geometric mean in MCC via a toy
example binary classification
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The two factors (x and y) are multiplication of two geometric dimensions as given in
Equations (5.3)—(5.5). The multiplication of two Cartesian dimensions refers to area in
geometry as depicted in Figure 5.3 (b).

Representation of x and y in one-dimensional is depicted in Figure 5.3 (c) that shows
original x and y values (represented as wavy lines indicating they are the multiplication of
the two different dimensions) along with their arithmetic and geometric means. Those two
means (6.5 and 6) are very close to each other and we could not tell which one has a better
representation of original factors.

Figure 5.3 (d) shows the factors and means in a two-dimensional plane. Comparing the
original x, y values forming a rectangle and their respected means forming a square:

e Area of the original x and y rectangle is the same as the area for geometric mean (x -
Yy =94 =36 = Geopeqn(x,v)? = 6) and

e Perimeters are the same for arithmetic mean (2(x+y)=209+4) =26=
4 - Arith,,oqn (x,y) = 4 - 6.5).

We could not judge based on these findings but when we look into unequal two
measurements:

e the perimeters are closer to the original perimeter for geometric mean (the difference
is |24 — 26| = 2

e than the areas to the original area for arithmetic mean (the difference is

i/|42.25 — 36| = §/|6.25| = 2.5 by transforming from area back to perimeter in
one dimensional).

Remark. Although it is based on a single example, this finding gives an idea that geometric
mean is more representative.

Figure 5.4 shows another interesting finding based on the same example where the best
classification is achieved (i.e. no false classifications) in the same dataset (P =3, N =2,
FP=FN =0, OP =3, and ON = 2). Let x" and y' denotes this second case, where x’ = P -
ON =6andy’ = N - OP = 6. In this case, both arithmetic and geometric means of x' and y"
are equal to 6 (Arith,,cqn(x',y") = Geopean(x’,y") = 6), which is not equal to the
arithmetic mean in the first case (6.5) but equal to the geometric mean in the first case.

Moreover, when we swap OP and ON in two factors,
e the geometric mean of xX" =P-0OP =3-3=9 andy"=N-ON=2-2 = 4 is

also equal to 6 that is also less than (i.e. reducing outlier effect of) the corresponding
arithmetic mean 6.5.
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x'=P-ON=6 y'=N-OP=6

GCOmcan(x,: 3”) = Arithmean(x’; y’) =6
= Ge0pean(x,y) = 6 # Arith .., (x,¥) = 6.5

Figure 5.4 Comparison of the means in the best performance in the same dataset.

Findings based on the literature review:

From a statistical perspective, the literature has strong arguments in favor of geometric
mean:

o Galton (1889, pp. 239-240), for example, has a decisive formulation stated as “the
true mean is geometric rather than arithmetic” and “it (arithmetic mean) may lead to
absurdity when applied to wide deviations”.

e Frank (2009, p. 31) agrees that “geometric mean often captures most of the
information about a process or a set of data with respect to underlying distribution”.

e Compared to the arithmetic mean, a geometric mean is less sensitive to outliers’
disruptive effects and it is independent of different ranges of inputs (McAlister,
1879, p. 369).

e Though not justified, Colignatus (2007, p. 6) claims geometric means are more
robust due to arbitrary influences among the values in contingency tables.

e Geometric mean is more appropriate for getting the most probable value where the
data is inter-related (Matuszak, 2010). Here x and y factors are inter-related (e.g., P -
ON isrelatedto N - OP thatis (Sn — P) - (Sn — ON)).

Conjecture. Aggregating all the findings above, it is concluded that MCC is
mathematically more robust than CK.

The next stage becomes notable in whether it supports the concluded finding between MCC
and CK.
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5.5 BenchMetric Stage-3: Meta-metrics Benchmarking

Stage-3 measures the robustness of performance metrics via a proposed concept called meta-
metrics (i.e. metrics about (performance) metrics as defined in Definition 5.2 above). The
meta-metrics that are also in [0, 1] range are calculated in metric-spaces. In the experiments,
each meta-metric is obtained for the reviewed performance metrics such as accuracy or MCC
in the metric-spaces of different Sn sample sizes. It is observed that some meta-metric values
are equal regardless of the sample size or they converge consistently as Sn increases. For the
latter case, the intermediate meta-metric values for a number of Sn values are calculated and
their averages are defined as the final meta-metric value. Figure 5.5 depicts the six of the
seven proposed meta-metrics calculated for some example metrics in 10 sample size.
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Figure 5.5 Depiction of six of seven meta-metrics for 286 base measure permutations (sample size
10): 1) UBMcorr for F1 metric; 2) UPuncorr for F1; 3) UDist for ACC; 4) UMono for CK; and 5-6)
UCons and UDisc for ACC versus MCC' (MCC normalized into [0, 1] range). Refer to Section 5.5.4
and Figure 4 for UOsmo meta-metric.

The following subsections describe and give formal definitions of each meta-metric.

5.5.1 Meta-metric-1: Base measure correlations (UBMcorr)

The correlation between a metric-space and each base measure gives their degree of
relationship. Robust metrics should equally be correlated with all base performance
measures from an objective perspective unless otherwise required. The correlations with FP
and FN must be negative for a performance metric (i.e. false classifications should decrease
the performance).
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Figure 5.5 shows F1 metric-space with corresponding BM permutations as an example. The
correlations with TP, —FP, —FN, and TN along with the final UBMcorr meta-metric value
are also displayed. Table 5.3 lists the Spearman’'s rho correlation values for all benchmarked
metrics. Recall that underlined bold texts depict the deficiencies. Spearman correlation is
used because it is less sensitive to outliers comparing with Pearson correlation that assumes
linearity among the metric and base measures (or prevalence for UPuncorr meta-metric
described below)21.

UBMcorr meta-metric reveals that F1 has zero correlation with TN values whereas it is
highly correlated with TP but lower correlated with false positives/negatives than true
positives. CK is lower correlated with true positives/negatives (i.e. more emphasis on
performance errors than successes) compared to the others. G is class-balanced (i.e.
correlations for TP vs. TN and —FP vs. —FN are the same) but it is lower correlated with
negative false positives/negatives than true positives/negatives (0.49 < 0.54). ACC,
INFORM, MARK, BACC, and MCC are ideally all balanced (i.e. absolute correlations for
TP vs. —FP vs. TN vs. —FN are the same). nMI has the lowest correlations with base
measures. Note that meta-metric UBMcorr for a metric-space is calculated as follows where
corrom(M) depicts the spearman correlation between the metric-space and bm (base
measures):

Ybm=TP,—FP,—FN,TN COT T (M) (5.8)

UBM =
corr 2

Table 5.3 Meta-metric UBMcorr values [0, 1] and correlations with TP, —FP, —FN, TN (significance
level, a = 0.05)

ACC MCC INFORM MARK BACC CK G F1 TPR PPV TNR NPV nMI

g TP 055 0.55 0.54 054 054 053 054 093 078 0.78 0 0 -0.05
= TN 055 055 0.54 054 054 053 0.54 0 0 0 078 0.78 -0.05
E -FP 055 0.55 0.54 054 054 055 049 043 0 078 0.78 0 0.05
8 -FN 055 055 0.54 054 054 055 049 043 0.78 0 0 078 0.05
UBMcorr 055 0.55 0.54 054 054 054 052 045 039 039 039 039 0.00

5,5.2  Meta-metric-2: Prevalence uncorrelation (UPuncorr)

Robust metrics should not be influenced by class imbalance as addressed in the literature.
The correlation between metric-space and PREV shows the degree of bias between
classification performance and class imbalances. Figure 5.5 shows F1 metric-space and
corresponding PREV values with respect to BM permutations as an example. As can be
seen in Table 5.4, only PPV, NPV, and F1 are correlated with PREV regardless of the
sample sizes. Note that meta-metric UPuncorr is calculated by UPuncorr = 1-
|corrprey (M) | for a metric-space.

21 The nonlinearity is confirmed by diagnosing the residuals of linear regression assumptions.
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Table 5.4 Meta-metric UPuncorr values [0, 1] and correlations with PREV (significance level,
a =0.05)

TPR TNR  ACC INFORM MARK BACC G nMI CK MCC F1 PPV NPV
PREV 0 0 0 0 0 0 0 0 0 0 038 064 -0.64
UPuncorr 1 1 1 1 1 1 1 1 1 1 062 036 0.36

Figure 5.6 is provided for presenting correlation values among metrics as well as PREV and
BIAS measures.
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Figure 5.6 Correlations among metrics and PREV/BIAS measures

55.3 Meta-metric-3: Distinctness (UDist)

As each base measure permutation is different from each other, a robust metric should
differentiate these different cases in metric-space. Figure 5.5 depicts how UDist is calculated
for ACC metric as an example. The number of unique values of the metric-space (e.g., 11
unique values for ACC) is compared against the size of the metric-space (e.g., 286 for
Sn = 10), which is the number of unique values in BM permutations. The distinctness meta-
metric defined formally below gives the granularity of the metrics in metric-space as listed in
Table 5.5.

Definition 5.3 (Universal Distinctness).

UDist measures the ratio of unique values in the metric-space of a metric M where
M:BMS® > R and UUniq is a finite set where M:UUniq —» R,; and UDist =
|UUniq|/|BMS™|.
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Table 5.5 Meta-metric UDist minimum, average, and maximum values [0, 1]. The metrics are sorted
according to average UDist values

UDist nMI BACC INFORM MARKMCC CK G TPR TNR PPV NPV F1 ACC
Min 0.32 0.30 0.30 0.30 0.23 0.17 0.18 0.007 0.007 0.007 0.007 0.007 0.0001
Average 0.38 0.35 035 035 024 020 020 0.02 0.02 0.02 0.02 0.02 0.001
Max 0.40 0.40 040 040 024 0.24 0.20 0.06 0.06 0.06 0.06 0.06 0.008
Sample Size (Permutations):

Sn =25 (3,276); Sn = 50 (23,426); Sn = 75 (76,076); Sn = 100 (176,851); Sn = 125 (341,376);

Sn =150 (585,276); Sn = 175 (924,176); Sn = 200 (1,373,701); Sn = 250 (2,667,126)

To the contrary of the first two meta-metrics, UDist values might differ per Sn. UDist values
are calculated for nine sample sizes (given in the footnotes of Table 5.5) and benchmarked
the metrics according to their average values. While nMI has the most distinct metric-space,
ACC has the least. Unexpectedly, F1 has exactly the same level of distinctness as TPR, TNR,
PPV, and NPV metrics.

55.4  Meta-metric-4: Output smoothness (UOsmo)

Output smoothness evaluates how a metric uniformly uses its output range. As each variation
in corresponding base measures is a unit change, a metric-space should exhibit a smooth
transition. Figure 5.7 shows the transition of metric-spaces sorted in ascending order.
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Figure 5.7 Transitions of the metric-spaces sorted. The transitions MARK with INFORM and TNR,
PPV, NPV, and TPR are the same. Y-axis shows the metric’s outputs and X-axis shows the sequence
number of the elements in the metric-space (total 3,276 for Sn = 25).

Unexpectedly, a repeating stepped transition occurs in ACC. As mentioned in the shape of
distributions criteria in Stage-3, G and F1 dominantly yield zero. Stepped transitions indicate
a robustness defect where a metric yields in coarse resolution in steps or accumulates in
some values. These behaviors degrade a metric’s ability to differentiate different
classification results (e.g., the performance of two classifiers are more likely to fall into the
same value than if a smoother metric is used).
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The following equation is used to measure the smoothness without visual inspection:

3 SD(Ms;, — Msy_4) 5.9
osmo = Arithmean(lMSk — Msy_41) (59)

Ms denotes the sorted metric-space in increasing order, Msk denotes the kw value of the
sorted metric-space and SD is the standard deviation function. The equation calculates the
coefficient of variation for one lagged self-difference. The minimum the result, the
maximum the smoothness is.

The smoothness values calculated for the sample sizes between 25 and 250 as listed in the
footnote of Table 5.6 are averaged and Eq. (5.10) is used to get the UOsmo meta-metric for
itn metric by normalizing the smoothness values (osmo) among n compared metric-spaces
(e.g., 13 metrics).

UOsmo;

Arith,c., (0smoF™=25-250) — min [(Arithmean(osmojsn=25"25°)). ) ] (5.10)
j=1.n .

: Sn=25.250 : ; Sn=25.250
max (Arlthmean(osmoj ))j=1 | — min (Arlthmean (osmoj ))

j=1.nl

Table 5.6 shows the smoothness and UOsmo meta-metric values for the compared metrics.
In accordance with Figure 5.2, ACC and nMI have the least smooth metric-spaces whereas
CK and MCC have slightly unsmooth metric-spaces compared to INFORM, MARK, and
BACC.

Table 5.6 Meta-metric UOsmo values [0, 1] along with the minimum, average, and maximum
smoothness values per base measure

INFORM MARKBACC CKMCC G TPR TNR PPV NPV F1 nMI ACC

Min 207 207 207 292 3.02 3.79 339 3.39 339 339 4.02 694 525
Avg. osmo* 473 473 473 8.08 8.4611.6715.6115.6115.61 15.61 18.03 4544 91.71
Max 9.79 9.79 9.7916.74 18.9427.0741.7341.7341.73 41.73 47.70 135.93 409.47

UOsmo 1 1 1 096 096 0.92 0.87 0.87 0.87 0.87 0.85 0.53 0

* Smoothness. Minimum, average, and maximum smoothness are calculated for
Sn = 25, 50, 75, 100, 125, 150, 175, 200, and 250

5,55 Meta-metric-5: Monotonicity (UMono)

A robust metric should also be sensitive to small changes in classification performance.
UMono meta-metric is calculated per four base measures by increasing TP and TN by one
and decreasing FP and FN by one separately for all BM permutations and checking whether
the new metric value does not decrease. Otherwise, this is a bare violation in a metric-space.
The formal definition is given in Definition 5.4. The analysis reveals that all the reviewed
metrics have 100% monotonicity except for INFORM, MARK, BACC, nMI, and CK as
listed in Table 5.7.
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Definition 5.4 (Universal Monotonicity).

UMonoy,, gives the ratio of cases where a metric-space M adjusts its performance value
congruous with the unit changes (x1) by bm € {TP, TN, FP, FN} in metric-space. For all

M;: BM*" - R and M;;: BMS"t! - R:

{TP, + 1, FP;, FN;, TN;}, bm =TP

. Sn+1 _
M;,:BM {{TPi, FP, FN;, TN;+ 1}, bm=TN

M -BMS"_l _{{TPL, FPL'—l, FNL', TNi}, bm=FP
i~ = TP, FP, FN,—1, TN}, bm=FN
Monoy,, ={(M;,M;1): M;;y = M;}

UMonoy,, = |Mono,,,|/|BM5"|

Table 5.7 Meta-metric UMono values [0, 1] per base measure. The metrics are sorted according to
UMono values (the average of the four meta-metric sub-values: UMonote, UMonom, UMonore,
UMOonorn)

UMono TPR TNR PPV NPV ACC G F1 MCC INFORM MARK BACC CK nMI
UMonortp 1 1 1 1 1 1 1 1 0.9990 0.9990 0.9990 1 0.5029
UMonotn 1 1 1 1 1 1 1 1 1 1 1 1 0.5029
UMonorp 1 1 1 1 1 1 1 1 1 1 1 0.9005 0.5032
UMonorn 1 1 1 1 1 1 1 1 1 1 1 0.9005 0.5032
UMono 1 1 1 1 1 1 1 1 0.9995 0.9995 0.9995 0.9502 0.5031

CK —as parallel to UBMcorr meta-metric shown in Table 5.3— has 90% monotonicity for FP
and FN decrements (10% violations) and BACC has 99% monotonicity (1% violation) for
TP and TN increments. For example, CK is —0.176 for TP=1, FP=7, FN=1, TN =1 as
shown in Figure 5.5. Decreasing FP only by one (FP = 6) should increase the performance,
but CK vyields -0.189 violating monotonicity (i.e. —0.189 < —0.176). Increasing TP only by
one (TP=1+1, FP=7, FN =1, TN = 1) yields —0.128 preserving monotonicity (—0.128 >
—0.176). nMI monotonicity violations are almost exactly half-and-half.

55.6 Meta-metric-6 and 7: Inconsistency/Consistency (UlCons/UCons) and
Discriminancy (UDisc)

These meta-metrics formally defined in Definition 5.5 and Definition 5.6 below are proposed
for comparing the robustness of two metrics. Figure 5.5 above depicts the example cases on
real metric values of ACC and MCC" (MCC normalized to [0, 1]) where Sn = 10. Among
all possible it and jiw pairs, the first given example pairs are consistent because i values
(ACC = 0.900 and MCC" = 0.882) are greater than ji values (ACC = 0.800 and MCC' =
0.754) for both metrics.

However, in the third example, the pairs are inconsistent because the it value is greater than
jtn value for ACC (0.800 > 0.700) but the it value is less than the ju value for MCC' (0.762 <
0.767). For discriminancy, ACC is discriminant against MCC' in the second example,
because ACC yields different values (0.900 # 0.800) where MCC' yields the same value
(0.833 = 0.833) for corresponding pairs. Likewise, MCC' is discriminant against ACC in the
fourth example.
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Definition 5.5 (Universal Consistency and Inconsistency).

UConsy,m, and UlConsy, y, g@ive the agreement and disagreement in
increments/decrements in metric-space of two metrics M; and M, , respectively, where
M,;, M,: BMS" - R. For all different pairs of i** and jt" values of M; and M,:

(Mlp Mlj); (MZi' MZj):
((Mli > My, ) A (Mg, < sz)) v ((Mli <My,) A (M, > sz))

|BMS™|
UIConsy, u, = [IConsy,,|/|

IConsy, v, =

UConsy, m, =1 — UlConsy, u,

Definition 5.6 (Universal Discriminancy)

UDiscy, um, gives the ratio of cases where the metric M, yields different values while the

metric M, could not differentiate in metric-spaces where M;, M,: BMS™ - R. For all
different pairs of it" and j¢" values of M, and M,:

Discy, v, = (Mli’le)’(MZi'sz):
v (MliiMlj) A(MZi:MZj)

_ ) |BMS"|
UDiscy, m, = |Discy, u,|/ 2

Note that UICons/UCons and UDisc meta-metrics are based on the two formal criteria
proposed by Huang and Ling for comparing two performance metrics (Huang & Ling,
2005). The application of these criteria (“degree of consistency” and “degree of
discriminancy”) has become one of the most used comparative methods in the literature. The
improvement here is transforming the degrees that are ranged differently per compared
metrics into a fixed ratio in [0, 1] representing the cases with respect to the universal BM
permutations. Hence, the proposed meta-metrics can be used for comparing more than two
performance metrics as can be seen in Table 5.8 and Table 5.9. Table 5.8 shows the UCons
values calculated for Sn =25 per pairs of the reviewed metrics as well as final UCons
values. MCC, INFORM and BACC are the most consistent ones with other metrics on
average (83%) whereas nMI is the least consistent metric (51%). For individual pairs,
INFORM and BACC are only 100% consistent (i.e. UConsinForm-sacc = 1.00).
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Table 5.8 UCons values per pairs of metrics and final UCons meta-metric values (the average of the
meta-metric values per performance metric). For example, the cell marked with (1) (the consistency
between ACC and MCC) is 88% (UConsacc-mcc = 0.88), UCons for MCC (the average meta-metric
values for MCC) and ACC are the cell marked with (2 (0.83) and the cell marked with (3 (0.80),

respectively.

MCC

0.96INFORM

0.96 1.00 BACC

0.96 094 094 CK

0.96 091 091 0.94MARK

0.90 091 091 089 0.89 G

10.88 0.88 088 087 088 086 ACC

0.79 079 079 078 079 081 083 F1

0.76 077 077 075 076 077 076 085 TPR

0.76 076 076 075 077 076 076 085 069 PPV

0.76 077 077 075 076 077 076 060 053 069 TNR

0.76 076 076 075 077 076 076 060 0.69 053 0.69 NPV

0.50 050 050 051 050 054 052 053 052 052 052 052 nMI
UCons: (20.83 083 083 082 082 081 308 075 072 072 070 0.70 0.51
Rank: 1 1 1 4 4 6 7 8 9 9 11 12 13

Table 5.9 shows the UDisc values per ordered pairs of metrics analyzed in 25 samples. nMl,
the least consistent metric, is the most discriminant metric (about 1%). Interestingly, MCC is
both the most consistent and the third discriminant metric at the same time. The table also
illustrates another important finding that all the metrics are highly discriminant (about 4%)

with ACC.

Table 5.9 Meta-metric UDisc values [0, 1] per ordered pairs of metrics. The metrics are sorted
according to the average of the meta-metric values per metric. The cell marked with (1) shows that the
discriminancy of G against F1 is 0.6%, and the cell marked with (2 shows that the discriminancy of
F1 against G is 2.8%, shown in bold.

L, nMI 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
0.001 CK 0.000 0.001 0.001 0.001 0.002 0.001 0.002 0.002 0.002 0.002 0.001
0.001 0.000 MCC 0.001 0.001 0.001 0.002 0.001 0.002 0.002 0.002 0.002 0.001
0.001 0.001 0.001 BACC 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
0.001 0.001 0.001 0.000 INFORM 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001
0.001 0.001 0.001 0.001 0.001 MARK  0.001 0.001 0.001 0.001 0.001 0.001 0.001
0.018 0.018 0.018 0.017 0.017 0.017 F1 0.014 0.018 0.018 0.007 0.007 (1)0.006
0.044 0.043 0.043 0.044 0.044 0.044 0.040 ACC 0.043 0.043 0.043 0.043 0.042
0.029 0.029 0.029 0.029 0.029 0.027 0.028 0.028 TNR 0.019 0.029 0.019 0.019
0.029 0.029 0.029 0.027 0.027 0.029 0.028 0.028 0.019 NPV 0.019 0.029 0.018
0.029 0.029 0.029 0.029 0.029 0.027 0.019 0.028 0.029 0.019 TPR 0.019 0.019
0.029 0.029 0.029 0.027 0.027 0.029 0.019 0.028 0.019 0.029 0.019 PPV 0.018
0.039 0.038 0.038 0.038 0.038 0.034 (20.028 0.037 0.029 0.028 0.029 0.028 G
UDisc:  0.019 0.018 0.018 0.018 0.018 0.018 0.014 0.014 0.014 0.014 0.013 0.013 0.011
Rank: 1 2 2 2 2 2 7 7 7 7 11 11 13

Table 5.10 shows the overall results of the Stage-3 benchmarking along with the metrics’
ranks. Stage-3 differentiates the ranks of the benchmarked metrics some of which are equal
in the previous stages (e.g., MCC and CK have the same ranks).
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Table 5.10 Stage-3 benchmarking of 13 performance metrics according to seven proposed meta-
metrics

Meta-Metrics  MCC BACCINFORMMARK CK G ACC TNR TPR F1 nMI NPV PPV

UBMcorr 1 3 3 3 3 7 1 9 9 8 13 9 9
UPuncorr 1 1 1 1 1 1 1 1 1 11 1 12 12
UDist 5 2 3 3 6 7 13 8 8 8 1 8 8
UOsmo 4 1 1 1 4 6 13 7 7 11 12 7 7
UMono 1 9 9 9 12 1 1 1 1 1 13 1 1
UCons 1 1 1 4 4 6 7 11 9 8 13 12 9
UDisc 2 2 2 2 2 13 7 7 11 7 1 7 11
Stage-3 Rank 1 2 3 4 5 6 7 8 9 10 10 12 13

According to overall meta-metrics benchmarking, MCC is ranked first whereas PPV is
ranked last.

5.6  Overall BenchMetric Results and Summary of Findings

Table 5.11 summarizes and aggregates the benchmark results from the three stages and gives
a finalized ranking of the 13 performance metrics reviewed. The stages defined by extreme
cases, criteria, and metric-space were ordered according to complexity, coverage, and
measurability. Taking the ranks of each stage equal, the final rankings would be misleading.
Therefore, the weights are set as shown in Table 5.11 putting increasing weights through the
stages.

Table 5.11 The ranking of three benchmark stages and final ranking results of BenchMetric

Stages Weightf MCC CK BACC INFORM MARK G ACC F1 TNR TPR NPV PPV nMI
Stage-1 1 1 1 5 5 5 5 1 4 5 5 5 5 13
Stage-2 2 1 1 4 4 4 4 8 3 9 9 9 9 13
Stage-3 3 1 5 2 3 4 6 7 10 8 9 12 13 10

BenchMetric 1 2 3 4 5 6 7 8 9 10 11 12 13

The followings are the main findings:
e MCC is the most robust performance metric.
e CKand BACC are the second and third most robust metrics.

e MCC is also better than CK in other aspects, which were not included in
benchmarking such as according to the detailed mathematical comparison described
in Section 5.4.4.

e Highly recommended and/or conventionally used metrics such as TPR, PPV, ACC,

G, F1, and nMI have robustness issues and therefore should be used cautiously if
they are used alone.
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Some of the notable observations were obtained from the benchmarking:

vii)

The metrics yield not-a-number in some extreme cases except ACC, F1, CK, and
MCC.

nMI yields high values when FP and FN are higher than TP and TN.

Only INFORM, MARK, and BACC have the same mean, median, and mode
values.

The metrics have symmetric metric-space except for G, nMI, F1, and CK.
G and F1 metric-spaces exhibit an accumulation at zero.

Only MCC, CK, F1, and nMI cover both outcome measures (OP and ON) and
class measures (P and N).

TPR, PPV, TNR, and NPV are single-class-only metrics (i.e. P-only and N-only).

All metrics are insensitive to one or more base measures except nMl, CK, and
MCC.

nMI and F1 exhibit some inconsistencies in swapping of base measures.
nMI has a highly right-skewed metric-space.

MCC with geometric means is mathematically better than CK with arithmetic
means.

ACC, INFORM, MARK, BACC, and MCC have a high correlation with
individual base measures whereas the others have either some imbalances or no
correlations in some of the measures.

nMI does not exhibit any relationship with base measures.

Only PPV, NPV, and especially F1 have metric-spaces correlated with
prevalence.

TPR, TNR, PPV, NPV, ACC, and F1 do not exhibit granular output coverage in
metric-spaces.

nMI and ACC do not output smoothly in metric-spaces.

All metrics are monotonic except INFORM, MARK, and BACC. CK has minor
and nMI has considerable monotonicity violations.

BACC, INFORM, and MCC are the most consistent metrics among all the
metrics.
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viii)  INFORM and BACC are the only metrics that are completely consistent with

each other.
iX) nMI is the least consistent and most discriminating metric.
X) G is the least discriminant metric.

Note that Table G.1 in Appendix G shows the summary of the BenchMetric results per
metric per criterion per BenchMetric stage. Table G.2 lists the robustness issues per metric in
alphabetic order that could be helpful to be aware of the issues when a metric is used.

5.7 Survey 3: Evaluation of BenchMetric Method with the Literature

The proposed benchmarking method, BenchMetric, is compared with the other methods in
the literature in threefold. First, the methodology is compared with the existing metrics
evaluation methods. In the second step, the evaluation strategies of the studies, which
proposed new metrics, are compared. Independent of the two use-cases, two areas are
specifically focused while evaluating the related literature: “Are the approaches mapped onto
BenchMetric?” and otherwise, “Did it cover, address or extend these approaches?”

Finally, the recently proposed metrics are directly evaluated with the proposed
benchmarking criteria and the benchmarking results are compared with their findings.
Hence, we can see whether MCC is still the most robust metric when those new metrics are
included in the benchmark.

5.7.1 Comparison of BenchMetric with the existing metric evaluation methods

Table 5.12 gives details about the methods designed for metric comparisons in the literature,
summarizes their limitations, and compares them with BenchMetric. The compared studies
examined a few metrics. Some of them focus on basic behaviors of performance metrics that
cannot be seen in practice (e.g., extreme cases such as comparing two classifiers’ results
with swapped confusion matrix). Others cover only a very limited part of metric-spaces and
show similarities from a simple perspective without using an explicit ranking.

Nevertheless, all the proposed comparison techniques are addressed in formal and easy to
understand manner with measurable and comparable outputs. In addition, the existing
approaches are improved either by extending them or defining them in a classification
performance context. Furthermore, additional criteria are proposed and numerous unknown
robustness issues are revealed in the metrics.

5.7.2  Comparison of BenchMetric with the methods evaluating recent metrics

Table 5.13 describes the recently proposed performance metrics and how they were
compared with respect to the other metrics in the literature. The first three of the proposed
metrics are intended to minimize the class imbalance effect of ACC. The validation of the
new metrics is limited to comparing the new metrics by examining the relations of the input
metrics comprising the new metric (e.g., ACC, TPR, and TNR for OACC) or by inspecting
the input metrics’ graphs for different class skews. As can be seen from the table, the
validation of the new metrics has always been performed in a limited scope.
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Table 5.12 Comparison of BenchMetric with existing metrics evaluation methods

The study / Comparison Results and Corresponding
metrics Conclusion Comparison Method Criteria
(Seliya, The study The performances of two decision tree 1) Both reviewed studies cover limited cases
Khoshgofta groups the classifiers applied on 35 real-world of prevalence and metric-space. For
ar, & Van compared datasets with 200 <= Sn <= 20.000 and example, in BenchMetric, there are
Hulse, metrics into two  65% < PREV < 99% based on different 2,667,126 base measure permutations for
2009a). to four similar decision thresholds (0 <t <1, default: 0.5) Sn =250. Whereas, for example, the 14,400
ACC, G, F1, groups rather are calculated in terms of the compared 9 cases given by Yangguang et al. corresponds
FPR, FNR, than comparing metrics. The relations of the metric values to only 0.5% of all possible cases. Thus,
NPV, PPV, and rankings of are compared for 350 classifier-dataset correlations and/or factors may not be
AUC-ROC, the metrics. runs in total: Comparison-1: Via representative.
and AUC- correlations; Comparison-2: Via factor 2) The comparisons simply show similar
PR analysis (analyzing correlated metric metrics that are redundant when they are
values (observed variables) in terms of a used together. They do not sufficiently
small number of factors (unobserved dictate a proper metric and do not reveal any
variables). robustness issues. For example, G and F1 are
(Y. Liu, The study Performances are calculated for eight ML found similar in factor analysis, whereas, in
Zhou, Wen, shows the algorithms on 18 real-world datasets with BenchMetric, G is slightly more robust in
& Tang, correlated 80 <= Sn <= 8.124 and 50% < PREV < general than F1.
2016) metrics based 94%. The relations of metrics are 3) The comparisons are limited as they are
CK, ACC, on the example compared for 14,400 classifier-dataset reliant on the performance of two decision
and F1 datasets. runs via the Spearman and Pearson tree classifiers.
correlations of the metrics. BenchMetric: UBMcorr, UPuncorr,
UMono, UCons/UDisc
(Huang & AUC-ROC is The performances of simulated classifiers 4)  Assessing the consistency and
Ling, 2005) recommended  applied on balanced and imbalanced discriminancy among the metrics that are
ACC  and instead of ACC. synthetic datasets and three classifiers compared do not impose a superiority
AUC-ROC applied on 18 real-world datasets (with 61 especially in paired comparisons. For
<= Sn <= 8.124) are calculated in terms of example, consistency between CK and ACC
ACC and AUC-ROC and each paired is meaningful only if both of the metrics are
metric value are compared for consistency robust. Likewise, if both or one of the
and discriminancy. metrics are not robust then the
(Fatourechi  CK is The consistency and discriminancy are discriminancies could not be interpreted.
etal., 2008) recommended  compared only within "the desired region 5) BenchMetric includes a large number of
CK and instead of ACC. of operation” only (i.e. where TPR >= 0.5 metrics, thus the conclusions are more
ACC and FPR <= 0.02). This is because the meaningful.
calculation of  consistency and 6) BenchMetric also indicates that CK is
discriminancy degree as defined in the better than ACC.
above study has time and calculation BenchMetric: UCons/UDisc
COsts.
(Joshi, F1 is  the They constructed performance trend 7) Both techniques require visual inspection
2002) recommended  graphics for different TPR, PPV, and and manual interpretation and are not
INFORM, metric. PREV variations and observed whether the measurable as in BenchMetric.
ACC, G, performances increase according to PREV. 8) For the former study, BenchMetric shows
and F1 that INFORM s better among the compared
(Brown, MCC and F1 They constructed performance trends four metrics.
2018) exhibit ~ more graphics for different TPR and TNR 9) For the latter study, MCC is more robust
MCC, "realistic" variations as well as inverse cumulative and in line with BenchMetric whereas F1
BACC, estimation  of distribution function plots per balanced has robustness issues in corresponding
ACC, F1, classification and imbalanced datasets. criteria.
TNR, and performance. BenchMetric: UPuncorr, UCons (with TPR
PPV and PPV) and UCons (with TPR and TNR)
(Sokolova, TNR and BACC Checking whether the performance output 10) | reformulate those four changes in order
2006) are more is varied upon the following changes in to fit with the classification performance
BACC, appropriate confusion matrix: 1) exchange TP with evaluation context and make the assessments
ACC, F1, metrics  with TN and FN with FP 2) change only in TN more comprehensible.
TNR, TPR, respect to the 3)change only in FP, and 4) scale TP and 11) BenchMetric shows that MCC and CK
and PPV variance or FP along with TN and FN. are the most robust metrics from the
invariance  of corresponding three criteria. But, TNR and
changes in BACC have the same inconsistencies with
confusion TPR, PPV, and ACC.
matrix BenchMetric: 1) Criterion 2.6, 2 & 3)
elements. Criterion 2.3, 4) Criterion 2.1
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Table 5.13 Comparison of BenchMetric with the methods, which were used to evaluate new metrics

Notes and Validation of the New

Corresponding

Study, Proposed New Metric, and its Description Metric Criteria
(Caruana & Niculescu-Mizil, 2004) (an abbreviation AUC-ROC and RMS (root mean BenchMetric:
of Squared error, Accuracy, and ROC area) square) are different from all the UCons/UDisc

__ACC + AUC-ROC + (1 — RMS)

SAR 3

SAR combines Accuracy, Area Under ROC Curve,
and Squared Error into one measure.

metrics summarizing base measures
like ACC. RMS is for regression
problems instead of classification.

The proposed metric is validated via
correlation analysis as criticized in

note 2) in Table 5.12.

(Ranawana & Palade, 2006) Optimized Precision
(OACC):

oAcc = acc — PR —TNR|
a TPR + TNR
OACC reduces the sub-optimal performance

measurement of ACC due to the skewed data sets by
adding a heuristic correcting factor that minimizes
TPR and TNR difference while maximizing their
totals.

The proposed metric is validated by
comparing ACC and OACC outputs

with class balanced and highly-
imbalanced theoretical datasets
(SKEWs are 1:1 and 1:9) along with a
single real dataset (human DNA
sequences).

They inspected graphics showing the
variance of the metrics with respect to
theoretical TPR and TNR ranges using
ACC =TPR - N + TNR - P equations.
See note 7) in Table 5.12 for
comparison.

BenchMetric:
UPuncorr

(Huang & Ling, 2007) AUC-ROC:ACC
AUC-ROC: ACC
_ {AUC—ROC, AUC-ROC pairs are different
- ACC, pairs are the same

AUC-ROC:ACC is a two-staged measure to enhance

The proposed metric is validated by
examining the correlations of the new
metric with AUC-ROC and ACC
separately then comparing it with best
RMS values (AUC-ROC:ACC is highly
correlated with RMS).

BenchMetric:
UCons/UDisc

metric output differentiation. See note 4) in Table 5.12 for
comparison.
(Seliya, Khoshgoftaar, & Van Hulse, 2009b) No validation. BenchMetric:

Standardized Relative Performance Metric (SRPM)

Performances are calculated in terms of different
metrics (ACC, G, F1, NPV, PPV, AUC-ROC, and
AUC-PR) for 12 ML models on 35 real datasets.
Factor analysis is applied to the metric values. For
the given number of factors, a relative metric value
that is calculated with factor scores and normalized
proportions of the eigenvalues is standardized into
[0, 100] range.

UCons/UDisc

(Garcia, Mollineda, & Sanchez, 2010) Index of
Balanced Accuracy:

IBA,(G) = (1 + a(TPR — TNR))G
IBA is a parametric metric like OACC that adjusts a

known metric (here G) taking the difference
between TPR and TNR into account.

1. The correlations of new metric with
TPR, TNR, ACC, and G are evaluated
with respect to class imbalance (ACC
and G) and class focuses (TPR and
TNR)

2. Checking
properties

the four invariance

See notes 2) and 10) in Table 5.12 for
comparison.

BenchMetric:

UCons/UDisc
Criterion 2.6,
Criterion 2.3,

and Criterion
2.1
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5.7.3 Experiment 2: Testing recently proposed metrics via BenchMetric

As a limitation, the proposed benchmarking method is not intended for other types of
performance metrics (i.e. not summarizing confusion matrix) such as AUC-ROC and RMS.
Nevertheless, BenchMetric is re-conducted by including the two recently proposed binary-
classification performance metrics, namely OACC and IBA«(G) (shown in the second and
fifth metric in Table 5.13 above) to answer the following questions:

i.  Does OACC improve the robustness of ACC as intended?
ii.  Does IBA«G) improve the robustness of G as intended?
iii.  Which one is the most robust OACC or IBA«(G)?

iv.  Are any of the new metrics more robust than MCC as determined by the proposed
benchmarking results?

The followings are the results of three benchmark criteria defined in Stage-1:

1) “Does a metric yield not-a-number (NaN, i.e. 0/0) in extreme cases?”
ACC : No, OACC : 2times, G = 2 times, IBA«(G) = 2 times, MCC = No

2) “Are the performance metric values of the cases from 5 to 9 decreasing?”
Yes for all.

3) “Are the performance metric values symmetric for both classes?”

ACC : Yes, OACC : Asymmetric, G = Yes, IBA«(G) = Asymmetric, MCC = Yes

The followings are the summary of the findings according to the aforementioned questions
for Stage-1:

I. OACC has no improvement on ACC.

ii. IBA(G) has no improvement on G.

iii. The robustness of OACC and IBA«(G) is identical.

iv. MCC is more robust than these two recently proposed metrics.

Table 5.14 lists the details of the Stage-2 benchmarking results like in Table 5.2 for the
benchmarking of 13 performance metrics. The various positive or negative robustness issues
(underlined bold texts depict negative ones) are revealed. Note that a coefficient is taken as
0.05 as suggested by (Garcia et al., 2010).

The followings are the summary of the findings for Stage-2:

I. OACC improved ACC on outcome/class and class coverages, but robustness
issues appeared in undefined metric outputs and mean-median difference. It also
distorts symmetry observed in ACC.

ii. IBA«(G) has no improvement on G, in fact, it is not invariant in class-and-
outcome swaps, which is only seen in F1 in the benchmarked metrics as seen in
Table 5.2.

iii. Evaluating the eight criteria in Stage-2, the robustness of OACC and IBA«(G) is
almost identical. Only Criteria 2.6 and 2.8 are different mutually.
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iv.

MCC is more robust than the new metrics.

Table 5.14 Benchmarking Stage-2 results (Sn = 50) for the two new proposed metrics in the literature

Stage-2 Criteria ACC OACC G IBA«(G) MCC

2.1 Outcome/class coverage None Class-only@) | Class-only  Class-only() Yes

2.2 Class coverage (P and N) None Yes() Yes Yes) Yes

2.3 Base Measure Coverage TP, TN TP, TN TP, TN TP, TN Yes

2.4 Variant to class swap Yes Yes Yes Yes Yes

2.5 Variant to outcome swap Yes Yes Yes Yes Yes

2.6 Invariant to class-and- Yes Yes Yes No Yes

outcome swaps

2.7 Undefined (NaN) count 0 3Sn+1 2(Sn+1) 2(Sn+1) 4Sn

i dtfrance) | M= M ~Mo B#M=Mo|Mx~M=Mo MxH=Mo|M=~FH=Mo

Other Informative Criteria

2.9 Standard Deviation 0.23 0.23 0.26 0.26 0.21

2.10 Skewness Symmetric Sllg_htly Sll_g_htly Sll_g_htly Symmetric
negative(s.) positive() positive()

2.11 Kurtosis Platykurtice)  Platykurtice) | Platykurtice)  Platykurtice) | Platykurtic)

(1) OACC =f(TP, TN, P, N, TC, Sn), (2) IBA«(G) = f(TP, TN, P, N), (3) Left-skewed, (4) Distorting symmetry,

(5) Right-skewed, (6) Thin-tailed

Table 5.15 shows the results of Stage-3 benchmark according to the first five meta-metrics.
Up arrows depict that a new metric improves the dependent metric (i.e. IBA«(G) improves G
or OACC improves ACC). Down arrows depict a degradation.

Table 5.15 Benchmarking Stage-3 results (Sn = 50) for the two new proposed metrics in the literature
(excluding the UCons and UDisc meta-metrics). Metrics are sorted in descending order per meta-
metrics from the most robust one to the least. Osmo is the smoothness value.

UBMcorr UPuncorr UDist UMono Osmo
MCC 0.78|MCC 1/IBA«(G) A 0.8)MCC 1|/INFORM 3.22
ACC 0.78|ACC 1|{OACC A 0.412|ACC 1|IMARK 3.22
INFORM 0.77|OACC 1inMlI 0.382|G 1|BACC 3.22
MARK 0.77|G 1|BACC 0.333|1BA«(G) 1|OACC A 491
BACC 0.77|1BA«(G) 1{INFORM  0.332|F1 1jMCC 5.26
CK 0.77/INFORM 1|{MARK 0.332|TPR 1|CK 5.28
G 0.75|MARK 1{MCC 0.232|TNR 1{IBA«(G) A 6.44
IBA«G) 0.75|BACC 1|CK 0.202|PPV 1|G 6.98
OACC ¥ 0.73|CK 1G 0.196|NPV 1|TPR 7.82
F1 0.72|nM1 1|TPR 0.033|{INFORM 0.998|TNR 7.82
TPR 0.69|TPR 1TNR 0.033|MARK 0.998|PPV 7.82
PPV 0.69|TNR 1PPV 0.033|BACC 0.998|NPV 7.82
TNR 0.69|F1 0.61|NPV 0.033|CK 0.948|F1 9.15
NPV 0.69|PPV 0.37|F1 0.033|OACC ¥  0.76|nMI 19.7
nMI 0.5|NPV 0.37|ACC 0.002|nMI 0.517|ACC 21.62
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The following is a summary of the findings for Stage-3:

i. OACC improves ACC on distinctness and output smoothness but decreases the
robustness for base measure correlations and monotonicity in a contradictory
manner.

ii. IBA«(G) has improvement on G by increasing distinctness and output
smoothness.

iii. IBA:(G) is more robust than OACC considering the base measure correlations,
distinctness, and monotonicity.

iv. MCC is more robust than the new metrics as in Stage-2.

Table 5.16 lists the remaining meta-metrics in Stage-3, namely UCons and UDisc. Instead of
giving each pairwise meta-metric values among the metrics as in Table 5.8 and Table 5.9,
they are summarized per each recently proposed metric. Bold values depict higher meta-
metric summary values. For example, the mean consistency of IBA«G) with the 13
benchmarked metrics (0.834) is higher than the mean consistency of ACC (0.773).

Table 5.16 Summary of the pairwise UCons (consistency) and UDisc (discriminancy) meta-metrics
per OACC and IBA«(G) with the 13 benchmarked metrics (minimum, mean, standard deviation (SD),
and maximum values) for Stage-3 with Sn = 20

New Metric(s) Meta-Metrics Min  Mean (SD) Max
OACC UConsoacc, mi-m1z - 0.511 0.773 (0.090) 0.899
UDiscoacc, mi-m1z~ 0.002 0.022 (0.020) 0.052
UDiscmi-m13, oacc 0 0.003 (0.001) 0.004
IBA«(G) UConsaaac, mi-m13 0.551 0.834 (0.110) 0.992
UDiscis4ac, MMz 0.002 0.014 (0.020) 0.051
UDiSCM1-Mm13, [BAaG 0 0.042 (0.014) 0.053
OACC vs. IBA«(G)  Meta-Metrics Value
UConsiB446, oacc 0.898
UDisciB4a6, 04cc 0.001
UDisco4cc, 184aG 0.046

Notes: Range of all UCons is [0.503, 1] and all UDisc is [0, 0.055]

Among the paired metric values in metric-space, OACC and IBA«(G) are 89.8% consistent.
However, IBA.(G) is more consistent with the 13 benchmarked metrics on average whereas
OACC is more discriminant than both benchmarked metrics (2.2%) and IBA«(G) (4.6%).
Briefly, IBA«(G) is more consistent and OACC is more discriminant.

Combining all three stages, IBA«(G) is more robust than OACC. However, neither of them is
as robust as MCC. This experiment shows that the proposed benchmarking method,
BenchMetric, can be used to analyze and compare the robustness of any proposed metrics.
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5.8 Precise and Concise Performance Evaluation and Reporting

In this study, thirteen performance metrics along with two recently proposed metrics have
been benchmarked via BenchMetric method and the use of MCC is recommended for robust
performance evaluation for the first time. Using a robust metric is significant to summarize
the classification results with fewer errors. Nevertheless, “What should be reported for
expressing classification performance?” research question (see RQ4 in Section 1.1) is worth
to discuss for the sake of completeness. Specifically, whether the use of a robust metric
alone is sufficient to assess a classification approach?

Comparing different or same classifiers on different datasets using solely a metric (even with
MCC) can be misleading. As revealed in BenchMetric stages, metrics can indicate
contradicting, unexpected or undefined performance values in different conditions.
Moreover, the literature uses various metrics together to report the classification
performances as described in Section 2.3.4.

This section goes beyond the metrics and recommends what should be reported and
considered minimally for precise and concise performance evaluation, comparison, and
reporting avoiding possible drawbacks. One of the properties of performance metrics is that
they are not sensitive to sample size that is reduced in the numerator/denominator of the
metrics' equations (i.e. it is lost in summary functions of the metrics, see Section 3.10).
Prevalence might have an implicit effect due to the nature of the functions.

e With respect to sample size, for example, ACC = 0.9 for both
o TC=90inSn=100and
o TC=900in Sn =1000.
e With respect to prevalence, for example, ACC = 0.9 for both
o PREV =0.50in Sn =100 where TP =45, FN =5, TN =45, and FP =5 and
o PREV=0.75in Sn =100 where TP =70, FN =5, TN = 20, and FP = 5.

Provided two cases within each example above cannot be differentiated via the performance
metric because it is 0.9 for all of the cases. From an intuitive perspective, sample size and
size of the binary classes (or prevalence as a ratio) are also significant for classification
studies. Generally speaking, some statistics are shown to be influenced by sample size and
may not reflect the nature of the data (Calude & Longo, 2017, p. 6). As described in
Section 2.2 above (Literature Review), the literature addressed the prevalence (or class
imbalance, class skew) effect in some of the performance metrics and BenchMetric also
reveals prevalence correlations in some metric-spaces for the first time.

With this holistic respect, this thesis proposes to define three dependent components of
classification performance evaluation from top to bottom explicitly:

e A robust performance metric (MCC),
e Prevalence (PREV), and
e Sample size (Sn).

Researchers practically focus on performance metrics, which are at the tip of the iceberg, and
usually ignore the other two components as shown in Figure 5.8 (a). This thesis engages the
attention of the research community that evaluating performance solely based on a metric
misleads. As depicted in Figure 5.8 (c), four classifiers on different and/or the same datasets
can be compared according to three components of performance.
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Figure 5.8 (a) The three components of binary-classification performance evaluation. Performance
metrics are at the tip of an iceberg. (b) Categorical values of each component for high and low
performances (c) Hypothetical four classifiers with different component values

For example,
e The performance of classifier Classifier-4 is the best according to MCC metric only,

o Nevertheless, Classifier-2 and Classifier-3 perform better than Classifier-4 even
MCC is slightly less than 0.92 because PREV or Sn values reflect high performance,
respectively.

o Finally, Classifier-1 could actually be considered as the most promising of all, even
MCC is slightly less. Because both PREV and Sn values reflect more ideal
classification configuration (i.e. balanced class ratios and the highest sample size
among the alternatives, respectively).

In a similar hypothetical case, assume that

e astudy reports of a classifier’s performance tested on 10.000 samples with fifty-fifty
class ratio and

e another study reports the same classifier tested on 5.000 samples with the same class
ratio.

It is reasonable to give more credit to the first study because the test is based on more
samples or at least, you could expect the researchers of the second study to repeat their tests
on 10.000 samples and report the performance again, on the same datasets if possible.

Considering the given arguments above, publishing sample size and prevalence
complements the performance metrics. Especially, when comparing a group of studies,
performance improvement expressed in terms of a metric should be justified by taking
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sample sizes and prevalence values into account. The better approach is to equalize them
(i.e. testing the classifiers in the same PREV and Snh or at least in the same PREV value) and
compare the performance metrics.

If the classification studies claiming an improvement in a specific classification problem
domain (e.g., mobile malware detection) can equalize the two base components of
performance evaluation namely sample size and prevalence, then it is possible to compare
those studies in terms of a robust performance metric. In this manner, the classifications with
similar performance metric values could also be compared from other aspects (e.g., the
quality of the datasets, subsampling strategies, and/or time performances of the classification
implementations).

A qualitative dataset assessment could be applied to support the quantitative approach that
requires reporting two performance measures and one robust metric. A preliminary work that
is out of scope of this thesis was already published to systematically profile datasets based
on proposed four techniques with fourteen criteria including the sample and feature space
sizes (Gurol Canbek et al., 2018).

Hence, it is seriously affirmed that classification studies should report and take sample size
(Sn) and prevalence (PREV) performance measures into account along with MCC metric
value in minimal to satisfy objective and responsible research. This should be a formal
approach to performance reporting in the literature (e.g., listing the performances of
compared classification studies with Sn, PREV, and MCC values together in a table).

5.9 Conclusion
This chapter was carried out to meet two objectives addressing (RQ4):

o First, to examine the behavior of all possible binary-classification performance
metrics from a wider perspective in order to clarify what the most robust metric is by
revealing the problematic issues.

e The second objective was to recommend a proper performance evaluation,
comparison, and reporting approach for classification researches.

To meet the objectives, a new comprehensive benchmarking method called BenchMetric is
introduced that can be used for any number of existing or newly proposed performance
metrics. Contrary to existing approaches, the proposed method develops new concepts such
as metric-space, meta-metrics, base measure permutations, and variance/invariance
swapping to analyze the metrics and examines metrics from a wider perspective and reveals
the weak and strong issues of individual metrics, metric pairs and/or group of metrics in an
objective measurable manner.

BenchMetric was tested on thirteen performance metrics that are commonly used and/or
recommended in the literature. To the best of my knowledge, this is the first time that such a
larger number of metrics have been reviewed in this scope and one metric is suggested with
solid justification. BenchMetric spotted specific cases where a metric can behave
unexpectedly (e.g., yielding high-performance values in a higher number of false
classifications). Especially frequently used metrics such as TPR, ACC, nMI, F1, and CK
exhibit significant robustness issues. The overall result of the proposed three-staged
benchmark recommends that MCC (otherwise CK) as the best choice for performance
evaluation.
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Besides, two recently proposed metrics are also tested along with the 13 previously tested
metrics by BenchMetric. Although the authors of those metrics claim improvement over the
existing metrics, this second BenchMetric experiment showed limited improvements but also
introduced many unaddressed robustness issues in the new metrics for the first time in the
literature. Incorporating those new metrics, MCC is still the most robust one.

Monotonicity (UMono) calculated for Sn = 250 measures a small improvement per each
base measure can be reflected by the metric, specifically whether there is any contradiction
that causes misleading evaluations. There is the same degree of violations for the same
metrics for other sample sizes. It might seem controversial that the violations are examined
for two paired cases where the original sample size is increased or decreased by one
(increase for TP and TN) which cannot be observed while comparing the performances
within the same sample size (e.g., while trying different ML-models in the same dataset).
However, such a condition could happen, at least hypothetically, when comparing two
different classification studies with sample sizes by one difference.

Contradictory, it could be argued that the benchmarking highlights subtle issues in some
metrics that cannot be seen in practice or in a well-prepared classification study. In my
opinion, the issues re-summarized in Section 5.6 cannot be ignored as they may arise in
several areas such as online machine learning classifications, decision-making applications
including “what if” scenarios, and artificial general intelligence in the future where the
classification performance possibilities are diverse.

Considering performance evaluation from a wider perspective, it is also suggested that
classification studies shall report sample-space size and prevalence ratio explicitly along
with metric value (i.e. MCC) together for objective and responsible open research. These
three indispensable values should be evaluated together to get a better and entire perception
of classification performance.
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CHAPTER 6

DISCUSSION AND CONCLUSION

This thesis takes a breadth and depth look at binary-classification performance evaluation
and covers the largest number of binary-classification performance evaluation instruments
available in the literature including the recently proposed ones. The study that is guided by
the following main research question revisits performance evaluation by focusing the
important problems and essentially proposes two methods to make a multi-perspective
analysis and systematic benchmarking for performance instruments.

RQ: How to establish and improve our knowledge on binary-classification performance
instruments comprehensively and systematically in order to enable researchers to make
informed decisions on choosing the right instrument(s) and follow objective approaches
in performance evaluation, reporting, and comparison?

As depicted in Figure 6.1, this thesis addressed four research questions expressed in
Section 1.1 and, in addition to the two main methods, presented three surveys, three case
studies, two complementing tools, and two experiments besides other contributions.

Although performance instruments are widely-accepted global references and contrary to the
common assumption that performance evaluation is a well-understood and studied area, this
thesis pointed at the fundamental problems such as confusing terminology and lack of
consensus in performance evaluation and reporting. Other problems such as misleading
results via accuracy metric and publication/confirmation biases were also revealed by
conducted case studies. The problems highlighted in Survey 1 and case studies addressing
(RQ1) reveals previously unknown issues suggesting a root cause that the fundamentals of
classification performance evaluation are neither established nor are they internalized by the
research community.

Hence, this thesis first provided novel concepts derived from a multi-perspective analysis of
performance evaluation instruments addressing (RQ2). This conceptualization brings a new
perspective for performance evaluation instruments by the following contributions:

Referring all confusion-matrix derived references as “performance instruments”,
Terminology clarification with new “measure”—“metric”—“indicator” categorization,
Naming convention in classification context with standardized abbreviations,
Grouping and leveling instruments (e.g., base measures: TP, FP, FN, TN, and 1st
level measures: P, N, OP, ON), and

e Introducing new measures named TC and FC to enhance the comprehensibility of
instrument equations.
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Figure 6.1 Thesis contributions summary

This thesis has also introduced and formally defined the following concepts:

Canonical, base, equivalent, direct and high-level forms in instruments’ equations,
Determination of measure and metric,

The column, row, and mixed geometries,

Duality and complementation via transformation in geometry, and

Levels and dependencies among instruments.

The canonical form is especially helpful to reveal the essential properties of the instruments.
Establishing a common language will avoid misunderstanding and facilitate communication
among the research community. The concepts help to understand the significant properties of
the instruments as well as recognizing the similarities and differences among a large number
of instruments.

Concerning (RQ3), this thesis made novel contributions to enhance our understanding,
facilitate our activities, and provide new approaches in performance evaluation by

e Proposing performance indicators as a new performance evaluation instrument type
for the first time and highlighting their potential benefits as well as
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e Proposing a novel indicator named “Accuracy Barrier” (ACCBAR) to assess whether
the performance of a classifier is close to random classification.

ACCBAR indicator was applied in a case study that revealed a significant problem with
performance evaluation whereby some of the studies with a high performance reported by
ACC is misleading whereas the studies with lower ACCs had actually appeared to achieve a
more reliable performance.

Furthermore, as an aggregation of all the proposed concepts, a new compact binary-
classification performance evaluation instruments exploratory table named PToPI, which is
like the periodic table of elements, is designed and provided online. PToPI covers over 50
instruments with the following characteristics:

e Clear measure—metric—indicator distinction via grouping and coloring,
Leveling perception via nested groups,

e Showing the equations for all the instruments in canonical and/or high-level-
dependency forms in one place,

e The comprehension of equations is enhanced via positioning according to instrument
geometry and graphical decorations (e.g., arrows and font styles),

e Presenting additional information per instruments via a uniform information box,

e A quick sensation of dependent measures/metrics via arrows, and

e Prediction and reality relations via positioning in a column, row, or mixed geometry.

Considering the presence of a large number of binary-classification performance evaluation
instruments, it could be difficult to grasp those instruments, their intrinsic characteristics and
the differences among them. Addressing these difficulties, the proposed table PToPI
provides a big picture for presenting instruments within a single page only, which is also an
efficient material for learning or teaching binary-classification performance measures,
metrics, and indicators. PToPI can be used to select adequate instruments for performance
reporting as demonstrated in this study.

Complementing PToPl, a calculator and dashboard tool called TasKar was also provided to
assist the searchers to see the performance in terms of all the instruments as well as interpret
the results via the graphical visualization of base metrics. It is expected that PToPI and
TasKar will be an efficient material and tool for learning, teaching, and interpreting binary-
classification performance measures, metrics, and indicators.

The last part of the thesis, addressing (RQ4), after revisiting and reestablishing the
classification performance evaluation domain, is to focus on revealing the robustness of
binary-classification performance instruments and answering “Which instruments are robust
to use” and “What should be reported for classification performance”.

In this perspective, this thesis proposed a new comprehensive benchmarking method called
“BenchMetric” to analyze the robustness of performance metrics. Comparing a few methods
proposed in the literature, BenchMetric provides a systematic benchmarking comprising
three stages and many measurable criteria. The concepts introduced in BenchMetric such as
metric-space and meta-metrics (metrics about performance metrics) will enhance the overall
understanding of metrics and their behaviors.
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The results of the two conducted experiments of BenchMetric (first, on 13 performance
metrics and second, on 15 metrics including two recently proposed ones) have shown that

o there are several robustness issues in even commonly used metrics and
e MCC is the most robust metric.

This thesis is the first to declare that researchers who want to be on the safe side, can use
MCC as the most robust metric for general objective purposes. Otherwise, they can select a
metric among others that are required or enforced by their domain of interest considering the
ranks and specific robustness issues revealed by BenchMetric.

This thesis also demonstrated that publication and confirmation biases might exist because of
non-robust metric usages. Some equations were introduced to reveal base measures
(confusion matrix) of a classification study that reports a few metrics (e.g., P, N, TPR, and
ACC). Hence, it is possible to calculate the performances in terms of other metrics such as
MCC. It is expected that this method will be used to examine the classification studies in
other domains.

Beyond choosing a metric, this thesis suggested that the proper approach is that classification
studies should take sample-space size (Sn), prevalence ratio (PREV), and MCC values
together into account for a precise and concise binary-classification performance evaluation,
comparison, and especially reporting. It is expected that the rankings of the metrics, their
robustness issues revealed, and the recommended evaluation approach will guide researchers
to evaluate classification performances straightforwardly.

The followings are some remarks of this thesis study to highlight:

e There are severe robustness issues in widely used performance metrics such as TPR,
PPV, ACC, and F1 (see the summary of the findings in Section 5.6).

e Researchers who prefer to use ACC should use and consider ACCBAR indicator.

e Although nMI is recommended by the literature, it is not proper to handle different
cases encountered in a classification problemzz.

e As mathematically demonstrated in Section 5.4.4, CK and MCC are very similar
metrics. However, CK exhibits non-robust behaviors from certain aspects.

e The recently proposed metrics are not only behind the robust metrics but also they
exhibit non-robust behaviors where the metric they try to optimize do not. Therefore,
“finding a more robust metric than MCC”, as clearly declared in this thesis, might be
a challenging research topic where a comprehensive benchmark is available with
provided API.

e The visualization of various concepts in a consistent and comprehensible manner
was a difficult activity. It is expected that the proposed formatting and coloring
scheme will be an industry standard and/or academic visualization convention or
utilized for other purposes (e.g., visualizing diagnostic tests in medicine).

22 Changing the default calculation method in some ML software packages could be a reason behind optimizing
nMI
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6.1

Researchers can use two tools, PToPIl and TasKar, complementing each other from
theoretical and practical perspectives. It is expected that they will also be used in
other domains/scopes, for example, in similarity and association measures
conventionally represent base measures as “a”, “b”, “c”, and “d” as shown in TasKar
shown in Figure 4.6.

The analogy between PToPI in machine learning and the periodic table of elements
in chemistry is also notable to highlight the significance of the conceptualization
proposed in this study. Like the periodic table covering 118 elements, PToPI
enhances the usability and comprehensibility of 50 instruments.

Starting to report performance via a bi-directional robust metric (MCC in [-1, +1]
range) will provide a wider range for the classification studies in a specific domain
where the previous performance reports are saturated at near the maximum value
(i.e. 1.000) of the non-robust conventional metrics in [0, 1] range especially ACC
and F1.

It is interesting that MCC, which was the top-level metric (the only metric in 2nd
level) was also found as the most robust one in BenchMetric. This could be
interpreted as an indicator of the consistency in the proposed methods and also a
validation with respect to the robustness of MCC.

Notably, including a new metric and repeating the benchmark of the new group of
metrics is quite straightforward with the help of systematic methodology and
developed ready-to-run API. | experienced this convenience when the benchmarked
metrics were extended by adding normalized mutual information (nMI) metric that is
rather recent and not used much in common.

Limitations

Although not within direct scope, this thesis also presents a baseline for performance
evaluation apart from binary classification such as performance evaluation where binary-
classification evaluation metrics are micro- or macro-averaged over time (Kenter et al.,
2015) and multi-label or multi-class classification metrics most of which can be

directly used by applying the canonical form proposed in this thesis. Some binary-
classification performance instruments are expressed with the same notation as for
multi-class performance evaluation instruments for the first time. For example,
ACC = TC/ Sn for binary and multi-class classification performances.

adapted by using one versus all approaches, all binary-classification instruments can
be used directly. For example, the performance of a classifier detecting “apples”,
“pears”, and “apricots” in images can be expressed by converting the three classes to
binary and calculating the confusion matrix accordingly (i.e. using binary-class
performance instruments for “apricots” vs. “apples and pears” classes with respect to
“apricots” class) (Hossin & Sulaiman, 2015; Kolo, 2011; Pereira et al., 2018).

Because of exponentially increasing number of permutations in metric-spaces (e.g., 3,276 for
Sn =25 whereas 2,667,126 cases for Sn = 250) and corresponding limited computational
resources, some meta-metrics such as UDist and UOsmo could be approximated by
averaging the intermediate values for a number of sample sizes between 25 and maximum
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250. Some optimization methods or high computational resources could be tried to improve
the calculation time.

One might argue that examining problematic issues through a single domain cannot be
generalized. First of all, Android mobile malware detection is a typical binary classification
problem that the literature studies from a broad perspective. The problems could not be
limited to this rather recently developed domain. Second, the issues revealed in this domain
are also observed in other domains. Some representative examples are also given for term
extraction in medical records, computer system intrusion detection in network security, e-
mail spam detection in cyber security, and software design defects detection in Section 4.1.3.
All these findings and observations suggest that the problems are independent of domains.

Limited feedbacks have been received with respect to PToPI and TasKar. Some of the critics
(e.g., from the reviewers of the journal we submit our related works) such as “being a
complex tool” were taken into account in some degree. However, the usability of these tools
could not be studied during the thesis study.

6.2 Future Work

As mentioned in Section 3.11.1, another future work will evaluate the performance values of
other metrics such as BACC, F1, CK, and MCC for “under”, “hit” and “very close” to
Accuracy Barrier cases and compare the differences with ACC from a broad perspective. It is
expected that this evaluation will give extra insight into metrics and could be integrated into
BenchMetric.

For BenchMetric, some significant issues were also observed in metrics that were tested
under controlled conditions such as synthetic classifiers and/or datasets. These observations
of preliminary work need to be validated to identify whether the assessments could be
integrated into BenchMetric as a fourth stage.

We are in the process of defining a single metric to follow the recommendation about precise
and concise performance reporting described in Section 5.8. We obtained promising results
in categorizing different datasets according to sample size with respect to both sample-space
and feature-space size. We are also planning to improve our dataset profiling techniques
(Gurol Canbek et al., 2018) to support performance evaluation activities to include assessing
the dataset quality.

It is expected that this research will serve a base for future studies on exploring
e Accuracy barrier effect (as demonstrated in case study 1 in Section 3.11.1)

e Presence of publication and confirmation biases (as demonstrated in case study 2 in
Appendix H)

in other classification domains in the literature.

An important matter to resolve for future studies is defining an indicator for limitless
measures such as Discriminant Power (DP).
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The following topics remain to be further explored and studied:

o the validity and/or extendibility of proposed concepts and tools in multi-class
performance evaluation instruments.

o the effect of using MCC in micro- and macro-averaged metrics instead of
conventional TPR, PPV, and F1.

It is expected that PToPl and TasKar will be helpful tools to facilitate performance
evaluation from different perspectives. Therefore, another area of future work will be
enhancing their capabilities and/or making some improvements.

The following capabilities will be developed to improve TasKar in practice:

o Copying all instruments results to the clipboard in a CSV format to paste into a
spreadsheet for further analysis and reporting.

e Confusion matrix finder based on the equations given in Appendix H.

e Integrating other binary measures and metrics such as similarity/distance measures
and association measures.

e Metric finder to identify a metric with a given value and confusion matrix.
e NaN (i.e. division-by-zero) correction option.

The second version of the proposed coloring scheme described in Section 4.2.1 that is also
used in PToPI and TasKar could be optimized for color blindness.

Future work should give priority to develop a technology acceptance model for both PToPI
and TasKar that help to assess perceived-usefulness and perceived-ease-of-use (Lai, 2017).

Finally, an interactive visualized performance instrument analysis platform will be released
online.
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APPENDICES

APPENDIX A

PERFORMANCE INSTRUMENTS: CATEGORIES, LEVELS, NOTATION,
AND FORMATING CONVENTIONS

Table A.1 Performance instruments: categories (measures, metrics, and indicators), abbreviations,
names, alternative names, notations, and styles

Base Measures (BM) (4 measures) 2nd Level Measures (10 measures)
FN False Negative FP False Positive BIAS: Bias, CKc: Cohen's Kappa
TN True Negative TP True Positive Chance, DET: Determinant, DPR:
1st Level Measures 7 measures) D Prime, LRN: Likelihood Ratio
" Negative hPositive Negative, LRP: Likelihood Ratio
E Outcome Negative Outcome Positive _Positive, NER: Null Error Rate, NIR: No
€ |FC_False Classification TC True Classification Information  Rate  (non-information
§ SH sample Size rsali:\)/;/PREV. Prevalence, SKEW: (Class)
3rd Level Measures (4 measures)
DP: Discriminant Power, HC: Class Entropy, HO: Outcome Entropy, OR: Odds Ratio
Base Metrics (14 metrics) 1st Level Metrics (9 metrics)

ACC: Accuracy (efficiency, rand index), AUC: BACC: Balanced Accuracy (strength), CK: Cohen's
Area Under Curve, CRR: (Correct) Rejection Kappa (Heidke skill score, quality index), Fm: F-
Rate, DR: Detection Rate, FDR: False metrics, F1: F1 (F-score, F-measure, positive specific
Discovery Rate, FNR: False Negative Rate, agreement), G: G-metric (G-mean, Fowlkes-Mallows
FOR: False Omission Rate (imprecision), index), INFORM: Informedness (Youden’s index,
FPR: False Positive Rate, HOC: Jointdelta P', Peirce skill score), MARK: Markedness (delta
Entropy, MCR: Misclassification Rate, MI: P, Clayton skill score, predictive summary index),
Mutual Information, NPV: Negative Predictive nMI:  Normalized Mutual Information, WACC:
Value, PPV: Positive Predictive Value Weighted Accuracy

(precision, confidence), TNR: True Negative

Rate (inverse recall, specificity), TPR: True

Positive Rate (recall, sensitivity, hit rate,

recognition rate)

2nd Level Metric (1 metric) Indicators (1 indicator)

MCC: Matthews Correlation Coefficient (Phi ACCBAR: Accuracy Barrier

correlation coefficient, Cohen’s index, Yule

phi)
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Table A.2 Color palette (red, green, blue (RGB) color codes in hexadecimal format for background

and text colors) for performance instrument types and canonical measures

Type Level/Type [Background|Text Measure Abbreviation Background Text
Style Style
Measures |[Base #A6A6A6 [#000000 [True Positive TP #FFCCCC  [#CC0000
False Positive FP #CCFFCC [#7D3F3F]
False Negative FN #FFCCCC  [#274927
'True Negative TN #CCEFFCC [#009900
istLevel [#BFBFBF [#000000 |Positive -#990000 #FF5050| 2
A (&}
Negative #006600 [#33CC33 g
Outcome Positive #CC9999 [FFCCCC g
Outcome Negative #99CC99 [#CCFFCC
True Classification TC #77CCCC [#117777
False Classification FC #FFCCFF  [#7030A0
Sample Size _l#999966 #424100
2nd Level [{#D9D9D9 [#000000
3rd Level [#F2F2F2 [#000000
Metrics |Base #FEDO6F [#974715
1st Level [#FEES59D [#BD581A
2nd Level #FFF1ICE [#E46A21
Indicators|Indicator #77AADD [#114477
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APPENDIX B

PERFORMANCE INSTRUMENTS EQUATIONS WITH DUALS AND
COMPLEMENTS

Table B.1 Measure Equations (numbered in curly braces according to PToPI shown in Figure C.2)

P=TP+FN {5 N=TN+FP {6} OP=TP+FP {7}
ON =TN + FN {88 TC=TP+TN {9} FC=FP+FN {10}
Sn=TP+FP+FN+TN=P+N=0P+ON =TC + FC {11}
Sn=P+N Sn = OP + ON Sn=TC + FC
P max(P, N) OP
PREV = — = BIAS* 12} IMB = ——__2 (12 BIAS = — = PREV* {13
Sn 1z minp, N) (2 Sn {13}
SKEW = N:P 14 P,N N
U4 g = mx®.N) (15} NER =—=PREV {16}
P-OP+ N -ON - —
CKe = hd (an DPR = Z(TPR) — Z(FPR) {18}
LRP_TPR_TP-N 19 LRN_FNR_FN-N 20
" FPR  FP.P {19} " TNR TN.P {20}
DET =TP -TN — FP - FN {21}
HC =— Z mlog, m {22} HO = — Z mlog, m {23}
m=PREV,1-PREV m=BIAS,1-BIAS
OR_LRP _TPR-TNR TP-TN -
" LRN FPR-FNR FP-FN 24
V3/ TPR-TNR\ 3 V3 TP-TN
DP == (logFPR . FNR) = 7 108 OR = —-log 7p—r {25}

Correction 1. OR and DP are undefined (NaN) due to the zero division by zero (0/0) in case of
TP-FP=0 and FP-FN=0. Therefore, they should be 0 (zero) for these cases which means an arbitrary
classifier.
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Table B.2 Metric Equations (numbered in braces according to PToPI shown in Figure C.2)

TP FN ___ TN
TPR=—=PPV* (1) FNR=—=TPR (2) TNR=—-=NPV" (3)

P N
FPR="C _TNE 4y PPV ="L—TPR* (5) FDR=-L PPV (6
== 4 = 5= ®) = )

For =N _ WPy 7 Npv = 2N _ g 8

HOC = Z ™ log, = 9

= n 082 n €))

m=TP,FP,FN,TN
i — TPl TP/Sn__ FP FP/Sn
= sn U52PREV - BIAS © Sn °52(1 — PREV) - BIAS
L FN/Sn LI TN/Sn
10g2 — — log; — — (10)
PREV - (1 = BIAS) | Sn °82 (1= PREV) - (1 — BIAS)

pR =L 11 CRR = 12

=5 (11) =<, (12)

acc =€ 13 Mcr =1t~ 7ce 14

=5, (13) S (14)

TP-N+TN-P—P-N TP-N+TN-P
INFORM = TPR + TNR — 1 = — = ————— 1= MARK" (15)
MARK = PPV + NPV —1 _TP-0N+TN-0P—0P-ON_TP-ON+TN-0P 1 = INFORM" (16
a a OP - ON h OP - ON - (16)
pacc — TPRTTNR _TP-N+TN-P . WACC = w - TPR +
= =" 5PN an (1—w)-TNR (17"
wisin (0, 1)
MI
— |TP-TN M = 19
= 3TPR-TN / /p. (18) n 7CHO. HC, HOC) (19)
MI

nMI = nMl,,; = 19.1 Mgy = e 19.2
art = (HO + HC)/Z (19-1) 9¢ %/Ho -HC (19.2)

M, = -4 19.3 ML = 19.4

el = Hoc (19.3) Wimin = i (HO, HO) (19.4)

i 1o . _2PPV-TPR __2TP 20
WMnax = o, mey 199 1= PPV + TPR _ 2TP + FC 20

PPV.TPR 1+ B2).TP
Fy = (14 B?) ( ) _ 1+p%) 20
(B2PPV) + TPR) _ (1 + B2).TP + B2.FN + FP

1 pe_ (PPV.TPR) - o _c_(PPV TPR) ’y

05 = 1421025 . PPV + TPR) 2= >GpPV) + TPR) (22)

cic _ACC—CKe _2(TP TN —FP-FN) _ DET )z

" 1—-CKc  P-ON+N-0OP ~ (P-ON+N-0P)/2 (23)

Correction 2. CK is undefined (NaN) due to the zero division by zero (0/0) in case of P=0 and OP=0 or
N=0 or ON=0. Therefore, CK should be 0 (zero) for these cases.

TP-TN — FP - FN DET
MCC = VINFORM - MARK = = (24)
VP-OP-N-ON +P-0OP-N-ON

Correction 3. MCC is undefined (NaN) due to the zero division by zero (0/0) in case of P=0 and/or
OP=0 and/or N=0 and/or ON=0. The possible cases are more than CK’s. CK is 0 for them except the
cases specified in Correction 1 above. Therefore, MCC should also be 0 for these cases.

108



APPENDIX C

PToPI: PERIODIC TABLE OF PERFORMANCE INSTRUMENTS
(GEOMETRY POSITIONS AND FULL VIEW)

The following figure shows the positioning of the instruments according to instrument
geometries. The full view of PToPI is shown in the next page.

Figure C.1 PToPI instrument positioning according to geometry
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Figure C.2 The proposed binary-classification performance instruments exploratory table (PToPI) for

50 performance instruments including 25 measures, 24 metrics, and 1 indicator in full view.
PToPl in full view presents all the information such as canonical and/or high-level

dependency equations. See the legend for the details represented in PToPI. The full-
resolution and up-to-date version of PToPI with other extra information can be accessed

online at https://github.com/gurol/PToPl.




APPENDIX D

ANALOGY BETWEEN PToPI AND PERIODIC TABLE OF ELEMENTS

Table D.1 lists the similarities identified from the familiar source domain (periodic table of
elements) to the unfamiliar target domain (PToPl). The similarities could be in
corresponding attributes and/or relations.

Table D.1 Analogical similarities from the periodic table of elements to PToPI

Periodic Table (Source Domain) PToPI (Target Domain)
Description Tabular display of the chemical elements  Tabular display of the classification
instruments
Types Metallic (Left Bottom) Measures (Right Bottom)
Non-Metallic (Right Top) Metrics (Left Top)
Metals Nonmetals

(a) Types in Periodic Table: Metals / Nonmetals
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Table D.1 Analogical similarities from the periodic table of elements to PToPI (continued)

T .

Metrics

Measures

(b) Types in PToPI: Measures / Metrics

Periodic Table (Source Domain) PToPI (Target Domain)

Numbering

Instrument
Size and
Origins

Spatial

Grouping

Atomic number (the total number of Instrument number (sequence per

protons in the atomic nucleus)

instrument type started from low-level to
high-level, from column, row, to mixed
geometry in the same level, and according
to the location of dependent instruments)

Natural elements (The first 94 elements all 50 measures and metrics

occur naturally)

Synthesized elements (Elements 95 to 118 Indicators (ACCBAR)
have only been synthesized in laboratories

or nuclear reactors)

Periods (periodic trends in element Geometries (from column, row, to mixed)
properties such as melting point, density,

hardness)

Blocks (4 blocks): Groups having Levels (7 levels): Similar dependencies in

predominantly characterized by the highest the same instrument type
energy electrons in the same atomic orbital

type.
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Table D.1 Analogical similarities from the periodic table of elements to PToPI (continued)

(c) Grouping in Periodic Table: Blocks (s, p, d, f)

Levels:
e (o e [BRD B> 3d > 0 >
Metric Levels ‘ Measure Levels
(d) Grouping in PToPlI: Levels (base, 1st, 2nd, 3rd)
Periodic Table (Source Domain) PToPI (Target Domain)
Properties  Metallic Hard Measures Hard to interpret

Non-Metallic Soft Metrics Easy to interpret
Metallic High density Measures High precision
Non-Metallic Low density Metrics Low precision
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APPENDIX E

SURVEY SELECTION METHODOLOGY

This study surveys the following 78 academic studies that model some machine learning
Android malware classifiers and reports the performance evaluation within the last seven
years (2012-2018). The references are given in Appendix F below. Additional to 35
symposia, conference and journal articles published between 2012 and 2018 that had already
been reviewed by me, 43 articles were included by the following methodology:

o Selecting the relevant journal articles by searching the IEEE academic database with
having "((Android AND malware) AND (accuracy OR precision OR "True Positive"
OR "False Positive™) AND (Classification OR Detection))" words in articles’ title,
abstract, or body on 27 March 2018.

o Selecting the relevant conference/journal articles by searching the Google Scholar
with matching the same keywords above and reviewing the first 10 relevant articles
per year from 2012 to 2018 on May 2018 excluding the patents.

Among the relevant 78 studies, all of the articles were included in performance evaluation
terminology findings where available. For other statistics, only the applicable studies are
included as specified in Appendix F. For example, when analyzing Accuracy Barrier effect,
covered 28 studies have been covered by discarding

e the ones based on malware family detection only, dynamic malware analysis,
repackaged application detection, and machine learning evasion, because the goals,
datasets, features, and/or metric levels are different from pure static-malware
detection domain and

e the articles not reporting ACC metric.

In analyzing publication/confirmation biases, 43 studies are covered that are applicable by
eliminating

o the articles based on malware family detection only, dynamic malware analysis,
repackaged application detection, and machine learning evasion, because the goals,
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datasets, features, and/or metric levels are different from pure static-malware
detection domain and

o the articles where their confusion matrix (base measures) could not be calculated by
the reported instruments (e.g. reporting only Accuracy metric).

Note that reviewing and extracting the relevant information from the surveyed studies was
long and tiresome because each study describes their methodology and reports the result in
different ways and orders.
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APPENDIX F

REFERENCES FOR THE ANDROID MALWARE CLASSIFICATION
STUDIES SURVEYED

Table F.1 shows the reference information for the surveyed 78 studies described in
Appendix E above which is also provided in online data. The table also shows which studies
are applicable in the following analysis conducted in this study:

I.  Survey 1: Included for performance evaluation reporting analysis? (69 of 78)

Il.  Survey 1: Included for performance measures or metrics terminology usage? (55 of
78)

1. Survey 1: Included for alternative terms usage for individual metrics? (78 of 78) (see
Section 2.3.3 for Survey 1)

IV.  Case Study 1: Included for Accuracy Barrier (ACCBAR) indicator analysis (i.e. is
ACC reported)? (28 of 78) (see Section 3.11.1)

V.  Case Study 2: Included for publication/confirmation biases case study? (43 of 78)
(see Appendix H)

Table F.1 Surveyed binary classification studies

Study References | 1 " wv v

#1 Aafer, Y., Du, W., & Yin, H. (2013). DroidAPIMiner: Yes N/A Yes Yes Yes
Mining API-level features for robust malware detection in
Android. In 9th International Conference on Security and
Privacy in Communication Networks (SecureComm) (pp. 86—
103). Sydney, NSW, Australia: Springer International
Publishing

#2 Aonzo, S., Merlo, A., Migliardi, M., Oneto, L., & Palmieri, Yes Others Yes Yes Yes
F. (2017). Low-resource footprint, data-driven malware
detection on Android. IEEE Transactions on Sustainable
Computing, 3782, 1-1.
https://doi.org/10.1109/TSUSC.2017.2774184.
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Table F.1 Surveyed binary classification studies (continued)

Study References |

v

\%

#3

#4

#5

#6

#7

#8

#9

#10

#11

#12

#13

Apvrille, L., & Apvrille, A. (2015). ldentifying unknown Yes
android malware with feature extractions and classification
techniques. In 14th IEEE International Conference on Trust,
Security and Privacy in Computing and Communications
(TrustCom) (Vol. 1, pp. 182-189).
https://doi.org/10.1109/Trustcom.2015.373

Arp, D., Spreitzenbarth, M., Hubner, M., Gascon, H., & Yes
Rieck, K. (2014). DREBIN: Effective and explainable
detection of Android malware in your pocket. In Network
and Distributed System Security (NDSS) Symposium. San
Diego, California: Internet Society.
https://doi.org/10.14722/ndss.2014.23247

Aswini, A. M., & Vinod, P. (2014). Droid permission miner: Yes
Mining prominent permissions for Android malware
analysis. In The 5th International Conference on the
Applications of Digital Information and Web Technologies
(ICADIWT) (pp. 81-86). Bangalore, India: IEEE.
https://doi.org/10.1109/ICADIWT.2014.6814679

Canfora, G., De Lorenzo, A., Medvet, E., Mercaldo, F., & Yes
Visaggio, C. A. (2015). Effectiveness of opcode ngrams for
detection of multi family Android malware. In 10th
International Conference on Availability, Reliability and
Security (ARES) (pp. 333-340).
https://doi.org/10.1109/ARES.2015.57

Canfora, G., Mercaldo, F., & Visaggio, C. A. (2013). AYes
classifier of malicious Android applications. In The 8th
International Conference on Availability, Reliability and
Security (ARES) (pp. 607-614). Regensburg: IEEE.
https://doi.org/10.1109/ARES.2013.80

Cen, L., Gates, C., Si, L., & Li, N. (2015). A probabilistic Yes
discriminative model for Android malware detection with
decompiled source code. IEEE Transactions on Dependable
and Secure Computing, 12(4), 400-412.
https://doi.org/10.1109/TDSC.2014.2355839

Damshenas, M., Dehghantanha, A., Choo, K.-K. R., &Yes
Mahmud, R. (2015). MODroid: An Android behavioral-based
malware detection model. Journal of Information Privacy
and Security, 11(3), 141-157.
https://doi.org/10.1080/15536548.2015.1073510

Dash, S. K., Suarez-Tangil, G., Khan, S., Tam, K., Ahmadi, Yes
M., Kinder, J., & Cavallaro, L. (2016). DroidScribe:
Classifying Android malware based on runtime behavior. In
IEEE Symposium on Security and Privacy Workshops (SPW)
(pp. 252-261). https://doi.org/10.1109/SPW.2016.25

Demme, J., Maycock, M., Schmitz, J., Tang, A., Waksman, Yes
A., Sethumadhavan, S., & Stolfo, S. (2013). On the
feasibility of online malware detection with performance
counters. ACM SIGARCH Computer Architecture News,
41(3), 559. https://doi.org/10.1145/2508148.2485970

Demontis, A., Melis, M., Biggio, B., Maiorca, D., Arp, D., Yes
Rieck, K., ... Roli, F. (2017). Yes, machine learning can be
more secure! A case study on Android malware detection.
IEEE Transactions on Dependable and Secure Computing,
PP(99), 1-14. https://doi.org/10.1109/TDSC.2017.2700270
Deshotels, L., Notani, V. & Lakhotia, A. (2014).Yes
DroidLegacy: Automated familial classification of Android
malware. In 3rd ACM SIGPLAN on Program Protection and
Reverse Engineering Workshop (PPREW) (pp. 1-12). San
Diego, CA, USA: ACM.
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Table F.1 Surveyed binary classification studies (continued)
Study References | 1 " 1w v

https://doi.org/10.1145/2556464.2556467

#14 Dimjasevic, M., Atzeni, S., Ugrina, |, & Rakamaric, Z. Yes Measures Yes N/A N/A
(2016). Evaluation of Android malware detection based on
system calls. In International Workshop on Security and
Privacy Analytics (IWSPA@CODASPY) (pp. 1-8). New
Orleans, LA: ACM.
https://doi.org/10.1145/2875475.2875487

#15 Du, Y. A. O.,, Wang, J.,, & Li, Q. I. (2017). An Android Yes Metrics Yes N/A Yes
malware detection approach using community structures of
weighted function call graphs. IEEE Access, 5, 17478—
17486. https://doi.org/10.1109/ACCESS.2017.2720160

#16 Elish, K. O., Shu, X., Yao, D., Ryder, B. G., & Jiang, X. Yes Others Yes N/A N/A
(2015). Profiling user-trigger dependence for Android
malware detection. Computers and Security, 49(540), 255—
273. https://doi.org/10.1016/j.cose.2014.11.001

#17 Fan, M., Liu, J., Luo, X., Chen, K., Tian, Z., Zheng, Q., & Yes Metrics Yes N/A N/A
Liu, T. (2018). Android malware familial classification and
representative sample selection via frequent subgraph
analysis. IEEE Transactions on Information Forensics and
Security, 13(8), 1890-1905.
https://doi.org/10.1109/T1FS.2018.2806891

#18 Fan, M., Liu, J., Wang, W., Li, H., Tian, Z., & Liu, T.Yes Metrics Yes N/A N/A
(2017). DAPASA: Detecting Android piggybacked apps
through sensitive subgraph analysis. IEEE Transactions on
Information Forensics and Security, 12(8), 1772-1785.
https://doi.org/10.1109/TIFS.2017.2687880

#19 Feizollah, A., Badrul, N., & Salleh, R. (2017).Yes Others Yes N/A Yes
AndroDialysis: Analysis of Android intent effectiveness in
malware detection. Computers & Security, 65, 121-134.
https://doi.org/10.1016/j.cose.2016.11.007

#20 Feng, Y., Anand, S., Dillig, 1., & Aiken, A. (2014).Yes N/A Yes N/A N/A
Apposcopy: Semantics-based detection of Android malware
through static analysis. In 22nd ACM SIGSOFT International
Symposium on Foundations of Software Engineering (FSE
2014) (pp. 576-587). Hong Kong: ACM.
https://doi.org/10.1145/2635868.2635869

#21 Garcia, J., Hammad, M., & Malek, S. (2018). Lightweight, Yes Metrics Yes N/A Yes
obfuscation-resilient detection and family identification of
Android malware. ACM Transactions on Software
Engineering and Methodology, 26(3), 1-29.
https://doi.org/10.1145/3162625

#22 Gascon, H., Yamaguchi, F., Rieck, K., & Arp, D. (2013). Yes Measures Yes N/A N/A
Structural detection of Android malware using embedded call
graphs. In ACM Workshop on Artificial Intelligence and
Security (pp. 45-54). New York, New York, USA: ACM.
https://doi.org/10.1145/2517312.2517315

#23 Ge, H., Ting, L., Hang, D., Hewei, Y., & Miao, Z. (2014). Yes N/A Yes N/A Yes
Malicious code detection for Android using instruction
signatures. In 8th International Symposium on Service
Oriented System Engineering (SOSE) (pp. 332—-337). Oxford,
UK: IEEE. https://doi.org/10.1109/SOSE.2014.48

#24 Glodek, W., & Harang, R. (2013). Rapid permissions-based Yes N/A Yes N/A Yes
detection and analysis of mobile malware using random
decision forests. In Military Communications Conference
(MILCOM) (pp. 980-985). San Diego, CA: IEEE.
https://doi.org/10.1109/MILCOM.2013.170

#25 Ham, H.-S., & Choi, M.-J. (2013). Analysis of Android Yes Metrics Yes N/A N/A
malware detection performance using machine learning
classifiers. In International Conference on ICT Convergence
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Table F.1 Surveyed binary classification studies (continued)
Study References | 1 " 1w v

(ICTC) (pp. 490-495). Jeju: IEEE.
https://doi.org/10.1109/ICTC.2013.6675404

#26 Jerome, Q., Allix, K., State, R., & Engel, T. (2014). Using Yes Both Yes N/A Yes
opcode-sequences to detect malicious Android applications.
In  Communication and Information Systems Security
Symposium  (IEEE ICC  2014) (pp. 914-919).
https://doi.org/10.1109/1CC.2014.6883436

#27 Kirubavathi, G., & Anitha, R. (2018). Structural analysis and Yes Both Yes Yes N/A
detection of android botnets using machine learning
techniques. International Journal of Information Security,
17(2), 153-167. https://doi.org/10.1007/s10207-017-0363-3

#28 Li, J., Sun, L., Yan, Q., Li, Z., Srisa-an, W., & Ye, H. (2018). Yes Both Yes Yes Yes
Significant permission identification for machine learning
based Android malware detection. IEEE Transactions on

Industrial Informatics, 14(7), 3216-3225.
https://doi.org/10.1109/T11.2017.2789219
#29 Liang, S., & Du, X. (2014). Permission-combination-based Yes N/A Yes N/A Yes

scheme for Android mobile malware detection. In IEEE
International Conference on Communications (ICC) (pp.
2301-2306). Sydney, NSW, Australia: IEEE.
https://doi.org/10.1109/1CC.2014.6883666

#30 Liu, X., & Liu, J. (2014). A two-layered permission-based Yes Metrics Yes Yes Yes
Android malware detection scheme. In 2nd International
Conference on Mobile Cloud Computing, Services, and
Engineering (MobileCloud) (pp. 142-148). Oxford, UK:
IEEE. https://doi.org/10.1109/MobileCloud.2014.22

#31 Lu, Y., Zulie, P, Jingju, L., & Yi, S. (2013). Android Yes N/A Yes Yes Yes
malware detection technology based on improved Bayesian
classification. In The 3rd International Conference on
Instrumentation, Measurement, Computer, Communication
and Control (IMCCC) (pp. 1338-1341). Shenyang: IEEE.
https://doi.org/10.1109/IMCCC.2013.297

#32 Mahindru, A., & Singh, P. (2017). Dynamic permissions- Yes Both Yes N/A Yes
based Android malware detection using machine learning
techniques. In 10th Innovations in Software Engineering
Conference (ISEC) (pp. 202-210). Jaipur, India: ACM.
https://doi.org/10.1145/3021460.3021485

#33 Martinelli, F., Mercaldo, F., & Saracino, A. (2017). Yes N/A Yes Yes N/A
BRIDEMAID: An hybrid tool for accurate detection of
Android malware. In Asia Conference on Computer and
Communications Security (ASIA CCS) (pp. 899-901). Abu

Dhabi, United Arab Emirates: ACM.
https://doi.org/10.1145/3052973.3055156
#34 Matsudo, T., Kodama, E., Wang, J., & Takata, T. (2012). A Yes N/A Yes N/A Yes

proposal of security advisory system at the time of the
installation of applications on Android OS. In International
Conference on Network-Based Information Systems (pp.
261-267). Melbourne, VIC: IEEE.
https://doi.org/10.1109/NBiS.2012.110

#35 Meng, G., Xue, Y., Xu, Z., Liu, Y., Zhang, J., & Narayanan, Yes Others Yes N/A Yes
A. (2016). Semantic modelling of Android malware for
effective  malware  comprehension,  detection, and
classification. In 25th International Symposium on Software
Testing and Analysis (ISSTA) (pp. 306-317). Saarbriicken,
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APPENDIX G

SUMMARY OF BENCHMETRIC RESULTS

Table G.1 shows the summary of BenchMetric results per binary-classification performance
metrics according to the criteria in three stages.

Table G.1 Summary of BenchMetric results

Robustness Stage-1 Stage-2 Stage-3
Rank Metrics |1.1/1.2|1.3|2.1|2.2|2.3|2.4|2.5(2.6|2.7|2.8|2.9|2.10|2.11|3.1|3.2|3.3|3.4|3.5|3.6|3.7
R o
3 BACC
4 INFORM
5
6
7
8
9
10
I
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Metric
(Rank)

Table G.2 Summary of robustness issues in metrics (in alphabetic order)

Robustness issues

ACC (7th)

BACC
(3rd)

CK (2nd)

F1 (8th)

G (6ht)

INFORM

(4th)

MARK
(5th)

NaN in some extreme cases, Missing class or outcome coverage, Insensitive to one or
more base measures, Low granular output coverage in metric-spaces, Less smooth metric-
spaces, Less consistent with other metrics

(+) Same mean, median, and mode in metric-space, Missing class or outcome coverage,
Insensitive to one or more base measures, Has monotonicity violations, Completely
consistent with INFORM

NaN in some extreme cases, Unsymmetrical metric-space, Imbalanced or low correlations
with individual base measures, Has minor monotonicity violations, Less consistent with
other metrics

NaN in some extreme cases, Unsymmetrical metric-space, Accumulation at zero,
Insensitive to one or more base measures, Inconsistency in swapping base measures,
Imbalanced or low correlations with individual base measures, Correlated with PREV,
Low granular output coverage in metric-spaces, Less consistent with other metrics

Unsymmetrical metric-space, Accumulation at zero, Missing class or outcome coverage,
Insensitive to one or more base measures, Imbalanced or low correlations with individual
base measures, Less consistent with other metrics, The least discriminating metric

(+) Same mean, median, and mode in metric-space, Missing class or outcome coverage,
Insensitive to one or more base measures, Has monotonicity violations, Completely
consistent with BACC

(+) Same mean, median, and mode in metric-space, Missing class or outcome coverage,
Insensitive to one or more base measures, Has monotonicity violations, Less consistent
with other metrics

MCC (1st) NaN in some extreme cases

nMl
(13th)

NPV
(11th)

PPV
(12th)

TNR (9th)

TPR
(10th)

High values when FP and FN are higher than TP and TN, Unsymmetrical metric-space,
Inconsistency in swapping base measures, Highly right-skewed metric-space, The lowest
correlation with individual base measures, Less smooth metric-spaces, Has considerable
monotonicity violations, The least consistent with other metrics, The most discriminating
metric

Missing class or outcome coverage, Single-class-only (P-only or N-only), Insensitive to
one or more base measures, Imbalanced or low correlations with individual base measures,
Correlated with PREV, Low granular output coverage in metric-spaces, Less consistent
with other metrics

Missing class or outcome coverage, Single-class-only (P-only or N-only), Insensitive to
one or more base measures, Imbalanced or low correlations with individual base measures,
Correlated with PREV, Low granular output coverage in metric-spaces, Less consistent
with other metrics

Missing class or outcome coverage, Single-class-only (P-only or N-only), Insensitive to
one or more base measures, Imbalanced or low correlations with individual base measures,
Low granular output coverage in metric-spaces, Less consistent with other metrics

Missing class or outcome coverage, Single-class-only (P-only or N-only), Insensitive to
one or more base measures, Imbalanced or low correlations with individual base measures,
Low granular output coverage in metric-spaces, Less consistent with other metrics
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APPENDIX H

CASE STUDY 2: REPORTING BIAS IN CLASSIFICATION
PERFORMANCE REPORTING

In the last decade, few studies have been conducted to criticize performance evaluation
approaches in different domains. For example, Shepperd points out that ML researchers in
software engineering especially concentrate on repeating experiments on new data until
getting a better result for their classifier and publishing them (Shepperd, 2013, p. 9). His
extensive survey reveals that classifiers actually perform poorly if their performances are
expressed by MCC:

e MCC is even negative for 4.3% of the classifiers and MCC < 0.1 for 25%.

o Only, three percent of the publications reviewed had a performance greater than 0.7
when the reported performances were expressed with MCC (Shepperd, 2013, p. 22).

e The classifiers in two published studies have —0.50 and —0.47 MCC performances
and one study reporting its performance with TPR, PPV, and ACC metrics as 0.68,
0.62, 0.64, respectively has actually 0.29 MCC.

From a general research perspective, it is possible to encounter binary classification studies
that did not report the confusion matrix. Thus, we cannot know their performances in terms
of other metrics. For example, what if we could re-evaluate existing classification studies in
terms of MCC as the most robust metric determined in BenchMetric. Specifically, preferring
a metric among the possible ones may cause confirmation and/or publication biases in the
literature.

Note that this chapter makes contributions addressing the following research questions:

e What are the problems in performance evaluation reporting? (RQ1)
How to enhance comprehending, using, representing, reporting, learning, and
teaching binary-classification performance instruments? (RQ3)

e What should be reported for expressing classification performance? (RQ4).
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Equations Revealing Confusion Matrix

This thesis introduces the equations to reveal confusion matrix or base measures with given
performance instruments. Having base measures allows calculating any performance
instrument including the ones that are not reported in the original study. Note that the
equations that are given below and some additional facilities in a developed R script
(TasKarMissing.R) are provided online at https://github.com/gurol/TasKar.

The followings list 18 equations to calculate TP, FP, FN, and TN for 8 different
combinations of given measures and metrics. To the best of my knowledge, such equations
are provided for the first time in the literature. Most of the combinations address the cases
found in articles reporting classification performance as reviewed in the case study domain
(Android mobile malware detection) summarized in Table 2.2.

I) Given P, N, TPR, and FPR

TP = TPR.P (H.1)
FP = FPR.N (H.2)
FN =P —TP (H.3)
TN = N — FP (H.4)
I1) Given P, N, TPR, and PPV
TP = TPR.P (H.5)
FP =TP (L - 1) (H.6)
PPV
FN via (H.3) and TN via (H.4)
I11) Given P, N, TPR, and ACC
TP via (H.5) and FN via (H.7)
TN = ACC(P + N) — TP (H.7)
FP=N—-TN (H.8)
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IV) Given P, N, ACC, and FPR

FP = FPR.N (H.9)
TN via (H.4)
TP = ACC(P + N) — TN (H.10)

FN via (H.3)

V) Given P, N, ACC, and F1

P ((P +N).(1 —ACC).F1> (H.12)
2.(1-F1)
TN via (H.7), FN via (H.3), and FP via (H.8)
VI) Given P, N, BIAS, and TPR
TP via (H.5)
FP = BIAS(P + N) — TP (H.12)
FN via (H.3) and TN via (H.4)
VII) Given Sn, FPR, FNR, and ACC
Sn. (1 — ACC — FPR
FN = FNR. ( PR ) (H.13)
FP = FPR. (Sn - ﬂ) (H.14)
FNR
P = FNR.FN (H.15)
N = FPR.FP (H.16)
TP =P —FN (H.17)
TN via (H.4)
VIII) Given P, TPR, FPR, and ACC
= oct -1 (19

Apply the equations in (1) or (111).

129



The calculated base measures are fractional and converted into integers by ensuring
TP+ FN is equal to given P and TN + FP is equal to given N value. Rounding the
calculated base measures can cause under or over totals in classes. For example, for given
P = 25, the calculated TP = 12.25 and FN = 12.39 yield TP + FN = 12+12 = 24 < P = 25,
Therefore, | designed and developed a procedure to handle different cases. Refer to the
documentation in TasKarMissing.R script for more information.

Using provided script, researchers can easily test the classification studies in a domain they
study and reveal the confusion matrix of the studies to analyze further (e.g., checking
whether a publication bias and/or confirmation bias exist).

Table H.1 Classification report information for an example of classification studies to reveal
confusion matrix

Study Config N P TP FP FEN TN TPR TNR FPR FNR ACC PPV NPV F1

s01 1 261 180 0.956 0.621
s01 2 261 180 0.467 0.13
s02 1 500 500 0.8 0.75

“Study” column represents the individual studies to be surveyed that are typically related to
an article. “Config” column is the order number determining the specific configuration of a
classifier. For example, in a single study (e.g., “s01”), one configuration (Config = 1)
belongs to a decision tree classifier whereas the other configuration (Config = 2) belongs to a
support vector machines classifier. “N” and “P” depicts the number of negative and positive
class samples. Other columns specify any measure or metric reported by the studies. In both
of the configurations of the first study, for example, only TPR and TNR were reported
whereas the second study reported TPR and ACC.

The following is the code snippet to reveal the confusion matrix in R by sourcing the
provided script (TasKarMissing.R).

# Copy the values in the spreadsheet provided like in Table H.l.
survey <- rclip()

# Set problematic metrics as NA

# (for example, the ones cause exceptions in initParsedMetrics)
# survey$F1[44] <- NA

# Reveal confusion matrixes

parsed base metrics <- revealConfusionMatrixes (survey)

## Or reveal confusion matrixes by excluding mismatching Sns
parsed base metrics <- revealConfusionMatrixes (survey, FALSE)

Results

The equations introduced in this chapter are tested in a case study by running the provided
API. The case study domain is Android mobile malware detection as surveyed in
Section 2.3. The base measures of 43 surveyed studies listed in Appendix F. Table H.2 lists
the highly varied distributions of individual and combination of metrics reported in 43
studies.
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Table H.2 The distribution of metrics/combinations of metrics reported in 43 binary classification
studies surveyed

Individual Metrics |23 Different Metric Combinations

TPR 84%(TPR, PPV, F1 14%([TPR, PPV 5%/ACC, F1 2%
FPR 65%(TPR, FPR 14%([TPR, PPV, F1, TNR, NPV 2%ACC, TNR 2%
ACC 47%TPR, FPR, ACC 9%([TPR, FPR, ACC, FNR 2%|FPR, ACC 2%
PPV 429%TPR, FPR, ACC, FNR, TNR T%|TPR, FPR, ACC, PPV 2%[FPR, FNR 2%
F1 33%TPR, FPR, ACC, PPV, FNR, TNR 5%[TPR, FPR, FNR, TNR 2%[TPR, ACC 2%
FNR 23%TPR, FPR, ACC, PPV, F1 5%|TPR, ACC, PPV 2%[TPR, TNR 2%
TNR 219%TPR, FPR, PPV, F1 5%|TPR, FPR, F1 2%[F1 2%
NPV 2%FPR, ACC, FNR 5%|TPR, FPR, PPV 2%

The following steps are conducted in this case study:
o Prepare the classification report information list like Table H.1
e Using the provided API on the report information list
o Reveal the base measures
o Re-calculate unreported performance metrics based on the base measures

o Extract the maximum value of the metrics originally reported per surveyed study
(Mmax)

e Compare the re-calculated MCC' (normalized MCC in [0, 1] range) as a robust
metric and the maximum reported metric as the published metric.

Figure H.1 shows the results of the case study. The prepared graphic shows the difference
between Mmax and MCC'. The deltas (Mmax — MCC" ) are shown in Y-axis and the studies are
sorted according to deltas in decreasing order.

The case study uncovers a critical issue in performance reporting. The findings suggest that
some studies might report classification performances in terms of the metrics with amplified
values. Among the studies, 23% reports a metric that is more than MCC above 0.05, which is
a significant difference in classifications targeting top performance in [0.95, 1.00] range. The
maximum difference (delta) is unexpectedly 0.37 following 0.26, 0.13, 0.12, and 0.09 in all
the studies.

The researchers might have not known that MCC is the most robust metric and/or followed
the conventions in choosing a performance metric. However, this could also be interpreted as
a potential sign of reporting biases such as publication bias or confirmation bias that should
be avoided in any case.

Publication bias is a tendency of the researchers to preferentially include in their study
reports findings conforming to their preconceived notions, or outcomes preferred by the
other parties around academic publication process such as journals, reviewers, and editors
(Porta, 2014, p. 230). Authors who may feel the need to achieve high performance to be able
to publish their studies could use metrics with higher outcomes.

131



M,

max

0.95

0.9

delta,; = 0.05

0.85

o delta,=M,,,—MCC'
0.75

delta, = 0.37

0.7

0.65

0.6

Figure H.1 Performance exaggeration via non-robust metrics reporting demonstrated on the surveyed
43 studies. Differences between the maximum of the metrics reported (Mmax, €.g., TPR among TPR
and ACC) and revealed MCC' (normalized MCC).

Confirmation bias may occur when evidence (e.g., non-robust performance metrics) that
supports one’s preconceptions is evaluated more favorably than evidence that challenges
these convictions (e.g., robust metrics) (Porta, 2014, p. 54). The high expectations for an
experiment can affect many phases including interpreting and reporting the results (van
Wilgenburg & Elgar, 2013, p. 1).

This thesis provides a convenient method to investigate the presence of confirmation bias in
ML-based classification studies in a broad range of application domains. It also has
demonstrated that mobile malware detection studies seem to be prone to confirmation biases.
It is expected that this method will be applied in different domains to see whether such
biases exist.
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