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ABSTRACT 

MULTI-PERSPECTIVE ANALYSIS AND SYSTEMATIC BENCHMARKING 

FOR BINARY-CLASSIFICATION PERFORMANCE EVALUATION 

INSTRUMENTS 
 

 

Canbek, Gürol 
Ph.D., Department of Information Systems 

Supervisor: Assoc. Prof. Dr. Tuğba Taşkaya Temizel 

Co-Supervisor: Prof. Dr. Şeref Sağıroğlu 

 

 

 

September 2019, 136 pages 

 

 

 

This thesis proposes novel methods to analyze and benchmark binary-classification 

performance evaluation instruments. It addresses critical problems found in the literature, 

clarifies terminology and distinguishes instruments as measure, metric, and as a new 

category indicator for the first time. The multi-perspective analysis introduces novel 

concepts such as canonical form, geometry, duality, complementation, dependency, and 

leveling with formal definitions as well as two new basic instruments. An indicator named 

Accuracy Barrier is also proposed and tested in re-evaluating performances of surveyed 

machine-learning classifications. An exploratory table is designed to represent all the 

concepts for over 50 instruments. The table’s real use cases such as domain-specific metrics 

reporting are demonstrated. Furthermore, this thesis proposes a systematic benchmarking 

method comprising 3 stages to assess metrics’ robustness over new concepts such as meta-

metrics (metrics about metrics) and metric-space. Benchmarking 13 metrics reveals 

significant issues especially in accuracy, F1, and normalized mutual information 

conventional metrics and identifies Matthews Correlation Coefficient as the most robust 

metric. The benchmarking method is evaluated with the literature. Additionally, this thesis 

formally demonstrates publication and confirmation biases due to reporting non-robust 

metrics. Finally, this thesis gives recommendations on precise and concise performance 
evaluation, comparison, and reporting. The developed software library, 

analysis/benchmarking platform, visualization and calculator/dashboard tools, and datasets 

were also released online. This research is expected to re-establish and facilitate 

classification performance evaluation domain as well as contribute towards responsible open 

research in performance evaluation to use the most robust and objective instruments. 

 

Keywords: Binary-classification, performance evaluation, performance metrics, machine 

learning, artificial intelligence 
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ÖZ 

İKİLİ SINIFLANDIRMA BAŞARIM DEĞERLENDİRME ARAÇLARI İÇİN 

ÇOK PERSPEKTİFLİ ANALİZ VE SİSTEMATİK KIYASLAMA 
 

 

Canbek, Gürol 

Doktora, Bilişim Sistemleri Bölümü 

Tez Yöneticisi: Doçent Dr. Tuğba Taşkaya Temizel 

Ortak Tez Yöneticisi: Prof. Dr. Şeref Sağıroğlu 

 

 

 

Eylül 2019, 136 sayfa 

 

 

 

Bu tez, ikili sınıflandırma başarım değerlendirme araçlarının analizi ve kıyaslanması için 

yeni yöntemler önermektedir. Literatürden tespit edilen kritik sorunları ele alan çalışma, 

terminolojiyi açıklığa kavuşturmakta ve araçları ilk kez ölçü, ölçüt ve yeni bir kategori 

olarak gösterge şeklinde ayırt etmektedir. Çok perspektifli çözümleme; iki yeni araçla 

beraber kanonik biçim, geometri, ikilik, tümleme, bağımlılık ve seviyelendirme gibi yeni 

kavramları resmî tanımlarla tanıtmaktadır. Ayrıca, Doğruluk Engeli adında yeni bir gösterge 

önerilmekte ve etüt edilen makine öğrenmesi sınıflandırma çalışmaları üzerinden 

değerlendirilmektedir. Tüm önerilen kavramları 50 başarım aracı için gösteren bir keşif 

tablosu tasarlanmış ve tablonun sahaya özgü ölçütler gibi gerçek kullanım durumları 

gösterilmiştir. Tez, meta-ölçütler (ölçütler hakkında ölçütler) ve metrik uzayı gibi yeni 

kavramlarla ölçütlerin gürbüzlüğünü değerlendirmek ve karşılaştırmak için 3 aşamadan 

oluşan sistematik bir kıyaslama yöntemi önermektedir. 13 ölçütün kıyaslanması; doğruluk, 

F1 ve normalleştirilmiş karşılıklı bilgi gibi yaygın kullanılan ölçütlerde kayda değer 

sorunları ortaya çıkarmakta ve Matthews Korelasyon Katsayısını en gürbüz ölçüt olarak 

belirlemektedir. Kıyaslama yöntemi, literatür ile karşılaştırılarak etraflı bir şekilde 

değerlendirilmiştir. Tez çalışmasında gürbüz olmayan ölçütlerin kullanımından kaynaklanan 
yayın önyargısı ve doğrulama sapması da resmî bir şekilde gösterilmektedir. Son olarak tez; 

kesin ve öz başarım değerlendirme, raporlama ve karşılaştırma konusunda önerilerde 

bulunmaktadır. Geliştirilen yazılım kütüphanesi, analiz/kıyaslama platformu, görselleştirme 
ve ölçüt hesaplama/gösterge araçları ve veri kümeleri çevrimiçi olarak yayımlanmıştır. Bu 

çalışmanın, ikili sınıflandırma başarım değerlendirme alanını temelden yeniden kurması ve 

kolaylaştırması yanında başarım değerlendirmesinde en gürbüz ve nesnel araç kullanımı ile 

sorumlu açık araştırmaya katkıda bulunması beklenmektedir. 

 

 

Anahtar Kelimeler: İkili sınıflama, başarım değerlendirme, başarım ölçütleri, makine 

öğrenmesi, yapay zekâ 
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INTRODUCTION 

This thesis is the result of a work spanning over five years. As a result of examining the 

relevant literature regarding the classification process of machine learning-based Android 

mobile malware detection, I saw important problems in applied methodologies and 

considerable gaps in the literature within each phase such as classification problem-domain 

taxonomies, sample collection and preprocessing, feature extraction and engineering, 

building datasets, modeling machine learning algorithms, and finally performance evaluation 

and tried to propose a systematic overall process. Afterward, looking further into the 

literature for each phase, independent from the classification problem domain, I found that 

there are significant problems in performance evaluation and hence focused on the 

performance evaluation instruments completely. 

Thus, this thesis examines binary-classification performance evaluation instruments that are 

accepted as primary references which all researchers use to see what achieved for their 

evaluations as well as to refer them in reporting, comparing, and highlighting the 

performances. To begin with, briefly, no study in the literature makes a comprehensive 

evaluation of binary-classification performance evaluation instruments. Considering my 

literature review as well as observations, we (with my advisors) have seen that performance 

evaluation instruments should be revised again and so this has become the main motivation 

of the thesis. 

Due to the new developments and increasing interest in machine learning algorithms such as 

deep learning, many researchers use or propose new machine learning algorithms for various 

problems. Since the general focus is on improving classification performance in a problem 

domain with their proposed methodology, researchers often refer to the metrics previously 

utilized in the papers they cited and do not question pertinence of these metrics for their 

problem. For example, some might claim 98% success with accuracy but another 

classification method in the same dataset could appear to achieve higher performance when a 

more appropriate metric is chosen. 

With this respect, some practical questions such as “Are we sure of the instrument we used 

as a performance metric?”, “What are the drawbacks of specific instruments?”, “Is it an 

objective reference?”, “Does it match our specific requirements or goals?”, or “Is there any 

aspect that might affect the classification performance other than the metric used?” are not 

discussed or addressed in the previous studies. 

Hence, researchers continue to use the legacy or stock metrics in existing domains or choose 

the metrics reported by previous works in new domains which are also inspired by other 

existing domains. For example, it is hardly possible to see a different metric other than F1 
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reported in information retrieval domain. At the same time, it is difficult to know the reason 

behind using F1 in other domains. Likewise, accuracy is still the most preferred metric in 

most of the domains. Note that the same problems are also valid in multi-label and/or multi-

class classification performance evaluation. 

Therefore, we can add theoretical or methodological questions about performance evaluation 

into the practical ones aforementioned above: “Do we agree on basic concepts, definitions 

and methods about performance instruments?”, “How to act while reporting the performance 

of a classification study or comparing among studies?”, “What other problems can be 

expected in performance evaluation?” or considering a large number of studies in the 

literature and ongoing researches and practices within each domain, “How can we be sure 

that scientific measurable progress is made?”. The literature does not elaborate on these 

questions specifically. Worse, as easily observed in any domain, a wide-spread confusion is 

seen even in fundamental terminology. Based on this main motivation, this thesis revisits 

performance evaluation more comprehensively and systematically and redefines the 

performance evaluation instruments from a broad perspective. 

In all these respects, this thesis offers a new perspective to the literature by validating with 

scientific methods. The thesis is structured around this motivation and the research is guided 

by the following main research question: 

RQ: How to establish and improve our knowledge on binary-classification performance 

instruments comprehensively and systematically in order to enable researchers to make 

informed decisions on choosing the right instrument(s) and follow objective approaches in 

performance evaluation, reporting, and comparison? 

Binary-classification performance evaluation corresponds to the evaluation phase in CRISP-

DM (CRoss-Industry Standard Process for Data Mining) comprising 

• business understanding, 

• data understanding, 

• data preparation, 

• modeling, 

• evaluation, and 

• deployment 

phases (Huber, Wiemer, Schneider, & Ihlenfeldt, 2019). 

As anyone who studies and conducts experiments in machine learning (ML) based binary-

classification problems confirms that performance evaluation is an overlooked activity in the 

entire knowledge discovery process or ML workflow compared to others including data 

preparation/cleaning in preprocessing, feature engineering, and model building. Researchers 

usually focus, put efforts, and spends time on collecting samples, preprocessing, building 

and mining datasets, and refining the ML algorithms (CrowdFlower, 2016, 2017). 

Considering performance evaluation, choice of a performance evaluation metric among a 

large number of alternatives is conventional or not explicit in many domains. Practitioners, 

as well as researchers, most likely think that performance evaluation is a well-studied and 

established topic without any uncertainties. For the practitioners, “accuracy” or “true 
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positive rate” names might have a clear and convincing meaning for evaluating the 

performance of their classification applications1. 

From the research perspective, on the other hand, performance evaluation as a domain seems 

to have no area to improve or no gap to study further. The following headings highlight the 

seven main problems that are observed both in the literature and in practice and addressed in 

this thesis. Note that most of the problems are also clearly demonstrated over a case study 

domain in Section 2.3 and the preliminaries are summarized in Section 2.1. The main 

research question was formed based on the prominent arguments in these problems. 

Note that italic terms are the performance instruments that have a limited range (e.g., ACC in 

[0, 1]) whereas bold-italic terms refer to measures without a lower and/or upper limited (e.g., 
FP = 44) and bold-only terms refer to corresponding metric-space that is proposed in this 

study (e.g., MCC, see Section 5.1.1). 

1. Confusing terminology: performance measure or performance metric? 

In a general perspective, performance instruments are expressed by various terms such as 

“performance metrics”, “performance measures”, “evaluation measures”, and “prediction 

scores”, etc. Performance evaluation based on 2x2 contingency table is named as “diagnostic 

accuracy” or “test accuracy” in medicine (van Stralen et al., 2009) or “skill score” or 

“forecast skill” in meteorology (forecast vs. observation classes) (Wilks, 2006). 

Classification term itself is called as “categorization” in philosophy and statistics (Sammut & 

I.Webb, 2011). The lack of consensus in naming the instruments indicates a fundamental 

problem in performance evaluation. 

Historically, evaluating the trends of different phrases expressed in the corpus of one million 

English books between 1930 and 2008 (Michel et al., 2011); “performance measure(s)”, 

“performance indicator(s)”, and “performance metric(s)” are the most frequent 

terminologies, which have been used since the 1950s, 1960s, and 1980s, respectively as 

shown in Figure 1.1 2 . Other evaluated phrases are “performance score”, “evaluation 

measure”, “skill score”, “forecast score”, and “prediction score”. Thus, “performance 

metric” is rather a new phrase. 

Concerning the literature in classification scope; it is observed that “measures”, “indicators”, 

“metrics”, “scores”, “criteria”, “factors” or “indices” terms are used interchangeably. Even 

the studies related to classification performance use the related terms (especially 

“performance measures” and “performance metrics”) interchangeably. There are review 

studies expressing performance instruments with different notations, abbreviations, and 

symbols (Powers, 2011). 

 

 
1  Nevertheless, confusion might also occur when it comes to different naming of the instruments such as 

“precision”, “recall”, “sensitivity”, “specificity”, “strength”, “efficiency”, etc. 

2 The books can be in any subject apart from classification performance. 
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Figure 1.1 The trend of phrases mentioned in books: “False Positive” vs. “False Negative” and 

“Performance Measure” vs. “Performance Indicator” vs. “Performance Metric”. 

2. Disregarding negative-class performance, domain-specific tradeoffs, and end-user 

requirements  

Performance of a classifier can be examined from the standpoint of failure instead of 

success. In this case, the number of false-classifications in positive and negative classes 

namely type I errors (FP) and type II errors (FN), respectively, become the foremost 

concern. However, it is common that type I errors are the main focus and type II errors are 

disregarded. Interestingly, for instance, people are more interested in type I errors than type 

II errors according to Google search engine trends since 2004 (78:29 on average) as shown 

in Figure 1.2. 

 

 

Figure 1.2 The search trends showing the interests to “false positive” and “false negative” according 

to Google search data worldwide between 2004 and September 2017. Y-axis shows the popularity of 

the search between 0% (none) to 100% (maximum) 
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The following are the top search suggestions associated with “False Positive in” and “False 

Negative in” phrases that I extracted in the Google search engine at the time of writing: 

• Type I error / “False Positive in”: pregnancy test, network security, ELISA or HIV 

test, security, Anti-Money Laundering (AML), visual field test, psychology, indirect 

Coombs test, logistic regression, and software testing. 

• Type II error / “False Negative in”: security, statics, a classification table, network 

security, psychology, software testing, object detection, and early pregnancy. 

Each example areas actually shows the performance priorities of the end-users that should be 

considered for performance evaluation of the classifiers modeled in that scope. In some 

fields such as security, network security, and psychology, the top searches appearing in both 

error types suggest that those fields put equal emphasis on both types of errors. Thus, a 

successful classifier accepted by end-users in network security (e.g., a network intrusion 

detection system), for instance, should minimize both error types, therefore the performance 

should be evaluated from both perspectives. Note that the trends can change afterward. 

The dominance of type I errors over type II errors can also be seen in the corpus of English 

books from 1930 to 2008 as shown in Figure 1.1 above. Provided figures show that a sort of 

related knowledge supply (i.e. written books) and corresponding knowledge demand (i.e. 

search queries) attach more importance to false positives (type I errors) than false negatives 

(type II errors). 

Besides, a tradeoff between type I and type II errors might be observed in each domain and 

its specific applications. Such as; 

• In critical engineering and especially in medical research, type II errors can be more 

serious or worse than type I errors (e.g., breast cancer diagnosis (N. Liu, Qi, Xu, 

Gao, & Liu, 2019)). 

• In information retrieval applications such as document filtering, false positives 

might be critical (Kenter, Balog, & De Rijke, 2015). 

• In malware analysis, it could be better to mistakenly label a “benign” software as 

“malign” (also known as malicious software or malware) than miss a malign 

software by incorrectly labeling it as benign (lower FP or type I error). Because 

labeled malware could be prioritized and an expert could go through further manual 

malware analysis to eliminate false positives (Yerima, Sezer, & McWilliams, 2014). 

• An anti-malware product should be designed or configured to decrease FP to avoid 

annoying interruptions due to excessive malware warnings. 

• In law or social perspective, the opposite (i.e. low type II errors against high type II 

errors) is likely to be valid to ensure the presumption of innocence in the same way 

as precautionary logic focuses on more underestimates (FN) than overestimates 

(FP) in criminal justice (Lomel, 2012). 

Some classification applications might care for both error types equally. Thus, a performance 

instrument that is sensitive to both types should be used. Briefly, researchers might choose 

instruments without knowing the domain tradeoffs and user requirements and matching them 
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to the chosen instruments. Hence, the expected performance of a classification application 

might not consider domain-specific conditions and end-users’ perspectives. 

3. Using instruments without being aware of the pros and cons 

The performance instruments are selected according to the conventions per domains (e.g., F1 

is frequently used in information retrieval domain) or the researchers unconsciously follow 

the practices of previous studies they would like to improve. The weak and strong 

characteristics of the instruments are not explicit in a broad perspective. Some instruments 

do not behave as expected in certain conditions or from specific aspects and mislead both 

authors and readers. For example, accuracy exhibits high performance in class imbalanced 

datasets (i.e. the number of positive samples are less than the negative ones). 

Continuing using such stock instruments such as true positive rate or accuracy generates a 

saturation where the proposed classifiers’ performances become closer to a maximum value 

(e.g., 0.99 accuracy) that blurs the distinguished achievement of a remarkable study. 

Researchers need more granular instruments to identify the best classifier. Moreover, which 

performance instruments should be preferred is unknown if the standpoint of achievement 

(i.e. practical goal of a binary classification application) shifts into other aspects instead of in 

favor of true positives only such as 

• False classifications or error types (false positive and false negative or type I and 

type II errors), 

• Negative class performance at the same weight as for positive class, and/or 

• Eliminating other external factors such as class imbalance. 

The following four problems are especially observed in the literature. 

4. Need for explaining performance instruments 

In academic publications on binary-classification problems, it is frequently observed that 

researchers need explaining performance evaluation for the sake of completeness. Within a 

smaller or larger body of text, confusion matrix, performance instruments and their 

abbreviations, equations, and brief descriptions are expressed usually in a separate section of 

the articles. However, the terminology and notations vary unexpectedly. Moreover, this 

repeating section takes considerable space in the text, requires effort in every study, and 

takes the time of not only the authors but also the reviewers and readers. 

5. Indeterministic performance reporting and comparison 

With respect to performance publication, I have not seen any consensus on how many and 

what instruments should be used in reporting performances. The number of instruments 

reported and the instruments selected vary from study to study3. Because comparisons of 
performances of different classifiers in terms of different instruments (e.g., accuracy or F1) 

yield different results, it is unclear which instrument should be used for the ultimate ranking. 

In a broader scope, the relations among such a large number of instruments are also not truly 

explored. Similar metrics might be used redundantly to report the performance. 

 
3 An interactive graphic is prepared and released online at http://bit.ly/performanceranks to show the ranks of 

mobile malware classification studies in terms of different performance metrics 

http://bit.ly/performanceranks
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6. The gap in responsible open research 

As an up-to-date development in scientific studies, the initiatives such as OpenAIRE4 by 

European Union and Zenodo5 by CERN aim common, responsible, and reproducible open 

research approaches where research data become available to all researchers. While these 

initiatives encourage researcher community to share their studies along with the datasets to 

establish a widely common platform, we could not see the same efforts in developing a 

common standard for evaluating the performance of those studies. Yet, scientific progress 

cannot be achieved in the right direction unless the objective comparison methodologies are 

determined clearly and followed by all the researchers. 

7. The complexity of the performance instruments 

From the practical point of view, the practitioners who are not experienced in statistics need 
assistance to report the classification performance while researchers need also assistance to 

deep dive into the instruments' specifications in order to select the most appropriate 

performance instrument(s) according to their objectives and/or domain-specific 

requirements. For example, which metric or metrics should be used among TPR, PPV, and 

ACC and what their differences are not clear. 

1.1 Research Questions 

As already mentioned at the start of this chapter, this research addressing the problems above 

is guided by the following main research question: 

• RQ: How to establish and improve our knowledge on binary-classification 

performance instruments comprehensively and systematically in order to enable 

researchers to make informed decisions on choosing the right instrument(s) and 

follow objective approaches in performance evaluation, reporting, and comparison? 

The specific research questions for binary-classification performance evaluation as an 

enumerated list are as follows: 

RQ1: 

• What are the problems in performance evaluation reporting? 

RQ2: 

• Can classification performance evaluation terminology be clarified and improved? 

• Are all the performance instruments the same semantically and formally? 

• Are there any properties related to performance instruments that reveal and define 
their characteristics? 

• Are there any similarities, relationships, and dependencies among the performance 

instruments? 

RQ3: 

• How to enhance comprehending, using, representing, reporting, learning, and 

teaching binary-classification performance instruments? 

RQ4: 

• Which instruments are robust to use in binary classification? 

• What should be reported for expressing classification performance? 

 
4 https://www.openaire.eu 

5 https://zenodo.org 
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1.2 Research Contributions and Strategy 

The thesis provides the following summarized contributions addressing the research 

questions: 

• First, the problems in performance evaluation terminology and reporting are 

revealed specifically via a comprehensive survey in Android mobile malware 

detection as a typical and emerging example domain in binary-classification 

problems. Such a systematic survey is the first in the literature. The generic findings 

that are observed in other domains are clear evidence of the problems 

aforementioned above. 

• Second, novel concepts are introduced via a multi-perspective analysis of 
performance evaluation instruments which is conducted on the largest set of 

instruments studied in the literature by far. Hence, the foundation of performance 

evaluation is completely defined for the first time both in a semantic and formal 

manner. The concepts introduce essential properties to comprehend and identify 

each of the instruments as well as to see the similarities and differences among them 

by categorizing the instruments from different perspectives. As a result of this 

breadth and depth analysis, the terminology is also clarified, existing instruments are 

categorized as “performance measures” and “performance metrics”, and the 

representation of the instruments (e.g., notation and visualizing) is standardized as a 

proposal. 

• Third, two basic instruments, a new instrument category named “performance 

indicators”, and a novel indicator called “Accuracy Barrier” as the first example of 

the new category are introduced to simplify and enhance the understanding of the 

instruments and avoiding common pitfalls that cause misleading performance 

evaluation. A case study is conducted to re-evaluate the surveyed classification 

studies via the proposed indicator. Moreover, aggregating all the concepts, an 

exploratory table for 50 binary-classification performance instruments called 

“PToPI” (Periodic Table of Performance Instruments), which is the pictorial 

specification or blueprint of instruments and their essential properties, is designed. 

The real use-cases of PToPI, which is a unique application of knowledge 

organization similar to the periodic table of elements, are also described. A handy 

calculator and dashboard tool called “TasKar” 6  to calculate and visualize 

classification results in terms of all the instruments is also designed. To enhance the 

interpretation of performance and subsequent performance variations, TasKar also 

visualizes the common performance metrics in new types of graphics proposed in 

this study. Note that both tools that can also be used for educational purposes are 

presented online to the research community. 

• Forth, a novel systematic benchmarking method named “BenchMetric” for binary-

classification performance metrics is proposed by introducing new concepts such as 

meta-metrics (i.e. metrics about performance metrics) and metric-space. 

BenchMetric method, tested on thirteen metrics (TPR, TNR, PPV, NPV, ACC, 

INFORM, MARK, BACC, G, nMI, F1, CK, and MCC) reveals interesting robust or 

non-robust behaviors even in common and/or suggested metrics. The method is 

comprehensively evaluated with the limited comparison approaches offered in the 

 
6 Tasnif Karnesi in Turkish (classification report) 
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literature and it is also tested with recently proposed metrics in the literature. The 

results of both of the tests have shown that MCC is the most robust metric. The 

thesis is further notable to suggest what the optimal instruments are in classification 

performance reporting in academic or industrial studies. Moreover, it demonstrates 

via a case study that reporting biases such as confirmation and publication biases 

might occur in the literature where classification performances reported in terms of 

non-robust metrics. The last two contributions in performance reporting are expected 

to initiate discussions from responsible open research perspectives. 

As a summary, this thesis study comprises one exploratory study via multi-perspective 

analysis, two complementing tools, three surveys, three case studies, and two experiments 

for the benchmarking all of which were performed in order to explore, generalize and 

validate the proposed concepts, instruments, tools, and methods. 

1.3 Research Objectives 

This thesis is intended to 

• make the research community understand the criticality of performance evaluation 

instruments and aware of the fundamental but overlooked problems in theory and in 

practice which cause misleading results, 

• provide novel concepts from multiple perspectives to increase our overall 

understanding of a large number of performance evaluation instruments and their 

characteristics, 

• present convenient tools to facilitate performance evaluation activity including 

learning and teaching performance evaluation instruments, 

• assist the researchers in making informed decisions on choosing the right metrics by 

ranking the metrics and showing the robustness issues, and 

• introduce a comprehensive systematic method to assess the robustness of any 

number of metrics which can also be used to benchmark recently proposed metrics. 

Note that this thesis attaches as much importance to organization and representation of the 

proposed concepts as the concepts themselves. 

More specifically the aims are to describe binary-classification performance evaluation 

instruments in a clear and understandable manner and reestablish classification performance 

evaluation foundation by clarifying and standardizing the terminology, providing formal 

definitions, categorizing the instruments, and providing new instruments, 

organization/visualization/calculation tools, and benchmarking methods to facilitate the 

overall approach. Hence, researchers will be able to grasp each of 50 instruments without 
any doubts or mistakes via the proposed concepts, know their similarities, differences, and 

robust/weak behaviors, and select and use the proper instruments conveniently. 

The high-level goal of this thesis is to allow researchers to be certain in their classification 

performance evaluations and concentrate on the other critical phases of their classification 

problems such as ensuring dataset quality or selecting the most optimum ML model and help 

to standardize performance evaluation process. 
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1.4 Research Scope 

The scope of this thesis is the instruments summarizing the confusion matrix to evaluate the 

classification performance of binary-classifiers. In high level, ML workflow is the problem 

domain and performance evaluation is the problem topic of this thesis study. 

Including the three additional instruments (TC, FC, and ACCBAR) proposed in this study, 

over 50 instruments are covered. The fifteen metrics, namely TPR, TNR, PPV, NPV, ACC, 

INFORM, MARK, BACC, G, nMI, F1, CK, and MCC, which are the eventual set of non-

redundant performance instruments, are included in the benchmark. Parametric instruments 

such as WACC or Fβ and instrument variants such as nMI (nMIari [default], nMIgeo, nMIjoi, 

nMImin, nMImax) are also referred for the sake of completeness. Besides, five recently 

proposed metrics are also reviewed and two of them included in the second benchmarking 

experiment. Note that these new metrics seem not to be accepted by the research community, 

therefore they were not included in PToPI. Moreover, the covered instruments can be 

extended in a straightforward manner with the new instruments that will be proposed in the 

future. 

To the best of my knowledge, the literature does not cover such a great extent of instruments 

that are also examined and evaluated with a broad perspective. TPR, PPV, ACC, and F1 are 

the most studied instruments as described in Section 2.2 (Literature Review). 

Note that Area-Under-ROC-Curve (AUC) metric and instruments based on a probabilistic 

interpretation of classification error (i.e. the deviation from the true probability, e.g., mean 

squared error and Log Loss) are out of the scope of this study because the former is not 

based on single instance of confusion matrix and calculated by varying a decision threshold 

for different TPR and False Positive Rate (FPR) pairs in a specific binary-classification 

application (Berrar & Flach, 2012) and the later ones are for multi-label classification (Ferri, 

Hernández-Orallo, & Modroiu, 2009). 

1.5 Significance of the Study 

In general perspective, this thesis is an epistemological study following exploratory research 

that focuses and clarifies “‘how to know that we know’ about classification performance 

evaluation, especially binary-classification performance instruments?” by laying the 

foundation of knowledge with the comprehensive formal definitions, organizing the 

knowledge, aligning the common approaches resulted from conventions with truths or 

objective facts, and avoiding error-prone or misleading conclusions about the performance. 

The thesis developed novel methods and concepts with respect to exploratory research. 

This thesis is significant from several perspectives. 

• First, it revisits and reestablishes the existing literature with comprehensible 

concepts along with new clear formal definitions. The proposed concepts will help 

to assess the individual performance instruments as well as see the similarities and 

subtle differences among instruments conveniently. Even, distinguishing between 

“performance measures” and “performance metrics” and naming all kind of items 

derived from a confusion matrix as “performance instruments” will clarify and lay 

the foundations of classification performance evaluation. 
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• Second, the thesis will extend the current literature by proposing a new instrument 

category named “performance indicators” and also proposing a novel indicator 

named “accuracy barrier” for detecting class imbalance problems. The indicators are 

expected to bring a completely new perspective in performance evaluations for 

whom wants to quick sense of classification performances or need evaluating the 

performances of the bulk of classifiers or presenting them for visualization or 

dashboard applications. 

• Third, this thesis is notable to present a unique application of knowledge 

organization for representing the multi-dimensional concepts in a single picture 

called PToPI (periodic table of performance instruments). Similar to the unique de 

facto position of the periodic table of elements in chemistry, PToPI is a handful tool 

for not only researchers and practitioners but also anyone who wants to learn or 

teach performance instruments7. The thesis provides another tool called TasKar to 

calculate all the instruments as well as visualize the base metrics in new graphics to 

enhance the interpretation of classification performance. 

• Fourth, this thesis is the only study that answers what the most robust performance 

metric is, comprehensively. Furthermore, the thesis points to the insufficiency in 

using even a robust metric alone and for the first time suggests additional measures 

to avoid misleading conclusions. The holistic performance reporting approach 

suggested in this thesis is expected to change the assessments of future applications 

in classification problem examples (i.e. switching to using a more robust metric) as 

well as make the performances achieved by the existing or previous applications 

susceptible to reconsider (e.g., representing the performances in terms of the robust 

metric). 

• The last but not the least, this thesis is expected to engage the attention of the whole 

research community to a possibility of a confirmation or publication bias in 

classification performance reporting where the performances are reported in terms of 

metrics demonstrating high performance. 

The thesis attempts to overcome most of the obstacles in front of precise and concise 

objective performance evaluation for all the parties from researchers, practitioners to 

students, teachers and align the research community independent from the specific domains 

to conduct a common objective and responsible research. 

1.6 Online Research Data and Materials 

 

Table 1.1 lists the online data, software, and materials prepared to present extra information 

about thesis contributions. 
 

 
7 The periodic table was also formed by Mendeleyev in a textbook in 1870 to teach students the elements and 

facilitate their understanding (Brito, Rodríguez, & Niaz, 2005, p. 85). 
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Table 1.1 Online research data and materials 

Data / Platform Contribution Description / Online Access Address 

Data 1 

(Mendeley Data) 

Survey 1 Binary-Classification Performance Evaluation Reporting Survey 

Data with the Findings 

http://dx.doi.org/10.17632/5c442vbjzg.2 

Tool 1 

(GitHub) 

PToPI The proposed periodic table of (binary-classification) performance 

evaluation instruments (PToPI) in full-resolution in various views 

(full, plain, simplified, minimal, and minimum). 

https://github.com/gurol/PToPI  

Tool 2 

(GitHub) 

TasKar Binary-Classification Calculator/Dashboard and Metric Graphics 

https://github.com/gurol/TasKar 

Code 1 

(GitHub) 

Method 1: 

ACCBAR  

Open-source scripts for calculation Accuracy Barrier indicator. 

https://github.com/gurol/PToPI  

Code 2 

(GitHub) 

Method 1: 

Dependency 

Graph 

The full-resolution dependency graph for all the instruments and the 

DOT (graph description language) files to produce it via Graphviz. 

https://github.com/gurol/PToPI  

API 1 

(GitHub) 

Method 3 Open-source performance metrics benchmarking software library. R 

scripts of the developed API for conducting the proposed 

benchmarking method. 

https://github.com/gurol/metametrics  

Experimenter 1 

(CodeOcean) 

Method 3 An online interactive experimentation platform running the provided 

API for benchmarking of thirteen metrics. 

https://doi.org/10.24433/co.1564477.v2  

Data 2 

(Mendeley Data) 

Method 3 Metric-spaces data: Base measure permutations and corresponding 

metric-spaces for 13 performance metrics per different sample size 

values. The data is used in the benchmark. 

http://dx.doi.org/10.17632/64r4jr8c88.1  

Data 3 

(Mendeley Data) 

Method 3 The detailed benchmarking results data. 

http://dx.doi.org/10.17632/2g36672s5f.2  

Visualization 1 

(Tableau) 

Method 2 Ranks of mobile malware classification studies in terms of different 

performance metrics 

http://bit.ly/performanceranks  

1.7 Published Works during the Thesis Study 

During the thesis study, five articles were published in peer-reviewed conferences and 

journal as listed in Table 1.2. Note that the article (Gürol Canbek, Sagiroglu, Taskaya Temizel, & 

Baykal, 2017) directly related to the thesis study has been cited by three works from medicine 

(Nnamoko, Hussain, & England, 2018), cyber security (Kaiafas et al., 2018), and software 

engineering (Ulysses, 2019)8 disciplines. 

 

 
8 At the time of writing, the article is also appeared at the top or in the first page of Google search with the 

following queries: binary classification performance, classification performance metrics, etc. 

http://dx.doi.org/10.17632/5c442vbjzg.2
https://github.com/gurol/PToPI
https://github.com/gurol/TasKar
https://github.com/gurol/PToPI
https://github.com/gurol/PToPI
https://github.com/gurol/metametrics
https://doi.org/10.24433/co.1564477.v2
http://dx.doi.org/10.17632/64r4jr8c88.1
http://dx.doi.org/10.17632/2g36672s5f.2
http://bit.ly/performanceranks
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Table 1.2 Published works in thesis study 

Publication title Year Thesis relation 

1 New Comprehensive Taxonomies on Mobile Security 

and Malware Analysis (Gürol Canbek, Sagiroglu, & 

Baykal, 2016) 

2016 Understanding the case study domain 

(i.e. ML-based Android mobile 

malware detection) (Section 2.3) 

2 Clustering and visualization of mobile application 

permissions for end users and malware analysts 

(Gürol Canbek, Baykal, & Sagiroglu, 2017) 

2017 
 

3 Binary classification performance measures/metrics: 

A comprehensive visualized roadmap to gain new 

insights (Gürol Canbek, Sagiroglu, et al., 2017) 

2017 Preliminary work of multi-

perspective analysis (Chapter 3) 

4 New Techniques in Profiling Big Datasets for 

Machine Learning with a Concise Review of Android 

Mobile Malware Datasets (Gurol Canbek, Sagiroglu, 

& Taskaya Temizel, 2018) 

2018 The criticality of sample size in 

precise and concise performance 

reporting (Section 5.8) 

5 Cyber Security by a New Analogy: "The Allegory of 

the 'Mobile' Cave" (Gürol Canbek, 2018) 

2018 Understanding the case study domain 

(Section 2.3) and analogical methods 

(Appendix D) 

6 Canbek, G., Taskaya Temizel, T., & Sagiroglu, S. 

(2019). Multi-Perspective Analysis of Binary-

Classification Performance Evaluation Instruments. 

Information Processing and Management (under 

review) 

2019 Publication in multi-perspective 

analysis scope (Chapter 3) 

1.8 Organization of the Thesis 

The rest of the thesis is organized as follows. Chapter 2 gives the preliminaries for the thesis 

study and reviews the literature on binary-classification performance evaluation and 

instruments. It presents a comprehensive survey (Survey 1) on the performance evaluation 

approaches in ML-based Android mobile malware detection as a binary-classification case 

study domain. The domain is introduced and the significant findings based on systematically 

selected 78 studies are given in Chapter 2. 

Chapter 3 clarifies the terminology, introduces categories for performance instruments, and 

proposes concepts related to instruments such as formal definitions of measures and metrics, 

canonical forms in instrument equations, instrument geometries, dualities, and complements. 
Two new measures are introduced in this chapter where dependencies and levels are also 

defined. Summary functions, other equations forms (base measures, direct/high-level 

dependency and equivalent form), class counterparts and redundancy are also introduced and 

described. Chapter 3 also proposes the first example of performance indicators called 

“Accuracy Barrier” (ACCBAR) to indicate so-called “accuracy paradox” or class imbalance 

effect. As a case study, the proposed indicator is used in re-evaluating performances in 

Android mobile malware detection domain. 

Chapter 4 designs and proposes a knowledge organization tool called PToPI to represent 

over 50 instruments in a single compact picture by employing structural and visual 

techniques. Real-world use cases of this exploratory tool that is similar to the periodic table 

of elements are presented through the literature examples in various domains. Chapter 4 also 

proposes a tool called TasKar complementing PToPI to calculate all the instruments and 
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visualize some metrics with three new graphics. The chapter gives a new specification of the 

coloring scheme and provides some example usages of TasKar. 

Chapter 5 provides a systematic benchmarking method named BenchMetric with three 

stages to assess and compare the robustness of performance metrics. The novel concepts 

such as universal base measure permutations, metric-space, and meta-metrics (metrics about 

performance metrics) are introduced. BenchMetric is described in stage by stage and also 

being tested on 13 existing performance metrics. The intermediate results per stage and 

overall result are provided and interpreted. The chapter also makes a detailed assessment of 

very similar MCC and CK metrics. Further, BenchMetric is evaluated with the literature 

comprehensively and tested by including two recently proposed metrics. Finally, Chapter 5 

discusses precise and concise performance evaluation and reporting and suggests a proper 

approach. 

Finally, Chapter 6 summarizes the thesis contributions, discusses the limitations, provides 

ongoing and planned future studies, and gives conclusions. 

Appendix A gives a complete list of performance instruments along with their names, 

abbreviations, alternative names, categories, and levels as well as details of the proposed 

color scheme. Appendix B gives a complete list of the equations of the instruments. 

Appendix C shows the full view of PToPI whereas Appendix D gives insights about the 

analogy between PToPI and the periodic table of elements by listing and depicting the 

similarities among the source and target domain. Appendix E describes the selection 

methodology for the survey of 78 ML-based Android mobile malware detection as a case 

study domain. Appendix F provides the references of those surveyed studies along what 

analyzes are conducted per each study. Appendix G summarizes BenchMetric findings as 

well as the overall robustness issues combined per metric sorted in alphabetic order. 

Appendix H focuses on a critical aspect of classification performance reporting in the 

literature and searches for the potential signs of biases where the performances are reported 

in terms of non-robust metrics. In this regard, this thesis introduces some equations to reveal 

the confusion matrix of a given study that reports a few metrics. Having performances in 

terms of the most robust metric, a case study is conducted and the presence of publication 

and confirmation biases are discussed. 
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LITERATURE REVIEW 

This chapter summarizes the preliminaries for binary-classification performance evaluation 

and reviews the related literature in general perspective. 

2.1 Preliminaries 

Classification and supervised machine learning 

Classification is a leading specific problem or task in machine learning (ML) at which a 

computer program (i.e. classifier) improves its performance through learning from 

experience and it requires a well-specified task, robust performance instruments, and 

representative source of training experience (Mitchell, 1997, p. 17). The experience is gained 

by providing labeled examples (i.e. training dataset) of one or more classes (e.g., positive or 

negative) that share common properties or characteristics to the classifier mapping the 

properties into the class labels. The performance of the trained classifier (i.e. in what degree 

it predicts the labels of known examples) is optionally re-evaluated and then finalized on 

different labeled examples (i.e. validation and test datasets, respectively). After this 

supervised learning phase, the classifier is supposed to be ready to predict the class of 

additional unknown or unlabeled examples. 

Binary-classification and classes 

In binary-classification or two-class classification, a classifier separates a given example into 

two contrasting classes. In symmetric binary-classification, each class is equally important 

(e.g., “female” vs. “male”) whereas in asymmetric binary classification, one class is more 

valuable than the other (e.g., “positive” over “negative” for a medical test or a condition in a 

disease, “respond” over “no respond” for a treatment, “spam” over  “non-spam” for an e-

mail, “malicious” software (i.e. malware) over “benign” software, or “faulty” over “normal” 

in fault identification of electric power systems). Such binary classes having one state is 

actually called “monary”. Symmetric binary classes are collectively exhaustive (i.e. there is 

no possibility except the two classes). 

A classification separating more than two mutually exclusive classes is called multi-class 

classification. If the classes are not mutually exclusive (i.e. an example could be one or more 

of the available classes simultaneously), it is a multi-label classification (or any-of or 

multivalue classification). Binary and multi-class classifications are single-label 

classifications. 

CHAPTER 2 



 16 

Confusion matrix 

The binary-classification performances in training, validation and test datasets are presented 

by a 2x2 contingency table or confusion matrix (i.e. the number of correct and incorrect 

classification per positive and negative classes)9. The four figures are the number of TP, TN, 

FP, and FN of the classified examples with known labeled Sn samples10. 

Overall machine learning workflow 

From a broader perspective, classifier modeling, machine learning, and performance 

evaluation are the critical activities of an overall ML workflow (i.e. ML-based 

classification). The workflow from start to end comprises staged activities each of which 

defines the repeating and/or incremental tasks. Briefly, several ML models are tried and 

tested to achieve the best performance.  

Performance instruments and evaluation/reporting/comparison 

Evaluation and comparison of a binary-classification performance stated in terms of four 

figures simultaneously are difficult. Therefore, several classification performance 

instruments have been proposed to summarize these four figures as a single figure (i.e. multi-

objective optimization or in other words compressing these values into a single number)11. 

This thesis systematically covers and analyzes over 50 performance instruments for the first 

time in the literature. Refer to Table 3.1 and Table A.1 in Appendix A for the instruments, 

notation, formatting and other related information. 

Highlighting that performance instruments are used in the following scopes: 

• Performance evaluation in training, validating and testing a classifier 

• Performance reporting in publishing the performance of a classifier 

• Performance comparison in comparing a classifier with the other proposed ones 

2.2 Literature Review 

Japkowicz and Shah (2015, p. 45) give a basic taxonomy of performance evaluation 

instruments apart from binary-classification instruments based on the confusion matrix. 

Considering binary-classification performance evaluation instruments, most of the literature 

gives introductory information about common metrics such as their equations. Others 

interpret common metrics over a number of common ML algorithms tested on example or 

hypothetical datasets to demonstrate the behaviors of different metrics. For example, 

Sokolova et al. (2006) cover three measures and six metrics via two classifiers and Tharwat 

(2018) addresses four measures and twelve metrics described with a single simple 

classification result. 

 

9 Those four elements (TP, FP, FN, and TN) will be named as “base measures” as described in Section 3.2.1. 

10  Two terms used especially in clinical research are also related to confusion matrix and classification 

performance: “gold standard” and “ground truth”. The former refers to a diagnostic method with the best 

performance and the latter the reference values used as standard for comparison. Additionally, prevalence has 

also slightly different meaning than it has in general classification context (i.e. positive class ratio): the 

probability of an individual to have the disease (based on clinical characteristics and demographic data) in a 

population including both newly diagnosed and existing cases (Cardoso et al., 2014, p. 28). 

11  Apart from some cost-based approaches (i.e. reward for correct classifications and penalty for incorrect 

classifications) 
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Most of the related literature partly addresses the issues researchers encounter when they use 

binary-classification performance evaluation instruments. The effect of class imbalance (or 

“class skew” or “prevalence effect”) on performance metrics is the most studied issue 

(Brzezinski, Stefanowski, Susmaga, & Szczȩch, 2018; Luque, Carrasco, Martín, & de las 

Heras, 2019; Straube & Krell, 2014). Most of the performance metrics that are based on 

confusion matrix elements from both class are actually sensitive to class skew (Fawcett, 

2004, p. 10). Without any change in the classifier, those metrics change as the distribution of 

the positive and negative class samples is changed. 

The skew sensitivity in metrics is examined in a narrow perspective in the literature. For 

example, Straube and Krel (2014) conclude the skew sensitivity of ACC, F metrics, MCC, 

and nMI and the skew insensitivity of DPR, BACC, WACC, and Gm based on a single 

example via a hypothetical classifier having TPR=0.9 and TNR=0.7. Note that ROC graphs 

based on TPR and FPR dimensions where each dimension strictly depends on one class 

exclusively (TPR within the positive class, FPR within the negative class) are not sensitive 

to class skew. 

Valverde-Albacete and Peláez-Moreno (2014) analyze so-called “accuracy paradox” where a 

classifier with a lower value of accuracy might have a greater level of predictive power and 

vice versa. Other aspects reviewed in the literature are chance correction (Labatut & Cherifi, 

2011), cost-based evaluation (Hu & Dong, 2014), constraints (Forbes, 1995), and the 

relationship between diversity (i.e. the degree of disagreement within an ensemble) and 

performance metrics (Wang & Yao, 2013). 

Some studies examine the properties of instruments from specific perspectives such as 

invariance in confusion matrix (Sokolova & Lapalme, 2009), chronology of the instruments 

(Seung-Seok, Sung-Hyuk, & Tappert, 2010), patterns in the instruments’ equations 

(Warrens, 2008), and decomposability into the sum or average of individual losses on each 

sample (Yan, Koyejo, Zhong, & Ravikumar, 2018). Multi-class/multi-labelled performance 

evaluation is also addressed (Kolo, 2011; Pereira, Plastino, Zadrozny, & Merschmann, 2018; 

Sokolova & Lapalme, 2009). Others propose approaches to compare metrics. In a qualitative 

approach, Straube and Krell (2014, p. 2) indicate the following criteria for choosing a proper 

metric: i) performance-oriented (not data-oriented), ii) intuitive (interpretable), and iii) 
comparable (accepted in the literature). In a quantitative approach, Huang and Ling (2005, p. 

302) suggest consistency and discriminancy degrees for comparing performance metrics 

through ACC and AUC-ROC example metrics in balanced and imbalanced dataset examples. 

Some of the binary-classification performance instruments are the same as binary similarity 

or distance measures (Kocher & Savoy, 2017) that are also based on a 2x2 contingency 

table. For example, F1 and ACC are referred to as Dice and simple matching coefficient, 

respectively. Tulloss (1997) first suggests some requirements and recommendations for 

similarity measures. Theoretically, performance and similarity instruments can be formed in 

numerous ways by changing the coefficients or weights in the equations. Koyejo et al. 

(2014) and Paradowski (2015) provides parametric equations that also generalize most of the 

performance evaluation instruments. 

The literature touches upon problematic performance metrics especially TPR, PPV, ACC, 

and F1. The recommended metrics are also varied because of evaluating them from a single 

perspective: 
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• Valverde-Albacete and Peláez-Moreno (2014) report that higher Accuracy values 

could be misleading. 

• Powers (2015, p. 5) discusses some fallacies of F1 that come from information 

retrieval such as focusing on one class only, assuming prediction and real class 

distributions are identical and biased by the majority class. 

• Shepperd (2013, p. 16) also indicates that F1 yields significantly high values (about 

0.7) on highly skewed datasets and also exhibits a misleading high performance in 

low prevalence datasets. 

• Labatut and Cherifi (2011, p. 13) recommend ACC as covering both classes 

otherwise TPR and PPV. 

• Straube and Krell (2014) recommend DPR, BACC, WACC, and G instead of ACC, 

F1, MCC, and nMI considering class imbalance effect. 

• Schröder, Thiele, and Lehner (2011, p. 6) suggest using INFORM, MARK, and MCC 

instead of PPV, TPR, and F1. 

• Forbes recommends nMI as a nontraditional metric (Forbes, 1995). 

Considering the literature in general, the studies on performance evaluation instruments 

examine a small number of issues most of which are related to class imbalance on a few 

common metrics especially F1 and ACC. To the best of my knowledge, such a broad 

analysis of a large number of performance evaluation instruments as well as a systematic 

benchmarking on those instruments has not been conducted in the literature. 

The problems in performance evaluation approaches in a case study domain is described via 

a survey in the next section. Note that the following comprehensive literature reviews on 

specific areas of performance evaluation instruments are expressed and evaluated separately 

in the related chapters: 

• Survey 2 in Section 4.2.2: Confusion matrix visualization methods. 

• Survey 3 in Chapter 5: Metric comparison methods. 

The methods reviewed in Survey 2 and Survey 3 are also compared with the methods 

proposed in this thesis. 

2.3 Survey 1: Problems in Classification Performance Evaluation 

Approaches 

ML-based binary classification is used in numerous domains such as unusual event 

detection, medical diagnosis, customer target marketing, multimedia, biological, and social 
media analysis, and document categorization (Aggarwal, 2015). This thesis evaluates the 

performance evaluation approaches of some specific classification application examples 

such as term extraction in medical records, computer system intrusion detection, e-mail spam 

detection, and software design defects detection in Section 4.1.3. 

This chapter addresses “What are the problems in performance evaluation reporting?” 

research question (RQ1) by systematically surveying ML-based Android mobile malware 

detection as a case study domain throughout this thesis. The domain described below was 

chosen because it is subject to a rapid change and is one where binary classification 

(malicious or benign software) is frequently used. The survey also presents clear evidences 

for the problems 1, 2, and 5 below, all of which are described in Chapter 1 above: 
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1. Confusing terminology: performance measure or performance metric? 

2. Disregarding negative-class performance, domain-specific tradeoffs, and end-user 

requirements 

3. Using instruments without being aware of the pros and cons 

4. Need for explaining performance instruments 

5. Indeterministic performance reporting and comparison 

6. The gap in responsible open research 

7. The complexity of the performance instruments 

Note that some findings of Survey 1 that are not expressed here are given in the other 

sections where they are related. 

2.3.1 Brief introduction to survey domain 

Mobile applications are normally expected as benign software satisfying different user 

requirements without any implicit/explicit and/or direct/indirect harm. However, they could 

be malign software or malware seeming innocent but actually contain payloads besides the 

intended purpose to cause harm to end-users in different forms such as sending SMS (Short 

Message Service) messages to the premium numbers without users’ consent (Gürol Canbek 

et al., 2016). The followings give some insights about the domain: 

• 6,140 new mobile applications on average are released every day in Google Play 

Store (“Average Number of New Android App Releases Per Day,” 2018), 

• The official application market includes 3.8 million applications in total in 2018 

(“Number of Apps in Leading App Stores,” 2018), 

• Many more Android applications are also released in over 300 third-party 

application markets worldwide in a rather uncontrolled way (Dogtiev, 2018). 

Within this volume and speed, distinguishing whether an existing or new mobile application 

is malign or benign is highly challenging. Because, detecting them solely by malware 

analysis conducted by a small number of specialists is impossible, ML-based malware 

classification is a promising and effective solution. Both in academia and industry, 

researchers build and test classifiers trained on labeled mobile application samples to detect 

malware in new applications. 

Within these conditions along with the increasing threat environments, diversifying risks, 

and technical challenges, ML-based mobile malware classification is a prominent research 

area. In Android malware classification studies, the number of available malware datasets, 

especially positive samples are small, which results in class imbalance. The features which 

can be extracted by static (i.e. file/code analysis) and/or dynamic (i.e. run-time) malware 

analysis is high dimensional (Gürol Canbek et al., 2016, fig. 11). A very-specific attack 

vector (i.e. technique to deliver the malicious payloads) could be embedded into a benign 

popular application and transformed into malware (i.e. repackaged apps). Malware writers 

(i.e. hackers) alter these vectors and/or combine others that lead to different instances of 

malware (i.e. malware variants in malware families). 

With respect to these attributes summarized above, we saw that performance evaluation is 

the critical part of malware detection studies in the literature where researchers claim their 

improvements by comparing different classifiers with performance metrics. Nevertheless, 

the problems introduced here can be encountered in any other domain like in software defect 

prediction summarized at the beginning of Appendix H. 
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2.3.2 Survey scope 

Total 78 studies from 2012 to 2018 reporting their binary-classification performances with 

different ML algorithms on Android static mobile-malware detection (see Appendix E and F 

for the selection methodology and the references of the studies) are surveyed.  

2.3.3 Findings: Blurring terminology 

The studies use different terms while reporting classification performance evaluation. Of the 

surveyed studies, 42% use “metrics” for performance metrics, which is correct as this thesis 

will formally define it (see Definition 3.2 in Section 3.2.3), whereas 15% use “measures” 

and even 25% use both interchangeably. 

Various other phrases such as “accuracies”, “measurements”, “performance indexes”, 

“quality measures”, “summary measures”, “assurance scores”, “classification quality”, 

“detection performance”, “evaluation criteria or indicator”, etc. are also expressed in 31% of 

the studies. The terms for individual metrics also vary as listed in Table 2.1. 

Table 2.1 The distribution of alternative terms used in 78 studies for referring to individual metrics. 

Metrics Terms 

ACC ACC (80%), Detection Rate (or Ratio) (11%), Detection Accuracy (7%). Success Rate (or 

Ratio), Overall Accuracy (or Efficiency), Correctly Classified Instances Rate 

F1 F-measure (43%), F-score or F1 score (39%), F1 (22%), Fm 

TPR TPR (39%), Recall (26%), TPR and Recall (at the same time) (15%), Detection Rate (9%), 

Sensitivity (5%), Accuracy Rate, Fraction of Malware Thread Identified Correctly, Hit Rate, 

Rate of Correctly Detection of Malware, Recall Malicious, Recall Malign 

PPV Precision (86%), PPV (8%), Precision Malicious, Precision Malign, Detection Rate 

FPR FPR (96%), False Alarm Rate (7%), Rate of Incorrectly Detection of Innocent Application 

as Malware 
TNR TNR (60%), Specificity (27%), Recall Benign (13%), Pass Rate, Benign Application 

Recognition Rate 

Other metrics: FNR: FNR; NPV: NPV, Precision Benign; MCR: ERR; CK: CK; MCC: MCC 

 

The blurring terminology in a fundamental level is so widespread that the literature even on 

performance evaluation sometimes intermingles “performance measures” and “performance 

metrics” terms (e.g., (Baldi, Brunak, Chauvin, Andersen, & Nielsen, 2000; Ferri et al., 2009; 

Huang & Ling, 2005; Labatut & Cherifi, 2011; Sokolova & Lapalme, 2009)). 

The terms commonly used in other domains such as pattern recognition and information 

retrieval are also borrowed for use in generic binary-classification context (e.g., “recall” or 
“sensitivity” instead of “true positive rate”, “precision” instead of “positive predictive 

value”, and “specificity” instead of “true negative rate”). The class relation is also not 

explicit (for example, “inverse recall” is used for TNR and “inverse precision” is used for 

NPV rather in a compulsory manner (Tharwat, 2018)). 

Different terms for the same metrics could be used in the same study. For example, 15% of 

the surveyed studies use both “true positive rate” and “recall”, which are commonly used in 

information retrieval, at the same time in pure binary-classification context. More 

interestingly, even six of the surveyed studies (7.7%) published the same TP / P value two 
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times one referring as TPR and one as recall redundantly12. In addition, the same terms could 

be used for different metrics (e.g., “detection rate” for TPR and ACC). The results suggest 

that in order to establish a common approach in scientific studies, the fundamental 

terminology should be clarified first and correct terminology should be followed by all the 

researchers. 

2.3.4 Findings: Reporting inconsistencies and tendencies 

Table 2.2 shows the key findings of our survey in reporting the performance of ML-based 

malware classification. As seen in Table 2.2 (a), the number of performance evaluation 

instruments reported in a single study is discrepant. The studies tend to report two or three 

instruments but they may choose from only one instrument (only ACC or F1) to seven 

instruments inclusive. Tough they are primitive; TPR, FPR, and ACC are the most reported 

metrics as shown in Table 2.2 (b). Note that the same variance in selected metrics was also 

observed in multi-labeled performance reporting (Pereira et al., 2018). 

Note that 12% of the studies report the confusion matrix for their best classifier 

configurations. Reporting confusion matrix enables calculating all the performance 

evaluation instruments but comparisons via the four elements of the matrix are impractical 

unless the sample size and class ratios are the same. 

 

Table 2.2 The statistics of performance metrics reported from 69 applicable studies of 78 surveyed 

studies: a) the distribution of the number of metrics reported in a study (minimum one metric and 

maximum seven metrics were reported in the same study) b) Distribution of the reported 11 metrics 

c) Distribution of 31 unique combinations of the reported metrics. For example, out of 69 studies, 14 

studies reported only TPR and FPR metrics, 7 studies reported TPR, PPV, and F1. The top six 
combinations (53%) are shown (other 25 combinations: 47%) d) The distribution of the components 

of the reported metrics according to their distribution in (b) revealing positive-class focus tendency 

(a) 

one two three four five six seven -metrics 

9% 32% 13% 13% 13% 1% 3%    
(b) 

TPR FPR ACC PPV F1 FNR TNR NPV, MCR, CK, MCC 

75% 64% 55% 36% 30% 20% 17% 7% 

(c) 

TPR FPR         20% 

53% 

TPR     PPV F1   10% 

    ACC       7% 

  FPR ACC     FNR 7% 

TPR   ACC PPV     4% 

TPR FPR ACC       4% 

(d) 

OP TP FN P ON TN FP N TC FC 

6% 36% 2% 15% 1% 4% 9% 13% 8% 5% 

          
positive-class related negative-class related   

60% 27%   

 
12 Studies: #17 (in Table 7); #32 (in Table 6, 7, and 8); #39 (in Table 5); #40 (in Table 1); #57 (in Table 5); and 

#18 (in Table 5, TPR and recall equations are given at the same time) 
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Table 2.2 (c) shows the most notable finding regarding an inconsistency found in 

performance evaluation reporting: in almost half of the surveyed studies, the researchers use 

varying combinations of metrics for performance reporting. 

When we looked into the roots of the metrics reported (i.e. calculated according to the 

canonical measures introduced in Definition 3.1 in Section 3.2.3), 60% of the selected 

metrics are positive-class related (i.e. based on TP, FN, P, and OP) whereas 27% are 

negative. Interpreting the overall findings in Table 2.2, the performance evaluation reporting 

seems discretionary. 

Though it is out-of-scope of this study, the performance of a classification workflow and/or a 

classifier should be evaluated in time-space. We saw that 35% of the studies publish some 

sort of time measures (e.g. classifier training time in seconds). Time performance should be 

published and standardized in all the classification studies considering the computational or 

time complexity of the machine learning algorithms used. ML algorithm complexity is also a 

related subject in time performance (Kearns, 1990). 

2.4 Conclusion 

Contrary to the common assumption that performance evaluation is a well-understood and 

studied area, this chapter reveals fundamental problems in performance evaluation 

approaches in ML-based classification studies in the literature. Besides, wide-spread 

confused terminology, there is no consensus in performance reporting and publication. 

It should be highlighted that performance instruments are also the key to making decisions in 

other ML workflow activities besides final performance evaluation and reporting such as 

• comparing different feature sets selected for the same ML model, 

• comparing different ML models with the same feature sets, and 

• finally comparing the best approach achieved overall with other ML studies in the 

same context. 

The findings have shown that researchers use a different number of metrics selected from a 

limited number of conventional ones namely TPR, FPR, ACC, PPV, and F1. On the other 

hand, other alternatives covered in this thesis such as BACC, G, nMI, CK, and MCC have not 

been commonly used in the literature. 

Note that the findings of the survey conducted on a specific domain covering seven years are 

actually generic that could be encountered in other domains. In the next sections, the 

proposed approach is presented, which aims to help to overcome such problems by clarifying 

the fundamental terminology and providing a formal multi-perspective analysis and tools for 

binary-classification performance evaluation instruments. 
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MULTI-PERSPECTIVE ANALYSIS OF PERFORMANCE INSTRUMENTS 

This chapter addresses a group of RQ2 research questions by introducing novel concepts via 

a multi-perspective analysis method to 

• clarify and improve the terminology, 

• examine whether any difference exists in instruments semantically and formally, 

• introduce new essential properties uncovering and defining their characteristics, and 

• reveal their similarities, relationships, and dependencies. 

3.1 Categorization of Instruments: Measure, Metric, and Indicator 

As revealed in Survey 1 in Section 2.3.3, terminology confusion is widespread. The first 

conceptualization of this thesis is to propose a fundamental terminology in classification 

context. For the first time in the literature, this thesis 

• refers the references derived from a binary-classification confusion matrix as 

“performance instruments”, 

• categorizes instruments as “measures” and “metrics, and further 

• introduces a new instrument category named “indicators”. 

A measure is defined as “the dimensions, capacity, or amount of something ascertained by 

measuring” 13  and metric (often metrics) is “a standard of measurement” 14  according to 

Merriam-Webster. A measure is quantitatively derived from measurement while a metric is 

close to inferring qualitative subjects. A metric is a calculated or composite measure based 

on two or more measures and typically stated as percentages, ratios, or fractions. 

Two related works are found in the literature that specifically covers the terminology 

confusion observed in software engineering where “measures”, “metrics”, and “indicators” 

are also used interchangeably along with other related terms such as “attributes” and 

“scales”. Olsina and de los Angeles Martín (2004) points at the lack of consensus in the 

terms evaluating related concepts such as quality and productivity. They present an ontology 

to suggest clarification based on software-related ISO standards and recognized research 

articles. Similar to the adopted approach described below, they also order the terms as 

measures, metrics, and indicators going through distinct activities namely measurement, 

 
13 https://www.merriam-webster.com/dictionary/measure 

14 https://www.merriam-webster.com/dictionary/metric 

CHAPTER 3 
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calculation, and decision. García et al. (2006) approach to the terms in a different way and 

completely avoid the use of “measures”. Because the term “software metric” seems to be 

imprecise to the contrary to any other engineering disciplines. 

As specifically examined from the general perspective by Texel (2013), measures, metrics, 

and indicators refer to different but dependent concepts. In parallel with the semantic 

distinction among instruments proposed in this thesis, measures are numerical values with 

little or no context whereas metrics possess a collection of measures in context, and 

indicators are the comparison of measures and/or metrics to a baseline. Figure 3.1 illustrates 

performance measure–metric–indicator dependencies, their relative characteristics, and 

typical values or ranges. The levels per instrument type are described and formally defined 

in the next section. 

 

 

Figure 3.1 Dependency and relative characteristics of performance evaluation instrument types. The 

attached semicircles on the left show the typical values or ranges for each instrument type. For binary-

classification performance measures and metrics, the ranges are usually [0, ∞) and [0, 1] respectively 

whereas indicators have nominal values. 

3.2 Formal Definition and Organization of Instruments 

The following formal definitions are proposed for organizing and describing binary-

classification performance evaluation instruments. Table 3.1 shows the special notation 

proposed for differentiating measures and metrics as well as the instrument transformations 

described in this study. 

Table 3.1 Performance instrument notations 

Notation Style Meaning Example 

M Italic Any metric/indicator or measures in a limited 

range 

ACC in [0, 1], MCC in [-1, 1], 

PREV in [0, 1] 

M + Bold Measures with no lower and/or upper limit TP, Sn, OR 

M* or M* * superscript Dual of PREV = BIAS* 

𝑀̅ or 𝑴̅ Over bar Complement of 𝑇𝑃𝑅 = 𝐹𝑁𝑅̅̅ ̅̅ ̅̅  

M Regular bold Metric-space of the metric (see Section 5.1.1) MCC 
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Note that canonical measures are usually not written in bold in equations. 

3.2.1 The base measures (TP, FP, TN, and FN) 

In this thesis, the four conventional direct outputs of classification performance, that are 

presented in a 2x2 contingency table or confusion matrix are called base measures because 

all other instruments can be expressed by them. The different names of the base measures are 

provided in Table A.1 in Appendix A. 

3.2.2 First level measures (P, N, OP, ON, TC, FC, and Sn) 

The first level measures are the composition of the base measures by summation. P and N 

measures that are column totals (also known as marginal totals in probability theory) of a 

confusion matrix represent the real or actual sizes of the two classes (i.e. the real labels). For 

example, a classification test dataset with 3,000 malign and 2,000 benign application 

samples is expressed as P = 3000 and N = 2000. These measures correspond to the reality, 

observed or ground truth. OP and ON measures that are row totals (also known as marginal 

totals in probability theory) of a confusion matrix represent the prediction (test or 

classification result) of the two classes. For the same example, a decision tree classifier 

predicting the examples as 3,100 malign and 1,900 benign is expressed as OP = 3100 and 

ON = 1900. These measures correspond to the prediction, hypothesized or estimated 

(classification) output. 

Moreover, True Classification (TC) and False Classification (FC) are defined as the totals of 

diagonal base measures (TP and TN) and/or off-diagonal ones (FP and FN), respectively. 

Substituting those totals have significantly simplified the metrics’ equations and their 

interpretation. For instance, ACC that is defined as (TP + TN) / Sn (even as 

(TP + TN) / (TP + FP + FN + TN)) could be expressed simply as TC/Sn with TC. Including 

TC and FC where appropriate makes the equation easy to interpret (e.g., the ratio of the 

number of correct classifications to total sample size instead of the ratio of the number of 

positive and negative samples correctly classified to total sample size). Note that this 

notation also simplifies the multi-class performance instruments. For example, the accuracy 

of a ternary-classification is again TC/Sn. 

It may be argued that Sn could be classified as a base measure because sample size is always 

available at the very beginning before starting classification. However, our formal 

performance evaluation approach in this study is based on direct outputs of classification 

performance (TP, FP, FN, and TN) and the leveling is determined by dependencies. Hence, 

sample size (Sn = TP + FP + FN + TN) is above base measures like P or N. 

3.2.3 Instrument equations: the canonical form 

The terminology confusion described in Section 2.3.3 can be efficiently avoided by defining 

a formal logic that determines whether a given equation of a performance evaluation 
instrument is a metric or measure. The first step in the proposed formal definition is to 

standardize the equations. In canonical form, the equations are expressed with the base 

measures and the first level measures (TP, FP, FN, TN, P, N, OP, ON, TC, FC, and Sn). 

For example, MCR = FC/Sn and F1 = 2TP / (2TP + FC) are expressed in canonical form. 
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Definition 3.1 (Canonical Form). 

M is a performance metric or a measure expressed in a canonical form 𝑀: 𝑿 → ℝ 

𝑿 =  {(𝑇𝑃, 𝐹𝑃, 𝐹𝑁, 𝑇𝑁, 𝑃,𝑁, 𝑂𝑃,𝑂𝑁, 𝑇𝐶, 𝐹𝐶, 𝑆𝑛) ∈ ℤ∗11: [0,∞)} and ℤ∗ = {0} ∪ ℤ+  

where 𝑃 = 𝑇𝑃 + 𝐹𝑁;  𝑁 = 𝐹𝑃 + 𝑇𝑁;  𝑂𝑃 = 𝑇𝑃 + 𝐹𝑃;  𝑂𝑁 = 𝑇𝑁 + 𝐹𝑁;  𝑇𝐶 = 𝑇𝑃 +
𝑇𝑁;  𝐹𝐶 = 𝐹𝑃 + 𝐹𝑁;  𝑆𝑛 = 𝑃 +𝑁 = 𝑂𝑃 + 𝑂𝑁 = 𝑇𝐶 + 𝐹𝐶 = 𝑇𝑃 + 𝐹𝑃 + 𝑇𝑁 + 𝐹𝑁. 

 

Note that any equations listed in Definition 3.1 above must be reduced into total form (P, N, 

OP, ON, TC, FC, Sn) while converting an equation into canonical form (e.g., a TP+FN 

should always be reduced into P). High-level dependency form is described in “More 

Geometries” subheading below. 

3.3 Performance Measure/Metric Definition 

A binary-classification performance evaluation metric in canonical form is expected to have 

at least one of the base measures and its range is limited as dictated in semantic 

interpretation described in Section 3.1. Hence, the following definition is applicable to 

performance measures. Otherwise, the given equation in the canonical form is called as a 

performance metric. 

Definition 3.2 (Measure/Metric). 

M is a (binary-classification performance) “measure” expressed in canonical form where 

𝑀: 𝑿 → ℝ  and ( dom(𝑀)  ⊆  {𝑃,𝑁, 𝑂𝑃, 𝑂𝑁, 𝑆𝑛}  or ( min(𝑀) = −∞ and/ormax(𝑀) =
+∞)). 

Otherwise, M is a “metric”. 

For example, PREV = P / Sn is a measure because dom(PREV) is equal to {P, Sn} whereas 

𝑂𝑅 = 𝑇𝑃 ⋅ 𝑇𝑁 𝐹𝑃 ⋅ 𝐹𝑁⁄  is still a measure even dom(𝑂𝑅) = {𝑇𝑃, 𝐹𝑃, 𝐹𝑁, 𝑇𝑁}  ⊈

 {𝑃,𝑁, 𝑂𝑃, 𝑂𝑁, 𝑆𝑛} because range of OR is limitless, i.e. [0, ∞). 𝐺 = √𝑇𝑃 ⋅ 𝑇𝑁 𝑃 ⋅ 𝑁⁄  is a 

metric because neither dom(G) is not subset of {P, N, OP, ON, Sn} (because of TP and TN) 

and nor its range is limitless (range(G) = [0, 1]).15  

3.4 The Geometry for Measures/Metrics 

Figure 3.2 (a) is drawn to depict the geometry of canonical measures defined above. P and N 

are column type (total of base measures in vertical cells in confusion matrix) that is related to 

reality only, OP and ON are row type (total of base measures in horizontal cells) related to 

prediction only, and TC and FC that are named are mixed type (total of base measures in 

diagonal or off-diagonal cells). Note that Sn is mixed geometry and has no effect on 

 
15 First measure is defined because metrics are derived from or above measures. Nevertheless, metrics could be 

defined explicitly by (dom(𝑀)  ⊇  {𝑇𝑃, 𝐹𝑃, 𝐹𝑁, 𝑇𝑁} and (min(𝑀) ≠ −∞ andmax(𝑀) ≠ +∞)). 
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geometry type when it is involved in other instruments’ equations. Figure 3.2 (b) depicting 

the geometries of all the measures and metrics is used as a guide for the proposed 

exploratory table (PToPI) shown in Figure 4.1 in Chapter 4 to position the different 

measures and metrics in the table layout. Note that the geometry type is represented by 

dashed and solid edges described in Table 4.1 in Chapter 4. 

 

(a) The 1st level measures’ geometries 

 

(b) Geometry types and layout of all measures and metrics 

Figure 3.2 The origin of laying out of performance evaluation instruments in PToPI 
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This thesis extends this column/row geometry to any measure/metric as shown in Figure 

3.2 (b) apart from P, N, OP, ON, TC, FC, and Sn with the following definitions: 

Definition 3.3 (Instrument Geometry). 

M is a metric/measure expressed in a canonical form where 𝑀: 𝑿 → ℝ 

 

The geometry of m is ‘Column’ (depicted as 𝑀𝑐) 

    if dom(𝑀) ⊇ {𝑃,𝑁} and dom(𝑀) ⊉  {O𝑃, O𝑁, 𝑇𝐶, 𝐹𝐶} 

The geometry of m is “Row” (depicted as 𝑀𝑟) 

    if dom(𝑀)  ⊇  {𝑂𝑃,𝑂𝑁} and dom(𝑀)  ⊉  {𝑃,𝑁, 𝑇𝐶, 𝐹𝐶}  

Otherwise, the geometry of M is ‘Mixed’ (depicted as 𝑀𝑥) 

 

In our survey, 26% of the studies, published column geometry metrics (e.g., TPR, TNR, FPR, 

and/or FNR). 19% published true-classification-only metrics (e.g., TPR, TNR, PPV, NPV, 

and/or ACC). Interestingly, 3% published FPR with FNR, which is a subset of false-

classification-only metrics. 

3.5 Transforming Geometry: Metrics/Measures Duality  

The extended geometry divides classification performance measures/metrics into two 

orthogonal dimensions besides the mixed ones: column (reality only) vs. row (prediction 

only). This approach brings about transformations in corresponding measures/metrics. 

Essentially, duality is to transform one concept into another concept in a bilateral manner. It 

could be perceived as interchanging antecedent and consequent (Powers, 2011). 

Definition 3.4 (M*, Duality). 

M is a metric/measure expressed in a canonical form where 𝑀: 𝑿 → ℝ and the geometry of 

M is “Column”, “Row”, or “Mixed”. The dual of M is M* where 

if the geometry of m is “Column” (𝑀𝑐) 

dom(𝑀)

𝑃→𝑂𝑃
𝑁→𝑂𝑁
→    dom(𝑀∗) 

if the geometry of M is “Row” (𝑀𝑟) 

dom(𝑀)

𝑂𝑃→𝑃
𝑂𝑁→𝑁
→    dom(𝑀∗) 
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A transformation via switching the column to row geometries and vice versa corresponds to 

reality versus prediction perspective change. The introduced transformation via duality 

makes researchers become aware of the special relations in corresponding metrics/measures. 

Basically, a dual of a column/row type measure/metric is formed by swapping between {P} 

and {OP} and between {N} and {ON} respectively. For instance, TPR = PPV* or 

PPV = TPR*. As seen in the examples, the symmetry (involution) is always valid for the 

duality of performance measures/metrics (𝑀1
∗ = 𝑀2 and 𝑀2

∗ = 𝑀1, i.e. if 𝑀1 is the dual of 

𝑀2, then 𝑀2 is the dual of 𝑀1). 

The duality is important to transform a mapping in one concept (dimension) to its dual 

concept. For example, a function (f) of two column-geometry metrics (𝑀𝑐1 and 𝑀𝑐2) could 

be transformed or sought in their corresponding dual (i.e. row geometry metrics) metrics 

(𝑀𝑟1 and 𝑀𝑟2) as described as below: 

 

∀𝑀𝑖,𝑗 ∈ 𝑃(𝑇𝑃, 𝐹𝑃, 𝐹𝑁, 𝑇𝑁, 𝑃, 𝑁, 𝑂𝑃, 𝑂𝑁, 𝑇𝑃, 𝑇𝐶, 𝑆𝑛), ∃𝑓 ∃𝑀
𝑟
1 ∃𝑀

𝑟
2 

𝑓(𝑀𝑐1, 𝑀
𝑐
2)  ⇒ 𝑓(𝑀

𝑐
1
∗, 𝑀𝑐2

∗) = 𝑓(𝑀𝑟1, 𝑀
𝑟
2)  

(3.1) 

 

For example, LRP is a mapping between TPR and TNR. The dual of LRP = TPR / (1 – TNR) 

is TPR* / (1 – TNR*) = PPV / (1 – NPV), which is not common in existing classification 

performance evaluations. It is called “Relative Risk” that is especially used in statistics, 

epidemiology, clinical research, and diagnostic tests (Siegerink & Rohmann, 2018). The 

relation revealed by duality can connect classification performance evaluation domain with 

these domains. 

The example given for LRP is related to the transformations of column or row geometry 

instruments. As for mixed geometry, duality transformation of high-level mixed-geometry 

instruments reveals different dependencies (note that dual of a mixed type metric/measure is 

equal to itself). For instance, the following transformation of ACC from Eq. (3.2) showing 

PREV dependency reveals BIAS dependency of ACC: 

𝐴𝐶𝐶 = 𝑇𝑁𝑅 + 𝑃𝑅𝐸𝑉 ⋅ (𝑇𝑃𝑅 − 𝑇𝑁𝑅) (3.2) 

𝐴𝐶𝐶∗ = 𝑇𝑁𝑅∗ + 𝑃𝑅𝐸𝑉∗ ⋅ (𝑇𝑃𝑅∗ − 𝑇𝑁𝑅∗) (3.3) 

𝐴𝐶𝐶 = 𝐴𝐶𝐶∗ = 𝑁𝑃𝑉 + 𝐵𝐼𝐴𝑆 ⋅ (𝑃𝑃𝑉 −𝑁𝑃𝑉) (3.4) 

 

Increasing the class imbalance leads to a higher performance value via ACC as shown in 

Eq. (3.2), which causes a higher bias as shown in Eq. (3.4). Dual instruments should be 

interpreted correctly. For example, Powers’ statement (Powers, 2011, p. 3) that the goal of 

the classification model is achieving the equality of dual instruments such as PREV = BIAS, 

TPR = PPV, or TNR = NPV should be clarified by adding “in the highest possible metric 

values” constraint (e.g., TPR = PPV = TNR = NPV  ≈ 1.0). Because a random classifier with 

all the base measures equal (e.g., TP = FP = FN = TN = 50) also satisfies all these three 

equalities. 
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3.6 Instrument Complements 

Binary-classification performance metrics and some of the measures are normalized ratios 

having ranges in [0, 1] or [-1, 1]. The complement of a measure/metric is defined as follows: 

Definition 3.5 (M̅, Complement) 

M is a metric/measure where 𝑀: 𝑿 → ℝ. The complement of the ith value of M is  𝑀 where 

 

𝑀𝑖 = {

max (𝑀) − 𝑀𝑖 , 𝑀 in [0,max(𝑀)]

min (𝑀) − 𝑀𝑖 , 𝑀 in [min(𝑀) , 0]

−𝑀𝑖 , min(𝑀) < 0 andmax(𝑀) > 0

 

 

For instance, TPR is a metric M, which has a range [0, max(M) = 1], if TPRi = 0.999, then 

the complement of TPRi (i.e. FNRi) is 1 − 0.999 = 0.001. Likewise, INFORM is a metric M, 

which has a range [min(M) = −1, max(M) = 1]. If INFORMi = 0.500, then the complement of 

INFORMi is −0.500. In contrast with duality, having both a measure/metric and its 

complement does not contribute any extra information. A complement could be used for 

simplification of equations or switching the primary point of view to another one such as 

switching from positive class-based view (e.g., TPR or PPV) to a negative one (e.g., FNR or 

FDR) or focusing on errors (i.e. MCR) instead of correctness (i.e. ACC). Redundancy in 

performance reporting is another issue related to complementation. Out of 51 studies 

surveyed in the performance reporting context, 16% have redundant metrics namely TPR 

with FNR (14%), TNR with FPR (12%), and ACC with MCR (2%). 

3.7 Class Counterparts 

Class-specific instruments have counterpart instruments. For example, TPR for positive class 

with TNR for negative class (with their complements: FNR with FPR), PPV with NPV (FDR 

with FOR), and LRP with LRN. Counterpart relations can be uncommon unless otherwise is 

required. For example, the counterpart of PREV (=P/Sn) is NER (=N/Sn) that is not 

common. However, the counterpart of BIAS (=OP/Sn), (ON/Sn) or the counterpart of F1 

(2TN / (2TN + FC)) are not used at all. Counterparts are also applicable in multi-class 

performance evaluation above binary classification. 

3.8 More Geometries: Dependencies, Levels, and High-Level Dependency 

Forms 

A dependency graph is prepared to show the dependencies among 49 binary classification 

measures/metrics and reveals their similarities. Figure 3.3 and Figure 3.4 show a partial and 

full view of the dependency graph, respectively. The full-resolution graph and the DOT 

(graph description language) files to produce it via Graphviz are provided online at 

https://github.com/gurol/PToPI. High-level equation forms (i.e. substituting 

measures/metrics other than base level measures/metrics and 1st level measures) are used 

where possible to identify direct dependencies. Otherwise, the dependencies are calculated 

based on the equations in canonical form. For example, 
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• TPR, TNR, PPV, and NPV metrics and their complements depend on canonical 

measures. Therefore, they are considered as base metrics. 

• INFORM depends on TPR and TNR; MARK depends on PPV and NPV. Therefore, 

they are 1st level metrics. 

𝑀𝐶𝐶 = √𝐼𝑁𝐹𝑂𝑅𝑀 ⋅ 𝑀𝐴𝑅𝐾  shows that MCC has direct dependencies on INFORM and 

MARK metrics in high-level. Therefore, MCC is a 2nd level metric. 

 

 
 
Figure 3.3 Partial view of dependency graph showing non-redundant metrics only (i.e. without FPR, 

FNR, and MCR). See https://github.com/gurol/PToPI for source files to generate dependency graphs 

 

Beyond the well-known ones, the literature rarely examines the instrument equations with 

different expressions like in Eq. (3.2) and Eq. (3.4). Press (Press, 2008, p. 12), for example, 

finds the equivalent form of PPV and NPV by expressing them with TPR and TNR. The 

high-level dependency actually reveals another kind of redundancy observed in performance 

evaluation reporting (i.e. reporting a metric with its direct dependencies). For example, out 

of 51 studies surveyed in the performance reporting context, 27% published F1 along with 

the two direct-dependencies (the harmonic mean of TPR and PPV). 

3.9 Upper-Level Measures and Metrics Leveling 

Applying the leveling approach described above, measures have four levels and metrics have 

three levels including base levels as shown in Figure 3.2 (b). The final levels are 

• Measures: Base, 1st, 2nd, and 3rd level 

• Metrics: Base, 1st, and 2nd level. 

The complete list of levels and corresponding instruments in three-dimensional 

representation are depicted in Figure 3.5 and listed in alphabetic order in Table A.1 in 

Appendix A. Note that DP is not in a new level (i.e. 4th-level measures) because it only 

transforms OR measure without changing its dependents (LRP and LRN or TPR and TNR). 
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Figure 3.4 Full view of the dependency graph 
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3.10 Summary Functions 

High-level metrics summarize the dependent metrics into a single figure on: 

• Dual dependent metrics for a mixed geometry metric: MCC is the geometric mean of 

INFORM and MARK and F1 is the harmonic mean of TPR and PPV. nMI has 

various summary functions (e.g., arithmetic/geometric means, minimum and 

maximum) applied on HC and HO. 

• Class-counterpart metrics for a column geometry metric: INFORM with addition, 

BACC with arithmetic mean, WACC with weighted mean, and G with geometric 

mean of TPR and TNR. 

In parametric instruments such as WACC or Fβ (see equations (17') and (20') in Table B.2 in 

Appendix B), the summary function depending on two or more instruments can be adjusted 

according to the importance given each dependent (Kenter et al., 2015). 

Leveling not only allows the researchers to distinguish similar instruments from a large 

number of instruments but also shows the dependencies among levels and their 

summarization degree. For example, MCC as a 2nd level metric depends on and summarizes 

the 1st level metrics that depend on and summarize the base metrics. 

 

 

Figure 3.5 Three-dimensional representation of levels and dependency of performance instruments 

3.11 “Accuracy Barrier” As the First Example of Performance Indicators 

Metric or measure values are important particularly for comparison of the performance of 

different classifiers. However, they may be limited in terms of interpretability by end-users. 

In particular, nonlinear or limitless measures such as OR in [0, ∞) are hard to interpret 

(Schmidt & Kohlmann, 2008).  
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Indicator is the new category of performance instruments as proposed and described in 

Section 3.1 above. Addressing the research question “How to enhance comprehending, 

using, representing, reporting, learning, and teaching binary-classification performance 

instruments?” (RQ3), this chapter proposes a novel indicator that specifically enhances 

performance instrument using and reporting. Those enhancements are demonstrated via a 

case study where previously reported binary-classification performances in the literature are 

re-evaluated by the novel indicator. A negative result experienced in defining an indicator 

summarizing a limitless measure is also shared. 

Indicators facilitate the comprehension and comparison of the metrics and measures; 

therefore, they are recommended for end-users or public applications. The outputs of an 

indicator are qualitative and they are obtained by dividing metric or measure values into 

coarse categories. Although categorizing a quantitative variable in a given range via cut 
points to facilitate understanding some phenomena and distinguish the specific intervals is 

applied in some domains, such as biology (Mayya, Monteiro, & Ganapathy, 2017), only one 

attempt of metric categorization is found where CK was divided into the six strength of 

agreement with the following half-open intervals: 

• <0: “poor”, 

• [0, 0.2): “slight”, 

• [0.2, 0.4): “fair”, 

• [0.4, 0.6): “moderate”, 

• [0.6, 0.8): “substantial”, and 

• [0.8, 1]: “almost perfect” 

by Landis and Koch (1977, p. 165) who stated that the divisions were arbitrary and provided 

for benchmarking. 

ACC results can be high even for a random classifier (Valverde-Albacete & Peláez-Moreno, 

2014). Therefore, it is essential to define a minimum performance that should be expected 

from a binary classifier. NER and NIR, which are not well-known or reported (Bond et al., 

2018, p. S9; García-Magariño, Chittaro, & Plaza, 2018, p. 35), are two measures that can be 

used to define that limit as shown in Eq. (3.6), NER specifies the minimum successful 

classification rate of a classifier without a classification model that always labels a given 

instance with N. As a class-independent version, NIR specifies the minimum performance by 

taking the larger class sample-size as either Positive or Negative into account. 

A case of having a classifier with a close performance to NER and NIR measures is called as 
“accuracy paradox” from which this thesis introduces and formally defines the “Accuracy 

Barrier” indicator: 

𝐴𝐶𝐶 ≅ 𝑁𝐼𝑅 ≥ 𝑁𝐸𝑅 (3.5) 

𝑇𝐶

𝑆𝑛
≅
max (𝑃,𝑁)

𝑆𝑛
≥
𝑁

𝑆𝑛
 (3.6) 

𝑇𝐶 ≅ max (𝑃,𝑁) ≥ 𝑁 (3.7) 
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A classifier with a reasonably high ACC where TC is close to the number of Positives 

(TC ≈ P) or Negatives (TC ≈ N) cannot overcome the Accuracy Barrier. Table 3.2 shows the 

performance measures and ACC metrics of two hypothetical classifiers tested on 2,200 

samples (Sn) with 18% prevalence (as frequently observed in domains having rare positive 

samples such as known mobile malware or a specific disease). 

When the performance is reported with only ACC metric, both classifiers achieve notable 

performances (ACC values are 0.916 and 0.868). Nevertheless, their ACCs are very close to 

the ACC of an ordinary classifier (0.818) whose outcome is always “Negative” (N >> P). 

Therefore, the Accuracy Barrier is recommended to be checked by either Eq. (3.5) or 

Eq. (3.7) (see ACC, TC, NIR, and NER that are shown in PToPI in Figure C.2 in 

Appendix C). When the classification performance is reported in terms of other metrics such 

as F1, CK, and MCC, the results are lower than ACC as shown in Table 3.2. 

You can test different classification results and see the accuracy barrier outputs in the online 

extra material provided at https://github.com/gurol/PToPI as well as using the developed tool 

TasKar described in Section 4.2, which is also provided online at 

https://github.com/gurol/TasKar. 

 

Table 3.2 Accuracy barriers and other metrics on two example hypothetical classifiers 
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Five accuracy barrier categories are defined from the most proper to the least: 

• “Over” 

• “Close (to)” 

• “Very close (to)” 

• “Hit”, and 

• “Under” + the “Accuracy Barrier” 

The following equations are proposed to calculate the proposed indicator called ACCBAR. 

∆= 𝐴𝐶𝐶 −
max(𝑃,𝑁)

𝑆𝑛
 (3.8) 

𝐴𝐶𝐶𝐵𝐴𝑅 =

{
 
 

 
 

Over, ∆> 3𝜃
Close, ∆> 2𝜃

Very close, ∆> 𝜃
Hit, ∆>= 0

Under, otherwise

 (3.9) 

 

The unit step length (𝜃) value is determined as 0.05 by considering the range of related 

metrics (ACC, NIR, NER) [0, 1] and the minimum difference in which the performances of 

different competing classifiers are compared (i.e. high-performance values between 0.95 and 

1.0 that researchers would like to achieve). Note that Figure 4.7 also depicts accuracy barrier 

categories in example delta values in TasKar tool. 

ACCBAR can give notable insight into the performance by evaluating one metric (ACC) and 

one measure (NIR). The indicator is straightforward to calculate and clarify the vague 

condition interpretation of Accuracy Paradox in the literature and provide an exact 

measurement. ACCBAR can be a significant instrument for classification studies when 

publishing their performances via ACC. For example, a classification performance stated as 

ACC = 0.916 alone cannot be disregarded in especially applications in emerging areas. 

Nevertheless, it is actually very close to the Accuracy Barrier as shown in Table 3.2. 

3.11.1 Case Study 1: Classification performance re-evaluation via ACCBAR 

The ideal approach in ranking different classification studies for the same classification 

problem (e.g., ML-based Android mobile malware detection) is to test the classifiers on the 

same datasets (i.e. benchmarking datasets) and compare the test results in terms of a chosen 

metric. However, this approach could not be possible due to the various reasons. For 

example, a researcher could not 

• access the datasets used in other compared classifiers to test her/his classifiers or 

• build the compared classifiers’ models to test them on her/his own datasets. 

ACCBAR actually adds a pre-control for classification performances expressed in terms of 

ACC. In order to show the usage of ACCBAR indicator, 28 of the surveyed studies that report 

their classification performances in terms of ACC are analyzed via ACCBAR. As there were 

more than one alternative classifier models published in most of the studies, the 

configurations yielding the highest ACC are chosen. Table 3.3 shows the details of the 
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analysis conducted on 28 studies but presents the top 15 of 28 studies having the highest 

ACC reported for the sake of space and simplicity (more detailed information for all the 

studies are provided in online data). 

Unexpectedly, the results show that the top five of the classifications ranked by ACC are 

actually at the bottom when the studies are ranked by their ACCBAR category (from best 

condition: “Over”, “Close” “Very Close”, “Hit”, and “Under”) then delta (Δ) values per 

ACCBAR category, and then ACC in decreasing order. For example, the #51 study with the 

highest ACC (0.9982) is reduced by 23 ranks and to 5th from last. This is also seen in other 

studies (for example, #33 study is reduced from 2nd position to 7th from last and #57 study 

from 3rd to 3rd from last). 

The exact delta (Δ) values can be used to evaluate and compare the performances of the 

classifiers within the same ACCBAR category. The conducted experiment shows that 

ACCBAR delta values help in interpreting the overall ranking. If they are not included (i.e. 
ranked by ACCBAR category from best then ACC in decreasing) the rankings become 

different. 

The primary sort field ACCBAR and the secondary sort field ACC (e.g., the sorting of #33, 

#1, #2, etc. studies in “Over” accuracy barrier) in Table 3.3 explain this condition. In the 

“Over” group, #33 and #1 studies having the highest two ACCs should be the first and 

second in the group. However, their delta values (0.22 and 0.19, respectively) are lower (i.e. 

closer to accuracy barrier) than the values of the preceding two studies (#2 and #47 with 0.49 

and 0.48, respectively). Hence, the #2 and #47 studies are expected to be the first and 

second, respectively even their ACCs were lower (i.e. the achieved accuracy can be 

considered more credible). 

Table 3.3 Performance rankings of different classifications in terms of ACC metric are completely 

different when ACCBAR indicator is taken into account. 

  
Sorted: ACC↓ ACCBAR↓, 

Δ↑, ACC↓ 

 

Change 

at 

bottom / 

top 

   

#Study 

reference N P ACC 

Initial 

Rank  Δ Rank 

Rank 

change Δ ACCBAR 

Reported 

metrics/measures 

8,000 400 0.9860 7 28 the last -21 ▼ 0.03 Hit ACC, BM, TPR, FPR, PPV 30 

99,037 10,581 0.9982 ↓ 1 24 5th last -23 ▼ 0.09 Very close ACC, TPR, FPR, F1 51 

107,327 8,701 0.9949 3 26 3rd last -23 ▼ 0.07 ACC, TPR, FPR, PPV, F1 57 

122,176 9,756 0.9906 4 27 2nd last -23 ▼ 0.06 ACC, TPR, FPR, PPV, F1, 

CK, MCC 

27 

1,853 6,909 0.8828 26 25 4th last 1 
 

0.09 ACC, BM, TNR 52 

9,804 2,794 0.9970 ↓ 2 22 7th last -20 ▼ 0.22 Over Only ACC 33 

16,000 3,987 0.9900 5 23 6th last -18 ▼ 0.19 ACC, TPR 1 

7,494 7,494 0.9890 6 1 first 5 ▲ 0.49 ACC, FPR, FNR 2 

1,260 1,260 0.9840 8 2 second 6 ▲ 0.48 ACC, FPR 47 

480 743 0.9787 9 17 
 

-8 
 

0.37 ACC, TPR, PPV, F1 13 

3,938 2,925 0.9750 10 13 
 

-3 
 

0.40 ACC, TPR, TNR, FPR, FNR, 

PPV, AUC-ROC 

37 

12,026 5,264 0.9740 11 20 
 

-9 
 

0.28 ACC, TPR, FPR 63 

3,938 2,925 0.9720 12 14 
 

-2 
 

0.40 ACC, TPR, TNR, FPR, FNR, 

AUC-ROC 

66 

1,250 610 0.9688 14 19 
 

-5 
 

0.30 ACC, TPR, PPV, AUC-ROC 41 

5,560 5,560 0.9688 13 3 third 10 ▲ 0.47 Only ACC 6 

• Studies are sorted by ACC values from maximum to minimum per ACCBAR category to differentiate the effect of 

ACCBAR. • For simplicity, only the top 15 of 28 studies with “hit” and “very close” to ACCBAR. There is no 

classification with “under” “close (to)” ACCBAR. The names of the reported metrics are displayed instead of the values. 

• Delta (Δ) values for example misleading ACC ranks are shown in underlined bold against the proper Δ ranks shown 

in bold.  
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The possible reduction is not limited to the top-performing classifications. Classification 

with a relatively lower ACC can move to the higher ranks as observed for the #6 study that 

goes up from rank 13th to 3rd via ACCBAR indicator correction. Future work will evaluate 

the performance values of other metrics such as BACC, F1, CK, and MCC for under, hit and 

very close to Accuracy Barrier cases and compare the differences with ACC from a broad 

perspective as shown in Table 3.2. Note that an open-source R script developed for ACCBAR 

is provided at https://github.com/gurol/PToPI. 
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KNOWLEDGE ORGANIZATION AND DASHBOARD/CALCULATOR 

TOOLS FOR PERFORMANCE INSTRUMENTS 

As mentioned in Chapter 3, novel concepts are proposed to present the essential properties to 

distinguish the instruments. As a summary, the followings are some example interpretations 

of each concept: 

• ACC is a performance metric whereas PREV is a measure (recall that a metric is 

directly related to classification performance and a measure in a fixed range is 

indirect, related to classification configuration). 

• TPR is a base metric whereas BACC is a 1st level metric (i.e. directly depends on 

TPR and TNR). 

• Of three base metrics; TPR has a column geometry related to reality only, PPV has a 

row geometry related to prediction only, and ACC has a mixed geometry covering 

both reality and prediction. 

• FNR is the complement of TNR whereas PREV is the dual of BIAS. LRP and LRN 

are the class counterparts with the same summary function and direct dependents 

(for positive and negative class, respectively). 

It is expected that all these concepts will establish a well-defined foundation for performance 

evaluation instruments from a theoretical point of view. 

Beyond defining the concepts such as instrument type, leveling, geometry, complementation, 

and duality, this study also focuses on the representation of these concepts for all the 
instruments as a practical contribution that addresses the research question “How to enhance 

comprehending, using, representing, reporting, learning, and teaching classification 

instruments?” (RQ3). 

4.1 PToPI: A Knowledge Organization Tool 

As an original implementation proposal of knowledge organization in information science, a 

compact exploratory table is designed for 50 binary-classification performance evaluation 

instruments called PToPI, which is the pictorial specification or blueprint of instruments 

from multiple perspectives covering all the proposed concepts that described and formally 

defined in Chapter 3. PToPI depicts the patterns among performance evaluation instruments 

including 25 measures, 24 metrics, and one indicator by organizing them according to their 

CHAPTER 4 
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types and relationships. The real-world use cases of PToPI is also demonstrated over the 

literature studies. 

A simplified version of PToPI is shown in Figure 4.1 and the full view is included in Figure 

C.2 in Appendix C. PToPI is presented in an all-in-one style, thus it is a compact schema 

resembling the periodic table of elements. A total of 50 classification performance 

instruments all of which originated from four base measures are grouped into measures, 

metrics, and indicators, then the measures and metrics are divided into a leveled structure, 

and positioned according to geometries, similarities, and dependent metrics/measures. 

 

 

Figure 4.1 Plain view of PToPI for 50 instruments: 25 measures, 24 metrics, and one indicator for 

binary-classification performance. See Figure C.2 in Appendix C for the full view and visit 

https://github.com/gurol/PToPI for other views and future updates. 

4.1.1 Design methodology 

PToPI is designed with the following methodology: 

1. Reviewing the literature to compile information such as alternative names and 

equations of the metrics, measures, and indicators, 

2. Equations are converted into different forms where possible such as canonical form 

(Definition 3.1) and with high-level dependency form (see Section 3.8, “More 

Geometries”) 

3. Measure and metrics are identified by canonical equations (via Definition 3.2), 
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4. Geometry types are determined as “column”, “row”, or “mixed” (via Definition 3.3), 

5. A dependency graph is prepared to formulate the levels and discover the similarities 

and dependencies (see Dependency Graph), 

6. The determined levels and dependencies along with the geometry types are used to 

position and level the measures/metrics around base measures shown in a 2x2 

contingency table, 

7. After the layout is completed, the dual and complement of measures/metrics are 

determined (via Definition 3.4 and Definition 3.5, respectively), 

8. The ranges and whether a measure/metric yield not-a-number (division by zero) are 

calculated, 

9. Special colors are used on text and/or background for distinguishing measures, 

metrics, and indicators, their complements (e.g., FDR is grayed out because it is 

𝑃𝑃𝑉̅̅ ̅̅ ̅̅ ), and individual base and first level measures (see colors in Table A.2 in 

Appendix A), 

10. Measures and metrics are separately numbered according to levels and dependencies 

from innermost. Within each level, the numbers are assigned from column to row and 

mixed geometry and from positive to negative class dependencies. The duals are 

numbered in succession. 

11. Geometry is depicted by solid and dashed lines (dashed bottom/top edges for column 

types, dashed left/right edges for row types, and all solid for mixed geometries, see 

Table 4.1), and 

12. Canonical and simplified equations are shown around the measures, metrics, and 

indicators. 

4.1.2 How to interpret PToPI? 

Table 4.1 lists the visual design elements employed in PToPI to represent the properties of 

individual instruments and/or instrument types. PToPI in full view also presents abbreviated 

names, full names, alternative names, assigned numbering, and some special attributes of 

measures and metrics (see also the legend in Figure C.2 in Appendix C) such as duality, 

complementation, whether having not-a-number value (i.e. no 0/0), ranges that are different 

from [0, 1]. 

Recall that the names of measures and metrics that have no upper limit are written in bold 

and numbering for measures are written in italic as shown in Table 3.1 above. The measures 
and metrics above or below the confusion matrix are column geometry type (depended 

solely upon base measures and Sn with P and/or N) whereas the ones located on the left or 

right of the confusion matrix are row geometry type (the same as row type but with OP 

and/or ON). In equations, bold font styles depict canonical forms and normal styles depict 

high-level forms. 

4.1.3 Applications of PToPI Use 

PToPI facilitates standardized specifications of a large number of performance evaluation 

instruments and avoids terminological confusion and uninformed choice of a metric. 
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Table 4.1 Descriptions of the visual design elements used in PToPI 

Geometries Position (1) Box edges Arrows in Equations (2) Example 

Column Below / 

above 

 

Up (↑) / Down (↓) TPR ↓ TP / P 

TPR has a column 

geometry and depends on 

TP and P.  

Row Left / right 

 

Right (→) / Left (←)  PPV → TP / OP 

PPV has a row geometry 

and depends on TP and 

OP. 

Mixed Diagonal / 

Off-diagonal 

  

Diagonal (↘ ↖ ↗ ↙)  ACC ↘ TC / Sn 

ACC has a mixed geometry 

and depends on TC and Sn.  

Complements 

Complement relations (e.g., TPR vs. FNR) are shown in rightwards 

arrows with corner downwards (↴) or upwards (⬏) in redundant pair 

(e.g., FNR) having gray text color.  

Leveling Background Colors 

  

Instrument Boxes (3) 

  

Special notes: 

Instrument Ranges: ±1 or [0, ∞), otherwise: [0, 1] (not displayed) 

Error Types: type I (FP) and/or type II (FN) 

NaN (not have 'not-a-number', i.e. division by zero); 

Dual: M*; Complement: 𝑀̅ 

(1) According to canonical measures frame (2) Also shows the dependencies (e.g., 𝑃 = 𝑇𝑃 + 𝑇𝑁 ↑) 
(3) Instruments are numbered (Nr.) per instrument type. Measure numbers are italic. 

 

Seeing the true limitations of the instruments eliminates unnecessary performance reporting 

and allows the researchers to select the most appropriate instrument or instruments according 

to specific requirements. PToPI is intended to be a single comprehensive reference that will 

be updated upon new instrument proposals. 

The practical use of PToPI can be described in two pillars: 

• Overall instrument analysis: Seeing and comparing the relationships, differences, 

and similarities of all the instruments. 
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• The proper metric choice for performance reporting and comparison: Deciding 

which instruments are suitable for establishing classification models, comparing 

different classifiers, and reporting classification performances. 

Overall instrument analysis: PToPI shows the similarity of the instruments. For instance, 

comparing INFORM and MARK dual metrics in the 1st level, three additional column-

geometry metrics are shown near INFORM, namely BACC, WACC, and G. However, the 

duals of those additional metrics corresponding to row-geometry are not seen near MARK. 

For example, there is no metric taking the arithmetic mean of PPV and NPV like BACC 

(arithmetic mean of TPR=PPV* and TNR=NPV*). 

No metric is found that corresponds to G taking geometric mean of the same dependents. 

The reason for the lack of dual metrics in row geometry is attributed to the fact that 

performance metrics based on the prediction of a classifier (i.e. depending on OP and ON) 

are not as significant as the ones based on the reality (i.e. depending on P and N). The duals 

of LRP, LRN, and OR column-type measures are also missing due to the same reason. This 

thesis revealed such findings that were not addressed in the literature after seeing the big 

picture via PToPI. 

The proper metric choice for performance reporting and comparison:  

The following performance evaluation example approaches are compiled from different 

domains in the recent literature to show the practical assistance of PToPI in selecting an 

optimum number of metrics in performance comparison and performance reporting. 

• F1 is frequently used as a single metric in many domains especially in information 

retrieval conventionally (e.g., in extracting medical terms in clinical texts (Matsuo & 

Ho, 2018)). Referring to PToPI, we can see that F1 is the harmonic mean of TPR 

and PPV, which then depends on positive class only measures (TP, P, and OP). 

While using F1 could be acceptable considering the domain requirements focusing 

on positive performance, it would be better to report a supportive metric with F1 to 

distinguish the negative class performance. The best alternative is TNR or NPV that 

are shown near TPR and PPV. Briefly, the main metric (i.e. used as a single figure in 

a performance comparison of different classifiers) is F1 and the supportive metric 

(i.e. additional metrics used in performance reporting to indicate other perspectives) 

is TNR in this case. A classifier with higher performance in terms of a main metric 

could have a lower performance in terms of supportive metrics. 

• Another common approach in performance reporting as shown in Table 2.2 above is 

reporting F1 along with its direct dependencies namely TPR and PPV (e.g., in 

predicting hospital admissions from emergency department medical records (Lucini 

et al., 2017)). Following the same approach above and addressing the negative class 

performance, F1 can be reported as the main metric. Furthermore, TNR and one of 

TPR and PPV direct dependent metrics can be reported as supportive metrics. In the 

given medical example, PPV can be selected as a supportive metric because PPV 

values are less than TPR. Thus, the lower PPV performances are disclosed to the 

readers. 

• Some domains prioritize false classifications (either or both of FPR and FNR). For 

example, an intrusion detection system focuses on and reports FPR (type I error) and 

then FNR (type II error) along with TPR and ACC (Shah & Issac, 2018). Because, 

high false positives can be annoying for end-users, in the given example, reporting 
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TPR, which is the complement of FNR as shown in PToPI, is redundant. Note that 

reporting a metric (INFORM, BACC, and G groups in PToPI) above FPR and FNR 

is also redundant unless focusing on both error types. As an alternative to reporting 

ACC, a mixed geometry metric above FPR and FNR level such as CK or MCC can 

be used as a main metric besides supportive FPR and FNR metrics (e.g., reporting 

three metrics: MCC, FPR, FNR instead of ACC, TPR, FPR, FNR). 

• An ad hoc increase in the number of the reported metrics does not necessarily 

guarantee the revelation of the superiority of a classification method. It makes the 

comparison harder for the readers conversely. For example, an e-mail spam 

detection study highlights the performance via three base metrics, namely ACC, 

TPR, and PPV (Faris et al., 2019). Besides, TNR, NPV, and G metrics are also 
reported in detailed performance tables. As shown in PToPI, having four non-

complement base metrics each of which depends on corresponding base measures is 

equivalent to reposting a confusion matrix. Going up in one level per reported 

column and row base metrics, INFORM is reported instead of TPR and TNR and 

MARK (as the dual of INFORM) is reported instead of PPV and NPV. There is no 

need to report G metric because it is similar to INFORM as shown in PToPI. 

Reporting MCC is also appropriate by not only summarizing INFORM and MARK 

dependents but also including FP and FN as shown in the canonical forms of MCC. 

Hence, three metrics are sufficient for this example of performance comparison and 

reporting instead of six metrics (MCC as the main metric and INFORM and MARK 

as the supportive metric). 

• Another binary-classification performance reporting example that classifies code 

smells (issues in software codes potentially causing error or failure) reports ten 

instruments: ACC, TPR, TNR, FPR, FNR, PPV, TPR, F1, PREV, and NER 

(Ubayawardana & Karunaratna, 2019). As shown in PToPI, three instruments are 

redundant: FPR, FNR, and NER. From a class-balanced performance view, CK or 

MCC can be used instead of ACC and F1 along with supportive INFORM. PREV 

should also be reported as a supportive instrument indicating class-imbalance in 

datasets. Hence, three instruments can be reported instead of ten. Supportive 

instruments can be further taken into account where ACC and F1 yield the maximum 

performance (1.000). 

4.1.4 Analogy between PToPI and Periodic Table of Elements 

From information science perspective, the periodic table of elements can be considered as an 

unprecedented example application of information or knowledge organization where the 

classification of the elements (i.e. grouping, ordering, positioning the elements) is pragmatic 

(e.g., producing the most helpful one), methodological and fruitful suggesting new 

hypothesis, explanations, and theories (Hjørland, 2013). Likewise, PToPI is also a schematic 

representation of available performance evaluation instruments conveying different forms of 

essential properties (i.e. concepts) (Hjørland, Scerri, & Dupré, 2011). 

After designing PToPI, an analogy with the periodic table of elements was also explored. It 

is observed that there is a strong analogy among them. Analogy is defined as the inference 

that if two or more systems of things agree with one another in some respects, they will 

probably agree in others. Generally, there are two specific systems of things: source domain 

and target domain where a strong and large number of similar patterns exist from source to 
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target (Gürol Canbek, 2018, pp. 65–66)16. The mapping of the analogy is prepared and 

summarized in Table D.1 in Chapter D to present the interesting revealed similarities. 

Note that the ACCBAR performance indicator, which is shown next to ACC in PToPI, can 

also be used along with ACC so that class imbalance is addressed in performance evaluation. 

It is expected that the proposed definitions and PToPI itself will assist researchers in 

comprehension, computation, interpretation, selection, and representation of classification 

performance evaluation instruments and their relationships. Considering a large number of 

available instruments, such a table is essential for not only experienced researchers but also 

young academicians and practitioners in machine learning. 

4.2 TasKar: Dashboard and Calculator 

Despite PToPI is a convenient tool from theoretical aspects, researchers in practice still need 

to calculate and see performances in terms of those large number of instruments. To the best 

of my knowledge, there is no convenient tool having this comprehensive capability besides 

some engineering packages providing commands to calculate metrics. Such packages 

obviously are not compatible with the proposed concepts presented in this thesis. 

To address such a need, a compact dashboard and calculator called TasKar17 is designed and 

shared with the research community online at https://github.com/gurol/TasKar. TasKar is a 

practical tool to calculate and visualize a large number of performance instruments not only 

the common and well-known ones but also the others that should be paid strong attention. 

Recall that PToPI described above represents the proposed concepts for 50 instruments 

described in Chapter 3. As an implementation of knowledge organization, PToPI presents 

the instruments in an organized structure with visualization techniques in order to facilitate 

learning, comprehending, and teach performance instruments. The concepts and detailed 

information about the instruments including the equations are all represented in a single 

page. 

TasKar complements PToPI by providing a tool to calculate the instruments and visualize 

their outputs along with new graphics to interpret the classification results dynamically. In 

this regard, this chapter addresses the research question (RQ3) again especially from the 

aspects such as using, reporting, learning, and teaching instruments. 

Before introducing TasKar tool, the proposed coloring scheme for representing the 

instruments and concepts is described in detail. Note that this scheme is applied throughout 

this thesis where applicable such as in figures and tables. Likewise, PToPI was also designed 

according to this scheme. The colors in this scheme are selected based on the concepts and 

their meanings. 

4.2.1 Proposed coloring scheme 

The proposed scheme comprised color palettes designed for distinguishing: 

• Instrument types (measure vs. metrics vs. indicators), 

• Instrument levels per instrument type (i.e. base measures or 1st level metrics), and 

 
16 Note that this article was prepared during the initial phase of my thesis study. 

17 TasKar is the abbreviation of Tasnif Karnesi in Turkish (Classification Report) 
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• Canonical measures (i.e. TP, FP, FN, TN, P, N, OP, ON, TC, FC, and Sn). 

The color palettes for these items (i.e. text and background colors) are listed and shown in 

Table A.2 in Appendix A. These palettes are designated to reflect the notion behind 

performance instruments as well as enhance the comprehensibility of the proposed concepts 

so that overall perception can be achieved by all the parties (e.g., researchers, practitioners, 

students, and teachers) dealing with performance instruments. The coloring scheme also 

provides harmony among different tools such as PToPI and TasKar. 

A three-dimensional representation shown in Figure 4.2 (a) is prepared as a guide to 

describing the scheme of the base and first level measures (i.e. canonical measures). The 

figure reflects the view of a researcher who evaluates classification performance by looking 

into the confusion matrix above. 

4.2.1.1 Color palettes for 1st level measures 

The following items describe the color palettes for first level measures (P, N, OP, ON, TC, 

FC, and Sn) as depicted in Figure 4.2 (b). 

• Red-like for positive: Because the target class is usually more concerned in 

classification studies (e.g., malware, spam, illness, or any other rather abnormal 

phenomena), it is used for positive-class related canonical measures (P, OP, TP, and 

FN). Following the common practices, red-like colors are used to distinguish such 

measures. 

• Green-like for negative: Negative-class related canonical measures (N, ON, TN, and 

FP) are green like colors implying secondary or normal concerns (e.g., benign 

software, regular e-mail, or healthy). 

In the proposed coloring scheme, foreground colors show the prediction or classification 

outcome colors whereas background colors show the reality or actual class colors as depicted 

in Figure 4.2 (b). 

• Clean background colors for real classes: clean colors are used for depicting reality 

classes. Clean red (red berry)18 for positive (P) and clean green (camarone) for 

negative class (N). 

• Dirty background colors for classification outcomes: the background colors of OP 

and ON are dirty red and green, respectively, indicating that we do not know the 

reality (it can be either positive or negative). Therefore, dirty red (eunry) for 

outcome positive and dirty green (de York) for outcome negative. 

 

 
18 Color names are extracted from http://chir.ag/projects/name-that-color online color approximation tool 
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(a) Performance evaluation conducted by an observer looking into confusion matrix 

 

(b) Steps in defining color palettes for (1): P, N, OP, and ON; (2 – 4): TP, FP, FN, and TN; (5): TC, 

FC, and Sn 

Figure 4.2 Establishing the proposed coloring scheme via the geometries from the three-dimensional 

representation where the observer is above into the two-dimensional representations of base measures 

(confusion matrix) 

Note that TC and FC are the canonical measures introduced in this thesis study enhancing 

the readability of the instrument equations (e.g., ACC is defined as TC / Sn instead of 

(TP + TN) / Sn. The colors dedicated to these measures should not be similar to red and 

green that are class-colors, because TC and FC are class-agnostic. 

• Turquoise-like for true classifications: Because TC indicates favorable outputs of 

classification performance, turquoise-like colors are selected, namely Monte Carlo 

and genoa for the background and foreground colors of TC. 
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• Magenta-like for false classification: To the contrary of TC, FC indicates 

unfavorable outputs of classification performance. Therefore, magenta-like colors 

are selected, namely pink lace and royal purple for the background and foreground 

colors of FC. 

Brown-like color for sample size: The last 1st level measure is Sn that is the sum of all base 

measures (TP + FP + FN + TN), sum of column and row marginal totals of the base 

measures (P + N and OP + ON), and sum of diagonal and off-diagonal totals (TC + FC). 

Brown-like color is selected for Sn because it should not be similar to any of those measures 

(avocado for background color and Verdun green for foreground color). 

4.2.1.2 Color palettes for base measures 

Base measures give the classification result by checking the predictions against reality. The 

three-dimensional perspective depicted in Figure 4.2 helps to define the color palette 

depicting these conformances (i.e. TP and FP) and non-conformances (i.e. FP and FN). For 

example, the foreground color of FP is red-like indicating the outcome of the classification 

(positive) whereas background color is green-like indicating the reality (negative). Table 4.2 

shows the color palette designed for representing the four base measures. 

 

Table 4.2 Color palette for base measures (TP, FP, FN, and TN) 

Base Measures Reality Background Prediction Foreground Fore/back-ground 

True Positive Positive Red-like Positive Red-like TP 

False Positive Negative Green-like Positive Red-like FP 

True Negative Negative Green-like Negative Green-like FN 

False Negative Positive Red-like Negative Green-like TN 

 

4.2.1.3 Color palettes for instrument types and their leveling 

The following colors are used to indicate instrument types and levels as shown in Figure 4.3. 

• Gray-like colors for measures 

• Orange-like colors for metrics 

• Blue-like colors for indicators 

  

(a) levels (b) levels and dependencies 

Figure 4.3 Color palettes for instrument types and levels 
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Note that canonical measures in TasKar are also displayed in bold-italic as listed in Table 

3.1. Next section reviews the literature on classification performance instrument 

visualization. 

4.2.2 Survey 2: Visual representation of confusion matrix 

The literature has not addressed the visualization of confusion matrix and performance 

metrics adequately. Researchers usually tend to report the success of their classification by 

some of the metrics at their choice instead of fully giving the four base measures. If they 

report, a 2x2 contingency tabular form is used without any visualization. 

Alsallakh et al. (2014) designed a visualization tool called “confusion wheel” in order to 

show a multi-class classification confusion matrix. The visualization is based on a chord 

diagram having sectors representing the classes. The color palette chosen for representing 

base measures for given class against others are green (TP), orange (FP), red (FN), and gray 

(TN). To the contrary of the coloring scheme proposed and employed in this study, the 

colors do not suggest a semantic interpretation (e.g., red for FN). 

Saito and Rehmsmeier (2015) use two semi-oval shapes to visualize the base measures as 

well as P, N, OP, ON, and Sn as shown in Figure 4.4 (b). The portion of the base measures 

shows the proportion of base measures. The size of P and N semi-ovals are changed for 

imbalanced samples. 

Some engineering software packages also provide functions for plotting base measures. 3 (a) 

shows “plotconfusion” command in MATLAB (“Matlab: plotconfusion,” 2018) whereas 

Figure 2 (d) shows “forfoldplot” in R (Friendly, 1995). The former displays the values of 

base measures, base measure rates, some base metrics in tabular form whereas the latter 

displays the values of base and first level measures along with scaled circular sections for 

base measures. 

Figure 4.4 (c) and (e) are the examples displaying the base measures with Venn diagrams. 

Figure 4.4 (c) shows three cases of classification from top to bottom: regular case, no false 

positive, and no false negative (Nicolov, 2012). Figure 4.4 (e) shows an attempt to visualize 

performance metrics with Venn diagrams (Massich, 2015). It should be highlighted that the 

coloring scheme proposed in this study can also enhance the comprehension and 

interpretation of these visualization approaches. As seen in the review above, the 

representations of performance instruments are highly limited. The next section introduces a 

dashboard and calculator that is accompanied by PToPI for a wide range of performance 

instruments that can be used by the researchers, professionals, and students. 
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(a) 

 
(b) (c) 

  

(d) (e) 

Figure 4.4 Related works on visualization of confusion matrix and performance metrics. (a) the 

tabular output of “plotconfusion” command in MATLAB. Only numbers are given (“Matlab: 

plotconfusion,” 2018), (b) base measure visualization with semi-ovals (Saito & Rehmsmeier, 2015), 

(c) base measure visualization with Venn diagram (Nicolov, 2012), (d) the graphics output of 

“forfoldplot” command in R with circular sections (Friendly, 1995), (e) base measure and metrics 

visualization with Venn diagram (Massich, 2015) 
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4.2.3 TasKar overview 

Based on the formatting scheme described above, a dashboard/calculator is designed named 

TasKar for binary classification performance instruments as shown in Figure 4.6. TasKar is 

implemented as an OpenDocument Spreadsheet document file (TasKar.ods) and provided 

online. Therefore, it does not require installing extra software besides an office package (the 

best viewed with LibreOffice version 6.2). 

Figure 4.5 shows the parts and layout of the TasKar that consists of two parts vertically: 

• Upper part: performance instruments 

• Lower part: base metric graphics 

The upper part comprises the instruments that are located as similar to PToPI as possible. 

The lower part provides three graphics to summarize base metrics. 

The usage is straightforward. After opening the dashboard file, users can enter the 

classification results in the cells belonging to the confusion matrix (the cells under TP, FP, 

FN, and TN base measure labels). The performance instruments are calculated and the 

graphics are updated automatically. 

It is possible to compare two classification studies by opening two instances of the 

dashboard file and tiled horizontally on the desktop. The researchers can take the screenshot 

of the dashboard by adding the citation reference in the reserved cell in upper-middle and 

publish it. 

 

Figure 4.5 The layout of TasKar parts (performance instruments and graphics) 
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Figure 4.6 A screenshot of TasKar 
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4.2.3.1 TasKar features 

Some of the features of TasKar can be summarized as follows: 

• Base measure cells are also captioned as “a” (TP), “b” (FP), “c” (FN), and “d” (TN) 

notation that is a convention in similarity/dissimilarity (distance) between two binary 

matrices, diagnostic tests, association measures, many 2x2 contingency table analysis 

such as meteorology forecasting skill scores (Wilks, 2006, p. 261), and even early 

classification performance evaluation studies. 

• Like PToPI, the first level measures namely P, N, OP, ON, TC, FC, and Sn are 

located around the confusion matrix according to their dependencies (e.g., P is above 

TP and FN, because P = TP + FN; also, OP is located at the left of TP and FP). 

• PREV and BIAS that are the important measures of classification studies are located 

near confusion matrix. 

• The background color of the values of PREV and BIAS reflect the weight of the class: 

small values (less than 0.5) are getting green indicating negative class dominance, 

large values (more than 0.5) are getting red indicating the positive class, and values 

around middle (about 0.5) is white that is ideal for a classification study. 

• Class skewness (SKEW) and class imbalance (IMB) are also displayed at the right-

bottom of the upper part. 

• Instrument geometries are depicted via the dashed edges similar to PToPI (see Table 

4.1)  

• Column geometry base metrics TPR, FNR, TNR, FPR and row geometry base metrics 

PPV, FDR, NPV, FOR are presented at the right and left of confusion matrix, 

respectively, as shown in Figure 4.519. 

• Those eight metrics are also visualized via bar graphs besides their actual values 

using the coloring scheme. 

• Metric complements are indicated with arrows and gray text color in their labels 

denotes redundancy (FDR is the complement of PPV and FPR is the complement of 

TNR). 

• For the sake of completeness, although it is not based on confusion matrix, AUC can 

be entered into the cell at the middle-top for reporting purposes. 

• ACCBAR indicator is also integrated into TasKar that shows how the classification is 

close to accuracy barrier as described in Section 3.11. Figure 4.7 shows the indicator 

categories. 

 
19 The column instruments are not positioned above confusion matrix except P, N, and PREV because of the 

design goal of the tool of making a compact tool in a minimum size.  
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(a) Over (b) Close (c) Very close (d) Hit (e) Under 

Figure 4.7 TasKar showing the accuracy barrier indicator categories 

The features provided in TasKar can facilitate the performance evaluation phase of binary 

classification studies accurately and objectively. Presenting all the instruments together 

avoid ignoring the prominent aspects of a specific classification application. For example, 

class imbalance and underperformance in terms of specific metrics. If we calculate and see 

only some of the metrics such as ACC, F1, PPV, BACC, G, or TPR, the performance 

evaluation misleads that the classifier achieves high performance. 

Note that TasKar is implemented as a self-contained tool. Due to the lack of space and the 

nature of the tool with respect to end-user requirements, it cannot and does not need be as 

informative as PToPI. 

4.2.3.2 TasKar graphics 

The performance values in terms of various instruments are helpful for seeing the complete 

results and focusing on different metrics together. However, interpretation of the overall 

performance might be difficult by analyzing the numbers only. In order to help researchers 

in the interpretation of the metrics and give more insights, the following three kinds of 

graphics are developed further in this thesis study: 

• Graphic 1 (prediction base metrics) 

• Graphic 2 (reality base metrics) 

• Graphic 3 (composite base metrics and class sizes) 

Figure 4.8 shows these graphics, which are described below, in an example case with 

TP = 300, FP = 25, FN = 50, and TN = 475 base measures. 

 

 

 

Figure 4.8 TasKar graphics for an example classifier with TP = 300, FP = 25, FN = 50, and TN = 475 

 

Graphic 1 (prediction base metrics) shows the two complements of two prediction base 

metrics (i.e. in row geometry) per each class in two nested circles. The outer circle is for 

positive class and the inner circle is for negative class prediction base metrics. 
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Graphic 2 (reality base metrics) shows the same graphics for two reality base metrics (i.e. in 

column geometry). 

Graphic 3 (composite base metrics and class sizes) provides an overall overview of the base 

metrics enhanced with the class sample sizes. It is alone a comprehensive graphic to 

summarize the overall performance, therefore it could be used in performance reporting in 

the literature (the same graphic for the most competing classification in a domain can also be 

presented side by side or in the same graphic) 

Note that the precision of the base metric values are decreased to two digits to simplify 

performance evaluation (four digits are presented in the upper part). 

4.2.3.3 Example real-word usage of TasKar graphics 

Interpreting the graphics given in Figure 4.8, the followings could be inferred: 

• Comparing Graphics 1 and 2 together; positive class performance is less than 

negative class in reality (as seen in Graphic 2) while it is better in prediction (as seen 

in Graphic 1). More specifically, FNR (14%, type II error) is higher than all the other 

false classifications (FOR = 10%, FDR = 8%, and FPR = 5%)20. 

• Via Graphic 3, the predictive power of the classifiers on both classes is close but this 

power does not reflect in reality (the circles are closer in vertical axis than the 

horizontal axis). 

• Further, the class imbalance can be observed easily via the representation of the 

class sizes in Graphic 3. 

TasKar graphics can provide different insights on evaluating a classifier’s performance in 

other real-world use cases. It is also helpful in comparing two different classifiers to help in 

noticing the differences. 

The two graphics at the left and right are more detailed and comprehensible comparing a 

small number of attempts reviewed above. Graphic 3 especially is informative as it gives a 

clear insight by showing the performance in terms of both classes’ reality and prediction 

performances and reflecting the class imbalance in a single picture. 

 

  

 
20 Reporting PPV as 92% and FPR as 5% only makes this classifier as a promising one. 
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BenchMetric: SYSTEMATIC BENCHMARKING OF PERFORMANCE 

METRICS 

Analyzing performance instruments increase our overall understanding of performance 

evaluation and its instruments. The provided tools are also helpful in comprehending the 

instruments as well as conducting performance evaluation. Nevertheless, the critical question 

is “What is the best metric?” or put it in a more correct expression, “What is the most robust 

metric that should be used in performance evaluation, comparison, and reporting?” 

addressing (RQ4). This question must be answered in an incontrovertible proof on behalf of 

the researchers who even embrace the concepts and practically use the tools provided in this 

thesis. This chapter also addresses the second research question in (RQ4) “What should be 

reported for expressing classification performance?” by recommending a proper approach. 

In order to answer these key questions, a benchmarking method named BenchMetric is 

proposed to evaluate all the performance metrics from a comprehensive perspective in a 

methodological manner. BenchMetric comprises the following three stages, which are 

described in the following sections: 

• Stage-1: Extreme cases: Performance of thirteen extreme classification result cases 

are measured by each metric and the outputs are inspected. 

• Stage-2: Mathematical evaluation: The equations of each metric and the metric-

spaces are evaluated according to eleven different criteria. 

• Stage-3: Meta-metrics: The robustness of each metric is evaluated by seven novel 

meta-metrics (i.e. metrics about (performance) metrics) defined formally in metric-

space. 

5.1 Benchmarking Data 

This section introduces a new aspect of metrics named “metric-space” before describing the 

benchmarking method in stages. The benchmark stages are conducted on the metric-spaces. 

5.1.1 Metric-space: metric distribution in pseudo-universal “base performance 

measure permutations” 

A metric-space indicates all possible permutations of base (performance) measures (TP, FP, 

FN, and TN) yielding the same Sn. A metric-space (M) holds all possible results of a 

hypothetical classification conducted in a dataset with a given sample size in terms of a 

specific metric (M). Metric-space provides a pseudo-universal space to analyze and compare 

CHAPTER 5 
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metrics in the complete coverage. Recall that metric-spaces are represented in bold (e.g., 
ACC metric-space vector for ACC metric), single metric values in italic (e.g., ACC = 0.900), 

and set or array of metric values and limitless measures in bold-italic (e.g., BM = {TP = 7, 

FP = 1, FN = 0, TN = 2} and Sn = 25). Because metrics are the ratios and sample sizes are 

reduced in the numerator/denominator of the metrics' equations, we can calculate metric-

spaces (i.e. all possible values of a given metric per base measure permutation in given 

sample size) as formally expressed in Definition 5.1. 

Definition 5.1 (Universal Base Measure Permutations). 

A vector 𝐁𝐌𝑺𝒏 shows all possible base measure permutations with repetition where each ith 

element of 𝐁𝐌𝑺𝒏  is 𝐁𝐌𝑖
𝑺𝒏: 𝑩𝑴 → ℤ∗4  and 𝑩𝑴 =  {𝑻𝑷, 𝑭𝑷, 𝑭𝑵, 𝑻𝑵}  and 𝑻𝑷𝑖 + 𝑭𝑷𝑖 +

𝑭𝑵𝑖 + 𝑻𝑵𝑖 = 𝑺𝒏 and 𝑩𝑴 = {𝒃𝒎|0 ≤ 𝒃𝒎 ≤ 𝑺𝒏}. 

Definition 5.2 (Metric-Space). 

A metric-space M or 𝐌𝑺𝒏 covers the outputs given by an M metric for all the elements of  

𝐁𝐌𝑺𝒏 universal base measure permutations. 

For example, there is a total of 286 permutations of four base measures with repetition for 10 

samples where the sum of the measures is equal to 10. An example permutation might be 10 

true positives only (all others are zero) and another example might be 7 true positives, 1 false 

positive, and 2 true negatives. The metric-spaces of F1, ACC, and MCC are also calculated 

per each permutation. 

Note that the size of base-measure permutations and metric-spaces increases exponentially 

with Sn. For instance, it is 2,667,126 for 250 samples. When metric-spaces are used in the 

experiments, the related benchmarking criteria are tested with different Sn values. It is 

observed that the results are the same or converge as Sn increases but they are representative 

while comparing a group of metrics or at least consistent within a specific Sn. As a result, 

the maximum sample size is limited to 250 in order to keep the permutation size and 

calculation time in a reasonable range. Calculation of the meta-metrics in metric-spaces in up 

to 250 sample size (except for consistency and discriminancy meta-metrics) takes maximum 

one minute on an R version 3.5.2 (2018-12-20) platform on a Darwin 15.6.0 operating 

system with 2.3 GHz CPU and 16 GB RAM. The calculation of the proposed meta-metrics 

for a single metric takes 21 hours and 45 minutes. Note that detailed time test results and 

metric-spaces for different sample sizes between 10 and 250 are provided in the online 

material described in Section 1.6. 

5.2 Experiment 1: Benchmarking 13 Performance Metrics 

The following sections from Section 5.3 and Section 5.6 define and describe the criteria and 

stages proposed in BenchMetric method as well as demonstrates them via the 

experimentation conducted on benchmarking 13 metrics namely TPR, TNR, PPV, NPV, 

ACC, INFORM, MARK, BACC, G, nMI, F1, CK, and MCC. Section 5.6 summarizes the 

overall benchmarking result. 
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5.3 BenchMetric Stage-1: Extreme Case Benchmarking 

Stage-1 gives initial insights about the robustness of the metrics where thirteen extreme 

classification result cases are defined on 10.000 samples and the corresponding 

performances in terms of each metric are evaluated. Basically, a performance metric should 

be accurate in all these extremes. Table 5.1 shows the cases defined by some specific base 

measures and corresponding performances calculated in terms of thirteen performance 

metrics. 

The base measures are calculated based on sample size (Sn) parameter according to the 

equations given in the footnote of the table. The performance values are in [0, 1] range 

where 0 and 1 denote lowest and highest performances, respectively. Note that the metrics 

with apostrophe (e.g., MCC') indicates that bi-directional metric (i.e. [-1, 1]) is normalized 

into [0, 1] range to simplify the assessment. 

Three benchmark criteria are defined in Stage-1: 

1) “Does a metric yield not-a-number (NaN, i.e. 0/0) in extreme cases?” 

2) “Are the performance metric values of the cases from 5 to 9 decreasing?” 

3) “Are the performance metric values symmetric for both classes?” 

The problematic behaviors under those criteria are depicted in bold underlined texts. Note 

that the metrics are also sorted horizontally in Table 5.1 according to the total ranking of 

their non-conformance with the criteria. The followings are some highlights: 

• The first criterion in Stage-1 is that a proper metric should not yield undefined 

results. For example, PPV and MARK are NaN for the case 12 on 1 positive 9999 

negative samples. 

• The second criterion examines the logical performance order of a metric in the same 

number of positive and negative samples. The performances for the extreme case 5 

to case 9 expressed by a metric should satisfy p4 > p3 > p2 > p1 > p0, respectively. 

Notably, only nMI does not follow it accurately for case 8 and case 9, which 

corresponds to almost and exactly full false-classifications (0.9973 for p1 where TP 

= TN = 1 and 1 for p0 where TP = TN = 0). 

• The third criterion is that a metric should not differentiate the performances in 

symmetric conditions of both classes. In extreme cases 1 and 13 having positive only 

and negative only samples and/or extreme cases 2 and 12 having almost positive and 
negative samples yield similar performances (i.e. pi ≈ pj, pii ≈ pjj). F1, for example, 

yields 0.9999 for positive-only and almost-positive samples whereas it yields 0.0 for 

the symmetric cases. Hence, F1 is not sensitive to negative-class performance. 

Overall assessment of Stage-1 reveals that ACC, CK, and MCC are the most and nMI is the 

least robust performance metrics. 
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5.4 BenchMetric Stage-2: Mathematical Evaluation Benchmarking 

In Stage-2, eleven criteria are proposed to evaluate different metrics from mathematical 

perspectives.  

5.4.1 Criteria 2.1–2.3: All-purpose coverage 

A robust metric –by definition– should not have a missing facade of fundamental 

performance elements (TP, FP, FN, TN, P, N, OP, ON). Otherwise, they cannot be effective 

to summarize the confusion matrix and number of classes and classification outputs. The 

following three criteria are provided to distinguish the limitations of metrics by evaluating 

the metrics expressed in canonical form defined in Definition 3.1: 

• Criterion 2.1 (Outcome/class coverage): Metrics should not be sensitive to outcome 

base-measures-only (i.e. includes OP and/or ON without P and N) or class base-

measures-only (i.e. includes P and/or N without OP and ON). 

• Criterion 2.2 (Class coverage): Metrics should fully cover the classes (P, N) without 

excluding any class. 

• Criterion 2.3 (Base measure coverage): Metrics should cover base performance 

measures (TP, FP, FN, and TN) without excluding any measure. 

5.4.2 Criteria 2.4–2.6: Variance/invariance 

Contrary to other measures/metrics such as association measures, invariance (i.e. not 

differentiating the swaps among base measures) might not be a desired characteristic of a 

robust performance metric, because any change making four base measures of the confusion 

matrix different overall should usually be distinguished. Figure 5.1 depicts the three types of 

swaps that are used to assess metrics’ variance in BenchMetric. 

 

 

Figure 5.1 Three types of swaps of (a) an original confusion matrix (base measures): (b) class swap 

(horizontally: between TP and FP along with FN and TN), (c) outcome swap (vertically: between TP 
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and FN along with FP and TN), and (d) class-and-outcome swaps (diagonally: between TP and TN 

along with FP and FN) 

A toy classification example is provided in Figure 5.1. A robust performance metric should 

be variant to class swap and variant to outcome swap because base measures become 

different as given in Figure 5.1 (b) and (c) with the original ones in Figure 5.1 (a). 

Otherwise, the metric does not differentiate such classification results. 

In order to find the variance or invariance of a metric, the base measures in the equation of a 

metric should be changed according to the type of swaps as shown in Figure 5.1 (b – d) and 

the original and swapped version equations are compared. For example, swapping classes in 

𝑇𝑃𝑅 = 𝑇𝑃/𝑃 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁)  makes the equation 𝐹𝑃/(𝐹𝑃 + 𝑇𝑁) = 𝐹𝑃/𝑁 = 𝐹𝑃𝑅 , 

which is different from the original metric. Hence, TPR is variant to class swap. Whereas, 

class-and-outcome swaps in 𝑀𝐶𝐶 = (𝑇𝑃 ⋅ 𝑇𝑁 − 𝐹𝑃. 𝐹𝑁) √𝑃 ⋅ 𝑁 ⋅ 𝑂𝑃 ⋅ 𝑂𝑁⁄  make no 

variance: (𝑇𝑁 ⋅ 𝑇𝑃 − 𝐹𝑁. 𝐹𝑃) √𝑂𝑃 ⋅ 𝑂𝑁 ⋅ 𝑃 ⋅ 𝑁⁄ = 𝑀𝐶𝐶. 

Table 5.2 also shows the known metrics corresponding to each swap. Only two metrics are 

identified that contradict these criteria: nMI and F1. F1 is not invariant to class and outcome 

swaps because it has no TN coverage as addressed in base measure coverage in Table 5.2. 

In the literature, Sokolova (2006) suggests four invariance properties, only one of which 

corresponds with the proposed criterion namely class-and-outcome swapping  and examines 

six metrics only (TPR, TNR, PPV, ACC, INFORM, and F1). The other two actually indicate 

the variance by changing TP-only and FP-only that are easily evaluated by our base measure 

coverage criterion. Likewise, the fourth property is actually scaling OP components (TP and 

FP) and ON components (FN and TN) separately. This also corresponds to Criterion 2.1 

(Outcome/class coverage). 

5.4.3 Criteria 2.7–2.11: Descriptive statistics 

The general analysis of all possible outcomes of a performance metric can increase the 

overall understanding of its behavior in a complete scope. The distribution and descriptive 

statistics such as range, mean, median and standard deviation calculated for the metric-space 

of a metric give fundamental insights about the dispersions and transitions of metric outputs. 

Figure 5.2 illustrates density graphs along with some of the statistics per metric namely 

range, mean, median, and mode. Each density graph shows the metric-space in terms of 

relative frequencies per equally spaced breaks in the metric’s range. A fitted normal 

distribution curve over the mean is also attached where possible (i.e. ACC, INFORM, 

BACC, CK, and MCC). 

The most important findings shown in Figure 5.2 are that although all the metrics summarize 

the four or fewer base measures into a single figure in a specific range, the distributions are 

different from each other and not all the performance metrics show smooth and continuous 

transitions. The revealed difference could be another motivation to identify the most robust 

metric. The following defined criteria are important for metric evaluation: 

• Criterion 2.7 (Undefined (NaN) counts): The number of undefined values (not-a-

numbers, NaN) is listed in Table 5.2. The NaN count of MCC is the highest with 

proportional to Sn, whereas ACC, F1, and CK have 0, 1, and 2 NaNs, respectively 

regardless of Sn. Robust metrics should calculate any base measure permutations, 

without any exception. Note that this criterion is different from the first criterion in 

Stage-1 that covers only a few extreme cases. 
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• Criterion 2.8 (Central tendencies): The central tendency defined by mean, median, 

and mode should be examined for metric-spaces. Only INFORM, MARK, and 

BACC have exactly the same three central tendencies. However, a mean-median 

difference (i.e. arithmetic average vs. positional average in sorted metric-space), 

which could be the indication of an imbalance in mapping the uniform classification 

performance results (i.e. base measure permutations) to the corresponding uniform 

output ranges of a metric-space, was observed in nMI and CK (even though CK is 

symmetric). 

• Criterion 2.9 (Standard deviation): Informatively, the standard deviation of nMI and 

CK are the lowest indicating low dispersion around their mean values whereas 

others disperse over a higher range of values in metric-space as can be seen in 

Figure 5.2. 

The shape of distributions: Criterion 2.10 (skewness) and Criterion 2.11 (kurtosis): Table 

5.2 shows two values to recognize the shape of metric-space distribution and dispersion 

shown in the graphs in Figure 5.2. Most of the metric-spaces are symmetric and platykurtic 

(thin-tailed) except CK, F1, G, and nMI. Note that G and F1 metric-spaces exhibit 

unexpected distortions by yielding zero dominantly, which indicates the unusual 

accumulation points in metric-space. 

 

 

Figure 5.2 Density graphs summarizing each of the 9 metric-spaces (TNR, PPV, and NPV are the 

same as TPR; MARK is the same as INFORM). The area under curves are one. 

 

Table 5.2 shows the results of the Stage-2 benchmarking along with the metrics’ ranks. Note 

that underlined bold texts depict the deficiencies and each criterion is taken as equally 

important and the last three criteria (standard deviation, skewness, and kurtosis) are 

informative and not included in benchmarking evaluations. 
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5.4.4 Detailed mathematical assessment of MCC and CK 

This subsection is devoted to a further separate assessment of CK and MCC metrics that are 

the top-ranked metrics equally in both Stage-1 and Stage-2. The following arranged 

equations are introduced to reveal the subtle difference between them. As seen in the 

equations in Table B.2 in Appendix B, both CK and MCC have a determinant of base 

measures as a matrix in nominators. Rearranging the denominators, CK and MCC are 

inversely proportional to arithmetic mean (Arithmean) and geometric mean (Geomean) of the 

same coefficients, respectively: 

𝐶𝐾 =
𝐷𝐸𝑇

Arithmean(𝑃 ⋅ 𝑂𝑁, 𝑁 ⋅ 𝑂𝑃)
 (5.1) 

𝑀𝐶𝐶 =
𝐷𝐸𝑇

Geomean(𝑃 ⋅ 𝑂𝑁,𝑁 ⋅ 𝑂𝑃)
 (5.2) 

 

As the nominators are the same, the only difference is the mean expressions in the 

denominators where 𝑥 = 𝑃 ⋅ 𝑂𝑁  and 𝑦 = 𝑁 ⋅ 𝑂𝑃  are multiplication of two performance 

dimensions (i.e. column and row geometries or reality and prediction) for opposite classes 

(i.e., cross-geometry margins in cross-class) as shown in the following equations. 

x  = 𝑃 ⋅ 𝑂𝑁 and y = 𝑁 ⋅ 𝑂𝑃 and class={positive, negative} (5.3) 

x  and y : 1st_level_col_measure𝑐𝑙𝑎𝑠𝑠 ⋅ 1st_level_row_measure𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒_𝑐𝑙𝑎𝑠𝑠  (5.4) 

x  and y : 𝑟𝑒𝑎𝑙𝑖𝑡𝑦𝑐𝑙𝑎𝑠𝑠 ⋅ 𝑝𝑟𝑒𝑑𝑖𝑐𝑡𝑖𝑜𝑛𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒_𝑐𝑙𝑎𝑠𝑠 (5.5) 

 

Hence, the mathematical assessment of MCC and CK comes down to a comparison of 

arithmetic mean with geometric mean. 

CK  ∝ Arithmean(𝑥, 𝑦)  ? Geomean(𝑥, 𝑦) ∝ 𝑀𝐶𝐶 (5.6) 

 

First of all, as two of the Pythagorean means, arithmetic means are always greater or equal to 

the geometric means for the same pair of values. Thus: 

Remark. CK is always less than or equal to MCC though this does not imply any superiority. 

Arithmean ≥ Geomean ≥ Harmonicmean ⇒ 𝐶𝐾 ≤ 𝑀𝐶𝐶 (5.7) 
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Findings based on a toy example: 

Figure 5.3 depicts the interpretation of the two types of means corresponding to CK and 

MCC metrics based on an example classification as shown in Figure 5.3 (a). The 

interpretation is conducted by using geometric modeling for the family of means (Maor, 

1977). Note that the geometric elements are scaled to sense the given values, lengths and 

areas. 

 

(a) A toy example classification measures and metrics 

 

 

(b) Geometric interpretation of x and y coefficients 

in the denominators of CK and MCC 

(c) Arithmetic and geometric mean of x and y 

coefficients (one-dimensional representation) 

 

(d) Arithmetic and geometric mean of x and y coefficients (two-dimensional representation) 

Figure 5.3 Geometric interpretation of arithmetic mean in CK and geometric mean in MCC via a toy 

example binary classification 
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The two factors (x and y) are multiplication of two geometric dimensions as given in 

Equations (5.3)–(5.5). The multiplication of two Cartesian dimensions refers to area in 

geometry as depicted in Figure 5.3 (b). 

Representation of x and y in one-dimensional is depicted in Figure 5.3 (c) that shows 

original x and y values (represented as wavy lines indicating they are the multiplication of 

the two different dimensions) along with their arithmetic and geometric means. Those two 

means (6.5 and 6) are very close to each other and we could not tell which one has a better 

representation of original factors. 

Figure 5.3 (d) shows the factors and means in a two-dimensional plane. Comparing the 

original x, y values forming a rectangle and their respected means forming a square: 

• Area of the original x and y rectangle is the same as the area for geometric mean (𝑥 ⋅
𝑦 = 9 ⋅ 4 = 36 = Geo𝑚𝑒𝑎𝑛(𝑥, 𝑦)

2 = 62) and 

• Perimeters are the same for arithmetic mean ( 2(𝑥 + 𝑦) = 2(9 + 4) = 26 =
4 ⋅ Arith𝑚𝑒𝑎𝑛(𝑥, 𝑦) = 4 ⋅ 6.5). 

We could not judge based on these findings but when we look into unequal two 

measurements: 

• the perimeters are closer to the original perimeter for geometric mean (the difference 

is |24 − 26| = 2 

• than the areas to the original area for arithmetic mean (the difference is 

√|42.25 − 36|
2

= √|6.25|
2

= 2.5 by transforming from area back to perimeter in 

one dimensional). 

 

Remark. Although it is based on a single example, this finding gives an idea that geometric 

mean is more representative. 

 

Figure 5.4 shows another interesting finding based on the same example where the best 

classification is achieved (i.e. no false classifications) in the same dataset (P = 3, N = 2, 

FP = FN = 0, OP = 3, and ON = 2). Let x' and y' denotes this second case, where 𝑥′ = 𝑃 ⋅
𝑂𝑁 = 6 and 𝑦′ = 𝑁 ⋅ 𝑂𝑃 = 6. In this case, both arithmetic and geometric means of x' and y' 

are equal to 6 ( Arith𝑚𝑒𝑎𝑛(𝑥′, 𝑦′) = Geo𝑚𝑒𝑎𝑛(𝑥′, 𝑦′) = 6 ), which is not equal to the 

arithmetic mean in the first case (6.5) but equal to the geometric mean in the first case. 

Moreover, when we swap OP and ON in two factors, 

• the geometric mean of 𝑥′′ = 𝑃 ⋅ 𝑂𝑃 = 3 ⋅ 3= 9 and 𝑦′′ = 𝑁 ⋅ 𝑂𝑁 = 2 ⋅ 2 =  4  is 

also equal to 6 that is also less than (i.e. reducing outlier effect of) the corresponding 

arithmetic mean 6.5. 
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Figure 5.4 Comparison of the means in the best performance in the same dataset. 

 

Findings based on the literature review: 

From a statistical perspective, the literature has strong arguments in favor of geometric 

mean: 

• Galton (1889, pp. 239–240), for example, has a decisive formulation stated as “the 

true mean is geometric rather than arithmetic” and “it (arithmetic mean) may lead to 

absurdity when applied to wide deviations”. 

• Frank (2009, p. 31) agrees that “geometric mean often captures most of the 

information about a process or a set of data with respect to underlying distribution”. 

• Compared to the arithmetic mean, a geometric mean is less sensitive to outliers’ 

disruptive effects and it is independent of different ranges of inputs (McAlister, 

1879, p. 369). 

• Though not justified, Colignatus (2007, p. 6) claims geometric means are more 

robust due to arbitrary influences among the values in contingency tables. 

• Geometric mean is more appropriate for getting the most probable value where the 

data is inter-related (Matuszak, 2010). Here x and y factors are inter-related (e.g., 𝑃 ⋅
𝑂𝑁 is related to 𝑁 ⋅ 𝑂𝑃 that is (𝑆𝑛 − 𝑃) ⋅ (𝑆𝑛 − 𝑂𝑁)). 

 

Conjecture. Aggregating all the findings above, it is concluded that MCC is 

mathematically more robust than CK. 

The next stage becomes notable in whether it supports the concluded finding between MCC 

and CK. 
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5.5 BenchMetric Stage-3: Meta-metrics Benchmarking 

Stage-3 measures the robustness of performance metrics via a proposed concept called meta-

metrics (i.e. metrics about (performance) metrics as defined in Definition 5.2 above). The 

meta-metrics that are also in [0, 1] range are calculated in metric-spaces. In the experiments, 

each meta-metric is obtained for the reviewed performance metrics such as accuracy or MCC 

in the metric-spaces of different Sn sample sizes. It is observed that some meta-metric values 

are equal regardless of the sample size or they converge consistently as Sn increases. For the 

latter case, the intermediate meta-metric values for a number of Sn values are calculated and 

their averages are defined as the final meta-metric value. Figure 5.5 depicts the six of the 

seven proposed meta-metrics calculated for some example metrics in 10 sample size. 

 

 

Figure 5.5 Depiction of six of seven meta-metrics for 286 base measure permutations (sample size 

10): 1) UBMcorr for F1 metric; 2) UPuncorr for F1; 3) UDist for ACC; 4) UMono for CK; and 5-6) 

UCons and UDisc for ACC versus MCC' (MCC normalized into [0, 1] range). Refer to Section 5.5.4 

and Figure 4 for UOsmo meta-metric. 

 

The following subsections describe and give formal definitions of each meta-metric.  

5.5.1 Meta-metric-1: Base measure correlations (UBMcorr) 

The correlation between a metric-space and each base measure gives their degree of 

relationship. Robust metrics should equally be correlated with all base performance 

measures from an objective perspective unless otherwise required. The correlations with FP 

and FN must be negative for a performance metric (i.e. false classifications should decrease 

the performance). 
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Figure 5.5 shows F1 metric-space with corresponding BM permutations as an example. The 

correlations with TP, −FP, −FN, and TN along with the final UBMcorr meta-metric value 

are also displayed. Table 5.3 lists the Spearman's rho correlation values for all benchmarked 

metrics. Recall that underlined bold texts depict the deficiencies. Spearman correlation is 

used because it is less sensitive to outliers comparing with Pearson correlation that assumes 

linearity among the metric and base measures (or prevalence for UPuncorr meta-metric 

described below)21. 

UBMcorr meta-metric reveals that F1 has zero correlation with TN values whereas it is 

highly correlated with TP but lower correlated with false positives/negatives than true 

positives. CK is lower correlated with true positives/negatives (i.e. more emphasis on 

performance errors than successes) compared to the others. G is class-balanced (i.e. 
correlations for TP vs. TN and −FP vs. −FN are the same) but it is lower correlated with 

negative false positives/negatives than true positives/negatives (0.49 < 0.54). ACC, 

INFORM, MARK, BACC, and MCC are ideally all balanced (i.e. absolute correlations for 

TP vs. −FP vs. TN vs. −FN are the same). nMI has the lowest correlations with base 

measures. Note that meta-metric UBMcorr for a metric-space is calculated as follows where 

corrbm(M) depicts the spearman correlation between the metric-space and bm (base 

measures): 

𝑈𝐵𝑀𝑐𝑜𝑟𝑟 =  
∑ 𝑐𝑜𝑟𝑟𝑏𝑚(𝐌)𝑏𝑚=𝑻𝑷,−𝑭𝑷,−𝑭𝑵,𝑻𝑵

4
 (5.8) 

 

Table 5.3 Meta-metric UBMcorr values [0, 1] and correlations with TP, −FP, −FN, TN (significance 

level, α = 0.05) 

 
  ACC MCC INFORM MARK BACC CK G F1 TPR PPV TNR NPV nMI 

C
o
rr

el
at

io
n
s TP 0.55 0.55 0.54 0.54 0.54 0.53 0.54 0.93 0.78 0.78 0 0 -0.05 

TN 0.55 0.55 0.54 0.54 0.54 0.53 0.54 0 0 0 0.78 0.78 -0.05 

−FP 0.55 0.55 0.54 0.54 0.54 0.55 0.49 0.43 0 0.78 0.78 0 0.05 

−FN 0.55 0.55 0.54 0.54 0.54 0.55 0.49 0.43 0.78 0 0 0.78 0.05 

UBMcorr 0.55 0.55 0.54 0.54 0.54 0.54 0.52 0.45 0.39 0.39 0.39 0.39 0.00 

 

5.5.2 Meta-metric-2: Prevalence uncorrelation (UPuncorr) 

Robust metrics should not be influenced by class imbalance as addressed in the literature. 

The correlation between metric-space and PREV shows the degree of bias between 

classification performance and class imbalances. Figure 5.5 shows F1 metric-space and 

corresponding PREV values with respect to BM permutations as an example. As can be 

seen in Table 5.4, only PPV, NPV, and F1 are correlated with PREV regardless of the 

sample sizes. Note that meta-metric UPuncorr is calculated by 𝑈𝑃𝑢𝑛𝑐𝑜𝑟𝑟 = 1-

|𝑐𝑜𝑟𝑟𝑷𝑹𝑬𝑽(𝐌)| for a metric-space. 

 

 
21 The nonlinearity is confirmed by diagnosing the residuals of linear regression assumptions. 
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Table 5.4 Meta-metric UPuncorr values [0, 1] and correlations with PREV (significance level, 

α = 0.05) 

 TPR TNR ACC INFORM MARK BACC G nMI CK MCC F1 PPV NPV 

PREV 0 0 0 0 0 0 0 0 0 0 0.38 0.64 -0.64 

UPuncorr 1 1 1 1 1 1 1 1 1 1 0.62 0.36 0.36 

 

Figure 5.6 is provided for presenting correlation values among metrics as well as PREV and 

BIAS measures. 

 

 

Figure 5.6 Correlations among metrics and PREV/BIAS measures 

5.5.3 Meta-metric-3: Distinctness (UDist) 

As each base measure permutation is different from each other, a robust metric should 

differentiate these different cases in metric-space. Figure 5.5 depicts how UDist is calculated 

for ACC metric as an example. The number of unique values of the metric-space (e.g., 11 

unique values for ACC) is compared against the size of the metric-space (e.g., 286 for 

Sn = 10), which is the number of unique values in BM permutations. The distinctness meta-

metric defined formally below gives the granularity of the metrics in metric-space as listed in 

Table 5.5.  

Definition 5.3 (Universal Distinctness). 

UDist measures the ratio of unique values in the metric-space of a metric M where 

𝐌: 𝐁𝐌𝑆𝑛 → ℝ  and UUniq is a finite set where 𝐌: 𝐔𝐔𝐧𝐢𝐪 → ℝ≥1  and 𝑈𝐷𝑖𝑠𝑡 =
|𝐔𝐔𝐧𝐢𝐪|/|𝐁𝐌𝑆𝑛|. 
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Table 5.5 Meta-metric UDist minimum, average, and maximum values [0, 1]. The metrics are sorted 

according to average UDist values 

UDist nMI BACC INFORM MARK MCC CK G TPR TNR PPV NPV F1 ACC 

Min 0.32 0.30 0.30 0.30 0.23 0.17 0.18 0.007 0.007 0.007 0.007 0.007 0.0001 

Average 0.38 0.35 0.35 0.35 0.24 0.20 0.20 0.02 0.02 0.02 0.02 0.02 0.001 

Max 0.40 0.40 0.40 0.40 0.24 0.24 0.20 0.06 0.06 0.06 0.06 0.06 0.008 

Sample Size (Permutations): 
Sn = 25 (3,276); Sn = 50 (23,426); Sn = 75 (76,076); Sn = 100 (176,851); Sn = 125 (341,376); 

Sn = 150 (585,276); Sn = 175 (924,176); Sn = 200 (1,373,701); Sn = 250 (2,667,126)  

 

To the contrary of the first two meta-metrics, UDist values might differ per Sn. UDist values 

are calculated for nine sample sizes (given in the footnotes of Table 5.5) and benchmarked 

the metrics according to their average values. While nMI has the most distinct metric-space, 

ACC has the least. Unexpectedly, F1 has exactly the same level of distinctness as TPR, TNR, 

PPV, and NPV metrics. 

5.5.4 Meta-metric-4: Output smoothness (UOsmo) 

Output smoothness evaluates how a metric uniformly uses its output range. As each variation 

in corresponding base measures is a unit change, a metric-space should exhibit a smooth 

transition. Figure 5.7 shows the transition of metric-spaces sorted in ascending order. 

 

 

Figure 5.7 Transitions of the metric-spaces sorted. The transitions MARK with INFORM and TNR, 

PPV, NPV, and TPR are the same. Y-axis shows the metric’s outputs and X-axis shows the sequence 

number of the elements in the metric-space (total 3,276 for Sn = 25). 

 

Unexpectedly, a repeating stepped transition occurs in ACC. As mentioned in the shape of 

distributions criteria in Stage-3, G and F1 dominantly yield zero. Stepped transitions indicate 

a robustness defect where a metric yields in coarse resolution in steps or accumulates in 

some values. These behaviors degrade a metric’s ability to differentiate different 

classification results (e.g., the performance of two classifiers are more likely to fall into the 

same value than if a smoother metric is used). 
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The following equation is used to measure the smoothness without visual inspection: 

𝑜𝑠𝑚𝑜 =
SD(𝐌𝐬𝑘 −𝐌𝐬𝑘−1)

Arithmean(|𝐌𝐬𝑘 −𝐌𝐬𝑘−1|)
 (5.9) 

 

Ms denotes the sorted metric-space in increasing order, Msk denotes the kth value of the 

sorted metric-space and SD is the standard deviation function. The equation calculates the 

coefficient of variation for one lagged self-difference. The minimum the result, the 

maximum the smoothness is. 

The smoothness values calculated for the sample sizes between 25 and 250 as listed in the 

footnote of Table 5.6 are averaged and Eq. (5.10) is used to get the UOsmo meta-metric for 

ith metric by normalizing the smoothness values (osmo) among n compared metric-spaces 

(e.g., 13 metrics). 

𝑈𝑂𝑠𝑚𝑜𝑖

=

Arithmean(𝑜𝑠𝑚𝑜𝑖
𝑆𝑛=25..250) −min [(Arithmean(𝑜𝑠𝑚𝑜𝑗

𝑆𝑛=25..250))
𝑗=1..𝑛

]

max [(Arithmean(𝑜𝑠𝑚𝑜𝑗
𝑆𝑛=25..250))

𝑗=1..𝑛
] −min [(Arithmean(𝑜𝑠𝑚𝑜𝑗

𝑆𝑛=25..250))
𝑗=1..𝑛

]
 

(5.10) 

 

Table 5.6 shows the smoothness and UOsmo meta-metric values for the compared metrics. 

In accordance with Figure 5.2, ACC and nMI have the least smooth metric-spaces whereas 

CK and MCC have slightly unsmooth metric-spaces compared to INFORM, MARK, and 

BACC. 

 

Table 5.6 Meta-metric UOsmo values [0, 1] along with the minimum, average, and maximum 

smoothness values per base measure 

   INFORM MARK BACC CK MCC G TPR TNR PPV NPV F1 nMI ACC 

Min 

osmo* 

2.07 2.07 2.07 2.92 3.02 3.79 3.39 3.39 3.39 3.39 4.02 6.94 5.25 

Avg. 4.73 4.73 4.73 8.08 8.46 11.67 15.61 15.61 15.61 15.61 18.03 45.44 91.71 

Max 9.79 9.79 9.79 16.74 18.94 27.07 41.73 41.73 41.73 41.73 47.70 135.93 409.47 

  UOsmo 1 1 1 0.96 0.96 0.92 0.87 0.87 0.87 0.87 0.85 0.53 0 

* Smoothness. Minimum, average, and maximum smoothness are calculated for 

Sn = 25, 50, 75, 100, 125, 150, 175, 200, and 250 

 

5.5.5 Meta-metric-5: Monotonicity (UMono) 

A robust metric should also be sensitive to small changes in classification performance. 

UMono meta-metric is calculated per four base measures by increasing TP and TN by one 

and decreasing FP and FN by one separately for all BM permutations and checking whether 

the new metric value does not decrease. Otherwise, this is a bare violation in a metric-space. 

The formal definition is given in Definition 5.4. The analysis reveals that all the reviewed 

metrics have 100% monotonicity except for INFORM, MARK, BACC, nMI, and CK as 

listed in Table 5.7. 
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Definition 5.4 (Universal Monotonicity). 

𝑈𝑀𝑜𝑛𝑜𝒃𝒎 gives the ratio of cases where a metric-space M adjusts its performance value 

congruous with the unit changes (±1) by bm ∈ {TP, TN, FP, FN} in metric-space. For all 

𝐌𝑖: 𝐁𝐌
𝑆𝑛 → ℝ and 𝐌𝑖±: 𝐁𝐌

𝑆𝑛±1 → ℝ: 

𝐌𝑖+: 𝐁𝐌
𝑺𝒏+𝟏 = {

{𝑇𝑃𝑖 + 1,  𝐹𝑃𝑖 ,   𝐹𝑁𝑖 ,   𝑇𝑁𝑖}, 𝑏𝑚 = 𝑇𝑃
{𝑇𝑃𝑖 ,  𝐹𝑃𝑖 ,   𝐹𝑁𝑖 ,   𝑇𝑁𝑖 + 1}, 𝑏𝑚 = 𝑇𝑁

 

𝐌𝑖−: 𝐁𝐌
𝑺𝒏−𝟏 = {

{𝑇𝑃𝑖 ,  𝐹𝑃𝑖 − 1,  𝐹𝑁𝑖 ,   𝑇𝑁𝑖}, 𝑏𝑚 = 𝐹𝑃
{𝑇𝑃𝑖 ,  𝐹𝑃𝑖 ,   𝐹𝑁𝑖 − 1,   𝑇𝑁𝑖}, 𝑏𝑚 = 𝐹𝑁

 

𝐌𝐨𝐧𝐨𝑏𝑚  = {(𝐌𝑖 ,𝐌𝑖±): 𝐌𝑖± ≥ 𝐌𝑖} 

𝑈𝑀𝑜𝑛𝑜𝑏𝑚 = |𝐌𝐨𝐧𝐨𝑏𝑚| |𝐁𝐌
𝑆𝑛|⁄  

 

Table 5.7 Meta-metric UMono values [0, 1] per base measure. The metrics are sorted according to 

UMono values (the average of the four meta-metric sub-values: UMonoTP, UMonoTN, UMonoFP, 

UMonoFN) 

UMono TPR TNR PPV NPV ACC G F1 MCC INFORM MARK BACC CK nMI 

UMonoTP 1 1 1 1 1 1 1 1 0.9990 0.9990 0.9990 1 0.5029 

UMonoTN 1 1 1 1 1 1 1 1 1 1 1 1 0.5029 

UMonoFP 1 1 1 1 1 1 1 1 1 1 1 0.9005 0.5032 

UMonoFN 1 1 1 1 1 1 1 1 1 1 1 0.9005 0.5032 

UMono 1 1 1 1 1 1 1 1 0.9995 0.9995 0.9995 0.9502 0.5031 

 

CK −as parallel to UBMcorr meta-metric shown in Table 5.3− has 90% monotonicity for FP 

and FN decrements (10% violations) and BACC has 99% monotonicity (1% violation) for 

TP and TN increments. For example, CK is −0.176 for TP = 1, FP = 7, FN = 1, TN = 1 as 

shown in Figure 5.5. Decreasing FP only by one (FP = 6) should increase the performance, 

but CK yields -0.189 violating monotonicity (i.e. −0.189 < −0.176). Increasing TP only by 

one (TP = 1+1, FP = 7, FN = 1, TN = 1) yields −0.128 preserving monotonicity (−0.128 > 

−0.176). nMI monotonicity violations are almost exactly half-and-half. 

5.5.6 Meta-metric-6 and 7: Inconsistency/Consistency (UICons/UCons) and 

Discriminancy (UDisc) 

These meta-metrics formally defined in Definition 5.5 and Definition 5.6 below are proposed 

for comparing the robustness of two metrics. Figure 5.5 above depicts the example cases on 

real metric values of ACC and MCC' (MCC normalized to [0, 1]) where Sn = 10. Among 

all possible ith and jth pairs, the first given example pairs are consistent because ith values 

(ACC = 0.900 and MCC' = 0.882) are greater than jth values (ACC = 0.800 and MCC' = 

0.754) for both metrics. 

However, in the third example, the pairs are inconsistent because the ith value is greater than 

jth value for ACC (0.800 > 0.700) but the ith value is less than the jth value for MCC' (0.762 < 

0.767). For discriminancy, ACC is discriminant against MCC' in the second example, 

because ACC yields different values (0.900 ≠ 0.800) where MCC' yields the same value 

(0.833 = 0.833) for corresponding pairs. Likewise, MCC' is discriminant against ACC in the 

fourth example. 
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Definition 5.5 (Universal Consistency and Inconsistency). 

𝑈𝐶𝑜𝑛𝑠𝑀1,𝑀2  and 𝑈𝐼𝐶𝑜𝑛𝑠𝑀1,𝑀2  give the agreement and disagreement in 

increments/decrements in metric-space of two metrics 𝑀1  and 𝑀2 , respectively, where 

𝐌1,𝐌2: 𝐁𝐌
𝑆𝑛 → ℝ. For all different pairs of 𝑖𝑡ℎ and 𝑗𝑡ℎ values of 𝐌1 and 𝐌2: 

𝐈𝐂𝐨𝐧𝐬𝑀1,𝑀2 = {

(𝐌1𝑖 ,𝐌1𝑗), (𝐌2𝑖 ,𝐌2𝑗):

((𝐌1𝑖 > 𝐌1𝑗) ∧ (𝐌2𝑖 < 𝐌2𝑗)) ∨ ((𝐌1𝑖 < 𝐌1𝑗) ∧ (𝐌2𝑖 > 𝐌2𝑗))
} 

𝑈𝐼𝐶𝑜𝑛𝑠𝑀1,𝑀2 = |𝐈𝐂𝐨𝐧𝐬M1,M2| (
|𝐁𝐌𝑆𝑛|

2
)⁄  

𝑈𝐶𝑜𝑛𝑠𝑀1,𝑀2 = 1 − 𝐔𝐈𝐂𝐨𝐧𝐬𝑀1,𝑀2 

Definition 5.6 (Universal Discriminancy) 

𝑈𝐷𝑖𝑠𝑐𝑀1,𝑀2  gives the ratio of cases where the metric 𝑀1 yields different values while the 

metric 𝑀2  could not differentiate in metric-spaces where 𝐌1,𝐌2: 𝐁𝐌
𝑆𝑛 → ℝ . For all 

different pairs of 𝑖𝑡ℎ and 𝑗𝑡ℎ values of 𝐌1 and 𝐌2: 

𝐃𝐢𝐬𝐜𝑀1,𝑀2 = {
(𝐌1𝑖 ,𝐌1𝑗) , (𝐌2𝑖 ,𝐌2𝑗) :

(𝐌1𝑖 ≠ 𝐌1𝑗)  ∧ (𝐌2𝑖 = 𝐌2𝑗)
} 

𝑈𝐷𝑖𝑠𝑐𝑀1,𝑀2 = |𝐃𝐢𝐬𝐜𝑀1,𝑀2| (
|𝐁𝐌𝑆𝑛|

2
)⁄  

Note that UICons/UCons and UDisc meta-metrics are based on the two formal criteria 

proposed by Huang and Ling for comparing two performance metrics (Huang & Ling, 

2005). The application of these criteria (“degree of consistency” and “degree of 

discriminancy”) has become one of the most used comparative methods in the literature. The 

improvement here is transforming the degrees that are ranged differently per compared 

metrics into a fixed ratio in [0, 1] representing the cases with respect to the universal BM 

permutations. Hence, the proposed meta-metrics can be used for comparing more than two 

performance metrics as can be seen in Table 5.8 and Table 5.9. Table 5.8 shows the UCons 

values calculated for Sn = 25 per pairs of the reviewed metrics as well as final UCons 
values. MCC, INFORM and BACC are the most consistent ones with other metrics on 

average (83%) whereas nMI is the least consistent metric (51%). For individual pairs, 

INFORM and BACC are only 100% consistent (i.e. UConsINFORM–BACC = 1.00). 
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Table 5.8 UCons values per pairs of metrics and final UCons meta-metric values (the average of the 

meta-metric values per performance metric). For example, the cell marked with (1) (the consistency 

between ACC and MCC) is 88% (UConsACC–MCC = 0.88), UCons for MCC (the average meta-metric 

values for MCC) and ACC are the cell marked with (2) (0.83) and the cell marked with (3) (0.80), 

respectively. 

 MCC             

 0.96 INFORM            

 0.96 1.00 BACC           

 0.96 0.94 0.94 CK          

 0.96 0.91 0.91 0.94 MARK         

 0.90 0.91 0.91 0.89 0.89 G        

 
(1)0.88 0.88 0.88 0.87 0.88 0.86 ACC       

 0.79 0.79 0.79 0.78 0.79 0.81 0.83 F1      

 0.76 0.77 0.77 0.75 0.76 0.77 0.76 0.85 TPR     

 0.76 0.76 0.76 0.75 0.77 0.76 0.76 0.85 0.69 PPV    

 0.76 0.77 0.77 0.75 0.76 0.77 0.76 0.60 0.53 0.69 TNR   

 0.76 0.76 0.76 0.75 0.77 0.76 0.76 0.60 0.69 0.53 0.69 NPV  

 0.50 0.50 0.50 0.51 0.50 0.54 0.52 0.53 0.52 0.52 0.52 0.52 nMI 

UCons: (2)0.83 0.83 0.83 0.82 0.82 0.81 (3)0.80 0.75 0.72 0.72 0.70 0.70 0.51 

Rank: 1 1 1 4 4 6 7 8 9 9 11 12 13 

 

Table 5.9 shows the UDisc values per ordered pairs of metrics analyzed in 25 samples. nMI, 

the least consistent metric, is the most discriminant metric (about 1%). Interestingly, MCC is 

both the most consistent and the third discriminant metric at the same time. The table also 

illustrates another important finding that all the metrics are highly discriminant (about 4%) 

with ACC. 

 

Table 5.9 Meta-metric UDisc values [0, 1] per ordered pairs of metrics. The metrics are sorted 

according to the average of the meta-metric values per metric. The cell marked with (1) shows that the 

discriminancy of G against F1 is 0.6%, and the cell marked with (2) shows that the discriminancy of 

F1 against G is 2.8%, shown in bold. 

 ↳ nMI 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
 0.001 CK 0.000 0.001 0.001 0.001 0.002 0.001 0.002 0.002 0.002 0.002 0.001 
 0.001 0.000 MCC 0.001 0.001 0.001 0.002 0.001 0.002 0.002 0.002 0.002 0.001 
 0.001 0.001 0.001 BACC 0.000 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
 0.001 0.001 0.001 0.000 INFORM 0.001 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
 0.001 0.001 0.001 0.001 0.001 MARK 0.001 0.001 0.001 0.001 0.001 0.001 0.001 
 0.018 0.018 0.018 0.017 0.017 0.017 F1 0.014 0.018 0.018 0.007 0.007 (1)0.006 
 0.044 0.043 0.043 0.044 0.044 0.044 0.040 ACC 0.043 0.043 0.043 0.043 0.042 
 0.029 0.029 0.029 0.029 0.029 0.027 0.028 0.028 TNR 0.019 0.029 0.019 0.019 
 0.029 0.029 0.029 0.027 0.027 0.029 0.028 0.028 0.019 NPV  0.019 0.029 0.018 
 0.029 0.029 0.029 0.029 0.029 0.027 0.019 0.028 0.029 0.019 TPR 0.019 0.019 
 0.029 0.029 0.029 0.027 0.027 0.029 0.019 0.028 0.019 0.029 0.019 PPV 0.018 
 0.039 0.038 0.038 0.038 0.038 0.034 (2)0.028 0.037 0.029 0.028 0.029 0.028 G ↰ 

UDisc: 0.019 0.018 0.018 0.018 0.018 0.018 0.014 0.014 0.014 0.014 0.013 0.013 0.011 

Rank: 1 2 2 2 2 2 7 7 7 7 11 11 13 

 

Table 5.10 shows the overall results of the Stage-3 benchmarking along with the metrics’ 

ranks. Stage-3 differentiates the ranks of the benchmarked metrics some of which are equal 

in the previous stages (e.g., MCC and CK have the same ranks). 
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Table 5.10 Stage-3 benchmarking of 13 performance metrics according to seven proposed meta-

metrics 

Meta-Metrics MCC BACC INFORM MARK CK G ACC TNR TPR F1 nMI NPV PPV 

UBMcorr 1 3 3 3 3 7 1 9 9 8 13 9 9 

UPuncorr 1 1 1 1 1 1 1 1 1 11 1 12 12 

UDist 5 2 3 3 6 7 13 8 8 8 1 8 8 

UOsmo 4 1 1 1 4 6 13 7 7 11 12 7 7 

UMono 1 9 9 9 12 1 1 1 1 1 13 1 1 

UCons 1 1 1 4 4 6 7 11 9 8 13 12 9 

UDisc 2 2 2 2 2 13 7 7 11 7 1 7 11 

Stage-3 Rank 1 2 3 4 5 6 7 8 9 10 10 12 13 

 

According to overall meta-metrics benchmarking, MCC is ranked first whereas PPV is 

ranked last. 

5.6 Overall BenchMetric Results and Summary of Findings 

Table 5.11 summarizes and aggregates the benchmark results from the three stages and gives 

a finalized ranking of the 13 performance metrics reviewed. The stages defined by extreme 

cases, criteria, and metric-space were ordered according to complexity, coverage, and 

measurability. Taking the ranks of each stage equal, the final rankings would be misleading. 

Therefore, the weights are set as shown in Table 5.11 putting increasing weights through the 

stages. 

 

Table 5.11 The ranking of three benchmark stages and final ranking results of BenchMetric 

Stages Weight MCC CK BACC INFORM MARK G ACC F1 TNR TPR NPV PPV nMI 

Stage-1 1 1 1 5 5 5 5 1 4 5 5 5 5 13 

Stage-2 2 1 1 4 4 4 4 8 3 9 9 9 9 13 

Stage-3 3 1 5 2 3 4 6 7 10 8 9 12 13 10 

BenchMetric 1 2 3 4 5 6 7 8 9 10 11 12 13 

 

The followings are the main findings: 

• MCC is the most robust performance metric. 

• CK and BACC are the second and third most robust metrics. 

• MCC is also better than CK in other aspects, which were not included in 

benchmarking such as according to the detailed mathematical comparison described 

in Section 5.4.4. 

• Highly recommended and/or conventionally used metrics such as TPR, PPV, ACC, 

G, F1, and nMI have robustness issues and therefore should be used cautiously if 

they are used alone. 
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Some of the notable observations were obtained from the benchmarking: 

In Stage-1: 

i) The metrics yield not-a-number in some extreme cases except ACC, F1, CK, and 

MCC. 

ii) nMI yields high values when FP and FN are higher than TP and TN. 

In Stage-2: 

i) Only INFORM, MARK, and BACC have the same mean, median, and mode 

values. 

ii) The metrics have symmetric metric-space except for G, nMI, F1, and CK. 

iii) G and F1 metric-spaces exhibit an accumulation at zero. 

iv) Only MCC, CK, F1, and nMI cover both outcome measures (OP and ON) and 

class measures (P and N). 

v) TPR, PPV, TNR, and NPV are single-class-only metrics (i.e. P-only and N-only). 

vi) All metrics are insensitive to one or more base measures except nMI, CK, and 

MCC. 

vii) nMI and F1 exhibit some inconsistencies in swapping of base measures. 

viii) nMI has a highly right-skewed metric-space. 

ix) MCC with geometric means is mathematically better than CK with arithmetic 

means. 

In Stage-3: 

i) ACC, INFORM, MARK, BACC, and MCC have a high correlation with 

individual base measures whereas the others have either some imbalances or no 

correlations in some of the measures. 

ii) nMI does not exhibit any relationship with base measures. 

iii) Only PPV, NPV, and especially F1 have metric-spaces correlated with 

prevalence. 

iv) TPR, TNR, PPV, NPV, ACC, and F1 do not exhibit granular output coverage in 

metric-spaces. 

v) nMI and ACC do not output smoothly in metric-spaces. 

vi) All metrics are monotonic except INFORM, MARK, and BACC. CK has minor 

and nMI has considerable monotonicity violations. 

vii) BACC, INFORM, and MCC are the most consistent metrics among all the 

metrics. 
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viii) INFORM and BACC are the only metrics that are completely consistent with 

each other. 

ix) nMI is the least consistent and most discriminating metric. 

x) G is the least discriminant metric. 

Note that Table G.1 in Appendix G shows the summary of the BenchMetric results per 

metric per criterion per BenchMetric stage. Table G.2 lists the robustness issues per metric in 

alphabetic order that could be helpful to be aware of the issues when a metric is used. 

5.7 Survey 3: Evaluation of BenchMetric Method with the Literature 

The proposed benchmarking method, BenchMetric, is compared with the other methods in 

the literature in threefold. First, the methodology is compared with the existing metrics 

evaluation methods.  In the second step, the evaluation strategies of the studies, which 

proposed new metrics, are compared. Independent of the two use-cases, two areas are 

specifically focused while evaluating the related literature: “Are the approaches mapped onto 

BenchMetric?” and otherwise, “Did it cover, address or extend these approaches?” 

Finally, the recently proposed metrics are directly evaluated with the proposed 

benchmarking criteria and the benchmarking results are compared with their findings. 

Hence, we can see whether MCC is still the most robust metric when those new metrics are 

included in the benchmark. 

5.7.1 Comparison of BenchMetric with the existing metric evaluation methods 

Table 5.12 gives details about the methods designed for metric comparisons in the literature, 

summarizes their limitations, and compares them with BenchMetric. The compared studies 

examined a few metrics. Some of them focus on basic behaviors of performance metrics that 

cannot be seen in practice (e.g., extreme cases such as comparing two classifiers’ results 

with swapped confusion matrix). Others cover only a very limited part of metric-spaces and 

show similarities from a simple perspective without using an explicit ranking. 

Nevertheless, all the proposed comparison techniques are addressed in formal and easy to 

understand manner with measurable and comparable outputs. In addition, the existing 

approaches are improved either by extending them or defining them in a classification 

performance context. Furthermore, additional criteria are proposed and numerous unknown 

robustness issues are revealed in the metrics. 

5.7.2 Comparison of BenchMetric with the methods evaluating recent metrics 

Table 5.13 describes the recently proposed performance metrics and how they were 

compared with respect to the other metrics in the literature. The first three of the proposed 

metrics are intended to minimize the class imbalance effect of ACC. The validation of the 

new metrics is limited to comparing the new metrics by examining the relations of the input 

metrics comprising the new metric (e.g., ACC, TPR, and TNR for OACC) or by inspecting 

the input metrics’ graphs for different class skews. As can be seen from the table, the 

validation of the new metrics has always been performed in a limited scope. 
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Table 5.12 Comparison of BenchMetric with existing metrics evaluation methods 

The study / 

metrics Conclusion Comparison Method 

Comparison Results and Corresponding 

Criteria 

(Seliya, 

Khoshgofta

ar, & Van 

Hulse, 

2009a). 

ACC, G, F1, 

FPR, FNR, 

NPV, PPV, 

AUC-ROC, 

and AUC-

PR 

The study 

groups the 

compared 

metrics into two 

to four similar 

groups rather 

than comparing 

and rankings of 

the metrics. 

The performances of two decision tree 

classifiers applied on 35 real-world 

datasets with 200 <= Sn <= 20.000 and 

65% < PREV < 99% based on different 

decision thresholds (0 < t < 1, default: 0.5) 

are calculated in terms of the compared 9 

metrics. The relations of the metric values 

are compared for 350 classifier-dataset 

runs in total: Comparison-1: Via 

correlations; Comparison-2: Via factor 

analysis (analyzing correlated metric 

values (observed variables) in terms of a 

small number of factors (unobserved 

variables). 

1) Both reviewed studies cover limited cases 

of prevalence and metric-space. For 

example, in BenchMetric, there are 

2,667,126 base measure permutations for 

Sn = 250. Whereas, for example, the 14,400 

cases given by Yangguang et al. corresponds 

to only 0.5% of all possible cases. Thus, 

correlations and/or factors may not be 

representative. 

2) The comparisons simply show similar 

metrics that are redundant when they are 

used together. They do not sufficiently 

dictate a proper metric and do not reveal any 

robustness issues. For example, G and F1 are 

found similar in factor analysis, whereas, in 

BenchMetric, G is slightly more robust in 

general than F1. 

3) The comparisons are limited as they are 

reliant on the performance of two decision 

tree classifiers.  

BenchMetric: UBMcorr, UPuncorr, 

UMono, UCons/UDisc 

(Y. Liu, 

Zhou, Wen, 

& Tang, 

2016) 

CK, ACC, 

and F1 

The study 

shows the 

correlated 

metrics based 

on the example 

datasets. 

Performances are calculated for eight ML 

algorithms on 18 real-world datasets with 

80 <= Sn <= 8.124 and 50% < PREV < 

94%. The relations of metrics are 

compared for 14,400 classifier-dataset 

runs via the Spearman and Pearson 

correlations of the metrics. 

(Huang & 

Ling, 2005) 

ACC and 

AUC-ROC 

AUC-ROC is 

recommended 

instead of ACC. 

The performances of simulated classifiers 

applied on balanced and imbalanced 

synthetic datasets and three classifiers 

applied on 18 real-world datasets (with 61 

<= Sn <= 8.124) are calculated in terms of 

ACC and AUC-ROC and each paired 

metric value are compared for consistency 

and discriminancy. 

4) Assessing the consistency and 

discriminancy among the metrics that are 

compared do not impose a superiority 

especially in paired comparisons. For 

example, consistency between CK and ACC 

is meaningful only if both of the metrics are 

robust. Likewise, if both or one of the 

metrics are not robust then the 

discriminancies could not be interpreted. 

5) BenchMetric includes a large number of 

metrics, thus the conclusions are more 

meaningful. 

6) BenchMetric also indicates that CK is 

better than ACC. 

BenchMetric: UCons/UDisc 

(Fatourechi 

et al., 2008) 

CK and 

ACC 

CK is 

recommended 

instead of ACC. 

The consistency and discriminancy are 

compared only within "the desired region 

of operation" only (i.e. where TPR >= 0.5 

and FPR <= 0.02). This is because the 

calculation of consistency and 

discriminancy degree as defined in the 

above study has time and calculation 

costs. 

(Joshi, 

2002) 

INFORM, 

ACC, G, 

and F1 

F1 is the 

recommended 

metric. 

They constructed performance trend 

graphics for different TPR, PPV, and 

PREV variations and observed whether the 

performances increase according to PREV. 

7) Both techniques require visual inspection 

and manual interpretation and are not 

measurable as in BenchMetric. 

8) For the former study, BenchMetric shows 

that INFORM is better among the compared 

four metrics. 

9) For the latter study, MCC is more robust 

and in line with BenchMetric whereas F1 

has robustness issues in corresponding 

criteria. 

BenchMetric: UPuncorr, UCons (with TPR 

and PPV) and UCons (with TPR and TNR) 

(Brown, 

2018) 

MCC, 

BACC, 

ACC, F1, 

TNR, and 

PPV 

MCC and F1 

exhibit more 

"realistic" 

estimation of 

classification 

performance. 

They constructed performance trends 

graphics for different TPR and TNR 

variations as well as inverse cumulative 

distribution function plots per balanced 

and imbalanced datasets. 

(Sokolova, 

2006) 

BACC, 

ACC, F1, 

TNR, TPR, 

and PPV 

TNR and BACC 

are more 

appropriate 

metrics with 

respect to the 

variance or 

invariance of 

changes in 

confusion 

matrix 

elements. 

Checking whether the performance output 

is varied upon the following changes in 

confusion matrix: 1) exchange TP with 

TN and FN with FP 2) change only in TN 

3) change only in FP, and 4) scale TP and 

FP along with TN and FN. 

10) I reformulate those four changes in order 

to fit with the classification performance 

evaluation context and make the assessments 

more comprehensible. 

11) BenchMetric shows that MCC and CK 

are the most robust metrics from the 

corresponding three criteria. But, TNR and 

BACC have the same inconsistencies with 

TPR, PPV, and ACC. 

BenchMetric: 1) Criterion 2.6, 2 & 3) 

Criterion 2.3, 4) Criterion 2.1 

  



 81 

Table 5.13 Comparison of BenchMetric with the methods, which were used to evaluate new metrics 

Study, Proposed New Metric, and its Description 

Notes and Validation of the New 

Metric 

Corresponding 

Criteria 

(Caruana & Niculescu-Mizil, 2004) (an abbreviation 

of Squared error, Accuracy, and ROC area) 

 

𝑆𝐴𝑅 =
𝐴𝐶𝐶 + 𝐴𝑈𝐶-𝑅𝑂𝐶 + (1 − 𝑅𝑀𝑆)

3
 

 

SAR combines Accuracy, Area Under ROC Curve, 

and Squared Error into one measure. 

AUC-ROC and RMS (root mean 

square) are different from all the 

metrics summarizing base measures 

like ACC. RMS is for regression 

problems instead of classification. 

 

The proposed metric is validated via 

correlation analysis as criticized in 

note 2) in Table 5.12. 

 

BenchMetric: 

UCons/UDisc 

(Ranawana & Palade, 2006) Optimized Precision 

(OACC): 

 

𝑂𝐴𝐶𝐶 = 𝐴𝐶𝐶 −
|𝑇𝑃𝑅 − 𝑇𝑁𝑅|

𝑇𝑃𝑅 + 𝑇𝑁𝑅
 

 

OACC reduces the sub-optimal performance 

measurement of ACC due to the skewed data sets by 

adding a heuristic correcting factor that minimizes 

TPR and TNR difference while maximizing their 

totals. 

The proposed metric is validated by 

comparing ACC and OACC outputs 

with class balanced and highly-

imbalanced theoretical datasets 

(SKEWs are 1:1 and 1:9) along with a 

single real dataset (human DNA 

sequences). 

They inspected graphics showing the 

variance of the metrics with respect to 

theoretical TPR and TNR ranges using 

𝐴𝐶𝐶 = 𝑇𝑃𝑅 ⋅ 𝑁 + 𝑇𝑁𝑅 ⋅ 𝑃 equations.  

See note 7) in Table 5.12 for 

comparison. 

BenchMetric: 

UPuncorr 

(Huang & Ling, 2007) AUC-ROC:ACC 

 

𝐴𝑈𝐶-𝑅𝑂𝐶:𝐴𝐶𝐶

= {
𝐴𝑈𝐶-𝑅𝑂𝐶, 𝐴𝑈𝐶-𝑅𝑂𝐶 pairs are different

𝐴𝐶𝐶, pairs are the same
 

 

AUC-ROC:ACC is a two-staged measure to enhance 

metric output differentiation. 

The proposed metric is validated by 

examining the correlations of the new 

metric with AUC-ROC and ACC 

separately then comparing it with best 

RMS values (AUC-ROC:ACC is highly 

correlated with RMS). 

 

See note 4) in Table 5.12 for 

comparison. 

BenchMetric: 

UCons/UDisc 

(Seliya, Khoshgoftaar, & Van Hulse, 2009b) 

Standardized Relative Performance Metric (SRPM) 

 

Performances are calculated in terms of different 

metrics (ACC, G, F1, NPV, PPV, AUC-ROC, and 

AUC-PR) for 12 ML models on 35 real datasets. 

Factor analysis is applied to the metric values. For 

the given number of factors, a relative metric value 

that is calculated with factor scores and normalized 

proportions of the eigenvalues is standardized into 

[0, 100] range. 

No validation. BenchMetric: 

UCons/UDisc 

(Garcia, Mollineda, & Sanchez, 2010) Index of 

Balanced Accuracy: 

 

𝐼𝐵𝐴𝛼(𝐺) = (1 + 𝛼(𝑇𝑃𝑅 − 𝑇𝑁𝑅))𝐺 

 

IBA is a parametric metric like OACC that adjusts a 

known metric (here G) taking the difference 

between TPR and TNR into account. 

1. The correlations of new metric with 

TPR, TNR, ACC, and G are evaluated 

with respect to class imbalance (ACC 

and G) and class focuses (TPR and 

TNR) 

2. Checking the four invariance 

properties 

 

See notes 2) and 10) in Table 5.12 for 

comparison. 

BenchMetric: 

UCons/UDisc 

Criterion 2.6, 

Criterion 2.3, 

and Criterion 

2.1 
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5.7.3 Experiment 2: Testing recently proposed metrics via BenchMetric 

As a limitation, the proposed benchmarking method is not intended for other types of 

performance metrics (i.e. not summarizing confusion matrix) such as AUC-ROC and RMS. 

Nevertheless, BenchMetric is re-conducted by including the two recently proposed binary-

classification performance metrics, namely OACC and IBAɑ(G) (shown in the second and 

fifth metric in Table 5.13 above) to answer the following questions: 

i. Does OACC improve the robustness of ACC as intended? 

ii. Does IBAɑ(G) improve the robustness of G as intended? 

iii. Which one is the most robust OACC or IBAɑ(G)? 

iv. Are any of the new metrics more robust than MCC as determined by the proposed 

benchmarking results? 

The followings are the results of three benchmark criteria defined in Stage-1: 

1) “Does a metric yield not-a-number (NaN, i.e. 0/0) in extreme cases?” 

ACC : No, OACC : 2 times, G = 2 times, IBAɑ(G) = 2 times, MCC = No 

2) “Are the performance metric values of the cases from 5 to 9 decreasing?” 

Yes for all. 

3) “Are the performance metric values symmetric for both classes?” 

ACC : Yes, OACC : Asymmetric, G = Yes, IBAɑ(G) = Asymmetric, MCC = Yes 

The followings are the summary of the findings according to the aforementioned questions 

for Stage-1: 

i. OACC has no improvement on ACC. 

ii. IBAɑ(G) has no improvement on G. 

iii. The robustness of OACC and IBAɑ(G) is identical. 

iv. MCC is more robust than these two recently proposed metrics. 

Table 5.14 lists the details of the Stage-2 benchmarking results like in Table 5.2 for the 

benchmarking of 13 performance metrics. The various positive or negative robustness issues 

(underlined bold texts depict negative ones) are revealed. Note that ɑ coefficient is taken as 

0.05 as suggested by (Garcia et al., 2010). 

The followings are the summary of the findings for Stage-2: 

i. OACC improved ACC on outcome/class and class coverages, but robustness 

issues appeared in undefined metric outputs and mean-median difference. It also 

distorts symmetry observed in ACC. 

ii. IBAɑ(G) has no improvement on G, in fact, it is not invariant in class-and-

outcome swaps, which is only seen in F1 in the benchmarked metrics as seen in 

Table 5.2. 

iii. Evaluating the eight criteria in Stage-2, the robustness of OACC and IBAɑ(G) is 

almost identical. Only Criteria 2.6 and 2.8 are different mutually. 
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iv. MCC is more robust than the new metrics. 

Table 5.14 Benchmarking Stage-2 results (Sn = 50) for the two new proposed metrics in the literature 

Stage-2 Criteria ACC OACC G IBAɑ(G) MCC 

2.1 Outcome/class coverage None Class-only(1) Class-only Class-only(2) Yes 

2.2 Class coverage (P and N) None Yes(1) Yes Yes(2) Yes 

2.3 Base Measure Coverage TP, TN TP, TN TP, TN TP, TN Yes 

2.4 Variant to class swap Yes Yes Yes Yes Yes 

2.5 Variant to outcome swap Yes Yes Yes Yes Yes 

2.6 Invariant to class-and-

outcome swaps 
Yes Yes Yes No Yes 

2.7 Undefined (NaN) count 0 3Sn+1 2(Sn+1) 2(Sn+1) 4Sn 

2.8 Central tendencies 

(mean-median difference) 
𝐌̅ = 𝐌̃ ≈ 𝐌𝐨 𝐌̅ ≠ 𝐌̃ ≠ 𝐌𝐨 𝐌̅ ≈ 𝐌̃ ≠ 𝐌𝐨 𝐌̅ ≈ 𝐌̃ ≠ 𝐌𝐨 𝐌̅ ≈ 𝐌̃ = 𝐌𝐨 

Other Informative Criteria 

2.9 Standard Deviation 0.23 0.23 0.26 0.26 0.21 

2.10 Skewness Symmetric 
Slightly 

negative(3,4) 

Slightly 

positive(5) 

Slightly 

positive(5) 
Symmetric 

2.11 Kurtosis Platykurtic(6) Platykurtic(6) Platykurtic(6) Platykurtic(6) Platykurtic(6) 

(1) OACC = f(TP, TN, P, N, TC, Sn), (2) IBAɑ(G) = f(TP, TN, P, N), (3) Left-skewed, (4) Distorting symmetry, 

(5) Right-skewed, (6) Thin-tailed 

 

Table 5.15 shows the results of Stage-3 benchmark according to the first five meta-metrics. 

Up arrows depict that a new metric improves the dependent metric (i.e. IBAɑ(G) improves G 

or OACC improves ACC). Down arrows depict a degradation. 

 

Table 5.15 Benchmarking Stage-3 results (Sn = 50) for the two new proposed metrics in the literature 

(excluding the UCons and UDisc meta-metrics). Metrics are sorted in descending order per meta-

metrics from the most robust one to the least. Osmo is the smoothness value. 

UBMcorr UPuncorr UDist UMono Osmo 

MCC 0.78 MCC 1 IBAɑ(G) ▲ 0.8 MCC 1 INFORM 3.22 

ACC 0.78 ACC 1 OACC ▲ 0.412 ACC 1 MARK 3.22 

INFORM 0.77 OACC 1 nMI 0.382 G 1 BACC 3.22 

MARK 0.77 G 1 BACC 0.333 IBAɑ(G) 1 OACC ▲ 4.91 

BACC 0.77 IBAɑ(G) 1 INFORM 0.332 F1 1 MCC 5.26 

CK 0.77 INFORM 1 MARK 0.332 TPR 1 CK 5.28 

G 0.75 MARK 1 MCC 0.232 TNR 1 IBAɑ(G) ▲ 6.44 

IBAɑ(G) 0.75 BACC 1 CK 0.202 PPV 1 G 6.98 

OACC ▼ 0.73  CK 1 G 0.196 NPV 1 TPR 7.82 

F1 0.72 nMI 1 TPR 0.033 INFORM 0.998 TNR 7.82 

TPR 0.69 TPR 1 TNR 0.033 MARK 0.998 PPV 7.82 

PPV 0.69 TNR 1 PPV 0.033 BACC 0.998 NPV 7.82 

TNR 0.69 F1 0.61 NPV 0.033 CK 0.948 F1 9.15 

NPV 0.69 PPV 0.37 F1 0.033 OACC ▼ 0.76 nMI 19.7 

nMI 0.5 NPV 0.37 ACC 0.002 nMI 0.517 ACC 21.62 
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The following is a summary of the findings for Stage-3: 

i. OACC improves ACC on distinctness and output smoothness but decreases the 

robustness for base measure correlations and monotonicity in a contradictory 

manner. 

ii. IBAɑ(G) has improvement on G by increasing distinctness and output 

smoothness. 

iii. IBAɑ(G) is more robust than OACC considering the base measure correlations, 

distinctness, and monotonicity. 

iv. MCC is more robust than the new metrics as in Stage-2. 

Table 5.16 lists the remaining meta-metrics in Stage-3, namely UCons and UDisc. Instead of 

giving each pairwise meta-metric values among the metrics as in Table 5.8 and Table 5.9, 

they are summarized per each recently proposed metric. Bold values depict higher meta-

metric summary values. For example, the mean consistency of IBAɑ(G) with the 13 

benchmarked metrics (0.834) is higher than the mean consistency of ACC (0.773). 

 

Table 5.16 Summary of the pairwise UCons (consistency) and UDisc (discriminancy) meta-metrics 

per OACC and IBAɑ(G) with the 13 benchmarked metrics (minimum, mean, standard deviation (SD), 

and maximum values) for Stage-3 with Sn = 20 

New Metric(s) Meta-Metrics Min Mean (SD) Max 

OACC UConsOACC, M1-M13 0.511 0.773 (0.090) 0.899 

 UDiscOACC, M1-M13 0.002 0.022 (0.020) 0.052 

 UDiscM1-M13, OACC 0 0.003 (0.001) 0.004 

IBAɑ(G) UConsIBAɑG, M1-M13 0.551 0.834 (0.110) 0.992 

 UDiscIBAɑG, M1-M13 0.002 0.014 (0.020) 0.051 

 UDiscM1-M13, IBAɑG 0 0.042 (0.014) 0.053 

OACC vs. IBAɑ(G) Meta-Metrics Value 

 UConsIBAɑG, OACC 0.898 

 UDiscIBAɑG, OACC 0.001 

 UDiscOACC, IBAɑG 0.046 

Notes: Range of all UCons is [0.503, 1] and all UDisc is [0, 0.055] 

 

Among the paired metric values in metric-space, OACC and IBAɑ(G) are 89.8% consistent. 

However, IBAɑ(G) is more consistent with the 13 benchmarked metrics on average whereas 

OACC is more discriminant than both benchmarked metrics (2.2%) and IBAɑ(G) (4.6%). 

Briefly, IBAɑ(G) is more consistent and OACC is more discriminant. 

Combining all three stages, IBAɑ(G) is more robust than OACC. However, neither of them is 

as robust as MCC. This experiment shows that the proposed benchmarking method, 

BenchMetric, can be used to analyze and compare the robustness of any proposed metrics. 
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5.8 Precise and Concise Performance Evaluation and Reporting 

In this study, thirteen performance metrics along with two recently proposed metrics have 

been benchmarked via BenchMetric method and the use of MCC is recommended for robust 

performance evaluation for the first time. Using a robust metric is significant to summarize 

the classification results with fewer errors. Nevertheless, “What should be reported for 

expressing classification performance?” research question (see RQ4 in Section 1.1) is worth 

to discuss for the sake of completeness. Specifically, whether the use of a robust metric 

alone is sufficient to assess a classification approach? 

Comparing different or same classifiers on different datasets using solely a metric (even with 

MCC) can be misleading. As revealed in BenchMetric stages, metrics can indicate 

contradicting, unexpected or undefined performance values in different conditions. 

Moreover, the literature uses various metrics together to report the classification 

performances as described in Section 2.3.4. 

This section goes beyond the metrics and recommends what should be reported and 

considered minimally for precise and concise performance evaluation, comparison, and 

reporting avoiding possible drawbacks. One of the properties of performance metrics is that 

they are not sensitive to sample size that is reduced in the numerator/denominator of the 

metrics' equations (i.e. it is lost in summary functions of the metrics, see Section 3.10). 

Prevalence might have an implicit effect due to the nature of the functions.  

• With respect to sample size, for example, ACC = 0.9 for both 

o TC = 90 in Sn = 100 and 

o TC = 900 in Sn = 1000. 

• With respect to prevalence, for example, ACC = 0.9 for both 

o PREV = 0.50 in Sn = 100 where TP = 45, FN = 5, TN = 45, and FP = 5 and 

o PREV = 0.75 in Sn = 100 where TP = 70, FN = 5, TN = 20, and FP = 5. 

Provided two cases within each example above cannot be differentiated via the performance 

metric because it is 0.9 for all of the cases. From an intuitive perspective, sample size and 

size of the binary classes (or prevalence as a ratio) are also significant for classification 

studies. Generally speaking, some statistics are shown to be influenced by sample size and 

may not reflect the nature of the data (Calude & Longo, 2017, p. 6). As described in 

Section 2.2 above (Literature Review), the literature addressed the prevalence (or class 

imbalance, class skew) effect in some of the performance metrics and BenchMetric also 

reveals prevalence correlations in some metric-spaces for the first time. 

With this holistic respect, this thesis proposes to define three dependent components of 

classification performance evaluation from top to bottom explicitly: 

• A robust performance metric (MCC), 

• Prevalence (PREV), and 

• Sample size (Sn). 

Researchers practically focus on performance metrics, which are at the tip of the iceberg, and 

usually ignore the other two components as shown in Figure 5.8 (a). This thesis engages the 

attention of the research community that evaluating performance solely based on a metric 

misleads. As depicted in Figure 5.8 (c), four classifiers on different and/or the same datasets 

can be compared according to three components of performance. 
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Figure 5.8 (a) The three components of binary-classification performance evaluation. Performance 

metrics are at the tip of an iceberg. (b) Categorical values of each component for high and low 

performances (c) Hypothetical four classifiers with different component values 

 

For example, 

• The performance of classifier Classifier-4 is the best according to MCC metric only, 

• Nevertheless, Classifier-2 and Classifier-3 perform better than Classifier-4 even 

MCC is slightly less than 0.92 because PREV or Sn values reflect high performance, 

respectively. 

• Finally, Classifier-1 could actually be considered as the most promising of all, even 

MCC is slightly less. Because both PREV and Sn values reflect more ideal 

classification configuration (i.e. balanced class ratios and the highest sample size 

among the alternatives, respectively). 

In a similar hypothetical case, assume that  

• a study reports of a classifier’s performance tested on 10.000 samples with fifty-fifty 

class ratio and 

• another study reports the same classifier tested on 5.000 samples with the same class 

ratio. 

It is reasonable to give more credit to the first study because the test is based on more 

samples or at least, you could expect the researchers of the second study to repeat their tests 

on 10.000 samples and report the performance again, on the same datasets if possible. 

Considering the given arguments above, publishing sample size and prevalence 

complements the performance metrics. Especially, when comparing a group of studies, 

performance improvement expressed in terms of a metric should be justified by taking 



 87 

sample sizes and prevalence values into account. The better approach is to equalize them 

(i.e. testing the classifiers in the same PREV and Sn or at least in the same PREV value) and 

compare the performance metrics. 

If the classification studies claiming an improvement in a specific classification problem 

domain (e.g., mobile malware detection) can equalize the two base components of 

performance evaluation namely sample size and prevalence, then it is possible to compare 

those studies in terms of a robust performance metric. In this manner, the classifications with 

similar performance metric values could also be compared from other aspects (e.g., the 

quality of the datasets, subsampling strategies, and/or time performances of the classification 

implementations). 

A qualitative dataset assessment could be applied to support the quantitative approach that 

requires reporting two performance measures and one robust metric. A preliminary work that 

is out of scope of this thesis was already published to systematically profile datasets based 

on proposed four techniques with fourteen criteria including the sample and feature space 

sizes (Gurol Canbek et al., 2018). 

Hence, it is seriously affirmed that classification studies should report and take sample size 

(Sn) and prevalence (PREV) performance measures into account along with MCC metric 

value in minimal to satisfy objective and responsible research. This should be a formal 

approach to performance reporting in the literature (e.g., listing the performances of 

compared classification studies with Sn, PREV, and MCC values together in a table). 

5.9 Conclusion 

This chapter was carried out to meet two objectives addressing (RQ4): 

• First, to examine the behavior of all possible binary-classification performance 

metrics from a wider perspective in order to clarify what the most robust metric is by 

revealing the problematic issues. 

• The second objective was to recommend a proper performance evaluation, 

comparison, and reporting approach for classification researches. 

To meet the objectives, a new comprehensive benchmarking method called BenchMetric is 

introduced that can be used for any number of existing or newly proposed performance 

metrics. Contrary to existing approaches, the proposed method develops new concepts such 
as metric-space, meta-metrics, base measure permutations, and variance/invariance 

swapping to analyze the metrics and examines metrics from a wider perspective and reveals 

the weak and strong issues of individual metrics, metric pairs and/or group of metrics in an 

objective measurable manner. 

BenchMetric was tested on thirteen performance metrics that are commonly used and/or 

recommended in the literature. To the best of my knowledge, this is the first time that such a 

larger number of metrics have been reviewed in this scope and one metric is suggested with 

solid justification. BenchMetric spotted specific cases where a metric can behave 

unexpectedly (e.g., yielding high-performance values in a higher number of false 

classifications). Especially frequently used metrics such as TPR, ACC, nMI, F1, and CK 

exhibit significant robustness issues. The overall result of the proposed three-staged 

benchmark recommends that MCC (otherwise CK) as the best choice for performance 

evaluation. 
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Besides, two recently proposed metrics are also tested along with the 13 previously tested 

metrics by BenchMetric. Although the authors of those metrics claim improvement over the 

existing metrics, this second BenchMetric experiment showed limited improvements but also 

introduced many unaddressed robustness issues in the new metrics for the first time in the 

literature. Incorporating those new metrics, MCC is still the most robust one. 

Monotonicity (UMono) calculated for Sn = 250 measures a small improvement per each 

base measure can be reflected by the metric, specifically whether there is any contradiction 

that causes misleading evaluations. There is the same degree of violations for the same 

metrics for other sample sizes. It might seem controversial that the violations are examined 

for two paired cases where the original sample size is increased or decreased by one 

(increase for TP and TN) which cannot be observed while comparing the performances 

within the same sample size (e.g., while trying different ML-models in the same dataset). 

However, such a condition could happen, at least hypothetically, when comparing two 

different classification studies with sample sizes by one difference. 

Contradictory, it could be argued that the benchmarking highlights subtle issues in some 

metrics that cannot be seen in practice or in a well-prepared classification study. In my 

opinion, the issues re-summarized in Section 5.6 cannot be ignored as they may arise in 

several areas such as online machine learning classifications, decision-making applications 

including “what if” scenarios, and artificial general intelligence in the future where the 

classification performance possibilities are diverse.  

Considering performance evaluation from a wider perspective, it is also suggested that 

classification studies shall report sample-space size and prevalence ratio explicitly along 

with metric value (i.e. MCC) together for objective and responsible open research. These 

three indispensable values should be evaluated together to get a better and entire perception 

of classification performance. 
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DISCUSSION AND CONCLUSION 

This thesis takes a breadth and depth look at binary-classification performance evaluation 

and covers the largest number of binary-classification performance evaluation instruments 

available in the literature including the recently proposed ones. The study that is guided by 

the following main research question revisits performance evaluation by focusing the 

important problems and essentially proposes two methods to make a multi-perspective 

analysis and systematic benchmarking for performance instruments. 

RQ: How to establish and improve our knowledge on binary-classification performance 

instruments comprehensively and systematically in order to enable researchers to make 

informed decisions on choosing the right instrument(s) and follow objective approaches 

in performance evaluation, reporting, and comparison? 

As depicted in Figure 6.1, this thesis addressed four research questions expressed in 

Section 1.1 and, in addition to the two main methods, presented three surveys, three case 

studies, two complementing tools, and two experiments besides other contributions. 

Although performance instruments are widely-accepted global references and contrary to the 

common assumption that performance evaluation is a well-understood and studied area, this 

thesis pointed at the fundamental problems such as confusing terminology and lack of 

consensus in performance evaluation and reporting. Other problems such as misleading 

results via accuracy metric and publication/confirmation biases were also revealed by 

conducted case studies. The problems highlighted in Survey 1 and case studies addressing 

(RQ1) reveals previously unknown issues suggesting a root cause that the fundamentals of 

classification performance evaluation are neither established nor are they internalized by the 

research community. 

Hence, this thesis first provided novel concepts derived from a multi-perspective analysis of 

performance evaluation instruments addressing (RQ2). This conceptualization brings a new 

perspective for performance evaluation instruments by the following contributions: 

• Referring all confusion-matrix derived references as “performance instruments”, 

• Terminology clarification with new “measure”–“metric”–“indicator” categorization, 

• Naming convention in classification context with standardized abbreviations, 

• Grouping and leveling instruments (e.g., base measures: TP, FP, FN, TN, and 1st 

level measures: P, N, OP, ON), and 

• Introducing new measures named TC and FC to enhance the comprehensibility of 
instrument equations. 

CHAPTER 6 
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Figure 6.1 Thesis contributions summary 

 

This thesis has also introduced and formally defined the following concepts: 

• Canonical, base, equivalent, direct and high-level forms in instruments’ equations, 

• Determination of measure and metric, 

• The column, row, and mixed geometries, 

• Duality and complementation via transformation in geometry, and 

• Levels and dependencies among instruments. 

The canonical form is especially helpful to reveal the essential properties of the instruments. 

Establishing a common language will avoid misunderstanding and facilitate communication 

among the research community. The concepts help to understand the significant properties of 

the instruments as well as recognizing the similarities and differences among a large number 

of instruments. 

Concerning (RQ3), this thesis made novel contributions to enhance our understanding, 

facilitate our activities, and provide new approaches in performance evaluation by 

• Proposing performance indicators as a new performance evaluation instrument type 

for the first time and highlighting their potential benefits as well as 
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• Proposing a novel indicator named “Accuracy Barrier” (ACCBAR) to assess whether 

the performance of a classifier is close to random classification. 

ACCBAR indicator was applied in a case study that revealed a significant problem with 

performance evaluation whereby some of the studies with a high performance reported by 

ACC is misleading whereas the studies with lower ACCs had actually appeared to achieve a 

more reliable performance. 

Furthermore, as an aggregation of all the proposed concepts, a new compact binary-

classification performance evaluation instruments exploratory table named PToPI, which is 

like the periodic table of elements, is designed and provided online. PToPI covers over 50 

instruments with the following characteristics: 

• Clear measure–metric–indicator distinction via grouping and coloring, 

• Leveling perception via nested groups, 

• Showing the equations for all the instruments in canonical and/or high-level-

dependency forms in one place, 

• The comprehension of equations is enhanced via positioning according to instrument 

geometry and graphical decorations (e.g., arrows and font styles), 

• Presenting additional information per instruments via a uniform information box, 

• A quick sensation of dependent measures/metrics via arrows, and 

• Prediction and reality relations via positioning in a column, row, or mixed geometry. 

 

Considering the presence of a large number of binary-classification performance evaluation 

instruments, it could be difficult to grasp those instruments, their intrinsic characteristics and 

the differences among them. Addressing these difficulties, the proposed table PToPI 

provides a big picture for presenting instruments within a single page only, which is also an 

efficient material for learning or teaching binary-classification performance measures, 

metrics, and indicators. PToPI can be used to select adequate instruments for performance 

reporting as demonstrated in this study. 

Complementing PToPI, a calculator and dashboard tool called TasKar was also provided to 

assist the searchers to see the performance in terms of all the instruments as well as interpret 

the results via the graphical visualization of base metrics. It is expected that PToPI and 

TasKar will be an efficient material and tool for learning, teaching, and interpreting binary-

classification performance measures, metrics, and indicators. 

The last part of the thesis, addressing (RQ4), after revisiting and reestablishing the 

classification performance evaluation domain, is to focus on revealing the robustness of 

binary-classification performance instruments and answering “Which instruments are robust 

to use” and “What should be reported for classification performance”. 

In this perspective, this thesis proposed a new comprehensive benchmarking method called 

“BenchMetric” to analyze the robustness of performance metrics. Comparing a few methods 

proposed in the literature, BenchMetric provides a systematic benchmarking comprising 

three stages and many measurable criteria. The concepts introduced in BenchMetric such as 

metric-space and meta-metrics (metrics about performance metrics) will enhance the overall 

understanding of metrics and their behaviors. 
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The results of the two conducted experiments of BenchMetric (first, on 13 performance 

metrics and second, on 15 metrics including two recently proposed ones) have shown that 

• there are several robustness issues in even commonly used metrics and 

• MCC is the most robust metric. 

This thesis is the first to declare that researchers who want to be on the safe side, can use 

MCC as the most robust metric for general objective purposes. Otherwise, they can select a 

metric among others that are required or enforced by their domain of interest considering the 

ranks and specific robustness issues revealed by BenchMetric. 

This thesis also demonstrated that publication and confirmation biases might exist because of 
non-robust metric usages. Some equations were introduced to reveal base measures 

(confusion matrix) of a classification study that reports a few metrics (e.g., P, N, TPR, and 
ACC). Hence, it is possible to calculate the performances in terms of other metrics such as 

MCC. It is expected that this method will be used to examine the classification studies in 

other domains. 

Beyond choosing a metric, this thesis suggested that the proper approach is that classification 

studies should take sample-space size (Sn), prevalence ratio (PREV), and MCC values 

together into account for a precise and concise binary-classification performance evaluation, 

comparison, and especially reporting. It is expected that the rankings of the metrics, their 

robustness issues revealed, and the recommended evaluation approach will guide researchers 

to evaluate classification performances straightforwardly. 

The followings are some remarks of this thesis study to highlight: 

• There are severe robustness issues in widely used performance metrics such as TPR, 

PPV, ACC, and F1 (see the summary of the findings in Section 5.6). 

• Researchers who prefer to use ACC should use and consider ACCBAR indicator. 

• Although nMI is recommended by the literature, it is not proper to handle different 

cases encountered in a classification problem22. 

• As mathematically demonstrated in Section 5.4.4, CK and MCC are very similar 

metrics. However, CK exhibits non-robust behaviors from certain aspects. 

• The recently proposed metrics are not only behind the robust metrics but also they 

exhibit non-robust behaviors where the metric they try to optimize do not. Therefore, 

“finding a more robust metric than MCC”, as clearly declared in this thesis, might be 

a challenging research topic where a comprehensive benchmark is available with 

provided API. 

• The visualization of various concepts in a consistent and comprehensible manner 

was a difficult activity. It is expected that the proposed formatting and coloring 

scheme will be an industry standard and/or academic visualization convention or 

utilized for other purposes (e.g., visualizing diagnostic tests in medicine). 

 
22 Changing the default calculation method in some ML software packages could be a reason behind optimizing 

nMI 



 93 

• Researchers can use two tools, PToPI and TasKar, complementing each other from 

theoretical and practical perspectives. It is expected that they will also be used in 

other domains/scopes, for example, in similarity and association measures 

conventionally represent base measures as “a”, “b”, “c”, and “d” as shown in TasKar 

shown in Figure 4.6. 

• The analogy between PToPI in machine learning and the periodic table of elements 

in chemistry is also notable to highlight the significance of the conceptualization 

proposed in this study. Like the periodic table covering 118 elements, PToPI 

enhances the usability and comprehensibility of 50 instruments. 

• Starting to report performance via a bi-directional robust metric (MCC in [-1, +1] 

range) will provide a wider range for the classification studies in a specific domain 

where the previous performance reports are saturated at near the maximum value 

(i.e. 1.000) of the non-robust conventional metrics in [0, 1] range especially ACC 

and F1. 

• It is interesting that MCC, which was the top-level metric (the only metric in 2nd 

level) was also found as the most robust one in BenchMetric. This could be 

interpreted as an indicator of the consistency in the proposed methods and also a 

validation with respect to the robustness of MCC. 

• Notably, including a new metric and repeating the benchmark of the new group of 

metrics is quite straightforward with the help of systematic methodology and 

developed ready-to-run API. I experienced this convenience when the benchmarked 

metrics were extended by adding normalized mutual information (nMI) metric that is 

rather recent and not used much in common. 

6.1 Limitations 

Although not within direct scope, this thesis also presents a baseline for performance 

evaluation apart from binary classification such as performance evaluation where binary-

classification evaluation metrics are micro- or macro-averaged over time (Kenter et al., 

2015) and multi-label or multi-class classification metrics most of which can be 

• directly used by applying the canonical form proposed in this thesis. Some binary-

classification performance instruments are expressed with the same notation as for 

multi-class performance evaluation instruments for the first time. For example, 

ACC = TC / Sn for binary and multi-class classification performances. 

• adapted by using one versus all approaches, all binary-classification instruments can 

be used directly. For example, the performance of a classifier detecting “apples”, 

“pears”, and “apricots” in images can be expressed by converting the three classes to 

binary and calculating the confusion matrix accordingly (i.e. using binary-class 

performance instruments for “apricots” vs. “apples and pears” classes with respect to 

“apricots” class) (Hossin & Sulaiman, 2015; Kolo, 2011; Pereira et al., 2018). 

Because of exponentially increasing number of permutations in metric-spaces (e.g., 3,276 for 

Sn = 25 whereas 2,667,126 cases for Sn = 250) and corresponding limited computational 

resources, some meta-metrics such as UDist and UOsmo could be approximated by 

averaging the intermediate values for a number of sample sizes between 25 and maximum 
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250. Some optimization methods or high computational resources could be tried to improve 

the calculation time. 

One might argue that examining problematic issues through a single domain cannot be 

generalized. First of all, Android mobile malware detection is a typical binary classification 

problem that the literature studies from a broad perspective. The problems could not be 

limited to this rather recently developed domain. Second, the issues revealed in this domain 

are also observed in other domains. Some representative examples are also given for term 

extraction in medical records, computer system intrusion detection in network security, e-

mail spam detection in cyber security, and software design defects detection in Section 4.1.3. 

All these findings and observations suggest that the problems are independent of domains. 

Limited feedbacks have been received with respect to PToPI and TasKar. Some of the critics 

(e.g., from the reviewers of the journal we submit our related works) such as “being a 

complex tool” were taken into account in some degree. However, the usability of these tools 

could not be studied during the thesis study. 

6.2 Future Work 

As mentioned in Section 3.11.1, another future work will evaluate the performance values of 

other metrics such as BACC, F1, CK, and MCC for “under”, “hit” and “very close” to 

Accuracy Barrier cases and compare the differences with ACC from a broad perspective. It is 

expected that this evaluation will give extra insight into metrics and could be integrated into 

BenchMetric. 

For BenchMetric, some significant issues were also observed in metrics that were tested 

under controlled conditions such as synthetic classifiers and/or datasets. These observations 

of preliminary work need to be validated to identify whether the assessments could be 

integrated into BenchMetric as a fourth stage. 

We are in the process of defining a single metric to follow the recommendation about precise 

and concise performance reporting described in Section 5.8. We obtained promising results 

in categorizing different datasets according to sample size with respect to both sample-space 

and feature-space size. We are also planning to improve our dataset profiling techniques 

(Gurol Canbek et al., 2018) to support performance evaluation activities to include assessing 

the dataset quality. 

It is expected that this research will serve a base for future studies on exploring 

• Accuracy barrier effect (as demonstrated in case study 1 in Section 3.11.1) 

• Presence of publication and confirmation biases (as demonstrated in case study 2 in 

Appendix H) 

in other classification domains in the literature. 

An important matter to resolve for future studies is defining an indicator for limitless 

measures such as Discriminant Power (DP). 
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The following topics remain to be further explored and studied: 

• the validity and/or extendibility of proposed concepts and tools in multi-class 

performance evaluation instruments. 

• the effect of using MCC in micro- and macro-averaged metrics instead of 

conventional TPR, PPV, and F1. 

It is expected that PToPI and TasKar will be helpful tools to facilitate performance 

evaluation from different perspectives. Therefore, another area of future work will be 

enhancing their capabilities and/or making some improvements. 

The following capabilities will be developed to improve TasKar in practice: 

• Copying all instruments results to the clipboard in a CSV format to paste into a 

spreadsheet for further analysis and reporting. 

• Confusion matrix finder based on the equations given in Appendix H. 

• Integrating other binary measures and metrics such as similarity/distance measures 

and association measures. 

• Metric finder to identify a metric with a given value and confusion matrix. 

• NaN (i.e. division-by-zero) correction option. 

The second version of the proposed coloring scheme described in Section 4.2.1 that is also 

used in PToPI and TasKar could be optimized for color blindness. 

Future work should give priority to develop a technology acceptance model for both PToPI 

and TasKar that help to assess perceived-usefulness and perceived-ease-of-use (Lai, 2017). 

Finally, an interactive visualized performance instrument analysis platform will be released 

online. 
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APPENDICES 

 

PERFORMANCE INSTRUMENTS: CATEGORIES, LEVELS, NOTATION, 

AND FORMATING CONVENTIONS 

Table A.1 Performance instruments: categories (measures, metrics, and indicators), abbreviations, 

names, alternative names, notations, and styles 

C
a
n

o
n

ic
a
ls

 

Base Measures (BM) (4 measures) 2nd Level Measures (10 measures) 

FN False Negative FP False Positive BIAS: Bias, CKc: Cohen's Kappa 

Chance, DET: Determinant, DPR: 

D Prime, LRN: Likelihood Ratio 

Negative, LRP: Likelihood Ratio 

Positive, NER: Null Error Rate, NIR: No 

Information Rate (non-information 

rate), PREV: Prevalence, SKEW: (Class) 

Skew 

TN True Negative TP True Positive 

1st Level Measures (7 measures) 

N Negative P Positive 

ON Outcome Negative OP Outcome Positive 

FC False Classification TC True Classification 

Sn Sample Size   

3rd Level Measures (4 measures) 

DP: Discriminant Power, HC: Class Entropy, HO: Outcome Entropy, OR: Odds Ratio 

Base Metrics (14 metrics) 1st Level Metrics (9 metrics) 

ACC: Accuracy (efficiency, rand index), AUC: 

Area Under Curve, CRR: (Correct) Rejection 

Rate, DR: Detection Rate, FDR: False 

Discovery Rate, FNR: False Negative Rate, 

FOR: False Omission Rate (imprecision), 

FPR: False Positive Rate, HOC: Joint 

Entropy, MCR: Misclassification Rate, MI: 

Mutual Information, NPV: Negative Predictive 

Value, PPV: Positive Predictive Value 

(precision, confidence), TNR: True Negative 

Rate (inverse recall, specificity), TPR: True 

Positive Rate (recall, sensitivity, hit rate, 

recognition rate) 

BACC: Balanced Accuracy (strength), CK: Cohen's 

Kappa (Heidke skill score, quality index), Fm: F-

metrics, F1: F1 (F-score, F-measure, positive specific 

agreement), G: G-metric (G-mean, Fowlkes-Mallows 

index), INFORM: Informedness (Youden’s index, 

delta P', Peirce skill score), MARK: Markedness (delta 

P, Clayton skill score, predictive summary index), 

nMI: Normalized Mutual Information, WACC: 

Weighted Accuracy 

2nd Level Metric (1 metric) Indicators (1 indicator) 

MCC: Matthews Correlation Coefficient (Phi 

correlation coefficient, Cohen’s index, Yule 

phi) 

ACCBAR: Accuracy Barrier 
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Table A.2 Color palette (red, green, blue (RGB) color codes in hexadecimal format for background 

and text colors) for performance instrument types and canonical measures 

Type Level/Type 

Style 

Background Text Measure Abbreviation 

/Style 

Background Text  

Measures Base #A6A6A6 #000000 True Positive TP #FFCCCC #CC0000 

C
an

o
n
ic

al
s 

   False Positive FP #CCFFCC #7D3F3F 

   False Negative FN #FFCCCC #274927 

   True Negative TN #CCFFCC #009900 

1st Level #BFBFBF #000000 Positive P #990000 #FF5050 

Negative N #006600 #33CC33 

Outcome Positive OP #CC9999 #FFCCCC 

Outcome Negative ON #99CC99 #CCFFCC 

True Classification TC #77CCCC #117777 

False Classification FC #FFCCFF #7030A0 

Sample Size Sn #999966 #424100 

2nd Level #D9D9D9 #000000   

3rd Level #F2F2F2 #000000 

Metrics Base #FED96F #974715 

1st Level #FEE59D #BD581A 

2nd Level #FFF1CE #E46A21 

Indicators Indicator #77AADD #114477 
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PERFORMANCE INSTRUMENTS EQUATIONS WITH DUALS AND 

COMPLEMENTS 

Table B.1 Measure Equations (numbered in curly braces according to PToPI shown in Figure C.2) 

𝑃 = 𝑇𝑃 + 𝐹𝑁 {5} 𝑁 = 𝑇𝑁 + 𝐹𝑃 {6} 𝑂𝑃 = 𝑇𝑃 + 𝐹𝑃 {7} 

𝑂𝑁 = 𝑇𝑁 + 𝐹𝑁 {8} 𝑇𝐶 = 𝑇𝑃 + 𝑇𝑁 {9} 𝐹𝐶 = 𝐹𝑃 + 𝐹𝑁 {10} 

𝑆𝑛 = 𝑇𝑃 + 𝐹𝑃 + 𝐹𝑁 + 𝑇𝑁 = 𝑃 +𝑁 = 𝑂𝑃 + 𝑂𝑁 = 𝑇𝐶 + 𝐹𝐶 {11} 

𝑆𝑛 = 𝑃 + 𝑁  𝑆𝑛 = 𝑂𝑃 + 𝑂𝑁  𝑆𝑛 = 𝑇𝐶 + 𝐹𝐶  

𝑃𝑅𝐸𝑉 =
𝑃

𝑆𝑛
= 𝐵𝐼𝐴𝑆∗ {12} IMB =

max(𝑃,𝑁)

min(𝑃,𝑁)
{12'} 𝐵𝐼𝐴𝑆 =

𝑂𝑃

𝑆𝑛
= 𝑃𝑅𝐸𝑉∗ {13} 

𝑆𝐾𝐸𝑊 = 𝑁: 𝑃 {14} 
𝑁𝐼𝑅 =

max(𝑃,𝑁)

𝑆𝑛
{15} 𝑁𝐸𝑅 =

𝑁

𝑆𝑛
= 𝑃𝑅𝐸𝑉̅̅ ̅̅ ̅̅ ̅̅ {16} 

𝐶𝐾𝑐 =
𝑃 ⋅ 𝑂𝑃 + 𝑁 ⋅ 𝑂𝑁

𝑆𝑛2
{17} 

𝐷𝑃𝑅 = Ζ(𝑇𝑃𝑅) − Ζ(𝐹𝑃𝑅) {18} 

𝐿𝑅𝑃 =
𝑇𝑃𝑅

𝐹𝑃𝑅
=
𝑇𝑃 ⋅ 𝑁

𝐹𝑃. 𝑃
{19} 𝐿𝑅𝑁 =

𝐹𝑁𝑅

𝑇𝑁𝑅
=
𝐹𝑁 ⋅ 𝑁

𝑇𝑁. 𝑃
{20} 

𝐷𝐸𝑇 = 𝑇𝑃 ⋅ 𝑇𝑁 − 𝐹𝑃 ⋅ 𝐹𝑁 {21} 

𝐻𝐶 = − ∑ 𝑚 log2𝑚

𝑚=𝑃𝑅𝐸𝑉,1−𝑃𝑅𝐸𝑉

{22} 𝐻𝑂 = − ∑ 𝑚 log2𝑚

𝑚=𝐵𝐼𝐴𝑆,1−𝐵𝐼𝐴𝑆

{23} 

𝑂𝑅 =
𝐿𝑅𝑃

𝐿𝑅𝑁
=
𝑇𝑃𝑅 ⋅ 𝑇𝑁𝑅

𝐹𝑃𝑅 ⋅ 𝐹𝑁𝑅
=
𝑇𝑃 ⋅ 𝑇𝑁

𝐹𝑃 ⋅ 𝐹𝑁
{24} 

𝐷𝑃 =
√3

𝜋
(log

𝑇𝑃𝑅 ⋅ 𝑇𝑁𝑅

𝐹𝑃𝑅 ⋅ 𝐹𝑁𝑅
) =

√3

𝜋
log 𝑂𝑅 =

√3

𝜋
log
𝑇𝑃 ⋅ 𝑇𝑁

𝐹𝑃 ⋅ 𝐹𝑁
{25} 

 
Correction 1. OR and DP are undefined (NaN) due to the zero division by zero (0/0) in case of 

TP·FP=0 and FP·FN=0. Therefore, they should be 0 (zero) for these cases which means an arbitrary 

classifier. 
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Table B.2 Metric Equations (numbered in braces according to PToPI shown in Figure C.2) 

𝑇𝑃𝑅 =
𝑇𝑃

𝑃
= 𝑃𝑃𝑉∗ (1) 𝐹𝑁𝑅 =

𝐹𝑁

𝑃
= 𝑇𝑃𝑅̅̅ ̅̅ ̅̅ (2) 𝑇𝑁𝑅 =

𝑇𝑁

𝑁
= 𝑁𝑃𝑉∗ (3) 

𝐹𝑃𝑅 =
𝐹𝑃

𝑁
= 𝑇𝑁𝑅̅̅ ̅̅ ̅̅ (4) 𝑃𝑃𝑉 =

𝑇𝑃

𝑂𝑃
= 𝑇𝑃𝑅∗ (5) 𝐹𝐷𝑅 =

𝐹𝑃

𝑂𝑃
= 𝑃𝑃𝑉̅̅ ̅̅ ̅̅ (6) 

𝐹𝑂𝑅 =
𝐹𝑁

𝑂𝑁
= 𝑁𝑃𝑉̅̅ ̅̅ ̅̅ (7) 𝑁𝑃𝑉 =

𝑇𝑁

𝑂𝑁
= 𝑇𝑁𝑅∗ (8) 

𝐻𝑂𝐶 = − ∑
𝑚

𝑆𝑛
log2

𝑚

𝑆𝑛
𝑚=𝑇𝑃,𝐹𝑃,𝐹𝑁,𝑇𝑁

(9) 

𝑀𝐼 =
𝑇𝑃

𝑆𝑛
log2

𝑇𝑃 𝑆𝑛⁄

𝑃𝑅𝐸𝑉 ⋅ 𝐵𝐼𝐴𝑆
+
𝐹𝑃

𝑆𝑛
log2

𝐹𝑃 𝑆𝑛⁄

(1 − 𝑃𝑅𝐸𝑉) ⋅ 𝐵𝐼𝐴𝑆

+
𝐹𝑁

𝑆𝑛
log2

𝐹𝑁 𝑆𝑛⁄

𝑃𝑅𝐸𝑉 ⋅ (1 − 𝐵𝐼𝐴𝑆)
+
𝑇𝑁

𝑆𝑛
log2

𝑇𝑁 𝑆𝑛⁄

(1 − 𝑃𝑅𝐸𝑉) ⋅ (1 − 𝐵𝐼𝐴𝑆)
(10)

 

𝐷𝑅 =
𝑇𝑃

𝑆𝑛
(11) 𝐶𝑅𝑅 =

𝑇𝑁

𝑆𝑛
(12) 

𝐴𝐶𝐶 =
𝑇𝐶

𝑆𝑛
(13) 𝑀𝐶𝑅 =

𝐹𝐶

𝑆𝑛
= 𝐴𝐶𝐶̅̅ ̅̅ ̅̅ (14) 

𝐼𝑁𝐹𝑂𝑅𝑀 = 𝑇𝑃𝑅 + 𝑇𝑁𝑅 − 1 =
𝑇𝑃 ⋅ 𝑁 + 𝑇𝑁 ⋅ 𝑃 − 𝑃 ⋅ 𝑁

𝑃 ⋅ 𝑁
=
𝑇𝑃 ⋅ 𝑁 + 𝑇𝑁 ⋅ 𝑃

𝑃 ⋅ 𝑁
− 1 = 𝑀𝐴𝑅𝐾∗ (15) 

𝑀𝐴𝑅𝐾 = 𝑃𝑃𝑉 + 𝑁𝑃𝑉 − 1 =
𝑇𝑃 ⋅ 𝑂𝑁 + 𝑇𝑁 ⋅ 𝑂𝑃 − 𝑂𝑃 ⋅ 𝑂𝑁

𝑂𝑃 ⋅ 𝑂𝑁
=
𝑇𝑃 ⋅ 𝑂𝑁 + 𝑇𝑁 ⋅ 𝑂𝑃

𝑂𝑃 ⋅ 𝑂𝑁
− 1 = 𝐼𝑁𝐹𝑂𝑅𝑀∗ (16) 

𝐵𝐴𝐶𝐶 =
𝑇𝑃𝑅 + 𝑇𝑁𝑅

2
=
𝑇𝑃 ⋅ 𝑁 + 𝑇𝑁 ⋅ 𝑃

2 ⋅ 𝑃 ⋅ 𝑁
(17) 

𝑊𝐴𝐶𝐶 = w ⋅ 𝑇𝑃𝑅 +
(1 − 𝑤) ⋅ 𝑇𝑁𝑅 (17')

 

w is in (0, 1) 

𝐺 = √𝑇𝑃𝑅 ⋅ 𝑇𝑁𝑅
2

= √𝑇𝑃 ⋅ 𝑇𝑁 𝑃 ⋅ 𝑁⁄ (18) 𝑛𝑀𝐼 =
𝑀𝐼

𝑓(𝐻𝑂,𝐻𝐶,𝐻𝑂𝐶)
(19) 

𝑛𝑀𝐼 = 𝑛𝑀𝐼𝑎𝑟𝑖 =
𝑀𝐼

(𝐻𝑂 + 𝐻𝐶) 2⁄
(19.1) 𝑛𝑀𝐼𝑔𝑒𝑜 =

𝑀𝐼

√𝐻𝑂 ⋅ 𝐻𝐶
2 (19.2) 

𝑛𝑀𝐼𝑗𝑜𝑖 =
𝑀𝐼

𝐻𝑂𝐶
(19.3) 𝑛𝑀𝐼𝑚𝑖𝑛 =

𝑀𝐼

min(𝐻𝑂,𝐻𝐶)
(19.4) 

𝑛𝑀𝐼𝑚𝑎𝑥 =
𝑀𝐼

max(𝐻𝑂,𝐻𝐶)
(19.4) 𝐹1 =

2𝑃𝑃𝑉 ⋅ 𝑇𝑃𝑅

𝑃𝑃𝑉 + 𝑇𝑃𝑅
=

2𝑇𝑃

2𝑇𝑃 + 𝐹𝐶
(20) 

𝐹β = (1 + β
2)

(𝑃𝑃𝑉. 𝑇𝑃𝑅)

(β2𝑃𝑃𝑉) + 𝑇𝑃𝑅)
=

(1 + β2). 𝑇𝑃

(1 + β2). 𝑇𝑃 + β2. 𝐹𝑁 + 𝐹𝑃
(20') 

𝐹0.5 = 1.25
(𝑃𝑃𝑉. 𝑇𝑃𝑅)

(0.25 ⋅ 𝑃𝑃𝑉 + 𝑇𝑃𝑅)
(21) 𝐹2 = 5

(𝑃𝑃𝑉 ⋅ 𝑇𝑃𝑅)

(4𝑃𝑃𝑉) + 𝑇𝑃𝑅)
(22) 

𝐶𝐾 =
𝐴𝐶𝐶 − 𝐶𝐾𝑐

1 − 𝐶𝐾𝑐
=
2(𝑇𝑃 ⋅ 𝑇𝑁 − 𝐹𝑃 ⋅ 𝐹𝑁)

𝑃 ⋅ 𝑂𝑁 + 𝑁 ⋅ 𝑂𝑃
=

𝐷𝐸𝑇

(𝑃 ⋅ 𝑂𝑁 + 𝑁 ⋅ 𝑂𝑃) 2⁄
(23) 

 
Correction 2. CK is undefined (NaN) due to the zero division by zero (0/0) in case of P=0 and OP=0 or 

N=0 or ON=0. Therefore, CK should be 0 (zero) for these cases. 

𝑀𝐶𝐶 = √𝐼𝑁𝐹𝑂𝑅𝑀 ⋅ 𝑀𝐴𝑅𝐾 =
𝑇𝑃 ⋅ 𝑇𝑁 − 𝐹𝑃 ⋅ 𝐹𝑁

√𝑃 ⋅ 𝑂𝑃 ⋅ 𝑁 ⋅ 𝑂𝑁
=

𝐷𝐸𝑇

√𝑃 ⋅ 𝑂𝑃 ⋅ 𝑁 ⋅ 𝑂𝑁
(24) 

 
Correction 3. MCC is undefined (NaN) due to the zero division by zero (0/0) in case of P=0 and/or 

OP=0 and/or N=0 and/or ON=0. The possible cases are more than CK’s. CK is 0 for them except the 

cases specified in Correction 1 above. Therefore, MCC should also be 0 for these cases. 
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PToPI: PERIODIC TABLE OF PERFORMANCE INSTRUMENTS 

(GEOMETRY POSITIONS AND FULL VIEW) 

The following figure shows the positioning of the instruments according to instrument 

geometries. The full view of PToPI is shown in the next page. 

 

 
 

Figure C.1 PToPI instrument positioning according to geometry 
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Figure C.2 The proposed binary-classification performance instruments exploratory table (PToPI) for 

50 performance instruments including 25 measures, 24 metrics, and 1 indicator in full view. 

 

PToPI in full view presents all the information such as canonical and/or high-level 

dependency equations. See the legend for the details represented in PToPI. The full-

resolution and up-to-date version of PToPI with other extra information can be accessed 

online at https://github.com/gurol/PToPI.  
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ANALOGY BETWEEN PToPI AND PERIODIC TABLE OF ELEMENTS 

Table D.1 lists the similarities identified from the familiar source domain (periodic table of 

elements) to the unfamiliar target domain (PToPI). The similarities could be in 

corresponding attributes and/or relations. 

 
Table D.1 Analogical similarities from the periodic table of elements to PToPI 

  Periodic Table (Source Domain) PToPI (Target Domain) 

Description Tabular display of the chemical elements Tabular display of the classification 

instruments 

Types Metallic (Left Bottom) Measures (Right Bottom) 

Non-Metallic (Right Top) Metrics (Left Top) 

 

(a) Types in Periodic Table: Metals / Nonmetals 
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Table D.1 Analogical similarities from the periodic table of elements to PToPI (continued) 

 

(b) Types in PToPI: Measures / Metrics 

  Periodic Table (Source Domain) PToPI (Target Domain) 

Numbering Atomic number (the total number of 

protons in the atomic nucleus) 

Instrument number (sequence per 

instrument type started from low-level to 

high-level, from column, row, to mixed 

geometry in the same level, and according 

to the location of dependent instruments) 

Instrument 

Size and 

Origins 

Natural elements (The first 94 elements all 

occur naturally) 

50 measures and metrics 

Synthesized elements (Elements 95 to 118 

have only been synthesized in laboratories 

or nuclear reactors) 

Indicators (ACCBAR) 

Spatial Periods (periodic trends in element 

properties such as melting point, density, 

hardness) 

Geometries (from column, row, to mixed) 

Grouping Blocks (4 blocks): Groups having 

predominantly characterized by the highest 

energy electrons in the same atomic orbital 

type. 

Levels (7 levels): Similar dependencies in 

the same instrument type 
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Table D.1 Analogical similarities from the periodic table of elements to PToPI (continued) 

 

(c) Grouping in Periodic Table: Blocks (s, p, d, f) 

 

(d) Grouping in PToPI: Levels (base, 1st, 2nd, 3rd) 

  Periodic Table (Source Domain) PToPI (Target Domain) 

Properties Metallic Hard Measures Hard to interpret 

Non-Metallic Soft Metrics Easy to interpret 

Metallic High density Measures High precision 

Non-Metallic Low density Metrics Low precision 
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SURVEY SELECTION METHODOLOGY 

This study surveys the following 78 academic studies that model some machine learning 

Android malware classifiers and reports the performance evaluation within the last seven 

years (2012–2018). The references are given in Appendix F below. Additional to 35 

symposia, conference and journal articles published between 2012 and 2018 that had already 

been reviewed by me, 43 articles were included by the following methodology: 

• Selecting the relevant journal articles by searching the IEEE academic database with 

having "((Android AND malware) AND (accuracy OR precision OR "True Positive" 

OR "False Positive") AND (Classification OR Detection))" words in articles’ title, 

abstract, or body on 27 March 2018. 

• Selecting the relevant conference/journal articles by searching the Google Scholar 

with matching the same keywords above and reviewing the first 10 relevant articles 

per year from 2012 to 2018 on May 2018 excluding the patents. 

Among the relevant 78 studies, all of the articles were included in performance evaluation 

terminology findings where available. For other statistics, only the applicable studies are 

included as specified in Appendix F. For example, when analyzing Accuracy Barrier effect, 

covered 28 studies have been covered by discarding 

• the ones based on malware family detection only, dynamic malware analysis, 

repackaged application detection, and machine learning evasion, because the goals, 
datasets, features, and/or metric levels are different from pure static-malware 

detection domain and 

• the articles not reporting ACC metric. 

In analyzing publication/confirmation biases, 43 studies are covered that are applicable by 

eliminating 

• the articles based on malware family detection only, dynamic malware analysis, 

repackaged application detection, and machine learning evasion, because the goals, 
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datasets, features, and/or metric levels are different from pure static-malware 

detection domain and 

• the articles where their confusion matrix (base measures) could not be calculated by 

the reported instruments (e.g. reporting only Accuracy metric). 

Note that reviewing and extracting the relevant information from the surveyed studies was 

long and tiresome because each study describes their methodology and reports the result in 

different ways and orders. 
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REFERENCES FOR THE ANDROID MALWARE CLASSIFICATION 

STUDIES SURVEYED 

Table F.1 shows the reference information for the surveyed 78 studies described in 

Appendix E above which is also provided in online data. The table also shows which studies 

are applicable in the following analysis conducted in this study: 

I. Survey 1: Included for performance evaluation reporting analysis? (69 of 78) 

II. Survey 1: Included for performance measures or metrics terminology usage? (55 of 

78) 

III. Survey 1: Included for alternative terms usage for individual metrics? (78 of 78) (see 

Section 2.3.3 for Survey 1) 

IV. Case Study 1: Included for Accuracy Barrier (ACCBAR) indicator analysis (i.e. is 

ACC reported)? (28 of 78) (see Section 3.11.1) 

V. Case Study 2: Included for publication/confirmation biases case study? (43 of 78) 

(see Appendix H) 

 

Table F.1 Surveyed binary classification studies 

Study References I II III IV V 

#1 Aafer, Y., Du, W., & Yin, H. (2013). DroidAPIMiner: 

Mining API-level features for robust malware detection in 

Android. In 9th International Conference on Security and 

Privacy in Communication Networks (SecureComm) (pp. 86–

103). Sydney, NSW, Australia: Springer International 

Publishing 

Yes N/A Yes Yes  Yes 

#2 Aonzo, S., Merlo, A., Migliardi, M., Oneto, L., & Palmieri, 

F. (2017). Low-resource footprint, data-driven malware 

detection on Android. IEEE Transactions on Sustainable 

Computing, 3782, 1–1. 

https://doi.org/10.1109/TSUSC.2017.2774184. 

Yes Others Yes Yes Yes 
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Table F.1 Surveyed binary classification studies (continued) 

Study References I II III IV V 

#3 Apvrille, L., & Apvrille, A. (2015). Identifying unknown 

android malware with feature extractions and classification 

techniques. In 14th IEEE International Conference on Trust, 

Security and Privacy in Computing and Communications 

(TrustCom) (Vol. 1, pp. 182–189). 

https://doi.org/10.1109/Trustcom.2015.373 

Yes N/A Yes N/A Yes 

#4 Arp, D., Spreitzenbarth, M., Hübner, M., Gascon, H., & 

Rieck, K. (2014). DREBIN: Effective and explainable 

detection of Android malware in your pocket. In Network 

and Distributed System Security (NDSS) Symposium. San 

Diego, California: Internet Society. 

https://doi.org/10.14722/ndss.2014.23247 

Yes Others Yes N/A N/A 

#5 Aswini, A. M., & Vinod, P. (2014). Droid permission miner: 

Mining prominent permissions for Android malware 

analysis. In The 5th International Conference on the 

Applications of Digital Information and Web Technologies 

(ICADIWT) (pp. 81–86). Bangalore, India: IEEE. 

https://doi.org/10.1109/ICADIWT.2014.6814679 

Yes Both Yes Yes Yes 

#6 Canfora, G., De Lorenzo, A., Medvet, E., Mercaldo, F., & 

Visaggio, C. A. (2015). Effectiveness of opcode ngrams for 

detection of multi family Android malware. In 10th 

International Conference on Availability, Reliability and 

Security (ARES) (pp. 333–340). 

https://doi.org/10.1109/ARES.2015.57 

Yes Metrics Yes Yes N/A 

#7 Canfora, G., Mercaldo, F., & Visaggio, C. A. (2013). A 

classifier of malicious Android applications. In The 8th 

International Conference on Availability, Reliability and 

Security (ARES) (pp. 607–614). Regensburg: IEEE. 

https://doi.org/10.1109/ARES.2013.80 

Yes Metrics Yes N/A Yes 

#8 Cen, L., Gates, C., Si, L., & Li, N. (2015). A probabilistic 

discriminative model for Android malware detection with 

decompiled source code. IEEE Transactions on Dependable 

and Secure Computing, 12(4), 400–412. 

https://doi.org/10.1109/TDSC.2014.2355839 

Yes Metrics Yes N/A Yes 

#9 Damshenas, M., Dehghantanha, A., Choo, K.-K. R., & 

Mahmud, R. (2015). M0Droid: An Android behavioral-based 

malware detection model. Journal of Information Privacy 

and Security, 11(3), 141–157. 

https://doi.org/10.1080/15536548.2015.1073510 

Yes N/A Yes N/A N/A 

#10 Dash, S. K., Suarez-Tangil, G., Khan, S., Tam, K., Ahmadi, 

M., Kinder, J., & Cavallaro, L. (2016). DroidScribe: 

Classifying Android malware based on runtime behavior. In 

IEEE Symposium on Security and Privacy Workshops (SPW) 

(pp. 252–261). https://doi.org/10.1109/SPW.2016.25 

Yes Metrics Yes N/A N/A 

#11 Demme, J., Maycock, M., Schmitz, J., Tang, A., Waksman, 

A., Sethumadhavan, S., & Stolfo, S. (2013). On the 

feasibility of online malware detection with performance 

counters. ACM SIGARCH Computer Architecture News, 

41(3), 559. https://doi.org/10.1145/2508148.2485970 

Yes Metrics Yes N/A N/A 

#12 Demontis, A., Melis, M., Biggio, B., Maiorca, D., Arp, D., 

Rieck, K., … Roli, F. (2017). Yes, machine learning can be 

more secure! A case study on Android malware detection. 

IEEE Transactions on Dependable and Secure Computing, 

PP(99), 1–14. https://doi.org/10.1109/TDSC.2017.2700270 

Yes Measures Yes N/A N/A 

#13 Deshotels, L., Notani, V., & Lakhotia, A. (2014). 

DroidLegacy: Automated familial classification of Android 

malware. In 3rd ACM SIGPLAN on Program Protection and 

Reverse Engineering Workshop (PPREW) (pp. 1–12). San 

Diego, CA, USA: ACM. 

Yes Measures Yes Yes N/A 
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Table F.1 Surveyed binary classification studies (continued) 

Study References I II III IV V 

https://doi.org/10.1145/2556464.2556467 

#14 Dimjasevic, M., Atzeni, S., Ugrina, I., & Rakamaric, Z. 

(2016). Evaluation of Android malware detection based on 

system calls. In International Workshop on Security and 

Privacy Analytics (IWSPA@CODASPY) (pp. 1–8). New 

Orleans, LA: ACM. 

https://doi.org/10.1145/2875475.2875487 

Yes Measures Yes N/A N/A 

#15 Du, Y. A. O., Wang, J., & Li, Q. I. (2017). An Android 

malware detection approach using community structures of 

weighted function call graphs. IEEE Access, 5, 17478–

17486. https://doi.org/10.1109/ACCESS.2017.2720160 

Yes Metrics Yes N/A Yes 

#16 Elish, K. O., Shu, X., Yao, D., Ryder, B. G., & Jiang, X. 

(2015). Profiling user-trigger dependence for Android 

malware detection. Computers and Security, 49(540), 255–

273. https://doi.org/10.1016/j.cose.2014.11.001 

Yes Others Yes N/A N/A 

#17 Fan, M., Liu, J., Luo, X., Chen, K., Tian, Z., Zheng, Q., & 

Liu, T. (2018). Android malware familial classification and 

representative sample selection via frequent subgraph 

analysis. IEEE Transactions on Information Forensics and 

Security, 13(8), 1890–1905. 

https://doi.org/10.1109/TIFS.2018.2806891 

Yes Metrics Yes N/A N/A 

#18 Fan, M., Liu, J., Wang, W., Li, H., Tian, Z., & Liu, T. 

(2017). DAPASA: Detecting Android piggybacked apps 

through sensitive subgraph analysis. IEEE Transactions on 

Information Forensics and Security, 12(8), 1772–1785. 

https://doi.org/10.1109/TIFS.2017.2687880 

Yes Metrics Yes N/A N/A 

#19 Feizollah, A., Badrul, N., & Salleh, R. (2017). 

AndroDialysis: Analysis of Android intent effectiveness in 

malware detection. Computers & Security, 65, 121–134. 

https://doi.org/10.1016/j.cose.2016.11.007 

Yes Others Yes N/A Yes 

#20 Feng, Y., Anand, S., Dillig, I., & Aiken, A. (2014). 

Apposcopy: Semantics-based detection of Android malware 

through static analysis. In 22nd ACM SIGSOFT International 

Symposium on Foundations of Software Engineering (FSE 

2014) (pp. 576–587). Hong Kong: ACM. 

https://doi.org/10.1145/2635868.2635869 

Yes N/A Yes N/A N/A 

#21 Garcia, J., Hammad, M., & Malek, S. (2018). Lightweight, 

obfuscation-resilient detection and family identification of 

Android malware. ACM Transactions on Software 

Engineering and Methodology, 26(3), 1–29. 

https://doi.org/10.1145/3162625 

Yes Metrics Yes N/A Yes 

#22 Gascon, H., Yamaguchi, F., Rieck, K., & Arp, D. (2013). 

Structural detection of Android malware using embedded call 

graphs. In ACM Workshop on Artificial Intelligence and 

Security (pp. 45–54). New York, New York, USA: ACM. 

https://doi.org/10.1145/2517312.2517315 

Yes Measures Yes N/A N/A 

#23 Ge, H., Ting, L., Hang, D., Hewei, Y., & Miao, Z. (2014). 

Malicious code detection for Android using instruction 

signatures. In 8th International Symposium on Service 

Oriented System Engineering (SOSE) (pp. 332–337). Oxford, 

UK: IEEE. https://doi.org/10.1109/SOSE.2014.48 

Yes N/A Yes N/A Yes 

#24 Glodek, W., & Harang, R. (2013). Rapid permissions-based 

detection and analysis of mobile malware using random 

decision forests. In Military Communications Conference 

(MILCOM) (pp. 980–985). San Diego, CA: IEEE. 

https://doi.org/10.1109/MILCOM.2013.170 

Yes N/A Yes N/A Yes 

#25 Ham, H.-S., & Choi, M.-J. (2013). Analysis of Android 

malware detection performance using machine learning 

classifiers. In International Conference on ICT Convergence 

Yes Metrics Yes N/A N/A 
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Table F.1 Surveyed binary classification studies (continued) 

Study References I II III IV V 

(ICTC) (pp. 490–495). Jeju: IEEE. 

https://doi.org/10.1109/ICTC.2013.6675404 

#26 Jerome, Q., Allix, K., State, R., & Engel, T. (2014). Using 

opcode-sequences to detect malicious Android applications. 

In Communication and Information Systems Security 

Symposium (IEEE ICC 2014) (pp. 914–919). 

https://doi.org/10.1109/ICC.2014.6883436 

Yes Both Yes N/A Yes 

#27 Kirubavathi, G., & Anitha, R. (2018). Structural analysis and 

detection of android botnets using machine learning 

techniques. International Journal of Information Security, 

17(2), 153–167. https://doi.org/10.1007/s10207-017-0363-3 

Yes Both Yes Yes N/A 

#28 Li, J., Sun, L., Yan, Q., Li, Z., Srisa-an, W., & Ye, H. (2018). 

Significant permission identification for machine learning 

based Android malware detection. IEEE Transactions on 

Industrial Informatics, 14(7), 3216–3225. 

https://doi.org/10.1109/TII.2017.2789219 

Yes Both Yes Yes Yes 

#29 Liang, S., & Du, X. (2014). Permission-combination-based 

scheme for Android mobile malware detection. In IEEE 

International Conference on Communications (ICC) (pp. 

2301–2306). Sydney, NSW, Australia: IEEE. 

https://doi.org/10.1109/ICC.2014.6883666 

Yes N/A Yes N/A Yes 

#30 Liu, X., & Liu, J. (2014). A two-layered permission-based 

Android malware detection scheme. In 2nd International 

Conference on Mobile Cloud Computing, Services, and 

Engineering (MobileCloud) (pp. 142–148). Oxford, UK: 

IEEE. https://doi.org/10.1109/MobileCloud.2014.22 

Yes Metrics Yes Yes Yes 

#31 Lu, Y., Zulie, P., Jingju, L., & Yi, S. (2013). Android 

malware detection technology based on improved Bayesian 

classification. In The 3rd International Conference on 

Instrumentation, Measurement, Computer, Communication 

and Control (IMCCC) (pp. 1338–1341). Shenyang: IEEE. 

https://doi.org/10.1109/IMCCC.2013.297 

Yes N/A Yes Yes Yes 

#32 Mahindru, A., & Singh, P. (2017). Dynamic permissions-

based Android malware detection using machine learning 

techniques. In 10th Innovations in Software Engineering 

Conference (ISEC) (pp. 202–210). Jaipur, India: ACM. 

https://doi.org/10.1145/3021460.3021485 

Yes Both Yes N/A Yes 

#33 Martinelli, F., Mercaldo, F., & Saracino, A. (2017). 

BRIDEMAID: An hybrid tool for accurate detection of 

Android malware. In Asia Conference on Computer and 

Communications Security (ASIA CCS) (pp. 899–901). Abu 

Dhabi, United Arab Emirates: ACM. 

https://doi.org/10.1145/3052973.3055156 

Yes N/A Yes Yes N/A 

#34 Matsudo, T., Kodama, E., Wang, J., & Takata, T. (2012). A 

proposal of security advisory system at the time of the 

installation of applications on Android OS. In International 

Conference on Network-Based Information Systems (pp. 

261–267). Melbourne, VIC: IEEE. 

https://doi.org/10.1109/NBiS.2012.110 

Yes N/A Yes N/A Yes 

#35 Meng, G., Xue, Y., Xu, Z., Liu, Y., Zhang, J., & Narayanan, 

A. (2016). Semantic modelling of Android malware for 

effective malware comprehension, detection, and 

classification. In 25th International Symposium on Software 

Testing and Analysis (ISSTA) (pp. 306–317). Saarbrücken, 

Germany: ACM. https://doi.org/10.1145/2931037.2931043 

Yes Others Yes N/A Yes 

#36 Milosevic, N., Dehghantanha, A., & Choo, K.-K. R. (2017). 

Machine learning aided Android malware classification. 

Computers and Electrical Engineering, 61, 266–274. 

https://doi.org/10.1016/j.compeleceng.2017.02.013 

Yes Both Yes N/A Yes 
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Table F.1 Surveyed binary classification studies (continued) 

Study References I II III IV V 

#37 Muttik, I., Yerima, S. Y., & Sezer, S. (2015). High accuracy 

Android malware detection using ensemble learning. IET 

Information Security, 9(6), 313–320. 

https://doi.org/10.1049/iet-ifs.2014.0099 

Yes Metrics Yes Yes Yes 

#38 Narayanan, A., Chandramohan, M., Chen, L., & Liu, Y. 

(2017). Context-aware, adaptive, and scalable Android 

malware detection through online learning. IEEE 

Transactions on Emerging Topics in Computational 

Intelligence, 1(3), 157–175. 

https://doi.org/10.1109/TETCI.2017.2699220 

Yes Metrics Yes Yes Yes 

#39 Narudin, F. A., Feizollah, A., Anuar, N. B., & Gani, A. 

(2016). Evaluation of machine learning classifiers for mobile 

malware detection. Soft Computing, 20(1), 343–357. 

https://doi.org/10.1007/s00500-014-1511-6 

Yes Both Yes N/A N/A 

#40 Pan, J. S., Yang, C. N., & Lin, C. C. (2013). Performance 

evaluation on permission-based detection for Android 

malware. Advances in Intelligent Systems & Applications, 

Smart Innovation, Systems and Technologies (SIST), 21, 

111–120. https://doi.org/10.1007/978-3-642-35473-1 

Yes Metrics Yes N/A Yes 

#41 Peiravian, N., & Zhu, X. (2013). Machine learning for 

Android malware detection using permission and API calls. 

In IEEE 25th International Conference on Tools with 

Artificial Intelligence (ICTAI) (pp. 300–305). Herndon, VA: 

IEEE. https://doi.org/10.1109/ICTAI.2013.53 

Yes N/A Yes Yes Yes 

#42 Rahman, M. (2013). DroidMLN: A Markov logic network 

approach to detect android malware. In Proceedings - 2013 

12th International Conference on Machine Learning and 

Applications, ICMLA 2013 (Vol. 2, pp. 166–169). 

https://doi.org/10.1109/ICMLA.2013.184 

Yes N/A Yes N/A N/A 

#43 Rahman, M., Rahman, M., Carbunar, B., & Chau, D. H. 

(2017). Search rank fraud and malware detection in Google 

Play. IEEE Transactions on Knowledge and Data 

Engineering, 29(6), 1329–1342. 

https://doi.org/10.1109/TKDE.2017.2667658 

Yes N/A Yes Yes Yes 

#44 Sahs, J., & Khan, L. (2012). A machine learning approach to 

Android malware detection. In European Intelligence and 

Security Informatics Conference (EISIC) (pp. 141–147). 

Odense: IEEE. https://doi.org/10.1109/EISIC.2012.34 

Yes Measures Yes N/A Yes 

#45 Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., 

Bringas, P. G., & Alvarez, G. (2013). PUMA: Permission 

usage to detect malware in Android. In International Joint 

Conference CISIS-ICEUTE-SOCO Special Sessions (pp. 

289–298). Ostrava, Czech Republic: Springer Berlin 

Heidelberg. 

Yes Others Yes Yes Yes 

#46 Sanz, B., Santos, I., Laorden, C., Ugarte-Pedrero, X., Nieves, 

J., Bringas, P. G., & Marañón, G. Á. (2013). MAMA: 

Manifest analysis for malware detection in Android. 

Cybernetics and Systems, 44(6–7), 469–488. 

https://doi.org/10.1080/01969722.2013.803889 

Yes Both Yes Yes Yes 

#47 Sen, S., Aysan, A. I., & Clark, J. A. (2018). SAFEDroid: 

Using structural features for detecting Android malwares. In 

Security and Privacy in Communication Networks 

(SecureComm 2017) - Workshop on Security and Privacy on 

Internet of Things (SePrIoT) (pp. 255–270). Niagara Falls, 

Canada: Springer International Publishing. 

https://doi.org/10.1007/978-3-319-78816-6_18 

Yes Metrics Yes Yes Yes 

#48 Sheen, S., Anitha, R., & Natarajan, V. (2015). Android based 

malware detection using a multifeature collaborative decision 

fusion approach. Neurocomputing, 151(P2), 905–912. 

https://doi.org/10.1016/j.neucom.2014.10.004 

Yes Measures Yes N/A Yes 
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Table F.1 Surveyed binary classification studies (continued) 

Study References I II III IV V 

#49 Shen, F., Vecchio, J. Del, Mohaisen, A., Ko, S. Y., & Ziarek, 

L. (2017). Android malware detection using complex-flows. 

In 37th International Conference on Distributed Computing 

Systems (ICDCS) (pp. 2430–2437). Atlanta, GA, USA: IEEE. 

https://doi.org/10.1109/ICDCS.2017.190 

Yes Metrics Yes Yes Yes 

#50 Shen, Z., Hsu, C.-W., & Shieh, S. W. (2017). Security 

semantics modeling with progressive distillation. IEEE 

Transactions on Mobile Computing, 16(11), 3196–3208. 

https://doi.org/10.1109/TMC.2017.2690425 

Yes N/A Yes N/A N/A 

#51 Suarez-Tangil, G., Dash, S. K., Holloway, R., Ahmadi, M., 

Giacinto, G., Kinder, J., & Cavallaro, L. (2017). DroidSieve: 

Fast and accurate classification of obfuscated Android 

malware. In 7th ACM Conference on Data and Application 

Security and Privacy (CODASPY) (pp. 309–320). Scottsdale, 

Arizona: ACM. https://doi.org/10.1145/3029806.3029825 

Yes Metrics Yes Yes Yes 

#52 Talha, K. A., Alper, D. I., & Aydin, C. (2015). APK Auditor: 

Permission-based Android malware detection system. Digital 

Investigation, 13, 1–14. 

https://doi.org/10.1016/j.diin.2015.01.001 

Yes N/A Yes Yes Yes 

#53 Tao, G., Zheng, Z., Guo, Z., & Lyu, M. R. (2017). MalPat: 

Mining patterns of malicious and benign Android apps via 

permission-related APIs. IEEE Transactions on Reliability, 

67(1), 355–369. https://doi.org/10.1109/TR.2017.2778147 

Yes Both Yes N/A Yes 

#54 Tian, K., Yao, D., Ryder, B. G., & Tan, G. (2016). Analysis 

of code heterogeneity for high-precision classification of 

repackaged malware. In IEEE Symposium on Security and 

Privacy Workshops (SPW) (pp. 262–271). San Jose, CA, 

USA: IEEE. https://doi.org/10.1109/SPW.2016.33 

Yes N/A Yes N/A N/A 

#55 Tong, F., & Yan, Z. (2017). A hybrid approach of mobile 

malware detection in Android. Journal of Parallel and 

Distributed Computing, 103, 22–31. 

https://doi.org/10.1016/j.jpdc.2016.10.012 

Yes N/A Yes N/A N/A 

#56 Wang, S., Yan, Q., Chen, Z., Yang, B., Zhao, C., & Conti, 

M. (2018). Detecting Android malware leveraging text 

semantics of network flows. IEEE Transactions on 

Information Forensics and Security, 13(5), 1096–1109. 

https://doi.org/10.1109/TIFS.2017.2771228 

Yes Both Yes Yes N/A 

#57 Wang, W., Li, Y., Wang, X., Liu, J., & Zhang, X. (2018). 

Detecting Android malicious apps and categorizing benign 

apps with ensemble of classifiers. Future Generation 

Computer Systems, 78, 987–994. 

https://doi.org/10.1016/j.future.2017.01.019 

Yes Measures Yes Yes Yes 

#58 Wang, W., Wang, X., Feng, D., Liu, J., Han, Z., & Zhang, X. 

(2014). Exploring permission-induced risk in Android 

applications for malicious application detection. IEEE 

Transactions on Information Forensics and Security, 9(11), 

1828–1842. https://doi.org/10.1109/TIFS.2014.2353996 

Yes Measures Yes N/A Yes 

#59 Wei, T.-E., Mao, C.-H., Jeng, A. B., Lee, H.-M., Wang, H. 

T., & Wu, D.-J. (2012). Android malware detection via a 

latent network behavior analysis. In Proc. of the 11th IEEE 

Int. Conference on Trust, Security and Privacy in Computing 

and Communications, TrustCom-2012 - 11th IEEE Int. 

Conference on Ubiquitous Computing and Communications, 

IUCC-2012 (pp. 1251–1258). 

https://doi.org/10.1109/TrustCom.2012.91 

Yes Metrics Yes N/A N/A 

#60 Wu, D.-J., Mao, C.-H., Wei, T.-E., Lee, H.-M., & Wu, K.-P. 

(2012). DroidMat: Android malware detection through 

manifest and API calls tracing. In The 7th Asia Joint 

Conference on Information Security (Asia JCIS) (pp. 62–69). 

Tokyo: IEEE. https://doi.org/10.1109/AsiaJCIS.2012.18 

Yes Metrics Yes N/A Yes 
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Table F.1 Surveyed binary classification studies (continued) 

Study References I II III IV V 

#61 Wu, W.-C., & Hung, S.-H. (2014). DroidDolphin: A dynamic 

Android malware detection framework using big data and 

machine learning. In Conference on Research in Adaptive 

and Convergent Systems (RACS) (pp. 247–252). Towson, 

Maryland: ACM. https://doi.org/10.1145/2663761.2664223 

Yes Both Yes N/A N/A 

#62 Xiao, X., Wang, Z., Li, Q., Xia, S., & Jiang, Y. (2017). Back-

propagation neural network on Markov chains from system 

call sequences: A new approach for detecting Android 

malware with system call sequences. IET Information 

Security, 11(1), 8–15. https://doi.org/10.1049/iet-

ifs.2015.0211 

Yes Others Yes N/A Yes 

#63 Xu, K., Li, Y., & Deng, R. H. (2016). ICCDetector: ICC-

based malware detection on Android. IEEE Transactions on 

Information Forensics and Security, 11(6), 1252–1264. 

https://doi.org/10.1109/TIFS.2016.2523912 

Yes Metrics Yes Yes Yes 

#64 Yang, C., Xu, Z., Gu, G., Yegneswaran, V., & Porras, P. A. 

(2014). DroidMiner: Automated mining and characterization 

of fine-grained malicious behaviors in Android applications. 

In European Symposium on Research in Computer Security 

(ESORICS) (pp. 163–182). Wrocław, Poland: Springer. 

https://doi.org/10.1007/978-3-319-11203-9_10 

Yes Metrics Yes N/A Yes 

#65 Yerima, S. Y., Sezer, S., & McWilliams, G. (2014). Analysis 

of Bayesian classification-based approaches for Android 

malware detection. IET Information Security, 8(1), 25–36. 

https://doi.org/10.1049/iet-ifs.2013.0095 

Yes Both Yes Yes Yes 

#66 Yerima, S. Y., Sezer, S., & Muttik, I. (2014). Android 

malware detection using parallel machine learning classifiers. 

In The 8th International Conference on Next Generation 

Mobile Apps, Services and Technologies (NGMAST) (pp. 37–

42). Oxford, United Kingdom: IEEE. 

https://doi.org/10.1109/NGMAST.2014.23 

Yes Metrics Yes Yes Yes 

#67 Yerima, S. Y., Sezer, S., McWilliams, G., & Muttik, I. 

(2013). A new Android malware detection approach using 

Bayesian classification. In 27th International Conference on 

Advanced Information Networking and Applications (AINA) 

(pp. 121–128). Barcelona, Spain: IEEE. 

https://doi.org/10.1109/AINA.2013.88 

Yes Both Yes Yes Yes 

#68 Yuan, Z., Lu, Y., & Xue, Y. (2016). Droiddetector: Android 

malware characterization and detection using deep learning. 

Tsinghua Science and Technology, 21(1), 114–123. 

https://doi.org/10.1109/TST.2016.7399288 

Yes N/A Yes Yes N/A 

#69 Yuan, Z., Lu, Y., Wang, Z., & Xue, Y. (2014). Droid-Sec: 

Deep learning in Android malware detection. In ACM 

Conference on SIGCOMM (pp. 371–372). Chicago, Illinois, 

USA: ACM. https://doi.org/10.1145/2619239.2631434 

Yes Others Yes Yes N/A 

#70 Abawajy, J., & Kelarev, A. (2017). Iterative classifier fusion 

system for the detection of Android malware. IEEE 

Transactions on Big Data, 5(3), 1–1. 

https://doi.org/10.1109/TBDATA.2017.2676100 

N/A Both Yes N/A N/A 

#71 Azmoodeh, A., Dehghantanha, A., & Choo, K.-K. R. (2018). 

Robust malware detection for Internet Of (Battlefield) Things 

devices using deep eigenspace learning. IEEE Transactions 

on Sustainable Computing, 3782(c), 1–1. 

https://doi.org/10.1109/TSUSC.2018.2809665 

N/A Metrics Yes N/A N/A 

#72 Dini, G., Martinelli, F., Matteucci, I., Petrocchi, M., 

Saracino, A., & Sgandurra, D. (2016). Risk analysis of 

Android applications: A user-centric solution. Future 

Generation Computer Systems, 80, 505–518. 

https://doi.org/10.1016/j.future.2016.05.035 

N/A N/A Yes N/A N/A 



 124 

Table F.1 Surveyed binary classification studies (continued) 
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#73 Grace, M., Zhou, Y., Zhang, Q., Zou, S., & Jiang, X. (2012). 

RiskRanker: Scalable and accurate zero-day Android 

malware detection categories and subject descriptors. In 

International Conference on Mobile Systems, Applications, 

and Services (MobiSys) (pp. 281–294). Low Wood Bay, 

Lake District: ACM. 

https://doi.org/10.1145/2307636.2307663 

N/A Others Yes N/A N/A 

#74 Peng, H., Gates, C., Sarma, B., Li, N., Qi, Y., Potharaju, R., 

… Molloy, I. (2012). Using probabilistic generative models 

for ranking risks of Android apps. In 19th Conference on 

Computer and Communications Security (CCS) (pp. 241–

252). New York, New York, USA: ACM. 

https://doi.org/10.1145/2382196.2382224 

N/A N/A Yes N/A N/A 

#75 Sarma, B., Li, N., Gates, C., Potharaju, R., Nita-Rotaru, C., 

& Molloy, I. (2012). Android permissions: A perspective 

combining risks and benefits. In 17th Symposium on Access 

Control Models and Technologies (SACMAT) (pp. 13–22). 

New York, New York, USA: ACM. 

https://doi.org/10.1145/2295136.2295141 

N/A N/A Yes N/A N/A 

#76 Schmidt, A., Bye, R., Schmidt, H., Clausen, J., & Kiraz, O. 

(2009). Static analysis of executables for collaborative 

malware detection on Android. In IEEE International 

Conference on Communications (pp. 1–5). Dresden, 

Germany: IEEE. https://doi.org/10.1109/ICC.2009.5199486 

N/A Others Yes N/A N/A 

#77 Sun, M., Li, X., Lui, J., & Ma, R. (2017). MONET: A user-

oriented behavior-based malware variants detection system 

for Android. IEEE Transactions on Information Forensics 

and Security, 12(5), 1103–1112. 

https://doi.org/10.1109/TIFS.2016.2646641 

N/A N/A Yes N/A N/A 

#78 Zhang, M., Duan, Y., Yin, H., & Zhao, Z. (2014). Semantics-

aware Android malware classification using weighted 

contextual API dependency graphs. In ACM SIGSAC 

Conference on Computer and Communications Security 

(CCS) (pp. 1105–1116). Scottsdale, Arizona, USA: ACM. 

https://doi.org/10.1145/2660267.2660359 

N/A N/A Yes N/A N/A 
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SUMMARY OF BENCHMETRIC RESULTS 

Table G.1 shows the summary of BenchMetric results per binary-classification performance 

metrics according to the criteria in three stages. 

 
Table G.1 Summary of BenchMetric results 

 

Robustness 

Rank 

 Stage-1 Stage-2 Stage-3 

Metrics 1.1 1.2 1.3 2.1 2.2 2.3 2.4 2.5 2.6 2.7 2.8 2.9 2.10 2.11 3.1 3.2 3.3 3.4 3.5 3.6 3.7 

1 MCC                      

2 CK                      

3 BACC                      

4 INFORM                      

5 MARK                      

6 G                      

7 ACC                      

8 F1                      

9 TNR                      

10 TPR                      

11 NPV                      

12 PPV                      

13 nMI                      

Robustness degree  -1  −1
2⁄   −1

4⁄    (White) Robust 

 

 

 

 

APPENDIX G 
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Table G.2 Summary of robustness issues in metrics (in alphabetic order) 

Metric 

(Rank) Robustness issues 

ACC (7th) NaN in some extreme cases, Missing class or outcome coverage, Insensitive to one or 

more base measures, Low granular output coverage in metric-spaces, Less smooth metric-

spaces, Less consistent with other metrics 

BACC 

(3rd) 

(+) Same mean, median, and mode in metric-space, Missing class or outcome coverage, 

Insensitive to one or more base measures, Has monotonicity violations, Completely 

consistent with INFORM 

CK (2nd) NaN in some extreme cases, Unsymmetrical metric-space, Imbalanced or low correlations 

with individual base measures, Has minor monotonicity violations, Less consistent with 

other metrics 

F1 (8th) NaN in some extreme cases, Unsymmetrical metric-space, Accumulation at zero, 

Insensitive to one or more base measures, Inconsistency in swapping base measures, 

Imbalanced or low correlations with individual base measures, Correlated with PREV, 

Low granular output coverage in metric-spaces, Less consistent with other metrics 

G (6ht) Unsymmetrical metric-space, Accumulation at zero, Missing class or outcome coverage, 

Insensitive to one or more base measures, Imbalanced or low correlations with individual 

base measures, Less consistent with other metrics, The least discriminating metric 

INFORM 

(4th) 

(+) Same mean, median, and mode in metric-space, Missing class or outcome coverage, 

Insensitive to one or more base measures, Has monotonicity violations, Completely 

consistent with BACC 

MARK 

(5th) 

(+) Same mean, median, and mode in metric-space, Missing class or outcome coverage, 

Insensitive to one or more base measures, Has monotonicity violations, Less consistent 

with other metrics 

MCC (1st) NaN in some extreme cases 

nMI 

(13th) 

High values when FP and FN are higher than TP and TN, Unsymmetrical metric-space, 

Inconsistency in swapping base measures, Highly right-skewed metric-space, The lowest 

correlation with individual base measures, Less smooth metric-spaces, Has considerable 

monotonicity violations, The least consistent with other metrics, The most discriminating 

metric 

NPV 

(11th) 

Missing class or outcome coverage, Single-class-only (P-only or N-only), Insensitive to 

one or more base measures, Imbalanced or low correlations with individual base measures, 

Correlated with PREV, Low granular output coverage in metric-spaces, Less consistent 

with other metrics 

PPV 

(12th) 

Missing class or outcome coverage, Single-class-only (P-only or N-only), Insensitive to 

one or more base measures, Imbalanced or low correlations with individual base measures, 

Correlated with PREV, Low granular output coverage in metric-spaces, Less consistent 

with other metrics 

TNR (9th) Missing class or outcome coverage, Single-class-only (P-only or N-only), Insensitive to 

one or more base measures, Imbalanced or low correlations with individual base measures, 

Low granular output coverage in metric-spaces, Less consistent with other metrics 

TPR 

(10th) 

Missing class or outcome coverage, Single-class-only (P-only or N-only), Insensitive to 

one or more base measures, Imbalanced or low correlations with individual base measures, 

Low granular output coverage in metric-spaces, Less consistent with other metrics 
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CASE STUDY 2: REPORTING BIAS IN CLASSIFICATION 

PERFORMANCE REPORTING 

In the last decade, few studies have been conducted to criticize performance evaluation 

approaches in different domains. For example, Shepperd points out that ML researchers in 

software engineering especially concentrate on repeating experiments on new data until 

getting a better result for their classifier and publishing them (Shepperd, 2013, p. 9). His 

extensive survey reveals that classifiers actually perform poorly if their performances are 

expressed by MCC: 

• MCC is even negative for 4.3% of the classifiers and MCC < 0.1 for 25%. 

• Only, three percent of the publications reviewed had a performance greater than 0.7 

when the reported performances were expressed with MCC (Shepperd, 2013, p. 22). 

• The classifiers in two published studies have −0.50 and −0.47 MCC performances 

and one study reporting its performance with TPR, PPV, and ACC metrics as 0.68, 

0.62, 0.64, respectively has actually 0.29 MCC. 

From a general research perspective, it is possible to encounter binary classification studies 

that did not report the confusion matrix. Thus, we cannot know their performances in terms 

of other metrics. For example, what if we could re-evaluate existing classification studies in 
terms of MCC as the most robust metric determined in BenchMetric. Specifically, preferring 

a metric among the possible ones may cause confirmation and/or publication biases in the 

literature. 

Note that this chapter makes contributions addressing the following research questions: 

• What are the problems in performance evaluation reporting? (RQ1) 

• How to enhance comprehending, using, representing, reporting, learning, and 

teaching binary-classification performance instruments? (RQ3) 

• What should be reported for expressing classification performance? (RQ4). 

APPENDIX H 
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Equations Revealing Confusion Matrix 

This thesis introduces the equations to reveal confusion matrix or base measures with given 

performance instruments. Having base measures allows calculating any performance 

instrument including the ones that are not reported in the original study. Note that the 

equations that are given below and some additional facilities in a developed R script 

(TasKarMissing.R) are provided online at https://github.com/gurol/TasKar. 

The followings list 18 equations to calculate TP, FP, FN, and TN for 8 different 

combinations of given measures and metrics. To the best of my knowledge, such equations 

are provided for the first time in the literature. Most of the combinations address the cases 

found in articles reporting classification performance as reviewed in the case study domain 

(Android mobile malware detection) summarized in Table 2.2. 

I) Given P, N, TPR, and FPR 

𝑇𝑃 = 𝑇𝑃𝑅. 𝑃 (H.1) 

𝐹𝑃 = 𝐹𝑃𝑅.𝑁 (H.2) 

𝐹𝑁 = 𝑃 − 𝑇𝑃 (H.3) 

𝑇𝑁 = 𝑁 − 𝐹𝑃 (H.4) 

 

II) Given P, N, TPR, and PPV 

𝑇𝑃 = 𝑇𝑃𝑅. 𝑃 (H.5) 

𝐹𝑃 = 𝑇𝑃 (
1

𝑃𝑃𝑉
− 1) (H.6) 

FN via (H.3) and TN via (H.4) 

 

III) Given P, N, TPR, and ACC 

TP via (H.5) and FN via (H.7) 

𝑇𝑁 = 𝐴𝐶𝐶(𝑃 +𝑁) − 𝑇𝑃 (H.7) 

𝐹𝑃 = 𝑁 − 𝑇𝑁 (H.8) 
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IV) Given P, N, ACC, and FPR 

𝐹𝑃 = 𝐹𝑃𝑅.𝑁 (H.9) 

TN via (H.4) 

𝑇𝑃 = 𝐴𝐶𝐶(𝑃 +𝑁) − 𝑇𝑁 (H.10) 

FN via (H.3) 

 

V) Given P, N, ACC, and F1 

𝑇𝑃 = (
(𝑃 +𝑁). (1 − 𝐴𝐶𝐶). 𝐹1

2. (1 − 𝐹1)
) (H.11) 

TN via (H.7), FN via (H.3), and FP via (H.8) 

 

VI) Given P, N, BIAS, and TPR 

TP via (H.5) 

𝐹𝑃 = 𝐵𝐼𝐴𝑆(𝑃 + 𝑁) − 𝑇𝑃 (H.12) 

FN via (H.3) and TN via (H.4) 

 

VII) Given Sn, FPR, FNR, and ACC 

𝐹𝑁 = 𝐹𝑁𝑅.
𝑆𝑛. (1 − 𝐴𝐶𝐶 − 𝐹𝑃𝑅)

2. 𝐹𝑃𝑅
 (H.13) 

𝐹𝑃 = 𝐹𝑃𝑅. (𝑆𝑛 −
𝐹𝑁

𝐹𝑁𝑅
) (H.14) 

𝑃 = 𝐹𝑁𝑅. 𝐹𝑁 (H.15) 

𝑁 = 𝐹𝑃𝑅. 𝐹𝑃 (H.16) 

𝑇𝑃 = 𝑃 − 𝐹𝑁 (H.17) 

TN via (H.4) 

VIII) Given P, TPR, FPR, and ACC 

𝑁 =
𝑃. (𝑇𝑃𝑅 − 𝐴𝐶𝐶)

𝐴𝐶𝐶 + 𝐹𝑃𝑅 − 1
 (H.18) 

Apply the equations in (I) or (III). 



 130 

The calculated base measures are fractional and converted into integers by ensuring 

TP + FN is equal to given P and TN + FP is equal to given N value. Rounding the 

calculated base measures can cause under or over totals in classes. For example, for given 

P = 25, the calculated TP = 12.25 and FN = 12.39 yield TP + FN = 12+12 = 24 < P = 25. 

Therefore, I designed and developed a procedure to handle different cases. Refer to the 

documentation in TasKarMissing.R script for more information. 

Using provided script, researchers can easily test the classification studies in a domain they 

study and reveal the confusion matrix of the studies to analyze further (e.g., checking 

whether a publication bias and/or confirmation bias exist). 

 

Table H.1 Classification report information for an example of classification studies to reveal 

confusion matrix 

Study Config N P TP FP FN TN TPR TNR FPR FNR ACC PPV NPV F1 

s01 1 261 180     0.956 0.621       

s01 2 261 180     0.467 0.13       

s02 1 500 500     0.8    0.75    

 

“Study” column represents the individual studies to be surveyed that are typically related to 

an article. “Config” column is the order number determining the specific configuration of a 

classifier. For example, in a single study (e.g., “s01”), one configuration (Config = 1) 

belongs to a decision tree classifier whereas the other configuration (Config = 2) belongs to a 

support vector machines classifier. “N” and “P” depicts the number of negative and positive 

class samples. Other columns specify any measure or metric reported by the studies. In both 

of the configurations of the first study, for example, only TPR and TNR were reported 

whereas the second study reported TPR and ACC. 

The following is the code snippet to reveal the confusion matrix in R by sourcing the 

provided script (TasKarMissing.R). 

# Copy the values in the spreadsheet provided like in Table H.1. 
survey <- rclip() 

# Set problematic metrics as NA 

#   (for example, the ones cause exceptions in initParsedMetrics) 

#   survey$F1[44] <- NA 

# Reveal confusion matrixes 

parsed_base_metrics <- revealConfusionMatrixes(survey) 

## Or reveal confusion matrixes by excluding mismatching Sns 

parsed_base_metrics <- revealConfusionMatrixes(survey, FALSE) 

 

Results 

The equations introduced in this chapter are tested in a case study by running the provided 

API. The case study domain is Android mobile malware detection as surveyed in 

Section 2.3. The base measures of 43 surveyed studies listed in Appendix F. Table H.2 lists 

the highly varied distributions of individual and combination of metrics reported in 43 

studies. 
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Table H.2 The distribution of metrics/combinations of metrics reported in 43 binary classification 

studies surveyed 

Individual Metrics 23 Different Metric Combinations 

TPR 84% TPR, PPV, F1 14% TPR, PPV 5% ACC, F1 2% 

FPR 65% TPR, FPR 14% TPR, PPV, F1, TNR, NPV 2% ACC, TNR 2% 

ACC 47% TPR, FPR, ACC 9% TPR, FPR, ACC, FNR 2% FPR, ACC 2% 

PPV 42% TPR, FPR, ACC, FNR, TNR 7% TPR, FPR, ACC, PPV 2% FPR, FNR 2% 

F1 33% TPR, FPR, ACC, PPV, FNR, TNR 5% TPR, FPR, FNR, TNR 2% TPR, ACC 2% 

FNR 23% TPR, FPR, ACC, PPV, F1 5% TPR, ACC, PPV 2% TPR, TNR 2% 

TNR 21% TPR, FPR, PPV, F1 5% TPR, FPR, F1 2% F1 2% 

NPV 2% FPR, ACC, FNR 5% TPR, FPR, PPV 2%   

 

The following steps are conducted in this case study: 

• Prepare the classification report information list like Table H.1 

• Using the provided API on the report information list 

o Reveal the base measures 

o Re-calculate unreported performance metrics based on the base measures 

• Extract the maximum value of the metrics originally reported per surveyed study 

(Mmax) 

• Compare the re-calculated MCC' (normalized MCC in [0, 1] range) as a robust 

metric and the maximum reported metric as the published metric. 

Figure H.1 shows the results of the case study. The prepared graphic shows the difference 

between Mmax and MCC'. The deltas (Mmax – MCC' ) are shown in Y-axis and the studies are 

sorted according to deltas in decreasing order. 

The case study uncovers a critical issue in performance reporting. The findings suggest that 

some studies might report classification performances in terms of the metrics with amplified 

values. Among the studies, 23% reports a metric that is more than MCC above 0.05, which is 

a significant difference in classifications targeting top performance in [0.95, 1.00] range. The 

maximum difference (delta) is unexpectedly 0.37 following 0.26, 0.13, 0.12, and 0.09 in all 

the studies. 

The researchers might have not known that MCC is the most robust metric and/or followed 

the conventions in choosing a performance metric. However, this could also be interpreted as 

a potential sign of reporting biases such as publication bias or confirmation bias that should 

be avoided in any case. 

Publication bias is a tendency of the researchers to preferentially include in their study 

reports findings conforming to their preconceived notions, or outcomes preferred by the 

other parties around academic publication process such as journals, reviewers, and editors 

(Porta, 2014, p. 230). Authors who may feel the need to achieve high performance to be able 

to publish their studies could use metrics with higher outcomes. 
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Figure H.1 Performance exaggeration via non-robust metrics reporting demonstrated on the surveyed 

43 studies. Differences between the maximum of the metrics reported (Mmax, e.g., TPR among TPR 

and ACC) and revealed MCC' (normalized MCC). 

 

Confirmation bias may occur when evidence (e.g., non-robust performance metrics) that 

supports one’s preconceptions is evaluated more favorably than evidence that challenges 

these convictions (e.g., robust metrics) (Porta, 2014, p. 54). The high expectations for an 

experiment can affect many phases including interpreting and reporting the results (van 

Wilgenburg & Elgar, 2013, p. 1). 

This thesis provides a convenient method to investigate the presence of confirmation bias in 

ML-based classification studies in a broad range of application domains. It also has 

demonstrated that mobile malware detection studies seem to be prone to confirmation biases. 

It is expected that this method will be applied in different domains to see whether such 

biases exist. 
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