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ABSTRACT

INVESTIGATION OF HAPTIC MANIPULATORS WITH LINEAR
EQUATIONS OF MOTION

Kizilbey, Aras
Master of Science, Mechanical Engineering
Supervisor: Prof. Dr. Resit Soylu

August 2019, 131 pages

In this thesis, linearization of the equations of motion of haptic interfaces and the

effects of such linearization on haptic applications are examined.

Three and six DOF configurations of the Phantom Premium™ 1.5 have been
selected as the haptic manipulators to be investigated. By utilizing the generic
computer code that has been developed for hybrid manipulators composed of
revolute and prismatic joints, the equations of motion for the aforementioned two

haptic manipulator types are derived in symbolic form.

Using the concept of Linearity Number (LN), linearization of the equations of
motion of the three and six DOF haptic interfaces have been attempted. It has been
already shown that there exist completely linear three DOF serial spatial
manipulators. Since Phantom Premium 1.5 contains a parallelogram mechanism,
however, it is a hybrid manipulator. To the author’s knowledge, the existence of
linear six DOF spatial manipulators, on the other hand, is uncertain. In this study,
complete linearization of the three DOF haptic interface is achieved. To the author’s
knowledge, such a result does not exist in the literature. Furthermore, non-existence

of fully linear equations of motion for the selected six DOF configuration is shown.



The effects of linearization on the performance of three DOF haptic interfaces are
investigated by considering two performance criteria of a haptic interaction which
are Stable Impedance Range and Transparency Bandwidth. Mathematical models
and specific simulation environments are formed for Stable Impedance Range and
Transparency Bandwidth simulations. The numerical values of these two
performance criteria are calculated via simulations. The relationship between the
aforementioned performance criteria and the degree of linearity of the haptic

manipulator is also investigated.

Keywords: Equations of Motion, Linearization, Linearity Number, Haptic Interface
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0z

DOGRUSAL HAREKET DENKLEMLERINE SAHIP HAPTIK
MANIPULATORLERIN INCELENMESI

Kizilbey, Aras
Yiksek Lisans, Makina Miihendisligi
Tez Danismant: Prof. Dr. Resit Soylu

Agustos 2019, 131 sayfa

Bu tezde, haptik manipilatérlerin hareket denklemlerinin lineer hale getirilmesi ve

bu lineerlestirmenin haptik uygulamalar {izerindeki etkisi incelenmistir.

Haptik manipulator olarak; U¢ ve alt1 serbestlik derecesine sahip iki ayri
konfiglrasyonu bulunan Phantom Premium™ 1.5 secilmistir. Bu konfigiirasyonlara
ait hareket denklemleri, doner ve kayar mafsallardan olusan hibrit manipulatorlerin
hareket denklemlerini tiiretmesi amaciyla gelistirilen standart bir bilgisayar kodu ile

sembolik formda elde edilmistir.

Lineerlik Endeksi (LE) kavrami kullanilarak, {i¢ ve alt1 serbestlik dereceli haptik
arayiizlerin  hareket denklemleri lineerlestirilmeye  ¢alisilmistir.  Onceki
aragtirmalarda, {i¢ serbestlik derecesine sahip seri uzaysal manipulatorlerin lineer
denklemlere sahip olabilecekleri gosterilmistir; fakat Phantom Premium 1.5 izerinde
paralelogram mekanizmasinin bulundugu hibrit bir manipiilatérdiir. Bunun yani sira;
yazarin yaptigl arastirmalar cercevesinde alti serbestlik derecesine sahip uzaysal
manipilatorleri lineerlestirmenin miimkiin olup olmadigmin tam olarak bilinmedigi
goriilmiistiir. Bu calismayla birlikte, ii¢ serbestlik dereceli uzaysal hibrit haptik

araylziin hareket denkemleri ilk kez (yazarin bilgisi dahilinde) lineer hale

vii



getirilmistir. Ek olarak secilen alt1 serbestlik dereceli manipiilatorii ise tamamen

lineerlestirmenin miimkiin olmadig1 ortaya konmustur.

Lineerizasyonun haptik araylizlerin performansina etkisini goérmek adma Ug¢
serbestlik derecesine sahip konfigurasyon ile Kararli Empedans Araligi1 ve Seffaflik
Bant Genisligi performans kriterleri i¢in simiilasyonlar icra edilmistir. Her iKi
performans kriteri i¢in ayr1 ayr1 matematiksel modeller ve similasyon ortamlari
tasarlanmis ve performans kriterlerinin numerik degerleri elde edilmistir.
Simulasyonlar sonucunda ilgili performans kriterleri ve lineerlik endeksi arasindaki

iligki detayl1 bir sekilde incelenmistir.

Anahtar Kelimeler: Hareket Denklemleri, Lineerizasyon, Lineerlik Endeksi, Haptik

Maniplator
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CHAPTER 1

INTRODUCTION

Robotic manipulators have inherently complex dynamics due to the interactions
between the joints, varying payloads and varying forces including Coriolis,
centripetal and gravitational. This non-linear dynamics leads to errors in high-speed
position response and significant performance degradation even at low-speed
operations. Hence, simplification of manipulator dynamics has great importance.

Many methods are proposed to obtain simpler equations of motion over the years.
Relocation of the actuator, a method suggested by Youcef-Taumi in [1], is one of the
approaches; however, accumulated error in clearances and non-rigid behavior of
transmissions, due to remote actuation, cause loss in precision during the operation
of a manipulator. Arakelian [2] tries to decouple manipulator dynamics by adding
either auxiliary links or gears. The first method excessively increases the
manipulator mass, the latter one, on the other hand, leads to shocks which have
negative effects such as noise and perturbation. Besides mechanical methods, there
are some control systems [3]-[7] that provide high-quality control of a non-linear
manipulator. However, these methods are complicated, costly and still need to be

improved for applications that require high speed and precision.

In addition to the aforementioned approaches, equations of motion can also be
linearized by redesigning the manipulator. In order to determine the design
parameters, different approaches can be adopted. Asada [8] uses the concept of
inertia ellipsoid which is only practical for two and three DOF manipulators. Yang
and Tzeng [9] attempt to linearize the manipulator dynamics by eliminating the
coefficient of non-linear terms in the kinetic and potential energy equations of the

manipulator. Similarly, Park and Cho [10] work on the energy equations and specify



conditions for simplifying non-linear dynamics. Youcef-Taumi and Asada [11] have
developed conditions for a decoupled and/or invariant inertia matrix. Soylu [12]
proposes the concept of Linearity Number (LN) that can be used for designing the
kinematic and inertial parameters of a manipulator in order to obtain fully linear, or

as linear as possible, equations of motion.

LN is a scalar index that shows the degree of linearity of a serial manipulator. It can
be used both for design and comparison purposes. Restrictions on the kinematic
and/or inertial parameters of the manipulator, which make it either completely or
partially linear, can be determined by LN. On the other hand, LN of previously
designed manipulators can also be calculated in order to compare the linearities of
different manipulators. When a manipulator is completely linear, LN will be zero;

and it increases as the nonlinearity increases.

LN has several advantages compared to the other techniques. First of all, it can be
computed in closed form. Rather than defining the conditions for full linearity, the
optimization procedure can also be applied to non-linearizable manipulators and
manipulators with additional design restrictions. Linearization can be realized in a
restricted region, rather than the whole joint space, which provides better
information about the linearity of a certain task. A four DOF robot stated as non-

linearizable in [9] has been linearized by using LN [12].

It is known that linearized manipulators have positive effects on controller design,
but there is limited research about additional positive and negative effects of
linearization. Throughout this study, the effects of linearization on one of the popular

subjects of recent years, haptic displays, have been investigated.

A haptic display is a mechanical device that transfers kinesthetic information
(information about body pose and movement), or tactile stimuli on the surface of the
body to the user. A wide variety of devices that can be used as haptic display exist.
A haptic device can be either in the form of a serial manipulator or a parallel

manipulator. Phantom (Sensable), Omega (Force Dimension), HapticMaster (Moog



FCS), ARMin (ETH Zurich) and CyberGrasp (CyberGloveSystems) are some
examples of haptic devices.

A haptic interface that measures position and generates contact force (and/or their
time derivatives or spatial distribution) is defined as an impedance display.
Conversely, admittance displays measure force and transmit movement to the user.
These interfaces can be used both with the real environment for teleoperation
(remote operation) and the virtual environment. The virtual environment is a
computer-generated model of a physical world that can behave as impedance or
admittance. The interaction of haptic interface with the human and real/virtual

environment is summarized in Figure 1.1.

Teleoperation system

p \
| 5
. Slave > Real NI
system environmen

Control
of slave —>< >—\

system
A ‘ 777777777 , Virtual environment | »
| and slave system |
. J
/

Virtual reality

v
Ct;lmﬂ'.l of Collision  |_ Collision %/

aptic . A
apt rendering detection
interface

Figure 1.1. Haptic System Interaction Scheme [13]

In order to evaluate the performance of a haptic interface, several metrics are defined
in [14], [15]. Among those listed benchmark criteria, range of stable impedances and
force bandwidth that can be conveyed transparently become prominent since many
researchers mostly seek to increase the performance of them in their studies [16]—
[23].

Two main objectives of this thesis are listed below.



The first goal is to design the inertial parameters of chosen haptic interfaces in order
to have completely linear equations of motion. As a haptic device, Phantom
Premium™ 1.5 (formerly Sensable Phantom Premium 1.5) is examined due to its
reputation in the research area. This haptic device has two different variants which

possess three and six DOF.

In previous studies, linearization of a spatial serial manipulator having three DOF
has been realized; however, Phantom Premium 1.5 contains a special parallelogram
which renders it to be a hybrid structure. In addition to that, to the author’s
knowledge, complete linearization of a spatial six DOF manipulator has not been
achieved yet and the possibility of full linearization is not known.

The second objective of this study is to seek a correlation between linearity and
performance of a haptic interface. For this purpose, manipulators possessing
different linearity levels have been designed by using the concept of LN. Therefore,
these manipulators can be compared and a relationship, between linearization and
selected performance criteria (such as stable impedance range and transparency

bandwidth), can be investigated.
The outline of the thesis is given below.

In the second chapter, derivation procedure for the equations of motion of Phantom
Premium 1.5 is presented for the three and six DOF versions. At the beginning of the
chapter, the kinematic notation that is used is introduced. Then, the kinematic and
dynamic properties such as link lengths, orientations, masses, mass center positions,
moments and products of inertia definitions are explained for both variants. In the
next section, after the kinematic and dynamic analyses, the equations of motions are
derived in closed form. Dynamic analysis is performed by using the Lagrangian
Method. In the last section, the equations of motion of the three DOF Phantom
device that have been obtained are compared against the previously derived

equations of motion in literature.



In the third chapter, the optimization process that is used in order to linearize the
equations of motion is presented. In the first part, the concept of LN and its
calculation procedure are explained. In the second section, LN of three DOF haptic
interfaces is minimized by implementing both analytical and numerical methods.
While complete linearization of the three DOF manipulator containing a
parallelogram is realized via the analytical method, the numerical method is applied
to derive manipulators at different linearity levels (which are to be used in the
performance simulations). In the last section of the chapter, LN of a six DOF haptic
interface is minimized and the possibility of complete linearization is investigated.

In the fourth chapter, there exists two sections that are dedicated to two different
types of performance simulations of a three DOF haptic interface. In the first section
of the chapter, a mathematical model of the three DOF haptic interface, compensator
and virtual environment; and their Simulink® implementation for the stable
impedance range simulations are introduced. Then, the calculation methodology of
the stable impedance range of a haptic device is given. The assumptions and
simulation conditions are also described in this section. In the last part of the first
section, the results obtained from the simulations are presented and a correlation is
sought between the stable impedance range and LN. In the second section, the
transparency bandwidth simulations are discussed. A similar outline for the stable
impedance simulations is also followed for the transparency bandwidth calculations.
At the beginning of the section, the simulation model is described. Then, the
calculation methodology of the transparency bandwidth of a haptic device is given.
The adopted assumptions and conditions of the transparency bandwidth simulation
are explained as well. At the end of the section, the simulation results and the related

assessments are presented.

In the final chapter, conclusions regarding the linearization procedure of three and
six DOF haptic interfaces and the performance tests of the manipulators at different
linearity levels are presented. Furthermore, recommendations for future work are

provided.






CHAPTER 2

DERIVATION OF DYNAMIC EQUATIONS OF HAPTIC INTERFACES

In this chapter, the methodology that is used during the derivation of the equations of
motions of the haptic devices with three and six DOF configurations is presented. In
the first section of the chapter, the kinematic notation used in the derivation is
introduced. The kinematic and dynamic properties of the chosen manipulator
configurations are explained in Section 2.2. In Section 2.3, kinematic analysis is
performed (in order to obtain each link’s orientation, angular velocity, origin and
mass center position and velocity). In the last part of the chapter, Section 2.4, the
equations of motion are obtained by using Lagrange’s equations. The validity of the
obtained equations of motion is also checked in this section.

2.1. Kinematic Notation

In order to define the robotic manipulator geometry, body-fixed reference frames are
attached to each link. Although it is possible to locate these frames arbitrarily, a
convention has to be followed for consistency and efficient calculation. Denavit and
Hartenberg introduced a convention in order to standardize the selection of these
coordinate frames in 1955. Thereafter, many adaptations of this convention have
been suggested. Throughout this study, a common version, due to Richard P. Paul, is
used. The adapted convention is shown on three successive axes of the serial chain

robotic manipulator depicted in Figure 2.1.



Figure 2.1. Adapted Kinematic Convention

The kinematic convention can be summarized as below.

e Linkis arigid body member of the mechanical system.

e Single-axis joint is a one DOF kinematic element that provides relative
motion between links.

e L;represents link i.

e Ji represents joint i.

e O represents the origin of link i.

e Stationary base is link 0.

e The first moving link is link 1.

e Joint between link i and link i-1 is joint i.

. ﬁ’g) is the unit basis vector coincident with the axis of joint i+1.



. ﬁ’&i) is the unit basis vector along the common normal between the axis of

joints numbered with i and i+1.

o 0, is the angle between T~ and U\"measured about TS~ V. It is called the
rotation angle of link i with respect to link i-1.

o a; is the distance from T to G measured along . It is called the
effective length of link i.

o« is the angle between GO " and G{’measured about T{". It is called the
twist angle of joint i+1 with respect to joint i.

o s; is the distance from @'~ to u{"measured along T{™™. It is called the

offset between link i-1 and link i.

Besides the DH convention, notations used in order to define vectors, rotation
matrices, link-to-link transformation matrices and cross-product matrices are

presented below.

Firstly, a vector independent of any reference frame is denoted by V. If one needs to
express the vector v in a reference frame, unit basis vector notation specified in

equation (2.1) must be used (see Figure 2.2).

iy

Vz

Figure 2.2. The Unit Basis Vectors of Reference Frame |



V= v i + v, i + v, ul (2.1)

where

Vy : The x magnitude of v resolved in Reference Frame |

vy : The y magnitude of v resolved in Reference Frame |

v, : The z magnitude of Vv resolved in Reference Frame |

ﬁg) : The x component of the unit basis vector of Reference Frame |
ﬁgi) : The y component of the unit basis vector of Reference Frame |
ﬁg) : The z component of the unit basis vector of Reference Frame |

Secondly, the matrix representation of a vector is needed to be specified. While
vector ¥, resolved in Reference Frame 1, is simply denoted by v, for the unit basis
vectors (namely 07, G” and ©"), two different matrix notations are used with

respect to the resolved reference frame.

If the unit basis vector of Reference Frame | is resolved in the same reference frame,

its matrix representation is denoted by G/ =1 . Therefore, equation (2.1) is

obtained in matrix form as below.

VX
v = vty +vyl, +v,0; = [Vy] (2.2)
VZ

If the unit basis vector of Reference Frame | is resolved in another reference frame

(i.e., Reference Frame J), its matrix representation is denoted by (/D). Therefore,

equation (2.1) is obtained in the matrix form as below.
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o0 = Vxl_lgi/j) n Vyl_lgi/j) n vzﬁgm (2.3)

Thirdly, a rotation matrix, which represents rotations about the coordinate axes of a
reference frame, is introduced [24]. For instance, Reference Frame | and rotations
about its unit basis vectors are shown in Figure 2.3.

Figure 2.3. Rotations about Unit Basis Vectors

Rotation about ﬁ’gi), by an angle 6., can be expressed by the rotation matrix
1 0 0
’Rl(ﬂl) = eﬁlel = [0 COSGl _Sinell (24)
0 sinB; cos0,
Rotation about ﬁ’g), by an angle 6, can be expressed by the rotation matrix
cosB, 0 sinB,
R,(0,) = eU202 = [ 0 1 0 ] (2.5)
—sinB, 0 cosO,
Rotation about ﬁ’g), by an angle 65, can be expressed by the rotation matrix
- cosB; —sinB; 0
R;(0;) = e"% = |sin@;  cosB; 0 (2.6)
0 0 1

11



Furthermore, in serial manipulators, one must complete two successive rotations in

order to transform Reference Frame | to Reference Frame I+1. To achieve this task,

the first rotation must be along the HS‘D axis with a magnitude of 6; and the second

rotation must be along the ﬁgi) axis with a magnitude of a; (see Figure 2.1). Hence,
link-to-link transformation matrix, Ci*2 which transforms the reference frame
attached to link i to the reference frame attached to link i+1, is obtained by

combining two rotation matrices as given in equation (2.7) [24].

CatD = R, (0,)R, () = eWsiglie (2.7)

Lastly, the cross-product matrix is explained as follows.

The cross-product of two vectors is given in equation (2.8).

7=vxqg (2.8)

The matrix representation of equation (2.8), resolved in the Reference Frame I,

yields

70 = ggd (2.9)

where ¥ is, the cross-product matrix of ¥V, given by equation (2.10).

0 -v, Vy
O = v, 0 -vq (2.10)
—Vy o Vy 0

Note that the matrix form of a vector resolved in Reference Frame I (i.e., v() is

given by equation (2.2).
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2.2. Kinematic and Dynamic Properties of Haptic Interfaces

The haptic devices to be investigated are selected to be the three and six DOF
configurations of Phantom Premium 1.5. The six DOF configuration is constructed
by adding the three DOF model’s end-effector a gimbal that provides additional
position sensing and force-feedback at pitch, roll and yaw axes. Therefore, the first
three DOFs of the three and six DOF haptic manipulators are identical. Their

detailed kinematic and dynamic properties are explained in the following sections.
2.2.1. Three Degrees of Freedom Haptic Interface

The manipulator is composed of one fixed base, five moving links and five revolute
joints. In order to ease the actuation, a parallelogram mechanism is constructed by
adding link 2a and link 3a. Link orientations and numberings for the three DOF
configuration is presented in Figure 2.4 [25].

@—) Actuator-3
Joint-2
Actuator-2

|
’

@ > Link-3a

> Link-1

Link-2

Joint-3  |jnk-2a

|
Link-3 @

> Joint-1 &
/ Actuator-1
s Stationary

Base

Figure 2.4. Link Orientations and Numberings of the Three DOF Haptic Device
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Link lengths corresponding to each link are given in Table 2.1.

Table 2.1. Link Lengths of the Three DOF Haptic Device

Link Number Parameter Length [mm]
1 f1 300
2 4 215
3 43 170
2a £2a 215
3a {34 32.5

The reference frame assignments and the associated four DH parameters are

illustrated in Figure 2.5.

E“]

(©)

Figure 2.5. Reference Frames and DH Parameters of the Three DOF Haptic Device
a) Side View-1 b) Side View-2 c) Top View
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The four DH parameters for each link are given in Table 2.2. Note that 6; is the only

joint variable since the manipulator does not contain any prismatic joints.

Table 2.2. DH Parameters of the Three DOF Haptic Device

i a; o S; 0,
1 0 —T/2 1 0,
2 2 0 0 0,
3 0 —m/2 0 03

Besides the kinematic parameters, there are inertial parameters such as masses, mass
center positions, moments and products of inertias that affect the dynamics of the
manipulator. Although their values are to be determined via optimization, their
definitions will be presented at this point. As an example, detailed explanation is
given for link i in Table 2.3.

Table 2.3. Definition for the Inertial Properties

Link Property Explanation
m; Mass of link i
[ X, Y and Z components of the mass
i = I;Yi center position vector of link i (Defined
Zj

from the origin of Reference Frame
I-1.)

XX; —XY; —XZ;
XY, YY; -YZ
—XZ; XY, 77

Inertia tensor of link i (Defined in
Reference Frame | and calculated at
the center of gravity of link i.)

Cfi(i) —

2.2.2. Six Degrees of Freedom Haptic Interface

For the six DOF configuration, only the properties of the additional links are

explained since the kinematic and dynamic properties of the first three links are the

15



same. Orientations and numberings of the last three links are given in Figure 2.6
[26].

Yo

Actuator 4
Joint-4

Actuator 5
Joint-5

Joint-6
Actuator 6

Link-5
Link-6

Figure 2.6. Link Orientations and Numberings of the Six DOF Haptic Device

Additional link lengths are provided in Table 2.4.

Table 2.4. Link Lengths of the Six DOF Haptic Device

Link Number Parameter Length [mm]
4 44 0
5 ¥s 0
6 ¥s 30

Reference frame assignments and the four DH parameters for the last three links are

shown in Figure 2.7.
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u”

—=(5)
Uz

(© @

Figure 2.7. Reference Frames and DH Parameters of the Six DOF Haptic Device
a) Side View-1 b) Top View c) Side View-2 d) End Effector

Note that at the top view given in Figure 2.7 (b), ﬁg‘” and ﬁgS) seem as if they are on

the same plane although they are separated with the rotation of joint 5. Besides, the
neutral position of joint 5 is obtained by rotating it —mt/2 radians in the direction of

uy,

Four DH parameters for each of the added links are given in Table 2.5. Similar to the
first configuration, the added three joints are all revolute joints, which makes each s;

a constant (rather than variable) parameter.
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Table 2.5. DH Parameters of the Six DOF Haptic Device

i a; o S; 0,
4 0 /2 ?3 0,
5 0 —m/2 0 0 —m/2
6 0 0 s B¢

For the manipulator’s dynamic properties, one may refer to Table 2.3 in Section
2.2.1.

2.3. Kinematic Analysis

In order to obtain the Lagrange’s equations, the kinematic properties mentioned
below need to be calculated [27], [28].

e Link orientations
e Link angular velocities
e Position of link origins and mass centers

e Velocity of link origins and mass centers

2.3.1. Orientation of the Links

The transformation matrix that rotates a vector defined in a link frame to the Base

Frame can be calculated, for each link, as below.

Stationary Base

A [t 00
COY=1=f0 1 0 (2.11)
0 0 1
Link 1
CO1) — ol30; U0y (2.12)

18



Link 2

02 = g2 (2.13)

Link 3

C(0,3) — C(O,Z)(’j(zs) (2_14)
Link 2a

It has the same orientation with link 2.

Link 3a

It has the same orientation with link 3.

Link 4

G4 = §03)¢GBY (2.15)
Link 5

C05) = OO (2.16)
Link 6

C06) = ¢(05){(56) (2.17)

2.3.2. Angular Velocity of the Links

From Figure 2.8, it can be observed that link i rotates, with respect to link i-1, along

the T~ axis with a magnitude of 6;.
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Jiv1

Figure 2.8. Angular Velocity of Link i

So, the rotation rate of link i, with respect to link i-1, can be formulated as

Byjiog = O (2.18)

Recall that angular velocities can be combined as shown below.

®Wi/p = Wiji—1 + Wi—1/0 (2.19)

By inserting equation (2.18) into equation (2.19)

Bijo = Biogjo + U (2.20)
Matrix form of equation (2.20) in the Base Frame can be written as

—(0) _ =(0) A =(i—-1/0)
®j0 = W10 T 6l (2.21)

20



ﬁgi—uo)

Then, by transforming into U3, one obtains

—(0) _ ~(0) 4 e0i-Dn
Wijp = Wiy T 6;C~Di, (2.22)

For a more simplified representation, let, now, Gﬁ% = w;. Hence, equation (2.22)

1

becomes

®; = ®i_; + 6;,CO1Dy, (2.23)

As a result, equation (2.23) can be used for defining the angular velocity of the links
where i is the link number and @, = 0. On the other hand, recall that parallel links

2a and 3a have the same angular velocities with link 2 and link 3 respectively.
2.3.3. Position of the Link Origins

In Figure 2.9, the vector from the origin of the Base Frame to the origin of link i is

shown. In terms of joint and link parameters, this vector is defined by

-

B =P_, +su " +aul (2.24)
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Vanl
ﬁgi—l) Fo(0)
Ji Base Frame

Figure 2.9. Origin Position of Link i

Equation (2.24) can be rewritten in the Base Frame as

B B —(i-1/0 —(i/0
P=P_; + siug1 /0 4 aiugl/ ) (2.25)
Then, by transforming ﬁgi/ 9and ﬁg_l/ % into U, and U5 respectively, one obtains
P, = P_; +5,CO~Dg; + a;,CODg, (2.26)

Finally, the position of the link origin can be calculated, in the Base Frame, from
equation (2.26) for all links except for the parallel ones. Note that P, = 0 and i refers

to the link number.
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Calculation of the origins of the parallel links is slightly different. In Figure 2.10,

related distances and the origin positions of link 2a and link 3a are shown.

Origin of
Link-3a

Origin of
Link-2a

Hrrrrrrrry

Figure 2.10. Origins of Parallel Links

Then, one performs the calculations given below.

Link 2a

an = FZ + €3aé(0'3)ﬁ3 (227)

Link 3a

P, = Py — {)2&(0'2)1_11 (2.28)
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2.3.4. Position of the Link Mass Centers
Location of the mass centers is obtained by adding the ¥; vector, defined in Table
2.3, to the previous link’s origin.

B =P +1 (2.29)

ael)

Equation (2.29) can be rewritten in the Base Frame by resolving vector t; in the i

Frame as

C

]|

= E—l + C(O'i)fi (230)

Except for the parallel links, the mass centers positions are obtained from equation
(2.30) where i refers to the link number. A detailed sketch is shown in Figure 2.11.

L (i-1)
u .
3 Y

N

Figure 2.11. Mass Center Position of Link i
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Similar to the link origin locations, there is a small difference during the calculation
of the mass center positions. This time, ¥; vector, defined in the corresponding link
frame, is added to link i’s origin (rather than link i-1). Hence, the calculations are
performed for the parallel links as given below.

Link 2a

C§Za = an + C(O’Z) fZa (231)

Link 3a

‘P, = Py, + CO37,, (2.32)

2.3.5. Velocity of the Link Origins

Link origin velocities are obtained by differentiating equation (2.24).

Do(B) = Do(P_,) + Do(siag-ﬂ) + Do(aiagﬂ) (2.33)

where D, denotes the vector differentiation in the Base Frame.

The left-hand side of equation (2.33) is equal to Vi, ie.,

Do(P) = V; (2.34)

The terms on the right-hand side of equation (2.33), on the other hand, can be
expressed as follows.
Do(ﬁi—l) = Vi—1
Do(sS ™) = TSV + 5@,y x Ty (2.35)

Do(aiﬁ)gi)) = aia))i X l_l):(Ll)
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Since there is no prismatic joint in the three and six DOF configurations, s; is a
constant parameter, which makes §; zero. Thus, the link origin velocity equation is

given by

Vi = Viog + i@y x Uy + 4@y x Ty (2.36)

When equation (2.36) is rewritten in the Base Frame, one obtains

Vi = Vi—l + Si&i_lé(o'i_l)ﬁ3 + al(T)IC(O’l)l_h (237)

The origin velocity of each link is given by equation (2.37) where the velocity of the

stationary base is taken to be zero and i changes from 1 to 6.

Similarly, the velocity of the origins for link 2a and link 3a are obtained as follows.

Link 2a

VZa = VZ + ‘gga(T):gC(O'S)l_l:g (238)

Link 3a
Vig = Voo = €2a&32€(0’2)ﬁ1 (2.39)

2.3.6. Velocity of the Link Mass Centers

By proceeding similarly, equation (2.40) is obtained by taking derivative of equation

(2.29) in order to obtain the mass center velocities.

— —

CVi = Vi—l + 81 X Fi (240)
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Equation (2.40) can be rewritten in the Base Frame as

CVi = Vi—l + (T)iC(O'i) fi (241)

Therefore, each mass center velocity can be obtained via equation (2.41) by
changing i from 1 to 6.

For parallel links, the following formulas must be considered.

Link 2a

CVZa = VZa + (T)ZC(O’Z)FZa (242)

Link 3a

Vo = Vaa + 33C0r3, (2.43)

2.4. Dynamic Analysis

In order to obtain the equations of motion that reflect manipulator dynamics,
Lagrangian Dynamic formulation is used [29]. Firstly, the Lagrangian is constructed
by taking the difference of total kinetic and potential energies of the manipulator

system.

The kinetic energy of link i is expressed as

Uy

1 e oo e o)A
kj = >m; V'V, + 6O iOgang, (2.44)

N

where ©V; and @; are functions of 8; and 6;.

27



The total Kinetic energy is the sum of the kinetic energies of the individual links, i.e.,
n

K=§}i (2.45)
i=1

The potential energy of link i is given by

Uj = Uref; — migT CPi (246)

where g7 =100 —gl, upr; =0 and P, is function of 6;. Also, note that the

direction of the gravitational acceleration is along the T axis.

The total potential energy of the system is found by summing the individual

potential energies of the links, i.e.,
U=§Sm (2.47)

The Lagrangian, on the other hand, is defined by

L=K-U (2.48)

Hence, the equations of motion of the manipulator can be obtained via the equation

—— — = Tk (249)

where k changes from 1 to 3 for the three DOF configuration and 1 to 6 for the six

DOF configuration.
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By using equation (2.49), the equations of motion are obtained to be

H(0)0 + C(0)8% + G() =T (2.50)
where
N : Manipulator’s DOF
0 : N x 1 column matrix of joint variables

H(0) : N x N mass matrix
H(i,j) : The element of H(8) in the i" row and " column
C(®) :Nx((N2+ N)/2) matrix of Coriolis and Centrifugal Forces

C(i,j) : The element of C(0) in the i row and " column

82 :((N? +N)/2) x 1 vector composed of 8,8,, 8,0,,..., 8,0y, 6,0,,
62635---5626N’ é363’ é364-! éNéN
G(0) :Nx1column matrix of gravity terms

G() :Thei"element of G(0)

Al

: N x 1 actuator torque column matrix

The three components of the actuator torque column matrix (namely t;, T, and t3)
of the equations of motion of the three DOF haptic device are presented in Appendix
A.1. The six components of the actuator torque column matrix (namely t;, T,, T,
T4, Tz and 1) of the equations of motion of the six DOF haptic device are also
calculated. These results are obtained by implementing equation (2.49) using the
software MATHEMATICA.
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After the derivation of the dynamic equations, it is necessary to check their
validities. In order to check, at least partially, the derived equations of motion,
firstly, equation (2.50) is converted into the form given below.

F(0)0 + Ceye(0,0)0 +G(0) =7 (2.51)

In the representation above, the Coriolis and Centrifugal Forces matrix (C.ye) is
defined as an N x N matrix elements of which are complex functions of 6 and 6.

Recall that matrix C is a function of 8 only.

Note that the elements of C.,; can be expressed in terms of the elements of the C

matrix via the equation

N .
) 0
Con]) = CGL DO + ) K= (2552)
k=1

k#i

The following two properties related to the equations of motion are checked in order

to check, at least partially, the validity of the obtained results.

e H(8) should be positive-definite.

. (H(e) — 2 Cent(8, e)) should be skew-symmetric.

The first property is derived from the definition of the inertia matrix and the fact that
the Kkinetic energy of the system is zero only if the system is at rest. On the other
hand, the second property, usually referred to as the passivity property, is due to the
fact that the net energy of the manipulator is conserved in the absence of friction
[30].

The results, given in Appendix A.2, indicate that the derived equations of motions

satisfy the above two properties.
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The derived equations of motion of the three DOF configuration are also compared
with the equations of motion given in [25]. In order to compare the results obtained
in this study with the ones given in [25], the differences in the joint angle
conventions and the definitions of the link reference frames should be tackled with.

Firstly, the joint variables used in this study are converted into the form given in [25]

via the equations

0, = -0,
2 Zref (2.53)

_ o’ Y
2ref 3ref

03

where, 6 are the joint angles used in [25].

Secondly, transformation matrix that transforms reference frames attached to Link 1,

Link 2 and Link 2a to the reference frame used in [25] are given as
C(ref_frame_set_l,literature) — §1(ﬂ)§z(—ﬂ/2) (2.54)
where reference frame set 1 refers to the reference frame attached to Link 1, Link 2

or Link 2a.

Lastly, transformation matrix that transforms reference frames attached to Link 3

and Link 3a to the reference frame used in [25] are given as

C(ref_frame_set_Z,literature) — ’RB (ﬂ/z)ﬁl (1.[/2) (2.55)

where reference frame set 2 refers to the reference frame attached to Link 3 or Link
3a.

The converted results given in Appendix A.3 indicate that the equations of motion

obtained in this study are identical with the equations of motion obtained in [25].
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CHAPTER 3

OPTIMIZATION OF HAPTIC INTERFACES

In this chapter, the optimization procedure used to render the manipulator dynamics
as linear as possible is explained. Section 3.1 starts with the introduction of the LN
concept that is an indicator of the degree of linearity of a manipulator. Then, LNs of
the three and six DOF configurations are calculated. In Section 3.2, LN of the three
DOF case is optimized by using both analytical and numerical methods. As a result
of the optimization, it is shown that the three DOF haptic manipulator with a
parallelogram mechanism can be fully linearized. To the author’s knowledge, this is
a novel finding which does not appear in the literature. Manipulators having
different degrees of linearity are also obtained in this section. In the last section,
Section 3.3, the optimization procedure is applied to the six DOF haptic manipulator

and it is shown that complete linearization of this configuration is not possible.
3.1. Definition and Calculation of the Linearity Number

In Section 2.4, the equations of motion that define the manipulator dynamics have
been derived in the form given by equation (2.50). Referring to the notation used in
equation (2.50), the manipulator will be fully linear if the following conditions are
satisfied [12].

e H(O) is a constant matrix.
e C(0) is a null matrix.

e G(0) is a constant column matrix.

Hence, LN of a manipulator is defined via the equation given below [12].
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N

N
LN =133 HyBIHG, ), HE Day]

j=1 i=1
N2+N)/2
. Z)/ i CyELCG, ), 0] +i GEIGW, 6|
j=1 i=1 i=1

Y'Y
where
N : DOF of the manipulator
E[..,..] : Error function that is defined in equation (3.2)
H(i,j) : The element of H(®) in the i row and j column
H(i,])av - Average value of H(i,j) over the region R
C(i,j) : The element of C(0) in the i" row and j* column
G(i) : The i element of G(6)
G(1)ay : Average value of G(i) over the region R
Hij : Weighting coefficient of the error function related to H(i,j)
Cij : Weighting coefficient of the error function related to C(i,))
Gi : Weighting coefficient of the error function related to G(i)
\Y : Volume of the reachable region R defined in the joint space

The error function, defined for a scalar function f(q), is defined via the equation

E(E,f,y) = f f [f(q) — f,,]2dV, (3.2)
R
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where, the average value of the function f(q) can be calculated via the equation

_ I fl@dvy (3.3)
av V

The weighting coefficients are user selected parameters and they can be used to
define different LNs for different purposes. In this study, for all calculations related
to LN, the weighting coefficients are chosen to be unity.

Besides the weighting coefficients, the region R needs to be specified as well. Since
the manipulators that are under consideration are only composed of revolute joints,
the region R is defined as in equation (3.4) by assuming that there are no rotation

limitations on the joints.

R={(6,):0<86;,<2m} (3.4)

for all i, where 1=1,2,...,N.

Note that LN is equal to zero when the equations of motion of the manipulator are
completely linear. If the degree of linearity of the manipulator decreases, in other
words, nonlinearity increases, LN increases as well. LNs of the three and six DOF
haptic interfaces are presented in Appendix B.1 and Appendix B.2. Note that these
LNs are obtained by using MATHEMATICA.

3.2. Optimization of the Three Degrees of Freedom Configuration

For the three DOF configuration, minimization of LN is realized analytically and
numerically. Firstly, the analytical method is used to investigate whether the haptic
device can be fully linearized or not. Secondly, the numerical method is applied in
order to obtain manipulators to be used in the simulations. In Chapter 4, these
manipulators will be employed to investigate the relationship between LN and

performance of haptic interfaces.
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The three DOF configuration contains totally 55 parameters in its dynamic

equations. These parameters are listed below.

e 5 link lengths
e 5 link masses
e 5 x 3 =15 mass center positions

e 5x6 =230 inertial parameters

Recall from Section 2.2.1 that the length of the five links has already been fixed.
Therefore, there are only 50 design parameters to be utilized during the optimization.

These parameters are listed in Table 3.1.

Table 3.1. Design Parameters of the Three DOF Haptic Device

Mass Mass Center Positions Inertia Tensor

m, Ty,r Ty, Tz, XXy, XYy, XZy, YYy, YZ4, ZZ,
m, Iy,r Ty, Tz, XXy, XYy, XZy, YY,, YZ,, ZZ,
My, Tx2a1 Tyza1 U224 XXZa! XYZal XZZal YYZai YZZaa ZZZa
m; S S XX, XYs3, XZs, YYs3, YZs3, ZZ5
M3, Tx3a1 Tyzar Uzaq XXSa! XYSal XZSal YYSai YZSaa ZZSa

3.2.1. Analytical Method

Consider an n-dimensional constrained minimization problem where the objective

function to be minimized is given by

f(x1, X5, ooy Xp) (3.5)

where x4, X5, ..., X, denote the n design variables.

Let the equality and inequality constraints be given by

gi(xq,%X2, .., Xp) =0 wherei = 1,2,3,...,m (3.6)
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(Xi)min < X < (Xi)max Where i= 1,2,3, e, I (37)
h; (x4, X2, ..., Xp) =0 where i =1,2,3,...,p (3.8)

Now, the Lagrangian function f;(x, X5, ..., X, A1, A, ..., Ay) May be defined via the

equation
fi(X1, X2, ooy Xy Ay Az ey Ay) -
3.9
= f(xq, X9, oo, Xp) + Z Aigi (X4, X2, vy Xp) (3.9)
i=1

where 2; denotes the i Lagrange multiplier (i=1, 2, ..., n).

The critical points of the function f(x4,x,, ..., x,) may then be obtained by solving

the (n + m) equations given by

ofi  0f] ofy, off 0of of)
PR B e B B (3.10)
0x; 0%, 0x, O0A; O0A, OAm

It should be noted that the critical points could correspond to a minimum, a
maximum, or an inflection point of the objective function. Furthermore, some of the
critical points may lie outside the feasible region defined by the inequalities (3.7)
and (3.8). Clearly, such infeasible critical points should be discarded since they do

not satisfy the inequality constraints.

Next, one evaluates f(x;,x,,...,X,) at each of the “feasible” critical points. The
minimum of the f(x,,x,,...,X,) Vvalues thus obtained will correspond to the
minimum of the objective function (if it exists) “inside” the region defined by
inequalities (3.7) and (3.8). In order to determine the minimum of the objective

function “inside” the region and “on” the boundaries of the feasible region defined
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by inequalities (3.7) and (3.8), one needs to evaluate the objective function “on” the
boundaries of the feasible region defined by inequalities (3.7) and (3.8) as well.

Now, consider the minimization of LN of the three DOF manipulator. The objective
function, (x4, x5, ..., X,), in this case will be the expression for LN which is
presented in Appendix B.1. Hence, there will be 50 design variables (i.e., n = 50)
which are presented in Table 3.1. Since there are no equality constraints [see
equation (3.6)] to be considered, equation (3.9) yields

fl(Xl' X2, ooy Xpy }\1, }\2, ,)\m) = f(XlJXZI ...,Xn) (311)

In order to obtain the critical points of the function f(xq,x,, ...,x,), one needs to
solve the n nonlinear equations given by equation (3.10), where n = 50. To achieve
this task, the REDUCE command of MATHEMATICA, which yields a single
solution set for the design variables, has been utilized. The obtained solution is
presented below.

ty my, + £, mg + my, 1y,

— - (3.12)
. =0 (3.13)
6 = —XZ, — XZ,, — fszal;;Z; r;mZaerarZza + £omsry, (3.14)
_ (3.15)
=0 (3.16)
= —YZ3 —YZ3, + 43, I'ﬂzar:‘;ag;fg,amg,ary%1 — Mzaly,, Iz, (3.17)
o £y, My, + 15’3:;1nm321 +m3, 1, (3.18)
3
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Iy, = 0 (3.19)
_ _€2€3am3a + £3an12arx2;,1
Fz30 = 7,m, (3.20)
YYZa = XX2 + XXZa - YYZ - 'E%mZa - {%m?’ - ZfszaI‘XZa
— My,l'g, — Myrg (3.21)

775, = XX3 + XX3, — ZZ5 + £2my, + £5,m5, + 2€3,m5, T

Z3a
+mg,rz, 4+ mary, (3.22)
XY2 = _XYZa (323)
YZ2 = _YZZa (324)
XY3 = _XY3a (325)
XZy = —XZs, (3.26)

The solution set given by equations (3.12)-(3.26) indicates that only 15 design
variables are restricted. Therefore, the remaining 35 design variables can be selected
arbitrarily without disturbing the linearity of the haptic interface. These free design

variables are listed in Table 3.2.

Table 3.2. Free Design Parameters of the Three DOF Haptic Device

Mass Mass Center Positions Inertia Tensor

m; Iy, Ty, Tz XXy, XYy, X724, YY,, YZ,, 27,
m, - XX,, XZ,, YY,, ZZ,

My, Ixza1 T224 XXZal XYZaa XZZaa YZZaa ZZZa
m; - XX, YY;, YZ3, ZZ74

M3y I‘}’3a XXBal XYBaa XZBaa YY3a1 YZ3a
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After assigning the design parameters provided through equations (3.12)-(3.26), the
absolute minimum of LN of the three DOF haptic manipulator becomes zero which
yields a fully linear manipulator. The linear equations of motion of the three DOF
configuration are given by equation (3.27) given below.

Tl K11 0 0 él
[Tz] = 0 Kzz K23 éz (327)
T3 0 Kj Kss 0,

where the “constant” inertia matrix elements K;;, K,,, K,3, K5, and K35 are given
by

K1 =
1

£3m3ms,
£3m, (£2,m3a (Mg + m3) + mg(XX, + XXpe + XXg +

XXza + YY; +my rf + myrf +myrs +myr7 +

2 2
M3aly;, + m3ry3))>

( 2 0,43 m2am3arXza + 15’3am23rXza (mz + mg,) +

Kyz =

1
£3m;mzmsz,
m3) + Zfzegamzm%am?»arxm + 2€%m2am3m3arxza (m; +
mp, + ms) + {)gamzm%aria (ms + msa) +

£5ms, ({)%amsza(mZa +mj3) + m3(YY3m2 + YY;,m; +

4 2
({’2m3m3a(m2m2a + m3, + mym; + 2m,,ms +

ZZ,my + ZZyamy + mymy,rs  + mZarXZa))>

K3 = K3, =
({)%m&a (YY3m3 + YY;,m3 + f%amZa(mZa + m3)) +

2
£ 2M3zM3y

2€2€3am23m3arXZa + €3am23 X2a (m;3 + m3a))

K33 =
1
€§m3m3

(£%m3a (YY3m3 + YY;,m3 + f%amZa(mZa + m3)) +

2€2€3am2am3arx23 + €3am23 X2a (m;3 + m3a))
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While using the design conditions given by equations (3.12)-(3.26), one should note
the following remarks.

e The inertial parameters of link 1 (namely, m,, ry_, Iy, 'y, XXq, XYy, XZ4,

YY,, YZ; and ZZ,) have no effect on the linearity of the three DOF haptic
interface. Hence, they can be selected arbitrarily.

e The mass of link 2, link 2a, link 3 and link 3a (hamely, m,, m,,, mz and
m3,) are also “set” as free design parameters. Hence, they can be selected
freely such that the physical realizability conditions are satisfied.

e The mass center positions are given by equations (3.12)-(3.20). If the
component of the mass center position vector of a link (i.e. ry, r, or r,) does
not lie along the link length or the corresponding link’s rotation axis, it must
be assigned to zero. In Figure 3.1, the components of the mass center position

vector of link 2 are presented.

ion Axis of ! ofy
Rotation Ax 7
otation 150 I""?

Rotation Axis
of Link 2

ﬁ(i)
1 Mass Center of
Link 2

Mass Center
ofLink 2

(2) (b)

Figure 3.1. Mass Center Position Vector of Link 2 a) Side View b) Front View

As it can be seen from Figure 3.1, the component of the mass center position

vector that lies along the link length is r, . Furthermore, the component of
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the mass center position vector that lies along link 2’s rotation axis is r,,.
Therefore, the remaining component (namely rzy) Is assigned to zero in order
to obtain linear equations of motion.

It should be noted that when equations (3.12)-(3.20) are satisfied, the overall
mass center of link 2, link 2a, link 3 and link 3a lies along the ﬁgl) axis. This

line is defined as the rotation axis of the parallelogram mechanism (see
Figure 3.2).

Rotation

. =(0)
Axis us

=(1)
Uy

(1)
u;

Rotation

Cj Axis

b e

@ (b)

Figure 3.2. Rotation Axis of the Parallelogram Mechanism a) Side View b) Front View

Limitations on the moments of inertia terms are given by equations (3.21)
and (3.22). Although there are additional restrictions on the elements of the
inertia tensor due to the inequality constraints, it is always possible to find a
physically realizable manipulator set with the available free parameters at the
right-hand side of the corresponding equations [free parameters XX,, XX,
and YY, in equation (3.21) and free parameters XX;, XX;,, and ZZ; in
equation (3.22)]. Inequality constraints will be examined later in this section.
Limitations on the products of inertia terms are given by equations (3.23)-

(3.26). If links which have symmetrical cross-sections are used in the design,
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the restrictions regarding the products of inertia terms will always be
satisfied.

In the remaining parts of this section, the inequality constraints that must be satisfied
for a physically realizable manipulator will be determined and the critical points will
be checked against these inequality constraints.

The 50 design parameters to be determined during the optimization are the link
masses, mass center positions and elements of the inertia tensor. Since they are
physical properties, these values cannot be selected arbitrarily if one wants to design
a physically realizable manipulator. In order to construct a physically realizable
manipulator, the following constraints, derived from the positive definiteness

property of the inertia tensor, have to be satisfied (see [12]).

XX; > 0
XX;YY; — XYZ > 0 (3.28)
XX;YY,ZZ; — XX;YZZ — XY2ZZ; — 2XY,XZ;YZ; — XZ2YY; > 0

In addition to the constraints regarding the positive definiteness property of the
inertia tensor, the upper and lower boundaries for the masses, the mass center
positions and the elements of the inertia tensor have been defined in order to design

a practical haptic device for the given link lengths.

There are two different limitations on the masses since link 2a and link 3 are
considerably lighter than link 2 and link 3a [25]. These limitations are given below.

0.15 < m, < 0.30 [kg]

0.15 < ma, < 0.30 [Kg] for link 2 and link 3a (3.29)

0.02 < m,, < 0.15 [kg]

0.02 < m, < 0.15 [kg] for link 2a and link 3 (3.30)
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Lower and upper boundaries defined for the mass center positions and for the inertia

terms are given below.

—0.25 <r1; £0.25 [m] for the x-y-z directions (3.31)

107° < I; < 1072 [kg m?] for all elements (3.32)

It has been observed that there exists many (actually infinitely many) solutions for
the design variables which yields the absolute minimum of LN (which is 0) while
satisfying the inequality constraints (3.28)-(3.32). In order to check the critical points
given via the 15 equations (3.12)-(3.26) against the inequality constraints (3.28)-
(3.32), the FindInstance command of MATHEMATICA, which attempts to find a
specified number of numerical solutions to a given system of equations and
inequalities, has been employed. One of the solutions thus obtained is given below
(for the link lengths fixed as in Table 2.1). The mass center positions of the obtained

solution are also presented in Figure 3.3.
m; = 0.25, m, = 0.156, m,, = 0.026, m; = 0.031, ms, = 0.242,
ry, =0,ry, =0,1, = 0.15,
Iy, = —0.091, ry, = 0, ry, = 0,

Iy,, = 0.078, Iy, = 0, ry,, = 0,

2

Iy, = 0, Iy, = 0, ry, = —0.036,

r,. =0,r,.. =0, Iy, = —0.031,

X3a ' *¥3a

XX, = 0.009, XY, =0, XZ, =0, YY,=0009 YZ =0,
7Z, = 0.00015,

XX, =0.00982641, XY,=0, XZ,=0, YY,=0.00488281,
YZ, =0,ZZ, = 0.00488281,
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XX,, = 0.00488281, XY,, =0, XZ,, =0, YY,, =0.00488281,
YZ,, = 0,7Z,, = 0.00488281,

XX; = 0.00481407, XY, =0, XZ;=0, YY,;=0.00488281,
YZ, = 0, ZZ; = 0.00488281,

XX3, = 0.00488281, XY;, =0, XZs, =0, YYs, = 0.00488281,
YZs, = 0,ZZ,, = 0.00488281 (3.33)

a?
3 s Overall MCP of Link 2,

Link 2a, Link 3 and Link 3a

rrrrrr Iy

Figure 3.3. Mass Center Positions of the Example Solution

Note that mass values are in [kg], inertia values are in [kg m?] and mass center

positions are in [m].
3.2.2. Numerical Method

One of the objectives of this study is to investigate the relationship between LN and

the performance of a haptic device. Therefore, it is necessary to obtain manipulator
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sets that possess a specified value of LN. In order to obtain these manipulator sets,

the procedure explained below is followed.

Firstly, a set of manipulators with LN equals zero is obtained via the “Differential

Evolution Method”, a numerical algorithm that is used for constrained global

optimization. Although this method requires more computational power, it is suitable

for problems with many local minima. In order to implement the “Differential

Evolution Method”, NMINIMIZE command of MATHEMATICA has been used

with the options explained as below.

In this thesis, a set of initial points are automatically generated by default
settings of NMINIMIZE. When it is desired to initiate the algorithm with a
different set of initial points, the “RandomSeed” option is used. On the other
hand, the set of initial points can also be directly defined by the
“InitialPoints” option; however, this method is not preferred in this research.

Size of the population used for evolution is defined by the “SearchPoints”
option. Using the default settings of “SearchPoints”, MATHEMATICA
generates a population of 50 points if the number of variables used during
optimization is greater than 5. However, if the number of variables used
during the optimization is less than or equal to 5, then, a population
composed of 10 x n points, where n is the number of variables used during
the optimization, is generated. In this thesis, the default value is selected for
the “SearchPoints” option, therefore the size of each population is set to 50.

In the “Differential Evolution™ algorithm, the mutations are obtained by the

mutation scheme defined via equation (3.34).

Xs = Xy + S(Xy — Xy) (3.34)

where x,,, x, and x,, are the members of the old population and s is the scale
applied to the difference vector. In this thesis, s is set to 1 by the

“ScalingFactor” option.

46



e The probability of crossover is defined by the “CrossProbability” option. In
this thesis, the default value of 0.5 is used.

Secondly, similar to Section 3.2.1, it is necessary to define additional constraints for
the masses, the mass center locations and for the inertia tensors. The upper and lower
boundaries associated with these constraints are provided in equations (3.35)-(3.38).
While determining these boundaries, the dynamic properties of Phantom Premium
1.5 have been considered [25].

Two separate upper and lower boundaries have been defined for the masses. The
upper boundary corresponding to the heavier links (i.e., link 2 and link 3a) is chosen
to be five times greater than link 2, the heaviest link of the commercial product.
Similarly, the upper boundary corresponding to the lighter links (i.e., link 2a and link
3) is determined to be five times greater than link 3, the lightest link of the
commercial product. The lower boundaries corresponding to the heavier and lighter

links are chosen to be close to masses of link 3a and link 3 respectively.

0.15 < m, < 0.30 [kg]

0.15 < ma, < 0.30 [kg] for link 2 and link 3a (3.35)

0.02 < m,, < 0.15 [kg]

0.02 < m, < 0.15 [kg] for link 2a and link 3 (3.36)

The upper and lower boundaries corresponding to the mass center positions are

chosen to be close to the longest link length, yielding

—0.25 <r1; <0.25 [m] for the x-y-z directions (3.37)
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The boundaries of the inertia tensor are taken to be 10 times greater and 10 times

smaller than the order of magnitude of the commercial product, yielding
1075 < I; < 1072 [kg m’] for all elements (3.38)

One hundred different manipulators, with LN = 0, are then obtained by seeding
random initial points to the optimization algorithm.

In order to obtain a set of manipulators with LN = LNgesireq, the additional

constraint

LN = LNgesired (3.39)

is added to the minimization problem. Then, the optimization algorithm is run by

seeding random initial points until one obtains 100 manipulators with LN =
LNdesired-

Utilizing the above procedure, and taking LN gesireq t0 be 0, 0.001, 0.01, 0.1, 1, and
2; a total of 600 manipulators have been obtained. Design parameters of five

manipulators yielding a certain LNgesireq are presented in Appendix C (see Table
3.3).

Table 3.3. Manipulator with Different Degrees of Linearity

Number of Manipulators LN Parameters
100 0 Appendix C.1
100 0.001 Appendix C.2
100 0.01 Appendix C.3
100 0.1 Appendix C.4
100 1 Appendix C.5
100 2 Appendix C.6
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3.3. Optimization of the Six Degrees of Freedom Configuration

For the six DOF haptic interface, link lengths are also fixed as in Section 3.2. Thus,
remaining 80 design parameters listed in Table 3.4 are used during the optimization.
The minimization procedure is almost the same as the one explained in Section
3.2.1.

First of all, the constraints from the positive definiteness property of the inertia
tensors are defined [see equation (3.28)]. Furthermore, the upper and lower limits for
the masses, the mass center positions and the elements of inertia tensor are selected.
However, these limits are chosen as coarse as possible this time in order to see
whether the equations of motion can be fully linearized regardless of any practical

constraint. The imposed constraints are presented below.

Table 3.4. Design Parameters of the Six DOF Haptic Device

Mass Mass Center Positions Inertia Tensor
m, Iy,» Ty, Tz, XX1, XY, XZ1,YY,, YZ,, 27,
m, Iy, Iy, XX, XY,, XZ,,YY,, YZ,, 77,
myy rXZa’ rYZa’ rZZa XXZa: XYZa: XZZa’ YYZa' YZZa’ ZZZa
m; Iy Tyys Tz XX3, XY3, XZ3,YY3, YZ3, 774
M3y I‘X3a’ I‘}’3a’ I‘Z3a XXSa: XYSa: XZSa’ YYSa' YZSa’ ZZSa
m, Iy, Ty, Tz, XXy, XYy, XZ4, YY4, Y24y, 27,
mg Ixgr Tygr Tz XX, XYs, XZs, YYs, YZs, ZZ<
mg Ixer Tyer Tz XXe, XY, XZ¢, YYe, YZ¢, 27,
Link masses:
107" < m; < 10" [kg] for all links (3.40)

Mass center positions:

—10% < r; < 10*° [m] for the x-y-z directions (3.41)
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Inertia tensor elements:

10715 < I; < 105 [kg m?] for all elements (3.42)

Secondly, the Lagrangian function is formed similar to equation (3.5) where the

number of design variables is 80.

In order to obtain the critical points of the function f(x4, x5, ...,x,), one needs to
solve the n nonlinear equations given by equation (3.10), where n = 80. To achieve
this task, firstly, the SOLVE command of MATHEMATICA, which attempts to
solve a system of nonlinear equations in closed form, has been utilized.
Unfortunately, SOLVE has not yielded a closed form solution. MATHEMATICA
could not complete its operation when the SOLVE command is evaluated (even
though a long computation time have been provided). Hence, it was necessary to
resort to a numerical solution via the command FindInstance of MATHEMATICA.

In order to minimize the LN of the six DOF manipulator, FindInstance has been
utilized to solve the nonlinear equations [obtained via equation (3.10)] and the
inequality constraints that must be satisfied for a physical realizable manipulator.
Findinstance has returned an empty set as the solution (see Appendix D) which
implies that full linearization of the six DOF haptic interface is not possible (when

the link lengths are fixed as in Section 3.2).
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CHAPTER 4

PERFORMANCE SIMULATIONS OF HAPTIC INTERFACES

In this chapter, simulations, in order to investigate the relationship between the
selected performance criteria and the LN of three DOF haptic interface, are
performed. Details of the simulations (with respect to the two performance criteria of
the haptic manipulator, the stable impedance range and the transparency bandwidth)

are explained in two sections.

In Section 4.1, firstly, the mathematical model constructed for the stable impedance
range simulations and its implementation on MATLAB Simulink® are introduced.
Secondly, the calculation methodology of the stable impedance range is explained.
The simulation conditions and the adopted assumptions are also summarized in this
section. In the last part of Section 4.1, the simulation results are presented and the

relationship between the stable impedance range and the LN is examined.

Similar to the previous section, the first part of Section 4.2 contains the
mathematical model of the haptic interface and its Simulink implementation for the
transparency bandwidth simulations. In the second part of Section 4.2, the
calculation procedure, in order to obtain the transparency bandwidth of the haptic
manipulator, is explained. Furthermore, the simulation conditions and the
assumptions that are used for the transparency bandwidth simulations are provided.
Lastly, the simulation results are presented and a correlation is sought between the

transparency bandwidth and the LN.
4.1. Stable Impedance Range Simulations

A haptic display is a device that transfers kinesthetic information (e.g., body pose
and movement) or tactile stimuli (e.g., texture and temperature) to the user. There

are two types of haptic display. The first type, which measures movement and
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displays force, is called an impedance display. The other type, which measures force
and displays movement, is called an admittance display.

Whether the haptic interface is impedance or admittance, the most important feature
of the haptic interface is its interaction with a virtual environment. The virtual
environment, which responds to the user’s action, is a computer-generated
environment of the physical environment. It can be modeled exactly the same as the
physical environment or can be a highly simplified model. An ideal haptic interface

should represent the virtual environment in exactly the same way.

Regardless of the complexity of the virtual environment, there are two different
interaction types between the haptic interface and the virtual environment. A virtual
environment may behave as if impedance, i.e., taking the velocity and position as
inputs and representing the force, determined based on the physical model, as an
output. On the other hand, a virtual environment may behave as if an admittance,
i.e., taking the force as an input and representing the velocity or position as an output
[31]. In this study, an impedance haptic display (namely, Phantom Premium 1.5),

which can render the impedance type of virtual environment, is examined.

The mechanical impedance of the virtual environment is defined as the ratio of force
to velocity. During the reflection of the virtual environment to the user, maintaining
stability is important. Impedances (of a virtual environment) that a haptic device can
reflect to the user without compromising the system stability are defined as the range
of stable impedances. The conditions adopted in this study, which provide stable

haptic interaction, are given in Section 4.1.2.

The stable impedance range of a haptic interface is obtained via simulations. Before
performing the simulations, a proper model has to be formed; a procedure in order to
calculate the stable impedance range has to be developed and the simulation
conditions have to be determined. In the following sections, the haptic interaction

model, the calculation methodology, and the simulation conditions are explained.
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Besides, the simulation results and the assessments regarding stable impedance

range simulations are given at the end.
4.1.1. Simulation Model
The three main parts of the simulation model are listed below.

e The three DOF haptic interface
e The compensator

e The virtual environment

4.1.1.1. Model of the Haptic Interface

Firstly, the equations of motion, which represent the motion of the three DOF haptic
interface, are constructed by using Simscape Multibody ™ in Simulink. Simscape
Multibody is a widely used and approved simulation environment for 3D mechanical
systems. Although the design can be made parametrically, the equations of motions
are obtained and solved numerically at the background. Since the equations of
motion are not explicitly shown to the user, Simscape Multibody cannot be used for
the optimization procedure followed in Chapter 3. On the other hand, it is preferred
in this section because of being less error-prone due to the usage of blocks (rather

than the complicated equations).

Simulink model of the three DOF haptic interface is shown in Figure 4.1. This part
of the model refers to the physical manipulator and it is responsible for the forward
dynamics computations. Each degree of freedom can be actuated at any desired
torque value. Moreover, their angular positions, velocities, and accelerations can be

measured via the joint sensors.
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Haptic Interface Model
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Figure 4.1. Haptic Interface Model for the Stable Impedance Range Simulations

4.1.1.2. Model of the Compensator

The compensator, which is responsible for eliminating the undesirable intrinsic
dynamics, is a mathematical model of the physical haptic manipulator. The model-
based compensator, implemented for the three DOF haptic interface, is shown in

Figure 4.2 and Figure 4.3.

Its block formation is similar to the haptic interface model provided in Figure 4.1.

However, a parameter called error percentage, which is used to reflect modeling
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errors, multiplies each design variable (i.e., mass, inertia terms and mass center
positions) in the compensator. In this way, an error can be introduced if it is desired
to see the effects of an imperfect compensator. For instance, the selected mass values
will be 90 percent less than the values specified in the haptic interface model (see

Section 4.1.1.1), if the error percentage is set as 90.
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Figure 4.2. Layout of the Compensator Block for the Stable Impedance Range Simulations
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This part of the model is related to the controller and it is responsible for the inverse
dynamics computations. It calculates the torque to be compensated with respect to

the joints’ instantaneous angular position, velocity, and acceleration.

An important point that has to be considered in this section is the simulation time
step. While the model, which represents the physical manipulator, runs at continuous
time domain in the physical world, the compensator is operated in discrete time.
Therefore, the sensed quantities such as joint positions, velocities and, accelerations
must be sampled. On the other hand, the torque calculated by the compensator must
be fed back with zero-order hold (i.e., ZOH). The zero-order hold is a mathematical
model that creates the effect of the digital-to-analog converter (i.e., DAC) by holding

each sample along the single sample interval.

These actions are implemented in Simulink as given in Figure 4.3.
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Figure 4.3. Compensator Block for the Stable Impedance Range Simulations
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4.1.1.3. Model of the Virtual Environment

Lastly, the virtual environment to be rendered by the haptic interface is introduced
into the simulation model. In this study, an elastic virtual wall, modeled as a single
freedom spring applied to the joint axis that is to be excited by the user, is chosen as
the virtual environment. The spring constant of the virtual wall is initially set to 1
Nm/rad. At each simulation step, this spring constant will be increased by 1 Nm/rad.
One can refer to Section 4.1.2 for more details.

According to the difference between the angular position of the connected joint and
the equilibrium position of the spring, a torque is applied proportional to the spring
constant, in other words, proportional to the impedance of the virtual environment.
Similar to the compensator, the sensed joint position is discretized and the torque
applied to the joint is turned into an analog signal by using ZOH since the virtual

environment is also at the digital side.

The modeled virtual environment is given in Figure 4.4.

Virtual Environment

Figure 4.4. Virtual Environment Block for the Stable Impedance Range Simulations

4.1.1.4. Composition of the Simulation Model

In Section 4.1, the three main parts of the simulation model (i.e., the haptic interface,
the compensator and the virtual environment) have been explained. In order to

generate the haptic interaction, these parts are combined as described below.
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Phantom Premium 1.5, the haptic device to be simulated in this study, is an
impedance display that does not contain any torque sensor. Therefore, Open-Loop
Impedance Control strategy, shown in Figure 4.5, is implemented on its controller
[32].
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Figure 4.5. Open-Loop Impedance Control Scheme of a Haptic Interface [32]

The parameters used in Figure 4.5 are listed below.

7. : The impedance of the haptic display in the joint space. It is defined as the

ratio of the joint torque (i.e., T) to the joint velocity (i.e., q).

7. : The modeled impedance of the haptic display in the joint space. Due to an

estimation error, the modeled impedance can differ from the actual impedance.

T : The resulting joint torque applied to the manipulator
q : The actual joint velocity of the haptic interface
T¢ : The feedforward torque which is introduced in order to compensate the

device’s intrinsic dynamics.

J : The Jacobian Matrix of the haptic display that defines the relationship

between the joint velocity and the end-effector velocity
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Vh : The resulting velocity of the end-effector (i.e., hand) defined in the task

space
Fy : The force that is applied by the user to the end-effector of the haptic display

Th : The joint torque resulting from the force applied by the user to the end-

effector of the haptic display

Zeo : The impedance of the virtual environment

Ve : The desired velocity of the end-effector defined in the task space

Fe : The desired force at the haptic display’s end-effector defined in the task
space

Tc : The joint torque resulting from the desired force at the haptic display’s end-
effector

By adopting the Open-Loop Impedance control scheme explained above and by
combining the three sub-components of the model, the complete layout of the

simulation environment may be formed in Simulink as shown in Figure 4.6.

. Virtual Env. Haptic Interface Model
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Figure 4.6. Complete Layout of the Simulation Model for the Stable Impedance Range Simulations
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The parameters of the block scheme used in Figure 4.6 are listed below.

er : The impedance of the haptic display in the joint space. For the stable

impedance range simulations, it corresponds to the haptic interface model given in
Section 4.1.1.1.

izr : The modeled impedance of the haptic display in the joint space. For the

stable impedance range simulations, it corresponds to the compensator model given
in4.1.1.2.

T¢ : The feedforward torque which is calculated by the compensator considering

the manipulator’s instantaneous motion

T : The resulting joint torque, which acts on the manipulator

dn : The actual joint position of the haptic interface

dn : The actual joint velocity of the haptic interface

dn : The actual joint acceleration of the haptic interface

dn : The sensed (quantized) joint position of the actual joint position, qy,

dn : The sensed (quantized) joint velocity of the actual joint velocity, qy,

dn : The sensed (quantized) joint acceleration of the actual joint acceleration, gy,
Ze : The impedance of the virtual environment. For the stable impedance range

simulations, it corresponds to the virtual environment model given in 4.1.1.3.
de : The desired joint position

Te : The desired joint torque which acts on the haptic device due to the virtual

environment
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There is a difference between the block schemes provided in Figure 4.5 and Figure
4.6. The first difference is regarding the workspace that is used. In reference [32],
the desired forces and motions are defined in the task space; while the joint space is
preferred in this study (in order to see the effect of linearization on each DOF). Thus,
the joint velocities and torques given in Figure 4.6 are not converted into the

velocities and forces defined in the task space by using the Jacobian Matrix (i.e., ]).
4.1.2. Stable Impedance Range Calculation Methodology

The stable impedance range is defined as the range of impedances of the virtual
environment that can be rendered by the haptic device without disturbing stability.
This stable impedance range is not unique over the entire workspace of a haptic
manipulator. It depends on the position and orientation (i.e., pose) of a haptic
manipulator. For different poses, the haptic manipulator may have different stable
impedance ranges. Besides the pose of a haptic manipulator, the dynamics due to the
interaction with other joints may also change the stable impedance range of the
haptic manipulator. For instance, the stable impedance range of the first DOF may
vary with respect to the instantaneous position and velocity of the other DOFs (even

for the same initial condition of the first DOF).

In order to obtain the range of stable impedance and observe the effect of
linearization, two different types of stable impedance range simulations have been

performed.

In the first simulation type, a virtual wall is implemented on the first DOF of the
three DOF haptic interface. Therefore, a disturbance is only introduced to the first
DOF while the second and third DOFs are locked at their initial positions and remain
stationary during the simulation. In the second simulation type, the virtual wall is
again implemented only on the first DOF of the three DOF haptic interface. Similar
to the first simulation type, a disturbance is introduced to the first DOF; however,
this time, the second and third DOFs are moved on a predefined path with a

predefined velocity.
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For both simulation types, the steps of the method are listed below.

e The iteration starts with the impedance value of the virtual environment at
INm/rad. The impedance is increased by 1 Nm/rad for the next iteration;
therefore, the range of the stable impedances is calculated with the resolution
of 1 Nm/rad. This resolution is chosen in order to complete the simulations in
a moderate time.

e A torque is applied to the first DOF by the virtual environment due to the
initial condition of the virtual spring. The value of the applied torque changes
with respect to the angular position of the excited joint. While for the first
simulation type, the second and the third DOFs remain stationary at their
initial positions during the simulation; for the second simulation type, the
second and third DOFs are moved on a desired path with a desired velocity.

e The simulation time is set to be long enough such that the system reaches to
steady-state.

e If the observed overshoot is less than 0.012 radian and the system reaches
steady-state at the end of the simulation time, the iterated impedance value is
taken as stable. 0.012 radian value is chosen heuristically and it is taken to be
the same for all simulation cases. Although its value affects the stable
impedance range, it is not critical as long as the same condition is applied to
all simulation cases (since the purpose of this study is to seek a relationship
between the stable impedance range and LN rather than finding the haptic
interface’s exact stable impedance range).

e The impedance of the virtual environment is increased by one for the next
iteration until the overshoot exceeds 0.012 radian or an unstable behavior is
observed.

e At the iteration step that the simulated impedance value is considered to be
unstable (according to the conditions mentioned above), the value of the

previous iteration is taken as the maximum stable impedance. Hence, the
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range between 1 Nm/rad and the maximum stable impedance corresponds to

the stable impedance range.

Note that, for the impedance values that make the system unstable, the simulations
are terminated by MATLAB due to the violation of simulation tolerances. If the
simulation is interrupted once, the remaining cases will not be simulated. Therefore,

in order to maintain the simulations, the structure shown in Figure 4.7 is employed.

Safety Switch
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Figure 4.7. Safety Switch Block

The safety switch block is responsible for cutting the applied torque acting on the
virtual environment and the compensator off when the simulated joint rotates 0.06
radians (5 times greater than the overshoot) at any direction from its reference point.
Therefore, the violation of the simulation tolerances is prevented. Furthermore, if the
safety switch block becomes active, the corresponding impedance value will be

considered to be unstable.
4.1.3. Simulation Conditions

The specified conditions and the adopted assumptions for the stable impedance

range simulations are listed below.
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I.  For the stable haptic interaction, the system must contain some amount of
physical damping. Therefore, damping is introduced to the joints actuated by
the motors.

The value of the inherent damping of each DOF, shown in Table 4.1, is set
after trial simulations in order to provide a sensible stable impedance range to
the system. These values remain the same throughout all simulation cases. In
real applications, virtual couplings are used to arrange the performance of the

haptic device [33].

Table 4.1. Inherent Damping of the Manipulator

DOF Value Unit
1 0.50
0.50 Nm/(rad/s)
0.35

In Figure 4.8, the way the damping is defined for the first DOF in the
simulation environment is presented. Note that, in order not to eliminate the
required damping of the system, no damping is introduced to the

compensator.

Properties
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+ State Targets
=I Internal Mechanics

Equilibrium Position (0 rad w

Spring Stiffness JP. k1 MN*m,rad w

Damping Coefficient JP.bm1 MN*m/(rad/s) -
+ Artuatinn

Figure 4.8. Damping at Joint 1

ii.  The virtual wall, modeled with a single spring, is implemented as the virtual
environment (see Section 4.1.1.3). During the calculation of the stable

impedance range, the initial position of the spring is selected differently than
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the equilibrium position of the spring in order to initiate the motion of the
haptic interface. The equilibrium position of the spring and the initial

condition of the joint position are given in Table 4.2.

Table 4.2. Initial Condition of the Virtual Wall

Equilibrium Position of Initial Position of the
DOF . .
the Spring Joints
1% 0.01 [rad] 0 [rad]
2" No Virtual Wall 0 [rad]
3 No Virtual Wall 0 [rad]

iii.  Two different types of simulations are performed in order to obtain the stable
impedance range and observe the effects of linearization. For both simulation
types, stable impedance range of the first DOF is calculated. In the first
simulation type, the second and third DOFs remain stationary during the
simulation. In the second simulation type, the second and third DOFs are

moved on a predefined path with a predefined velocity given in Table 4.3.

Table 4.3. Conditions of the Simulation Types

Slmrlijsélon DOF Desired Path of the Joints  Desired Velocity of the Joints
it Disturbance generated by Disturbance generated by
the virtual environment the virtual environment
L o 0 0
3" 0 0
1 Disturbance generated by Disturbance generated by
the virtual environment the virtual environment
2 2" 0.52 x sin(3x x t) [rad] 1.57r x cos(3r x t) [rad]
3" 0.52 x sin(3x x t) [rad] 1.577 x cos(3x x t) [rad]
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Vi.

Vil.

viii.

In the simulations, the haptic interface (see Section 4.1.1.1) represents the
physical world; while the compensator (see Section 4.1.1.2) and the virtual
environment (see Section 4.1.1.3) stay at the digital side. Thus, it is necessary
to use two different time frames, namely, continuous and discrete.

Continuous time implies an infinitely small sampling time. However, in the
simulation environment, the physical world can only be reflected by selecting
the simulation time step small enough. As a result, the time step of the
simulation is taken as 10~* seconds by considering the cost of computations.
On the other hand, during the conversion of the real world to the virtual one,
sensor signals are quantized with 1 kHz sampling rate [34]. Therefore, the
calculated torques by the compensator and the virtual environment have to be
held and applied at the same value for 10 simulation time steps until new

measurements are collected.

The total simulation time is set to 5 seconds, which is enough to reach

steady-state conditions.

In the simulations it is assumed that there is no modeling error in the
compensator. However, although the compensator is perfectly modeled, an
error still exists in the feedforward torque (applied by the compensator) due
to the quantization of the sensor data and the usage of ZOH (see Section
4.1.1.3 for detail).

The user’s hand is not modeled and the hand dynamics, which widens the

stable impedance range, is ignored.

The impedance value is increased by one for every iteration step which limits

the resolution of the obtained stable impedance range to 1 Nm/rad.
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ix.  All sensors used in the simulations are assumed to be perfect. There are no
noise and delay on the measurement of the joint positions, velocities and,

accelerations.

X. Al links are considered as rigid and friction between the elements is
neglected.

4.1.4. Simulation Results and Assessments

The stable impedance range simulations are performed for the 600 different
manipulators given in Table 3.3. In order to investigate the effects of linearization,
two different simulation types are realized. Therefore, a total of 600 x 2 = 1200
different simulation cases have been realized. In the first simulation type, the
maximum stable impedance values of the first DOF of the three DOF haptic
manipulator are obtained. During these simulations, the second and third DOFs are
kept stationary at their initial positions. In the second simulation type, similar to the
first one, the maximum stable impedance values of the first DOF of the three DOF
haptic manipulator are obtained. However, during these simulations, the second and
third DOFs are moved on a previously defined path with a previously defined

velocity.

In the first part of this section, beeswarm plots are provided for the first simulation
type. The x-axis of the graphs corresponds to the six LN values given in Table 3.3.
The y-axis of the graphs corresponds to the maximum stable impedance value, the

maximum value in the stable impedance range, obtained via the simulations.

In these graphs, the maximum stable impedance values are grouped with respect to
the six LNs given in the x-axis and jitter is added (along the x-axis) to the
overlapped values in the y-axis (in order to see the distribution of the maximum
stable impedance values). Each circle in the graph represents the result of a single

simulation. Each LN set contains 100 circles and, a total of 600 circles are plotted in
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a single graph. Furthermore, mean values and standard deviations of the maximum

stable impedances are also calculated and represented (for each LN) in the graphs.

In the second part of this section, the maximum stable impedance values of the first
and second simulation types are presented on the same plot in order to see the
difference in the performance of the haptic interface when the remaining joints are
not stationary. In these graphs, while the x-axis of the graphs corresponds to the
simulation number (performed with 100 different haptic manipulators given in Table
3.3), the y-axis of the graphs corresponds to the maximum stable impedance value.
Six separate plots, each containing the maximum stable impedance values of 100
different haptic manipulators, are provided for each LN separately. At the end, the
number of haptic manipulators whose performance varies and the number of haptic
manipulators whose performance remains the same through the two different

simulation types are presented using a bar graph.
4.1.4.1. Results of Simulation Type 1

In Figure 4.9, the maximum stable impedance values obtained via the stable
impedance range simulations for the first simulation type are given with respect to
the LN of the three DOF haptic manipulator. The results are summarized in Table
4.4 by providing the highest and the lowest value of the maximum stable impedances
for each LN. Furthermore, the mean value and the standard deviation of the

maximum stable impedances are also listed for each linearity level.
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Figure 4.9. Maximum Stable Impedance vs LN Graph for the First DOF — Simulation Type 1

Table 4.4. Results of the Stable Impedance Range Simulations for the First DOF — Simulation Type 1

LN Maximum Stable Mean Standard Deviation
Impedance [Nm/rad] [Nm/rad] 1o [Nm/rad]

0 8-27 10.96 2.99
0.001 4-26 9.84 2.85
0.01 4-24 9.60 3.06
0.1 4-12 6.23 1.89
4-11 4.42 1.07
2 4-7 4.20 0.60

It can be observed from Figure 4.9 and Table 4.4 that the maximum stable

impedances which correspond to the same LN fall into a wide range. For instance,
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the maximum stable impedance of the haptic interface changes between 8 Nm/rad
and 27 Nm/rad for LN = 0. The magnitude of these deviations decreases, except for
the region between LN = 0.001 and LN = 0.01, when the manipulator becomes less
linear. However, the standard deviations are above the resolution of the stable
impedance range calculations (i.e., 1 Nm/rad) for LN = 0, LN = 0.001 and LN =
0.01.

Furthermore, the mean value of the maximum stable impedances decreases, which is
undesirable for the haptic performance, when the manipulator becomes less linear. In
other words, it appears that linearization affects haptic performance positively.

4.1.4.2. Results of Simulation Type 2

In Figure 4.10, the maximum stable impedance values obtained via the stable
impedance range simulations both for the first and second simulation types are given

on the same plot with respect to the LN of the three DOF haptic manipulator.

It can be observed from Figure 4.10 that the maximum stable impedance values
obtained from the first and second simulation types are exactly same when haptic
interface has completely linear dynamics. With increasing non-linearity in the
manipulator dynamics, the maximum stable impedance values obtained for the first

and second simulation types begin to differ from each other.
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Maximum Stable Impedance vs LN Graph - Simulation Type 1 and Type 2
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Figure 4.10. Maximum Stable Impedance vs LN Graph — Simulation Type 1 and Type 2
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The bar graph, given in Figure 4.11, represents the number of haptic manipulators
(among the 100 haptic manipulators for each LN) with different and same maximum
stable impedance values when the results of the first simulation type are compared
with the results of the second simulation type. It can be observed from Figure 4.11
that when the haptic interface has completely linear dynamics (i.e., LN = 0), two
simulation types have exactly the same stable impedance range for 100 haptic
manipulators. However, the percentage of haptic manipulators having the same
stable impedance range in both simulation types decreases from 54% to 8% while
LN increases from 0.001 to 2.
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Figure 4.11. Stable Impedance Range Differences Between Simulation Type 1 and Type 2
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4.1.4.3. Assessments of Stable Impedance Range Simulations

In the first simulation type, different manipulators with same degrees of linearity
have been compared for six different LNs. From the results provided in Section
4.1.4.1, a clear relationship between stable impedance range and LN cannot be
stated. In fact, even haptic manipulators at the same linearity level may have
different maximum stable impedance values. However, these results have been
obtained from the simulations realized under ideal conditions, which partially

reflects the real-world conditions given in Section 4.1.3.

The real effect of the linearization of the equations of motion, however, would
possibly appear in practical applications. For instance, avoiding modeling error is
impossible in practice; but, in the simulations, no modeling error has been
introduced to the compensator. It is expected that the modeling error will be much
less for the linear configurations since many parameters do not contribute to the

manipulator dynamics after the linearization.

In the simulation environment, the required time for the computations realized in the
compensator is not taken into account. The inverse dynamics calculations are
performed in the compensator and modeling linear (or more linear) equations of
motions in the compensator would, definitely, require much less computation time.
Clearly, for a sampling rate, which is as high as 1 kHz, a small delay in the
computations will deteriorate the manipulator performance. Therefore, the time
spent in the compensator in order to solve the equations of motions is very
important. In addition to this, cheaper and less powerful processors can be used as

the compensator, if the computations are not extremely time consuming.

In the second simulation type, the performance of same haptic manipulators has been
compared under different simulation conditions. From the results provided in
Section 4.1.4.2, it can be observed that the haptic manipulators with complete linear
equations of motion have exactly the same performance (both for the first and

second simulation types) regardless of pose of the manipulator and instantaneous
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dynamics of the other links. On the other hand, as the non-linearity increases, the
difference in the results of two different simulation types increases as well.

Therefore, linearization of the manipulator dynamics eliminates (for fully linear
manipulator dynamics) or reduces (for partially linearized manipulator dynamics)
the effects of initial conditions and instantaneous dynamics of the other DOFs on the
performance of the haptic interface. Hence, it appears that the more linear haptic
interface is, the more uniform (over the workspace) the performance of the haptic

interface will become.
4.2. Transparency Bandwidth Simulations

Transparency is a concept that shows how the forces resulting from the virtual
environment are conveyed to the user. It is dependent on both the magnitude and
frequency of the force desired to be reflected. For instance, the device dynamics is
more dominant when the virtual environment has low impedance and applies smaller
forces to the manipulator compared to the device dynamics. Conversely, the
transparency is affected less from the device’s intrinsic dynamics while rendering
higher impedances, which applies larger forces to the manipulator compared to the
device dynamics. On the other hand, lower frequencies are reflected with a higher
transparency, but the transparency value decreases when higher frequencies are

transmitted.

Transparency is the transfer function between the transmitted impedance and the
desired impedance. This transfer function is defined as the ratio of the transmitted
impedance, impedance value sensed by the user, and the actual impedance of the
virtual environment. If the haptic device is perfectly transparent, the impedance of
the virtual environment and the impedance sensed by the user are identical, which

makes the value of the transfer function unity [23].

Since transparency is a frequency dependent property, the concept of transparency
bandwidth has been introduced in order to determine the frequency range that a

haptic device is considered as transparent. For the perfectly transparent haptic
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interface, the magnitude of frequency response of the transparency transfer function
is 0 dB. However, a haptic device is also considered as transparent as long as the
magnitude of the transparency transfer function remains within +3 dB. Therefore,
transparency bandwidth is defined as the frequency value that the magnitude of
transparency transfer function crossovers +3 dB [23]. Detailed conditions for a
haptic interaction to be considered as transparent can be found in Section 4.2.2.

In an ideal case, the transparency bandwidth has to be evaluated throughout the
stable impedance range. However, in order to see the relationship between LN and
transparency bandwidth, a single impedance value is selected and the corresponding
transparency bandwidth is calculated for manipulators with different LNs. If a
meaningful relationship is detected between them, additional simulations need to be

performed for the whole stable impedance range.

The layout of Section 4.2 is similar to Section 4.1. In this section, a model
constructed for the simulations, transparency bandwidth calculations, simulation
conditions, adopted assumptions, obtained results and assessments are presented.
Since there are several common subjects for both the stable impedance range and the
transparency bandwidth simulations, by considering the information given in Section

4.1, only the differences between them are explained in the following sections.
4.2.1. Simulation Model

Similar to Section 4.1.1, the three main parts of the simulation model are listed

below.

e The three DOF haptic interface
e The compensator

e The virtual environment

While the model constructed for the compensator is exactly the same, the haptic

interface and the virtual environment models contain some differences.
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4.2.1.1. Model of the Haptic Interface

In stable impedance range simulations, a single joint (the first DOF) is excited with
the torque resulting from the virtual environment while the remaining joints are
either locked at their initial positions or rotated with specified velocities according to
the selected simulation type. For the transparency bandwidth simulations, a
predefined path is defined for the first DOF. Similar to the stable impedance range
simulations, the remaining joints either remain stationary at their initial positions or
move with specified velocities according to the selected simulation type. The block
scheme of the haptic interface model is presented in Figure 4.12.

Block for desired path &
measurement of the user forces

Figure 4.12. Haptic Interface Model for the Transparency Bandwidth Simulations

The haptic interface model, provided in Figure 4.12, is similar to the one given in
Figure 4.1. However, in this case the manipulator follows a desired path for the
transparency bandwidth simulations. The desired path is defined in Simulink as

presented in Figure 4.13.
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Figure 4.13. Application of the Desired Path and Measurement of the User Forces

Additionally, the force, generated by the user while moving the haptic interface and
interacting with the virtual environment, must be measured in order to compute the
difference between the actual force transmitted to the user and the desired force that

the user must apply at a certain position of the virtual environment.

The measurement of the user force in the simulation environment is also presented in
Figure 4.13.

4.2.1.2. Model of the Compensator

The compensator model used for the transparency bandwidth simulation is identical

with the one given in Section 4.1.1.2.
4.2.1.3. Model of the Virtual Environment

Two separate virtual environment models are constructed for transparency

bandwidth simulations.
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The ideal virtual environment model, given in Figure 4.14, is only utilized in order
to obtain the desired impedance value. It uses the actual sensor position and applies
the force at the actual simulation time step.

Virtual Environment - Ideal

Figure 4.14. 1deal Virtual Environment Model for the Transparency Bandwidth Simulations

The implemented virtual environment model, given in Figure 4.15, is constructed
similar to the virtual environment model explained for the stable impedance range

simulations in Section 4.1.1.3.

Different from the ideal virtual environment model, the implemented one uses
quantized data obtained from the sensors and ZOH during the force reflection, which
may cause an error, depends on the frequency of the hand movement, between the

desired force and the transmitted force.

Virtual Environment - Implemented

ZDHI:I
Lo} o

Figure 4.15. Implemented Virtual Environment Model for the Transparency Bandwidth Simulations
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4.2.1.4. Composition of the Simulation Model

Similar to Section 4.1.1.4, the complete layout of the simulation model is shown in
Figure 4.16.

| Haptic Interface Model

An Gn, Gn |

Ideal Virtual Env.
eal Virtual Env M
Ip

Imp. Virtual Env.

ooooooooooo

L

>
=

= Compensator
= i,

Figure 4.16. Complete Layout of the Simulation Model for the Transparency Bandwidth Simulations

The parameters of the block scheme used in Figure 4.16 are listed below.

7. : The impedance of the haptic display in the joint space. For the transparency
bandwidth simulations, it corresponds to the haptic interface model given in Section
4.2.1.1.

7. : The modeled impedance of the haptic display in the joint space. For the
transparency bandwidth simulations, it corresponds to the compensator model given
in4.2.1.2.

T¢ : The feedforward torque which is calculated by the compensator considering

the manipulator’s instantaneous motion.

Th : The joint torque resulting from the force applied by the user to the end-

effector of the haptic display

dn : The actual joint position of the haptic interface
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dn : The actual joint velocity of the haptic interface

dn : The actual joint acceleration of the haptic interface

dn : The sensed (quantized) joint position of the actual joint position, qy,

dn : The sensed (quantized) joint velocity of the actual joint velocity, qy,

dn : The sensed (quantized) joint acceleration of the actual joint acceleration, gy,
Zp : The impedance of the ideal virtual environment. For the transparency

bandwidth simulations, it corresponds to the ideal virtual environment model given
in4.2.1.3.

Tp : The joint torque calculated by the ideal virtual environment

Zeo : The impedance of the implemented virtual environment. For the
transparency bandwidth simulations, it corresponds to the implemented virtual

environment model given in 4.2.1.3.

Timp - 1he joint torque calculated by the implemented virtual environment

™ : The torque transmitted to the user

During the haptic interaction, the user applies torque to the haptic manipulator in
order to move the device to the desired position (i.e., T;) and at the same time, the
user resists the virtual environment torques (i.e., Timp). The compensator of the
haptic device generates the feedforward torque (i.e., t¢) in order to eliminate the
torque resulting from the inherent dynamics of the haptic interface. The resultant of
the three torques mentioned above is equal to the transmitted torque (i.e., Ty), which
is to be compared with the desired torque (i.e., Tp) in order to calculate the

transparency bandwidth of the haptic manipulator.
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Detailed calculation procedure of the transmitted and desired torque and the
transparency bandwidth of the haptic interface are explained in the following

section.
4.2.2. Transparency Bandwidth Calculation Methodology

The transparency bandwidth is defined as frequency range of the motion input that a
haptic device is considered as transparent. However, transparency bandwidth is not
uniform over the entire workspace of a haptic manipulator. It varies with the pose of
the manipulator. It also varies due to the dynamics resulting from the joint

interactions.

Similar to the stable impedance range simulations, in order to observe the effects of
linearization, two different types of transparency bandwidth simulations have been
performed.

In the first simulation type, a virtual wall is implemented on the first DOF of the
three DOF haptic interface. Therefore, the transparency bandwidth of the haptic
manipulator is obtained only for the first DOF by introducing an excitation to the
first DOF while the second and third DOFs remain stationary at their initial
positions. In the second simulation type, the virtual wall is again implemented on the
first DOF of the three DOF haptic interface. Similar to the first simulation type, the
transparency bandwidth is only obtained for the first DOF. However, this time, an

excitation acts on the remaining two DOFs of the haptic manipulator.
For both simulation types, the calculations are performed as described below.

e In the first simulation type, only the first DOF of the haptic manipulator is
excited with a varying velocity and acceleration by using a chirp signal that
corresponds to the joint displacement. A chirp signal is a cosine signal with a
constant amplitude, where the frequency is increased from the selected initial
frequency to the target swept-frequency along the desired swept time. An

example chirp signal is shown in Figure 4.17. Besides the first DOF, the
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second and third DOFs remain stationary at their initial positions for the first
simulation type.

In the second simulation type, the chirp signal which is used in the first
simulation type in order to excite the first DOF is used for all DOFs of the
haptic manipulator.

The joint wvelocities (i.e., q) and accelerations (i.e., ) are obtained by

differentiating the chirp signal, which represents the joint position (i.e., q),

with respect to the simulation time.

Example Chirp Signal
0.3 N T

“ ' TP

\ ‘l‘ ” Chirp Signal Properties

E‘ | ‘ Amp.: 0.3 rad

02 F \ ‘ Init. Freq: 0.1 Hz

l\ ‘ ‘ ‘ Target Freq: 15 Hz

\ | ‘ Swept Time: 10 s

01 Frequency Swep: Linear
AF / ‘

0 1 2 3 4 5 6 7 8 9

Time [s]
The torque (i.e., t,) that moves the manipulator in the specified path is
measured using the model given in Figure 4.13. This torque is only due to the

internal dynamics of the haptic interface as if there is no virtual environment
and compensation.

Magnitude [rad]
o

01k |

02F |

10

Figure 4.17. Example Chirp Signal

The compensator torque (i.e., t¢) is calculated from the compensator model.

Ideally, t¢ should be equal to t;, and the compensator should perfectly
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eliminate the device dynamics. However, this is not possible due to the
quantization error.

The desired torque (i.e., tp) is measured using the ideal virtual environment
model shown in Figure 4.14.

The desired impedance (i.e., Zp) is estimated as a function of frequency after
dividing of the cross power spectral density between the displacement (i.e.,
q) and the desired torque output (i.e., Tp) by the power spectral density of the
displacement input (i.e., ) [35], [36]. The calculation method is approved by
observing a constant amplitude across the whole frequency range, which is
equal to the impedance, set for the simulations.

The transmitted torque (i.e., Ty) is calculated from the formula given by
equation (4.1). The torque applied by the virtual environment (i.e., Timp) is

evaluated by using the model given in Figure 4.15.

T™™ = Th + Timp — Tt (4.2)

Similar to the desired impedance, the transmitted impedance (i.e., Zy) is
evaluated as a function of frequency by dividing the cross power spectral
density between the position input (i.e., q) and the transmitted torque output
(i.e., Tv) by the power spectral density of the position (i.e., q).

The transparency, which is defined as the ratio of transmitted impedances to
desired impedances [23], can be computed via equation (4.2). Note that the
transfer function is equal to unity when the haptic interface is perfectly
transparent.

Gr =
T ZD

(4.2)

The transparency bandwidth is obtained from the frequency response of the

transparency transfer function given in equation (4.2). A haptic device is
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considered as transparent if the magnitude of frequency response of the
transparency transfer function lies within +3 dB [23]. Hence, the frequency
value that the magnitude of the transparency transfer function crossovers 3
dB band is defined as the transparency bandwidth of the haptic interface (see
Figure 4.18).

Frequency Response of the Transparency Transfer Function

25 =

20 b

Magnitude [dB]

L __— (A A e
| SRR R

Transparency | |
10! 100 Bandwidth 10! 102

Frequency [Hz]

Figure 4.18. Frequency Response of the Transparency Transfer Function

4.2.3. Simulation Conditions

The simulation conditions stated in Section 4.1.3, except for the conditions (v) and
(viii), are also valid in this section. Additional considerations regarding the

transparency bandwidth simulations are given below.
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ii.  Properties of the chirp signal used in order to excite the joint are listed below.

Amplitude : 0.3 radians
Initial Frequency :0.1Hz
Target Frequency  : 15 Hz
Swept Time : 10 seconds
Frequency Sweep  : Linear

According to the simulation type, the related joints are excited with chirp

signal defined in Table 4.5.

Table 4.5. Conditions of the Simulation Types

Simulation . . : . .
! Tl;/pel DOF Desired Path of the Joints  Desired Velocity of the Joints
1% Excited with chirp signal Excited with chirp signal
1 2" 0 0
3rd O O
1 Excited with chirp signal Excited with chirp signal
2 2" Excited with chirp signal Excited with chirp signal
3" Excited with chirp signal Excited with chirp signal

In Simscape Multibody, position, velocity, and acceleration values are
required in order to actuate a joint. The properties of the chirp signal given
above are used to define the desired joint positions of each DOF. The joint
velocities and accelerations are calculated by simply differentiating two
successive positions/velocities and dividing it by the time step of the
simulation. Equation (4.3) shows the basic formulation for the joint velocity
and acceleration derivation. Note that only a single joint is actuated during a

simulation.
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_ (Clt1 - Qto)

151

ty — 1t
(4.3)
(4, —ay)
B =t
where
qe, . The joint position at the current time step
dt, - The joint position at the previous time step (The initial conditions of
joint positions are set to zero for all joints.)
de, : The joint velocity at the current time step
dt, - The joint velocity at the previous time step (The initial conditions of
joint velocities are set to zero for all joints.)
de, : The joint acceleration at the current time step. (The initial conditions

of joint accelerations are set to zero for all joints.)

ti-ty : Timestep of the simulation

The impedance of the virtual environment is set to 4 Nm/rad for the first
DOF. It is the only impedance value (obtained from the stable impedance
simulations) that can be rendered stably by all haptic manipulators used in

this study.

The total simulation time is set to 10 seconds in all transparency bandwidth

simulations.
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4.2.4. Simulation Results and Assessments

Similar to the stable impedance range simulations, the transparency bandwidth
simulations are performed for the 600 different manipulators given in Table 3.3. In
order to investigate the effects of the linearization, two different simulations types
are realized. Therefore, a total of 600 x 2 = 1200 different simulation cases have
been realized. In the first simulation type, the transparency bandwidth values of the
first DOF of the three DOF haptic manipulator are obtained. During these
simulations, the second and third DOFs are kept stationary at their initial positions.
In the second simulation type, similar to the first one, the transparency bandwidth
values of the first DOF of the three DOF haptic manipulator are obtained. However,
during these simulations, the second and third DOFs are moved on a previously

defined path with a previously defined velocity.

In the first part of this section, beeswarm plots are provided for the first simulation
type. The x-axis of the graphs corresponds to the six LN values given in Table 3.3.

The y-axis of the graphs corresponds to the transparency bandwidth.

In these graphs, the transparency bandwidth values are grouped with respect to the
six LNs given in the x-axis and jitter is added (along the x-axis) to the overlapped
values in the y-axis (in order to see the distribution of the transparency bandwidth
values). Each circle in the graph represents the result of a single simulation. Each LN
set contains 100 circles and a total of 600 circles are plotted in a single graph.
Furthermore, mean values and standard deviations of the transparency bandwidth are

also calculated and represented (for each LN) in the graphs.

In the second part of this section, the transparency bandwidth values of the first and
second simulation types are presented on the same plot in order to see the difference
in performance of the haptic interface when the remaining joints are not stationary.
In these graphs, while the x-axis of the graphs corresponds to the simulation number
(performed with 100 different haptic manipulators given in Table 3.3), the y-axis of

the graphs corresponds to the transparency bandwidth value. Six separate plots, each

87



containing the transparency bandwidth values of 100 different haptic manipulators,
are provided for each LN separately. At the end, the number of haptic manipulators
whose performance varies and the number of haptic manipulators whose
performance remains the same through the two different simulation types are

presented using a bar graph.
4.2.4.1. Results of Simulation Type 1

In Figure 4.19, the transparency bandwidth values obtained via the transparency
bandwidth simulations of the first DOF are given with respect to the LN of the three
DOF haptic manipulator. The results are summarized in Table 4.6 by providing the
highest and the lowest value of the transparency bandwidth for each LN.
Furthermore, the mean value and the standard deviation of the transparency
bandwidth are also listed for each linearity level.

Transparency Bandwidth vs LN Graph - 15t DOF

45 1
O  Transparency Band. of Single Simulation
— » — Mean of Transparency Band.
Std. Dev. of Transparency Band.
4 +

w
a
T

Transparency Bandwidth [Hz]
w

N
()}
T

LN=0 LN=0.001 LN=0.01 LN=0.1 LN =1 LN =2

Figure 4.19. Transparency Bandwidth vs LN Graph for the First DOF — Simulation Type 1
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Table 4.6. Results of the Transparency Bandwidth Simulations for the First DOF — Simulation Type 1

LN Transparency Bandwidth Mean Standard Deviation
[HZ] [HZ] 1o [HZ]

0 2.1-2.3 2.2 0.1
0.001 2.1-25 2.2 0.1
0.01 2.1-2.4 2.2 0.1
0.1 2.1-2.38 2.3 0.1
2.6 -3.7 3.1 0.2
2 29-40 3.4 0.2

It can be observed from Figure 4.19 and Table 4.6 that the transparency bandwidth
values, corresponding to the same LN, lie in a wide range. For instance, the
transparency bandwidth of the haptic interface changes between 2.9 Hz and 4.0 Hz
for LN = 2. The magnitude of these deviations increases, when the manipulator

becomes less linear.

Furthermore, the mean value of the transparency bandwidth increases, which is
desirable for the haptic performance, when the manipulator becomes less linear. In

other words, it appears that linearization affects haptic performance negatively.
4.2.4.2. Results of Simulation Type 2

In Figure 4.20, the transparency bandwidth values obtained via the transparency
bandwidth simulations both for the first and second simulation types are given on the

same plot with respect to the LN of the three DOF haptic manipulator.

It can be observed from Figure 4.20 that the transparency bandwidth values obtained
for the first and second simulation types are exactly same when the haptic interface
has completely linear dynamics. With increasing non-linearity in the manipulator
dynamics, the transparency bandwidth values obtained for the first and second

simulation types begin to differ from each other.
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Figure 4.20. Transparency Bandwidth vs LN Graph — Simulation Type 1 and Type 2
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The bar graph, given in Figure 4.21, represents the number of haptic manipulators
(among the 100 haptic manipulators for each LN) with different and same
transparency bandwidth values when the results of the first simulation type are
compared with the results of the second simulation type. It can be observed from
Figure 4.21 that when the haptic interface has completely linear dynamics (i.e., LN =
0), the two simulation types have exactly the same transparency bandwidth for 100
haptic manipulators. However, the percentage of haptic manipulators having the
same transparency bandwidth in both simulation types decreases from 93% to 0%
while LN increases from 0.001 to 2.
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Figure 4.21. Transparency Bandwidth Differences Between Simulation Type 1 and Type 2
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4.2.4.3. Assessments of Transparency Bandwidth Simulations

Similar to the results of the stable impedance range simulations given in Section
4.1.4, in the first simulation type, different manipulators with same degrees of
linearity have been compared for six different LNs. From the results provided in
Section 4.2.4.1, a clear relationship between transparency bandwidth and LN cannot
be deduced. In fact, even haptic manipulators at the same linearity level may have
different transparency bandwidth values. However, these results are obtained from
the simulations realized under ideal conditions, which partially reflects the real-
world conditions given in Section 4.2.3.

As mentioned in Section 4.1.4, the real effect of the linearization of the equations of
motion, however, would possibly appear in practical applications. For instance,
avoiding modeling error is impossible in practice; but, in the simulations, no
modeling error has been introduced to the compensator. It is expected that the
modeling error will be much less for the linear configurations since many parameters

do not contribute to the manipulator dynamics after the linearization.

In the simulation environment, the required time for the computations realized in the
compensator is not taken into account. The inverse dynamics calculations are
performed in the compensator and modeling linear (or more linear) equations of
motions in the compensator would, definitely, require much less computation time.
Clearly, for a sampling rate, which is as high as 1 kHz, a small delay in the
computations will deteriorate the manipulator performance. Therefore, the time
spent in the compensator in order to solve the equations of motions is very
important. In addition to this, cheaper and less powerful processors can be used as

the compensator, if the computations are not extremely time consuming.

In the second simulation type, the performance of same haptic manipulators has been
compared under different simulation conditions. From the results provided in
Section 4.2.4.2, it can be observed that the haptic manipulators with complete linear

equations of motion have exactly the same performance (both for the first and
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second simulation types) regardless of the pose of the manipulator and the
instantaneous velocity of other links. On the other hand, as the non-linearity
increases, the difference in the results of two different simulation types increases as

well.

Therefore, linearization of the manipulator dynamics eliminates (for fully linear
manipulator dynamics) or reduces (for partially linearized manipulator dynamics)
the effects of initial conditions and instantaneous dynamics of the other DOFs on the
performance of the haptic interface. Hence, it appears that the more linear haptic
interface is, the more uniform (over the workspace) the performance of the haptic

interface will become.
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CHAPTER 5

CONCLUSION AND FUTURE WORK

In this thesis, manipulator dynamics of two selected haptic interfaces and the effects
of manipulator dynamics on the performance of haptic interfaces are investigated in
detail. As the haptic interface, the three and six DOF configurations of Phantom

Premium 1.5 are preferred due to their reputations in the research area.

Firstly, the equations of motion of the selected haptic interfaces are derived in
symbolic form. A generic computer code, which obtains the equations of motion of a
hybrid manipulator composed of revolute and prismatic joints, is developed. The
equations of motion of the three and six DOF configurations of Phantom Premium
1.5 are successfully derived. The equations of motion of the three DOF haptic

interface have been compared against the derived equations of motion in [25].

Secondly, linearization of the obtained equations of motion of the three and six DOF

configurations has been attempted via the concept of LN.

The three DOF haptic interface has 55 parameters, consisting of link lengths,
masses, mass center positions and elements of inertia tensor, that affect the equations
of motion. After fixing the five link lengths in order not to affect the workspace of
the manipulator, 50 inertial parameters are left for design. Additionally, two different
types of constraints are imposed on the design parameters in order to construct a

physically realizable and practical manipulator.

By using the method of Lagrange Multiplier, the conditions that the 50 design
variables must satisfy in order to minimize LN have been obtained in closed form.
As a result, the equations of motion of the three DOF haptic interface are completely
linearized. Although, complete linearization of a three DOF serial manipulator has

already been realized in previous studies; in this study, linearization of a three DOF
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hybrid manipulator that contains a loop is achieved. To the author’s knowledge, such

a linearization does not exist in literature.

A similar optimization procedure is also utilized for the six DOF haptic interface.
After fixing the eight link lengths, among the 88 parameters that affect the equations
of motion, 80 inertial parameters are left for design. As opposed to the three DOF
haptic interface, only one type of constraint is defined for the six DOF configuration.
While the constraints for obtaining a physically realizable manipulator are
conserved, the constraints for designing a practical manipulator are kept extremely
loose in order to observe whether complete linearization can be achieved. By using
the method of Lagrange Multiplier, it is shown that complete linearization of the
equations of motion of six DOF haptic interface is not possible (for the specified set

of kinematic dimensions).

Lastly, simulations are performed, by utilizing the three DOF haptic interface, in
order to observe the effects of linearization of manipulator dynamics of a haptic
device on the stable impedance range and the transparency bandwidth properties. Six
manipulator sets are constructed for six different LN values. Each manipulator set

contains 100 different manipulators at the same degree of linearity.

For the stable impedance range and the transparency bandwidth simulations, a
distinct mathematical model of the haptic interface, a virtual environment model and
a compensator model have been built. Two different types of simulations have been
performed both for stable impedance range and transparency bandwidth performance
criteria. In the first simulation type, the performance of the first DOF of the haptic
interface is obtained while the second and third DOFs are stationary. On the other
hand, in the second simulation type, the performance of the first DOF of the haptic
interface has been obtained while the second and third DOFs are moved on a
predefined path with a predefined velocity. A total of 1200 different cases, per
performance criteria, have been simulated for the first DOF of the 600 different

manipulators. At the end of the simulations, the obtained results have been
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investigated both for the stable impedance range and the transparency bandwidth

simulations.

Using the results of the first simulation type, a strong relationship between the two
performance criteria (i.e., stable impedance range and transparency bandwidth) and
LN cannot be stated. Even for haptic manipulators with the same degrees of
linearity, the simulation results considerably vary to be able to declare a correlation.
For instance, the maximum stable impedances of the three DOF haptic device
change from 8 Nm/rad to 27 Nm/rad, for the first DOF, when LN = 0. On the other
hand, the transparency bandwidth of the three DOF haptic device changes from 2.9
Hz to 4.0 Hz, for the first DOF, when LN = 2.

For the stable impedance range simulations, the mean value of maximum stable
impedances decreases as non-linearity increases. On the other hand, the mean value
of transparency bandwidth increases as non-linearity increases. Therefore, when the
stable impedance range of the three DOF haptic interface is considered, linearization
affects the system performance positively. Conversely, linearization seems to be

harmful for the transparency bandwidth of the three DOF haptic interface.

Although a strong correlation between the performance of a haptic device and LN
cannot be deduced from the simulation results, the simulations that have been
performed under ideal conditions may conceal the real effects of linearization on the
stable impedance range and transparency bandwidth. For instance, the modeling
error of a haptic interface, implemented in the compensator, is neglected. However,
when the haptic manipulator has linear equations of motion, fewer design variables
contribute to the manipulator dynamics. Thus, modeling error will be less even if the
design variables are identified incorrectly. In addition to the modeling error, delays
due to computations realized in the compensator have also been neglected. When the
manipulator has linear dynamics, it has simpler equations of motion and solving

them requires less computation power, which leads to faster computations.
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Using the results of second simulation type, it can be observed that there is no
difference (both for the stable impedance range and transparency bandwidth
simulations) between the results of simulation type 1 and simulation type 2 when the
haptic manipulators have completely linear equations of motion. Furthermore,
among the 100 different manipulators for each LN, the difference between the
results of simulation type 1 and simulation type 2 of the stable impedance range
simulations increases from 0% to 92% as the non-linearity increases. Similar to the
stable impedance range simulations, in transparency bandwidth simulations, the
difference between the results of simulation type 1 and simulation type 2 increases

from 0% to %2100 as the non-linearity of the manipulator dynamics increases.

Therefore, it appears that linearization of the equations of motion provides the haptic
manipulator a more uniform performance over its workspace by eliminating the
performance (considering two performance criteria; stable impedance range and
transparency bandwidth) difference of the haptic interface resulting from the initial
conditions of the manipulator and the instantaneous dynamics of the remaining
DOFs.

Lastly, as future work, a new simulation environment, which reflects the physical
world conditions better, can be constructed and additional simulations can be
performed in order to observe the practical effects of linearization on the stable

impedance range and the transparency bandwidth.

In addition to this, also as future work, requirements for a stable haptic interaction
(both for linear and non-linear configurations), can be derived analytically (rather
than directly obtaining the maximum stable impedance value via simulations) in
terms of design parameters of the haptic manipulator, parameters of the virtual
environment and simulation conditions (i.e., sampling time). Therefore, the effect of
each parameter on the stable haptic interaction can be observed separately and the
relationship between linearization and performance of the haptic interface can be

evaluated more clearly.
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APPENDICES

A. Results of Dynamic Analysis

Elements of actuator torque vector, validation results and comparison of the derived

equations of motion with the ones that are obtained in [25] ones are presented in the

following sections.

Al E

lements of the Actuator Torque Vector

The first row (t,)

(1. Ixz2Cos[theta2[t]] +1. Ixz2aCos[theta2[t]] +

. 12m2ar2az Cos[theta2[t]] + 1. m2ar2ax r2az Cos[theta2[t]] +

1.m2r2xr2zCos[theta2[t]] -1.12m3 r3y Cos[theta2[t]] -

. Ixy3 Cos[theta2[t] + theta3[t]] - 1. Ixy3aCos[theta2[t] +theta3[t]] -
. m3ar3axr3ay Cos[theta2[t] + theta3[t]] - 1. m3 r3xr3y Cos[theta2[t] + theta3[t]] -

(1. Iyz2 + 1. Iyz2a+1.m2ar2ayr2az+1.m2r2y r'zz) Sin[thetaz[t]] +
(1. Iyz3+1. Iyz3a-1.13am2ar2az+1.13am3ar3ay + 1. m3ar3ayr3az+1.m3r3yr3z)

Sin[theta2[t] +theta3[t]]) theta2’ [t]%-

2. (1

(,

- Ixy3+1.Ixy3a+1.m3ar3axr3ay +1.m3r3xr3y) Cos[thetaz(t] +theta3[t]] +
1.Iyz3-1.Iyz3a+1.13am2ar2az - 1. 13am3ar3ay - 1. m3ar3ay r3az - 1. m3 r3y r3z)

Sin[theta2[t] + theta3[t]]) theta2’[t] theta3’[t] +

(-1,

(1

Ixy3 -1.Ixy3a-1.m3ar3axr3ay-1.m3r3xr3y) Cos[thetaz[t] +theta3[t]] +
. Iyz3 +1. Iyz3a-1. 13am2ar2az+1. 13am3ar3ay + 1. m3ar3ay r3az+1. m3r3y r‘3z)

Sin[theta2[t] + theta3[t]] ) theta3’ [t]%+ thetal [t]

(((-

2. Ixy2-2.Ixy2a-2.12m2ar2ay-2.m2ar2axr2ay - 2. m2r2x r‘2y) Cos[2theta2[t]] +
(72. Ixz3 -2, Ixz3a-2,13am3ar3ax-2.m3ar3axr3az-2.m3r3x I“3ZJ
Cos[2 (theta2[t] +theta3[t]}] - 2. 12 13am2a Cos[2 theta2[t] + theta3[t]] - 2. 13a
m2a r2ax Cos[2 theta2[t] + theta3[t]] - 2. 12m3 r3z Cos[2 theta2[t] + theta3[t]] +
1. Ixx2Sin[2 theta2[t]] + 1. Ixx2aSin[2 theta2[t]] - 1. Iyy2Sin[2 theta2[t]] -
1. Iyy2asSin[2theta2[t]] - 1. 12?m2aSin[2 theta2[t]] - 1. 12?m3 Sin[2 theta2[t]] -
2.12m2ar2axSin[2 theta2[t]] - 1. m2a r2ax? Sin[2 theta2[t]] + 1. m2a r2ay?
Sin[2theta2[t]] - 1. m2 r2x?Sin[2 theta2[t]] + 1. m2 r2y?Sin[2 theta2[t]] +
1. Ixx3Sin[2 (theta2[t] + theta3[t]) ] +1. Ixx3aSin[2 (theta2[t] +theta3[t])] -
1.1zz35in(2 (theta2[t] + theta3[t]) ] - 1. Izz3aSin[2 (theta2[t] + theta3[t])] +
1.13a’m2asin[2 (theta2[t] + theta3[t]) ] + 1. 13a®m3a
Sin[2 (theta2[t] + theta3[t]}] - 1. m3ar3ax?sin[2 (theta2[t] + theta3[t])] +

-‘:1. Ixz2Cos|[theta2[t]] + 1. Ixz2a Cos[theta2[t]] +

1.

1
1
1.
1
1

2. (|

12 m2ar2az Cos[theta2[t]] + 1. m2a r2ax r2az Cos[theta2[t]] +

.m2r2x r2z Cos[theta2[t]] - 1. 12m3 r3y Cos [theta2[t]] -

. Ixy3 Cos[theta2[t] + theta3[t]] - 1. Ixy3a Cos[theta2[t] + theta3[t]]

m3a r3ax r3ay Cos[theta2[t] + theta3[t]] - 1. m3 r3x r3y Cos|[theta2[t] + theta3 [t]] -
+ (1. Iyz2 + 1. Iyz2a + 1. m2a r2ay r2az + 1. m2 r2y r2z| Sin[theta2[t]] +

. (1. Iyz3+1. Iyz3a-1. 13am2ar2az + 1. 13am3a r3ay + 1. m3a r3ay r3az + 1. m3 r3y r3z)
sin[theta2[t] + theta3[t]]) theta2'[t]? -

1. Ixy3 +1. Ixy3a+1.m3ar3axr3ay+1.m3r3xr3y| Cos|[theta2[t] + theta3[t]] +

-1. Iyz3 - 1. Iyz3a+ 1. 13am2ar2az - 1. 13am3a r3ay - 1. m3a r3ay r3az - 1. m3 r3y r3z)
sin[theta2[t] + theta3[t]]) theta2’[t] theta3'[t] +

((-1. Ixy3-1.Ixy3a-1.m3ar3axr3ay-1.m3r3xr3y) Cos|theta2[t] +theta3(t]] +

1.Iyz3+1.Iyz3a-1.13am2ar2az+1.13am3ar3ay+1.m3ar3ayr3az+1.m3r3yr3z)
sin[theta2[t] + theta3[t]]) theta3’[t]? + thetal [t]
~2. Ixy2 - 2. Ixy2a - 2. 12m2ar2ay - 2. m2a r2ax r2ay - 2. m2 r2x r2y) Cos[2 theta2[t]] +

Figure 0.1. First Actuator Torque
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(-2. Ixz3-2. Ixz3a- 2. 13am3ar3ax -2.m3ar3axr3az-2.m3r3xr3z)
Cos[2 (theta2[t] + theta3[t])]| - 2. 12 13am2a Cos [2 theta2([t] + theta3[t]] - 2. 13a
m2a r2ax Cos [2 theta2[t] + theta3[t]] - 2. 12m3 r3z Cos[2 theta2[t] + theta3[t]] +

1. Ixx2Sin[2 theta2[t]] + 1. Ixx2aSin[2 theta2(t]] - 1. Iyy2Sin[2theta2([t]] -

1. Iyy2aSin[2theta2(t]] - 1. 12?m2aSin[2 theta2[t]] - 1. 12?m3 Sin[2theta2(t]] -

2. 12m2ar2axSin[2 theta2[t]] - 1. m2a r2ax® Sin[2 theta2[t]] + 1. m2a r2ay?
sin[2theta2([t]] - 1. m2r2x?Sin[2theta2[t]] + 1. m2r2y? Sin[2theta2[t]] +

1. Ixx3 Sin[z (theta2[t] + theta3[t])| +1. Ixx3a Sin[z (theta2[t] + theta3[t]) !

1. Izz35in|2 (theta2[t] + theta3[t])| - 1. Izz3aSin|2 (theta2[t] + theta3[t])] +

1.13a’m2aSin[2 (theta2(t] + theta3[t])] + 1. 13a’m3a
sin[2 (theta2[t] + theta3[t])] - 1. m3ar3ax?Sin[2 (theta2(t] + theta3[t])] +

1.12m3r3x Sin[2 theta2[t] + theta3[t]]) theta3'[t]) +
2 (6.25 Ixx2 +0.25Ixx2a +0.25Ixx3+0.25Ixx3a+0.5Tyyl +0.25Iyy2 +
©.25Iyy2a+0.251z23 + 0,25 Izz3a + 0.25 122 m2a +
©.2513a%m2a + ©.25122m3 + ©.25 13a’m3a + ©.5ml r1x? +
©.5mlrlz2 +@.512 m2a r2ax + .25 m2a r2ax? +
©.25m2a r2ay? + @.5m2a r2az? + .25 m2 r2x? +
©.25m2 r2y? + @.5m2 r2z% + .25 m3a r3ax? +
©.5m3ar3ay’?+0.513am3ar3az + 0.25m3a r3az? +
9.25m3r3x? +0.5m3 r3y? + 8.25m3 r3z% +
(-©.25 Ixx2 - 8.25 Ixx2a + 8.25 Iyy2 + ©.25 Iyy2a + ©.25 12’ m2a + 8.25 12 m3 +
.5 12m2a r2ax + .25 m2a r2ax’ - .25 m2a r2ay” + 8.25m2 r2x’ - .25 m2 r2y’)
Cos[2theta2[t]] + (0.5 13am2ar2ay +@8.512m3 r‘Sx) Cos[theta3[t]] -
.25 Ixx3 Cos[2 (theta2[t] + theta3[t])
.25 Ixx3aCos |2 (theta2[t] +theta3[t])] +
.251zz3 Cos[2 (theta2[t] + theta3[t])
.251z73aCos |2 (theta2[t] + theta3|t]
.2513a%m2a Cos |2 (theta2[t] + theta3|
.2513a? m3a Cos |2 (theta2[t] + theta3
.25m3a r3ax? Cos |2 (theta2[t] + thetas

° 1] -
° J]+
] |+
° -
] t1)] -
2] [t] ) ] +
° ()] -
@.513am3ar3azCos|2 (theta2[t] +theta3[t])] -

0.25m3a r3az’ Cos |2 (theta2[t] + theta3[t])] +

@.25m3 r3x? Cos[2 (thetaz[t] + theta3[t]) ] -

@.25m3 r3z2 Cos[2 (theta2[t] + theta3[t]) ] -

0.5 13am2ar2ay Cos[2 theta2[t] + theta3[t]] +

0.512m3 r3x Cos [2 theta2[t] + theta3[t]] -

0.5 Ixy2Sin[2 theta2[t]] - ©.5Ixy2aSin[2 theta2[t]] -

0.512m2ar2ay Sin[2 theta2[t]] - ©.5m2a r2ax r2ay Sin[2 theta2[t]] -

0.5m2 r2x r2y Sin[2 theta2[t]] - @.512 13am2a Sin[theta3[t]] -

©.513am2ar2ax Sin[theta3[t]] -0.512m3 r3z Sin[theta3[t]] -

0.5 Ixz3 Sin[2 (theta2[t] « theta3[t])] -

0.5 Ixz3a Sin[2 (theta2[t] + theta3[t])] -

©.513am3ar3axSin|2 (theta2[t] + theta3[t])] -

©.5m3a r3ax r3az Sin[2 (theta2[t] + theta3[t])] -

©.5m3 r3x r3zSin(2 (theta2[t] + theta3[t])] -

©.512 13am2aSin[2 theta2[t] + theta3[t]] -

0.5 13am2ar2ax Sin[2 theta2[t] + theta3[t]] -

©.512m3 r3zSin[2 theta2[t] + theta3[t]]) thetal”[t] +
((1.Iyz2+1. Iyz2a+1.m2ar2ayr2az+1.m2r2yr2z) Cos[theta2([t]] +

(-1.Iyz3-1.Iyz3a+1.13am2ar2az-1.13am3ar3ay- 1. m3ar3ayr3az-1.m3r3yr3z)
Cos[theta2[t] + theta3[t]] + 1. Ixz2Sin[theta2[t]] +
. Ixz2aSin[theta2[t]] +1. 12m2a r2az Sin[theta2[t]] +
. m2ar2axr2azSin[theta2[t]] + 1. m2 r2x r2z Sin[theta2([t]] -
.12m3 r3y Sin[theta2[t]] - 1. Ixy3 Sin[theta2[t] + theta3[t]] -
. Ixy3aSin[theta2[t] + theta3[t]] - 1. m3ar3axr3ay Sin[theta2[t] + theta3[t]] -
.m3 r3xr3ySin[theta2[t] + theta3[t]]) theta2”[t] +
. Iyz3-1. Iyz3a+1. 13am2ar2az-1. 13am3ar3ay - 1. m3ar3ay r3az - 1. m3 r3y r3z)
Cos[theta2[t] + theta3(t]] + (-1. Ixy3-1. Ixy3a-1.m3ar3axr3ay-1.m3r3xr3y)
sin[theta2[t] + theta3[t]]) theta3”[t]

1
1
1
1
1
1

Gl

Figure 0.1. Continued
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The second row (t,) :

g (- (12 (m2a + m3) + m2a r2ax + m2 r2x) Cos[theta2[t]] - (m3ar3ax +m3 r3x)
Cos[theta2[t] + theta3[t]] + m2a r2ay Sin[theta2[t]] +m2 r2y Sin[theta2[t]] +
13am2aSin[theta2[t] + theta3[t]] + 13am3aSin[theta2[t] + theta3[t]] +
m3a r3az Sin[theta2[t] + theta3[t]] +m3 r3z Sin[theta2[t] + theta3[t]]) +
( (1. Ixy2+1. Ixy2a+1.12m2ar2ay+1.m2ar2axr2ay+1.m2r2xr2y) Cos[2theta2(t]] +
(1. Ixz3+1. Ixz3a+1.13am3ar3ax+1.m3ar3axr3az+1.m3r3xr3z)
Cos |2 (theta2[t] +theta3[t])] +1.1213am2aCos[2theta2(t] + theta3[t]] +

1. 13am2ar2ax Cos[2 theta2[t] + theta3[t]] + 1. 12m3 r3z Cos[2 theta2[t] + theta3[t]] -
0.5 Ixx2Sin[2 theta2[t]] - ©.5Ixx2aSin[2theta2[t]] +©.5Iyy2Sin[2theta2([t]] +
0.5 Iyy2aSin[2theta2[t]] +@.512?m2aSin[2theta2[t]] +0.512?m3 Sin[2 theta2([t]] +
1. 12m2ar2axSin[2theta2[t]] + @.5m2a r2ax? Sin[2 theta2[t]] -
©.5m2a r2ay? Sin[2 theta2[t]] +@.5m2 r2x? Sin[2 theta2(t]] -
©.5m2 r2y? Sin[2theta2[t]] - @.5 Ixx3Sin[2 (theta2[t] + theta3[t])] -
0.5 Ixx3a Sin[2 (theta2[t] + theta3[t])] +@.5Izz3Sin[2 (theta2[t] + theta3[t])] +
0.51zz3a5in[2 (theta2(t] + theta3(t])] - @.513a2m2a Sin|2 (theta2[t] + theta3[t])] -
0.513a2m3a sinfz (theta2[t] + theta3[t]) ] ¥
0.5m3a r3ax? Sin[z (theta2[t] + theta3[t]) ] -1.13am3ar3az

sin|[2 (theta2[t] +theta3[t])]| - 6.5m3a r3az?Sin[2 (theta2(t] + theta3(t])] +

@.5m3 r3x?Sin|2 (theta2([t] + theta3[t])] - @.5m3 r3z? Sin[2 (theta2(t] + theta3[t])] -
1. 13am2ar2ay Sin[2 theta2[t] + theta3[t]] + 1. 12m3 r3x Sin[2 theta2[t] + theta3[t]])
thetal’[t]2 + ((-2.1213am2a-2. 13am2ar2ax-2. 12m3 r3z) Cos[theta3[t]] +
(-2.13am2ar2ay - 2. 12m3 r3x) Sin[theta3[t] ] ) theta2’[t] theta3’[t] +
(_' (-1.1213am2a- 1. 13am2ar2ax-1. 12m3 r3z) Cos[theta3[t]] +
(-1.13am2ar2ay - 1. 12m3 r3x) Sin[theta3[t]]) theta3’[t]? +
((1.Iyz2+1. Iyz2a+1. m2ar2ay r2az+ 1. m2r2y r2z) Cos[theta2(t]] +
(—1. Iyz3 -1.Iyz3a+1.13am2ar2az-1.13am3ar3ay-1.m3ar3ayr3az-1.m3r3y r'sz)
Cos [theta2[t] +theta3[t]] + 1. Ixz2Sin[theta2[t]] + 1. Ixz2aSin[theta2[t]] +
1. 12 m2ar2az Sin[theta2[t]] + 1. m2a r2ax r2az Sin[theta2[t]] +
1.m2r2x r2z Sin[theta2[t]] - 1. 12m3 r3y Sin[theta2[t]] -
1. Ixy3Sin[theta2[t] + theta3[t]] - 1. Ixy3a Sin[theta2[t] + theta3[t]] -
1. m3ar3axr3aySin[theta2[t] + theta3[t]] - 1. m3 r3x r3y Sin[theta2[t] + theta3[t]] )
thetal”[t] + (1. Iyy3+1.Iyy3a+1.Izz2+1.Izz2a+1.12°m2a+1.13a’m2a+
1.122m3 + 1. 13a?m3a + 2. 12 m2a r2ax + 1. m2a r2ax? + 1. m2a r2ay’ +
1.m2r2x?+1.m2r2y? +1.m3ar3ax?+2. 13am3ar3az+ 1. m3ar3az? +
1.m3r3x?+ 1. m3r3z% + (2. 13am2a r2ay + 2. 12m3 r3x) Cos[theta3[t]] +
(-2.1213am2a - 2. 13am2a r2ax - 2. 12m3 r3z) Sin[theta3[t]]) theta2”[t] +
(1. yy3+1. Iyy3a+1. 13a’m2a + 1. 13a®m3a + 1. m3a r3ax* + 2. 13am3ar3az +
1.m3ar3az’+1.m3r3x?+1.m3r3z2+ (1. 13am2a r2ay + 1. 12m3 r3x) Cos [theta3[t]] +

(-1.1213am2a - 1. 13am2a r2ax - 1. 12m3 r3z) Sin[theta3[t]]) theta3”[t]

Figure 0.2. Second Actuator Torque

107



The third row (t3)

g ( (-1.m3ar3ax - 1.m3 r3x) Cos[theta2([t] + theta3(t]] +
(133 (mza +m3a) + m3ar3az+m3r3z) Sin[theta2[t] + theta3[t]]) +
( (0.5 1213am2a+@.513am2ar2ax +@.512m3r3z) Cos[theta3[t]] +
(1. 1xz3+1. Ixz3a+ 1. 13am3ar3ax+1. m3ar3axr3az+1. m3 r3xriz)

Cos|[2 (theta2[t] +theta3[t])]| +@.51213am2a Cos[2 theta2[t] « theta3[t]] +

.513am2ar2ax Cos[2theta2[t] +theta3[t]] +

.512m3 r3zCos[2 theta2[t] + theta3[t]] +@.513am2ar2ay Sin[theta3[t]] +

.512m3 r3x Sin[theta3[t]] - 0.5 Ixx3Sin[2 (theta2[t] +theta3[t])] -

.5Ixx3asin|2 (theta2[t] +theta3[t])] +@.5Izz3sin|2 (thetaz[t] + theta3[t])] +

.51zz3aSin|2 (theta2[t] +theta3[t]) ] - 0.513a?m2aSin[2 (theta2[t] +theta3[t])] -

.513a?m3asin|2 (theta2[t] +theta3[t])] +

.5m3ar3ax’Sin [2 (thetaz [t] +theta3[t]) } - 1. 13am3ar3az

sin[2 (theta2[t] +theta3[t]) ]| - @.5m3ar3az2sin[2 (theta2[t] +theta3[t])] +

@.5m3 r3x?Sin|2 (theta2[t] + theta3[t])] - 0.5m3 r3z? Sin[2 (theta2[t] + theta3[t])] -
0.513am2ar2ay Sin[2 theta2 [t] + theta3[t]] +
0.512m3 r3x Sin[2 theta2[t] +theta3[t]]) thetal [t] 24
( (1. 1213am2a+1. 13am2ar2ax+1. 12m3 r3z) Cos [theta3[t]] +
(1. 13am2ar2ay +1.12m3 r3x) Sin[theta3[t]]) theta2’[t] 2,
( (—l. Iyz3 -1. Iyz3a+1.13am2ar2az-1.1l3am3ar3ay-1.m3ar3ayr3az-1.m3r3yr3z)
Cos[theta2[t] + theta3[t]] + (—1. Ixy3-1.Ixy3a-1.m3ar3axr3ay-1.m3r3xr3y)
Sin[theta2[t] +theta3[t]]) thetal”[t] +
(1. Tyy3+1. Iyy3a+ 1. 13a’m2a + 1. 132’ m3a +~ 1. m3a r3ax” + 2. 13am3a r3az +
1.m3ar3az’ + 1. m3r3x® + 1. m3r3z° + (1. 13am2a r2ay + 1. 12m3 r3x) Cos[theta3[t]] +
(—1. 1213am2a-1. 13am2ar2ax-1.12m3 r3z) Sin[theta3[t]]) theta2”[t] +

(1. Iyy3+1. Iyy3a+ 1. 13a’m2a + 1. 13a’ m3a + 1. m3a r3ax® + 2. 13am3a r3az +
1. m3ar3az’+ 1. m3 r3x®+ 1, m3 r3z°) thetas” [t]

®© 0 ® 0 ® ®©©

Figure 0.3. Third Actuator Torque
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A2 Validity Check of the Derived Equations of Motion

Positive definiteness of H(8) and the skew-symmetric property of the matrix

(H(e) — 2 Cene(8, e)) are checked via the following MATHEMATICA codes.

Construct Equations of Motion

M11 = D[taul, thetal” [t]];
M12 = D[taul, theta2” [t]];
M13 = D[taul, theta3” [t]];
M21 = D[tau2, thetal” [t]];
M22 = D[tau2, theta2” [t]];
M23 = D[tau2, theta3”' [t]];
M31 = D[tau3, thetal” [t]];
M32 = D[tau3, theta2” [t]];
M33 = D[tau3, theta3”' [t]];

Taulthetaldotthetaldot = D[D[taul, thetal [t]], thetal [t]] /2;
Taulthetaldottheta2dot = D[D[taul, thetal [t]], theta2’ [t]];
Taulthetaldottheta3dot = D[D[taul, thetal [t]], theta3'[t]];
Taultheta2dottheta2dot = D[D[taul, theta2’'[t]], theta2'[t]] / 2;
Taultheta2dottheta3dot = D[D[taul, theta2'[t]], theta3'[t]];
Taultheta3dottheta3dot = D[D[taul, theta3’'[t]], theta3'[t]] /2;

Tau2thetaldotthetaldot = D[D[tau2, thetal [t]], thetal [t]] / 2;

Tau2thetaldottheta2dot = D[D[tau2, thetal [t]], theta2’ [t]];
Tau2thetaldottheta3dot = D[D[tau2, thetal [t]], theta3’'[t]];

Tau2theta2dottheta2dot = D[D[tau2, theta2’[t]], theta2'[t]] / 2;
Tau2theta2dottheta3dot = D[D[tau2, theta2'[t]], theta3'[t]];
Tau2theta3dottheta3dot = D[D[tau2, theta3'[t]], theta3'[t]] / 2;

Tau3thetaldotthetaldot = D[D[tau3, thetal' [t]], thetal [t]] / 2;
Tau3thetaldottheta2dot = D[D[tau3, thetal [t]], theta2'[t]];
Tau3thetaldottheta3dot = D[D[tau3, thetal’ [t]], theta3’'[t]];
Tau3theta2dottheta2dot = D[D[tau3, theta2'[t]], theta2'[t]] / 2;
Tau3theta2dottheta3dot = D[D[tau3, theta2’[t]], theta3’'[t]];
Tau3theta3dottheta3dot = D[D[tau3, theta3’[t]], theta3'[t]] /2;

c11 = Taulthetaldotthetaldot » thetal [t] +
Taulthetaldottheta2dot / 2 » theta2' [t] + Taulthetaldottheta3dot / 2 » theta3’'[t];

c12 = Taultheta2dottheta2dot » theta2’[t] + Taulthetaldottheta2dot / 2 » thetal’ [t] +
Taultheta2dottheta3dot / 2 » theta3'[t];

c13 = Taultheta3dottheta3dot « theta3’ [t] + Taulthetaldottheta3dot / 2 » thetal’ [t] +
Taultheta2dottheta3dot / 2 » theta2' [t];

c21 = Tau2thetaldotthetaldot » thetal'[t] +
Tau2thetaldottheta2dot / 2 « theta2’' [t] + Tau2thetaldottheta3dot / 2 » theta3' [t];

c22 = Tau2theta2dottheta2dot » theta2’[t] + Tau2thetaldottheta2dot / 2 » thetal [t] +
Tau2theta2dottheta3dot / 2 » theta3’' [t];

c23 = Tau2theta3dottheta3dot » theta3’ [t] + Tau2thetaldottheta3dot / 2 » thetal’ [t] +
Tau2theta2dottheta3dot / 2 » theta2' [t];

c31 = Tau3thetaldotthetaldot » thetal [t] +
Tau3thetaldottheta2dot / 2 « theta2’ [t] + Tau3thetaldottheta3dot / 2 » theta3’'[t];

c32 = Tau3theta2dottheta2dot » theta2’[t] + Tau3thetaldottheta2dot / 2 » thetal’ [t] +
Tau3theta2dottheta3dot / 2 » theta3’[t];

c33 = Tau3theta3dottheta3dot » theta3’'[t] + Tau3thetaldottheta3dot / 2 » thetal’ [t] +
Tau3theta2dottheta3dot / 2 » theta2' [t];

Figure 0.4. Validity Check of the Derived Equations
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Check matrix M symmetric
Check matrix (M_dot - 2C) is a skew-symmetric

Simplify[M12 - M21]
Simplify[M13 - M31]
Simplify[M23 - M32]

Simplify [D[M33, t] - 2 % c33]
Simplify[D[M22, t] - 2 % c22]
Simplify[D[M11, t] -2+ c11]
Simplify[ (D[M21, t] - 2% c21) + (D[M12, t] - 24 c12)]
Simplify[ (D[M31, t] -2 % c31) + (D[M13, t] - 2xc13)]
Simplify[ (D[M23, t] - 2% c23) + (D[M32, t] - 2% C32)]

Figure 0.4. Continued
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A3 Comparison with the Available Equations of Motion given in [25]

In order to compare the results of dynamic analysis with the equations of motions
given in [25], a conversion is applied to the derived equations of motion. The
elements of the [M], [C] and [G] matrices thus obtained, in accordance with the

convention given in [25], are presented below.

M11 =

0.5IyyA+ 1. IyyBase + 0.5 IyyC + 0.5 IyyDF + 0.5 IyyEB + 0.512zA + 0.5 IzzC +
©.5122zDF + 0.5122zEB +0.511%ma + 0.12512”ma + 0.125 11 mc + 0.5 13% mc +
(@.5IyyC +@.5IyyEB - 0.5I22C - 0.512zEB +0.511"ma + 0.12511° mc) Cos (2 theta2c [t
0.513%mc Cos [theta3c[t] |2 +9.5IyyACos |2 theta3c|t]] + 0.5 IyyDF Cos |2 theta3c|t]]
0.5IzzACos |2 theta3c(t]] - @©.5IzzDF Cos|[2 theta3c(t]]
0.12512* ma Cos [2 theta3c[t]] + 1. 11 12 ma Cos [theta2c[t]] Sin[theta3c[t]] +
1. 1113 mc Cos [theta2c[t]] Sin[theta3c[t]] +@.513% mc Sin[theta3c(t])?

M12 =
]

M13 =

M21 =
]

M22 =
1. IxxC + 1. IxxEB + 1. 11%ma + 0.25 11 mc

M23 =
0.51112maSin[theta2c |t theta3c([t]] -0.51113mc Sin[theta2c[t] - theta3c([t]]

M31 =
]

M32 =
0.51112maSin[theta2c(t) - theta3c|[t] 0.51113mc Sin[theta2c[t) - theta3c[t]]

M33 =

1. IxxA + 1. IxxDF + ©.25 12? ma + 1. 13? mc

C11 =

; ((-1.IyyC-1.IyyEB+1.Iz2C+1. IzzEB-1. 11%ma-0.2511%mc) Sin[2 theta2c[t]] +
11 (-1.12ma-1.13mc) Sin[theta2c[t]] Sin[theta3c(t]]) theta2c'[t] +

; (11 (1.12ma + 1. 13 mc) Cos [theta2c[t]] Cos|[theta3c[t]] +

(-1. IyyA - 1. IyyDF + 1. IzzA+ 1. IzzDF + 0.25 12 ma + 1. 13% mc)
Sin[2theta3c[t]]) theta3c'[t]

C12 =

1
> ((-1.IyyC-1.IyyEB+1.IzzC+ 1. IzzEB-1.11%°ma-0.2511%mc) Sin[2 theta2c[t]] +

11 (-1.12ma - 1. 13mc) Sin[theta2c(t]] Sin[theta3c[t]]) thetal’[t]

Figure 0.5. Comparison with Available Equations
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€13 =
;1 (11 (1. 12ma + 1. 13mc) Cos[theta2c[t]] Cos[theta3c[t]] +
(-1.IyyA-1. IyyDF + 1. IzzA + 1. IzzDF +0.2512%ma + 1. 13 mc)
Sin[2theta3c(t]]) thetal’[t]
C21 =
((0.5IyyC+0.5IyyEB-0.5122C -0.5122EB +0.5 11%ma + 0.125 117 mc) Sin[2theta2c(t]] +

11 (0.512ma +@.513mc) Sin[theta2c[t]] Sin[theta3c(t]]) thetal [t]

C22 =
0

Cc23 =
11 (0.512ma + 0.513mc) Cos [theta2c[t] - theta3c([t] ] theta3c'[t)

€31 =

(11 (-@.512ma - 8.513mc) Cos[theta2c(t]] Cos[theta3c[t]] +
(a.SIyyA +0.5 IyyDF - 0.5 I2zA - 0.5 IzzDF - ©.125 12* ma - 0.5 137 mc)
Sin[2theta3c(t]]) thetal’[t]

C32a
11 (-0.512ma - 0.513mc) Cos [theta2c[t] - theta3c([t]] theta2c'[t)

€33 =
2]

Gl =
Q

G2 =
g (11maCos[theta2e[t]] +@.5 11 me Cos [theta2c [t]] + 15 meb Cos [theta2e[t]])

G3 =

g (% 12 masin[theta3c[t]] + 13mc Sin[theta3c[t]] - 16 mdf Sin[theta3c[t]] )

Figure 0.5. Continued
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B. LN of Haptic Interfaces

The linearity numbers corresponding to the three and six DOFconfigurations are
presented in the following sections.

B.1. LN of Three DOF Configuration

©.75 Ixx2% + 1.5 Ixx2 Ixx2a + @.75 Ixx2a% + 1,375 Ixx3? + 2.75 Ixx3 Ixx3a + 1.375 Ixx3a® +
©.75Iyy2? + 1.5 Iyy2 Iyy2a + @.75 Iyy2a® + 1.375 Izz32 + 2.75 Izz3 Izz3a +
1.3751z23a + (- 1.5 Ixx2 Iyy2 - 1.5 Ixx2a Iyy2 - 1.5 Ixx2 Iyy2a - 1.5 Ixx2a Iyy2a -

2.75Ixx31zz3-2.751Ixx3aIzz3-2.75Ixx3Izz3a-2.75Ixx3a Izzaa] +
3. Ixy2? + 6. Ixy2 Ixy2a + 3. Ixy2a®+ 5. Ixy3%+ 1@. Ixy3 Ixy3a + 5. Ixy3a® +
1.5 Ixz2? + 3. Ixz2 Ixz2a + 1.5 Ixz2a’ + 5.5 Ixz3? + 11. Ixz3 Ixz3a +
5.5Ixz3a?+1.5Iyz2?+ 3. Iyz2 Iyz2a+1.5Iyz2a? + 5. Iyz3? + 1@. Iyz3 Iyz3a +
5., Tyz3a® + Ixy2 (6. 12m2a r2ay + ws m2a r2axr2ay + 6. m2 r2xr2y| | +
Ixy2a (6. 12m2ar2ay + (6. m2ar2axray + 6. m2r2xr2y) | +
Iyz2 (3. m2ar2ayr2az+3.m2r2yr2z) + Iyz2a (3. m2a r2ay r2az + 3. m2 r2y r2z) +
Ixy3 (1@.m3ar3axr3ay +10. m3 r3x r3y| + Ixy3a (10. m3a r3ax r3ay + 10. m3 r3x r3y| +
Ixz2 ((3.m2ar2axr2az+3.m2r2xr2z) +12 (3. m2ar2az-3.m3r3y|) +
Ixz2a ((3.m2ar2axr2az +3.m2r2xr2z) +12 (3. m2ar2az-3.m3 r‘3ﬂ |+
Ixz3 (11. 13am3ar3ax+ (11.m3a r3axr3az+11.m3r3xr3z)) +
Ixz3a (11. 13am3ar3ax+ (11. m3ar3ax r3az +11.m3 r3x r‘32j| :) +
Iyz3 (13a (-1@. m2ar2az - 10. m3a r3ay) + (18. m3a r3ay r3az + 18. m3r3y r3z) ) +
Iyz3a (13a (-1@. m2ar2az + 1@. m3ar3ay) " (10. m3a r3ay r3az + 18. m3 r3y r3z) | +
127m2 (m2a (1.5r2x7 - 1.5r2y") +m3 (1.5r2x7 - 1.5r2y?) ) +
13a’m3 (m2a (-2.75r3x? +2.75r3z?) +m3a (-2.75r3x% + 2.75r32%) | +

©.5122m2a (-3. Ixx2+ (-3. Ixx2a +‘|j:3. Iyy2 + (3. Iyy2a+ (12. 122 (1.5m2a + 1.5 m3) +

(18. 12m2ar2ax + 6. 12 (3. m2a + 3. m3) r2ax) + 2. (21!5 13a’m2a +
(2. m2a (4.5 r2ax? + 1.5 r2ay? +1.5 Pzazi) + (1.5m3 r2ax? - 1.5m3 r2ay? +
1.5m2r2x’ -1.5m2r2y* - 3. m3r2azr3y) | +21.513am3r3z)))))) +
@.513a’m3a (5.5Ixx3 + (5.5Ixx3a+ (-5.5Izz3+ (-5.5Izz3a+ (12.13a’ '
(2.75m2a+2.75m3a) + (33. 13am3ar3az+ 6. 13a (5.5m2a + 5.5m3a) r3az) +
2. (m2a (-2.75 r3ax? - 1@. r2az r3ay + 2.75 r3az?) + (2.75m3a r3ax? + '
5. m3a r3ay? + 8.25m3a r3az? +m3a (2.75 r3ax? + 5. r3ay? + 8.25 r3az?) -
2.75m3r3x% +2.75m3r322) ) ) ) ))) +
©.513a’m2a (5.5Ixx3 + (5.51Ixx3a+ (-5.5Izz3+ (-5.5Izz3a+
(43.12% m2a + 86. 12m2a r2ax + (12. 13a% (2.75m2a + 2.75m3a) + 33. 13am3a r3az +
2. (2.m2a (10.75 r2ax? + 10.75 r2ay? + 5. r2az’) + (-2.75m3a r3ax’ -
10. m3ar2azr3ay + 2.75m3ar3az? - 2.75m3 r3x? + 2.75m3r3z%) ) ) ) ) ) ) ) +
0.512?m3 (-3. Ixx2+ (-3. Ixx2a+ (3. Iyy2 + (3. Iyy2a+ (12. 12? (1.5m2a+1.5m3) +
18. 12m2a r2ax + 2. (21.513am2ar3z+ (m2a (1.5 r2ax? - 1.5 r2ay? -
3.r2azr3y) + (1.5m2r2x? -1.5m2 r2y? + 10.75m3 r3x? + 1.5m3 r3y? +
10.75m3 r3z2 +m3 (10.75r3x? +1.5r3y? +10.75r32%) ) ) ) )) ) ) ) +
12* (-8.25m2a” - 16.5m2am3 - 8.25m3?) + 12’ m2a (-15. m2a - 15. m3)
r2ax +
12 (-3. Ixx2m2ar2ax - 3. Ixx2am2a r2ax + 3. Iyy2 m2a r2ax +
3. Iyy2am2ar2ax - 21.5 13a? m2a® r2ax + 3. m2a’ r2ax® +
3. m2a’ r2ax r2ay? + 3. m2a® r2ax r2az’ + 3. m2 m2a r2ax r2x’ +
6. m2m2a r2ay r2x r2y - 3. m2 m2a r2ax r2y® + 3. m2 m2a r2az r2x r2z +

7. 13am2am3 r2ay r3x - 3. m2a m3 r2ax r2az r3y -
3.m2m3 r2x r2z r3y + 21.5 13am2am3 r2ax r3z) +

122 (-32.2513a’m2a’ - 21.513am2am3 r3z + (m2a’ (-4.5 r2ax? - 1.5 r2ay? - 1.5 r2az?) +
m2a (-1.5m3 r2ax? + 1.5m3 r2ay? - 1.5m2 r2x? + 1.5m2 r2y? + 3. m3 r2az r3y) +
m3 (-1.5m2r2x? + 1.5m2 r2y? - 10.75m3 r3x? - 1.5m3 r3y? - 18.75m3 r322) ) ) +
(13a* (-15.125 m2a® - 30.25 m2a m3a - 15.125 m3a?) +
13a’® (-27.5m2a - 27.5m3a) m3a r3az +
13a (5.5 Ixx3m3ar3az + 5.5 Ixx3am3ar3az - 5.5 Izz3m3a r3az - 5.5 Izz3am3a r3az +
5.5m3a% r3ax? r3az - 18. m2am3a r2az r3ay r3az + 10. m3a? r3ay? r3az +
5.5m3a% r3az’® - 5.5m3m3a r3az r3x? + 11. m3 m3a r3ax r3x r3z -
10. m2am3 r2az r3y r3z + 10. m3 m3a r3ay r3y r3z + 5.5 m3 m3a r3az r3z?) +
13a? (m2a? (-10.75 r2ax? - 10.75 r2ay? - 5. r2az?) +
m3a (-2.75m3a r3ax’ - 5. m3a r3ay’? - 8.25m3a r3az’ + 2.75m3 r3x? - 2.75m3 r3z2) +

Figure 0.6. LN of Three DOF Configuration
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m2a (2.75m3a r3ax’ + 10. m3a r2az r3ay - 2.75m3a r3az’ + 2.75m3 r3x” - 2.75m3 r3z’) ) +
(Ixx2 (-1.5m2ar2ax’ + 1.5m2ar2ay’ - 1.5m2 r2x> + 1.5m2 r2y’) +
(-1.5 Ixx2am2a r2ax? + 1.5 Iyy2 m2a r2ax” + 1.5 Iyy2a m2a r2ax’ + @.75 m2a’ r2ax* +
1.5 Ixx2am2ar2ay? - 1.5 Iyy2 m2a r2ay” - 1.5 Iyy2am2a r2ay? + 1.5m2a? r2ax? r2ay? +
0.75m2a’ r2ay* + 1.5 m2a? r2ax? r2az? + 1.5m2a? r2ay? r2az? - 1.5 Ixx2am2 r2x? +
1.5Iyy2m2r2x?+1.5Iyy2am2 r2x? + 1.5m2 m2a r2ax? r2x? - 1.5m2 m2a r2ay? r2x? +
0.75m2% r2x* + 6. m2 m2a r2ax r2ay r2x r2y + 1.5 Ixx2am2 r2y% - 1.5 Iyy2 m2 r2y? -
1.5Iyy2am2 r2y? - 1.5m2m2a r2ax? r2y? + 1.5m2 m2a r2ay? r2y? + 1.5 m22 r2x? r2y? +
0.75m22 r2y* + 3. m2 m2a r2ax r2az r2x r2z + 3. m2 m2a r2ay r2az r2y r2z +
1.5m22 r2x? r2z? + 1.5 m22 r2y? r2z2 - 2.75 Ixx3 m3a r3ax? - 2.75 Ixx3am3a r3ax? +
2.75TIzz3m3ar3ax?+2.75 Izz3am3a r3ax? + 1.375m3a? r3ax® + 5. m3aZ r3ax? r3ay? +
2.75 Ixx3m3a r3az? + 2.75 Ixx3am3a r3az? - 2.75 Izz3m3a r3az? - 2.75 Izz3am3a r3az? +
2.75m3a’ r3ax? r3az? + 5. m3a® r3ay? r3az? + 1.375m3a% r3az® - 2.75 Ixx3 m3 r3x? -
2.75 Ixx3am3 r3x?+2.75I1zz3m3 r3x? + 2.75 Izz3am3 r3x’ + 2.75 m3 m3a r3ax® r3x’ -
2.75m3 m3a r3az? r3x? + 1.375 m3? r3x* + 18. m3 m3a r3ax r3ay r3x r3y + 5. m3? r3x? r3y? +
11. m3m3a r3ax r3az r3x r3z + 10. m3 m3a r3ay r3az r3y r3z + 2.75 Ixx3m3 r3z2 +
2.75 Ixx3am3 r3z? - 2.75 Izz3m3 r3z? - 2.75 Izz3am3 r3z? - 2.75m3 m3a r3ax’ r3z% +
2.75m3 m3a r3az? r3z? + 2.75m3% r3x r3z2 + 5. m3? r3y? r3z% + 1.375m3% r3z%) ) ) +
0.5g" (1. 12’ m2a’ + 2. 13a° m2a’ + 2. 12 m2am3 + 1. 12°m3” + 4. 132> m2am3a +

2.13a’m3a% + 2. 12m2a% r2ax + 2. 12 m2am3 r2ax +

1. m2a% r2ax? + 1. m2a’ r2ay? + 2. 12m2 m2a r2x +

2.12m2m3 r2x + 2. m2 m2a r2ax r2x + 1. m2% r2x? +

2. m2m2ar2ay r2y + 1. m2% r2y? + 2. m3a® r3ax?® +

4. 13am2am3ar3az+4. 13am3a’r3az + 2. m3a’ r3az’ +

4. m3m3ar3axr3x+2.m32r3x? + 4, 13am2am3 r3z +

4.13am3m3ar3z+4. m3m3ar3azriz+2.m3?r3z?)

Figure 0.6. Continued
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B.2. LN of Six DOF Configuration

0.75 Ixx2% + 1.5 IxX2 IxX2a + 0.75 Ixx2a% + 1.375 Ixx3% + 2.75 Ixx3 Ixx3a + 1.375 Ixx3a? +
1.375 Ixx3 Ixx4 + 1.375 Ixx3a Ixx4 + 6.15625 Ixx4? - 0.6875 Ixx3 IXX5 - 0.6875 Ixx3a IXX5 +
5.46875 Ixx4 IXX5 + 11,6934 IXX52 + ©.34375 IxX3 IXX6 + ©,34375 IXx3a IXX6 -

2.73437 Ixx4 Ixx6 + 8.61523 Ixx5 Ixx6 + 22.665 Ixx62 - 1.5 Ixx2 Iyy2 - 1.5 Ixx2a Iyy2 +
©.75Iyy2? - 1.5 Ixx2 Iyy2a - 1.5 Ixx2a Iyy2a + 1.5 Iyy2 Iyy2a + 8.75 Iyy2a® + 5.375 Iyy4? -
1.375 Iyyd Iyy5 + 13.9062 Iyy5? + 1.65625 Iyy4 Iyy6 + 10.8281 IyyS Iyy6 + 22.665 Iyy6? -
2.75 Ixx3 Izz3 - 2.75 Ixx3a 1223 + 1.375 I1zz3% - 2.75 Ixx3 Izz3a - 2.75 Ixx3a Izz3a +
2.75Izz3 1zz3a+1.3751zz3a? - 1.3751zz3 Izz4 - 1.375 Izz3a Izz4 + 6.15625 12242 +
©.6875 1223 1225 + ©.6875 Izz3a 1225 - 6.15625 1224 1275 + 11.6934 12257 + ©.6875 1223 1226 +
©.6875 1zz3a 1226 - 6.15625 1224 1726 + 23.3867 1225 1226 + 22,6934 12262 + 3. Ixy2? +

6. Ixy2 Ixy2a + 3. Ixy2a? + 5. Ixy3? + 10. Ixy3 Ixy3a + 5. Ixy3a? + 13.3125 Ixy4? +

32.3047 IXyS5? + 71.2168 Ixy6? + 1.5 Ixz22 + 3. Ixz2 Ixz2a + 1.5 Ixz2a? + 5.5 Ixz3°% +

11. Ixz3 Ixz3a + 5.5 Ixz3a? + 23.25 Ixz4? + 36.6172 Ixz5% + 55.0322 Ixz6% + 1.5 Tyz2? +

3. Iyz2Iyz2a + 1.5 Iyz2a%+ 5. Iyz3%+1@. Iyz3 Iyz3a + 5. Iyz3a? + 13,3125 Iyz4? +

32.3047 Tyz52 + 55.0322 Tyz62 + Ixy2 (6. 12m2ar2ay + 6. m2a r2ax r2ay + 6. m2 r2x r2y) +
Ixy2a (6. 12m2a r2ay + 6. m2a r2ax r2ay + 6. m2 r2xr2y| +

Iyz2 (3. m2a r2ay r2az + 3. m2 r2y rzz) +Iyz2a (3. m2a r2ay r2az + 3. m2 r2y rzz) +

Ixz2 (3.12m2ar2az+ 3. m2ar2axr2az+3.m2 raxr2z - 3. 12m3 r3y) +

Ixz2a (3. 12m2ar2az + 3. m2ar2axr2az+3. m2r2xr2z-3.12m3r3y) +

Ixy3 (1@.m3a r3ax r3ay + 1@. m3 r3x r3y) + Ixy3a (1@. m3a r3ax r3ay + 10. m3 r3x r3y| +

Ixz3 (11. 13am3ar3ax + 11. m3a r3ax r3az + 11. m3 r3xriz) +

Ixz3a (11. 13am3ar3ax +11. m3ar3ax r3az + 11. m3 r3x r32:| +

Iyz3 (-18. 13am2ar2az +10. 13am3a r3ay + 1@. m3a r3ay r3az + 18. m3 r3y r3z) +

Iyz3a (-1@. 13am2ar2az + 18. 13am3a r3ay + 10. m3a r3ay r3az + 18. m3 r3y r3z) +

26,625 Ixy4 md rax rdy + 46.5 Ixz4 m4 rdx raz + 64,6094 IxyS mS r5x rsy +

Iyz4 {26.625 md rdy rdz - 26.625 13 m5 r‘Sy} +73.2344 Ixz5m5 r5x r5z + 64.6094 Iyz5m5 rSy r5z +
142.434 Ixy6 m6 réx réy + 110.064 Ixz6 mé réx réz + 118.864 Iyz6 m6 réy réz « 1.5 Tyy2 122 m2a +
1.5 Iyy2a 12?2 m2a + 5.5 Ixx3 13a? m2a + 5.5 Ixx3a 13a?m2a + 2.75 Ixx4 13a? m2a -

1.375 Ixx5 13a® m2a + .6875 Ixx6 13a%m2a - 5.5 Iyy4 13a’ m2a + 2.75 IyyS5 13a’ m2a +

©.6875 Iyy6 13a®m2a - 5.5 Izz3 13a’ m2a - 5.5 Izz3a 13a’ m2a + 2.75 Izz4 13a® m2a -
1.3751zz513a’ m2a - 1,375 1226 13a? m2a + 9. 12* m2a’ + 64.5 127 13a? m2a’ + 33, 13a* m2a’ +
1.5Iyy212?m3 + 1.5 Iyy2a12?m3 + 18. 12* m2am3 + 9. 12° m3? + 5.5 Ixx3 13a’ m3a +

5.5 Ixx3a13a’m3a + 2.75 Ixx4 13a? m3a - 1.375 Ixx5 13a’ m3a + ©.6875 Ixx6 13a’ m3a -

5.5 Iyy4 13a’m3a + 2.75 IyyS 13a’ m3a + @.6875 Iyy6 13a’ m3a - 5.5 Izz3 13a’ m3a -
5.51Izz3al3a’m3a +2.75 Izz4 13a? m3a - 1.375 Izz5 13a’ m3a - 1.375 Izz6 13a’m3a +

66. 13a* m2am3a + 33. 13a*m3a® + 1.5 Tyy2 12 m4 + 1.5 Iyy2a 127 m4 + 18. 12 m2am4 +

18, 12*m3m4 + 9. 12* ma? + 1,5 Iyy2 12? mS + 1.5 Iyy2a 12 m5 + 2.75 Ixx3 13 m5 +

2.75 Ixx3a 13?m5 + 1.375 Ixx4 137 m5 - @.6875 Ixx5 137 m5 + 8.34375 Ixx6 132 m5 -

2.75Iyy4 132 m5 + 1,375 IyySs 132 m5 + @.34375 Iyy6 132 m5 - 2.75 Izz3 132 m5 -

2.75Izz3a13?mS + 1.375 1224132 m5 - @.6875 1z25 132 m5 - 8.6875 Izz6 132 m5 + 18. 124 m2ams +
43,122 13 13am2am5 + 16.5 137 13a? m2ams5 + 18, 12*m3 m5 + 16,5 132 13a’ m3am5 + 18, 12* m4m5 +
9.12*m5? + 43, 122 13? m5? + 16,513 m5? + Ixx212* (-1.5m2a-1.5m3-1.5m4 - 1.5m5-1.5m6) +
Ixx2al2” (-1.5m2a-1.5m3-1.5m4 -1.5m5 - 1.5m6) + 1.5 Iyy2 12 mé + 1.5 Iyy2a 12° m6 +
2.75 Ixx3 132 m6 + 2.75 Ixx3a 13 m6 + 1.375 Ixx4 13% m6 - @.6875 Ixx5 137 m6 +

©.34375 Ixx6 132 m6 - 2.75 Iyy4 132 m6 + 1.375 Iyy5 137 m6 + @.34375 Iyy6 137 m6 -
2.7512zz313°m6 - 2.75 Izz3a 13’ m6 + 1.375 1zz4 13” m6 - ©.6875 1225 137 m6 —

@.6875 Izz6 13’ mé + 18, 12* m2am6 + 43, 12% 13 13am2amé + 16.5 13° 13a’ m2ame6 + 18, 12°m3mé +
16.513? 132’ m3amé + 18. 12 ma m6 + 18. 12* m5 m6 + 86. 127 13” msms + 33. 13* m5 me +

9. 12*mé® + 43. 122 13’ m6? + 16.5 13" m6? + 18. 12° m2a® r2ax + 86, 12 13a® m2a’ r2ax +

18. 12° m2am3 r2ax + 18. 12° m2am4 r2ax + 18. 12° m2a m5 r2ax + 18. 12° m2amé r2ax +

9. 122 m2a’ r2ax? + 43, 13a’ m2a’ r2ax? + 3. 122 m2am3 r2ax® + 3. 12? m2am4 r2ax’ «

3. 122 m2ams rzax? + 3. 122 m2am6 r2ax? + 3. 122 m2a’ r2ay’ + 43. 13a’ m2a’ r2ay’ -

3. 122 m2am3 r2ay? - 3. 12? m2a m4 r2ay? - 3. 12? m2a ms r2ay” - 3. 12% m2a m6 r2ay? +

3. 12 m2a’ r2az? + 20. 13a? m2a’ r2az? + 3. 12 m2m2a r2x? + 3. 122 m2m3 r2x? + 3. 12 m2 ma r2x?* +
3. 122 m2mS r2x? + 3. 122 m2 mé r2x? - 3. 122 m2 m2a r2y? - 3. 122 m2m3 r2y? - 3. 122 m2 ma r2y? -
3. 122m2ms r2y? - 3. 12’ m2 m6 r2y? - 11. 13a% m2am3a r3ax? + 11. 132’ m3a’ r3ax’ -
5.513?m3ams r3ax® - 5.5 132 m3amé r3ax’ - 40. 13a’ m2am3a r2az r3ay + 20. 13a? m3a® r3ay® +
66. 132 m2am3a r3az + 66. 13a® m3a® r3az + 11. 13? 13am3ams r3az + 11. 13% 13am3a mé r3az +
11. 13a’ m2a m3a r3az? + 33. 13a’m3a’ r3az? + 5.5 13? m3ams5 r3az? + 5.5 13 m3amé r3az’ -

11. 133 m2am3 r3x? + 21.5 122 m3? r3x% - 11. 13a? m3m3a r3x? - 5.5 13? m3 m5 r3x? -

5.5132m3 m6 r3x? - 6. 122 m2am3 r2az r3y + 3. 122 m3? r3y? + 43, 122 13am2am3 r3z +

43,127 13 m3 mS r3z + 43. 122 13m3 mé r3z + 11. 13a’ m2am3 r3z? + 21.5 122 m3? r3z2% +

11. 13a®m3m3a r3z? + 5.513? m3m5 r3z% + 5.5 13 m3 mé r3z - 5.5 13a’ m2a m4 rax? -

5.5 13a% m3amd rax® + 25. 122 m4? rax® - 2.75 13 m4 m5 rdx? - 2.75 13* m4 m6 rax? +

43, 127 13am2a md rdy + 43. 122 13ma mS rdy + 43, 122 13 ma m6 rdy + 43, 122 m3 md r3z rdy +

11. 13a® m2a m4 ray?® + 11. 13a® m3a m4 rdy® + 21.5 122 m4? ray? + 5.5 13% m4 m5 rdy? +
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5.513? mamé rday? - 5.5 13a’ m2amd raz? - 5.5 13a’ m3ama r4az? + 25. 127 ma? raz? -

2.7513% mamS raz? - 2.75 13 ma mé raz? + 2.75 13a’ m2ams r5x? + 2.75 13a% m3a mS r5x? +
38.875 12% m5? r5x? + 74.125 13 m5? r5x? + 1.375 132 m5 mé r5x? - 50. 127 ma m5 rdz r5y -
5.513a’ m2ams rSy? - 5.5 13a? m3ams r5y? + 25. 122 ms? rSy? + 23.875 13% ms? rsy? -

2.7513? m5 m6 rSy? + 2,75 13a’ m2ams r5z7 + 2.75 13a’ m3ams r5z7 + 38.875 122 m5? r5z? +
74.125 132 m5? r5z? + 1.375 13 m5 m6 r5z% - 1.375 13a? m2a mé réx’ - 1.375 13a” m3amé réx’ -
0.6875 13% m5S m6 réx? + 50.125 122 m6? réx® + 83.0313 132 m6? r6x? - 1.375 13a® m2a mé réy? -
1.375 13a? m3amé réy’ - ©.6875 132 m5 mé réy’ + 50.125 122 m6” réy? + 83.0313 132 m6” rey” +
77.7512% m5 m6 r5z r6z + 145.5 13 m5S mé r5z r6z + 2.75 13a? m2a mé r6z” + 2.75 13a’ m3amé r6z? +
1.37513% m5 m6 r6z2 + 38.875 122 m6? r6z% + 74.125 132 m6? r6z2 - 2.75 Ixx3 Iyy4 -
2.75Ixx3aIyy4 - 1.375 Ixx4 Iyy4 + 4.6875 IXx5 Iyy4 + 1.65625 Ixx6 Iyy4 + 1.375 IXx3 IyyS +
1.375 Ixx3a IyyS - 10.9375 Ixx4 Iyy5 - 6.15625 Ixx5 IyyS + 10.8281 Ixx6 IyyS +

©.34375 Ixx3 Iyy6 + ©0.34375 Ixx3a Iyy6 - 2.73437 Ixx4 Iyy6 + 8.61523 Ixx5 Iyy6 -

25.8867 Ixx6 Iyy6 - 1.375 Ixx4 Izz3 + ©.6875 Ixx5 Izz3 - ©0.34375 Ixx6 I1zz3 + 2.75 Iyy4 1223 -
1.375 IyyS Izz3 - 0.34375 Iyy6 Izz3 - 1.375 Ixx4 Izz3a + 0.6875 Ixx5 Izz3a -

©.34375 Ixx6 Izz3a +2.751yy4 Izz3a - 1.375 Iyy5 Izz3a - ©.34375 Iyy6 I1zz3a + 1.375 Ixx3 1zz4 +
1.375 Ixx3a Izz4 - 10.9375 Ixx4 1224 - 6.15625 Ixx5 1224 + 3.07813 Ixx6 1224 -

1.375 Iyy4 Izz4 + 12.3125 IyyS Izz4 + 3.07813 Iyy6 1224 - 0.6875 Ixx3 1225 -

©.6875 Ixx3a Iz25 + 5.46875 Ixx4 1225 - 13.2305 Ixx5 Iz25 - 9.69336 Ixx6 1225 +

4.6875 Iyy4 1225 - 6.15625 Iyy5 1225 - 9.69336 Iyy6 1225 - 0.6875 Ixx3 1226 -

©.6875 Ixx3a Izz6 + 5.46875 Ixx4 1226 - 13.2305 Ixx5 Izz6 - 9.69336 Ixx6 1226 +

4.6875 Iyy4 1226 - 6.15625 Iyy5 1226 - 9.69336 Iyy6 1226 - 2.75 Ixx3 13a? m2a -

2.75 Ixx3a 13a?m2a - 1.375 Ixx4 13a% m2a + 0.6875 Ixx5 13a% m2a - 0.34375 Ixx6 13a’ m2a +

2.75 Iyy4 13a? m2a - 1.375 IyyS 13a’ m2a - 0.34375 Iyy6 13a’ m2a + 2.75 Izz3 13a’ m2a +
2.751zz3a13a’m2a - 1.375 Izz4 13a® m2a + 0.6875 Izz5 13a° m2a + 0.6875 1226 13a’ m2a -
8.2512% m2a? - 53.75 122 13a? m2a? - 31.625 13a* m2a? - 16.5 12" m2am3 - 8.25 12 m3? -

2.75 Ixx3 13a’m3a - 2.75 Ixx3a 13a? m3a - 1.375 Ixx4 13a’ m3a + ©.6875 Ixx5 13a’ m3a -

©.34375 Ixx6 13a% m3a + 2.75 Iyy4 13a® m3a - 1.375 IyyS 13a® m3a - 0.34375 Iyy6 13a’ m3a +
2.751zz3 13a®m3a + 2.75 Izz3a 13a’ m3a - 1.375 Izz4 13a’ m3a + ©.6875 Izz5 13a’ m3a +

©.6875 1226 13a’ m3a - 63.25 13a* m2am3a - 31.625 13a* m3a® - 16.5 12* m2am4 -

16.512*m3m4 - 8.25 12° ma? - 16.5 12 m2ams - 21.5 12% 13 13am2ams - 13.75 13% 13a m2ams -
16.512*m3m5 - 13.75 132 13a m3ams - 16.5 12 ma ms - 8.25 12% ms? - 32.25 122 132 ms? -
15.12513*ms? - 16.5 12 m2amé6 - 21.5 122 13 13am2a mé - 13.75 137 13a> m2a m6 -

16.512*m3m6 - 13.75 132 13a’ m3amé - 16.5 12 m4 m6 - 16.5 12 m5m6 - 64.5 122 132 m5 m6 -
30.2513*m5 m6 - 8.25 124 me? - 32.25 122132 me? - 15.125 13* me? + 3. Iyy2 12 m2a r2ax +

3. Iyy2a l2m2a r2ax - 15. 123 m2a® r2ax - 64.5 12 13a? m2a? r2ax - 15, 12> m2a m3 r2ax -

15. 12°m2a m4 r2ax - 15. 12> m2am5 r2ax + 21.5 12 13 13am2am5 r2ax - 15. 12° m2a m6 r2ax +
21.51213 13am2amé r2ax + 1.5 Iyy2 m2a r2ax? + 1.5 Iyy2am2a r2ax? - 4.5 122 m2a? r2ax® -
32.2513a?m2a% r2ax? - 1.5 122 m2am3 r2ax? - 1.5 122 m2a m4 r2ax? - 1.5 122 m2a m5 r2ax? -
1.5122m2amé r2ax? + 3. 12m2a? r2ax’ + @.75 m2a r2ax* - 1.5 Iyy2 m2a r2ay? -

1.5 Iyy2am2a r2ay? - 1.5 122 m2a? r2ay? - 32.25 13a? m2a% r2ay? + 1.5 122 m2a m3 r2ay? +
1.5122m2am4 r2ay? + 1.5 122 m2a mS r2ay? + 1.5 122 m2a mé r2ay? + 3. 12 m2a’ r2ax r2ay’ +
1.5m2a® r2ax? r2ay? + .75 m2a® r2ay? - 1.5 122 m2a? r2az? - 15. 13a% m2a’ r2az’ +

3. 12m2a® r2ax r2az? + 1.5m2a? r2ax? r2az? + 1.5 m2a’ r2ay® r2az? + 1.5 Tyy2m2 r2x? +
1.5Iyy2am2 r2x?-1.5122m2m2ar2x? -1.5122m2m3 r2x? - 1.5 122 m2 ma r2x? -

1.5122m2m5 r2x? - 1.5 122 m2 mé r2x? + 3. 12 m2 m2a r2ax r2x? + 1.5 m2m2a r2ax? r2x? -
1.5m2m2a r2ay? r2x? + @.75 m22 r2x* + 6. 12m2 m2a r2ay r2x r2y + 6. m2 m2a r2ax r2ay r2x r2y -
1.5 Iyy2m2r2y? - 1.5 Iyy2am2 r2y? + 1.5 122 m2m2a r2y? + 1.5 122 m2 m3 r2y? +

1.5122m2m4 r2y? +1.5122m2 m5 r2y? + 1.5 122 m2 m6 r2y? - 3. 12 m2 m2a r2ax r2y? -
1.5m2m2a r2ax? r2y? + 1.5m2 m2a r2ay? r2y? + 1.5m22 r2x? r2y? + 0.75 m22 r2y* +

Ixx2 (-3.12m2a r2ax - 1.5m2a r2ax? « 1.5m2a r2ay? - 1.5m2 r2x* + 1.5m2 r2y?) +

Ixx2a (-3.12m2ar2ax - 1.5m2a r2ax? +1.5m2a r2ay? - 1.5m2 r2x2 + 1.5m2 r2y?) +

3. 12m2m2a r2az r2x r2z + 3. m2 m2a r2ax r2az r2x r2z + 3. m2 m2a r2ay r2az r2y r2z +

1.5m22 r2x? r2z2 +1.5m22 r2y? r2z2 - 2.75 Ixx3 m3a r3ax? - 2.75 Ixx3am3a r3ax’ -

1.375 Ixx4 m3a r3ax? + 0.6875 Ixx5 m3a r3ax? - 0.34375 Ixx6 m3a r3ax? +

2.75 Iyy4m3a r3ax? - 1.375 Iyy5m3a r3ax? - ©.34375 Iyy6 m3a r3ax? + 2.75 Izz3 m3a r3ax? +
2.75Izz3am3ar3ax? - 1.375 Izz4 m3a r3ax’ + ©.6875 I1zz5 m3a r3ax’ + ©.6875 Izz6 m3a r3ax” +
8.25 13a?m2am3a r3ax? - 8.25 13a2m3a’ r3ax? + 2.75 132 m3amsS r3ax? + 2.75 132 m3a mé r3ax? +
1.375m3a’ r3ax* + 30. 13a? m2am3a r2az r3ay - 15. 13a?m3a? r3ay? + 5. m3a’ r3ax? r3ay? +
5.5 Ixx3 13am3ar3az + 5.5 Ixx3a 13am3ar3az + 2.75 Ixx4 13am3ar3az -

1.375 Ixx5 13am3ar3az +@.6875 Ixx6 13am3ar3az - 5.5Iyy4 13am3ar3az +

2.75Iyy5 13am3ar3az + ©.6875 Iyy6 13am3ar3az - 5.5 Izz3 13am3a r3az -
5.5Izz3al3am3ar3az+2.75Izz413am3ar3az-1.375Izz513am3ar3az -

1.375 I1zz6 13am3a r3az - 6.5 13a® m2am3a r3az - 60.5 13a° m3a” r3az -

5.513%2 13am3am5 r3az - 5.5 132 13am3a m6 r3az + 5.5 13am3a’ r3ax’ r3az -

10. 13am2am3a r2az r3ay r3az + 18. 13am3a? r3ay? r3az + 2.75 Ixx3 m3a r3az’ +

.75 Ixx3am3ar3az? + 1.375 Ixx4 m3a r3az? - 0.6875 Ixx5 m3a r3az? + @.34375 Ixx6 m3a r3az? -
.75 Iyy4 m3a r3az? + 1.375 Iyy5 m3a r3az? + ©.34375 Iyy6 m3a r3az? - 2.75 Izz3 m3a r3az? -
.75 Izz3am3a r3az? + 1.375 Izz4 m3a r3az? - 0.6875 Izz5m3a r3az® - 8.6875 Izz6 m3a r3az? -
.25 13a% m2a m3a r3az? - 24.75 13a% m3a? r3az? - 2.75 132 m3ams5 r3az? - 2.75 132 m3amé r3az’ +
.75m3a® r3ax? r3az’ + 5. m3a’ r3ay? r3az? + 5.5 13am3a’ r3az’ + 1.375 m3a’ r3az® +

N}

Now NN
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7.1213am2am3 r2ay r3x - 2.75 Ixx3m3 r3x? - 2.75 Ixx3am3 r3x? - 1.375 Ixx4m3 r3x® +
©.6875 Ixx5m3 r3x® - 0.34375 Ixx6m3 r3x’ + 2.75 Iyy4 m3 r3x? - 1,375 Iyy5 m3 r3x? -
0.34375 Iyy6 m3 r3x? + 2,75 Izz3 m3 r3x? + 2.75 Izz3am3 r3x? - 1,375 Izz4 m3 r3x? +

©.6875 Iz75m3 r3x® + 0.6875 Izz6 m3 r3x? + 8.25 13a?m2am3 r3x? - 10.75 122 m3% r3x? +
8.2513a2m3m3a r3x? + 2.75 132 m3 m5 r3x? + 2.75 132 m3 m6 r3x? + 2.75 m3 m3a r3ax? r3x? -
5.5 13am3m3a r3az r3x? - 2.75 m3 m3a r3az? r3x? + 1.375m3% r3x* + 3. 122 m2am3 r2az r3y -
3.12m2am3 r2ax r2az r3y - 3. 12m2m3 r2x r2z r3y + 1@. m3 m3a r3ax r3ay rax r3y -
1.5122m32 r3y? + 5. m32 r3x? r3y? - 21.5 122 13am2am3 r3z - 21.5 122 13 m3 m5 r3z -
21.512213m3m6 r3z + 21.5 12 13am2am3 r2ax r3z + 11. 13am3 m3a r3ax r3x r3z +

11. m3m3a r3ax r3az r3xr3z - 10. 13am2am3 r2az r3y r3z + 18. 13am3 m3a r3ay r3y r3z +

10. m3m3a r3ay r3az r3y r3z + 2.75 Ixx3m3 r3z2 + 2.75 Ixx3am3 r3z% + 1,375 Ixx4 m3 r3z% -
©.6875 Ixx5m3 r3z2 + 0.34375 Ixx6m3 r3z2 - 2.75 Tyy4 m3 r3z2 + 1.375 Tyy5m3 r3z2 +
©.34375 Iyy6 m3 r3z2 - 2.75 Izz3m3 r3z% - 2.75 Izz3am3 r3z% + 1,375 Izz4 m3 r3z% -

©.6875 Izz5m3 r3z? - ©.6875 1226 m3 r3z? - 8.25 13a? m2am3 r3z% - 10,75 122 m3% r3z% -
8.2513a?m3m3ar3z? - 2.75132m3 m5 r3z2 - 2.75 132 m3 m6 r3z% - 2.75 m3 m3a r3ax? r3z2 +
5.513am3m3ar3az r3z2 + 2.75m3 m3a r3az? r3z2 + 2.75m32 r3x? r3z2 + 5. m3? r3y? r3z% +
1.375m3? r3z* - 1.375 Ixx3 m4 r4x? - 1.375 Ixx3amé rdx? - 12.3125 Ixx4 mé rdx? -

1.46875 Ixx5 m4 rax? + 4.73437 Ixx6 m4 r4x? + 9.375 IyyA m4 rdx? + 10.9375 TyyS m4 rax? +
4.73437 Iyy6m4 rax? + 1,375 Izz3 m4 rax? + 1,375 I1zz3amd rdx® + 10,9375 Izz4md rax? -
1.46875 Izz5md rax? - 1.46875 Izz6 m4 rax” + 4.125 13a% m2a m4 rax? + 4.125 13a% m3a m4 rax? -
12,5122 ma? rax? + 1,375 132 m4 m5 rax? + 1.375 132 m4 m6 rdx? + 1,375 m3amd r3ax? rdx?
2.7513am3am4 r3az r4x® - 1.375 m3am4 r3az? r4x? + 1.375 m3 m4 r3x? rdx? -

1.375m3 m4 r3z? rax? + 10.1563 m4? rdx® - 21.512? 13am2am4 rdy - 21.512% 13 ma ms rdy -
21.512% 13 m4mé rdy + 21.5 12 13a m2a md r2ax rdy - 21.5 122 m3md r3z rdy + 2.75 Ixx3 md rdy? +
2.75 Ixx3amé rdy? + 1.375 Ixx4 md rdy® - @.6875 Ixx5 md rdy’ + 8.34375 Ixx6 md rdy? -

2.75 Iyy4 md rdy? + 1,375 Iyy5 md rdy® + 0,34375 Iyy6 m4 rdy? - 2,75 Izz3 m4 rdy’ -
2.751zz3amé rdy? + 1,375 1zz4 m4 rdy? - ©.6875 1zz5m4 rdy? - ©,6875 1226 ma ray? -

8.2513a’ m2amd r4y? - 8.25 13a? m3a m4 rdy? - 10.75 122 m4? rdy? - 2.75 137 m4 m5 rdy? -

2.75 132 m4 m6 rdy? - 2,75 m3a md r3ax? rdy? + 5.5 13am3amd r3az rdy? + 2.75 m3a md r3az? rdy? -
2.75m3 ma r3x? rdy? + 2.75m3 m4 r3z? rdy? + 11.9375 ma? rax? ray? + 1.375 ma? ray* -

1.375 Ixx3 m4 rdz? - 1.375 Ixx3amd rd4z? + 10.9375 Ixx4 md r4z? + 18.1563 Ixx5ma raz? -
1.07813 Ixx6 md r4z? + 9,375 Iyy4ma rd4z? - 12,3125 IyyS md rdaz? - 1,07813 Iyy6 md rdz? +
1.375Izz3mé rdz? + 1.375 Izz3am4 rdz? - 12.3125 Izz4 mé r4z® + 18.1563 Izz5md rdz? +
10.1563 I1zz6 m4 rdaz? + 4,125 13a’ m2am4 raz? + 4,125 13a’ m3am4 r4z? - 12.5 122 ma? rdz? +
1.37513’mams rd4z? + 1,375 132 mamé raz? + 1,375 m3a m4 r3ax? r4z? - 2,75 13am3a m4 r3az r4z? -
1.375m3am4 r3az? r4z? + 1.375 m3 m4 r3x? r4z? - 1.375m3 m4 r3z? raz? + 20.3125 m4? rdx? r4z? +
11.9375 m4? rdy? rdz? + 10,1563 m42 rdz* + @.6875 Ixx3 m5 r5x’ + 0.6875 Ixx3a m5 r5x? -
5.46875 Ixx4 m5 r5x® - 19.3867 Ixx5m5 r5x’ + 1.13477 Ixx6 m5 r5x* + 3.3125 Iyy4 m5 r5x? +
21.6563 Iyy5 mS r5x? + 1.13477 Iyy6 m5 r5x” - 8.6875 Izz3 m5 r5x’ - 8.6875 Izz3ams r5x? +
6.15625 Izz4m5 r5x2 + 17,2305 1225 m5 r5x2 + 17,2385 Iz26 m5 r5x? - 2.0625 13a2 m2ams r5x? -
2.8625 13a m3ams r5x? - 19.4375 127 m5? r5x?* - 37.@625 132 m5? r5x? - @.6875 132 m5 m6 r5x’ -
©.6875 m3a m5 r3ax’ r5x? + 1.375 13am3ams r3az r5x” + ,6875 m3a ms r3az’ r5x? -

9.6875m3 m5 r3x? r5x? + @.6875m3 m5 r3z? r5x? + 9.46875 m4 m5 rdx? r5x? +

©.6875 m4 mS rdy’ r5x? - 2.15625 m4 m5 rdz? r5x? + 19.4434 m52 r5x* + 25. 122 m4 m5 r4z rSy -
26.625 13 md m5 rdy r4z rSy - 1,375 Ixx3 m5 r5y? - 1,375 Ixx3ams r5y? + 18,9375 Ixx4 mS rsy? +
10.1563 Ixx5m5 r5y? - 1.07813 Ixx6 mS r5y? + 9.375 Iyydms rsy? - 12,3125 IyySms roy? -
1.87813 Iyy6 mS r5y? + 1.375 Izz3 m5 r5y? + 1.375 Izz3ams5 r5y? - 12.3125 Izz4m5 r5y? +
1@.1563 Izz5m5 r5y? + 18,1563 Izz6 m5 r5y? + 4.125 13a’ m2am5 r5y? + 4.125 13a’ m3a mS rsy? -
12,5122 ms? rSy? - 11,9375 13% m5? r5y? + 1,375 132 m5 m6 rSy? + 1,375 m3a m5 r3ax? r5y’ -

2.75 13am3ams r3az rSy? - 1.375 m3a m5 r3az? r5y? + 1.375 m3 m5 r3x? r5y? -

1.375m3 m5 r3z? r5y? - 2.9375 md m5 rax? r5y® - 1,375 md m5 rdy? r5y® + 20,3125 m4 m5 rdaz? rsy? +
30,1484 mS? r5x? rSy? + 10,1563 m5% rSy* + 8,6875 Ixx3 mS r5z2 + 8.6875 Ixx3ams r5z% -

5.46875 Ixx4 mS r5z% + 17.2305 Ixx5m5 r5z% + 19.4434 Ixx6m5 r5z% + 3.3125 Iyy4 ms r5z? +
21.6563 Tyy5 m5 r5z° + 19.4434 Tyy6 m5 r5z° - @.6875 Tzz3 m5 r5z° - 8.6875 Tzz3ams r5z? +
6.15625 Izz4m5 r5z° - 19,3867 Izz5mS r5z2 - 19,3867 1226 m5 r5z% - 2.0625 13a% m2ams r5z7 -
2.8625 13a’ m3ams r5z7 - 19.4375 127 ms? r5z? - 37,0625 13’ m5? r5z” - 0,6875 13” m5m6 r5z” -
©.6875m3ams r3ax’ r5z2 + 1.375 13am3a m5 r3az r5z” + 0.6875 m3a mS r3az’ r5z? -

©.6875m3 m5 r3x® r5z% + ©.6875 m3 mS r3z? r5z% + 9.46875 m4 m5 rdx® r5z? + @.6875 md m5 rdy? r5z% -
2.15625 ma m5 rdz’ r5z? + 38.8867 mS? r5x? r5z° + 30,1484 m5? r5y’ r5z7 + 19.4434 m5? r5z* -
©.34375 Ixx3 m6 réx’ - 8.34375 Ixx3amé réx’ + 2,73437 Ixx4 mé réx” - 4.61523 Ixx5 mé réx> -
35,5801 IxX6m6 réx? + 6.34375 Iyyd mé réx? + 4.67187 IyyS mé réx’ + 35.6367 Iyy6 mé réx’ +
©.34375 I1zz3 m6 r6x’ + 8.34375 Izz3a m6 r6x’ - 3.07813 Izz4 m6 r6x’ + 13.6934 Izz5m6 réx’ «
35,6934 1226 m6 réx” + 1.03125 13a m2a mé réx” + 1.83125 13a2 m3a mé réx’ +

©.34375 132 m5 m6 réx’ - 25.8625 12 m6” réx’ - 41.5156 13 me” réx? + 8.34375 m3a mé r3ax® réx’ -
©.6875 13a m3a m6 r3az réx’ - 8.34375 m3a mé r3az’ réx’ + ©.34375 m3 mé rax® réx’ -

©.34375m3 m6 r3z? r6x? + 3.26563 m4 mé rax’ réx’ - 0. 34375 ma mé ray’ réx’ +

9.87813 m4 m6 raz’ réx’ + 18.3652 mS m6 r5x’ réx’ + 9.87813 m5 m6 r5y’ réx’ +

©.0566406 m5 m6 r5z° rex? + 35,665 m6” réx? - ©.34375 Ixx3 mé réy’ - ©.34375 Ixx3amé réy” +
2.73437 Ixx4m6 réy? - 4.61523 IXX5m6 réy? + 35.6367 Ixx6 m6 réy’ + 6.34375 Iyy4 mé réy’ +
4.67187 Tyy5 m6 réy’ - 35.58@1 Tyy6 mé réy® + @.34375 Tzz3 mé réy® + @.34375 Tzz3amé réy’ -
3.07813 Izz4m6 réy” + 13,6934 1225 m6 réy? + 35,6934 1226 mé réy” + 1.03125 13a? m2a mé réy” +
1.03125 13a’ m3amé réy’ + 0.34375 13% m5 mé réy” - 25.0625 122 ms? réy? - 41.5156 13% m6? rey’ +
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©.34375 m3amé r3ax’ réy’ - ©.6875 13am3a mé r3az réy’ - @.34375 m3a mé r3az’ réy’ +
9.34375m3 m6 r3x? réy’ - @.34375 m3 mé r3z? réy’ + 3.26563 m4 mé rax’ réy’ -
9.34375 ma m6 ray? réy? + 9.07813 m4 m6 r4z? réy” + 18.3652 m5 m6 r5x’ réy? +
9.07813 m5 m6 r5y? réy? + @.0566406 m5 m6 r5z° réy’ + 71.3301 m6? réx? réy? + 35.665 m6? réy? -
38.875 122 m5 m6 r5z réz - 72,75 132 m5mé r5z réz + @.6875 Ixx3 m6 ré6z? + 8,6875 Ixx3amé réz? -
5.46875 Ixx4 m6 r6z2 + 17.23@5 Ixx5mé r6z2 + 19.4434 Ixx6 mé r6z? + 3.3125 Iyyd mé réz? +
21.6563 Iyy5 mé r6z? + 19.4434 Iyy6 mé r6z? - ©.6875 Izz3 mé r6z’ - @.6875 Izz3amé réz’ +
6.15625 Izz4 m6 r6z? - 19.3867 Izz5 m6 r6z” - 19.3867 Izz6 m6 r6z” - 2.0625 13a> m2amé réz? -
2.0625 13a’ m3amé r6z? - @.6875 132 m5 m6 r6z? - 19.4375 122 me? réz? - 37.0625 132 me? rez? -
©.6875 m3amé r3ax’ r6z® + 1.375 13am3amé r3az r6z? + @.6875 m3a mé r3az’ réz? -
0.6875 m3 m6 r3x? r6z? + ©.6875m3 m6 r3z’ r6z? « 9.46875 m4 m6 rax’ réz? + @.6875 md m6 rdy? réz’ -
2.15625 ma m6 raz? r6z? + 2.26953 m5 m6 r5x° r6z” - 2.15625 m5 m6 rSy” r6z? +
38.8867 m5 mé r5z° ré6z? + 55.0889 m6? réx’ réz? + 55,0889 m6? réy? réz? + 19,4434 me? rezt +
0.5g’ (13a% (2. m2a’ + 4. m2am3a + 2. m3a’) + 2. 13’ m57 + 4. 137 m5m6 + 2. 137 m6? +

127 (1.m2a? + 1. m3% + 1. ma? 2. madmS + 1. m5% + 2. mAmE + 2. mSmE + 1. mE% +m3 (2. md +

2.m5+2,m6) +m2a (2. m3+2. md+2.m5+2, m6)| +1.m2a’ r2ax? + 1. m2a’ r2ay’ +

2. m2m2a r2ax r2x + 1. m2? r2x? + 12 (2. m2a’ r2ax +m2 (2. M3+ 2. md+2.m5+ 2. ms:) r2x+
m2a (2. m3 r2ax + 2. md r2ax + 2. m5r2ax + 2. mé r2ax + 2. m2 r2x) ) + 2. m2 m2a r2ay r2y +
1.m2% r2y? + 2. m3a? r3ax? + 4. 13 m3ams r3az + 4. 13 m3amé r3az + 2. m3a’ r3az’ +
4. m3m3ar3ax r3x + 2. m3? r3x’ + 4. 13m3 m5 r3z + 4. 13m3 m6 r3z + 4. m3 m3a r3az r3z +
2.m3%r3z% + 1.5ma? rax? + 4. 13 mamS rdy + 4. 13 ma m6 rdy + 4. m3amad r3az rdy + 4. m3 md
r3zrdy + 2. ma? ray? + 13a (13 (4. m2ams + 4. m3ams « 4. m2amé + 4. m3ame) + (m2a - m3a)
(4.m3ar3az+4.m3r3z+ 4. mdrdy) | + 1.5m4? raz? + 2.5m5? rSx* - 3. mamS rdz rSy +

1.5ms? r5y? + 2.5ms? r5z? + 2.625 m6? réx? + 2.625 m6% rey’ + 5. m5mé r5z réz + 2.5 me? réz?)
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C. Optimization of Three Degrees of Freedom Configuration

Numerical optimization of LN of the three DOF haptic manipulator is realized.
Among the hundred manipulators constructed for the each LN, the design variables

of five manipulators are given as below.

C.1L LN=0

{5.4226029181339245049 x 16 %, {Ixx2 - 0.0011733514387590658588,
| Toxa — 0.0093866025454951792104, Ixx3 — 0.00046021188715578078558,
Ixx3a - 0.8054548641411743240707, Iyy2 - 0.00067559686505411680334,
Iyy2a — ©.0081896792278521317772, Iyy3 — 0.0041443644432972245743,
Iyy3a — 0.000010843134082099519896, 1272 — ©.000018 B
Izz2a — ©.00001 , Izz3 = 0.0027749028086155339559,
Izz3a — 0.0031040552724836931852, m2 — 0.20766121830149764430,
m2a — ©.020000483437983116500, m3 — ©.027637816439597598037,
m3a - ©.15143138782990673626, r2ax - - 0.14998793142145893514,
r2ay - 4.8643398722623338339 x 18”/, r2az - - 0.064508934857405935503,
r2x - -8.034876051484462890728, r2y — -4.6884978531490106914 x 10°%,
r2z - -0.092109948673362878252, r3ax — -3.4395971301284333382 x 10,
r3ay - ©.849927938952440119002, r3az — - ©.835494518773529816711,
r3x - 1.8569245789328180432 x 18 %, r3y - 0.098149653083862637166,
r3z - -e.6871116969617382276465}}, {1.2843014176798917626 x 1877,
{Ixx2 > 0.0084024393518595198531, Txx2a - 0.0062415692683401319610,
Ixx3 — 0.0068617640633007764801, Ixx3a — 0.0030598877920020840665,
Tyy2 - ©.0061990361883599992127, Iyy2a — 0.0063764933106619528769,
Iyy3 - ©.00444126810493582218087, Iyy3a - 0.0099999988664789950238,
Izz2 - ©.00082773618238889664485, Izz2a — ©.0099999988663013130483,
Izz3 - ©.0097129380284654885532, Izz3a — 0.00023467906421802286793,
m2 — ©.18873977484187758274, m2a — ©.020032813992214232974,
m3 - ©.029841237593635840959, m3a — ©.15111699375847877273,
r2ax - -0.096739606829275609351, r2ay - 3.7731933757418166993 x 187,
r2az - 0.057629430124204160642, r2x - - 0.846545327043396450240,
r2y - -4.0072768899786585264 x 10°%, r2z - 0.042550897106894096778,
r3ax - -7.4628696025683276577 x 18°%, r3ay — -©.082872009900786521378,
r3az — - 0.034438560336342578079, r3x — 3.7543552939615248354 x 108,
r3y - -8.036982915176104793064, r3z - -@.012000743814411403785} |,
{6.3692301197203531136 x 187, {Ixxz ~ ©.PPER76682878120916731688,
Ixx2a — ©.0034933188295028718299, IxX3 - 0.0029177056422457555175,
Ixx3a — ©.0049571193546914207934, Iyy2 — 0.00056946463048604265439,
Iyy2a - ©.0015636844349186711803, Iyy3 - 0.000010000005861860890756,
Iyy3a — ©.0099999991538031837172, Izz2 - 0.000010000000000001435164,
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Izz2a > ©.08001 , 1773 - 0.0016435840587676564096,
Izz3a — ©.0062574885216510602628, m2 — 0.17144944447444476517,

m2a - 0.820001698508086250992, M3 — ©.021252383645552573014,

m3a - 8.154274674978809398757, r2ax — - ©.11456883124823030162,

r2ay - 6.7278940637766970848 x 18°°, r2az - ©.0071529612935470580776,
r2X - -0.038374324115640171560, r2y — -7.8594786880806727501 x 102,
r2z - 0.061251692749790529213, r3ax - - 3.7434244016902763140 x 1877,
r3ay - ©.861208431494707346611, r3az - - 0.034744168891077011919,

r3x > 2.6870176091020003614 x 10~ %, r3y - - 0.885049417259170112964,
r3z - -0.0142965977980766909@6 | |, {6.49254588@983972739@ x107Y,
{Ixx2 > 0.0077047966013165180707, Ixx2a - 8.0015312080666332143794,
IXX3 - 0.0026061506413807176827, Ixx3a — ©.0024353254460997432962,
Iyy2 - ©.0077575831941205448156, Iyy2a — ©.00028457768213672426805,
Iyy3 - 0.8827412663222114833859, Iyy3a — @.000010001401321678064389,
1772 > ©.0099999996819541986498, Iz72a — ©.0099999934358821682300,
Izz3 + ©.0033512587686773727659, Izz3a — 0.0017146378410586778815,
m2 - 6.17341138077429719690, m2a — @.020000618828924091942,

m3 - 0.020014362519606490454, m3a — ©.15444595410603320183,

r2ax - -©.1491986781420833340@, r2ay — 5.1361661842902110298 x 187,
r2az - -0.047670996978443180776, r2x — —0.032483612051677291350,
r2y - -5.9268678452319221053 x 10°%, r2z » - 0.0046871452668306021705,
r3ax - -3.2878099534639072547 x 18, r3ay — 8.072418514759623430416,
r3az - -0.035420638353343369617, 13X - 2.4371566419741525604 x 189,
r3y - -0.0084593653595182222914, r3z - -8.0099398296499399968652} |,

{4.8420914383088959244 x 167'%, {Ixx2 - 0.00060395410020686993518,

Ixx2a - ©.0091171309801175849846, Ixx3 — ©.0060353440101345142288,
Ixx3a - ©.0041242214848171491198, Iyy2 — ©.00087398879235813501010,
Iyy2a - ©.8070837089973421378701, Iyy3 — ©.8018475900225291407993,
Tyy3a - 0.00040170481748964259574, I222 — 0.6035816698579277822953,
1zz2a - ©.0000100000000P00EE00R080, 1223 — 0.0091618485720170744854,
Izz3a - ©.0010243307749655930408, M2 — ©.15149378302979994616,

m2a - ©.020000000333907215762, m3 — 0.825146376550785789384,

m3a > 8.22782176389453331343, r2ax - - 0.096356158085866634927,

r2ay — 1.3816707404185400649 x 10~/ , r2az — 0.089967326046603917870,

r2x - -0.851350937890876796867, r2y - - 1.8284088277564109052 x 108,

r2z - 0.875709079851651078677, r3ax — -9.225999622545894041@ x 107,

r3ay - -©.11522890431539743338, r3az — - 0.033778679775432343469,

r3x — 8.3120105840804517492 x 18°%, r3y - - 0.069451194747196721584,

r3z - -0.014264048556215840890 | | | }}
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C.2 LN =0.001

{B.@@19220@0066@141695457, {IXXZ — 0.0041164045180219092543,
Ixx2a - ©.00048729486500180036665, IXX3 — 0.0099906357783209743444,
Ixx3a - 0.0077523561924868830646, Iyy2 - 0.0058555392625869395486,
Iyy2a — ©.0058722052438868202430, Iyy3 —» 0.0093651162855769335820,
Iyy3a - 8.0099999995490232555712, Izz2 - ©.0000100@4293947445989329,
Izz2a — ©.0080843113033992097082, Izz3 - 0.0064564637618375110897,
Izz3a - 0.0016059900140548937428, m2 - 0.16288474738894196841,
m2a - 0.020002736923469334985, m3 - ©.020905924050628504296,
m3a —» ©.15356126677622873681, r2ax - -0.14427772681665618945,
r2ay - ©0.000012836921382623531349, r2az —» -0.017863334583093006533,
r2x - -0.063042422251846466302, r2y — —1.7949580282383734700 x 1075,
r2z - 0.0084232625894467359452, r3ax - -0.00076589977301122831781,
r3ay - ©.036398841405771681810, r3az - -0.040366592737371786204,
r3X - -0.00010260552994748071052, r3y - -0.0817513683466258261765,
r3z - —0.911914559995799080012} } , {0.0010000000004430763964,

{IXX2 - ©.0059268074858144712136, Ixx2a — 0.0097182860221517395056,
IXX3 - 0.0065622996025606428649, Ixx3a - 0.0093304000181709958285,
Iyy2 - ©.0012399319898912495066, Iyy2a -+ 0.0084625664050239893805,
Iyy3 - 0.0080061604532866840996, 1yy3a - 0.00001 s
Izz2 - ©.0099999993569590745690, Izz2a —» ©.0099999993569590745690,
1zz3 - ©.0094043777666366197849, 1zz3a - 0.0079901318403495413192,
m2 - 0.18877672305469963314, m2a - ©.020000000734035824357,
m3 - 0.054727615716845909932, m3a - ©.16071149221022238334,
r2ax - 0.065068813274832857396, r2ay - 6.00024985013054561265818,
r2az - 9.979892680067810666513, r2x - -0.12127655080882330310,
r2y - ©.00045890323782364518316, P2z - ©.047800972710920713668,
r3ax - -0.000067180463227048364072, r3ay — 0.11187485777418429395,
r3az - -9.031653132616181826983, r3x — -0.000029714101826490854473,
r3y - -0.034699891997502147889, r3z - -0.013254370894006890876} } ,

{B.2910220066935741576291, {IXXZ - ©.0095461980406010605342,
Ixx2a - ©.0012146495959772457406, Ixx3 — 0.0045518666825344724041,
IXX3a — 0.0066539056150485925150, Iyy2 — 0.0027868002932812311472,
Iyy2a - ©.0051859450386311981399, Iyy3 —» 0.0078937431483036295620,
Iyy3a - ©0.00093913140646544095559, Izz2 - ©.0095795874907968060308,
Izz2a - ©.0028053281261389204314, 1zz3 - ©.0087889527389372198604,
Izz3a - ©.0053704038217232597594, m2 - ©.211808895605553335287,
m2a —» ©.021088158850174920803, m3 — 0.020000003450622627556,
m3a - @.15690158824840083377, r2ax — -0©.14722664413768775357,
r2ay - 2.6183369327358698848 x 107, r2az —» ©.889619267631728847487,
r2x - -0.048395284978061680788, r2y — 2.2541979319255978535 x 107/,
r2z - 0.030558319275737633292, r3ax - -0.0022640594062608690419,
r3ay - -0.12582021167466100042, r3az - -@.036699117685676428159,
r3X - -0.00032088100294356935237, r3y - -0.013975922500151978956,
r3z - —0.9993288916891847216839}}, {0.0010000000001275252279,

{IXX2 - ©.00025751433693921950060, IxxX2a —» ©.000034582421777277210337,
Ixx3 - ©.000039435692537163566250, Ixx3a - ©0.0099797382634563984182,
Iyy2 - ©.000051484576110198622093, Iyy2a — ©.0099881089468066897626,
Iyy3 - ©.0099331931109132076633, 1yy3a — ©.00081233340443938581427,
Izz2 - ©.0099991726234395442287, 1zz2a - 0.0099999997548455570364,
Izz3 - ©.000030036344844336830209, 1zz3a — ©.000023531100917957093169,
m2 - ©.29987953019569371075, m2a — ©.020674067230408857869,
m3 - 0.034857466815454691453, m3a - ©.15001765793596743026,
r2ax - -0.010212267164719421987, r2ay — ©.028106883915971657306,
r2az » -0.14999989093137259083, r2x - -0.028193044459371114388,
r2y - ©.0030170488086351103914, r2z — ©.0035223727380271271528,
r3ax - -0.0032878434464436988062, r3ay » -0.14250371949618487685,
r3az - -0.028133599835099714391, r3x - 0.023969644797852618892,
r3y - 0.12759711121479423582, r3z —» -0.091187834207524036650} },

Figure 0.9. Example Manipulator Designs for LN = 0.001
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{0.0010000000018424631674, {IxXx2 - 0.0099898717463614154613,
Ixx2a — 8.0099834735644258354775, IXX3 — 0.000016903215456056106042,
Ixx3a — 0.000014764993307000489477, Iyy2 - 0.000025898541415027277574,
Tyy2a — 0.000036000537520291326922, Iyy3 — 0.00862137173821982802446,
Iyy3a — ©.0047904492044358020766, 1222 — 0.000010003493118705973236,
1zz2a - 8.0099999998421419120393, Izz3 - 0.0040114676715144620553,
Izz3a - 8.0037383879555157293920, m2 — 8.16647682246024824730,
m2a - ©.020068521261426235367, m3 — ©.031191418013035183545,
m3a - ©.21222194978666838760, r2ax — - 8.14824807342401861866,
r2ay - ©.00020777899944302865655, r2az - -0.0811836361549316546726,
r2x - -0.837681689154630943249, r2y — 0.0022117361033520333871,
r2z - ©.8015590490903162596820, r3ax — - 0.0088426838857794887222,
r3ay - -0.0092615924832538475540, r3az — - 0.044599561857608828930,
r3x - 0.8065705582809977435968, r3y — 0.0086905950873614121350,
r3z - -0.611378287121725161256} | | |

Figure 0.9. Continued
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Cas. LN =0.01

{0.010000000001303506917, {IXX2 — 0.00099875012833529795415,
Ixx2a — ©.000014791826882632183058, Ixx3 —~ ©.0028235286241286231035,
IXxx3a — 0.0098976052254858666992, Iyy2 » 0.0011708533166501263668,
Iyy2a — ©.00018311034258121287360, Iyy3 — 0.000031058640324645908079,
Iyy3a — ©.00074081682110289916358, 1222 — 0.0039504033557966695805,
Izz2a — ©.0034497470654254879268, 1723 - 0.80015236761821806401361,
Izz3a - ©.00015236761821806286035, m2 — 0.17708605735819723732,
m2a - 0.897496687185264379627, m3 — ©.027507455444395585276,
m3a - 0.15060863824573259631, r2ax — -©.041501285323880988904,
r2ay - -0.0027491170016684324407, r2az — -0.14988924536624001517,
r2x - -0.069201546997749553386, r2y — -0.0508893697574663750¢€0,
r2z - ©.069321002779168615566, r3ax — -0.016067265882005518491,
r3ay — -0.14882475050612620986, r3az » -0.047653729892749876618,
r3x - 0.081192403806129968463, r3y —» -@.075345120665148639446,
r3z - 0.045138194131468843406} }, {0.010000000000345136564,

{IXX2 — ©.00063203853146516848307, IxxX2a — 0.0038544518185915354969,
IXX3 — 0.0092849694747554280483, Ixx3a — 0.0094280762470837375267,
Iyy2 — ©.0090213496010588691835, Iyy2a - 0.00040886924036126919159,
Iyy3 - @.eeeel , Iyy3a — ©.009973543559097477806@,
Izz2 - ©0.0099735435590974778060, I1zz2a » 0.0099735435590974778060,
Izz3 - 0.08055628723819015305953, Izz3a — 0.0059491242818402696556,
m2 - ©.15277514988838311412, m2a — 0.027471212590164264472,
m3 - ©.023615512905909898820, m3a —» ©.17740269276067750121,
r2ax — -0.14556024931086115761, r2ay — -0.0011015719944289051348,
r2az - -0.071578950264563731116, r2x - -0.077053736236724380246,
r2y - ©.033065195814037032806, r2z » -0.047597384301644392470,
r3ax — @.835475020374746673768, r3ay — ©.019881137892454253251,
r3az - -0.056163009248161641877, r3x — 0.046416168554530058346,
r3y — ©.00082838199908527776880, r3z - -0.072208911680859101415} },

{0.010000000001887531679, {Ixx2 - 0.00011642829019063450558,
IXX2a — ©.0061752187985100771795, IXX3 — 0.0099808571215622041835,
Ixx3a — ©.0088195213499203944468, Iyy2 — 0.000017660217305270746754,
Iyy2a — ©.00037615620130578874910, Iyy3 — ©.0049828192259792965417,
Iyy3a — 0.0050288716443696716761, 1722 —+ 0.00001 B
Izz2a — 0.0016252070439879457348, 1723 - 0.0027416111332353921609,
Izz3a — ©.000032074052923227216824, m2 — 0.29973121893366751283,
m2a - 0.020912384926410563815, m3 - ©.023895234400856742949,
m3a — 0.15295019988865364064, r2ax — —-0.14588878270830925479,
r2ay - -0.14949767867212124023, r2az —» -0.14946461107253120241,
r2x — 0.00891771879440877330007, r2y — 0.046850990835571501875,
r2z - -9.14804959800885509086, r3ax — -0.011343397012486227374,
r3ay - -0.14945578517084265575, r3az — -0.049044448259846116276,
r3x — 0.041640246329854003118, r3y - 0.14944702506468806412,
r3z - 0.10634087578150438890} |}, {@.010000000000241469170,

{IXX2 - ©.0016544553166566380671, Ixx2a - 0.0027812857322699223712,
IXX3 — ©.0034987334508389515229, Ixx3a — 0.0099095321348405428354,
Iyy2 - ©.8098829275731262032122, Iyy2a - 0.0094609221993067020448,
Iyy3 — 0.0020525057330666353279, Iyy3a —» 0.0051319372019633961904,
Izz2 - 9.0099999998798311968472, 1zz2a — 0.00899999998798311968472,
Iz73 » 9.0016372406942692625797, 1zz3a - 0.00010387117431424236669,
m2 — 0.18898261207803764655, m2a — 0.050119669952896143842,
m3 - ©.021126819403208559294, m3a — ©.15509687225262218464,
r2ax - -@.11534518455380475787, r2ay —» -0.035072962108123004507,
r2az - -0.14999488989453740294, r2x — -0.075892728626297975648,
r2y - 0.033276828824564267937, r2z - -0.14979610903294759743,
r3ax - 0.053430081404894154314, r3ay — ©.0071211465159705473993,
r3az - -0.027526832048553328312, r3x —» ©.0061773959638731835086,
r3y - 0.14140684287466327377, r3z - ©.041053977474285752992} },

Figure 0.10. Example Manipulator Designs for LN = 0.01
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{0.0100000000BRB70666623, {IXX2 - ©.00033590680330008463852,
Ixx2a - ©.0899552274599504035904, Ixx3 - 0.0015751545290523886097,
Ixx3a - ©.0015984727203106238924, Iyy2 — 0.000032452175512404412100,
Iyy2a - ©.0832948785535380345976, Iyy3 — 0.00028035635356649558703,
Iyy3a - 0.00001 ,
1zz2 > ©.6048426758119747651204, T1zz2a - 8.80001 ,
1223 - 0.0088515617138840726141, Izz3a - 0.0037574601326288179487,
m2 - 8.16394786993065292485, m2a — 0.10272126181925356558,
m3 - 8.020383025146975664052, m3a - 0.15303436815649423042,
r2ax - -0.14961080880786374416, r2ay - 0.0012993145545695982053,
r2az - 0.8070557496222167937139, r2x — - 8.086730419605430060640,
r2y - 0.028733491039491898744, r2z - -0.14851598597780174480,
r3ax - 0.050415610042477443042, r3ay — - 8.031940953607960154519,
r3az - -0.015812943022817224095, r3x - -8.14302338884720308161,
r3y - ©.14925733467076124731, r3z - 0.10706756975363705343} ]} ] }

Figure 0.10. Continued
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C.4. LN=0.1

{©.10000000000003582272, {IXX2 — 0.0099656836253746734781,
IXX2a — 0.0024447986606577502209, IXX3 — ©.00033445400735988179892,
Ixx3a - @.0099999998756823337023, Iyy2 — ©.0031511324045590768085,
Iyy2a - ©.000044421672524531134553, Iyy3 — 0.0081490642354439802600,
Iyy3a — ©.0099999998998456285585, 1zz2 —» ©.0039210656612325772666,
Izz2a - ©.0033058751682660069025, 1zz3 — 0.000010000000048817386957,
Izz3a - ©.00034106507982008261478, m2 - 0.26741803731972520737,
m2a — 0.079603165878447048532, m3 — ©.050353919558688575022,
m3a - 0.24353590334643107285, r2ax - ©.041611143791819564367,
ray - @.071112223097486258814, r2az - -0.14998820592505942060,
r2x - -9.078128159604775016193, r2y - 0.0038053414760671980135,
r2z - -0.089072074823875610119, r3ax - ©.149999999524746620@95,
r3ay - 0.14999999987771497565, r3az —» -0.025884877273668115829,
r3x - -90.11166493041336128032, r3y —» -0.14999999999999208470,
r3z - -0.13532040110878762413}}, {0.10000000000473801776,

{IXx2 - 0.0099999648662823656560, Ixx2a —» 0.0057096875212611785611,
IXX3 — ©.0099999998999817048148, IXx3a — ©.000082914478391281921891,
Iyy2 — ©.0082712278521169792692, Iyy2a — ©.005827212114815923799@,
Iyy3 - ©.0035965615492350467552, Iyy3a — 0.0099999999011186921315,
Izz2 - ©.0021456537972656347879, 1zz2a — ©.00065593776764772988648,
Izz3 - 0.00075317475619341178621, Izz3a - 0.0046700769165165462782,
m2 - ©.17543579346291875669, m2a - ©.021359343356984657787,
m3 - ©.033361491233685288674, m3a » ©.17527172722712916872,
r2ax - -0.14999999997572554671, r2ay - ©.14615397609270170703,
r2az - 9.14999999990116425344, r2X - -0.14999999983297031830,
r2y - -0.14393669815571050210, r2z - -0.14999544327597856938,
r3ax - 0.13128521373624746823, r3ay —» ©.095117125498774983091,
r3az - -0.077041803197721568804, r3x — 0.063078087212442820521,
r3y - -@.14995525735435877832, r3z —» 0.14535040633360765627} |,

{©.10000008296118196636, {Ixx2 — @.0016659302455100473359,
Ixx2a - ©.0016595706076595526240, IXX3 — ©.0041711092177854538399,
IXx3a - 0.0000100000000000000V0D, Lyy2 — ©.000010000000000VB0VV0L00,
Iyy2a - ©.000010000000000000000000, Iyy3 — 0.0047521067046738520553,
Iyy3a - ©.0050125357539488983289, Izz2 + 0.00208064938702690342525,
Izz2a - ©.010000000000000000000, IzZ3 - 0.010000000000000000000,
Izz3a - 0.000010000000000000000000, M2 — ©.15000000000000000000,
m2a — 0.020000000000000000000, M3 - 0.0 B
m3a - 0.15000000000000000000, r2ax - 2.15000000000000000000,
r2ay — 0.14999895436568258265, r2az — 0.15000000000000000000,
r2x - -0.028004369228038555560, r2y — @.15000000000000000000,
r2z —» - 0.15000000000000000000, r3ax — ©.070170847547341890936,
r3ay - -0.014324002229707167471, r3az - 0.15000000000000000000,
r3x — -0.13849994503630908490, r3y » -0.877337258715579310508,
r3z - -0.14998841640305301768} |}, {@.10000041953730985171,

{IXX2 — ©.0098982679088352807518, Ixx2a —~ ©.0061705584258086782427,
IXx3 - ©.0087133115252115754099, IXx3a — ©.0099999736193467724994,
Iyy2 - 0.010000000000000000000, Iyy2a ~ 0.000010000000020000000000,
Iyy3 — 0.000010000000000000000000, Iyy3a - ©.0031564993455095521361,
Izz2 - 0.000010000000000000000000, I1zz2a - 0.010000000000000000000,
1zz3 - ©.00001000000000000000VL0, 1Zz23a —~ ©.0064242394958656124355,
m2 - 0.15000000000000000000, m2a - ©.11335318869838674705,
m3 - 0.02 , m3a - 0.15000000000000000000,
r2ax - 9.15000000000000000000, r2ay — -0.080614466865613775299,
r2az - 0.060666258462794333702, r2x - -0.156000000000000000000,
r2y - 0.15000000000000000000, r2z — ©.065977486629552874879,
r3ax - 0.15000000000000000000, r3ay - 0.15000000000000000000,
r3az - -0.15000000000000000000, r3X — ©.058668825911686703880,
r3y - -0.156000000000000000000, r3z — 0.15000000000000000000 | | ,

Figure 0.11. Example Manipulator Designs for LN = 0.1
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{0.10000000000023441508, {IXX2 — ©.0049355527618869038075,
Ixx2a - 0.000010000000000000000000, IXX3 - ©.0035860065618290960706,
IXX3a — ©.0034508832390156635200, 1yy2 » 0.000074001126250267498655,
Iyy2a - ©.000074012349105440516070, Iyy3 - ©0.003419371573867190@7743,
Iyy3a - ©.0045050349437860615804, 1222 — 0.000010000000000000000000,
Izz2a - 0.000010000000000000000000,
Izz3 - ©.000010000000000000000000, I1zz3a - ©.0014811008630882580343,
m2 - 0.16873137540901311315, m2a » 0.097077613195067932543,
m3 - 0.14999999847624997617, m3a — 0.15630431063205554544,
r2ax - -0.12913636912962844097, r2ay — 0.14615570418502630118,
r2az - -0.093440468479721421063, r2x - -0.069307098289372626386,
r2y - -0.076888084231862034439, r2z — -0.027704680260962742231,
r3ax - ©.043726097611588927564, r3ay - ©.14998077330940384516,
r3az - -9.038025015188605903280, r3xX - -0.031240942077226696888,
r3y - 0.14999999989843706685, r3z — ©.14999999929287699484}} | }}

Figure 0.11. Continued
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LN=1

{1.0000000000182602839, {Ixx2 —» 0.0098097205405216920135,
Ixx2a - 0.0063644018216445058192, Ixx3 — 0.0097114545368474317535,
Ixx3a - ©.000045732152674647811337,
Iyy2 — ©.0021580271413095603886, Iyy2a — ©.0099995438259614045007,
Iyy3 — 0.0099999992254723929908, 1yy3a — ©.0030507242544491352288,
1z2z2 - 0.0099999992254723929908, I1zz2a — 0.0028094570502632870934,
I1zz3 - 0.0036344179497201431611, Izz3a - ©.0048179228019575237364,
m2 - 0.18706753378127707912, m2a + 0.090811464533238644316,
m3 - 0.14999999846000451398, m3a — 0.25496699566436973548,
r2ax — 0.062356064481896441902, r2ay - ©.14999749955469274268,
r2az - -0.0019111460487982771129, r2x —» ©.14999999959086745341,
r2y - -0.054103210160225837108, r2z - -0.10775821839797406403,
r3ax - -0.14999939249921285926, r3ay - -@.14999997341063322519,
r3az - 0.14998578439030898189, r3x - -0.0071825534903738848995,
r3y - ©.047415188337478607263@, r3z — ©.14996969373142938478} },

{1.0000000000136469808, {IXx2 » 0.000010208955738140678757,
Ixx2a - ©.0094820600129795581137, IXX3 — ©.0088212426753776882248,
Ixx3a - 0.000014560480849739948918, Iyy2 — 0.000011666443898229061181,
Iyy2a - ©.0030635135023778244044, Iyy3 - 0.0055600835872065499997,
Iyy3a - ©.0027774002242509280@792, 1zz2 — @.0040151862528611809503,
Izz2a - ©.0099999999098841675437, 1zz3 — ©.000010000000026349555190,
Izz3a » ©.000010000000026349555190, M2 — ©.29858391067781535786,
m2a — 0.14986635407263669600, m3 —» 0.14999999993797352371,
m3a - 0.29984800662305458826, r2ax —» 0.015871810263393227683,
r2ay - -0.14989890633865413682, r2az — -0.14999916834431192842,
r2x - 0.14986879403407354266, r2y - -@.14996962295053698220,
r2z - 0.14999994770392849007, r3ax — 0.14993088990061705127,
r3ay —» -0.087438927505655906515, r3az —» 0.14987521537084583561,
r3x - -0.14908308768469330160, r3y — -0.14999999999999744822,
r3z - -0.14849109087379971613}}, {1.0000000000016341439,

{IXx2 — ©.000010001527420466796024, Ixx2a - ©.0099753877643392535991,
IXX3 — ©.0061848922340977735107, IXX3a —» 0.0099999992124331058064,
Iyy2 - ©.0099999983723962911793, Iyy2a —» 0.0087770338634980697561,
Iyy3 - ©.0099999998493370846751, Iyy3a — 0.0099999998493370846751,
Izz2 — ©.0058875078257434855093, Izz2a — 0.000010000000000000000000,
1zz3 - ©.0027244751153510498971, 1zz3a —» ©.0013316240103631600649,
m2 — 0.25083986977849629900, m2a - 0.14567443656324760563,
m3 - 0.11149629792693383621, m3a - 0.23531878967593542713,
r2ax - ©.067623132474170653983, r2ay — -0.11217643779148452338,
r2az - ©.14999998400221021695, r2x - ©.10587082173577637334,
r2y - -0.10523039211729401055, r2z » -0.14999977341997673545,
r3ax - -0.14997312888989029418, r3ay — -©.068869219157366927308,
r3az —» ©.095450535563185422676, r3x —» -©.14995589120714484456,
r3y - -0.14999995592745349260, r3z - 0.14163224085489333149} },

{1.0000000000308344251, {IxX2 - 0.0099946772096190613947,
Ixx2a — 2.000010000000000000000000, IXX3 - ©.000010466694408433910168,
Ixx3a —» ©.0099999999220705650817, Iyy2 - 0.0099999999311420610756,
Iyy2a — 0.0023298411060168069049, Iyy3 — 0.0030744998471110091642,
Iyy3a —» 2.00115879622702332820199, Izz2 —+ 0.000010000000000000000000 ,
Izz2a -~ ©.000010000000000000000000, 1223 - ©.0027546935347942652588,
Izz3a — ©.000010000000RVR0VOLRVLA, M2 — ©.29998911345269099049,
m2a - 0.14999999991306168191, m3 - 0.13166280652803982397,
m3a - 0.29995855164667782389, r2ax - 0.050814645191940442444,
r2ay —» -0.052155813060535906288, r2az - 0.14999999720004601633,
r2x - 9.10459474790000581050, r2y — ©.053340422144459360947,
r2z - 0.14999999405112213843, r3ax - -0.14998619947844189290,
r3ay —» ©.14999995782658232561, r3az —» -0.13619973560575718053,
r3x - -0.149958694090496031867, r3y - 0.049964214036277632172,
r3z - -0.064642511896702153165} }, {1.0000111188584007048,

Figure 0.12. Example Manipulator Designs for LN = 1
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{Ixx2 - ©.0067568301436973133629, Ixx2a - 0©.0023177452941258972564,
IXx3 - @.01 ,» IXx3a — 0.000010058300675237861853,
Iyy2 — ©.0025089789277803676361, Iyy2a — 0.0099999640674349151133,
Iyy3 —» ©.0074188658255775309611, Iyy3a — 0.000010000000000000000000 ,
Izz2 - @.01 , Izz2a » 0.00001 s
1zz3 - ©.0016496836448206199350, 1zz3a —» ©.0044242196753430955366,
m2—-0.3 , M2a - ©.13132950835984008474,
m3 — 8.098796225971471389268, m3a - 0.3 N
r2ax —» ©.088061977414242250947, r2ay - ©.030318717762777394745,
r2az - ©.021202167840756010037, r2x - 0.15000000000000000000,
r2y - -0.,15000000000000000000, r2z — -0.026518920586925471456,
r3ax - -0.15000000000000000000@, r3ay — 0.043873289079275535201,
r3az - ©.078563147634299006156, r3x » -@.02551233836374619@765,
r3y - 9.15000000000000000000, r3z - ©.032934986062286728336} }}}}

Figure 0.12. Continued
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LN =2

{2.0000000000000002747, {IXx2 - 0.000015737892593268931912,
Ixx2a - @.0099835887074950822751, Ixx3 — 0.0075309778049606680733,
Ixx3a — ©.0039541207971309898166, Iyy2 - 0.0099999741093700660806,
Iyy2a — ©.0043118991709447501290, Iyy3 — ©.0043113798800057362471,
Iyy3a — ©.0099999962308044321453, 1222 » ©.0057974305723139574237,
Izz2a - ©.0070095028651107773359, 1223 - ©.0019410003381839061228,
Izz3a —» ©.0061839175389112877634, m2 — 0.27937928999270988435,
m2a - 0.14999999714268638996, m3 - @.14418876414850404492,
m3a - 0.29477040050146079362, r2ax — 0.14999423161900912358,
r2ay - 0.14999872182562961487, r2az — -0.0019323052767661761169,
r2x - @.14995610751234670533, r2y - @.142373901163775602931,
r2z - 0.079650882710890419259, r3ax — 0.14999279797195502683,
r3ay - ©.14999995826379168128, r3az - 0.14745269797715926786,
r3x - 0.14970632862811397455, r3y —» ©.14999996701071210139,
r3z - ©.14998898465754485326} }, {2.0000000000353462144,

{IXx2 - ©.0099947317616408942964, Ixx2a - ©.0098253490846339502845,
IXx3 - 0.000013605131577718682653, Ixx3a —» ©.0099999713576088109099,
Iyy2 - ©.0099998863707180293307, Iyy2a - 0.000015265560781446874034,
Iyy3 - ©.000010000000000000000000, Iyy3a - 0.000010000000000000000000,
Izz2 - 0.0014264658969574431977, Izz2a - ©.0099769268111198268476,
Izz3 - ©.0020321364975868916318, 1zz3a — 0.0080386477324959976148,
m2 - ©.29998759480933778541, m2a — ©.14511693863866426870,
m3 — ©.14999999846644123841, m3a —» 0.29998528418317455874,
r2ax —» ©.12754053751938106349, r2ay — -0.14999769742058131191,
r2az - ©.0952887847500297509227, r2x - 0.12948752760565897830,
r2y - -0.14999999262215295472, r2z - 0.011732163289193696675,
r3ax - 0.1499980524609286928@, r3ay - -0.081231962711898965569,
r3az - ©.14979105070570922848, r3x — ©.14862525537418832041,
r3y - 0.14999992059505314474, r3z —» ©.14998906615184145588} |,

{2.0000003705358918478, {IXX2 — 0.00017025792916699234425,
Ixx2a — 0.0047592376801114604411, IXx3 — 0.010000000000000000000 ,
Ixx3a —» 0.0099987382030238462259, Iyy2 — 0.010200000000000000000 ,
Iyy2a — 0.000010000000000000000000,
Iyy3 — ©.000010000000000000000000, 1yy3a — ©.000010007787112638864069,
1zz2 - ©.01000000000000R0000RY, 1zz2a —» 0.0092980789126347017475,
Izz3 - 0.0036371943681080104459, Izz3a — 0.009999364814437316207,
m2 - 0.3 , M2a - 0.15000000000000000000,
m3 - 0.14828224121665363209, m3a — 0.29664827607867963509,
r2ax - ©.13609100520481193321, r2ay — ©.094277984637905549103,
r2az - ©.085650756795525983964, r2x — ©.14999986511125504413,
r2y - 0.14206392630924352522, 12z - @.15000000000000000000,
r3ax - 0.15000000000000000000, r3ay - -0.11921215904823444723,
r3az - 0.14960264657551752072, r3x - 0.15000000000000000000 ,
r3y - -0.15000000000000000000, r3z — @.13751112696133275729} },
{2.0000197749352445797, {IxXX2 » 0.0052458161790760139315,
IXXx2a - ©.0073811274084030537744, IXX3 — 0.000010052234103330577657,
Ixx3a - 0.000010000000000000000000, Iyy2 — ©.00001000020000VVVRV00AA,
Iyy2a » 0.009999317386461307342, Iyy3 - 0.0087087915680435063272,
Iyy3a - ©.000010000000000000000000, 1zZ2 — ©.0016946729367474083682,
Izz2a - ©.000010000000000000000000, 1zZ3 — ©.010000000000000000000,
Izz3a - ©.00001000000000000CROVVED, M2 — ©.29687408913874583844,
m2a - 0.14998999844981535754, m3 — ©.14999602332494695129,
m3a - 0.29999664118462933176, r2ax - 0.14476994346394536311,
r2ay - ©.14993207781600943298, r2az - 0.15600000000000000000,
r2x - 0.14999759450498620403, r2y —» ©.14791775150187885831,
r2z —» -0.14999639444054605534, r3ax — ©.15000000000000000000,
r3ay — 0.1476400831362711029@, r3az - 0.13564351540798283813,
r3X - 0.14974971630189090865, r3y — -0.071943080114810346219,
r3z - 0.12352078559030437982} }, {2.0000026089978358506,

Figure 0.13. Example Manipulator Designs for LN = 2
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{IXX2 — ©.009999043645920327309, IXx2a - ©.0094230281365404298997,

IXx3 —» 0.0068405273348887244486, Ixx3a —» 0.00001

Iyy2 - ©.0067921439250126162911, Iyy2a - 0.00001
Iyy3 - ©.009999760687792238390, 1yy3a — ©.009999924196580412403,
Izz2 - ©.0044851165191999760747, Izz2a - 0.0019537680506487033797,
1223 - ©.0049794374012472877646, 1zZ3a - 0.0099999441400893046929,
m2 - 9.29889219508182239339, m2a — 9.15000000000000000000,

m3 - 0.14941069251957374956, m3a - 0.29771022663329563690,

r2ax - ©.091083271015714703361, r2ay — ©.14989990259033491664,
r2az - 0.15000000000000000000, r2x - 0.15000000000000000000,

r2y - 0.14781439339846459096, r2z - -0.15000000000000000000,

r3ax - 0.14999774862707410241, r3ay — 0.10497483885776695273,

r3az - 0.14689569042954082868, r3x - 0.14901404489228945885,

r3y - -0.14568484110339948818, r3z — ©.149999784811338103062}}}}}

Figure 0.13. Continued
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D. Optimization of Six Degrees of Freedom Configuration

The empty solution set is obtained via the following MATHEMATICA codes as
below.

solutionédof = FindInstance[D[LN, Ixx4] == @ && D[LN, Ixy4] == @ &&
D[LN, Ixz4] == @&&D[LN, Iyy4] == @&&D[LN, Iyz4] == @ &&D[LN, Izz4] == 0&&
D[LN, IXx5] == @ &&D[LN, IXy5] == @&&D[LN, Ixz5] == © &&
D[LN, Iyy5] == ©&&D[LN, Iyz5] == @ &&D[LN, Izz5] == 0 &&
D[LN, Ixx6] == @ &&D[LN, IXy6] == @&&D[LN, Ixz6] == @ &&
D[LN, Iyy6] == @&&D[LN, Iyz6] == @&&D[LN, Izz6] == 0 &&
Ixx1Iyyl - Ixyl”~2 > @&
Ixx1IyylIzzl - Ixx1Iyz1~2 - Ixyl~2Izzl- 2 Ixyl IxzlIyzl - Ixz1~2Iyyl> @8&&
Ixx2Iyy2 - Ixy2~2 > 0&%
Ixx2 Iyy2 Izz2 - Ixx2Iyz2~2 - Ixy2~21Izz2-2Ixy2Ixz2Iyz2 - Ixz2°2Iyy2 > 88&&
Ixx3Iyy3 - Ixy3"2 > 08&%&
Ixx3 Iyy3 Izz3 - Ixx3 Iyz3~2 - Ixy3~21Izz3- 2 Ixy3 Ixz3 Iyz3 - Ixz3~2Iyy3 > 88&&
Ixx2alyy2a - Ixy2a”2 > 08&%
Ixx2a Iyy2aIzz2a - Ixx2alyz2a"2 -
Ixya2”~2Izz2a- 2 Ixy2aIxz2alIyz2a - Ixz2a”*2Iyy2a > ©@&%&
Ixx3alIyy3a - Ixy3a~2 > 08&%
Ixx3alyy3alIzz3a - Ixx3alyz3a"2 -
IXy3a~2Izz3a- 2 Ixy3aIxz3alIyz3a - Ixz3a"2Iyy3a > @8&%
Ixx4 Iyy4 - Ixy4"2 > 0 &&
Ixx4 Iyy4 Izz4 - Ixx4 Iyz4~2 - Ixy4~21Izz4 - 2 Ixy4 Ixz4 Iyz4 - Ixz4~2Iyy4 > 88&
Ixx5Iyy5S - Ixy5°2 > @&&
Ixx5 Iyy5 Izz5 - Ixx5 Iyz5°2 - Ixy5~2Izz5- 2 Ixy5 Ixz5 Iyz5 - Ixz5°2 Iyy5 > 88&
Ixx6Iyy6é - Ixy6~2 > 0 &&
Ixx6 Iyy6 Izz6 - Ixx6 Iyz6°2 - IXxy6~2Izz6 - 2 Ixy6 Ixz6 Iyz6 - Ixz6°2 Iyy6 > 88&&
mub > m1 > mlb & & mub > m2 > mlb & mub > m2a > mlb & mub > m3 > mlb &&
mub > m3a > mlb&&mub > ma > mlb & & mub > m5 > mlb & mub > mé > mlb &&
iub > Ixx1 > ilb&&iub > Iyyl > ilb&&iub > Izz1 > ilb&&
iub > Ixx2 > i1b&& iub > Iyy2 > ilb&& iub > Izz2 > i1b&&
iub > Ixx2a > ilb & iub > Iyy2a > ilb&&iub > Izz2a > ilb&&

iub > Ixx3 > ilb&&iub > Iyy3 > ilb&&iub > Izz3 > ilb&%
iub > Ixx3a > ilb&&iub > Iyy3a > ilb&& iub > Izz3a > ilb&&
iub > Ixx4 > ilb&& iub > Iyy4 > ilb&& iub > Izz4 > ilb&&
iub > Ixx5 > ilb&&iub > Iyy5 > ilb&2 iub > Izz5 > ilb&%
iub > Ixx6 > ilb&& iub > Iyyé > ilb&& iub > Izz6 > ilb&%
rub > rix > rlb&&rub > rly > rlb&:&rub > riz > rlb&&
rub > r2x > rlb&&rub > r2y > rlb&&rub > r2z > rlb&&
rub > r2ax > rlb&& rub > r2ay > rlb&2rub > r2az > rlb&8&
rub > r3x > rlb&rub > r3y > rlb&&rub > r3z > rlb &%
rub > r3ax > rlb&&rub > r3ay > rlb&&rub > r3az > rlb&&
rub > r4x > rlb&&rub > rdy > rlb&&rub > r4z > rlb&8&
rub > r5x > rlb & rub > r5y > rlb&&rub > r5z > rlb&%&
rub > réx > rlb & rub > réy > rlb&& rub > réz > rlb,

{Ixx1, Ixx2, Ixx2a, Ixx3, Ixx3a, Ixx4, Ixx5, Ixx6, Ixyl, Ixy2, Ixy2a, Ixy3, Ixy3a,
Ixy4, Ixy5, Ixy6, Ixya2, Ixzl, Ixz2, Ixz2a, Ixz3, Ixz3a, Ixz4, Ixz5, Ixz6, Iyyl,
Iyy2, Iyy2a, 1yy3, Iyy3a, Iyy4, 1yys, Lyy6, Iyzl, Iyz2, Iyz2a, Iyz3, Iyz3a,
Iyz4, Iyz5, Iyz6, Izz1, 1zz2, Izz2a, Izz3, I1zz3a, I1zz4, Izz5, 1zz6, ml, m2,
m2a, m3, m3a, m4, m5, mé, rlx, rly, rlz, r2ax, r2ay, r2az, r2x, r2y, r2z, riax,
r3ay, r3az, r3x, r3y, r3z, rax, ray, rdz, rsx, rsy, rsz, réx, rey, réz}, Reals]

Figure 0.14. LN Optimization of Six DOF
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