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ABSTRACT 

AN EXPLORATION OF NUMERICAL APPROACHES TO BOLTZMANN 

EQUATION REGARDING HYDRODYNAMICS 

Şahin, Alper 

Master of Science, Engineering Sciences 

Supervisor: Prof. Dr. Hakan Işık Tarman 

September 2019, 111 pages 

The Lattice Boltzmann Method (LBM) has become an alternative tool in 

computational fluid dynamics (CFD) techniques. While traditional CFD methods are 

based on Navier-Stokes equations that describe the fluid in terms of macroscopic 

quantities, LBM takes a mesoscopic description of the fluid thus closing the gap 

between macroscale and microscale. Overall, LBM provides a simple and efficient 

framework for simulation of fluid flows. In this approach, Boltzmann kinetic equation 

with BGK collision operator is discretized over a square lattice and solved to compute 

the evolution of a particle distribution function whose velocity moments are connected 

to the macroscopic primitive variables such as velocity and density. 

In this study, we explore two main approaches in the velocity discretization of the 

Boltzmann equation, namely, Galerkin and Collocation approaches. The foundations 

leading to these approaches are systematically laid down and some numerical 

examples are presented. These examples include, plane channel (Poiseuille), flow over 

circular and square cylinders and flow over an array of cylinders. Comparisons with 

available analytic and other numerical techniques show a satisfactory agreement. 
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Keywords: Lattice Boltzmann Method, Galerkin and Collocation approach, 

Computational Fluid Dynamics, Channel flow and flow over cylinder(s).   



ÖZ 

BOLTZMANN DENKLEMINE SAYISAL YAKLAŞIMLARIN 

HİDRODİNAMİK AÇIDAN BİR İNCELEMESİ 

Şahin, Alper 

Yüksek Lisans, Mühendislik Bilimleri 

Tez Danışmanı: Prof. Dr. Hakan Işık Tarman 

Eylül 2019, 111 sayfa 

Lattice Boltzmann Yöntemi (LBY), Hesaplamalı Akışkanlar Dinamiği (HAD) 

yöntemlerinde alternatif bir araç haline gelmiştir. Geleneksel HAD metotları, 

akışkanı makroskopik büyüklükler olarak tanımlayan Navier-Stokes denklemlerine 

dayanırken, LBY, akışkanı mesoskopik tanımıyla ele alır, böylelikle bu durum makro 

ve mikro ölçek arasındaki boşluğu kapatmaktadır. Genel olarak LBY, akışkan akışı 

simülasyonları için basit ve verimli bir çerçeve çizmektedir. Bu yaklaşımda, BGK 

çarpışma operatörüyle Boltzmann kinetik denklemi, kare kafes üzerinde ayrıştırılır ve 

hız momentleri, hız ve yoğunluk gibi makroskobik ilkel değişkenlere bağlı olan bir 

parçacık dağılım fonksiyonunun gelişimini hesaplamak için çözülür. 

Bu çalışmada, Boltzmann denklemindeki hız ayrıklaştırılması, Galerkin ve 

Kollokasyon yaklaşımı olmak üzere, iki ana yaklaşım ile araştırılmıştır. Bu 

yaklaşımlara yol açan temeller sistematik olarak masaya yatırılmış ve bir takım sayısal 

örnekler sunulmuştur. Bu örnekler, kanal akışı (Poiseuille), dairesel ve kare silindirler 

üzerindeki akış ile silindir dizilimleri üzerindeki akışları içermektedir. Mevcut analitik 

ve diğer sayısal yöntemler ile yapılan karşılaştırmalar tatmin edici bir uyuşma 

göstermektedir. 
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CHAPTER 1 

1. INTRODUCTION

The mathematical models of fluid dynamics are mainly based on the conservation of 

mass, momentum and energy resulting in the continuity, Navier-Stokes and energy 

equations. This constitutes the so-called continuum approach where the macroscopic 

primitive quantities such as velocity, temperature, pressure, are assumed to vary 

continuously throughout the physical domain. The scale is macroscopic and may be 

characterized by a length scale L and a velocity scale U. Two different phenomena 

shape the macroscopic dynamics, namely, convection that occurs in the time scale 

𝑡𝑐𝑜𝑛𝑣 = 𝐿 𝑈⁄  and diffusion that occurs in the time scale 𝑡𝑑𝑖𝑓𝑓 = 𝐿
2 𝜈⁄   where 𝜈 is the

kinematic viscosity. Relative importance of these time scales give rise to the well-

known Reynolds number 𝑅𝑒 = 𝑡𝑑𝑖𝑓𝑓 𝑡𝑐𝑜𝑛𝑣⁄ = 𝑈𝐿 𝜈⁄   that characterizes the dynamics

of the macroscopic flow, as high Re flow, such as turbulence, and low Re flow, such 

as bioflows. Another characterizing macroscopic scale is the speed of sound  𝑐𝑠 that

gives rise to the time scale 𝑡𝑠𝑜𝑢𝑛𝑑 = 𝐿 𝑐𝑠⁄  determining how fast acoustic waves

propagate in the fluid. When compared with the convective time scale gives rise to the 

Mach number 𝑀𝑎 = 𝑡𝑠𝑜𝑢𝑛𝑑 𝑡𝑐𝑜𝑛𝑣⁄ = 𝑈 𝑐𝑠⁄ . Steady flow with 𝑀𝑎 ≤ 0.3 is considered

to be incompressible.  

The fact that the matter is made-up of individual molecules, on the other hand, forms 

the basis for an alternative representation of a fluid in the atomic level. The 

mathematical models in this finer description are based on the Newton’s equation of 

motion 𝑚𝑟̈𝑖 = 𝐹⃑𝑖 where m is the mass of the fluid molecule, 𝑟𝑖 is the position vector

of the 𝑖𝑡ℎ molecule, and 𝐹⃑𝑖 is the total force experienced by the molecule. A molecular

dynamics (MD) simulation (Mohamad, 2011) consists of solving these equations to 
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determine the position and the velocity of each molecule. The macroscopic quantities 

Q are then obtained from the microscopic quantities q by the ensemble averaging 

procedure: 𝑄 = 〈𝑞〉. However, tracking the evolution of the molecules even for a 

small volume of fluid (~1023) in the six dimensional phase space consisting of the

spatial coordinates and the velocities is impractical and it is limited to sub-micrometer 

systems only. The scale here is microscopic. The characterizing scales may be the size 

of the fluid atom or molecule 𝑙 and the average thermal velocity v𝑇 = (𝑘𝐵𝑇 𝑚⁄ )1 2⁄

with Boltzmann constant 𝑘𝐵, and the temperature T. Note that v𝑇 ≫ 𝑈.

Mesoscopic description is then a viable option that lies between the macroscopic and 

the microscopic scales. The mathematical models in this description are developed 

based on the kinetic theory that tracks the evolution of its constituent molecules’ 

distributions in the six dimensional phase space. A characterizing length scale in this 

description is the mean free path 𝑙𝑚𝑓𝑝, 𝑙 ≪ 𝑙𝑚𝑓𝑝 ≪ 𝐿,  which is the distance travelled

between two successive collisions. The mean time between successive collisions is 

then 𝑡𝑚𝑓𝑝 = 𝑙𝑚𝑓𝑝 𝑣𝑇⁄ . Kinetic theory in principle is restricted to the case of a dilute

gas which the molecules spend little time colliding and collisions occur one-on-one 

basis. These exclude dense gases and liquids where the molecules are closer and 

constantly interact. Since the molecular radius is neglected in this description, 

collisions involving more than two particles are events that occur with probability 

zero, and therefore can be neglected for all practical purposes. In this context, a useful 

parameter is the Knudsen number, 𝐾𝑛 = 𝑙𝑚𝑓𝑝 𝐿⁄  that is the ratio between the

mesoscopic and macroscopic length scales. For 𝐾𝑛 ≪ 1, the continuum description is 

valid while for 𝐾𝑛~1, kinetic theory description becomes valid. The von Karman 

relation states that Knudsen and Mach numbers are related by 𝐾𝑛 ∝ 𝑀𝑎 𝑅𝑒⁄ .  

Figure 1.1 shows a general geometry schematic of a hybrid scheme. Velocity 

gradients, which are small gradients, are placed in shadowed region and continuum 
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equations are solved in that region. In dotted region, atomistic description is used in 

large gradients. In below figure, from C to P, for molecular dynamic simulations, 

boundary conditions ensured by continuum solutions. From P to C, for continuum 

simulations, boundary conditions ensured by atomistic solutions (Nie et al., 2004).  

 

 

Figure 1.1. Schematic of the hybrid method. (Nie et al., 2004) 

 

The use of mesoscopic methods as an alternative tool for computational fluid 

dynamics (CFD) was started in 1980s with the lattice-gas methods. The basic idea is 

building a simplified kinetic model based on mesoscopic and microscopic process 

fundamentals. The conventional methods of macroscopic dynamics are insufficient 

for understanding the microscopic physics in details. By using mesoscopic methods, 

however, one can analyse dynamics of the macroscopic fluid flows behaviour as if 

many microscopic particles are in the system (Kadanoff, 1986). Solving complex 

kinetic equations and tracking all of the particles in MD simulations become easier by 

development of the kinetic equation simplification. The advantages of molecular 

dynamics such as simple implementation of the boundary conditions and definite 

physical models with fully parallel algorithms provided by kinetic equation. (S. Chen 

et al., 1998). Besides providing microscopic dynamics at interfaces between fluids and 
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fluid to solids in feasible ways, this method can work as a solver for the Navier–Stokes 

equation like conservation equations in the bulk flow (L. Chen et al., 2014).  

Over the last few years, the interest in discrete mesoscopic CFD methods was 

increased. One can include lattice gas automata (LGA), and the lattice Boltzmann 

method (LBM) into this context. These methods have the advantages of molecular 

dynamics in modelling fluids as discrete particles, thus, allowing the microscopic 

physics responsible for many complex fluid phenomena to be modelled 

fundamentally. Nevertheless LBM is building on a particle model with averaged 

macroscopic physical behaviour. In addition, they can be easily implemented on 

computational algorithms and the simulations can be performed with more efficiency 

and speed (Yepez, 1993). However these methods still have lots of rooms for 

improvements, because they are relatively new compared to the conventional methods 

(Gergova, 2002). 

1.1. Lattice Gas Automaton 

The basic idea goes back to von Neumann (von Neumann, 1966) who developed the 

cellular automaton (CA) as an idealization of a physical system in which space and 

time are discrete. In this idealization, the physical quantities take only a finite set of 

values over regular rectangular or triangular lattices that form the cells. In discretized 

space, each linked lattice nodes have local state variables and significant rules of 

updating. The automata are described in terms of configurations and transition 

concepts. In configuration rule of a system, all nodes have a designation of their states 

in cellular space. Configuration dynamics are achieved by transition rules. For 

configuration rules, particles are designated to the nodes and the transition rules are 

considerably easy and finite (Lim, 1990). Out of the sum of these transition rules 

emerges a collective complex behaviour that are not obviously extrapolated from the 

individual rules.  
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In early lattice-gas automaton (LGA) models, the fluid is treated as a set of particles 

residing on the nodes in a two-dimensional square lattice and allowed to move along 

the lattice lines to any of the four nearest neighbouring nodes. The collision between 

particles are designed to follow head-on rule that the colliding two particles will turn 

around 90o after the collision (He et al., 1997). Mathematically, the motion in this 

model can be described by the discrete kinetic equations: 

𝑛𝑖(𝒙 + 𝒗𝑖 , 𝑡 + 1) = 𝑛𝑖(𝒙, 𝑡) + 𝐶𝑖 (1.1) 

where 𝑛i(𝒙, 𝑡) is the Boolean number of particles,

𝑛𝑖(𝒙, 𝑡) = {
0 particle absence at node 𝒙 and time 𝑡 

1 particle presence at node 𝒙 and time 𝑡

moving with discrete velocity 𝒗𝑖 at node 𝒙 to its adjacent sites and 𝐶𝑖 is the collision

operator representing the influence of particle collisions (Koda, 2013). The 

insufficient symmetry of the square lattice was discovered to restrict LGA to be a 

computational model for hydrodynamic flows. This led researchers (Frisch et al., 

1986; Wolfram, 1986) to introduce their hexagonal model known as FHP model. This 

model uses a triangular lattice on which each node has six nearest neighbours. 

Consequently, FHP collision rule includes more cases. The implementation of FHP 

involves two operations, streaming and collision. In streaming operation, all particles 

move through the lattice to a neighbouring site in the velocity direction. In collision 

operation, these particles interact and scatter when they reach at their lattice sites (S. 

Chen et al., 1998). 

The main drawback of LGA is its noisy nature in simulating hydrodynamics. This 

limited its success and led to the discovery that instead of discrete particles, modelling 

based on an advecting number density distribution eliminated the noisiness of the 

method and allowed implementation of a more general collision operator in LBM. By 

recovering the Navier-Stokes equation using Chapman-Enskog expansion (H. Chen et 

al., 1992), LBM has become an alternative tool especially for complex CFD problems 

such as multi-component, multi-phase flows (Higuera et al., 1989) and physiological 
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problems such as cardiovascular flows and flow in lungs and in breathing passages 

(Xia et al., 2002). However, earlier LBM had not been known as a CFD tool in 

engineering community (Qian et al., 1992) due to its restriction to regular lattices 

(Amati et al., 1997) that was inherited from the original LGA (Frisch et al., 1986). 

Due to its use of number density distribution in LBM, replacing the Boolean 

population of LGA, this restriction has become unnecessary in LBM (Cao et al., 1997; 

He et al., 1996).  

 

1.2. Lattice Boltzmann Equation 

LBM originates from the LGA model and at its heart lies the probability distribution 

function 𝑓(𝒙, 𝒗, 𝑡) that gives the probability of finding a molecule at position 𝒙 with 

a velocity 𝒗 at a time t or the expected number of particles 𝑓(𝒙, 𝒗, 𝑡)𝑑𝒙𝑑𝒗 in a phase 

space volume element 𝑑𝒙𝑑𝒗 (Sukop et al., 2006). The distribution function is 

connected to macroscopic variables such as the mass density  

𝜌(𝒙, 𝑡) = ∫𝑓(𝒙, 𝒗, 𝑡) 𝑑𝒗 ,                                              (1.2a) 

the momentum density 

𝜌(𝒙, 𝑡)𝒖(𝒙, 𝑡) = ∫𝒗 𝑓(𝒙, 𝒗, 𝑡) 𝑑𝒗 ,                                      (1.2b) 

and the total energy density 

𝜌(𝒙, 𝑡)𝐸(𝒙, 𝑡) =
1

2
∫|𝒗|2 𝑓(𝒙, 𝒗, 𝑡) 𝑑𝒗 .                       (1.2c) 

These are actually moment integrals of 𝑓 weighted with some functions of 𝒗 and 

integrated over the velocity space. The considerations of the internal energy due to the 

random motion of the particles lead to the macroscopic internal energy density as the 

moment  

𝜌(𝒙, 𝑡)𝑒(𝒙, 𝑡) =
1

2
∫|𝒗 − 𝒖|2 𝑓(𝒙, 𝒗, 𝑡) 𝑑𝒗 .                           (1.2d) 
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In the presence of an external force 𝑭, the particles in this distribution will be 

accelerated by 𝒂. If we follow the movements of particles in a phase space volume 

element during a time interval 𝑑𝑡, the number of particles is conserved, thus 

𝑓(𝒙 + 𝒗𝑑𝑡, 𝒗 + 𝒂𝑑𝑡, 𝑡 + 𝑑𝑡)𝑑𝒙𝑑𝒗 = 𝑓(𝒙, 𝒗, 𝑡)𝑑𝒙𝑑𝒗             (1.3) 

 

 

Figure 1.2. Effect of an external force 𝑭 = 𝑚𝒂 on velocity where m is the molecular mass. (Boix, 2013) 

 

The intermolecular collisions taking place within a gas, however, cause changes to the 

distribution whose effect is summed up by the collision operator 𝐶(𝑓) leading to a 

more realistic equation:  

𝑓(𝒙 + 𝒗𝑑𝑡, 𝒗 + 𝒂𝑑𝑡, 𝑡 + 𝑑𝑡)𝑑𝒙𝑑𝒗 − 𝑓(𝒙, 𝒗, 𝑡)𝑑𝒙𝑑𝒗 = 𝐶(𝑓)𝑑𝒙𝑑𝒗𝑑𝑡.     (1.4) 

In the limit 𝑑𝑡 → 0, it reduces to the classical Boltzmann equation (Succi 2001): 

𝜕𝑓

𝜕𝑡
+ 𝒗 ∙ 𝛁𝒙𝑓 + 𝒂 ∙ 𝛁𝒗𝑓 = 𝐶(𝑓).                                 (1.5) 

The last two terms on the left-hand side of (1.5) represent the net number of particles 

entering the infinitesimal phase-space volume 𝑑𝒙𝑑𝒗 centered at (𝒙, 𝒗) as the result of 

inertial motion of particles between collisions and the external force 𝐅, respectively, 

while the second term on the right-hand side represents the net number of particles 
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entering that same volume as the result of instantaneous and purely local collisions. 

The collision operator must fulfil the conservation of the mass 

 
∫𝐶(𝑓)𝑑𝒗 = 0 

(1.6a) 

the total momentum  

 
∫𝒗 𝐶(𝑓)𝑑𝒗 = 0 

(1.6b) 

and the total energy conditions  

 
∫𝒗 ∙ 𝒗 𝐶(𝑓)𝑑𝒗 = 0 

(1.6c) 

due to the assumption that the collisions do not create nor destroy molecules. The 

general Boltzmann collision operator is rather complicated and the collision operator 

used in the LBM is based on much simpler BGK collision operator (Bhatnagar et al., 

1954) 

 
𝐶𝐵𝐺𝐾(𝑓) = −

𝑓 − 𝑓𝑒𝑞

𝜏
 

(1.7) 

where 𝜏 is the relaxation parameter towards the equilibrium (Maxwellian) distribution  

𝑓𝑒𝑞 = 𝜌 (
1

2𝜋𝑅𝑇
)
3 2⁄

𝑒𝑥𝑝 (−
|𝒗 − 𝒖|2

2𝑅𝑇
)                                (1.8) 

with the specific gas constant R and density 𝜌. The relaxation parameter 𝜏 is closely 

related to the viscosity 𝜈. BGK collision operator satisfies the conservation 

requirements (1.6) and facilitates the evolution of 𝑓 towards 𝑓𝑒𝑞 as governed by the 

relaxation parameter 𝜏. However it is still an approximation to Boltzmann’s original 

collision operator in that BGK collision operator predicts a Prandtl number (𝑃𝑟 =

𝜅 𝑣⁄ , the ratio of viscous 𝑣 and thermal 𝜅 diffusivity coefficients) of 𝑃𝑟 = 1 while the 

original operator predicts 𝑃𝑟 ≈ 2 3⁄ , a value validated experimentally for monatomic 

gases.   
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The Boltzmann equation is a continuous equation and it is necessary to construct 

corresponding discrete equations for computational modelling. The first step in the 

discretization process involves the discretization of the moment equations (1.2) in the 

velocity space: 

∫𝑓(𝒙, 𝒗, 𝑡) 𝑑𝒗 ≅∑𝜛𝛼𝑓(𝒙, 𝒗𝛼 , 𝑡)

𝛼

,  (1.9a) 

∫𝒗 𝑓(𝒙, 𝒗, 𝑡) 𝑑𝒗 ≅∑𝜛𝛼𝒗𝛼𝑓(𝒙, 𝒗𝛼 , 𝑡)

𝛼

,  (1.9b) 

1

2
∫|𝒗|2 𝑓(𝒙, 𝒗, 𝑡) 𝑑𝒗 ≅

1

2
∑𝜛𝛼|𝒗𝛼|

2𝑓(𝒙, 𝒗𝛼 , 𝑡)

𝛼

,  (1.9c) 

where {𝒗𝛼} is a discrete set of velocities and 𝜛𝛼 are the corresponding weights. This

is introduced into the Boltzmann equation (1.5) with the BGK collision operator (1.7) 

to get (BGK-Boltzmann) 

𝜕𝑓𝛼
𝜕𝑡
+ 𝒗𝛼 ∙ ∇𝒙𝑓𝛼 = −

1

𝜏
(𝑓𝛼 − 𝑓𝛼

𝑒𝑞
)

(1.10)

where 𝑓𝛼 = 𝑓(𝒙, 𝒗𝛼 , 𝑡) and the external force is omitted. This decouples the velocity

space and the physical space and the resulting equation is called the continuous Lattice 

Boltzmann Equation (LBE). The discretization in the physical space (time and space) 

can be performed by different numerical techniques, such as the finite difference (He 

et al., 1996), finite volume (Xi et al., 1999), finite element methods (Li et al., 2005). 

Discretization of (1.10) in space and time with finite difference formulas leads to the 

(discrete) lattice Boltzmann equation: 

𝑓𝛼(𝒙 + 𝒗𝛼∆𝑡, 𝑡 + ∆𝑡) − 𝑓𝛼(𝒙, 𝑡)

= −
∆𝑡

𝜏
(𝑓𝛼(𝒙, 𝑡) − 𝑓𝛼

𝑒𝑞(𝒙, 𝑡)).

(1.11) 

This form is widely used as a computational tool for the simulation of fluid flow. The 

evolution of the distribution function is approximated over a lattice having each lattice 
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site located at 𝒙 and connected to the neighbouring lattice sites along the directions 

𝒗𝛼. The implementation takes successive streaming (propagation) and collision 

(relaxation) substeps.        

 

An alternative approach is to use a Galerkin procedure based on Hermite polynomial 

expansion in velocity space (Tölke et al., 2000). The equilibrium distribution function 

𝑓𝑒𝑞 is of Gaussian exponential form, thus, it can be expressed in terms of Hermite 

polynomials {𝐻(𝑛)(𝑥)} that are orthogonal under a weighted inner product  

 
∫ 𝐻(𝑛)(𝑥)𝐻(𝑚)(𝑥)
∞

−∞

𝜔(𝑥)𝑑𝑥 = 𝑛! 𝛿𝑛𝑚 

 

(1.12) 

with Gaussian exponential weight 𝜔(𝑥) = 1

√2𝜋
exp (−𝑥2 2)⁄ . This can also be applied to 

the unknown distribution function 𝑓 itself:     

 
𝑓(𝒙, 𝒗, 𝑡) ≅ 𝜔(𝒗)∑ 1

𝑛!
 𝑎(𝑛)(𝒙,𝑡)𝐻(𝑛)(𝒗)

𝑁

𝑛=0
 

(1.13) 

where the expansion coefficients can be obtained by Galerkin projection onto the 

space spanned by the Hermite polynomials as 

 
𝑎(𝑛)(𝒙, 𝑡) = ∫ 𝑓(𝒙, 𝒗, 𝑡) 𝐻(𝑛)(𝒗)

∞

−∞

𝑑𝒗 
(1.14) 

It turns out that the discrete set of velocities {𝒗𝛼} used in LBM are, in fact, the 

Gaussian-Hermite quadrature nodes. The Galerkin projection when applied to the 

residual resulting from substituting the truncated representations of 𝑓 and 𝑓𝑒𝑞 yields 

a system of hyperbolic partial differential equations that can be solved with available 

numerical techniques free of a lattice structure.   
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1.3. Thesis Objectives 

In this thesis, our objective is to explore the collocation and Galerkin projection 

approaches to numerically solve the Boltzmann equation with the BGK collision 

operator. The physical configurations of Plane Poiseuille flow will be used as the test 

problems. In addition, flow past circular cylinder(s) and a square cylinder 

configurations are simulated by LBM. The explorations are performed to understand 

the theory and the implementation of this promising alternative technique for 

computational modelling of the fluid flow phenomena. 

After the perspective introduction to the analytics and numerics of LBM in Chapter1, 

Chapter 2 presents the Boltzmann equation from the kinetic theory to its discretization 

in Galerkin and collocation approaches. In Chapter 3, Galerkin approach is presented 

in detail and implemented numerically to solve planar Poiseuille flow whose analytic 

solution is known. Collocation approach leading to LBM is presented in Chapter 4. 

The implementation issues, namely boundary conditions and stability, on the square 

lattice are discussed and planar Poiseuille flow is used as a numerical test case. Some 

further numerical examples, such as flow over circular, square and an array of 

cylinders are presented in Chapter 5. It is finalized by a discussion in Chapter 6. 

Hermite polynomials and Gauss-Hermite quadrature that are the main tools used in 

Galerkin and collocation approaches, are presented in the Appendix. 
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CHAPTER 2  

 

2. BOLTZMANN EQUATION AND ITS DISCRETIZATION  

 

As mentioned in the introduction LBM operates in the mesoscopic scales of 𝒍𝒎𝒇𝒑, 

𝒕𝒎𝒇𝒑 based on the mean free path between successive collisions. Kinetic theory 

commonly provides a kinetic description of dilute monatomic gases at this scale, thus 

it underlies the LBM.  

 

2.1. Kinetic Theory and the Equilibrium Distribution Function 

In the mesoscopic description, the particle distribution function 𝑓(𝒙, 𝒗, 𝑡) is the 

fundamental variable representing the density of particles in the phase space with the 

velocity 𝒗 = (𝑣𝑥, 𝑣𝑦, 𝑣𝑧) = (𝑣1, 𝑣2, 𝑣3) at position 𝒙 = (𝑥, 𝑦, 𝑧) = (𝑥1, 𝑥2, 𝑥3) and 

time t. It can be considered as a generalization of macroscopic density 𝜌(𝒙, 𝑡). It is, in 

fact, connected to macroscopic variables like the density and the fluid velocity 𝒖(𝒙, 𝑡) 

from its moments over the velocity space (1.2). Using the ideal gas law 𝑝 = 𝜌𝑅𝑇 and 

the internal energy 𝜌𝑒 = 3

2
 𝜌𝑅𝑇 due to the molecular translation in three spatial 

dimensions, both pressure 𝑝 and temperature 𝑇 can also be formulated as a moment   

 
𝑝 = 𝜌𝑅𝑇 =

2

3
 𝜌𝑒 =

1

3
∫|𝒗 − 𝒖|2 𝑓(𝒙, 𝒗, 𝑡) 𝑑𝒗 

(2.1) 

                     

When a gas has been left alone for sufficiently long, the collisions between molecules 

tend to even out the distribution of particle velocities in a gas around the mean velocity 

𝒖, thus, the distribution function 𝑓(𝒙, 𝒗, 𝑡) reaches an equilibrium distribution 𝑓𝑒𝑞(𝒄) 

where 𝒄 = 𝒗 − 𝒖 = (𝑐𝑥, 𝑐𝑦 , 𝑐𝑧) is the relative (intrinsic) velocity and 𝑓𝑒𝑞 should be 
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only a function of the speed |𝒄| = 𝑐 of the particles, thus 𝑓𝑒𝑞(𝑐). Together with the 

independence of the distribution in each direction, this implies  

𝑓𝑒𝑞(𝑐) = 𝑓𝑒𝑞(𝑐𝑥)𝑓
𝑒𝑞(𝑐𝑦)𝑓

𝑒𝑞(𝑐𝑧) = Φ(𝑐𝑥
2 + 𝑐𝑦

2 + 𝑐𝑧
2) 

for some function Φ where only the velocity dependence is shown. An appropriate 

form of the distribution function should then be 𝑓𝑒𝑞(𝑐) = 𝐴exp (−𝐵𝑐2) so that 

𝑓𝑒𝑞(𝑐) = 𝐴3 exp (−𝐵(c𝑥
2 + c𝑦

2 + c𝑧
2)) = 𝐴3 exp(−𝐵𝑐2). 

The number of particles having speed between 𝑐 and 𝑐 + 𝑑𝑐 can be considered 

geometrically as lying between two shells of the sphere with radii 𝑐 and 𝑐 + 𝑑𝑐 having 

a volume 4𝜋𝑐2𝑑𝑐. Therefore, the probability distribution is 

 𝑓𝑒𝑞(𝑐)𝑑𝒄 = 𝐴3 exp(−𝐵𝑐2) 4𝜋𝑐2𝑑𝑐 (2.2) 

Substituting this expression in  

𝜌𝑅𝑇 =
2

3
 𝜌𝑒 =

1

3
∫𝑐2𝑓𝑒𝑞(𝑐)𝑑𝒄 

and using the fact that 𝜌 = ∫𝑓𝑒𝑞(𝑐) 𝑑𝒄, we get  

 
𝑓𝑒𝑞 = 𝜌 (

1

2𝜋𝑅𝑇
)
3 2⁄

𝑒𝑥𝑝 (−
𝑐2

2𝑅𝑇
) 

(2.3) 

This is Maxwell’s derivation that is later re-derived by Boltzmann by using statistical 

mechanics arguments. It is therefore called Maxwell-Boltzmann equilibrium 

distribution. It can be verified that 𝒇𝒆𝒒 satisfies the moment integrals (1.2) as 𝒇. 

 

2.2. The Boltzmann Equation and Macroscopic Conservation Equations 

The classical Boltzmann equation (1.5) is actually an advection equation. While terms 

on left hand side represent the distribution function 𝑓 being advected with the velocity 

𝒗 under the forces affecting this velocity, the source term 𝐶(𝑓) on the right hand side 

represents the local redistribution of 𝑓 due to two-body collisions, thus, 𝐶(𝑓) ≡
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𝑄(𝑓, 𝑓) is a bilinear quantity. It models all possible outcomes of two-particle 

collisions and is of the form of a complicated quadratically nonlinear integral over the 

velocity space.   

The replacement of the collision operator by a simpler but high fidelity expression is 

the key factor in facilitating the numerical approaches to the Boltzmann equation. 

BGK collision operator (1.7) proved very useful in this respect that (a) it conserves 

the collision invariants (1.6) as expected from a collision operator because the 

collisions are assumed not to create nor destroy molecules and (b) it captures the 

relaxation of 𝑓 towards the equilibrium distribution 𝑓𝑒𝑞, i.e. 𝐶𝐵𝐺𝐾(𝑓
𝑒𝑞) = 0 as stated 

by Boltzmann’s H-theorem. The collisional relaxation towards 𝑓𝑒𝑞 is determined by 

the relaxation parameter 𝜏. It, in fact, embodies a whole spectrum of relaxation scales 

lumped as a single value (Succi 2001). It might look like an oversimplification of the 

collision process, however, 𝐶𝐵𝐺𝐾(𝑓) carries the nonlinearity of the classical operator 

𝐶(𝑓) because 𝑓𝑒𝑞 depends nonlinearly on the fluid speed 𝒖, the temperature 𝑇 which 

are linear functionals (1.2) of 𝑓. 

Classically, the link between mesoscopic Boltzmann kinetics and macroscopic 

conservation equations (Navier-Stokes equations) was shown by the  Chapman-

Enskog analysis (S. Chen et al., 1998); (Frisch et al., 1986) based on the asymptotic 

expansions with the expansion parameter 𝜖 recognized as Knudsen number, thus 

providing a derivation valid for low Knudsen number (or low Mach number). This 

subject will further be taken up in Chapter 4.  

Alternatively, macroscopic conservation equations can be constructed by taking 

velocity moments of the BGK-Boltzmann equation  

 𝜕𝑓

𝜕𝑡
+ 𝑣𝑖

𝜕𝑓

𝜕𝑥𝑖
=
1

𝜏
(𝑓𝑒𝑞 − 𝑓) 

(2.4) 

where the zeroth, first and second velocity moments lead to the macroscopic 

conservation equations for mass, momentum and energy, respectively. In fact, the 
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moment integrals lead to vanishing right-hand side of (2.4) due to (1.6). The zeroth 

moment of (2.4) is 

 
∫{
𝜕𝑓

𝜕𝑡
+ 𝑣𝑖

𝜕𝑓

𝜕𝑥𝑖
} 𝑑𝒗 = ∫{

1

𝜏
(𝑓𝑒𝑞 − 𝑓)} 𝑑𝒗. 

(2.5) 

In the phase space, the variables (𝒙, 𝒗, 𝑡) are independent, so the temporal and spatial 

derivatives commute with the velocity integral and 𝑓 vanishes sufficiently fast as 

|𝒗| → ∞. Thus, it can be shown using (1.2a) that (2.4) yields the continuity equation 

 𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑢𝑖)

𝜕𝑥𝑖
= 0. 

(2.6) 

The first moment of (2.4) 

 
∫𝑣𝑗 {

𝜕𝑓

𝜕𝑡
+ 𝑣𝑖

𝜕𝑓

𝜕𝑥𝑖
} 𝑑𝒗 = ∫𝑣𝑗 {

1

𝜏
(𝑓𝑒𝑞 − 𝑓)} 𝑑𝒗 

(2.7) 

can be rearranged by using 𝑣𝑖𝑣𝑗 = (𝑣𝑖 − 𝑢𝑖)(𝑣𝑗 − 𝑢𝑗) + 𝑣𝑖𝑢𝑗 + 𝑣𝑗𝑢𝑖 − 𝑢𝑖𝑢𝑗 and 

𝜕

𝜕𝑥𝑖
∫𝑣𝑖𝑣𝑗𝑓𝑑𝒗 =

𝜕

𝜕𝑥𝑖
∫(𝑣𝑖 − 𝑢𝑖)(𝑣𝑗 − 𝑢𝑗)𝑓𝑑𝒗⏟                

𝑃𝑖𝑗

+
𝜕

𝜕𝑥𝑖
∫(𝑣𝑖𝑢𝑗 + 𝑣𝑗𝑢𝑖 − 𝑢𝑖𝑢𝑗)𝑓𝑑𝒗⏟                

𝜌𝑢𝑖𝑢𝑗

 

to get the momentum equation 

 𝜕(𝜌𝑢𝑗)

𝜕𝑡
+
𝜕(𝜌𝑢𝑖𝑢𝑗)

𝜕𝑥𝑖
= −

𝜕𝑃𝑖𝑗
𝜕𝑥𝑖

. 
(2.8) 

where 𝑃𝑖𝑗 is the pressure tensor and the stress tensor is 𝜎𝑖𝑗 = 𝑝𝛿𝑖𝑗 − 𝑃𝑖𝑗 with the 

pressure 𝑝 = 1

𝑑
 𝑡𝑟(𝑃𝑖𝑗) = 𝜃𝜌. Similarly, the second moment of (2.4) can be reduced to 

the conservation equation for the total energy 𝜌𝐸 = 3

2
𝜌𝑐2 + 1

2
𝜌|𝒖|2 (Cushman-Roisin 

et al., 2018).  The above equations are to be closed by defining constitutive relations 

such as for 𝜎𝑖𝑗 or by introducing an explicit distribution function 𝑓. In fact, assuming 

𝑓 ≈ 𝑓𝑒𝑞 results in the Euler momentum equation lacking the viscous stress tensor. 

This indicates that the phenomenon of viscous dissipation is connected to non-

equilibrium, i.e. (𝑓 − 𝑓𝑒𝑞).     
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2.3. The Boltzmann Equation and the Hermite Polynomials 

An alternative approach in approximating the Boltzmann equation is proposed by 

Grad (1949b) by expanding the distribution function 𝑓 in terms of orthogonal Hermite 

polynomials in velocity space. This expansion is convenient in that the expansion 

coefficients are exactly the velocity moments of the distribution function (1.2). This 

results in 13-moment system including stress 𝜎𝑖𝑗 and energy flux 𝑞𝑖 in addition to 

ρ, 𝒖, 𝜃 (Grad, 1949b).  

For convenience, the BGK-Boltzmann equation (2.4) is normalized by using the 

characteristic velocity 𝑐𝑠 = √𝑅𝑇0 that also provides characteristic length 𝑙0 and time 

𝑡0 scales by 𝑙0 = 𝑐𝑠𝑡0 where 𝑇0 is the characteristic temperature. The equilibrium 

distribution 𝑓𝑒𝑞 then takes the simpler dimensionless form: 

𝒇𝒆𝒒 = 𝝆(
𝟏

𝟐𝝅𝜽
)
𝒅 𝟐⁄

𝒆𝒙𝒑(−
𝒄𝟐

𝟐𝜽
)                                         (2.9) 

in d-Dimensions and the ideal-gas equation of state becomes 𝒑 = 𝝆𝜽. The procedure 

starts with the expansion of the distribution function 𝒇 in terms of the Hermite 

orthonormal polynomials 𝑯(𝒏) in velocity space 𝒗:   

𝑓(𝒙, 𝒗, 𝑡) = 𝜔(𝒗)∑ 1

𝑛!
 𝒂(𝑛)(𝒙,𝑡)∙𝑯(𝑛)(𝒗)

∞

𝑛=0
                   (2.10) 

where the expansion coefficients 𝒂(𝑛)(𝒙, 𝑡) are given by 

𝒂(𝑛)(𝒙, 𝑡) = ∫ 𝑓(𝒙, 𝒗, 𝑡) 𝑯(𝑛)(𝒗)
∞

−∞

𝑑𝒗                               (2.11) 

with the weight function 

𝜔(𝒗) = (
1

2𝜋
)
𝑑 2⁄

𝑒𝑥𝑝 (−
|𝒗|2

2
) .                                    (2.12) 

The exponential form of the weight function associated with the Hermite polynomials 

makes them convenient to express 𝑓𝑒𝑞 which is itself in exponential form (2.3).  Here, 
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the index (𝑛) also stands for the rank of the tensors 𝒂(𝑛) and 𝑯(𝑛). Some mathematical 

properties of the Hermite polynomials are presented in the Appendix. 

The first three expansion coefficients are directly associated with the fundamental 

macroscopic variables: 

𝑎(0) = ∫ 𝑓(𝒙, 𝒗, 𝑡) 𝐻(0)(𝒗)
∞

−∞

𝑑𝒗 = 𝜌,                            (2.13a) 

𝑎𝑖
(1)
= ∫ 𝑓(𝒙, 𝒗, 𝑡) 𝐻𝑖

(1)(𝒗)
∞

−∞

𝑑𝒗 = 𝜌𝑢𝑖 ,                         (2.13b) 

𝑎𝑖𝑗
(2)
= ∫ 𝑓(𝒙, 𝒗, 𝑡) 𝐻𝑖𝑗

(2)(𝒗)
∞

−∞

𝑑𝒗 = 𝑃𝑖𝑗 + 𝜌(𝑢𝑖𝑢𝑗 − 𝛿𝑖𝑗).              (2.13c) 

Hermite series expansion of the equilibrium distribution function 𝑓𝑒𝑞 in velocity space 

can be constructed similarly:  

𝑓𝑒𝑞(ρ, 𝑢, 𝜃, 𝒗) = 𝜔(𝒗)∑ 1

𝑛!
 𝒂(𝑛),𝑒𝑞(ρ,𝑢,𝜃)∙𝑯(𝑛)(𝒗)

∞

𝑛=0
              (2.14) 

where 

𝒂(𝑛),𝑒𝑞(ρ, 𝑢, 𝜃) = ∫ 𝑓𝑒𝑞(ρ, 𝑢, 𝜃, 𝒗) 𝑯(𝑛)(𝒗)
∞

−∞

𝑑𝒗.                  (2.15) 

Since the equilibrium distribution function 𝑓𝑒𝑞 in (2.9) has the same form as the 

weight function (2.12), it can be written as   

𝒇𝒆𝒒 =
𝝆

𝜽𝒅 𝟐⁄
𝝎(
𝒗 − 𝒖

√𝜽
). 

The integrals in (2.15) can then be written as 

𝒂(𝑛),𝑒𝑞 =
𝜌

𝜃𝑑 2⁄
∫ 𝜔(

𝒗 − 𝒖

√𝜃
)  𝑯(𝑛)(𝒗)

∞

−∞

𝑑𝒗 =
𝜌

𝜃𝑑 2⁄
∫ 𝜔(𝛾) 𝑯(𝑛)(√𝜃𝜸 + 𝒖)
∞

−∞

𝑑𝜸 

where 𝜸 = (𝒗 − 𝒖) √𝜃⁄  is substituted in the integral and computed by using the 

properties of the Hermite polynomials to get the first three expansion coefficients:  
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𝑎(0),𝑒𝑞 = 𝜌,                                                       (2.16a) 

𝑎𝑖
(1),𝑒𝑞

= 𝜌𝑢𝑖 ,                                                    (2.16b) 

𝑎𝑖𝑗
(2),𝑒𝑞

= 𝜌(𝑢𝑖𝑢𝑗 + (𝜃 − 1)𝛿𝑖𝑗).                                   (2.16c) 

 

Note that 𝑎𝑖𝑗
(2),𝑒𝑞

− 𝑎𝑖𝑗
(2)
= 𝜎𝑖𝑗. The explicit form of the Hermite expansion (2.14) can 

now be written up to the 2nd order moments 

𝑓𝑒𝑞 ≈ 𝑓(0) = 𝜔(𝒗)𝜌 {1 + 𝒗 ∙ 𝒖 +
1

2
[(𝒗 ∙ 𝒖)2 − |𝒖|2 + (𝜃 − 1)(|𝒗|2 − 𝑑)]}   (2.17) 

For an isothermal system (𝜃 = 1), some terms vanish (Shan et al., 2006). 

Due to the orthogonality of Hermite polynomials, the individual velocity moments of 

the distribution function is not effected by the truncated expansion 

𝑓(𝒙, 𝒗, 𝑡) ≈ 𝑓𝑁(𝒙, 𝒗, 𝑡) = 𝜔(𝒗)∑ 1

𝑛!
 𝒂(𝑛)(𝒙,𝑡)∙𝑯(𝑛)(𝒗)

𝑁

𝑛=0
               (2.18) 

Now that 𝑓𝑁 𝜔⁄  is a finite linear combination of Hermite polynomials, it is itself a 

polynomial of degree ≤ 𝑁 in 𝒗, thus  

𝑓𝑁(𝒙, 𝒗, 𝑡)𝑯(𝑛)(𝒗) = 𝜔(𝒗)𝑝(𝒙, 𝒗, 𝑡)                             (2.19) 

where 𝑝(𝒙, 𝒗, 𝑡) is a polynomial of degree ≤ 2𝑁 in 𝒗. The Gauss-Hermite quadrature 

permits the exact evaluation of the integral 

𝒂(𝑛) = ∫ 𝜔(𝒗) 𝑝(𝒙, 𝒗, 𝑡)
∞

−∞

𝑑𝒗 = ∑𝑤𝛼 𝑝(𝒙, 𝒗𝜶, 𝑡)

𝑞

𝛼=1

.                   (2.20) 

for the integrand 𝑝 is a polynomial of degree ≤ 2𝑁 + 1 and that 𝑞 = (𝑁 + 1) 2⁄ . 

Here, 𝒗𝜶 and 𝑤𝛼 are the Gauss-Hermite quadrature nodes and weights, respectively, 

and 𝒗𝜶 are the roots of the Hermite polynomial of order q. Some properties of Gauss-

Hermite quadrature are presented in the Appendix. This provides an alternative 

method of evaluation of the expansion coefficients (2.11) in discrete form  
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𝒂(𝑛)(𝒙, 𝑡) = ∑
𝑤𝛼

𝜔(𝒗𝜶)
 𝑓𝑁(𝒙, 𝒗𝜶, 𝑡)𝑯

(𝑛)(𝒗𝜶)

𝑞

𝛼=1

.                   (2.21) 

The expansion coefficients up to the 2nd order in (2.13) and (2.16) are sufficient to 

obtain an associated with the fundamental macroscopic variables, namely, ρ, 𝒖, 𝝈.  

The high accuracy evaluation of the integrals in discrete form based on the Gauss-

Hermite quadrature in (2.20) leads the way for the discretization of the velocity 

moments in (1.2) and eventually the Boltzmann equation. Gauss-Hermite quadrature 

evaluation of the velocity moments in (1.2) gives 

ρ = ∑
𝑤𝛼

𝜔(𝒗𝜶)
 𝑓𝑁(𝒙, 𝒗𝜶, 𝑡)

𝑞

𝛼=1

,                                    (2.22a) 

ρ𝒖 = ∑
𝑤𝛼

𝜔(𝒗𝜶)
 𝒗𝜶𝑓

𝑁(𝒙, 𝒗𝜶, 𝑡)

𝑞

𝛼=1

,                                (2.22b) 

𝐏 + ρ𝒖𝒖 = ∑
𝑤𝛼

𝜔(𝒗𝜶)
 𝒗𝜶𝒗𝜶𝑓

𝑁(𝒙, 𝒗𝜶, 𝑡)

𝑞

𝛼=1

,                        (2.22c) 

where the last moment is defined in (2.13c). By absorbing the quadrature weights in 

𝑓𝑁 by 𝑓𝛼(𝒙, 𝑡) = 𝑤𝛼𝑓
𝑁(𝒙, 𝒗𝜶, 𝑡) 𝜔(𝒗𝜶)⁄ , these moments can be written as follows: 

ρ = ∑𝑓𝜶

𝑞

𝛼=1

,                                                    (2.23a) 

ρ𝒖 = ∑  𝒗𝜶 𝑓𝜶

𝑞

𝛼=1

,                                              (2.23b) 

𝐏 + ρ𝒖𝒖 = ∑𝒗𝜶𝒗𝜶 𝑓𝜶

𝑞

𝛼=1

.                                    (2.23c) 
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The BGK-Boltzmann equation (2.4) is now discretized by directly evaluating at 𝒗𝜶 

and multiplying by the constant 𝑤𝛼 𝜔(𝒗𝜶)⁄  to get: 

𝜕𝑓𝜶
𝜕𝑡
+ 𝒗𝜶 ∙ 𝛁𝑓𝜶 = −

1

𝜏
(𝑓𝜶 − 𝑓𝛼

(0))                            (2.24a) 

where 𝑓𝛼
(0)

 is obtained from (2.17) as follows: 

𝑓𝛼
(0)
= 𝑤𝛼𝜌 {1 + 𝒗𝜶 ∙ 𝒖 +

1

2
[(𝒗𝜶 ∙ 𝒖)

2 − |𝒖|2 + (𝜃 − 1)(|𝒗𝜶|
2 − 𝑑)]}    (2.24b) 

This is the Lattice Boltzmann equation. The discretization in space over lattice and 

time leads to the Lattice Boltzmann method whose implementation is presented in 

Chapter 4. 

The discretization leading to the Lattice Boltzmann equation (2.24) is, in fact, the 

collocation discretization where the residue resulting from substituting the truncated 

representation 𝑓𝑁 of 𝑓 into BGK-Boltzmann equation (2.4) is forced to vanish at the 

collocation (Gauss-Hermite quadrature nodes) points 𝒗𝜶. An alternative approach of 

discretization is based on Galerkin projection of the residue onto the space spanned 

by the Hermite polynomials. This results in a system of partial differential equations 

for the evolution of the expansion coefficients 𝒂(𝑛)(𝒙, 𝑡) instead. The formulation and 

the numerical implementation are presented in Chapter 3. 
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CHAPTER 3  

 

3. DISCRETIZATION BY GALERKIN PROCEDURE 

 

This discretization method involves using trial and test functions in terms of Hermite 

polynomials in velocity space as presented in Chapter 2 for the discretization of the 

Boltzmann equation using the Galerkin projection procedure. In this chapter, the 

formulation is presented for a 2D problem (𝑑 = 2). 

3.1. Galerkin Procedure 

The residual resulting from the substitution of the truncated representation 𝑓𝑁 of the 

distribution function 𝑓 in (2.18) into the BGK-Boltzmann equation (2.4) 

𝑅( 𝒂(𝒏), 𝒗) ≡
𝜕𝑓𝑁

𝜕𝑡
+ 𝒗 ∙

𝜕𝑓𝑁

𝜕𝑥
+
1

𝜏
(𝑓𝑁 − 𝑓(0))                          (3.1) 

is projected onto the space of Hermite polynomials and set to zero  

∫ 𝑅( 𝒂(𝑛), 𝒗) 𝑯(𝑛)(𝒗)𝑑𝒗
∞

−∞

= 0                                      (3.2) 

for 𝑛 ≤ 𝑁 to get the Galerkin equations for the expansion coefficients 𝒂(𝑛)(𝒙, 𝑡). In 

accordance with the discussion in Chapter 2, it suffices to choose 𝑁 = 2 and thus 𝑓(0) 

of (2.17) is taken for 𝑑 = 2 as  

𝑓(0) = 𝜔(𝒗)𝜌 {1 + 𝒗 ∙ 𝒖 +
1

2
[(𝒗 ∙ 𝒖)2 − |𝒖|2 + (𝜃 − 1)(|𝒗|2 − 2)]}      (2.17) 

For notational convenience, the macroscopic associations of the expansion 

coefficients in (2.13) are rewritten in 2D as 

𝑎1 ≡ 𝑎
(0) = ∫ 𝑓(𝒙, 𝒗, 𝑡) 𝐻(0)(𝒗)

∞

−∞

𝑑𝒗 = 𝜌,                           (3.3a) 
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𝑎2 ≡ 𝑎1
(1) = ∫ 𝑓(𝒙, 𝒗, 𝑡) 𝐻1

(1)(𝒗)
∞

−∞

𝑑𝒗 = 𝜌𝑢1,                      (3.3b) 

𝑎3 ≡ 𝑎2
(1) = ∫ 𝑓(𝒙, 𝒗, 𝑡) 𝐻2

(1)(𝒗)
∞

−∞

𝑑𝒗 = 𝜌𝑢2,                      (3.3c) 

𝑎4 ≡ 𝑎12
(2) = ∫ 𝑓(𝒙, 𝒗, 𝑡) 𝐻12

(2)(𝒗)
∞

−∞

𝑑𝒗 = 𝜌𝑢1𝑢2 − 𝜎12,              (3.3d) 

𝑎5 ≡ 𝑎11
(2) = ∫ 𝑓(𝒙, 𝒗, 𝑡) 𝐻11

(2)(𝒗)
∞

−∞

𝑑𝒗 = 𝜌𝑢1
2 − 𝜎11,                (3.3e) 

𝑎6 ≡ 𝑎22
(2) = ∫ 𝑓(𝒙, 𝒗, 𝑡) 𝐻22

(2)(𝒗)
∞

−∞

𝑑𝒗 = 𝜌𝑢2
2 − 𝜎22.                (3.3f) 

By using the properties of the Hermite polynomials in the Appendix, Galerkin 

equations for the expansion coefficients 𝒂(𝑛)(𝒙, 𝑡) are obtained as:   

𝜕𝑎1
𝜕𝑡

+ (
𝜕𝑎2
𝜕𝑥1

+
𝜕𝑎3
𝜕𝑥2

) = 0,                                          (3.4a) 

𝜕𝑎2
𝜕𝑡

+ (
𝜕𝑎1
𝜕𝑥1

+
𝜕𝑎5
𝜕𝑥1

+
𝜕𝑎4
𝜕𝑥2

) = 0,                                     (3.4b) 

𝜕𝑎3
𝜕𝑡

+ (
𝜕𝑎4
𝜕𝑥1

+
𝜕𝑎1
𝜕𝑥2

+
𝜕𝑎6
𝜕𝑥2

) = 0,                                      (3.4c) 

𝜕𝑎4
𝜕𝑡

+ (
𝜕𝑎3
𝜕𝑥1

+
𝜕𝑎2
𝜕𝑥2

) = −
1

𝜏
(𝑎4 −

𝑎2𝑎3
𝑎1

) ,                               (3.4d) 

𝜕𝑎5
𝜕𝑡

+ 2
𝜕𝑎2
𝜕𝑥1

= −
1

𝜏
(𝑎5 −

𝑎2
2

𝑎1
) ,                                     (3.4e) 

𝜕𝑎6
𝜕𝑡

+ 2
𝜕𝑎3
𝜕𝑥2

= −
1

𝜏
(𝑎6 −

𝑎3
2

𝑎1
) .                                     (3.4f) 

    

3.2. Connection to Macroscopic Equations 

Chapman-Enskog expansion is a classical procedure that is used to show the 

connection between the Boltzmann equation and the macroscopic equations. It is 

based on an asymptotic expansion in powers of Knudsen number (Kn) which also 

measures the level of departure from equilibrium in the distribution function 𝑓. The 
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procedure leads to the Navier-Stokes equations from the Boltzmann equations for 

small Kn. In the case of the Galerkin equations (3.4), Tölke, et. al. (2000) used the 

following argument in order to recover the macroscopic equations: 

The equations (3.4d-f) are rewritten in the form 

𝜕

𝜕𝑡
[

𝑎4

𝑎5

𝑎6

]

⏟
𝑔(𝑡)

+
1

𝜏
[

𝑎4

𝑎5

𝑎6

] +

[

𝜕𝑎3 𝜕𝑥1⁄ + 𝜕𝑎2 𝜕𝑥2⁄ −
1

𝜏
(𝑎2𝑎3 𝑎1⁄ )

2 𝜕𝑎2 𝜕𝑥1⁄ −
1

𝜏
(𝑎2
2 𝑎1⁄ )

2 𝜕𝑎3 𝜕𝑥2⁄ −
1

𝜏
(𝑎3
2 𝑎1⁄ ) ]⏟                 

𝐶

= 0  (3.5) 

and considered on the time interval [0, 𝑇0]  where 𝑇0 is an intermediate time scale

small enough 𝜏 ≪ 𝑇0 ≪ 𝑇1 so that the macroscopic values like density and momentum

can be taken as time independent, say C. Here, 𝑇1 is the macroscopic time scale and

the relaxation time 𝜏 is of the order of the collision time. The equation (3.5) can then 

be idealized as 

𝜕𝑔(𝑡) 

𝜕𝑡
+
1

𝜏
𝑔(𝑡) + C = 0, 𝑡 ∈ [0, 𝑇0]  (3.6) 

whose solution is 

𝑔(𝑡) = − 𝜏 C+ 𝑐1𝑒𝑥𝑝 (−
1

𝜏
𝑡) . (3.7) 

Thus, 𝑔(𝑡) decays exponentially fast to steady state as 𝜏 (or the mean free path or the 

Mach number) becomes very small. Thus, (3.5) can be solved for the expansion 

coefficients 𝑎4, 𝑎5, 𝑎6 to get

𝑎4 = (
𝑎2𝑎3
𝑎1

) − 𝜏 (
𝜕𝑎3
𝜕𝑥1

+
𝜕𝑎2
𝜕𝑥2

),  (3.8a) 

𝑎5 = (
𝑎2
2

𝑎1
) − 2𝜏

𝜕𝑎2
𝜕𝑥1

,  (3.8b) 

𝑎6 = (
𝑎3
2

𝑎1
) − 2𝜏

𝜕𝑎3
𝜕𝑥2

.  (3.8c) 
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Substituting (3.8) into (3.4a-c) and expressing the coefficients 𝑎𝑖 in terms of 

macroscopic variables (3.3) yields the macroscopic equations:  

𝜕𝜌

𝜕𝑡
+
𝜕𝜌𝑢1
𝜕𝑥1

+
𝜕𝜌𝑢2
𝜕𝑥2

= 0,                                      (3.9a) 

𝜕𝜌𝑢1
𝜕𝑡

+
𝜕𝜌𝑢1

2

𝜕𝑥1
+
𝜕𝜌𝑢1𝑢2
𝜕𝑥2

+
𝜕ρ

𝜕𝑥1
=
𝜕𝜎11
𝜕𝑥1

+
𝜕𝜎12
𝜕𝑥2

,                   (3.9b) 

𝜕𝜌𝑢2
𝜕𝑡

+
𝜕𝜌𝑢2

2

𝜕𝑥2
+
𝜕𝜌𝑢1𝑢2
𝜕𝑥1

+
𝜕ρ

𝜕𝑥2
=
𝜕𝜎21
𝜕𝑥1

+
𝜕𝜎22
𝜕𝑥2

,                   (3.9c) 

𝜎𝑖𝑗 = 𝜏 (
𝜕𝜌𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝜌𝑢𝑗
𝜕𝑥𝑖

).                                        (3.9d) 

Here the relationship (3.9d) between the stresses and the flow field gives the 

expression for the kinematic viscosity as 𝜈 = 𝜏. The equation of state is 𝑝 = 𝜌 for the 

isothermal system 𝜃 = 1.  

 

3.3. Discretization in the Time-Space Domain 

The system of equations (3.4) can be written in the form: 

𝜕𝑼

𝜕𝑡
+ 𝑨

𝜕𝑼

𝜕𝑥1
+ 𝑩

𝜕𝑼

𝜕𝑥2
= 𝑵(𝑼)                                     (3.10) 

where 𝑼 is the Hermite coefficient vector 

𝑼(𝑥1, 𝑥2, 𝑡) = [𝑎1 𝑎2 𝑎3     𝑎4 𝑎5 𝑎6]𝑇 , 

 𝑨 and 𝑩 are the spatial differential operation matrices, and 𝑵 are the nonlinear 

(collision) terms. The system (3.10) is discretized by using a second order upwind 

scheme on a uniform mesh in space and a first order explicit Euler scheme in time. 

The matrices 𝑨 and 𝑩 are split into 𝑨+,  𝑨−, 𝑩+ and 𝑩−matrices corresponding to 

their eigenvalues 1, −1, √3, −√3, 0, 0 such that 

𝑨+ = 𝑷Λ+𝑷−𝟏         and               𝑨− = 𝑷Λ−𝑷−𝟏 
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where 𝑷 is the matrix of the eigenvectors of 𝑨 and Λ+/− are diagonal matrices. After 

similar splitting for 𝑩, they become: 

 

 
 
 
 
 


 
 
 
 
  

A

3 6 1 2 0 0 3 6 0

1 2 3 2 0 0 1 2 0

0 0 1 2 1 2 0 0

0 0 1 2 1 2 0 0

3 3 1 0 0 3 3 0

0 0 0 0 0 0

,  

 

  
 

 
 

 

 

 
  
 
  

A

3 6 1 2 0 0 3 6 0

1 2 3 2 0 0 1 2 0

0 0 1 2 1 2 0 0

0 0 1 2 1 2 0 0

3 3 1 0 0 3 3 0

0 0 0 0 0 0

,  

 

 
 
 
 
 


 
 
 
 
  

B

3 6 0 1 2 0 0 3 6

0 1 2 0 1 2 0 0

1 2 0 3 2 0 0 1 2

0 1 2 0 1 2 0 0

0 0 0 0 0 0

3 3 0 1 0 0 3 3

,  

 

  
 

 
 

 

 

 
 
 
   

B

3 6 0 1 2 0 0 3 6

0 1 2 0 1 2 0 0

1 2 0 3 2 0 0 1 2

0 1 2 0 1 2 0 0

0 0 0 0 0 0

3 3 0 1 0 0 3 3

.  

Numerical scheme reads as follows (Hirsch, 2007): 
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[𝑼]𝑖,𝑗
𝑛+1 = [𝑼]𝑖,𝑗

𝑛 −
∆𝑡

2∆𝑥
(𝑨+(3[𝑼]𝑖,𝑗

𝑛 − 4[𝑼]𝑖−1,𝑗
𝑛 + [𝑼]𝑖−2,𝑗

𝑛 ) +                                            

𝑨−(−[𝑼]𝑖+2,𝑗
𝑛 + 4[𝑼]𝑖+1,𝑗

𝑛 − 3[𝑼]𝑖,𝑗
𝑛 ) +                                        

𝑩+(3[𝑼]𝑖,𝑗
𝑛 − 4[𝑼]𝑖,𝑗−1

𝑛 + [𝑼]𝑖,𝑗−2
𝑛 ) +                                            

𝑩−(−[𝑼]𝑖,𝑗+2
𝑛 + 4[𝑼]𝑖,𝑗+1

𝑛 − 3[𝑼]𝑖,𝑗
𝑛 )) + ∆𝑡 𝑵([𝑼]𝑖,𝑗

𝑛 )  (3.11) 

where [𝑼]𝑖,𝑗
𝑛 = 𝑼(𝑖∆𝑥, 𝑗∆𝑥, 𝑛∆𝑡) with ∆t denoting the time step size and ∆x the spatial 

step size. For stability, ∆t < 2τ and τ ≪ ∆x (Mei et al., 1998). 

 

3.4. Steady State Plane Poiseuille Flow 

The formulation above is implemented in the numerical simulation of steady state 

plane Poiseuille flow. The advantage of such a flow is its geometric simplicity and 

availability of an exact solution. The subtlety is in the implementation of the pressure 

gradient that drives the flow. Conventionally, the pressure gradient is implemented as 

a volume force in the momentum equation. In order to conform the formulation above, 

however, the pressure gradient is implemented as an initialization of the pressure 

variable in the form of a linear profile. It should be noted that in the Boltzmann 

equation setting, density and pressure are tied together by an ideal gas equation of 

state p = ρθ (p = ρ for isothermal system θ = T T0⁄ = 1). 

For the numerical experiment, the fluid with viscosity ν = 0.01 𝑚2 𝑠⁄  is driven by a 

pressure gradient of 0.0008 Pa/m in a channel segment of horizontal and vertical 

dimensions of 1 m. These values dictate a steady state centreline velocity of 𝑢1|𝑥=0.5 =

0.01. The numerical convergence to the steady Poiseuille parabolic profile through 

the transients is shown in Figure 3.1 for a 64 × 64 grid. Further shown in Figure 3.2 

are the steady state profiles of the macroscopic physical variables that appear in (3.2). 

They are in agreement with the expected Poiseuille flow profiles for the associated 

physical flow variables.        
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Figure 3.1. Numerical convergence of the Poiseuille velocity profile for a 64 × 64 grid. 

 

 

 

(a) 
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(b) 

 

(c) 
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(d) 

 

(e) 



32 

(f) 

Figure 3.2. Profiles of flow variables as in (3.3) associated with the Poiseuille flow. 
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CHAPTER 4  

 

4. LATTICE BOLTZMANN METHOD 

 

Introducing the Gauss-Hermite quadrature in computing the velocity moment 

integrals in Chapter 2 resulted in the expressions for the macroscopic variables in 

(2.23) and led to the Lattice Boltzmann equation (2.24). While this equation is discrete 

in velocity, it is still continuous in time and space. It embodies two processes: 

streaming and collision. It is clear from (2.24) that the streaming process is linear 

while the nonlinearity enters through the collision process. A numerical solution thus 

requires further discretization in time with step size ∆t and in space with step size ∆x. 

In the presence of a set of discrete velocities 𝒗𝜶, the numerical solution of the Lattice 

Boltzmann equation involves streaming from (𝒙, 𝑡) to (𝒙 + 𝒗𝜶∆t, 𝑡 + ∆t) under the 

effect of the BGK collision operator 𝐶(𝑓𝜶) = − (𝑓𝜶 − 𝑓𝛼
(0)
) 𝜏⁄ . The neighbourhoods 

𝒙 + 𝒗𝜶∆t around 𝒙 created by the discrete velocity set {𝒗𝜶} form a lattice and the 

resulting numerical procedure is called the Lattice Boltzmann Method (LBM).   

 

4.1. The Lattice 

In LBM, the spatial evolution of the distribution function as governed by the velocity 

discretized Boltzmann equation takes place locally in a fixed lattice. In the streaming 

process, along the defined directions, each node connects to its adjacent node in each 

lattice as in Figure 4.1. Connecting the lattice nodes are the links set as a result of the 

particular directions and magnitudes of the set of discrete velocities. In addition, on 

each lattice node resides the distribution function (Boix, 2013) 

In literature, different kinds of lattice configurations are in use and labelled by their 

arrangements in the form DdQq. In this naming convention, d represents the physical 
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dimension while q represents the number of velocity directions. For example, in D2Q9 

lattice arrangement, lattice span is in two dimensions and it has 9 possible velocity 

directions. One of these velocity directions is for non-moving particle which has zero 

velocity.  

Figure 4.1. Lattice example on 2D geometry (Boix, 2013). 

 

Most commonly used lattice arrangements to simulate hydrodynamics are D1Q3, 

D2Q9, D3Q15, D3Q19 and D3Q27 (see Figures 4.2-4.4). The three lattice 

configurations in 3D are ordered in decreasing computational efficiency such as 

memory and computing power requirements. However, D3Q15, D3Q19 have been 

shown to lack some degree of isotropy in comparison to D3Q27. Thus, D3Q27 is a 

good choice for flows with high dynamical degrees of freedom such as for turbulent 

flow modelling. In fact, symmetry and isotropy of the lattice arrangement are the two 

important requirements in choosing a suitable lattice for the underlying physics. In 

order to simulate advection-diffusion problems, for example, lower level of isotropy 
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may be sufficient such as D2Q4 that is suitable for simulation of heat conduction 

(Wolf-Gladrow, 2000). Other lattice arrangements are square lattice (D2Q4), 

triangular lattice (D2Q7) (McNamara et al., 1988), D2Q13-WB (Weimar et al., 1993), 

D2Q21 (Fahner, 1991), D3Q15 and Thermal LBMs D2Q13-FHP (multi-speed FHP 

model).  

Figure 4.2. D2Q9, D2Q7 and D2Q5 arrangements 

Figure 4.3. 3D lattice models 
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Figure 4.4. Illustration of D3Q19 model with nine lattice node (Pontrelli et al., 2007) 

In Chapter 2, the velocity discretization is obtained using Gauss-Hermite quadrature 

rule giving a suitable set of discrete velocities 𝒗𝛼 and the corresponding weights 𝑤𝛼.

The resulting set are: 

Table 4.1. Lattice configurations as constructed as tensor products of Gauss-Hermite quadrature rule. 

Notation Velocities, 𝒗𝛼 No. |𝒗𝛼| 𝑤𝛼

D1Q3 
(0) 1 0 2 3⁄  

(±1) 2 1 1 6⁄  

D2Q9 

(0,0) 1 0 4 9⁄  

(±1,0), (0, ±1) 4 1 1 9⁄  

(±1,±1) 4 √2 1 36⁄  

D3Q27 

(0,0,0) 1 0 8 27⁄  

(±1,0,0), (0, ±1,0) (0,0, ±1) 6 1 2 27⁄  

(±1,±1,0), (±1,0,±1), (0, ±1, ±1) 12 √2 1 54⁄  

(±1,±1,±1) 8 √3 1 216⁄  
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Yet another consideration in deriving the lattice configurations is physical namely, the 

isotropy of the lattice (Satoh, 2011). Sufficiency of isotropy in the lattice configuration 

depends on the underlying physics of the model. The isotropy considerations lead to 

the following conditions: 

∑ 𝑤𝛼𝛼 = 1, 

∑ 𝑤𝛼𝒗𝛼,𝑖𝛼 = 0, 

∑ 𝑤𝛼𝒗𝛼,𝑖𝒗𝛼,𝑗𝛼 = 𝛿𝑖𝑗 , 

∑ 𝑤𝛼𝒗𝛼,𝑖𝒗𝛼,𝑗𝒗𝛼,𝑘𝛼 = 0,    

∑ 𝑤𝛼𝒗𝛼,𝑖𝒗𝛼,𝑗𝒗𝛼,𝑘𝒗𝛼,𝑚𝛼 = (𝛿𝑖𝑗𝛿𝑘𝑚 + 𝛿𝑖𝑘𝛿𝑗𝑚 + 𝛿𝑖𝑚𝛿𝑗𝑘), 

∑ 𝑤𝛼𝒗𝛼,𝑖𝒗𝛼,𝑗𝒗𝛼,𝑘𝒗𝛼,𝑚𝒗𝛼,𝑛𝛼 = 0.         (4.1) 

together with the weights 𝑤𝛼 to be non-negative. Thus, it is required that all velocity

moments up to the fifth order are to be satisfied for LBM to be suitable for modelling 

hydrodynamics (see Table A.1 in the Appendix). In order to simulate advection-

diffusion problems, for example, lower level of isotropy may be sufficient. 

4.2. Lattice Equilibrium Distribution Function 

The equilibrium distribution function (2.9) for an isothermal system (𝜃 = 1) can also 

be written in the form: 

𝒇𝒆𝒒 =
𝝆

(𝟐𝝅)𝒅 𝟐⁄
𝒆𝒙𝒑(−

|𝒗 − 𝒖|𝟐

𝟐
)  

=
𝝆

(𝟐𝝅)𝒅 𝟐⁄
𝒆𝒙𝒑(−

|𝒗|𝟐

𝟐
)𝒆𝒙𝒑(−

|𝒖|𝟐 − 𝟐𝒗 ∙ 𝒖

𝟐
). 

It can be expanded in Taylor series about the stationary state, 𝑢 = 𝟎, to get 
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𝒇𝒆𝒒 =
𝝆

(𝟐𝝅)𝒅 𝟐⁄
𝒆𝒙𝒑(−

|𝒗|𝟐

𝟐
) [𝟏 + 𝒗 ∙ 𝒖 +

𝟏

𝟐
((𝒗 ∙ 𝒖)𝟐 − |𝒖|𝟐)⋯ ].

The general form of the lattice equilibrium distribution function up to O(|𝑢|2) can be

written as  

𝒇𝜶
𝒆𝒒
= 𝝆[𝒂 + 𝒃 𝒗𝜶 ∙ 𝒖 + 𝒄 (𝒗𝜶 ∙ 𝒖)

𝟐 + 𝒅 |𝒖|𝟐]. (4.2) 

where 𝑎, 𝑏, 𝑐, 𝑑 are lattice constants. This expansion is valid only for small velocities 

𝑢, or small Mach number 𝑢 𝑐𝑠⁄ . Note that this form introduces second order

nonlinearity as in the Navier-Stokes equations.  

The constraints (2.23) that 𝑓𝛼
𝑒𝑞

 should also satisfy can be used to determine the

coefficients in (4.2). Since the values of these unknown coefficients depend on the 

lattice configuration, we consider D2Q9 as an example (Satoh, 2011). It can be shown 

that it yields the form 

𝒇𝜶
𝒆𝒒
= 𝝎𝜶𝝆 [𝟏 + 𝟑 𝒗𝜶 ∙ 𝒖 +

𝟗

𝟐
(𝒗𝜶 ∙ 𝒖)

𝟐 −
𝟑

𝟐
 |𝒖|𝟐] (4.3) 

where 𝜔𝛼 are the Gauss-Hermite quadrature weights corresponding to D2Q9 (see

Table 4.1). The apparent discrepancy when (4.3) is compared with (2.24b) can be 

resolved by a scaling of 1 √3⁄ . This quantity often named as the sound speed 𝑐𝑠 in

LBM literature for its appearance in the relation between the pressure and the density 

𝑝 = 𝑐𝑠
2𝜌, but it is simply a scaling factor or pseudo-sound-speed as it is termed in

Nourgaliev (2003). By introducing this scaling factor 𝑐𝑠 in (4.3), it takes the form

𝒇𝜶
𝒆𝒒
= 𝝎𝜶𝝆 [𝟏 +

𝒗𝜶 ∙ 𝒖

𝒄𝒔
𝟐
+
𝟏

𝟐

(𝒗𝜶 ∙ 𝒖)
𝟐

𝒄𝒔
𝟒

−
𝟏

𝟐

|𝒖|𝟐

𝒄𝒔
𝟐
] .                            (4.4)

Thus, lattice equilibrium distribution function (4.3) will be used for the lattice 

configuration D2Q9 with the reference sound speed 𝑐𝑠 = 1 √3⁄ , so that 𝑝 = 𝜌 3⁄  in

an isothermal system. 
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4.3. Macroscopic Conservation Equations 

Chapman-Enskog analysis provides the macroscopic connection by establishing the 

non-equilibrium contributions to 𝑓 in the form of a perturbation expansion about 𝑓𝑒𝑞

as Knudsen number 𝐾𝑛 → 0. This expansion is motivated by attempts to solve BGK-

Boltzmann equation (2.4) written in the form 

𝑓𝑒𝑞 = 𝑓 + 𝜏 (
𝜕𝑓

𝜕𝑡
+ 𝑣𝑖

𝜕𝑓

𝜕𝑥𝑖
)

⏟      
𝐷𝑓 𝐷𝑡⁄

 

and used in the following construction (N. X. Chen et al., 2017): 

𝑓 = 𝑓𝑒𝑞 − 𝜏
𝐷𝑓

𝐷𝑡
= 𝑓𝑒𝑞 − 𝜏

𝐷

𝐷𝑡
(𝑓𝑒𝑞 − 𝜏

𝐷𝑓

𝐷𝑡
) 

 = 𝑓𝑒𝑞 − 𝜏
𝐷𝑓𝑒𝑞

𝐷𝑡
+ 𝜏2

𝐷2𝑓𝑒𝑞

𝐷𝑡2
−⋯  (4.5) 

The relaxation parameter 𝜏 is of the order of Kn and so as 𝐾𝑛 → 0, (4.5) is a 

perturbation expansion (Latt et. al., 2008).  

Chapman-Enskog analysis proceeds with an expansion of 𝑓𝛼 in (2.24a) in the form:

𝑓𝛼 = 𝑓𝛼
𝑒𝑞
+ 𝜖𝑓𝛼

(1)
+ 𝜖2𝑓𝛼

(2)
+⋯

 and with a multiscale expansion 

𝜕

𝜕𝑡
= 𝜖

𝜕

𝜕𝑡1
+ 𝜖2

𝜕

𝜕𝑡2
+⋯  and 

𝜕

𝜕𝒙
= 𝜖

𝜕

𝜕𝒙1
+⋯

where it is assumed that the diffusion time scale 𝑡1 is much slower than the convection

time scale 𝑡2 (S. Chen et al., 1998); (Frisch et al., 1986). While 𝑓𝛼
𝑒𝑞

 also satisfies

(2.23), 𝑓𝛼
(𝑘)

 should satisfy the following constraints

∑𝑓𝛼
(𝑘)

𝑞

𝛼=1

= 0, ∑ 𝒗𝛼𝑓𝛼
(𝑘)

𝑞

𝛼=1

= 𝟎.  (4.6) 
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Substituting these expansions in the Lattice Boltzmann equation (2.24a), one obtains 

the following equations (Zhang, 2011): 

𝜖0 :                  
𝜕𝑓𝛼

𝑒𝑞

𝜕𝑡1
+ 𝒗𝜶 ∙ 𝛁1𝑓𝛼

𝑒𝑞
= −

1

𝜏
𝑓𝛼
(1)
.                                             (4.7a) 

𝜖1 :                  
𝜕𝑓𝛼

(1)

𝜕𝑡2
+ (1 −

2

𝜏
) [
𝜕𝑓𝛼

(1)

𝜕𝑡1
+ 𝒗𝜶 ∙ 𝛁1𝑓𝛼

(1)
] = −

1

𝜏
𝑓𝛼
(2)
.        (4.7b) 

where 𝛁1 is the gradient operator based on the spatial variable 𝒙1. By taking velocity 

moments of these equations and using the relations (2.16) and (4.6), one obtains the 

mass and momentum equations: 

𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑢𝑖)

𝜕𝑥𝑖
= 0                                                     (4.8a) 

𝜕(𝜌𝑢𝑗)

𝜕𝑡
+
𝜕Π𝑖𝑗

(0)

𝜕𝑥𝑖
+
2𝜏 − 1

2

𝜕Π𝑖𝑗
(1)

𝜕𝑥𝑖
= 0.                                  (4.8b) 

For the lattice configuration D2Q9 and thus using (4.3) and (4.7a), one gets: 

Π𝑖𝑗
(0)
= ∑𝒗𝛼,𝑖𝒗𝛼,𝑗𝑓𝛼

𝑒𝑞

𝑞

𝛼=1

= 𝑝𝛿𝑖𝑗 + 𝜌𝑢𝑖𝑢𝑗 ,  

Π𝑖𝑗
(1)
= ∑𝒗𝛼,𝑖𝒗𝛼,𝑗𝑓𝛼

(1)

𝑞

𝛼=1

=
𝜕𝜌𝑢𝑖
𝜕𝑥𝑗

+
𝜕𝜌𝑢𝑗
𝜕𝑥𝑖

.  

For small enough density fluctuations, the momentum equation (4.8b) becomes 

equivalent to the Navier-Stokes equations (S. Chen et al., 1998). The coefficient of 

𝜕Π𝑖𝑗
(1)

𝜕𝑥𝑖⁄  in (4.8b) gives the kinematic viscosity as 𝜈 = (2𝜏 − 1) 2⁄ .  
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4.4. Lattice Boltzmann Model 

Velocity discretized Boltzmann equation with a general collision operator 𝐶𝛼,    

𝜕𝑓𝜶
𝜕𝑡
+ 𝒗𝜶 ∙ 𝛁𝑓𝜶 = 𝐶𝛼(𝒙, 𝑡) 

can be solved for each velocity (characteristics) direction 𝒗𝜶 at (𝒙, 𝑡) to get  

𝑓𝜶(𝒙 + 𝒗𝜶∆𝑡, 𝑡 + ∆𝑡) − 𝑓𝜶(𝒙, 𝑡) = ∫ 𝐶𝛼(𝒙 + 𝒗𝜶𝜉, 𝑡 + 𝜉) 𝑑𝜉
∆𝑡

0

. 

In order to arrive at a fully discretized model, the right-hand side must be 

approximated. The classical Lattice Boltzmann method uses a one-point polynomial 

interpolation of the integrand at (𝒙, 𝑡) to get 

𝑓𝜶(𝒙 + 𝒗𝜶∆𝑡, 𝑡 + ∆𝑡) − 𝑓𝜶(𝒙, 𝑡) = ∆𝑡 𝐶𝛼(𝒙, 𝑡).                     (4.9) 

This is, in fact, first order explicit forward Euler discretization along the characteristics 

direction 𝒗𝜶. Substituting the BGK collision operator into (4.9) leads to 

𝑓𝜶(𝒙 + 𝒗𝜶∆𝑡, 𝑡 + ∆𝑡) = 𝑓𝜶(𝒙, 𝑡) −
∆𝑡

𝜏
(𝑓𝜶(𝒙, 𝑡) − 𝑓𝛼

𝑒𝑞
).          (4.10) 

In the numerical implementation of (4.10), two separate stages can be identified. One 

comes from discretization along the characteristics, 𝑓𝜶(𝒙 + 𝒗𝜶∆𝑡, 𝑡 + ∆𝑡) − 𝑓𝜶(𝒙, 𝑡), 

called the streaming (or propagation) step and the other comes from the local collision 

operator 
∆𝑡

𝜏
(𝑓𝜶(𝒙, 𝑡) − 𝑓𝛼

𝑒𝑞
), called the collision step. The implementation requires q 

populations of 𝑓𝜶 to be stored at each lattice location (𝒙, 𝑡). In the collision step, each 

population 𝑓𝜶(𝒙, 𝑡) updated by the local collisions to become 

𝑓𝛼
∗(𝒙, 𝑡) = 𝑓𝜶(𝒙, 𝑡) −

∆𝑡

𝜏
(𝑓𝜶(𝒙, 𝑡) − 𝑓𝛼

𝑒𝑞
).                             (4.11) 

In the streaming step, the collision updated population 𝒇𝜶
∗ (𝒙, 𝒕) streams along the 

caharacteristics direction 𝒗𝜶 to populate the neighbouring lattice point (𝒙 + 𝒗𝜶∆𝒕, 𝒕 +

∆𝒕): 



 

 

 

42 

 

𝑓𝜶(𝒙 + 𝒗𝜶∆𝑡, 𝑡 + ∆𝑡) = 𝑓𝛼
∗(𝒙, 𝑡).                                     (4.12) 

 

In Figure 4.5, the effect of the streaming step for a inner node is illustrated. 

 

Figure 4.5. Streaming process of a lattice nodes (Bao et al., 2011). 

 

The velocity sets are chosen in such a way that any spatial vector 𝒗𝜶∆𝑡 points from 

one lattice site to a neighbouring lattice site. This guarantees that the populations 𝑓𝜶 

always reach another lattice site during a time step ∆t, rather than being trapped 

between them. 

 

4.5. Boundary Conditions in Lattice Boltzmann Method 

Boundary conditions are very important for stability and precision in the numerical 

implementation. Macroscopic pressure and velocity fields are computed by using the 

particle population distribution in LBM. Therefore, the conventional boundary 

conditions of the fluid are to be specified in terms of the particle distribution function. 

This gives some degrees of freedom at the boundary lattice sites (Latt et al., 2008). 

Because of that, defining velocity and pressure boundary conditions at a certain node 

does not entirely describe the state of a boundary lattice site (Koda, 2013).  
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4.5.1. Bounce-Back Scheme 

These boundaries, also called no-slip condition boundaries, are the typical boundaries 

for simulating the interaction of fluids with a non-moving wall without slip. They are 

also used to simulate the flow around a stationary obstacle. They are used largely 

because they ensure the mass, momentum and energy conservation (Mohamad, 2011) 

and due to their simplicity, numerical stability and accuracy. 

As the name implies, when a particle is coming towards the solid boundary it bounces 

back into the flow domain (Ho et al., 2009) as seen in Fig. 4.6 

Figure 4.6. Bounce-back boundary condition effect on the distribution function values (Mele, 2013) 

There are two basic approaches in implementing the bounce-back scheme, and they 

produce different results. The first one suggests that the solid boundary should be 

placed half way between the solid node and the fluid node as shown in the right-hand 

side of Fig. 4.7. The other scheme suggests placing the solid boundary on a node 

directly as shown in the left-hand side of Fig. 4.7. It has been shown that the first 

scheme is second-order accurate while the second scheme is only first-order accurate 

(Bao et al., 2011; Gallivan et al., 1997; Mele, 2013). 
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Figure 4.7. The two different approaches for bounce-back boundaries (Boix, 2013). 

Figure 4.8. Illustration of D2Q9 model with nine lattice node. (Bao et al., 2011). 

Figure 4.9. D2Q9 bounce-back boundary in the north direction (Boix, 2013). 
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The bounce-back conditions for the first scheme can be formulated as 

𝑓𝜶̅(𝒙𝑏 , 𝑡 + ∆𝑡) = 𝑓𝛼
∗(𝒙𝑏, 𝑡)                                     (4.13)

where 𝒙𝑏 refers to the fluid node at the boundary and 𝜶̅ the direction index such that

𝒗𝜶̅ = −𝒗𝜶. This is demonstrated using the lattice configuration D2Q9 in Figs. 4.8-

4.9. If the node in contact with a boundary node is considered, it is shown in Fig. 4.9 

that there are no streamed distribution function values from the solid node. Therefore, 

there are only three unknowns in the distribution function field at the fluid node, 

namely, 𝑓4, 𝑓7, and 𝑓8. These values can be obtained by the bounce-back conditions

𝑓4 = 𝑓2,           𝑓7 = 𝑓5,           𝑓8 = 𝑓6.                          (4.14)

Thus, the streaming does not provide any values for 𝑓4, 𝑓7, and 𝑓8, it is the bounce-

back conditions (4.14) that provide the values for these unknowns at the boundary 

(Boix, 2013). The bounce-back conditions (4.13) for a wall moving with a velocity 

𝒖𝑤 can be modified to read

𝑓𝜶̅(𝒙𝑏, 𝑡 + ∆𝑡) = 𝑓𝛼
∗(𝒙𝑏, 𝑡) − 2𝑤𝛼𝜌𝑤

𝒗𝜶 ∙ 𝒖𝑤
𝑐𝑠
2

 (4.15) 

where 𝜌𝑤 may be taken as the local fluid density at 𝒙𝑏 (Krüger et al., 2016).

4.5.2. Zou-He Velocity and Pressure Boundary Conditions 

In some problems, flow models come with specified pressure and velocity at the 

boundary. The LBM treatment of this specific pressure and velocity boundary 

conditions were firstly developed by Zou & He (Zou et al., 1997). 

In the case of the given velocity 𝐮𝑳 = (𝒖𝒙, 𝒖𝒚) at the left wall in Fig. 4.10, after the

streaming process, streaming 𝒇𝟎, 𝒇𝟐, 𝒇𝟑, 𝒇𝟒, 𝒇𝟔 and 𝒇𝟕 are known, while 𝒇𝟏, 𝒇𝟓, 𝒇𝟖 and

𝝆 are unknown.  
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Figure 4.10. Illustration of Zou-He velocity BC (Bao et al., 2011) 

Zou-He boundary conditions offer to formulate a linear system for 𝒇𝟏, 𝒇𝟓, 𝒇𝟖 and 𝝆

by considering the equations (2.23a) and (2.23b). After rearrangement of the 

equations, one gets: 

𝑓1 + 𝑓5 + 𝑓8 = 𝜌 − (𝑓0 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓6 + 𝑓7), (4.16a) 

𝑓1 + 𝑓5 + 𝑓8 = 𝜌𝒖𝑥 + (𝑓3 + 𝑓6 + 𝑓7), (4.16b) 

𝑓5 − 𝑓8 = 𝜌𝒖𝑦 − 𝑓2 + 𝑓4 − 𝑓6 + 𝑓7. (4.16c) 

By using (4.16a) and (4.16b), the density is determined as follows: 

𝜌 =
1

1 − 𝒖𝑥
[𝑓0 + 𝑓2 + 𝑓4 + 2(𝑓3 + 𝑓6 + 𝑓7)].  (4.17) 

A fourth equation needed to solve for 𝒇𝟏, 𝒇𝟓, 𝒇𝟖 is obtained based on the hyphothesis,

suggested by Zou and He (Zou et al., 1997) that the bounce-back rule also holds for 

the non-equilibrium part of the distribution function normal to the boundary, i.e. 

𝑓1 − 𝑓1
𝑒𝑞 = 𝑓3 − 𝑓3

𝑒𝑞 . (4.18) 

Once 𝑓1 is determined from (4.18) with (4.3), the equations (4.16b-c) can be used to

obtain 𝑓5, 𝑓8 as follows:
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𝑓1 = 𝑓3 +
2

3
𝜌𝒖𝑥  (4.19a) 

𝒇𝟓 = 𝒇𝟕 −
𝟏

𝟐
(𝒇𝟐 − 𝒇𝟒) +

𝟏

𝟔
𝝆𝒖𝒙 +

𝟏

𝟐
𝝆𝒖𝒚 (4.19b) 

𝒇𝟖 = 𝒇𝟔 +
𝟏

𝟐
(𝒇𝟐 − 𝒇𝟒) +

𝟏

𝟔
𝝆𝒖𝒙 −

𝟏

𝟐
𝝆𝒖𝒚 (4.19c) 

Here, (4.19a) also follows from (4.15) by the use of (4.3). 

If pressure (density) is specified on the boundary, (4.17) can be used to get 

𝒖𝑥 = 1 −
[𝑓0 + 𝑓2 + 𝑓4 + 2(𝑓3 + 𝑓6 + 𝑓7)]

𝝆
.  (4.20) 

Now that 𝑓1 is known from (4.19a), 𝑓5, 𝑓8 can be obtained similarly using (4.20).

4.6. Stability 

The explicit discretization of the BGK-Boltzmann equation in (4.10) imposes some 

stability restrictions on the time step ∆𝒕 and on the lattice constant ∆𝒙 = 𝒗𝜶∆𝒕. The

following argument may be used to obtain a stability constraint (Wolf-Gladrow, 

2000): For an initially uniform flow, i.e. 𝒇𝜶(𝒙, 𝒕𝟎) = 𝒇𝜶(𝒕𝟎), the kinetic equation

becomes   

𝒇𝜶(𝒕 + ∆𝒕) = 𝒇𝜶(𝒕) −
∆𝒕

𝝉
(𝒇𝜶(𝒕) − 𝒇𝜶

𝒆𝒒
)  (4.21) 

that is the flow will remain uniform at all later times. Furthermore, mass and 

momentum density are conserved and thus retain their initial value 𝛒(𝒙, 𝒕) = 𝛒(𝒕𝟎) =

𝛒𝟎 and 𝝆(𝒙, 𝒕)𝒖(𝒙, 𝒕) = 𝛒(𝒕𝟎)𝒖(𝒕𝟎) = 𝛒𝟎𝒖𝟎. Since the equilibrium distribution, 𝒇𝒆𝒒

does not depend on  𝒙 and 𝒕 explicitly, i.e. 𝒇𝜶
𝒆𝒒
= 𝒇𝜶

𝒆𝒒
(𝛒𝟎, 𝒖𝟎), we have

𝒇𝜶(𝒕 + ∆𝒕) = 𝒇𝜶(𝒕) −
∆𝒕

𝝉
(𝒇𝜶(𝒕) − 𝒇𝜶

𝒆𝒒
(𝛒𝟎, 𝒖𝟎))  (4.22) 
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Subtracting 𝒇𝜶
𝒆𝒒
(𝛒𝟎, 𝒖𝟎) from both sides, it becomes

𝒇̃𝜶(𝒕 + 𝟏) = (𝟏 −
∆𝒕

𝝉
) 𝒇̃𝜶(𝒕)      (4.23) 

where 𝒇̃𝜶(𝒕) = 𝒇𝜶(𝒕) − 𝒇𝜶
𝒆𝒒
(𝛒𝟎, 𝒖𝟎). Stability of the evolution requires the magnitude

of 𝒇̃𝜶(𝒕) does not increase with time, i.e. |𝒇̃𝜶(𝒕 + ∆𝒕)| ≤ |𝒇̃𝜶(𝒕)|. This is realized

when |1 − (∆𝑡 𝜏⁄ )| < 1  or  𝜏 ∆𝑡⁄ > 1 2⁄ . 

4.7. A Numerical Example: Steady-State Plane Poiseuille Flow and Grid 

Independence Study 

Poiseuille flow is studied within the scope of Hagen-Poiseuille theory and developed 

from NS equations. In this theory, Poiseuille flow is considered to be incompressible 

and laminar. 

It is one of the basic flow configurations to compare the numerical algorithms with 

the analytical results (Boix, 2013). Axial velocity profile of the flow pattern can be 

seen in Fig. 4.11. 

Figure 4.11. Axial velocity profile of the Poiseuille flow 
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The LBM-BGK model is applied for solving the plane Poiseuille flow. The flow is 

driven by a pressure gradient applied through the inlet and the outlet of the channel. 

Schematic of the flow geometry is given in Fig. 4.12. 

Figure 4.12. Schematic of Poiseuille flow (Bao et al., 2011) 

In order to determine the exact solution, symmetry and incompressibility of the flow 

are used. Thus velocity components u and v do not have any horizontal variation and 

also we can consider v equal to zero. The Navier-Stokes equations then reduce to  

𝜇
𝜕2𝑢

𝜕𝑦2
=
𝜕𝑝

𝜕𝑥
(4.24) 

where 

𝜕𝑝

𝜕𝑥
=
𝑃1 − 𝑃0
𝐿

≡
𝛥𝑃

𝐿

The initial and boundary conditions are 

𝑢(𝑥, 𝑦, 0) = 𝑣(𝑥, 𝑦, 0) = 0;       𝑝(𝑥, 𝑦, 0) = 𝑃𝑎𝑣𝑔 

𝑢(𝑥, 0, 𝑡) = 𝑣(𝑥, 0, 𝑡) = 0;   𝑢(𝑥, 𝐻, 𝑡) = 𝑣(𝑥, 𝐻, 𝑡) = 0 

𝑝(0, 𝑦, 𝑡) = 𝑃0;        𝑝(𝐿, 𝑦, 𝑡) = 𝑃1
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where 𝑃0 is the inlet and 𝑃1 is the outlet pressure at the channel and 𝑃𝑎𝑣𝑔 = (𝑃0 +

𝑃1)/2. As a result, the exact solution to Poiseuille flow is obtained as:

𝑢(𝑥, 𝑦, 𝑡) =
∆𝑝

2𝜇𝐿
𝑦(𝑦 − 𝐻)  (4.25) 

𝑣(𝑥, 𝑦, 𝑡) = 0  (4.26) 

After getting macroscopic conservation equations by integrating velocity moments of 

the BGK-Boltzmann equation, viscosity of the fluid can be described as below, in the 

light of Section 3.2: 

𝜇 =  𝜌𝑐𝑠
2 (𝜏 −

1

2
) (4.27) 

Thus, the relaxation paramater, 𝜏, is related to the viscosity of the fluid. 

In simulation, constant velocity profile applied at the inlet and the outlet of the channel 

and walls of the channel are no-slip boundaries. In the lattice, these conditions are 

converted to mesoscopic boundary conditions in terms of distribution functions as 

mentioned in Section 4.5. Density is determined by using Eq. 4.17 and 𝑢𝑥 ≡ 𝑢 is

determined by using Eq. 4.20. 

The constant velocity at the inlet, after some distance, gets developed and velocity 

profile takes its final shape. We have taken L=50, H=20, viscosity of the fluid as 0.2 

m/s2. After 10000 iterations, the system achieved a stationarity and converging to the 

Poiseuille parabolic profile.  
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To analyze and compare this velocity profile with the analytical results, a grid 

convergence study is performed. For this, at the center of the channel, maximum 

velocity values for different spatial resolutions are used. In grid independence study, 

we also used Grid Convergence Index (CGI) based on the Richardson extrapolation, 

which is presented by Roache (1994). This is a method for obtaining a higher order 

approximation of a quantity from a series of lower order discrete values. The CGI, 

however, is a measure of how far the computed value is away from the value of the 

asymptotic numerical value as ℎ → 0. A small value of CGI indicates that the 

computation is within the asymptotic range.  

We calculate the CGI for fine-medium and medium-coarse mesh to compare the grid 

resolutions and consider the accuracy of the solution as mentioned in Jozsa et al. 

(2016).  

For this study, maximum velocity at the center of the channel generated by the LBM 

simulations with BGK collision model are used labelled by 𝑢1, 𝑢2, 𝑢3 in the order of

decreasing resolution and the order of convergence p is calculated as follow: 

𝑝 = 𝑙𝑛 (
(𝑢3 − 𝑢2)

(𝑢2 − 𝑢1)
) /𝑙𝑛 (𝑟)

(4.28)

where 𝑟 is the grid refinement ratio. Based on this order of convergence, the 

asymptotic value 𝑢ℎ→0 as zero grid spacing is approached can be estimated by using

the formula  

𝑢ℎ→0 = 𝑢1 +
𝑢1 − 𝑢2
𝑟𝑝 − 1

(4.29)

that uses the computed centerline velocity values 𝑢1, 𝑢2 on two grid spacing ℎ1 and

ℎ2 (ℎ1 is the finer spacing). Here, 𝑟 is ℎ2/ℎ1 where in our case it is equal to 3. We get

the ℎ → 0 value as 0.20747 which is the result of Richardson extrapolation. 
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To find grid convergence quality, grid convergence index is calculated between the 

refinement steps. We calculated the CGI over three grids for coarse to medium (3 to 

2) and medium to fine (2 to 1) as follow:

𝐶𝐺𝐼 =
𝐹𝑠|𝑒|

𝑟𝑝 − 1

(4.30)

where 𝐹𝑠 is the safety factor chosen as 1.25 as in the literature (Roache, 1994). and 𝑒

is the error between each grid calculated by  (𝑢2 − 𝑢3)/ 𝑢2 for medium to coarse grid

and (𝑢1 − 𝑢2)/ 𝑢1 for fine to medium grid.

The asymptotic range of convergence, defined by, 

𝐶𝐺𝐼2,3
𝑟𝑝𝑥𝐶𝐺𝐼1,2

≅ 1 
(4.31) 

can then be used to check the asymptotic range of convergence, which should be 

approximately 1 for the solutions to be well within the asymptotic range of 

convergence. 

All calculated values are given in Table 4.2 for this grid convergence study. All values 

have been given for three different grid spacing. The CGI and the evident order is 

given from the coarse to medium and medium to fine mesh. As can be seen on Table 

4.2, 𝑢/𝑢𝑚𝑎𝑥 ≅ 1 and we choose the square grid of size 150x60.

Table 4.2. Grid convergence study 

𝑢/𝑢𝑚𝑎𝑥

CGI1,2 CGI2,3 
asymptotic 

range of 

convergence 
𝑛𝑥 𝑥 𝑛𝑦 17 x 7 50 x 20 150 x 60 

0.9900 0.9975 0.99436 1.78192 1.41426 1.01951 
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As shown in the Fig. 4.13, computed velocity profile matches closely with the 

analytical solution. 

Figure 4.13. Schematic of Poiseuille flow 
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CHAPTER 5 

5. FURTHER NUMERICAL EXAMPLES USING THE LATTICE

BOLTZMANN  METHOD 

In this thesis, LBM is applied to circular and square cylinders in the form of arrays to 

simulate flow characteristic. Velocity contours are plotted for flow visualization. For 

characterizing the flow, parameters such as lift and drag coefficients are computed and 

compared with the results in the literature. 

5.1. Simulation of Flow Past a Circular Cylinder 

The incompressible flow past a bluff body like a stationary cylinder is a classical 

problem in fluid mechanics which has been studied for years (Roshko, 1954), (Tritton, 

1959). With its physics and a many applications, it attracted researchers for over 

decades and various theoretical and experimental investigations have been performed 

on this problem. In spite of its simple geometry, the flow past a circular cylinder 

problem is studied as a reference model for more complex flows (Sen et al., 2009). 

Figure 5.1. Illustration of flow past a cylinder 
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When the Reynolds number is small, the flow is laminar as depicted in Fig. 5.1. 

However if Reynolds number exceeds a critical value, the laminar flow loses its 

stability and some vortices appear in the wake.  

Before presenting numerical simulation of the flow past a circular cylinder, here are 

some physical and analytical descriptions of the flow: 

In laminar flow, the fluid in the boundary layer over the cylinder surface moves slower 

that the fluid outside the layer. Increasing the flow speed causes flow separation and 

in turn triggers swirling eddies in the wake region behind the cylinder known as the 

Karman vortex street. (von Kármán, 1911) 

For flow past a cylinder, Reynolds number is defined as 

𝑅𝑒 =
𝑈∞𝐷

𝑣

(5.1) 

where 𝑈∞ is the free-stream velocity and 𝐷 is the cylinder diameter and 𝑣 is the

kinematic viscosity. It is an important quantity characterizing the flow behavior, such 

as laminar, transitory or turbulent. 

Strouhal number is another dimensionless number which characterizes the vortex 

shedding frequency and defined as 

𝑆𝑡 =
𝑓𝑠𝐷

𝑈∞

(5.2) 

where 𝑓𝑠 is the vortex shedding frequency. Around approximately 𝑅𝑒 ≅ 49, the

Strouhal number shows a sharp transition (Khan, 2011). 
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In some previous experimental studies (Norberg, 1987; Roshko, 1954) a relation 

between Reynolds and Strouhal numbers was established. With these experimental 

results, researchers were able to provide a fit for this relation at stable flow regimes. 

However, for the irregular flow regimes, Strouhal number was observed to be 

unpredictable due the nature of the underlying fluid motion (Khan, 2011). 

After these studies, a very precise fit was obtained by Henderson (1995) for the 

Reynolds and Strouhal number relationship up to 𝑅𝑒 = 1000. This relation is; 

𝑆𝑡 = 0.2417 − 0.8328𝑅𝑒−0.4808exp (−0.001895𝑅𝑒)  (5.3) 

For flow around a circular cylinder, a relationship for the drag coefficient, 𝐶𝐷,

(Roshko, 1954) in a two-dimensional flow, can be expressed as 

𝐶𝐷 =
2𝐹𝑥
𝜌𝑈∞

2𝐷

(5.4) 

where 𝐹𝑥 is the sum of pressure and viscous forces on the surface of the cylinder acting

along the flow direction. 

Similarly, the lift coefficient is defined as 

𝐶𝐿 =
2𝐹𝑦
𝜌𝑈∞

2𝐷

(5.5) 

where 𝐹𝑦 is the force on the surface of the cylinder acting perpendicular to the flow

direction. 

Drag and lift coefficients give a dimensionless idea of the force which is exerted on 

the obstacle along and normal to the flow’s direction (Portinari, 2015). 
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For stability of the LBM with BGK collision operator, |𝒖𝑚𝑎𝑥|(𝜏) denotes the stability

map. Before the occurrence of instability, this map shows us maximum possible 

velocity magnitude for a given relaxation time 𝜏. The sufficient condition for 

numerical stability in LBM-BGK is  𝜏/∆𝑡 ≥ 1/2, as long as 𝑓𝑎
𝑒𝑞
≥ 0 for all 𝑎 (See

Eqn. 4.23). By using Eqn. 4.4, we can provide the following bound:  

|𝒖𝑚𝑎𝑥| < √
1

3

∆𝑥

∆𝑡
≈ 0.577

∆𝑥

∆𝑡
 (5.6) 

for the 𝒖𝑚𝑎𝑥. In addition, the optimal stability condition 𝜏/∆𝑡 ≥ 1 can be stated for

the BGK collision operator, as long as if 𝑓0
𝑒𝑞
> 0. From these relations, the velocity

magnitude condition can be obtained as (Krüger et al., 2016): 

|𝒖𝒎𝒂𝒙| < √
2

3

∆𝑥

∆𝑡
 (5.7) 

As a result, the maximum velocity magnitude |𝒖𝑚𝑎𝑥| remains bounded under two

stability conditions. Namely, sufficient stability condition for 1/2 < 𝜏/∆𝑡 and optimal 

stability condition for 𝜏/∆𝑡 ≥ 1. 

For circular cylinder case, we consider a 2D channel with a steady Poiseuille flow and 

applied D2Q9 lattice configuration. The circular cylinder obstacle has a diameter D 

and is immersed on the vertical center in a rectangular channel (Fig. 5.1). This channel 

has 15D length and 6D height. We initialise the system by taking 𝑓𝑎(𝒙, 𝑡 = 0) =

𝑓𝑎
𝑒𝑞(𝜌 = 1, 𝒖 = 0). The maximum velocity of the inlet profile set as 𝑢𝑚𝑎𝑥 = 0.1

which is the maximum velocity per unit lattice for each time step. 



59 

Bounce-back BCs, are applied on the cylinder as well as at the upper and lower no slip 

walls of the channel. At the inlet, pressure driven fully developed flow condition is 

applied. The inlet region was chosen to be long enough (3D length) to avoid long 

transitory time and to improve convergence performance. At the outlet, uniform 

pressure profile is applied. 

The bounce-back scheme at walls is applied as shown in Fig. 5.2 for the lower wall 

𝑓2(𝑥, 𝑦1, 𝑡 + ∆𝑡) =  𝑓4
∗(𝑥, 𝑦1, 𝑡 + ∆𝑡),

(5.8) 𝑓5(𝑥, 𝑦1, 𝑡 + ∆𝑡) =  𝑓7
∗(𝑥, 𝑦1, 𝑡 + ∆𝑡),

𝑓6(𝑥, 𝑦1, 𝑡 + ∆𝑡) =  𝑓8
∗(𝑥, 𝑦1, 𝑡 + ∆𝑡).

and for the upper wall: 

𝑓4(𝑥, 𝑦1, 𝑡 + ∆𝑡) =  𝑓2
∗(𝑥, 𝑦𝑁, 𝑡 + ∆𝑡),

(5.9) 𝑓7(𝑥, 𝑦1, 𝑡 + ∆𝑡) =  𝑓5
∗(𝑥, 𝑦𝑁, 𝑡 + ∆𝑡),

𝑓8(𝑥, 𝑦1, 𝑡 + ∆𝑡) =  𝑓6
∗(𝑥, 𝑦𝑁, 𝑡 + ∆𝑡).

Figure 5.2. Poiseuille flow with boundary populations (Krüger et al., 2016). 
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For the inlet and outlet, we imposed open boundary conditions. This makes 

computational domain compatible with the physics of the problem, namely transparent 

boundaries. For the implementation of the open boundaries, a method similar to the 

bounce back method is applied which is called anti-bounce back method defined by 

𝑓𝜶̅(𝒙𝑏 , 𝑡 + ∆𝑡) = −𝑓𝛼
∗(𝒙𝑏, 𝑡) + 2𝑤𝛼𝜌𝑤 [1 +

(𝒗𝜶 ∙ 𝒖𝑤)
2

2𝑐𝑠
4

−
(𝒖𝑤)

2

2𝑐𝑠
2
] 

(5.10) 

where the boundary is located ∆𝑥/2 outside the boundary node. 𝒖𝑤 is estimated by

𝒖𝑤 = 𝒖(𝒙𝑏) + 1/2[𝒖(𝒙𝑏) − 𝒖(𝒙𝑏+1)], where 𝒙𝑏 and 𝒙𝑏+1 are the boundary node

and its neighbour along inward normal to the boundary. To find 𝜌𝑤, bounce back rule

is used as in Eqn. 4.15. 

By setting 𝑝𝑜𝑢𝑡 = 1, inlet pressure can be written as 𝑝𝑖𝑛 = 𝑝𝑜𝑢𝑡 + ∆𝑝. By relating

pressure and 𝑢𝑚𝑎𝑥, which is chosen above, pressure difference can be defined as (see

Fig. 5.2) (Krüger et al., 2016) 

∆𝑝

𝑥𝑜𝑢𝑡 − 𝑥𝑖𝑛
=

8𝜇𝑢𝑚𝑎𝑥
(𝑦𝑡𝑜𝑝 − 𝑦𝑏𝑜𝑡)

2

(5.11) 

When applying curved boundary conditions, we used staircase approximation of the 

boundary and the bounce back scheme. As can be seen in Fig. 5.3, white circles 

represent the exterior fluid nodes, grey circles represent the external boundary nodes 

and black circles represent the solid nodes. Populations moving through 𝑣𝑎 from 𝑥𝑏

to 𝑥𝑠 bounce back at 𝑥𝑤.
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Figure 5.3. Representation of the staircase approximation of a circular cylinder (Krüger et al., 2016). 

In using Eqn. 4.15, halfway bounce back scheme requires the identification of all 

lattice links, 𝒗𝑎. A post collision population 𝑓𝛼
∗(𝒙𝑏, 𝑡) which would propagate through

a wall from a boundary node 𝒙𝑏 to a solid node 𝒙𝑠 = 𝒙𝑏 + 𝒗𝜶∆𝑡 is instead reflected

half-way to the solid node at the wall location 𝒙𝑤 = 𝒙𝑏 + 1/2𝒗𝜶∆𝑡 and returns to 𝒙𝑏.

𝒖𝑤 = 𝒖(𝒙𝑤, 𝑡 + 1/2∆𝑡) is the velocity of the wall, 𝜌 is the fluid density at 𝒙𝑤 and the

index 𝑎̅ defines 𝒗𝜶̅ = −𝒗𝜶. In practical implementations, 𝜌 is often taken as the fluid

density at 𝒙𝑏.

In the following simulations, 150 grid points in x-direction and 60 grid points in y-

direction are used with time step value of 0.04.  

In the light of Eqn. 4.27, Reynolds number  can be written as (Krüger et al., 2016) 

𝑅𝑒 =
𝐷𝑈

𝑣
=

𝐷𝑈

𝑐𝑠
2 (𝜏 −

1
2
)

(5.12) 
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For the values 𝑅𝑒 = 100 and 𝑐𝑠 =
1

√3
 (see Eqns. 4.3 and 4.4), the relaxation parameter 

𝜏 is calculated as 0.56 where the viscosity of the fluid is 0.02. With these values, 

optimal stability condition, 𝜏 ∆𝑡⁄ ≥ 1, is satisfied in this case. (see Section 4.6) 

For this case, corresponding computed vorticity contours at a predifined time are 

shown in Fig. 5.4. 

Figure 5.4. Vorticity contours of flow past a circular cylinder at Re=100 

In order to see the flow developing, drag and lift coefficient values, which are given 

in Figs. 5.5 and 5.6, are calculated by using 𝐹𝑥 and 𝐹𝑦. These force values are computed

using the simulation flow field.  
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Figure 5.5. Time history of drag coefficient for circular cylinder for Re=100. 

Figure 5.6. Time history of lift coefficient for circular cylinder for Re=100. 
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After the transients die down and the flow becomes developed, time series of the drag 

and lift coefficient values are shown in Figs. 5.7 and 5.8.   

Figure 5.7. Drag coefficient for circular cylinder between 15000-20000 iteration for Re=100. 

Figure 5.8. Lift coefficient for circular cylinder between 15000-20000 iteration for Re=100. 
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As another numerical experiment, Reynolds number is set at 𝑅𝑒 = 200 while the 

corresponding relaxation parameter 𝜏 is equal to 0.53. The corresponding vorticity 

contours at a predifined time is shown in Fig. 5.9. 

Figure 5.9. Vorticity contours of flow past a circular cylinder for Re=200 

Similarly, the developing and developed time series of the drag and lift coefficients 

are shown in Figs. 5.10 to 5.13. 

Figure 5.10. Time history of drag coefficient for circular cylinder for Re=200. 
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Figure 5.11. Time history of lift coefficient for circular cylinder for Re=200. 

Figure 5.12. Drag coefficient for circular cylinder between 15000-20000 iteration for Re=200. 
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Figure 5.13. Lift coefficient for circular cylinder between 15000-20000 iteration for Re=200. 

Karman vortices demonstrated clearly with both cases 𝑅𝑒 = 100 and 𝑅𝑒 = 200. At 

the rear of the obstacle, drag and lift coefficients data show periodic vortex shedding 

alternating between the top and the bottom of the wake region. With increasing the 

Reynolds number, drag and lift coefficients and Strouhal number values are increased 

as expected. 

In order to determine the dominant frequency in the vortex shedding phenomena, a 

frequency analysis of the time series data of the lift coefficient is performed. This is 

done using the FFT (fast Fourier transform) function of MATLAB. Using the 

frequency information, the Strouhal number is computed.  



68 

Frequency spectra are shown in Figs. 5.14 and 5.15 for Re=100 and Re=200,  

respectively. 

Figure 5.14. Frequency spectrum of the lift coefficient for flow past a circular cylinder for Re=100 
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Figure 5.15. Frequency spectrum of the lift coefficient for flow past a circular cylinder for Re=200 

Our simulation results for the drag and lift coefficients and Strouhal number values 

for both cases can be seen in Table 5.1. In this table, mean and fluctuating components 

of these coefficients are shown in comparison to the other studies in literature for 𝑅𝑒 =

100 and 𝑅𝑒 = 200.  
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Table 5.1. Flow parameters for flow field around single circular cylinder at Re=100 and 200. 

Parameters 

Drag coefficient 

(𝐶𝐷) 

Lift coefficient 

(𝐶𝐿) 
Strouhal number 

(St) 

Re=100 Re=200 Re=100 Re=200 Re=100 Re=200 

Meneghini et. 

al. (2001) 

1.370±0.010 1.30±0.05 - - 0.165 0.196 

Ding et al. 

(2007) 

1.356±0.010 1.348±0.05 ±0.287 ±0.659 0.166 0.196 

Braza et al. 

(1986) 

1.364±0.015 1.40±0.05 ±0.250 ±0.750 0.160 0.200 

Tritton (1959) 1.320±0.010 - - - 0.160 - 

Wiesenberger 

(1923) 

1.326±0.010 - - - 0.1608 - 

Gresho et al. 

(1978) 

1.816±0.010 - - - 0.18 - 

Harichandan 

& Roy(2010) 

1.352±0.010 1.32±0.05 ±0.278 ±0.602 0.161 - 

Present study 1.396±0.019 1.44±0.06 ±0.303 ±0.680 0.166 0.195 

In circular cylinder case, the flow parameters match reasonably well with the other 

studies in literature as can be seen in Table 5.1 considering the relative ease of the 

LBM simulation. 

5.2. Simulation of Flow Past a Square Cylinder 

Varioue studies on the flow development in the wake of a bluff body and vortex 

shedding behind the square cylinder have been performed both experimentally and 

numerically (Arnal et al.,1991), (Sohankar et al.,1998). 

Reynolds number controls the transition to different flow regimes. For small Reynolds 

number, viscous forces keep the flow adhere to the obstacles. Flow seperation does 

not occur. By increasing the Reynolds number, von Karman periodic vortices occurs 

behind the obstacle around Re=60 and for Re<300. The vortex shedding is generally 
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a two dimensional phenomena (Breuer et al., 2000). In this study, Reynolds numbers 

are choosen within these limits. 

For square cylinder case, we again use a 2D channel with a steady Poiseuille flow and 

applied D2Q9 lattice configuration. In this simulation, the ratio of size D of the square 

cylinder to the height of the channel is 1/6 and this gives a blockage ratio equal to 

0.166. Furthermore, the channel length is 15D and the square obstacle is placed at the 

center along the y direction. We initialise the system by setting 𝑓𝑎(𝒙, 𝑡 = 0) =

𝑓𝑎
𝑒𝑞(𝜌 = 1, 𝒖 = 0). The maximum velocity of the inlet profile set as 𝑢𝑚𝑎𝑥 = 0.1

which is the maximum velocity per unit lattice for each time step. 

In these cases, 150 grid points in x-direction and 60 grid points in y-direction are used 

with time step of 0.04.  

In order to find the relaxation parameter, Eqn. 4.27 is used, where the value of 𝑐𝑠 is

taken equal to 
1

√3
 (see Eqns. 4.3 and 4.4). Relaxation parameter 𝜏 is calculated to be

0.56 where the viscosity of the fluid is equal to 0.02. With these values, optimal 

stability condition, 𝜏 ∆𝑡⁄ ≥ 1, is satisifed for this case (see Section 4.6). By using Eqn 

5.12, Reynolds number is set at 𝑅𝑒 = 100. 

Bounce-back BCs are applied on the square cylinder as well at the upper and lower no 

slip walls of the channel. At the inlet, parabolic velocity profile is imposed for 

simulating a fully developed laminar velocity profile. The inlet region was chosen to 

be long enough to improve convergence performance. At the outlet, constant pressure 

is applied. When appyling bounce back scheme, Eqns. 5.8 to 5.11 are used for this 

case as before.  
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In square cylinder case, we had to deal with corners. Despite these corners cover a few 

points in the domain, they should be treated carefully for an accurate numerical 

simulation. In order to do this, bounce back scheme is applied for straight walls and 

for corners in the same way. The unknown corner populations are determined by the 

full reflection of the incoming known populations by using Eqn. 4.13. Applying 

bounce back rule at the corner has the same advantages and disadvantages as in the 

case of planar surfaces. The positive aspects remain to be the simplicity of 

implementation, strict conservation of mass and good stability characteristics. 

However, posibility for the lower accuracy and the viscosity dependent errors remain 

to be the major disadvantages of this model. 

If we take the left bottom corner of the obstacle, for example, after the streaming step 

𝑓3, 𝑓4 and 𝑓7 are known, and density is specified, the bounce back rule for non

equilibrium part of the particle distribution function can be used to determine 𝑓1, 𝑓2,

𝑓5, 𝑓6 and 𝑓8 as follows:

𝑓1 = (𝑓1
𝑒𝑞
− 𝑓3

𝑒𝑞
) + 𝑓3 = 𝑓3 (5.13) 

𝑓2 = (𝑓2
𝑒𝑞
− 𝑓4

𝑒𝑞
) + 𝑓4 = 𝑓4 (5.14) 

and by inserting the values of 𝑓1 and 𝑓2 from Equetions 4.13 and 4.16b,

𝑓5 = 𝑓7 (5.15) 

𝑓6 = 𝑓8 =
1

2
[(𝑓0 + 𝑓1 + 𝑓2 + 𝑓3 + 𝑓4 + 𝑓5 + 𝑓7) − 𝜌]. (5.16) 
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For 𝑅𝑒 = 100, the vorticity contours are given in Fig. 5.16 

Figure 5.16. Vorticity contours of flow past a square cylinder for Re=100. 

In order to understand the behaviour of the fluid, drag and lift coefficient values are 

shown Figs. 5.17 and 5.18 as they develop from the beginning of the simulation. 

Figure 5.17. Time history of drag coefficient for square cylinder for Re=100. 
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Figure 5.18. Time history of lift coefficient for square cylinder for Re=100. 

After the flow developes, drag and lift coefficient values are shown in Figs. 5.19 and 

5.20.   

Figure 5.19. Drag coefficient for square cylinder between 15000-20000 iteration for Re=100. 
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Figure 5.20. Lift coefficient for square cylinder between 15000-20000 iteration for Re=100. 

Next, Reynolds number is set at 𝑅𝑒 = 200 while the relaxation parameter 𝜏 is taken 

as 0.53 using Eqn. 5.12. Corresponding flow field is shown in Fig. 5.21. 

Figure 5.21. Vorticity contours of flow past a square cylinder for Re=200. 
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Similarly, the development of the drag and lift coefficient values are shown Figs. 5.22 

and 5.23 from the beginning of the simulation. 

Figure 5.22. Time history of drag coefficient for square cylinder for Re=200. 

Figure 5.23. Time history of lift coefficient for square cylinder for Re=200. 
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The developed drag and lift coefficient values are shown in Figs. 5.24 and 5.25.  

Figure 5.24. Drag coefficient for square cylinder between 25000-35000 iteration for Re=200. 

Figure 5.25. Lift coefficient for square cylinder between 25000-35000 iteration for Re=200. 
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Behind the obstacle, drag and lift coefficient data show periodic vortex shedding. 

Furthermore, the drag coefficient shows some small variations about the mean value, 

because of the unsteadiness of the flow. By increasing the Reynolds number, drag and 

lift coefficients and Strouhal number values increase. At prescribed Reynolds 

numbers, counter vortices are uniformly positioned downstream of the obstacles. The 

strength from these vortices decreases along the downstream from the obstacle due to 

dissipation.  

Performing a frequency analysis of the time series data is necessary to identify the 

dominant frequency in the periodic flow in the wake. In the frequency spectrum, 

distinct dominating frequency shows the vortex shedding frequency. To get this 

frequency, FFT analysis is performed by again using FFT function in MATLAB as 

mentioned in Section 5.1.  

The corresponding frequency spectra are shown in Figs. 5.26 and 5.27 for Re=100 and 

Re=200 respectively. 
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Figure 5.26. Frequency spectrum of the lift coefficient for flow past a square cylinder for Re=100 

Figure 5.27. Frequency spectrum of the lift coefficient for flow past a circular cylinder for Re=200 
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Comparison of our results, that includes drag and lift coefficients and Strouhal 

numbers for both cases can be seen in Table 5.2. In this table, mean and fluctuating 

components of these coefficients are shown in comparison to the previous studies at 

𝑅𝑒 = 100 and 𝑅𝑒 = 200.  

Table 5.2. Flow parameters for flow field around single square cylinder at Re=100 and 200. 

Parameters 

Drag Coefficients 

(𝐶𝐷)

Lift coefficient 

(𝐶𝐿)

Strouhal number 

(St) 

Re=100 Re=200 Re=100 Re=200 Re=100 Re=200 

Arnal et al. (1991) 1.41 1.52 - - 0.152 0.156 

Daviset. et. al. 

(1982) 

1.64 1.72 - - - - 

Treidler (1991) 1.68 1.74 - - 0.15 0.154 

Sohankar et al. 

(1998) 

1.76 1.78 - - 0.142 0.156 

Harichandan & 

Roy(2010) 

1.72 1.86 - - 0.152 0.158 

Present study 1.62 1.76 0.008 0.039 0.150 0.158 

In square cylinder case, our results of the flow parameters compare reasonably well 

with the other studies in literature as can be seen in Table 5.2. 

5.3. Simulation of Flow Past an Array of Two Cylinders 

Flow around arrays of circular cylinders has numerous applications in real life, such 

as landing gears of the aircrafts in flight and underwater pipes (Fernández, 2014). In 

addition to these examples, there are other applications of the flow around cylindrical 

structures, like, offshore risers, bridge piers, periscopes, chimneys, towers, antennae 

and wires (Norberg, 2003). Also rod structure of the nuclear reactors, heat exchangers 

for electronic components and heat exchangers which use pin fins for micro-devices 

are the other examples of cylinder arrays (Fornarelli et al., 2015). These examples 

make this subject very attractive for researchers to investigate. 
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For this case, a staggered arrangement of two cylinders each having a diameter D is 

employed in a channel as an extension of the case in Section 5.1. The domain is taken 

as 6D high and 15D long as before, and the two circular cylinders are placed at 4D 

and 11D distances away from the upstream and downstream boundaries relative to the 

midpoint between the two cylinders, repectively (see Fig. 5.29). We initialise the 

system by adjusting 𝑓𝑎(𝒙, 𝑡 = 0) = 𝑓𝑎
𝑒𝑞(𝜌 = 1, 𝒖 = 0). The maximum velocity of the

inlet profile is set as 𝑢𝑚𝑎𝑥 = 0.1 which is the maximum velocity per unit lattice for

each time step. For this case time step value set at 0.04. 

Starting with a steady Poiseuille flow in the channel, bounce-back BCs are applied at 

upper and lower no slip walls and curved boundary conditions applied on the cylinder 

surfaces as mentioned in Section 5.1.  

A literature search for a reference study that carries the main features of our problem 

as closely as possible yielded a study conducted by Johnson et al. (1993) that studies 

the flow over two staggered cylinders as a representative unit domain of a periodic 

array of cylinders as shown in Fig. 5.28.  

Figure 5.28. Uniperiodic flow past two cylinders: vorticity and stream with FVM (Johnson et al., 1993) 
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For the simulation at 𝑅𝑒 = 100, velocity contours are given for the two staggered 

cylinder arrangement in Fig. 5.29. 

Figure 5.29. Flow past two cylinders vorticity contours with LBM 

The drag and lift coefficients are shown developing in Figs. 5.30-5.33 for cylinder 1 

and 2 as indicated.  

Figure 5.30. Time history of drag coefficient for cylinder 1  for Re=100. 
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Figure 5.31. Time history of drag coefficient for cylinder 2  for Re=100. 

Figure 5.32. Time history of lift coefficient for cylinder 1  for Re=100. 
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Figure 5.33. Time history of lift coefficient for cylinder 2  for Re=100. 

After the flow gets developed, the evolution of the drag and lift coefficient values are 

shown in Figs. 5.34 and 5.37 for both cylinders as indicated.   
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Figure 5.34. Drag coefficient for cylinder 1 between 15000-20000 iteration for Re=100. 

Figure 5.35. Drag coefficient for cylinder 2 between 15000-20000 iteration for Re=100 
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Figure 5.36. Lift coefficient for cylinder 1 between 15000-20000 iteration for Re=100. 

Figure 5.37. Lift coefficient for cylinder 2 between 15000-20000 iteration for Re=100. 
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As shown in Figs. 5.34 and 5.35, after the start of the vortex shedding, the mean value 

of the drag coefficient for cylinder 2 settles to be higher than that for cylinder 1. 

Plausibly, this is due to cylinder 2 being affected by the wake of the cylinder 1. 

Moreover, for the cylinder 2, which is placed downstream of cylinder 1, the lift 

coefficient exhibits relatively larger amplitude of fluctuations. This may be explained 

by the asymmetric pressure fluctuations in the wake of cylinder 1 affecting cylinder 

2. The same trend is also observed in the numerical simulation conducted by Johnson

et al. (1993). 

The drag and lift coefficient data for this problem are given in Table 5.3 in comparison 

to those in Johnson et al. (1993) that the two cylinder configuration is placed in a uni-

perodic domain representing a caharacteristic unit cell of an array of cylinders (see 

Fig. 5.28).  

Table 5.3. Flow past two cylinders comparison: drag and lift coefficients 

Parameters 
Drag coefficient (𝐶𝐷) Lift coefficient (𝐶𝐿)

Cylinder 1 Cylinder 2 Cylinder 1 Cylinder 2 

Johnson et al. (1993) 2.28±0.001 2.56±0.057 ±0.045 ±0.749 

Present study 2.27±0.05 2.40±0.055 ±0.048 ±0.45 

The comparison shows some agreement between our study and that of Johnson et al. 

(1993). The discrepancy may be explained by the difference in the configuration of 

the computational domain. Johnson et al. (1993) have used periodic boundary 

conditions in the upper and lower boundaries of the computational domain where it is 

taken as a unit cell when stacked vertically represents an array of cylinders. In our 

study, the cylinders are placed in a channel bounded by the no-slip upper and lower 

walls as an extension of our numerical simulations in Sections 5.1 and 5.2. The 

slowing down effect of the wall boundaries are reflected by the data in Table 5.3 

obtained by the present study.  
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CHAPTER 6 

6. DISCUSSION

For those working with CFD who knows the difficulties associated with numerically 

attacking Navier-Stokes equations (Zeytounian, 2014), the simplicity of LBM both as 

a theoretical and a numerical tool in simulating hydrodynamics is surprising. 

Advection of a distribution function in mesoscopic scale governed by Boltzmann 

equation which is basically a simple hyperbolic partial differential equation is a 

relatively new paradigm in numerical modelling in the field of hydrodynamics that is 

classically dominated by macroscopic scale modelling. In comparison to the 

nonlinearity of the Navier-Stokes equations by the notorious advection term, the 

nonlinearity in LBM only appears in the collision term that is already greatly 

simplified by the introduction of the BGK collision operator replacing the classical 

highly complex nonlinear Boltzmann collision integral operator. The local 

implementation of LBM on a square lattice makes it simple to code and to parallelize, 

if needed, which is not pursued in this study. 

Even though it is not in the scope of this thesis, the promising applicability of LBM 

to numerically model flows in porous media, multiphase and multicomponent flows 

may be included amongst the advantages. Actually, the promise of being able to 

simulate these types of flows that are very hard otherwise using Navier-Stokes 

equations, constitutes our original motivation to explore the basic numerical 

approaches to Boltzmann equation that is undertaken in this thesis. Other allures of 

LBM for us are the promising prospects of simulation inherently mesoscopic 

phenomena such as modelling rheology of ferrofluids, microfluidics, capillarity, 

condensation and evaporation to name a few (Huang et al., 2015; Satoh, 2017) 
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The objective of this study is the examination and the validation of the LBM method. 

Developed LBM code is applied to 2D flow models and tested on some configurations 

ranging from elementary to complex. First of all, for the Poiseuille flow, that is an 

attractive flow configuration because of having a closed form analytic representation, 

LBM simulation produced very accurate results in comparison to the analytic 

solutions obtained from the NS equations. Further, LBM simulations are performed 

for flow past a circular and square cylinders for different Reynolds numbers. The 

validation of these simulations are sought in terms of some characteristic flow 

parameters like drag and lift coefficients and Strouhal numbers. These parameters are 

found to be similar to relevant studies in literature. A further simulation is performed 

for a two circular cylinders configuration. In this case, the two cylinders are staggered 

and have equal radii. In this problem, we computed the flow parameters for both 

cylinders as before. Time evolution of the drag and lift coefficients as well as the 

means and fluctuations of their oscillatory behaviour due to the vortex shedding are 

computed. The comparison with a closest possible study found in literature (to the best 

of our efforts) showed some agreement. The observed discrepancy is expected based 

on the physics as a consequence of the differences in the configurations. 

LBM is still developing in many aspects. As a user of the conventional CFD 

techniques, however, the somewhat vagueness in the implementation of the boundary 

conditions, the approach to incompressibility in the weak sense, having limitations on 

specifying viscosity, and other intensive properties have been disconcerting. A good 

perspective on LBM is given in Nourgaliev, et al. (2003). 

This study has served as a helpful starting point for understanding and documenting 

fundamental ideas behind the numerical approaches to the Boltzmann equation 

regarding hydrodynamics. In order to focus on the fundamentals, however, the flow 

configurations are selected as basic 2D geometries ranging from channel flow to the 

fluid flow past different types of basic obstacles. The next step in mastering the 

computational tool of LBM should involve 3D flow configurations together with 
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parallelization efforts. The ultimate objective, in fact, should be to study flow 

configurations that are hard in the framework of conventional CFD techniques such 

as multiphase and multicomponent flows. In the light of this exploration, various new 

techniques, such as multi-relaxation-time (MRT) collision operators modifying BGK 

collision operator, entropic LBM with improved stability characteristics (Boghosian, 

2001), will be further pursued. 





93 

REFERENCES 

Alim, U. R., Entezari, A., & Mller, T. (2009). The lattice-boltzmann method on 

optimal sampling lattices. IEEE Transactions on Visualization and Computer 

Graphics, 15(4), 630–641. http://doi.org/10.1109/TVCG.2008.201 

Amati, G., Succi, S., & Benzi, R. (1997). Turbulent channel flow simulations using a 

coars-grained extension of the lattice Boltzmann method. Fluid Dynamics 

Research, 19(5), 289–302. 

Arnal, M., J. Goering, D., & A. C. Humphrey, J. (1991). Vortex Shedding From a Bluff 

Body Adjacent to a Plane Sliding Wall. Journal of Fluids Engineering-

transactions of The Asme - J FLUID ENG (Vol. 113). 

https://doi.org/10.1115/1.2909508 

Bao, Y., & Meskas, J. (2011). Lattice Boltzmann Method for Fluid Simulations. Cfd, 

(2), 1–16. Retrieved from http://www.math.nyu.edu/~billbao/report930.pdf 

Bhatnagar, P. L., Gross, E. P., & Krook, M. (1954). A model for collision processes 

in gases. I. Small amplitude processes in charged and neutral one-component 

systems. Physical Review, 94(3), 511–525. 

https://doi.org/10.1103/PhysRev.94.511 

Boix, C. (2013). Application of the Lattice Boltzmann Method to Issues of Coolant 

Flows in Nuclear Power Reactors, 132. 



94 

Boyd, J. P. (2000). Chebyshev and Fourier Spectral Methods. New York, 7, 688. 

http://doi.org/10.1007/978-0-387-77674-3 

Braza, M., Chassaing, P., & Minh, H. H. (1986). Numerical study and physical 

analysis of the pressure and velocity fields in the near wake of a circular cylinder. 

Journal of Fluid Mechanics, 165, 79–130. https://doi.org/DOI: 

10.1017/S0022112086003014 

Breuer, M., Bernsdorf, J., Zeiser, T., & Durst, F. (2000). Accurate computations of 

the laminar flow past a square cylinder bases on two different methods: Lattice-

{B}oltzmann and Finitie-Volume. Int. J. Heat and Fluid Flow, 21(2), 186–196.

Canuto, D., & Taira, K. (2017). Two-dimensional compressible viscous flow around 

a circular cylinder, (1956). https://doi.org/10.1017/jfm.2015.635 

Cao, N., Chen, S., Jin, S., & Martínez, D. (1997). Physical symmetry and lattice 

symmetry in the lattice Boltzmann method. Physical Review E - Statistical 

Physics, Plasmas, Fluids, and Related Interdisciplinary Topics, 55(1), R21–R24. 

https://doi.org/10.1103/PhysRevE.55.R21 

Chapman, S., Cowling, T. G. (1970). The Mathematical Theory of Non-Uniform 

Gases. Cambridge University Press 



 

 

 

95 

 

Chen, H., Chen, S., & Matthaeus, W. H. (1992). Recovery of the Navier-Stokes 

equations using a lattice-gas Boltzmann method. Physical Review A. 

https://doi.org/10.1103/PhysRevA.45.R5339 

 

Chen, L., Kang, Q., Mu, Y., He, Y. L., & Tao, W. Q. (2014). A critical review of the 

pseudopotential multiphase lattice Boltzmann model: Methods and applications. 

International Journal of Heat and Mass Transfer, 76, 210–236. 

https://doi.org/10.1016/j.ijheatmasstransfer.2014.04.032 

 

Chen, N. X., & Sun, B. H. (2017). Note on Divergence of the Chapman-Enskog 

Expansion for Solving Boltzmann Equation∗. Chinese Physics Letters, 34(2), 1–

3. https://doi.org/10.1088/0256-307X/34/2/020502 

 

Chen, S., & Doolen, G. D. (1998). Lattice Boltzmann method for fluid flows. Annual 

Review of Fluid Mechanics, 30(1), 329–364. Retrieved from 

http://www.annualreviews.org/doi/abs/10.1146/annurev.fluid.30.1.329 

 

Cushman-Roisin, B., & Epps, B. P. (2018). From Boltzmann Kinetics to the Navier-

Stokes Equations, 1–14. 

 

Ding, H., Shu, C., Yeo, K. S., & Xu, D. (2007). Numerical simulation of flows around 

two circular cylinders by mesh-free least square-based finite difference methods. 

International Journal for Numerical Methods in Fluids, 53(2), 305–332. 

https://doi.org/10.1002/fld.1281 

 



96 

Fahner, G. (1991). A Multispeed Model for Lattice-Gas Hydrodynamics v v, 5, 1–14. 

Fernández, L. (2014). Direct numerical simulation of the flow around an array of 

cylinders. 

Fornarelli, F., Oresta, P., & Lippolis, A. (2015). Flow patterns and heat transfer 

around six in-line circular cylinders at low reynolds number. JP Journal of Heat 

and Mass Transfer, 11(1), 1–24. https://doi.org/10.17654/JP2015_001_028 

Frisch, U., Hasslacher, B., & Pomeau, Y. (1986). Lattice-gas automata for the Navier-

Stokes equation. Physical Review Letters. 

https://doi.org/10.1103/PhysRevLett.56.1505 

Gallivan, M. a, Noble, D. R., Georgiadis, J. G., & Buckius, R. O. (1997). An 

evaluation of the bounce-back boundary condition for lattice Boltzmann 

simulations. International Journal for Numerical Methods in Fluids, 25(3), 249–

263. https://doi.org/10.1002/(SICI)1097-0363(19970815)25:3<249::AID-

FLD546>3.3.CO;2-Z 

Gergova, M. (2002). Evaluation of Improved Boundary Conditions for the Lattice 

Boltzmann Approach: Investigation of the Laminar Vortex Street behind a 

Circular Cylinder, (December), 54. 



97 

Grad, H. (1949a). Note on N‐ dimensional hermite polynomials. Communications on 

Pure and Applied Mathematics, 2(4), 325–330. 

https://doi.org/10.1002/cpa.3160020402 

Grad, H. (1949b). On the kinetic theory of rarefied gases. Communications on Pure 

and Applied Mathematics, 2(4), 331–407. 

https://doi.org/10.1002/cpa.3160020403 

Harichandan, A. B., & Roy, A. (2010). Numerical investigation of low Reynolds 

number flow past two and three circular cylinders using unstructured grid CFR 

scheme. International Journal of Heat and Fluid Flow, 31(2), 154–171. 

https://doi.org/10.1016/j.ijheatfluidflow.2010.01.007 

He, X., & Doolen, G. (1997). Lattice Boltzmann Method on Curvilinear Coordinates 

System: Flow around a Circular Cylinder. Journal of Computational Physics, 

134(2), 306–315. https://doi.org/10.1006/jcph.1997.5709 

He, X., Luo, L.-S., & Micah Dembo. (1996). Some Progress in Lattice Boltzmann 

Method. Part I. Nonuniform Mesh Grids. Journal of Computational Physics, 129, 

357–363. 

Henderson, R. D. (1995). Details of the drag curve near the onset of vortex shedding. 

Physics of Fluids, 7(9), 2102–2104. https://doi.org/10.1063/1.868459 



98 

Higuera, F. J., & Jimenez, J. (1989). Boltzmann approach to lattice gas simulations. 

Epl, 9(7), 663–668. https://doi.org/10.1209/0295-5075/9/7/009 

Hirsch, C. (2007). Numerical Computation of Internal & External Flows: Volume 1 

(Fundamentals of Computational Fluid Dynamics). https://doi.org/10.1007/978-

3-540-85056-4

Ho, C.-F., Chang, C., Lin, K.-H., & Lin, C.-A. (2009). Consistent Boundary 

Conditions for 2D and 3D Lattice Boltzmann Simulations. Cmes-Computer 

Modeling In Engineering Camp; Sciences, 44(2), 137–155. 

https://doi.org/10.3970/cmes.2009.044.137 

Huang, H., & Sukop, M. (2015). Multiphase lattice Boltzmann Methods (Vol. 53). 

https://doi.org/10.1017/CBO9781107415324.004 

Johnson, A. A., Tezduyar, T. E., & Liou, J. (1993). Numerical simulation of flows 

past periodic arrays of cylinders. Numerical Simulation of Flows Past Periodic 

Arrays of Cylinders, 11, 371–383. 

https://doi.org/https://doi.org/10.1007/BF00350094 

Józsa, T. I., Szőke M., Teschner, T., Könöszy L., Moulitsas I., (2016). Validation and 

Verification of a 2D Lattice Boltzmann Solver for Incompressible Fluis Flow, 

ECCOMAS Congress. 



99 

Kadanoff, L. (1986). On Two Levels. Physics Today. 

Koda, Y. (2013). Lattice Boltzmann Method for Simulating Turbulent Flows. 

Krüger, T., Kusumaatmaja, H., Kuzmin, A., Shardt, O., Silva, G., & Viggen, E. M. 

(2016). The Lattice Boltzmann Method - Principles and Practice. 

https://doi.org/10.1007/978-3-319-44649-3 

Latt, J., Chopard, B., Malaspinas, O., Deville, M., & Michler, A. (2008). Velocity 

boundaries in the lattice Boltzmann method. Physical Review. E, Statistical, 

Nonlinear, and Soft Matter Physics, 77(5 Pt 2), 056703. 

https://doi.org/10.1103/PhysRevE.77.056703 

Li, Y., Leboeuf, E. J., & Basu, P. K. (2005). Least-squares finite-element scheme for 

the lattice Boltzmann method on an unstructured mesh. Physical Review E - 

Statistical, Nonlinear, and Soft Matter Physics, 72(4). 

https://doi.org/10.1103/PhysRevE.72.046711 

Lim, H. A. (1990). Lattice-gas automaton simulations of simple fluid dynamical 

problems. Mathematical and Computer Modelling, 14(C), 720–727. 

https://doi.org/10.1016/0895-7177(90)90276-S 

M. Gresho, P., L. Lee, R., & Sani, R. (1978). On the time-dependent FEM solution of

the incompressible Navier-Stokes equations in two- and three-dimensions.

Recent Advances in Numerical Methods in Fluids. 



100 

McNamara, G. R., & Zanetti, G. (1988). Use of the boltzmann equation to simulate 

lattice-gas automata. Physical Review Letters, 61(20), 2332–2335. 

https://doi.org/10.1103/PhysRevLett.61.2332 

Mei, R., & Shyy, W. (1998). On the Finite Difference-Based Lattice Boltzmann 

Method in Curvilinear Coordinates. Journal of Computational Physics, 143(2), 

426–448. https://doi.org/10.1006/jcph.1998.5984 

Mele, I. (2013). Lattice Boltzmann method. University of Ljubljana, (March). 

https://doi.org/10.1146/annurev-fluid-011212-140634 

Meneghini, J. R., Saltara, F., Siqueria, C. L. R., & Ferrari Jr, J. A. (2001). 

NUMERICAL SIMULATION OF FLOW INTERFERENCE BETWEEN TWO 

CIRCULAR CYLINDERS IN TANDEM AND SIDE-BY-SIDE 

ARRANGEMENTS. Journal of Fluids and Structures, 15(2), 327–350. 

https://doi.org/https://doi.org/10.1006/jfls.2000.0343Get 

Mohamad, A. A. (2011). Lattice Boltzmann Method-Fundamentals and Engineering 

Applications with Computer Codes. https://doi.org/10.1007/978-0-85729-455-5 

Nie, X. B., Chen, S. Y., E, W. N., & Robbins, M. O. (2004). A continuum and 

molecular dynamics hybrid method for micro- and nano-fluid flow. Journal of 

Fluid Mechanics, 500(2004), 55–64. 

https://doi.org/10.1017/S0022112003007225 



101 

Norberg, C. (1987). Effects of Reynolds number and a low-intensity freestream 

turbulence on the flow around a circular cylinder. Thesis, (May 1987). Retrieved 

from http://www.ht.energy.lth.se/fileadmin/ht/Publikation-87-2.pdf 

Norberg, C. (2003). Fluctuating lift on a circular cylinder: Review and new 

measurements. Journal of Fluids and Structures, 17(1), 57–96. 

https://doi.org/10.1016/S0889-9746(02)00099-3 

Nourgaliev, R. R., Dinh, T. N., Theofanous, T. G., & Joseph, D. D. (2003). The lattice 

boltzmann equation method: theoretical interpretation, numerics and 

implications. Int. J. Multiphase Flow, 29, 117–169. 

Pontrelli, G., Halliday, I., & Melchionna, S. (2007). The Lattice Boltzmann Method 

and Multiscale Hemodynamics : Recent Advances and Perspectives, (January). 

https://doi.org/10.11128/sne.23.on.10181 

Portinari, M. (2015). 2D and 3D VERIFICATION AND VALIDATION OF THE 

LATTICE BOLTZMANN METHOD. 

Qian, Y. H., D’Humèries, D., & Lallemand, P. (1992). Lattice BGK Models for Navier 

- Stokes equation. Europhysics Letters, 17(6), 479–484. 

https://doi.org/10.1209/0295-5075/17/6/001 

Roache, P. J. (1998). Verification and Validation in COmputational Science and 

Engineering. Hermosa publishers, New Mexico. 



102 

Roshko, A. (1954). On The Development of Turbulent Wakes From Vortex Streets. 

National Advisory Comittee for Aeronautics. 

Satoh, A. (2011). Introduction to Practice of Molecular Simulation Molecular 

Dynamics, Monte Carlo, Brownian Dynamics, Lattice Boltzmann, Dissipative 

Particle Dynamics. 

Satoh, A. (2017). Modeling of Magnetic Particle Suspensions for Simulations, 368. 

https://doi.org/https://doi.org/10.1201/9781315166094 

Sen, S., Mittal, S., & Biswas, G. (2009). Steady separated flow past a circular cylinder 

at low Reynolds numbers. Journal of Fluid Mechanics, 620, 89–119. 

https://doi.org/10.1017/S0022112008004904 

Shan, X., & He, X. (1998). Discretization of the velocity space in the solution of the 

boltzmann equation. Physical Review Letters, 80(1), 65–68. 

http://doi.org/10.1103/PhysRevLett.80.65 

Shan, X., Yuan, X. F., & Chen, H. (2006). Kinetic theory representation of 

hydrodynamics: A way beyond the Navier-Stokes equation. Journal of Fluid 

Mechanics, 550, 413–441. https://doi.org/10.1017/S0022112005008153 

Sohankar, A., Norberg, C., & Davidson, L. (1998). Low-Reynolds-number flow 

around a square cylinder at incidence: Study of blockage, onset of vortex 

shedding and outlet boundary condition. Doktorsavhandlingar Vid Chalmers 



103 

Tekniska Hogskola, 26(1371), 39–56. https://doi.org/10.1002/(SICI)1097-

0363(19980115)26:1 

Succi, S. (2001). The Lattice Boltzmann Equation for Fluid Dynamics and Beyond, 

Oxford Science Publications. 

Sukop, M. C., & Thorne, D. T. (2006). Lattice Boltzmann Modeling. Physical Review 

E - Statistical, Nonlinear and Soft Matter Physics (Vol. 79). 

https://doi.org/10.1007/978-3-540-27982-2 

Tahir Saeed Khan. (2011). Stabilizing Lattice Boltzmann Simulation of Floes Past 

Bluff Bodies by Intoductions of Ehrenfests’ Limiters. 

Tölke, J., Krafczyk, M., Schulz, M., & Rank, E. (2000). Discretization of the 

Boltzmann equation in velocity space using a Galerkin approach. Computer 

Physics Communications, 129(1), 91–99. https://doi.org/10.1016/S0010-

4655(00)00096-5 

Treidler, E. B. (1991). An Experimental and Numerical Investigation of Flow Past 

Ribs in a Channel. 

Tritton, D. J. (1959). Experiments on the flow past a circular cylinder at low Reynolds 

numbers. Journal of Fluid Mechanics, 6, 547–567. 

https://doi.org/10.1017/S0022112059000829 



104 

von Kármán, T. (1911). Kármán, Th. von. Nachrichten von Der Gesellschaft Der 

Wissenschaften Zu Göttingen, Mathematisch-Physikalische Klasse, 1911, 509–

517. Retrieved from http://resolver.sub.uni-

goettingen.de/purl?PPN252457811_1911/dmdlog57 

von Neumann, J. (1966). Theory of self-reproducing automata. Theory of Self-

Reproducing Automata. https://doi.org/10.1016/0020-0271(69)90026-6 

W. Davis, R., & F.  Moore, E. (1982). A numerical Study of vortex shedding from

rectangles. Journal of Fluid Mechanics (Vol. 116).

https://doi.org/10.1017/S0022112082000561

Weimar, J. R., & Boon, J.-P. (1993). A New Class of Cellular Automata for Reaction-

Diffusion Systems. Physical Review E, 49(2), 4. 

https://doi.org/10.1103/PhysRevE.49.1749 

Wiesenberger, C. (1923). Neuere Feststellungen Uber die Gesetze des Flussigkeits. 

und Luftwiderstands. Physikalische Zeitschrift, 22, 321–328. Retrieved from 

https://ci.nii.ac.jp/naid/10013462567/en/ 

Wolf-Gladrow, D. a. (2000). Lattice-Gas Cellular Automata and Lattice Boltzmann 

Models - An Introduction. PoLAR, 308. https://doi.org/978-3-540-66973-9 

Wolfram, S. (1986). Cellular automaton fluids 1: Basic theory. Journal of Statistical 

Physics, 45(3–4), 471–526. https://doi.org/10.1007/BF01021083 



105 

Xi, H., Peng, G., & Chou, S. H. (1999). Finite-volume lattice Boltzmann method. 

Physical Review E - Statistical Physics, Plasmas, Fluids, and Related 

Interdisciplinary Topics, 59(5), 6202–6205. 

https://doi.org/10.1103/PhysRevE.59.6202 

Xia, B., & Sun, D. W. (2002). Applications of computational fluid dynamics (CFD) 

in the food industry: A review. Computers and Electronics in Agriculture, 34(1–

3), 5–24. https://doi.org/10.1016/S0168-1699(01)00177-6 

Yepez, J. (1993). AFOSR Initiative Element : Lattice-Gas Automata and Lattice 

Boltzmann Methods as a Novel Parallel Computing Strategy. Simulation. 

Zeytounian, R. K. (2014). Five Decades of Tackling Models for Stiff Fluid Dynamics 

Problems. Five Decades of Tackling Models for Stiff Fluid Dynamics Problems. 

https://doi.org/10.1007/978-3-642-39541-3 

Zhang, J. (2011). Lattice Boltzmann method for microfluidics: Models and 

Zou, Q., & He, X. (1997). On pressure and velocity boundary conditions for the lattice
        Boltzmann BGK model. Physics of Fluids, 9(6), 1591–1598.  

applications. Microfluidics and Nanofluidics, 10(1), 1–28. 

https://doi.org/10.1007/s10404-010-0624-1 





107 

APPENDICES 

A. Hermite Polynomial and Gauss-Hermite Qudrature

One-Dimensional Case:  

Hermite polynomial of degree n can be generated by the Rodrigues’ formula 

𝐻(𝑛)(𝑥) =
(−1)𝑛

𝜔(𝑥)

𝑑𝑛

𝑑𝑥𝑛
𝜔(𝑥) (A1) 

for integer 𝑛 ≥ 0 where 𝜔(𝑥) is the weight function 

𝜔(𝑥) =
1

√2𝜋
exp(−𝑥2 2⁄ ) . (A2) 

Some Hermite polynomials are listed below: 

𝐻(0)(𝑥) = 1,   𝐻(1)(𝑥) = 𝑥,   𝐻(2)(𝑥) = 𝑥2 − 1,   𝐻(3)(𝑥) = 𝑥3 − 3𝑥.      (A3)

They are orthogonal with respect to 𝜔(𝑥): 

∫ 𝜔(𝑥)𝐻(𝑛)(𝑥)𝐻(𝑚)(𝑥)𝑑𝑥 

∞

−∞

= 𝑛! 𝛿𝑛𝑚
2 (A4) 

where 𝛿𝑛𝑚
2  is the usual Kronecker delta. They form a complete basis so that any

sufficiently well-behaved continuous function 𝑓(𝑥) can be represented as a series of 

Hermite polynomials 

𝑓(𝑥) = 𝜔(𝑥)∑
1

𝑛!

∞

𝑛=0

𝑎(𝑛)𝐻(𝑛)(𝑥),   𝑎(𝑛) = ∫ 𝑓(𝑥)𝐻(𝑛)(𝑥)𝑑𝑥

∞

−∞

.        (A5) 
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Gauss-Hermite quadrature allows accurate numerical integration of a function 𝑓(𝑥) 

multiplied by the weight function 𝜔(𝑥) by a finite series of the function values 𝑓(𝑥𝑖)

at certain points 𝑥𝑖, called abscissae (node):

∫ 𝜔(𝑥)𝑓(𝑥)𝑑𝑥 

∞

−∞

≈∑𝑤𝑖𝑓(𝑥𝑖)

𝑞

𝑖=1

 (A6) 

where 𝑥𝑖 are q roots of the Hermite polynomial of order q, 𝐻(𝑞)(𝑥𝑖) = 0 and the

quadrature weights 𝑤𝑖 can be computed by

𝑤𝑖 =
𝑞!

(𝑞𝐻(𝑞−1)(𝑥𝑖))
2 . (A7) 

It is guaranteed that for 𝑓(𝑥) a polynomial of degree 𝑁 ≤ 2𝑞 − 1, the quadrature 

integral (A1) is exact. Here is a summary of some Gauss-Hermite quadrature nodes 

and weights:   

Table A.1. Gauss-Hermite quadrature nodes and weights 

𝑞 𝑁 ≤ 2𝑞 − 1 Nodes, 𝑥𝑖 Weights, 𝑤𝑖

1 1 0 1 

2 3 ±1 1 2⁄  

3 5 
0 2 3⁄  

±√3 1 6⁄  

d-Dimensional Case:

Hermite polynomials can constructed in d spatial dimensional space as follows 
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𝑯(𝑛)(𝑥) =
(−1)𝑛

𝜔(𝒙)
𝛁(𝑛)𝜔(𝒙),          𝜔(𝒙) =

1

(2𝜋)𝑑 2⁄
exp(−𝒙 ∙ 𝒙 2⁄ )       (A8) 

where 𝑯(𝑛) and 𝛁(𝑛) are tensors of rank n having 𝑑𝑛 components 𝐻𝛼1𝛼2…𝛼𝑛
(𝑛)

 and 

∇𝛼1𝛼2…𝛼𝑛
(𝑛)

=
𝜕

𝜕𝑥𝛼1

𝜕

𝜕𝑥𝛼2
…

𝜕

𝜕𝑥𝛼𝑛
.   (A9) 

Here, {𝛼1, 𝛼2…𝛼𝑛} are 𝑛 indices with each index ranging from 1 to d, such as, 𝛼𝑖 ∈

{𝑥, 𝑦} or {𝑥, 𝑦, 𝑧} in 2D  (𝑑 = 2) or 3D (𝑑 = 3), respectively. In 2D, for example 

∇𝑥𝑥
(2)
=
𝜕

𝜕𝑥

𝜕

𝜕𝑥
,  ∇𝑥𝑦

(2)
= ∇𝑦𝑥

(2)
=
𝜕

𝜕𝑥

𝜕

𝜕𝑦
,  ∇𝑦𝑦

(2)
=
𝜕

𝜕𝑦

𝜕

𝜕𝑦
. (A10) 

 resulting in the Hermite polynomials 

𝐻(0)(𝒙) = 1, (A11) 

𝐻𝑥
(1)(𝒙) = −

1

exp(− (𝑥2 + 𝑦2) 2⁄ )

𝜕

𝜕𝑥
𝑒−(𝑥

2+𝑦2) 2⁄ = 𝑥, (A12) 

𝐻𝑦
(1)(𝒙) = −

1

exp(− (𝑥2 + 𝑦2) 2⁄ )

𝜕

𝜕𝑦
𝑒−(𝑥

2+𝑦2) 2⁄ = 𝑦, (A13) 

𝐻𝑥𝑥
(2)(𝒙) = −

1

exp(− (𝑥2 + 𝑦2) 2⁄ )

𝜕

𝜕𝑥

𝜕

𝜕𝑥
𝑒−(𝑥

2+𝑦2) 2⁄ = 𝑥2 − 1,         (A14) 

𝐻𝑥𝑦
(2)(𝒙) = 𝐻𝑦𝑥

(2)(𝒙) = −
1

exp(− (𝑥2 + 𝑦2) 2⁄ )

𝜕

𝜕𝑥

𝜕

𝜕𝑦
𝑒−(𝑥

2+𝑦2) 2⁄ = 𝑥𝑦,    (A15)

𝐻𝑦𝑦
(2)(𝒙) = −

1

exp(− (𝑥2 + 𝑦2) 2⁄ )

𝜕

𝜕𝑦

𝜕

𝜕𝑦
𝑒−(𝑥

2+𝑦2) 2⁄ = 𝑦2 − 1,         (A16) 

or in a more compact form (Grad, 1949a) 

𝐻(0)(𝒙) = 1, (A17) 

𝐻𝛼1
(1)(𝒙) = 𝑥𝛼1 , (A18) 

𝐻𝛼1𝛼2
(2) (𝒙) = 𝑥𝛼1𝑥𝛼2 − 𝛿𝛼1𝛼2

2 , (A19) 
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𝐻𝛼1𝛼2𝛼3
(3) (𝒙) = 𝑥𝛼1𝑥𝛼2𝑥𝛼3 − 𝑥𝛼1𝛿𝛼2𝛼3

2 − 𝑥𝛼2𝛿𝛼1𝛼3
2 − 𝑥𝛼3𝛿𝛼1𝛼3

2 .     (A20) 

The number of basis elements in each set {𝑯(𝑛)(𝒙)} in d dimensions is

(
𝑑 + 𝑛 − 1

𝑛
) =

(𝑑 + 𝑛 − 1)!

(𝑑 − 1)! 𝑛!
. (A21) 

The orthogonality can also be generalized to d dimensions: 

∫ 𝜔(𝒙)𝐻𝜶
(𝑛)(𝒙)𝐻𝜷

(𝑛)(𝒙)𝑑𝒙

∞

−∞

=∏𝑛𝑖! 𝛿𝑛𝑚
2 𝛿𝜶𝜷

(𝑛+𝑚)

𝑑

𝑖=1

(A22) 

where 𝛿𝜶𝜷
(𝑛+𝑚)

is a generalized Kronecker symbol which is 1 only if 𝜶 = (𝛼1, 𝛼2…𝛼𝑛)

is a permutation of 𝜷 = (𝛽1, 𝛽2…𝛽𝑛) and 0 otherwise. In 3D, for example, (𝑥, 𝑦, 𝑥, 𝑧)

is a permutation of (𝑦, 𝑥, 𝑥, 𝑧), but not of (𝑥, 𝑦, 𝑧, 𝑦). 𝑛𝑥, 𝑛𝑦 and 𝑛𝑧 are the number of

occurences in x, y and z in 𝜶. In (𝑥, 𝑦, 𝑥, 𝑧), for example, 𝑛𝑥 = 2 and 𝑛𝑦 = 𝑛𝑧 = 1.

Hermite polynomial representation of a function 𝑓(𝒙) in d dimensions is: 

𝑓(𝑥) = 𝜔(𝑥)∑
1

𝑛!

∞

𝑛=0

𝒂(𝑛) ∙ 𝑯(𝑛)(𝒙),  𝒂(𝑛) = ∫ 𝑓(𝒙)𝑯(𝑛)(𝒙)𝑑𝒙

∞

−∞

.        (A23) 

The expansion coefficients 𝒂(𝑛) are also tensors of rank n, and the dot product 𝒂(𝑛) ∙

𝑯(𝑛) is representing full contraction 𝑎𝛼1𝛼2…𝛼𝑛
(𝑛)

𝐻𝛼1𝛼2…𝛼𝑛
(𝑛)

, i.e. summation over all 

possible indices. The number of basis elements in a given set of N Hermite polynomial 

basis set, {𝑯(𝑛)(𝒙)}
𝑛=0

𝑁
 in d dimensions is 

(
𝑑 + 𝑁
𝑁

) =
(𝑑 + 𝑁)!

𝑑! 𝑁!
. (A24) 

In multi-dimensions, no Gauss quadrature theory is known, however, a production 

formulae can be constructed from 1D case. A polynomial 𝑝(𝒙) of degree n in d-

dimensions can be written as:      
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𝑝(𝒙) = ∑ 𝑐𝑛1𝑛2…𝑛𝑑
𝑛1+…+𝑛𝑑≤𝑛

∏𝑥𝑖
𝑛𝑖

𝑑

𝑖=1

. (A25) 

The weighted integral of each individual term of 𝑝(𝒙) can be performed separately 

and for each integral one-dimensional degree n quadrature formula can be applied to 

get: 

∫ 𝜔(𝒙)∏𝑥𝑖
𝑛𝑖

𝑑

𝑖=1

𝑑𝒙 

∞

−∞

=
1

(2𝜋)𝑑 2⁄
∫ exp(−𝒙 ∙ 𝒙 2⁄ )∏𝑥𝑖

𝑛𝑖

𝑑

𝑖=1

𝑑𝒙 

∞

−∞

   (A26) 

=∏
1

(2𝜋)1 2⁄
∫ exp(−𝑥𝑖

2 2⁄ ) 𝑥𝑖
𝑛𝑖𝑑𝑥𝑖

∞

−∞

𝑑

𝑖=1

=∏(∑𝑤𝑗𝑥𝑗
𝑛𝑖

𝑛

𝑗=1

)

𝑑

𝑖=1

= ∑ ⋯ ∑ 𝑤𝑘1⋯𝑤𝑘𝑑𝑥𝑘1
𝑛1⋯

𝑛

𝑘𝑑=1

𝑥𝑘𝑑
𝑛𝑑

𝑛

𝑘1=1

 

due to each 𝑛𝑖 ≤ 𝑛 where 𝑤𝑗 and 𝑥𝑗 are the Gauss-Hermite quadrature weights and

nodes, respectively. By defining the product 𝑤𝑘1⋯𝑘𝑑 = 𝑤𝑘1𝑤𝑘2⋯𝑤𝑘𝑑 and the vector

𝒙𝑘1⋯𝑘𝑑 = (𝑥𝑘1 , 𝑥𝑘2 , ⋯ , 𝑥𝑘𝑑), d-dimensional Gauss-Hermite quadrature formula based

on the one-dimensional formula can be written as 

1

(2𝜋)𝑑 2⁄
∫ exp(−𝒙 ∙ 𝒙 2⁄ ) 𝑝(𝒙)𝑑𝒙 

∞

−∞

=∑𝑤𝑘1⋯𝑘𝑑𝑝(𝒙𝑘1⋯𝑘𝑑) .    (A27) 

The summation has 𝑞 = 𝑛𝑑 terms that translates into the lattice notation DdQq with

the well-known cases D2Q9 and D3 




