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ABSTRACT 

 

TOPOLOGY DESIGN OF VLASOV BEAM SECTIONS 

 

Çetin, Fatih 

Master of Science, Mechanical Engineering 

Supervisor: Prof. Dr. Suha Oral 

 

September 2019, 80 pages 

 

The optimal cross-section of beams plays an important role in load-carrying members. 

The section of a beam should be designed such that the structure carries higher loads 

with less weight. Some structures which are subjected to static combined loading 

require a continuous cross-section along their axial direction due to manufacturing 

reasons. In classical structural topology optimization methods, it is aimed to optimize 

the whole beam. However, these methods are impractical when optimize the whole 

beam as they generate beams with non-uniform topologies and varying cross-sections 

along the axial direction. On the other hand, most of the earlier studies address only 

the bending and torsional rigidity optimization of cross-sections, regardless of the 

loading on the beam in question. In this thesis, the topology optimization of Vlasov 

beam sections is studied according to Vlosov beam theory. For the purpose of this 

study an optimization method hereby known as the Evolutionary Growth Algorithm 

(EGA) was generated and through this algorithm it is proposed that the optimum cross-

section can be found in accordance with the strength to area ratio. The optimization 

methodology generated in this thesis uses element Von Mises stress as a material 

addition and removal criterion and also takes symmetrical design constraints into 

account. Indeed, material addition and/or removal are decided according to the stress 

level of each element and the symmetry constraints of the cross-section. The cross 

section domain has to be coherent throughout its evolution, i.e. there should be no 
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disconnection between the elements. Therefore, a special algorithm is included in the 

Evolutionary Growth Algorithm (EGA) to check the connectivity of the active 

elements in the cross-section during element removal. At the end of the optimization 

process, it is aimed to have determined the optimum cross-section limit at which point 

the area will be minimized for the maximum Von Misses stress applied to the section. 

Both finite element analyses and optimization algorithm were coded in MATLAB and 

run consecutively to achieve the goal of this study. 

  

 

Keywords: Mechanics of Materials, Structural Topology Optimization, Finite Element 

Analysis, Beam Cross Section  
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ÖZ 

 

VLASOV KİRİŞLERİNİN TOPOLOJİ TASARIMI 

 

Çetin, Fatih 

Yüksek Lisans, Makina Mühendisliği 

Tez Danışmanı: Prof. Dr. Suha Oral 

 

Eylül 2019, 80 sayfa 

 

Optimum kiriş kesiti yük taşıma elemanlarında önemli rol oynar. Kiriş kesit alanı 

elemanları daha az ağırlıkla daha yüksek yükleri taşıyabilcek şekilde 

tasarlanabilmektedir. Çoklu durağan yüklemeye maruz kalan yapılar üretimden 

kaynaklanan sebeplerden dolayı eksenel yönleri boyunca sabit kesitler 

gerektirmektedir. Konvensiyonel optimizasyon metotlar yapının bir bütün olarak 

optimize edilmesi amaçlar.Ancak bu yaklaşımlar eksenel doğrultuda düzgün olmayan 

ve kesit alanları eksenel yönleri boyunca değişen kirişler üretir. Öte yandan daha önce 

yapılan çalışmalarda çoğu kiriş üzerindeki yükten bağımsız olarak kesitin sadece 

bükülme veya çarpılma ile ilişkisi incelenmiştir. Bu tez çalışmasından Vlasov Kirişi 

Optimizayonu yapılmıştır.Evrimsel Büyüme Algoritması olarak adlandırılan (EBA) 

optimizasyon yöntemi dayanım alan oranına göre en uygun kesiti elde etmek için 

geliştirilmiştir. Bu tezde geliştrilen optimizaston metodu simetrik tasarım ve Von 

Mises gerilimlerim kısıtlarını hesaba katarak oluşturulmuştur. Optimizasyon 

algoritmasında eleman çıkarma işlemi sırasında tüm kesit alanının bütünlüğünü 

koruduğu kontrol edilir. Sonlu eleman analizleri ve optimizasyon yöntemi MATLAB 

ortamında çalışmanın amacına ulaşmak için ardı ardına koşturulmaktadır. 
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CHAPTER 1  

 

1. INTRODUCTION 

 

With the development of computational power, a wide range of possible applications 

of optimization methods have become popular in the field of structural engineering. 

Size optimization, shape optimization, and topology optimization— which are the 

classes of structural optimization— can be applied in the early stages of the design 

process. While the optimum size and/or thickness of predefined members are 

determined by size optimization, the optimum shape is obtained by modifying the 

predefined boundaries of members. However, when it comes to topology 

optimization, the aim is to find the optimum shape and layout of cavities inside the 

design domain by not presenting any limits with predefined members or boundaries. 

Topology optimization is a good way to better understand the design domain and to 

investigate the best design options, especially during the conceptual design stages. 

Topology optimization does not supply the final structure design, rather, it helps to 

attain a rough idea regarding the most efficient topology. Hence, shape and size 

optimizations should be applied in the wake of topology optimization completion [1]. 

 

Figure 1.1. Structural Optimization Methods [2] 
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There are two popular design problems: namely, stress constrained weight 

minimization and volume constraint compliance minimization. The aim of the former 

is to minimize the volume fraction while satisfying stress constraints; whereas, the 

latter aims to maximize the stiffness for a given volume fraction[3]. 

In recent years, many topology optimization techniques have been produced in order 

to solve these two types of problems such as the optimality criteria method; the convex 

linearization method; the method of moving asymptotes and successive linear 

programming; and the Evolutionary Structural Optimization (e.g. ESO, BESO) 

methods [3]. 

According to critics and studies comparing optimization methods, the ESO method, 

developed by Xie and Steven [1][4], is the most popular and the simplest technique 

for topology optimization. This method focuses on the basic concept of gradually 

removing the inefficient material from the structure. The evolution of topology in ESO 

continues by only removing elements from the structure. It is not capable of element 

addition. As a result, the Bi-directional Structural Optimization (BESO) method was 

introduced by Querin et al.[5] in order to add and remove elements simultaneously. 

BESO is suitable for both stress and compliance optimization problems. Von Mises 

elemental stress is a criterion for applying the BESO concept to a stress problem. The 

elements that have the lowest von Mises stress are removed and void elements near 

the highest von Mises stress regions are switched on as solid elements in the respective 

BESO algorithm. 

Beams are very significant structural elements as they play an important role in 

carrying load. Rotor blades of helicopters and large wind generators are two typical 

examples. Most of the previous studies in literature dealt with the optimization of a 

structure as a whole, i.e. 2D and 3D problems, by using structural optimization 

methods. Although there are several discussions regarding topology optimization of 

the beam along its span and in the literature, and although some methods have been 

tested, only limited studies have been conducted on cross-section optimization [6]. 
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Besides, at present, the majority of studies related to cross-section optimization have 

focused on the shape optimization of the cross-section in which the shape of the 

boundary of the cross-section is considered as the design variable. Whereas, 

optimization studies on cross-section topology are not commonly found in the 

literature. Deciding the location and direction of stiffeners in a closed beam section is 

a critical problem for the design of a beam of a cross-section. The location of the 

stiffener in a closed beam section cannot be found by the shape optimization method, 

but it is possible by topology optimization of beam cross-section. 

1.1. Objective of the Study 

The objective of this study is to propose a novel optimization method to find the 

optimum topology of a Vlasov beam cross-section under static combined loading.  

1.2. Structure of the Thesis 

There are six chapters in this thesis. In Chapter 1, general information about topology 

optimization of the structure is provided. The motivation behind this study and a 

literature survey are provided in this chapter. 

In the second chapter, similar studies related to cross-section optimization are 

investigated. Also, the current methodologies used for optimization are summarized 

in this chapter. 

In the third chapter, the finite element formulation of Vlasov beams is derived and 

used for obtaining the load distribution along the axial direction of a Vlasov beam. 

For a given loading, normal force, lateral forces, bending moments, uniform torque, 

non-uniform torque, and bi-moments on each point on the beam are determined via 

specified finite element formulations. Also, a 2D finite element formulation for a 

cross-section analysis is derived in order to determine the cross-section properties and 

stresses on the point in question in the cross-section. Explanations of these 

formulations are provided in said chapter. 
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In Chapter 4, a detailed explanation of the optimization methodology used in this study 

is given. The optimization procedure is explained from the introduction of the problem 

to the termination of the optimization process. 

Sample problems are solved by using the presented optimization methodology in this 

work. Results are given and comparisons are made in Chapter 5. 

In Chapter 6, a summary of the study and a discussion about the results are given. 

Moreover, comments on future work are noted. 
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CHAPTER 2  

 

2. LITERATURE SURVEY 

 

In this chapter, a brief explanation of previous studies found in the literature related to 

cross-section optimization is provided. Many works can be found in the literature 

addressing cross-section optimization. While some studies focus on the shape 

optimization of a certain section, others give importance to the material distribution 

within the section using conventional heuristic methods. 

A study conducted by Kim and Kim [7] is the earliest attempt to optimize beam cross-

sections topologically. They developed a section topology optimization technique for 

elastic bodies instead of directly for beam structures [8]–[12].  The formulation of this 

method was given and applications on various practical problems were presented. It 

is proposed in said study to find the optimal cross-section configuration by minimizing 

the objective function which is a weighted sum of bending and torsional rigidities. The 

beam bending rigidity is based on the classical beam theory, on the other hand, the St. 

Venant torsion theory is employed for torsional rigidity. In their study, the effect of 

non-uniform torsion due to restrained warping on the cross-section is not considered 

in the optimization. 

According to Liu et al. [13], beam cross-section properties have to be determined 

based on proper theory in the optimization process. The Euler-Bernoulli or the 

Timoshenko theory can be applied for the calculation of bending rigidity due to the 

assumption that a cross-section maintains in the same plane during deformation. 

Nevertheless, these theories are not valid for the determination of optimized cross-

section properties if the shape of the cross-section is non-circular. As a result, non-

circular types of cross-sections suffer from warping, out-of-plane displacements, and 

deformation couplings. In order to obtain the optimum topological configuration for a 
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cross-section, the material distribution is changed in the design domain [8], [10], [14]–

[16]. Since the distribution may not be homogenous, the authors formulated the 

optimization algorithm based on anisotropic beam theory, including cross-section 

warping and deformation couplings, for minimizing the compliance of the beam. 

Zuberi et al. [6] developed a topology optimization method which includes an 

extrusion manufacturing constraint. They aimed to determine the optimal topology of 

a beam cross-section under the action of different loading and boundary conditions 

(Figure 2.1). Load distribution varies along a section for different beam systems such 

as in modern bridges, crane girders, railway bridge girders rail tracks, etc. These types 

of systems need to have a constant cross-section along the axial direction. Classical 

beam theory linear finite element models are inadequate in investigating the effect of 

the load location and configuration on a cross-section topology as this theory is based 

on the assumption that the load is uniformly distributed along the section. On the other 

hand, when the topology optimization problems of beams requiring a constant cross-

section are solved by using a solid finite element model the results give lattice or more 

complicated topologies of girder along the cross-section of the beam. Therefore, the 

authors suggest the extrusion constraint topology optimization method. The developed 

method was tested on the 3D model of the OptiStruct and Tosca for several loading 

and boundary conditions in order to find the optimal cross-section topologies. 

Compliance minimization is the focus of their optimization method; it is aimed to have 

uniform compliance history and convergent solutions at the end of the optimization 

process. 

 

Figure 2.1. Representative Model of Beam and Different Load Cases [6]  
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In the study performed by Andelic et al. [17], optimization of a thin-walled open 

section Z beam subjected to bending and constrained torsion was addressed. The 

authors used the area of the cross section as an objective function for the “Z” shape 

beam. The stress of the type section is the stress constraint of their study and the 

Lagrange multiplier method is utilized to obtain the optimum dimensions of the Z 

beam. This study, therefore, addresses the problem of shape optimization. Similarly, 

in literature, the optimizations of different types of cross sections such as an I-section-

section or a triangular section are performed with the Lagrange multiplier method. 

The problem of finding an optimum cross-section of a beam subjected to various 

loading conditions is solved by using a Genetic Algorithm (GA) in the work conducted 

by Griffiths and Miles [18]. Their study seeks to explore the efficiency and 

effectiveness of a GA without direct guidance on how to solve the problem, especially 

for difficult design tasks. 

Evolutionary Structural Optimization allows the use of different criteria. In the 

research presented by Proos [19] the moment of inertia is selected as the criterion and 

ESO is applied to maximize inertia. Unlike the material property of stiffness, the area 

moment of inertia has geometric properties. This means that the analysis of the inertia 

optimization of the cross-section does not depend on the loads on the beam or the 

constraints. This is the major differentiating aspect of the process introduced by Proos 

[19]. His process starts with the calculation of the moment of inertia of each element 

in the finite element model and the calculated MOI values are considered as the 

sensitivity of the element. These sensitivity numbers are then used by the optimization 

method to determine whether their respective elements are to be removed. 
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CHAPTER 3  

 

3. FORMULATION 

 

3.1. Determination of Stress Resultants on a Cross Section 

In this study, optimization of the beam cross-section is performed by using stresses on 

the cross-section. In order to calculate stresses on the section, it is needed to know 

force and moment distribution on the beam. This chapter explains the methodology 

for determining the stress resultants at a given section. 

 

Figure 3.1. Coordinate System of a Beam  

The governing equations of a beam are: 

𝐸𝐴(𝑢′′ − 𝛼∆𝑇′) = −𝑓𝑥 (3.1a) 

𝐸(𝐼𝑦𝐼𝑧 − 𝐼𝑦𝑧
2)𝑣iv = 𝐼𝑦𝑓𝑦 + 𝐼𝑦𝑧𝑓𝑧 (3.1b) 

𝐸(𝐼𝑦𝐼𝑧 − 𝐼𝑦𝑧
2)𝑤iv = 𝐼𝑧𝑓𝑧 + 𝐼𝑦𝑧𝑓𝑦 (3.1c) 

𝐸𝐼𝑤𝜃ıv − 𝐺𝐽𝜃′′ = 𝑚𝑥 (3.1d) 
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where 𝜃 is the angle of twist, 𝑢, 𝑣, 𝑤 and 𝑓𝑥, 𝑓𝑦, 𝑓𝑧 are the displacements and the 

intensities of distributed forces in 𝑥, 𝑦, 𝑧 directions, respectively, 𝑚𝑥 is the intensity 

of the distributed torque, ∆𝑇 is the thermal force, 𝐸 is the elasticity of modulus, 𝐺 is 

the shear modulus, 𝛼 is the thermal expansion coefficient of the beam material, 𝐴 is 

the area, 𝐼𝑦, 𝐼𝑧, 𝐼𝑦𝑧 are the second moment of area, 𝐽 is the torsional constant and 𝐼𝑤 is 

the warping constant of the cross section. 

Then, the stress resultants in a cross section are 

𝐹𝑥 = 𝐸𝐴(𝑢′ − 𝛼∆𝑇) (3.2a) 

𝑀𝑦 = 𝐸𝐼𝑦𝑧𝑣
′′ − 𝐸𝐼𝑦𝑤′′ (3.2b) 

𝑀𝑧 = 𝐸𝐼𝑧𝑣
′′ − 𝐸𝐼𝑦𝑧𝑤

′′ (3.2c) 

𝑀𝑤 = 𝐸𝐼𝑤𝜃′′ (3.2d) 

𝑉𝑦 = 𝐸𝐼𝑦𝑧𝑤
′′′ − 𝐸𝐼𝑧𝑣

′′′ (3.2e) 

𝑉𝑧 = 𝐸𝐼𝑦𝑧𝑣
′′′ − 𝐸𝐼𝑦𝑤′′′ (3.2f) 

𝑇𝑠 = 𝐺𝐽𝜃′ (3.2g) 

𝑇𝑤 = −𝐸𝐼𝑤𝜃′′′ (3.2h) 

𝑇 = 𝑇𝑠 + 𝑇𝑤 (3.2i) 

where 𝐹𝑥 is the axial force, 𝑉𝑦, 𝑉𝑧 are the shear forces, 𝑀𝑦, 𝑀𝑧 are the bending moments, 

𝑀𝑤 is the warping moment(bi-moment), 𝑇𝑠 is the St.Venant torque, 𝑇𝑤 is the warping 

torque. 𝑇 is the total torque acting on the cross section. The resultants are calculated 

either by solving the governing equations or by using a computational method. One 

of the choices in computational methods is the finite elements analysis. The resultants 

𝐹𝑥 , 𝑀𝑦, 𝑀𝑧, 𝑉𝑦, 𝑉𝑧 are obtained by using the standard bar and Euler-Bernoulli beam 

finite elements. The resultants 𝑇𝑠, 𝑇𝑤, 𝑀𝑤 can be obtained by a torsion finite element. 
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Torsion Finite Element 

The weak form of the torsion equation is 

∫𝑔(𝐸𝐼𝑤 𝜃iv − 𝐺𝐽𝜃′′ − 𝑚𝑥)𝑑𝑥 = 0  

Where 𝑔(𝑥) is a test function. Using integration by parts, the weak form can be 

expressed as: 

𝐸𝐼𝑤 ∫𝑔′′𝜃′′𝑑𝑥 +𝐺𝐽 ∫𝑔′𝜃′𝑑𝑥 = (𝑔𝑇)𝐵 + (𝑔′𝑀𝑤)𝐵 + ∫𝑔𝑚𝑥𝑑𝑥  

The subscript 𝐵 indicates the boundaries. Consider a finite element of length 𝐿 with 

node-𝑎 at 𝑥 = 0 and node-𝑏 at 𝑥 = 𝐿 as  

The twist angle 𝜃 can be assumed as 

𝜃 = 𝜴𝜹  

 

Where, 

𝜴 =
1

𝐿3
[(𝐿 + 2𝑥)(𝐿 − 𝑥)2 𝐿𝑥(𝐿 − 𝑥)2 𝑥2(3𝐿 − 2𝑥) 𝐿𝑥2(𝑥 − 𝐿)]  

 

And  

𝜹 = [

𝜃𝑎

𝜃𝑎
′

𝜃𝑏

𝜃𝑏
′

]  

Let 𝑮 be the vector of test functions. Using Galerkin method in which 𝑮 = 𝜴, the 

weak form can be written as 

𝐸𝐼𝑤 ∫𝜴′′𝑻𝜴′′𝜹𝑑𝑥 + 𝐺𝐽 ∫𝜴′𝑻𝜴′𝜹𝑑𝑥 = (𝜴𝑻𝑇)𝐵 + (𝜴′𝑻𝑀𝑤)𝐵 + ∫𝜴𝑻𝑚𝑥𝑑𝑥  
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Let 

𝒌𝒘 = ∫𝜴′′𝑻𝜴′′𝜹𝑑𝑥 (3.3a) 

𝒌𝒔 = ∫𝜴′𝑻𝜴′𝜹𝑑𝑥 (3.3b) 

𝒇 = (𝜴𝑻𝑇)𝐵 + (𝜴′𝑻𝑀𝑤)𝐵 + ∫𝜴𝑻𝑚𝑥𝑑𝑥 (3.3c) 

 

Then, the element level equilibrium equation can be expressed as 

[𝐸𝐼𝑤𝒌𝒘 + 𝐺𝐽𝒌𝒔]𝜹 = 𝒇  

 

Assembling the elements and imposing the boundary conditions, the nodal values of 

the twist angle 𝜃 can be determined. Then, the resultants 𝑇𝑠, 𝑇𝑤, 𝑀𝑤 are computed as 

𝑇𝑠 = 𝐺𝐽𝜴′𝜹 (3.4a) 

𝑇𝑤 = −𝐸𝐼𝑤𝜴′′′𝜹 (3.4b) 

𝑀𝑤 = 𝐸𝐼𝑤𝜴′′𝜹 (3.4c) 
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3.2. Calculation of Stresses over a Cross section 

In this thesis, the normal and shear stresses acting on a cross section are determined 

by using the methodology in the study of Erdoğan [20]. This methodology has been 

modified for four node square elements, because it is easy to formulate and implement 

to the topology optimization method. Also, displacements and element geometry are 

specified by the same shape function. 

3.2.1. Pure Bending and Normal Force 

The section is discretized by N number of 4-node square finite elements having side 

length “a”. All elements are firstly located in the arbitrarily selected initial coordinate 

system. After finding the centroid, the node locations are transferred to the centroid 

coordinate system (𝐶𝑌𝑍). 

 

Figure 3.2. Four node Square Element of Cross Section 

Total area of the section is found as 

𝐴 = N𝑎2 (3.5) 

 

The second moment of areas of a section  

𝐼𝑌 = ∑ 𝑎2 (
𝑎2

12
+ 𝑍𝑛

2)

𝑁

𝑛=1

 (3.6a) 
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𝐼𝑍 = ∑ 𝑎2 (
𝑎2

12
+ 𝑌𝑛

2)

𝑁

𝑛=1

 (3.6b) 

𝐼𝑌𝑍 = − ∑ 𝑎2𝑌𝑛𝑍𝑛

𝑁

𝑛=1

 (3.6c) 

 

Then, the normal stress at the centroid of the nth element due to axial force (𝐹𝑥) and 

bending moments (𝑀𝑌, 𝑀𝑍)  

(𝜎𝑥)𝑒 =
𝐹𝑥

𝐴
+

1

𝐼𝑌𝐼𝑍 − 𝐼𝑌𝑍
2
[𝑀𝑌(𝑍𝑛𝐼𝑍 + 𝑌𝑛𝐼𝑌𝑍) − 𝑀𝑍(𝑌𝑛𝐼𝑌 + 𝑍𝑛𝐼𝑌𝑍)] (3.7) 

 

3.2.2. Transverse Loads 

This section deals with the shear stresses resulting from transverse loadings. Finite 

element analysis is used to compute the shear stresses. Also, the location of shear 

center is discussed in this chapter. 

Suppose that a cross-section in which Bo is external boundary and B1, B2, B3 are 

internal boundaries; transverse loads 𝑉𝑦and Vz are applied at the shear center (𝑂) so 

that no twisting moment occurs. 

 

Figure 3.3. Representative View of external and internal Boundaries of cross-section 
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The first derivatives of the moments give the transverse loads as follows: 

𝑑𝑀𝑦

𝑑𝑥
= 𝑉𝑧    

𝑑𝑀𝑧

𝑑𝑥
= −𝑉𝑦 (3.8) 

 

Saint Venant assumed that the stresses 𝜎𝑦, 𝜎𝑧 and 𝜏𝑦𝑧 are negligibly small, leaving 𝜎𝑥, 

𝜏𝑥𝑦 and 𝜏𝑥𝑧 as unknown stresses. The normal stress 𝜎𝑥 for a beam undergoing pure 

bending is 

𝜎𝑥 =
1

𝐼𝑦𝐼𝑧 − 𝐼𝑦𝑧
2 [𝑀𝑦(𝐼𝑧𝑍 + 𝐼𝑦𝑧𝑌) − 𝑀𝑧(𝐼𝑦𝑌 + 𝐼𝑦𝑧𝑍)]  

 

With the assumption of that there are no body forces, the equation of equilibrium 

becomes 

𝜕𝜏𝑥𝑦

𝜕𝑦
+

𝜕𝜏𝑥𝑧

𝜕𝑧
= −

𝜕𝜎𝑥

𝜕𝑥
= −𝛽 (3.9) 

 

Where, 

𝛽 =
1

𝐼𝑦𝐼𝑧 − 𝐼𝑦𝑧
2 [(𝐼𝑦𝑉𝑦 + 𝐼𝑦𝑧𝑉𝑧) (𝐼𝑧𝑉𝑧 + 𝐼𝑦𝑧𝑉𝑦)] [ 

𝑌𝑛 + 𝑦
𝑍𝑛 + 𝑧

 ]  

 

Let 𝜑 be a strain function such that 

𝜏𝑥𝑦 =
𝜕𝜑

𝜕𝑦
 , 𝜏𝑥𝑧 =

𝜕𝜑

𝜕𝑧
   

 

Then, the equilibrium equation  is rewritten as  

∇2𝜑 + 𝛽 = 0 (3.10) 
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Next, multiplying governing equation  by an arbitrary test function 𝑔 and integrating 

over the entire domain using divergence theorem, the weak form is obtained.  

∫𝑔 ∇⃗⃗ 𝜑 ∙ 𝑛⃗ 𝑑𝑠 − ∫ ∇⃗⃗ 𝑔 ∙ ∇⃗⃗ 𝜑𝑑𝐴

𝐴

= − ∫𝑔𝛽𝑑𝐴

𝐴𝐵

  

 

Due to the boundary condition ∇⃗⃗ 𝜑 ∙  𝑛⃗ = 0 the first term of the left side is zero and the 

weak form is rewritten as follows: 

∫ ∇⃗⃗ 𝑔 ∙ ∇⃗⃗ 𝜑𝑑𝐴 = ∫𝑔𝛽𝑑𝐴

𝐴𝐴

  

The function 𝜑 is approximated over each element by 

𝝋 = 𝑵(𝒚, 𝒛)𝝋𝒆 = [𝑁1 𝑁2 𝑁3 𝑁4] [ 

𝜑1

𝜑2

𝜑3

𝜑4

 ]  

 

Where 𝜑𝑒 are the values of  𝜑 at the nodes of element 𝑒. 𝑵 is the row vector of 

shape function for four node square element. 

𝑵 = [𝑁1 𝑁2 𝑁3 𝑁4]  

 

The two dimensional shape functions [21] are 

𝑁1 =
1

4𝑎2
(𝑎 − 2𝑦)(𝑎 − 2𝑧) 

 

𝑁2 =
1

4𝑎2
(𝑎 + 2𝑦)(𝑎 − 2𝑧) 

𝑁3 =
1

4𝑎2
(𝑎 + 2𝑦)(𝑎 + 2𝑧) 

𝑁4 =
1

4𝑎2
(𝑎 − 2𝑦)(𝑎 + 2𝑧) 
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Then, the gradient of shape matrix is obtained as 

𝑩 = ∇⃗⃗ 𝑵 =

[
 
 
 
𝜕𝑵

𝜕𝑦
𝜕𝑵

𝜕𝑧 ]
 
 
 

= [
2𝑧 − 𝑎 𝑎 − 2𝑧 𝑎 + 2𝑧 −𝑎 − 2𝑧
2𝑦 − 𝑎 −𝑎 − 2𝑦 𝑎 + 2𝑦 𝑎 − 2𝑦

 ]  

 

Similarly assume test function 𝑔 as 𝒈 = 𝑁(𝑦, 𝑧)𝑔𝑒.Then, the gradients of the 

functions are written as 

∇⃗⃗ 𝝋 = [𝑩][𝝋] and ∇⃗⃗ 𝒈 = [𝑩][𝒈]  

 

The weak form of the governing equations becomes 

∫𝑩𝑻𝑩 𝝋𝑑𝐴 = ∫𝑵𝑻𝛽𝑑𝐴

𝐴𝐴

 (3.11) 

 

The stiffness matrix of an element (𝑘𝑒) is  

𝒌𝒆 = ∫𝑩𝑻𝑩 𝑑𝐴

𝐴

=
1

6
[

4 −1 −2 1
−1 4 −1 −2
−2 −1 4 −1
−1 −2 −1 4

]. (3.12) 

 

The element force vector (𝑓𝑒) is 

𝒇𝒆 = ∫𝑵𝑻𝛽𝑑𝐴

𝐴

=
𝑎2

24(𝐼𝑦𝐼𝑧 − 𝐼𝑦𝑧
2)

[

6𝑌𝑛 − 𝑎 6𝑍𝑛 − 𝑎
6𝑌𝑛 + 𝑎 6𝑍𝑛 − 𝑎
6𝑌𝑛 + 𝑎 6𝑍𝑛 + 𝑎
6𝑌𝑛 − 𝑎 6𝑍𝑛 + 𝑎

] [
𝐼𝑦𝑉𝑦 + 𝐼𝑦𝑧𝑉𝑧
𝐼𝑧𝑉𝑧 + 𝐼𝑦𝑧𝑉𝑦

] (3.13) 
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The global stiffness and force matrices are constituted to find the value of 𝜑 on each 

node by solving the below equation. 

𝝋 = 𝑲−1𝑭  

 

Then, shear stresses at the centroid of the element due to the shear forces are 

[
𝜏𝑥𝑦

𝜏𝑥𝑧
]
𝑒

=
1

2𝑎
[
−1 1 1 −1
−1 −1 1 1

 ] [ 

𝜑1

𝜑2

𝜑3

𝜑4

 ] (3.14) 

 

The moment created by 𝑉𝑦 and 𝑉𝑧 about the centroid can be calculated from the shear 

stresses such that, 

𝑀𝑥
𝑒 = ∫(𝜏𝑥𝑧𝑌 − 𝜏𝑥𝑦𝑍)𝑑𝐴

𝐴

= ∫[−𝑍 𝑌] [
𝜏𝑥𝑦

𝜏𝑥𝑧
] 𝑑𝐴

𝐴

  

 

When the above equation is solved for the element 𝑒 of the moment, and summed for 

all elements in the domain it becomes 

𝑀𝑥 =
𝑎

2
∑ 𝑌𝑛(−𝜑1 − 𝜑2 + 𝜑3 + 𝜑4) + 𝑍𝑛(𝜑1 − 𝜑2 − 𝜑3 + 𝜑4)

𝑁

𝑛=1

  

 

Then the 𝑌 coordinate of shear center (𝑌𝑜) and the 𝑍 coordinate of shear center (𝑍𝑜) 

are calculated as 

𝑌𝑜 = 𝑀𝑥 for 𝑉𝑦 = 0 and 𝑉𝑧 = 1 (3.15a) 

𝑍𝑜 = −𝑀𝑥 for 𝑉𝑦 = 1 and 𝑉𝑧 = 0 (3.15b) 
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3.2.3. Uniform Torque (Unrestrained Warping) 

In pure torsion, the location of the axis of twist is of no consequence when calculating 

torsional stresses. The angle of twist of a section along the 𝑥-axis is 𝜃. For a specific 

point A on the cross-section, the displacement in the y and z directions in the centroid 

coordinates axis is approximated by the following equations: 

𝑢𝑦 ≈ −𝑧𝑥𝜃′ 
 

𝑢𝑧 ≈ 𝑦𝑥𝜃′ 

 

where 𝜃′is the angle of  twist per unit length and is constant over the cross section. 

𝑥𝜃′ is the rotation of a section of the cross-section at a distance 𝑥. Coulomb’s work 

shows that beams of a circular cross-section under pure torsion will only rotate while 

having no displacement axially (warping). For all non-circular cross sections, 

experimental results demonstrate that an axial displacement occurs and that this 

displacement is relatively constant throughout the beam [5]. This implies that axial 

displacement caused by torsion is governed by some function that is dependent on the 

𝑦 and 𝑧 directions but independent of the axial (𝑥) direction. As such, the axial 

displacement 𝑢𝑥 is proportional to the angle of twist per unit length, and a function 

describing the out of plane warping of the cross-section, 𝜔(𝑦, 𝑧).The unknown 

function is referred to as the warping function, defined as:  

𝑢𝑥 = 𝜃′𝜔(𝑦, 𝑧)  

 

Strain Displacement Relation 

𝛾𝑥𝑦 =
𝜕𝑢𝑦

𝜕𝑥
+

𝜕𝑢𝑥

𝜕𝑦
= 𝜃′ (−𝑧 +

𝜕𝜔

𝜕𝑦
)  (3.16a) 

𝛾𝑥𝑧 =
𝜕𝑢𝑧

𝜕𝑥
+

𝜕𝑢𝑥

𝜕𝑧
= 𝜃′ (𝑦 +

𝜕𝜔

𝜕𝑧
) (3.16b) 
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Stress-Strain Relation 

𝜏𝑥𝑦 = 𝐺𝛾𝑥𝑦 = 𝐺𝜃′ (
𝜕𝜔

𝜕𝑦
− 𝑧) (3.17a) 

𝜏𝑥𝑧 = 𝐺𝛾𝑥𝑧 = 𝐺𝜃′ (
𝜕𝜔

𝜕𝑧
+ 𝑦) (3.17b) 

 

The equations of equilibrium under no body force is 

𝜕𝜏𝑥𝑦

𝜕𝑦
+

𝜕𝜏𝑥𝑧

𝜕𝑧
= 0 (3.18) 

 

The equilibrium equation can be rewritten as: 

𝜕2𝜔

𝜕𝑦2
+

𝜕2𝜔

𝜕𝑧2
= 0  

 

As in the previous case the Cauchy’s relation must be satisfied. Such that,  

𝜕𝜔

𝜕𝑛
= ∇⃗⃗ ∙ 𝑛⃗ = 𝜆  

 

where, 

 𝜆 = 𝑧𝑛𝑦 − 𝑦𝑛𝑧 

The above relation must be satisfied along all boundaries. 

 

The weak form of the equilibrium equation is 

∫ ∇⃗⃗ 𝑔 ∙ ∇⃗⃗ 𝜔𝑑𝐴 = ∫𝑔𝜆𝑑𝑠

𝐵𝐴

 (3.19) 
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The integral on the left side of the above equation will lead to the elemental stiffness 

matrix. The function 𝜔 is approximated over each rectangular element by 

 𝝎 = 𝑵(𝒚, 𝒛)𝝎𝒆 

The same shape functions as in paragraph 3.2.2 are used. Therefore, the same stiffness 

matrix for the element occurs.  

The element force vector due to the boundary condition is formulated as 

𝒇𝒆 = ∫𝑵𝑻 ∇⃗⃗  ⃗𝝎 ∙ 𝒏⃗⃗ 𝑑𝑠

𝐵

  

 

Let the element shown below  be on the boundary. 

 

 

Figure 3.4. Four Node square Element Boundaries and Normal Vectors 
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For edge 1-2, 

{𝒇𝒆}𝟏−𝟐 = ∫
1

4𝑎2
 𝑵𝟏−𝟐

𝑻 (∇⃗⃗ 𝝎)
1−2

∙ (𝒏⃗⃗ )1−2𝑑𝑠

𝑎

0

  

 

When the integration is performed the force matrix yields for edge1-2 the following: 

{𝒇𝒆}𝟏−𝟐 = 𝛼𝑏
𝑎

12
[ 

6𝑌𝑛 − 𝑎
6𝑌𝑛 + 𝑎

0
0

 ] , 𝛼𝑏 =  

 

When the same calculations are made for the remaining edges, the corresponding force 

matrices are built up as follows: 

{𝒇𝒆}𝟐−𝟑 = 𝛼𝑏
𝑎

12
[ 

0
6𝑍𝑛 − 𝑎
6𝑍𝑛 + 𝑎

0

 ], 𝛼𝑏 =  

 {𝒇𝒆}𝟑−𝟒 = 𝛼𝑏
𝑎

12
[ 

0
0

−6𝑌𝑛 − 𝑎
−6𝑌𝑛 + 𝑎

 ] , 𝛼𝑏 =  

{𝒇𝒆}𝟒−𝟏 = 𝛼𝑏
𝑎

12
[ 

−6𝑍𝑛 + 𝑎
0
0

−6𝑍𝑛 + 𝑎

 ], 𝛼𝑏 =  

 

The total force matrix of the element is the summation of these four matrices. Such 

that, 

𝒇𝒆 = {𝒇𝒆}𝟏−𝟐 + {𝒇𝒆}𝟐−𝟑 + {𝒇𝒆}𝟑−𝟒 + {𝒇𝒆}𝟒−𝟏  

 

0 ,  if edge 1-2 is not on the boundary 

1 ,  if edge 1-2 is on the boundary 

0 ,  if edge 2-3 is not on the boundary 

1 ,  if edge 2-3 is on the boundary 

0 ,  if edge 3-4 is not on the boundary 

1 ,  if edge 3-4 is on the boundary 

0 ,  if edge 4-1 is not on the boundary 

1 ,  if edge 4-1 is on the boundary 
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Then, the warping function values at the nodes of the element with respect to the 

centroid are found as: 

𝝎 = 𝑲−1𝑭  

 

The torsional constant is given by [22] 

𝐽 = 𝐼𝑌 + 𝐼𝑍 − 𝑭𝑻𝝎 (3.20) 

 

The shear stresses at the centroid of the element for a given uniform torque (𝑇𝑠) are 

calculated as 

[
𝜏𝑥𝑦

𝜏𝑥𝑧
]
𝑒

=
𝑇𝑠

𝐽
 

(

 
 

(
1

2𝑎
) [

−1 1 1 −1
−1 −1 1 1

 ] [ 

𝜔1

𝜔2

𝜔3

𝜔4

 ] + [
−𝑍𝑛

𝑌𝑛
]

)

 
 

 (3.21) 

 

3.2.4. Non-Uniform Torque (Restrained Warping) 

For restrained warping, the warping function with respect to the shear center (𝜔∗) is 

given in [22] as 

𝜔∗ = 𝜔 − 𝑍𝑜𝑌 + 𝑌𝑜𝑍 −
𝑄𝜔

𝐴
 (3.22) 

 

The warping function value for each node is represented as 

𝝎∗ = 𝑵(𝒚, 𝒛)(𝝎𝒆)∗  
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Then, the first moment of the warping function for a given section is 

𝑄𝜔 = ∑
(𝜔1 + 𝜔2 + 𝜔3 + 𝜔4)

4𝑎2

𝑁

𝑛=1

  

 

The warping constant (𝐼𝑤) with respect to the shear center is defined as the second 

moment of warping [22]. Such that, 

𝐼𝑤  = ∫(𝜔∗)2 𝑑𝐴
𝐴

  

 

The same shape function is used, and then the warping constant yields  

𝐼𝑤 =
𝑎2

9
(𝜔1

∗2 + 𝜔2
∗2 + 𝜔3

∗2 + 𝜔4
∗2 + 𝜔1

∗𝜔2
∗ + 𝜔2

∗𝜔3
∗ +

𝜔3
∗𝜔4

∗ + 𝜔4
∗𝜔1

∗) +
𝑎2

18
(𝜔1

∗𝜔3
∗ + 𝜔2

∗𝜔4
∗)  

(3.23) 

 

Let the shear stresses due to non-uniform torsion be 𝜏̃𝑥𝑦and 𝜏̃𝑥𝑧, and the axial stress 

due to the effect of allowing the axial displacement be 𝜎𝑥. Where, 

𝜎𝑥  = 𝐸𝜖𝑥 = 𝐸
𝜕𝑢𝑥

𝜕𝑥
= 𝐸𝜔∗

𝜕2𝜃

𝜕𝑥2
  

 

By choosing a strain function 𝜙 such  that the stress states are: 

𝜏̃𝑥𝑦  = 𝐸𝜃′′′
𝜕𝜙

𝜕𝑦
  

𝜏̃𝑥𝑦  = 𝐸𝜃′′′
𝜕𝜙

𝜕𝑧
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The equilibrium equation becomes: 

𝜕𝜏̃𝑥𝑦 

𝜕𝑦
+

𝜕𝜏̃𝑥𝑧 

𝜕𝑧
= −

𝜕𝜎𝑥

𝜕𝑥
= −𝐸𝜔∗𝜃′′′  

 

By substituting the stress equations into the equilibrium equation, we get 

∇2𝜙 + 𝜔∗ = 0 (3.24) 

 

Cauchy’s relation is the same as the case in transverse load; the finite element 

methodology is also the same. Therefore, the weak form becomes: 

∫ ∇⃗⃗ 𝑔 ∙ ∇⃗⃗ 𝜙𝑑𝐴 = ∫𝑔𝜔∗𝑑𝐴

𝐴𝐴

 (3.25) 

 

Stiffness matrix does not change because the element shape matrices are identical. 

The elemental force matrix is 

𝒇𝒆 = ∫𝑵𝑻𝝎∗𝑑𝐴

𝐴

=
𝑎2

36
[

4 2 1 2
2 4 2 1
1 2 4 2
2 1 2 4

] [ 

𝜔1
∗

𝜔2
∗

𝜔3
∗

𝜔4
∗

 ] (3.26) 

 

Then, strain function of each node is calculated by solving the equation below. 

𝝓 = 𝑲−1𝑭  

 

The shear stresses due to unrestrained warping are 
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[
𝜏̃𝑥𝑦

𝜏̃𝑥𝑧
] = 𝐸𝜃′′′

[
 
 
 
𝜕𝝓

𝜕𝑦
𝜕𝝓

𝜕𝑧 ]
 
 
 

= 𝐸𝜃′′′𝑩𝝓𝒆 = −(
𝑇𝜔

2𝑎𝐼𝑤
) [

−1 1 1 −1
−1 −1 1 1

 ] [ 

𝜙1

𝜙2

𝜙3

𝜙4

 ] (3.27) 

 

Bi-moment is defined in a fashion similar to the moment definition as 

𝑀𝜔 = ∫𝜔∗𝜎𝑥𝑑𝐴 = 𝐸
𝜕2𝜃

𝜕𝑥2
𝐼𝑤  

 

The normal stresses at the centroid of the element due to warping are expressed as 

(𝜎𝑥 )𝑒 =
𝑀𝜔

𝐼𝑤
(
𝜔1

∗ + 𝜔2
∗ + 𝜔3

∗ + 𝜔4
∗

4
) (3.28) 

 

The stresses are found at the centroid of the all elements for different loading 

conditions. The summation of the corresponding stresses gives the total value of the 

individual stress state. 

(𝜎𝑥)𝑒 = (𝜎𝑥)𝑃𝑢𝑟𝑒𝑀𝑜𝑚𝑒𝑛𝑡 + (𝜎𝑥)𝑁𝑜𝑟𝑚𝑎𝑙𝐹𝑜𝑟𝑐𝑒 + (𝜎𝑥)𝑁𝑜𝑛𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑇𝑜𝑟𝑠𝑖𝑜𝑛 (3.29a) 

  

[
𝜏𝑥𝑦

𝜏𝑥𝑧
]
𝑒

= [
𝜏𝑥𝑦

𝜏𝑥𝑧
]
𝑇𝑟𝑎𝑛𝑠𝑣𝑒𝑟𝑠𝑒

+ [
𝜏𝑥𝑦

𝜏𝑥𝑧
]
𝑈𝑛𝑖𝑓𝑜𝑟 𝑇𝑜𝑟𝑠𝑖𝑜𝑛

+ [
𝜏̃𝑥𝑦

𝜏̃𝑥𝑧
]
𝑁𝑜𝑛𝑈𝑛𝑖𝑓𝑜𝑟𝑚 𝑇𝑜𝑟𝑠𝑖𝑜𝑛

 (3.29b) 

 

These stresses are converted to Von Mises stresses at the centroid of the elements as 

follows: 

(𝜎𝑉𝑀)𝑒 = √(𝜎𝑥)𝑒
2
+ 3((𝜏𝑥𝑦)

𝑒

2
+ (𝜏𝑥𝑧)𝑒

2
) (3.30) 
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CHAPTER 4  

 

4. OPTIMIZATION METHODOLOGY 

 

In this chapter, the methodology of the cross-section optimization process is 

explained. The main purpose of this study is to generate an algorithm to find the 

optimum topology of a cross-section with minimum weight that satisfies the stress 

constraints. It is to be obtained by changing the material distribution within the cross-

section. During material distribution, it is needed to alter material status, i.e. from solid 

to void or from void to solid. In order to make such operations, a method, hereby 

proposed and named as the Evolutionary Growth Algorithm, has been developed as 

an optimization strategy. 

The developed method, the Evolutionary Growth Algorithm, can be considered as a 

combination of the AESO and ESO methods, which were both explained in detail in 

the work conducted by Querin et al.[5]. In the Evolutionary Growth Algorithm, void 

elements near the highly stressed region are added and solid elements having low 

stress are removed starting from an initial guess. 

The Evolutionary Growth Algorithm can be considered as a sort of Bi-directional 

Evolutionary Structural Optimization (BESO). It permits not only material removal, 

but also material addition at the same time, like BESO. In the BESO method, element 

addition and removal are decided according to the sensitivity number of the element 

and sensitivity number can be based on either the stress level or strain energy level of 

an element. However, it is noted that either selecting the stress level or strain energy 

level as the sensitivity number often gives similar topologies [4]. The Evolutionary 

Growth Algorithm, therefore, uses only Von Mises to define element sensitivity. 

For most of the topology optimization problem, the design domain is the subdivided 

sections of the domain, which is an element of the domain. The design variable is the 



 

 

 

28 

 

property value of the element. Depending on the optimization method, the material 

property value can be discrete or continuous. In hard kill BESO method design, the 

variable can be only zero (0) or one (1), which defines the material presence. Whereas, 

in topology optimization methods like SIMP (which uses continuous intermediate 

element properties) and soft-kill BESO (which uses discrete intermediate element 

properties) use intermediate elements. Elements have a property value between zero 

and one. This means elements are not completely black or white, but they can be gray 

with respect to element properties.  

In this thesis, the numbers 1 solid or 0 void, only denote the element property value. 

Hence, the element itself is the design variable of the optimization method used in this 

study. As an example, a simple variable denotation in the virtual cross section domain 

is given in Figure 4.1. The entire domain is divided by a 6x6 mesh. Vector “X” means 

that the design variables can be expressed as the matrix right of the figure. 

 

Figure 4.1. Example of Design Variable and Corresponding Matrix 

Mean compliance minimization (stiffness maximization) or weight minimization can 

be selected as an objective function. In this study, the weight or area of the cross-

section is minimized during optimization. 

A predefined volume fraction is the convergence criteria of the current ESO/BESO 

method with von Mises stress objectives and stiffness optimization problems. Volume 

fraction or area ratio are not physical constraints of the structure and present different 

topologies depending on these values [23]. Therefore, for the Von Mises stress 
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objective, the maximum allowable stress limitation of the structure is used as a 

convergence criterion in this study.  

The procedure defining the evolutionary optimization method used in this work is 

explained in the subsequent portion of this chapter. 

4.1. Introduction of the Problem 

In this step, the material properties of the beam and locations of boundaries and forces 

are defined. The maximum available domain for the cross-section in question must 

also be specified in this step. 

4.2. Definition of Design Constraints and Loading Points 

Due to reasons related to manufacturing and efficiency, a structure with a constant 

cross-section is widely preferred in actual designs. Therefore, in this study, beams are 

assumed to have constant cross sections. 

 In some situations a structure with a symmetrical cross section is requested, which 

affects the optimization process. For this reason, this requirement is dealt with in this 

work as a design constraint. Before starting the optimization process, it is necessary 

to define any symmetric constraints if desired in the final topology. Table 4.1 shows 

the four symmetry constraints and corresponding section samples. 
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Table 4.1. Examples of Beam Cross Sections with Symmetry Constraint 

 Symmetry Condition Cross Section Example 

1 

Symmetry about z-axis,no 

symmetry about y-axis. 

(symy=0,symz=1) 

 

2 

Symmetry about y-axis,no 

symmetry about z-axis. 

(symy=1,symz=0) 

 

3 

Symmetry about both y and z 

axes 

(symy=1,symz=1) 

 

4 

No symmetry about both y 

and z axes 

(symy=0,symz=0) 

 

 

The loading point of the cross-section is another constraint. In the research conducted 

by Zuberi et al.[6], the effects of various configurations and the location of the load 

and boundary conditions on the topology of beam cross sections are examined. In their 

study, the application points of loads on the section are fixed according to the fixed 

reference frame. In other words, the loading positions with respect to the shear center 

and centroid of the cross-section change during optimization. Unlike the approach of 

the authors, for the purpose of the research in this work, the external loads act such 

that, 

1. Normal force (𝐹𝑥) and transverse loads (𝑉𝑦, 𝑉𝑧) pass through the centroid. 

2. Normal force (𝐹𝑥) is uniformly distributed over the cross section 

3. Moment about 𝑥-axis (𝑀𝑥) is free on the cross-section 

4. Moments about the 𝑦and 𝑧 planes contain the centroid 
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Figure 4.2. Normal (Axial) Force and Transverse Load Locations on a Beam  

 

4.3. Selection of Optimization Criteria 

In this study, the beam is assumed to have a constant cross-section. Optimization of a 

beam with a constant cross section depends not only on stress limitation, but also on 

the buckling response which is a very important phenomenon− especially in long 

beams. Therefore, the optimization of a beam under large compressive axial forces is 

not within the scope of this study. Furthermore, lateral torsional buckling is not taken 

into consideration in the present algorithm. Rather, the main purpose of the algorithm 

is to optimize the beam cross sections based on Von Mises stress levels, irrespective 

of the buckling characteristics of the section. 

Element addition and the removal process is the most important part of evolutionary 

optimization. As mentioned above, Von Mises stresses are used as optimization 

criteria. The decision of which elements will be removed and added in the current 

iteration is made according to their respective Von Mises stress levels. In other words, 

the sensitivity of the element is nothing but its Von Mises stress.  
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4.4. Discretization of Cross Section 

An entire cross-section domain is discretized by equally sized four-node square 

elements. The numbering of nodes and elements in the system starts from the bottom-

left and proceeds, by row,-in the order shown in the figure below. 

 

Figure 4.3. Numbering of Nodes and Elements for Cross Section Domain 

  

The nodes of the elements and their coordinates are needed during the completion of 

FEA on a cross-section. Information regarding the element connectivity and node 

coordinates for the whole domain are generated and stored for use in the optimization 

process. Before starting said process, two matrices including element nodes and their 

coordinates are created. These are not affected by element addition and/or removal. 

4.5. Selection of Initial Design 

The initial design is the starting domain of the evolution of the structure. The 

optimization process starts its evolution from this domain. It can also be referred to as 

an “estimated initial design”. It is decided according to engineering intuition and may 

vary according to the applied loading and constraints. 

While deciding the initial design domain, the most important thing is that at least one 

element in the line of action of the lateral forces must be available in the initial domain. 
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Figure 4.4. Example of an Initial Design Domain  

4.6. Calculation of Cross-section Properties  

Fundamental properties related to the cross-section of a given beam are necessary for 

the analysis of said beam. In this step, cross-section properties, area, the moment of 

inertia, torsional constant and the warping constant, are calculated by the FEA method 

described in Paragraph 2. These parameters are used in the next step for the 

computation of loads and moments on the beam. 

4.7. Computation of  Loads and Moments on the Beam 

In this study, the optimization of a pre-selected cross section is performed. However, 

the warping stress resultants 𝑀𝑤 and 𝑇𝑤 are dependent on the cross-sectional shape. 

Therefore, a finite element analysis of the beam is necessary during the optimization 

process in which the cross-sectional shape is changed. After obtaining the new set of 

internal forces, the stresses in the section of interest are determined by using 2D finite 

element analysis. 
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Figure 4.5. Calculated Loads and Moments on 1D element nodes  

4.8. Finite Element Analysis on the Cross Section 

Finite element analysis is carried out on a 2D cross-section in order to determine the 

Von Mises stresses of each element under the loads defined previous step. The 

formulation for finding stresses on the cross-section is given in Paragraph 3.2. 

4.9. Element Addition and Removal 

The procedure used for determining which elements are to be added and which ones 

are to be removed is explained herein. The cross-section domain may have regions 

that are heavily under-stressed and over-stressed. Material needs to be added to over-

stressed regions and removed from under-stressed regions. The processes of element 

addition and removal are treated separately. 

4.9.1. Element Addition Procedure 

Element addition denotes the introduction and/or the reintroduction of elements into 

an evolving structure. 

The addition of elements around highly stressed elements conduces the diffusion of 

stresses to newly introduced elements. This will reduce the maximum stress. Then, 

the maximum stress occurs at the other elements surrounding its previous location, but 

in a lessoned form.  

Assume the element “e” is in the current domain and has the highest stress. Element e 

has three free edges and is attached to the structure by edge 1 as can be seen in Figure 
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4.6. Elements can be added to the structure from the free edges 2, 3 and 4.However, 

in order to fully diffuse the stress to the surrounding area elements that have adjoining 

nodes to the highest stressed element are also injected. After adding elements, the final 

area around element e would look  as depicted in Figure 4.7. 

 

Figure 4.6. Element “e” on Boundary of a Cross Section Exhibiting Highest Stress [24] 

 

 

Figure 4.7. Added elements around Element “e” [24] 

Elements are added to all free nodes and edges of elements satisfying Eq.(4.1). In 

addition to these elements, if there is a symmetry constraint in the problem; elements 

with respect to symmetry about the centroid of the domain are also added in the same 

manner. Such that, 

𝜎𝑒 > 𝐼𝑅 𝜎𝑚𝑎𝑥 (4.1) 

 

 

where,𝜎𝑒 is the element’s Von Mises stress, and 𝜎𝑚𝑎𝑥 is the maximum Von Mises 

stress of the current design. 
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𝐼𝑅 is an injection ratio. It restricts the number of elements to be added in one iteration. 

Moreover, the continuation of the optimization process is provided with the help of 

the injection ratio. The idea and formulation of the inclusion rate are compiled from 

the study of Querin et al. [5]. The general form of the inclusion rate is 

𝐼𝑅 = 𝑖0 − 𝑖1 𝑆𝑆 − 𝑖2 𝑂𝑁   (4.2) 
 

where  0 ≤ 𝐼𝑅 ≤ 1 

𝑖0, 𝑖1 and 𝑖2 are the coefficients of the inclusion rate and they are determined from 

numerical experiments and the literature. It is observed that using higher values for 𝑖0 

works better in complex problems in terms of convergence. 

Increasing the inclusion ratio diminishes the number of elements to be added in one 

iteration, or vice versa. Therefore, these coefficients can be varied for different 

optimization problems. 𝑆𝑆 and 𝑂𝑁 are the steady state number and oscillatory number, 

respectively. Detailed information about these numbers are given in 4.10. 

4.9.2. Element Removal Procedure 

Respectively less stressed elements are removed from the structure in each iteration. 

Like in the addition process, the number of elements to be removed from the domain 

is controlled. 

Which elements to be removed are determined by the formula below: 

𝜎𝑒 < 𝜎𝑚𝑖𝑛 +
(𝜎𝑚𝑎𝑥 − 𝜎𝑚𝑖𝑛)

𝑅𝐶
 (4.3) 

 

If the symmetry constraints are available, elements satisfying the above equations and 

their symmetric elements are removed from the structure. RC is the removal constant 

specifying the reduction rate. As opposed to 𝐼𝑅, 𝑅𝐶 does not change during 

optimization. By using this number, the decision of how many elements are to be 

removed in one iteration can be made. The greater the number, the fewer the elements 
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are cleared from the structure in one iteration or vice versa. Through this body of work 

it was determined that selecting this number between 10 and 20 gives satisfactory 

results. 

The most critical issue of the removal process is that the coherent of the cross-section 

has to be maintained throughout the optimization process. No structural islands will 

be present in the final topology[24], i.e. all parts of the structure are connected to the 

main structure. A connectivity check algorithm is created to guarantee that all active 

elements are connected during each iteration. This is achieved by checking that all 

active elements (elements having a property value of 1), kept in design domain are 

connected to another element with at least one adjoining node. Hence, removing the 

element from the domain is supplied as the set of rules described below: 

 Identify elements having stress less than the prescribed limit defined by 

Eq.(4.3).  

 Sort of these elements in ascending order 

 Remove each element one by one and check whether the removal of this 

element destroys the cross-section integrity or not. If this is not the case, i.e. 

the structure remains coherent, then this element is removed, on the other hand, 

if a disconnection occurs, this element is not removed.  

 

 

Figure 4.8. Illustration of Connectivity of Elements 

For example, at any time of the optimization iteration assume the structure takes 

the form as in the left scheme in Figure 4.8. In that configuration, the structure is 

coherent. Assume elements 5 and 6 satisfy the inequality of eq.3.3, and so they 

need to be removed. When element 6 has been removed the two bar structure 
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occurs and connectivity is broken (in the middle of Figure 4.8.Therefore, it is not 

removed from the structure. If the same approach is applied to element 5, as in the 

scheme on the right in Figure 4.8, the removal of element 5 does not result in any 

connectivity problems and so it can be cleared. 

 The previous item is repeated for all elements listed as under-stressed 

elements. 

4.10. Steady State and Oscillatory State Check 

𝐼𝑅 depends on two factors; the first one is the steady state number .If there are no free 

elements around the elements satisfying the equation listed in Eq.(4.1),  it means that 

there are no more elements to be added. Optimization can only continue by removing 

the elements which cause the maximum stress of the section from converging to the 

prescribed limit,. The proceeding of the addition process is enabled by increasing the 

steady state number (𝑆𝑆). This number is incremented by 1 until at least one element 

is found to be added. The second factor is the oscillatory state number (ON), which is 

an indicator of the oscillation state and occurs when the same elements are added and 

removed in the subsequent iterations. The oscillatory state is obtained by observing 

the area of the section in each iteration. If change of the area over the last 10 iterations 

is acceptably small (less than 0.001), and the stress limit has not been reached yet, the 

section is considered to be in an oscillatory state. Incrementing this number by 1 shifts 

the optimization process from the current state. This allows optimization to continue. 

As such, the general form inclusion rate is formulated as 

𝐼𝑅 = 𝑖0 − 𝑖1 𝑆𝑆 − 𝑖2 𝑂𝑁 (4.4) 

 

Where, 𝑖0, 𝑖1 and 𝑖2 are the coefficients determined from the numerical experiments 

and can vary for different optimization problems. 
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Eq. (4.5) is used to check whether the optimization is in oscillatory state. 

𝐶ℎ𝑎𝑛𝑔𝑒 𝑖𝑛 𝑎𝑟𝑒𝑎 =
|∑ 𝐴𝑟𝑒𝑎𝑘−𝑖+1 − ∑ 𝐴𝑟𝑒𝑎𝑘−𝑖−4

5
𝑖=1

5
𝑖=1 |

∑ 𝐴𝑟𝑒𝑎𝑘−𝑖+1
5
𝑖=1

 (4.5) 

 

4.11. Termination of Optimization and Fine-Tuning Process  

The cycle of finite element analysis of a cross-section and element addition and 

removal continues until stress in the domain reaches the stress limit. The optimization 

process stops its evolution when the following convergence criterion, defined in terms 

of the difference between stress limit and domain stress, is satisfied. 

|𝜎𝑀𝑎𝑥 − 𝜎𝑙𝑖𝑚|

 𝜎𝑙𝑖𝑚
≤ 0.01 (4.6) 

 

 𝜎𝑀𝑎𝑥 is the maximum Von Mises stress of an element in the structure and 𝜎𝑙𝑖𝑚 is the 

prescribed stress limit related to beam material. 

The objective is to obtain the minimum weight design with the maximum stress as 

close as to the stress limit as possible. During the optimization process, a group of 

elements are added and removed; however, this does not provide a good solution when 

the stress of the domain approaches the limit. After a stress point, it is needed to 

perform element addition and removal process sensitively. In order to perform such 

an operation a fine-tuned algorithm is generated which aims to obtain a more precise 

solution. 

The fine-tuning of the algorithm proceeds similarly to the normal addition and 

removal process described in Paragraph 4.9. The only difference is the number of 

removed elements. If the maximum stress level is less than 99% of the allowable stress 

limit, then the fine-tuning method is utilized as follows: 

𝜎𝑀𝑎𝑥 ≤ 0.99𝜎𝑙𝑖𝑚  (4.7) 
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1. The elements are sorted in ascending order according to the elemental stress 

value. The first element has minimum stress and the last element has 

maximum stress. 

2. The first element and its symmetric elements (if a symmetry condition is 

pointed out) is selected 

3. Elements found in the previous step are removed and the remaining domain 

is checked in terms of the connectivity of whole domain. 

4. If the domain is still coherent after the removal process (the previous step) 

then the finite element analysis is performed and the stresses of new elements 

are calculated. If it is no longer coherent, then this element is reintroduced to 

the structure and the second element is selected. 

Step 2 to 4 is repeated until the maximum stress is in the allowable range (convergence 

criterion defined in Eq. (4.6)). 

The generalized flowchart of the optimization method used in this body of work can 

be represented as shown in Figure 4.9. 
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Figure 4.9. Flow Chart of the Optimization Process 
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CHAPTER 5  

 

5. CASE STUDIES 

 

In this chapter, to verify the optimization method presented in this work, 

representative numerical problems are handled. Cantilevered beams under different 

loading conditions are selected as case studies in order to solve and compare the 

results. In all of the case studies, it is aimed to find the optimum topology of the beam 

with a minimized weight while satisfying the stress limitation. The final topology of 

the presented method highly depends on the input parameters such as the magnitude 

and direction of the loads, initial design and element inclusion rate, etc. as explained 

in the previous section. In order to investigate the effects of these parameters on the 

final topology, different setup parameters are used for the same problems. In this way, 

discussion about the overall effectiveness can be made. For all of the examples, the 

possibility of buckling is not included.  

5.1. Case Study 1 

The first problem is to examine the optimum cross-section topology of the 

cantilevered beam under only a vertical concentrated load at the tip of the beam. The 

whole area of the cross-section domain is a 20x20 mm2 square region. The length of 

the cantilevered beam is 100 mm. The allowable stress limit for the beam material 

used in the optimization algorithm is 250 MPa. Young’s modulus and shear modulus 

are taken as 200 GPa and 80 GPa respectively. 
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Figure 5.1. Force and Boundary Illustration of Problem 1 

 

Figure 5.1 shows the representative graphical illustration of the problem. The beam is 

subdivided into 10 elements along the axial direction using 11 nodes. This is sufficient 

to calculate the stress resultants on each node. As mentioned in Chapter 4, stress 

analysis and optimization are only made on the node where optimization will be 

performed. The most critical location of this beam is the fixed endpoint due to the high 

bending moment. Therefore, the 1st node, shown in red in the figure above is 

considered as the optimization location of this problem. 

The symmetry design condition is one of the most critical constraints, influencing the 

evolution of the optimization. In this problem, it is stated that the final topology has 

to be symmetric about the 𝑧-axis of the centroid. The required information for Problem 

1 is summarized in table. 

Table 5.1. Specification of Problem 1 

Load 
Location of 

Load 

Max. 

Stress 

Limit 

Symmetry 

Constraint 

Optimization 

Location 

Vertical 

Point 

Load (𝑽𝒛) 

At the free 

end 
250 MPa (symy=0,symz=1) the fixed end 

 



 

 

 

45 

 

Optimization Run 

At this stage, the Evolutionary Growth Algorithm has been run only once for the setup 

parameters listed below.  

 Load values: 𝑉𝑧 = 1.0 𝑘𝑁 

 Initial design: Four elements in the middle of the domain (Figure 5.2) 

 Element addition and removal formula: 𝐼𝑅 = 0.95 − 0.01 𝑆𝑆 − 0.1𝑂𝑁  and 

𝑅𝐶 = 10 

 Meshing: 60x60 mesh (i.e. 3600 elements) 

 The I-shape cross-section is the optimal topology for this problem as shown in Figure 

5.2. At the beginning of the process, the initial domain is very small, which causes 

very high stress. By adding elements to highly stressed regions and removing the 

lesser-stressed elements, the area of the domain is increased and the maximum stress 

is reduced. Owing to the presence of the symmetry constraint, the final topology is 

symmetric about the 𝑧-axis. 
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Figure 5.2. Optimization Run for Problem 1: Initial Design Domain (Top), Optimized Cross-section 

(Middle), Von Mises Stress Distribution (Bottom) 
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The process is terminated at the 39th iteration when the maximum stress stabilizes 

around 250 MPa, as can be seen from Figure 5.3,  which indicates the change of area 

and maximum stress. At the 21st iteration, the maximum stress level is less than the 

prescribed limit, yet the difference between the maximum Von Mises stress and the 

allowable stress limit has not reached the convergence criterion limit. Therefore, after 

this iteration, elements are only removed from the structure one by one in order to 

increase the maximum stress slowly up to the stress limit (this is the fine-tuning 

process). 

 

Figure 5.3. History of Maximum Stress and Area of Optimization Run for Problem 1 

Shear center and applied force are always in the same line of action which results in 

the vertical force not creating any torque about the x-axis. Therefore, only the bending 

moment and vertical force occur throughout the beam. The driving loading in the 

cross-section that affects the stresses is the bending moment in this example; therefore, 

it is easily seen that stresses increase as the distance from the center increases;. This 

coincides with classical beam theory. Also, in the web of the found section is fully 

stressed as can be seen in Figure 5.2 in which bottom figure shows the Von Mises 

stress distribution over the optimized section. 
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The summary of the results are tabulated below. 

Table 5.2. Results Summary of the Optimization Runs for Problem 1 

Run Loading 
Initial 

Design 

Final 

Topology 
Area 

Max. Von 

Mises Stress 

1 𝑉𝑧 = 1.0 𝑘𝑁 

4 elements 

in the 

middle 

“I” shape 

Cross 

Section 

85.3 

mm2 

249.7 

MPa 

 

Cross-section geometric properties of the obtained topology are listed in Table 5.3. 

Table 5.3. Geometric Properties of Identified Cross Sections for Problem 1 

Run Second Moment of Areas 
Torsional 

Constant 

Warping 

Constant 

Shear Center 

w.r.t centroid 

- 
𝑰𝒚𝒚 

(𝒎𝒎𝟒) 

𝑰𝒛𝒛 

(𝒎𝒎𝟒) 

𝑰𝒚𝒛 

(𝒎𝒎𝟒) 

𝑱 

(𝒎𝒎𝟒) 

𝑰𝒘 

(𝒎𝒎𝟒) 

𝒀𝒐 

(𝒎𝒎) 

𝒁𝒐 

(𝒎𝒎) 

1 2873 1159 0 204.8 36645 0 0 

 

In the work conducted by Ishii and Aomura [25], the same problem was handled and 

solved via 3D frame based unit elements. Figure 5.4 shows the topology obtained by 

Ishii and Aomura for stiffness maximization with 36% volume constraint. The final 

topology is very similar to the one found by the presented method in this thesis. 

 

Figure 5.4. Optimum Cross-section Obtained by Ishii and Aomura [25] 
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When the identified topology is compared to the solution found by Zuberi et al. [6] , 

a similar topology is once again observed. In their study, a 3D beam model with the 

lowest compliance criterion is used. 

 

Figure 5.5. Result Found by Zuberi et al. [6] for Problem 1 

 

5.2. Case Study 2 

The second example is the analysis of cantilevered beam subjected to two transverse 

loadings at the tip of the beam. 

 

Figure 5.6. Force and Boundary Illustration of Problem 2 

In this example, only one element is used to evaluate loads and moments. Transverse 

loads in the 𝑧 and 𝑦 directions are exerted at the second node of the beam. The section 

of the first node at the fixed end is the optimization location. The optimization 

algorithm computes the stresses and decides the element status based on the loads and 

moments on that node. 
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The beam properties, maximum allowable cross section domain, the number of 

elements and initial design domain are identical with the ones in Problem 1. Unlike 

the first case study, no symmetry condition is considered for this problem. 

Table 5.4. Specifications of Problem 2 

Load 
Location of 

Load 

Max. 

Stress 

Limit 

Symmetry 

Constraint 

Optimization 

Location 

Vertical 

Point 

Load (𝑽𝒛) At the free 

end 
250 MPa (symy=0,symz=0) the fixed end 

Horizontal 

Point 

Load (𝑽𝒚) 

 

Optimization Run 1 

The first optimization run is performed with the following setup parameters: 

 Load values: 𝑉𝑧 = 1.0 𝑘𝑁 and 𝑉𝑦 = 1.0 𝑘𝑁 

 Initial design: Four elements in the middle of the domain (Figure 5.7) 

 Element addition and removal formula: 𝐼𝑅 = 0.9 − 0.01 𝑆𝑆 − 0.1𝑂𝑁  and 

𝑅𝐶 = 10 

 Meshing: 60x60 mesh (i.e. 3600 elements) 

Positive vertical load at the tip of the beam creates a negative bending moment, on the 

other hand, this is opposite of the situation for the horizontal load. In the first quadrant, 

these bending moments create normal stress in tension and in the fourth quadrant they 

cause compressive normal stress of equal magnitude. Then, the maximum stresses are 

formed in these areas. Therefore, elements have been added to the first and fourth 

quadrant of the section in order to diffuse the stress. 
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At the end of the optimization process a topology similar to the one in the first problem 

is obtained. It resembles an “I” type cross section rotated 45° about the centroid, which 

is the angle of resultant force vector. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.7. Optimization Run for Problem 2: Initial Design Domain (Top), Optimized Cross Section 

(Middle), Von Mises Stress Distribution (Bottom) 
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As seen the figure below,which shows the evolution history of maximum stress and 

section area, the rate of change of these two properties is very high at the beginning 

of the process. It slows down in subsequent iterations and maximum stress 

convergesthe the desired level. 

 

Figure 5.8. History of Maximum Stress and Section Area of Optimization Run for Problem 2 

 

Optimization Run 2 

The optimization is repeated with the reduced loads in the second run. 

 Load values: 𝑉𝑧 = 0.5 𝑘𝑁 and 𝑉𝑦 = 0.5 𝑘𝑁 

 Initial design: Four elements in the middle of the domain (Figure 5.9) 

 Element addition and removal formula: 𝐼𝑅 = 0.65 − 0.01 𝑆𝑆 − 0.1𝑂𝑁  and 

𝑅𝐶 = 10 

 Meshing: 60x60 mesh (i.e. 3600 elements) 
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Figure 5.9. Optimization Run 2 for Problem 2: Initial Design Domain (Left), Optimized Cross 

Section (Right),  

When half of the load values in the first run are applied, the final topology has not 

touched any boundary. The optimization process ends up with the topology satisfying 

design requirement as shown in Figure 5.9. The results of the first and second 

optimization runs proves that the final topology depends on the magnitude of the 

applied loads. 

Finally, the obtained cross-section properties under the loads and boundary conditions 

specified for this example are tabulated below. 

Table 5.5. Results Summary of the Optimization Runs for Problem 2 

Run Loading 
Initial 

Design 

Final 

Topology 
Area 

Max. Von 

Mises 

Stress 

1 
𝑉𝑧 = 1.0 𝑘𝑁 

𝑉𝑦 = 1.0 𝑘𝑁 
See Figure 

5.7 

See Figure 

5.7  

88.56 

mm2 

249.7 

MPa 

2 
𝑉𝑧 = 0.5 𝑘𝑁 

𝑉𝑦 = 0.5 𝑘𝑁 
See Figure 

5.9Figure 5.7 

See Figure 

5.9 

74.33 

mm2 

247.3 

MPa 
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Table 5.6. Geometric Properties of Identified Cross-sections for Problem 2 

Run Second Moment of Areas 
Torsional 

Constant 

Warping 

Constant 

Shear Center 

w.r.t centroid 

- 
𝑰𝒚𝒚 

(𝒎𝒎𝟒) 

𝑰𝒛𝒛 

(𝒎𝒎𝟒) 

𝑰𝒚𝒛 

(𝒎𝒎𝟒) 

𝑱 

(𝒎𝒎𝟒) 

𝑰𝒘 

(𝒎𝒎𝟒) 

𝒀𝒐 

(𝒎𝒎) 

𝒁𝒐 

(𝒎𝒎) 

1 4124 4129 -3750 306 39825 -0.35 0.33 

2 1560 1560 -1345 348 8198 -0.43 0.34 

 

5.3. Case Study 3 

In the third problem, the same beam as in the first problem is used. However, the 

loading type is different. The optimum cross-section topology is sought for when only 

a twisting moment is applied at the free end of the beam. 

 

Figure 5.10. Force and Boundary Illustration of Problem 3 

Like in the previous problem, the beam is modeled with 10 elements for resultants 

computation on the nodes. The 4th node, which is 30 mm far away from the fixed end, 

is selected as the location where optimization will be performed at. In each iteration, 

the calculated loads and moments on this node are used for stress evaluation and then 

for the optimization. Also, there is no symmetry constraint. The required data for the 

second optimization problem is tabulated below. 
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Table 5.7. Specifications of Problem 3 

Load 
Location of 

Load 

Max. 

Stress 

Limit 

Symmetry 

Constraint 

Optimization 

Location 

Twisting 

moment 

(𝑴𝒙) 

At the free 

end 
250 MPa (symy=0,symz=0)  𝑥 = 30 𝑚𝑚 

 

Optimization Run 1 

The first optimization run is done with the following setup parameters: 

 Load values: 𝑀𝑥 = 100 𝑁.𝑚 

 Initial design: Four elements in the middle of the domain (Figure 5.11) 

 Element addition and removal formula: 𝐼𝑅 = 0.99 − 0.01 𝑆𝑆 − 0.1𝑂𝑁  and 

𝑅𝐶 = 10 

 Meshing: 80x80 mesh (i.e. 6400 elements) 

The optimization process stops to evolve at the 319th iteration where the maximum 

Von Mises stress value converges to the allowable one. After the iteration number 

278, fine-tuning is proceeded by gradually removing elements from the domain .The 

obtained results depict a circular cross-section with a hole inside. This maximizes the 

polar moment of inertia which decreases the shear stress under the effects of uniform 

and non-uniform torque. These results are realistic and can be found in the literature 

[26]. The shear stresses increase as the distance from the center increases, as seen in 

Figure 5.11, which coincides with the classical beam theory. 

 

 

 



 

 

 

56 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.11. Optimization Run 1 for Problem 2: Initial Design Domain (Top), Optimized Cross-

section (Middle), Von Mises Stress Distribution (Bottom) 
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Figure 5.12. History of Maximum Stress and Area for the First Run of Optimization Run 1 for 

Problem 2 

 

Optimization Run 2 

The optimization methodology developed in this study (Evolutionary Growth 

Algorithm) provides the opportunity to start any initial design domain. Therefore, the 

optimization process is repeated with the new setup parameters in which the starting 

design and load value are changed.  

 Load values: 𝑀𝑥 = 200 𝑁.𝑚 

 Initial design: Thin walled square box (Figure 5.13) 

 Element addition and removal formula: 𝐼𝑅 = 0.99 − 0.01 𝑆𝑆 − 0.1𝑂𝑁  and 

𝑅𝐶 = 10 

 Meshing: 80x80 mesh (i.e. 6400 elements) 
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The found cross-section for the changed setup parameters indicates a uniform hollow 

section with increased web plate thickness which is very similar to the one obtained 

in first run. This means that using a different starting domain and changing the value 

of the load does not affect the optimum topology significantly for this problem. This 

is because the beam is only subjected to a twisting moment and the St. Venant torque 

is the dominant resultant at the optimization point.  

 

 

Figure 5.13. Optimization Run 2 for Problem 3: Initial Design Domain (Left), Optimized Cross 

Section (Right),  

Also, when the results are compared to the solution of Kim and Kim [7] for the same 

boundary and force conditions, an analogous topology is proved. In their work, said 

authors investigate the maximization torsional constant at different mass constraints.  

 

Figure 5.14. Result found by Kim and Kim [7] for Problem 3: (a)30% mass constraint,(b) 50% mass 

constraint, (c) 60% mass constraint 
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The summary of the results obtained for both optimization runs is given in the 

following tables. 

Table 5.8. Results Summary of Optimization Runs for Problem 3 

Run Loading Initial Design 
Final 

Topology 
Area 

Max. 

Von 

Mises 

Stress 

1 𝑀𝑥 = 100.0 𝑁.𝑚 
Four elements 

in the middle 

Circular 

hollow 

cross 

section 

113 

mm2 

248.13 

MPa 

2 𝑀𝑥 = 200.0 𝑁.𝑚 
Thin walled 

square box 

Thick 

walled 

hollow 

square 

section  

223.7 

mm2 

248.0 

MPa 

 

Table 5.9. Geometric Properties of Found Cross Sections for Problem 3 

Run Second Moments of Area 
Torsional 

Constant 

Warping 

Constant 

Shear Center 

w.r.t centroid 

- 
𝑰𝒚𝒚 

(𝒎𝒎𝟒) 

𝑰𝒛𝒛 

(𝒎𝒎𝟒) 

𝑰𝒚𝒛 

(𝒎𝒎𝟒) 

𝑱 

(𝒎𝒎𝟒) 

𝑰𝒘 

(𝒎𝒎𝟒) 

𝒀𝒐 

(𝒎𝒎) 

𝒁𝒐 

(𝒎𝒎) 

1 3568 3568 0 6994 26.4 0 0 

2 10375 10375 0 17829 6049 0 0 
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5.4. Case Study 4 

The fourth problem is a case that combines Problem 1 and Problem 3. Both vertical 

load and a twisting moment are applied together at the free end of the beam.  

 

Figure 5.15. Force and Boundary Illustration of Problem 3 

The same beam and maximum allowable cross-section domains are used for the 

topology optimization of this problem as in previous problems. The 4rd  node, depicted 

in red in Figure 5.15, is selected as the optimization location for the section under no 

symmetry constraints.. 

Table 5.10. Specifications of Problem 4 

Load 
Location of 

Load 

Max. 

Stress 

Limit 

Symmetry 

Constraint 

Optimization 

Location 

Vertical 

Point Load 

(𝑽𝒛) At the free 

end 
250 MPa (symy=0,symz=0)  𝑥 = 30 𝑚𝑚 

Twisting 

moment 

(𝑴𝒙) 
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Optimization Run 1 

The following setup parameters are used for the first optimization run. 

 Load values: 𝑉𝑧 = 4.0 𝑘𝑁 and 𝑀𝑥 = 50.0 𝑁.𝑚  

 Initial design: Four elements in the middle of the domain (Figure 5.18) 

 Element addition and removal formula: 𝐼𝑅 = 0.99 − 0.01 𝑆𝑆 − 0.1𝑂𝑁  and 

𝑅𝐶 = 10 

 Meshing: 60x60 mesh (i.e. 3600 elements) 

At the optimization section of the beam (node number 4), while the bending moment 

is about y-axis, the vertical transverse loads are constant; uniform torque and non-

uniform torque are changed throughout the process. Figure 5.16  represents the 

topologies in the intermediate iterations. In the earlier stages of the optimization, 

elements are introduced in the vertical direction and small holes are created. Up to 

iteration number 128, the topology of the section remains closed. After that iteration, 

the topology is converted into an open section. The maximum stress value oscillates 

greatly in the early stages of the optimization as seen from the evolution history 

(Figure 5.17). In subsequent iterations, the variation of the maximum stress value 

decreases and starts to converge towards the allowable stress limit. Finally, the “C’’ 

type cross-section is attained after 300 iterations for the setup parameters specified for 

this run Although no symmetric condition is defined, the final topology is almost 

symmetric about the 𝑦-axis. 
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Figure 5.16. Intermediate Topologies of Optimization Run 1 for Problem 4, (a) Iteration=40,(b) 

Iteration=128,(c) Iteration=150,(d) Iteration=200 
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Figure 5.17. History of Maximum Stress and Area of the Optimization Run 1 for Problem 4 

 Shear stresses due to uniform torque and shear force are directed in the same direction 

at the right side of the structure. On the other hand, these are directed in the opposite 

direction on the left side of the section. Therefore, elements on the rights side have 

greater stress than those on the left side, which leads to the removal of elements from 

the left side and their addition to the right side. Besides shear stress, normal stresses 

owing to the bending moment are created on the upper and lower side of the domain. 

The stress distribution within the found section for the calculated resultants of the 

optimization node is seen in Figure 5.18. 

 

 

 

 

 

 



 

 

 

64 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5.18. Optimization Run 1 for Problem 4: Initial Design Domain (Top), Optimized Cross-

section (Middle), Von Mises Stress Distribution (Bottom) 
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When the optimal topology is compared to that obtained by Liu et al. [2] a close 

resemblance is observed under similar loading and boundary conditions. 

 

Figure 5.19. Result found by Liu et al. [2] for Problem 

 

Optimization Run 2 

In the second optimization run for Problem 4, only the values of the applied loads are 

changed in order to investigate the effect of the load magnitudes on the final topology 

while other setup parameters remain the same. 

 Load values: 𝑉𝑧 = 2.0 𝑘𝑁 and 𝑀𝑥 = 100.0 𝑁.𝑚  

 Initial design: Four elements in the middle of the domain (Figure 5.20) 

 Element addition and removal formula: 𝐼𝑅 = 0.99 − 0.01 𝑆𝑆 − 0.1𝑂𝑁  and 

𝑅𝐶 = 10 

 Meshing: 60x60 mesh (i.e. 3600 elements) 

This loading condition results in a nonsymmetrical closed box section in which one 

web is thicker than other(Figure 5.20). The results of the optimization for the previous 

loading are an open section. However, the Evolutionary Growth Algorithm ends up 

with a closed section for the changed loads. This shows that the final topology is 

highly dependent on the magnitude of the loads if the section is subjected to both 

transverse loading and torque. 



 

 

 

66 

 

 

 

 

 

 

 

Figure 5.20. Optimization Run 2 for Problem 4: Initial Design Domain (Left), Optimized Cross 

Section (Right) 

The geometric properties of the obtained cross sections and the Von Mises stress 

values are summarized in the following tables. 

Table 5.11. Results Summary of the Optimization Runs for Problem 4 

Run Loading 
Initial 

Design 

Final 

Topology 
Area 

Max. Von 

Mises Stress 

1 
𝑉𝑧 = 4.0 𝑘𝑁 

𝑀𝑥 = 50.0 𝑁.𝑚 

4 elements 

in the 

middle 

“C” type 

cross 

section 

214.4 

mm2 

249.83 

MPa 

2 
𝑉𝑧 = 2.0 𝑘𝑁 

𝑀𝑥 = 100.0 𝑁.𝑚 

4 elements 

in the 

middle 

Non-

symmetric 

rectangular 

hollow 

172.4 

mm2 

249.86 

MPa 

 

Table 5.12. Geometric Properties of the Found Cross-sections for Problem 4 

Run Moment of Inertia 
Torsional 

Constant 

Warping 

Constant 

Shear Center 

w.r.t centroid 

- 
𝑰𝒚𝒚 

(𝒎𝒎𝟒) 

𝑰𝒛𝒛 

(𝒎𝒎𝟒) 

𝑰𝒚𝒛 

(𝒎𝒎𝟒) 

𝑱 

(𝒎𝒎𝟒) 

𝑰𝒘 

(𝒎𝒎𝟒) 

𝒀𝒐 

(𝒎𝒎) 

𝒁𝒐 

(𝒎𝒎) 

1 11349 7385 4.2 1340 402603 11.1 0 

2 7897 4276 0 9439 19564 0.33 0 
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5.5. Case Study 5 

In the last problem, a vertical transverse load, an axial load and a twist moment are 

applied at the free end of beam simultaneously. The beam length and beam properties 

are the same as the previous examples. Moreover, the optimization location on the 

beam has not been altered. 

 

Figure 5.21. Force and Boundary Illustration of Problem 5 

 

As it can be seen in the table below, which summarizes  Problem 5, symmetry about 

the 𝑧-axis is desired at the end of the process. 

 

Table 5.13. Specifications of Problem 5 

Load 
Location of 

Load 

Max. 

Stress 

Limit 

Symmetry 

Constraint 

Optimization 

Location 

Vertical 

Point 

Load (𝑽𝒛) 

At the free 

end 
250 MPa (symy=0,symz=1)  𝑥 = 30 𝑚𝑚 

Twisting 

moment 

(𝑴𝒙) 

Axial 

Load(𝑭𝒙) 
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Optimization Run 1 

The following setup parameters are used for the first optimization run. 

 Load values: 𝐹𝑥 = 10.0 𝑘𝑁, 𝑉𝑧 = 1.0 𝑘𝑁 and 𝑀𝑥 = 50.0 𝑁.𝑚  

 Initial design: two rows elements from middle to left boundary and bottom 

boundary  (Figure 5.24) 

 Element addition and removal formula: 𝐼𝑅 = 0.96 − 0.01 𝑆𝑆 − 0.1𝑂𝑁  and 

𝑅𝐶 = 15 

 Meshing: 60x60 mesh (i.e. 3600 elements) 

Optimization can be commenced with these chosen parameters. At the beginning 

elements lying to the left side of the domain are removed from the structure, because 

these elements have the lowest stress levels and the elements can be added to the 

middle of the domain. Then, in subsequent iterations, the section grows radially in the 

middle, and horizontally at the bottom. During the evolution, an elliptic hole, 

symmetric about the 𝑧-axis, is created as indicated in Figure 5.22, which shows the 

intermediate steps of the optimization Run 1. 
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Figure 5.22. Intermediate Topologies of the Optimization Run 1 for Problem 5 
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Shear stresses due to twisting moment and shear force are directed in the same 

direction at the right side of the structure. Moreover, normal stress is higher on the 

bottom of the section because both the bending moment and normal force create 

tensile normal stresses in the elements under the centroid. Therefore, a , 

nonsymmetrical hollow section in which the bottom side is thicker than the upper side 

is created. On the other hand, it is expected that the right side is thicker than the left 

side due to the direction of shear stresses, as in the case of the previous problem. 

Nevertheless, the presence of symmetric design constraint about the 𝑧-axis causes the 

right and left side to be the same thickness.  Figure 5.24 displays initial design domain, 

optimized cross section topology and the Von Mises stress distribution within the final 

cross-section at the optimization node. 

Although the optimization process begins with non-symmetric structure, at the end 

symmetric cross-section about z, as desired, is resulted. Optimized cross-section of 

the beam under the defined loads and design constraints is found at the 248th iteration. 

Only the last ten iterations belong fine-tuning part. 

 

Figure 5.23. History of Maximum Stress and Area of the Optimization Run 1 for Problem 5 
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Figure 5.24. Optimization Run 1 for Problem 5: Initial Design Domain (Top), Optimized Cross-

section (Middle), Von Mises Stress Distribution (Bottom) 
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Optimization Run 2 

As a second run, this problem is solved for a different initial design domain while the 

other setup parameters remain the same 

 Load values: 𝐹𝑥 = 10.0 𝑘𝑁, 𝑉𝑧 = 1.0 𝑘𝑁 and 𝑀𝑥 = 50.0 𝑁.𝑚  

 Initial design: four elements in the middle of the domain(Figure 5.25) 

 Element addition and removal formula: 𝐼𝑅 = 0.96 − 0.01 𝑆𝑆 − 0.1𝑂𝑁  and 

𝑅𝐶 = 15 

 Meshing: 60x60 mesh (i.e. 3600 elements) 

When the optimization process starts to evolve from the initial domain (with four 

elements in the middle) the obtained result looks like the one obtained in the first 

optimization run as shown in the figure below.  

 

Figure 5.25. Optimization Run 2 for Problem 5: Initial Design Domain (Left), Optimized Cross-

section (Right), 
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The numerical results of the optimization runs performed for this problem are 

summarized in Table 5.14 and Table 5.15  

Table 5.14. Results Summary of the Optimization Runs for Problem 5 

Run Loading 
Initial 

Design 

Final 

Topology 
Area 

Max. Von 

Mises 

Stress 

1 

𝑉𝑧 = 1.0 𝑘𝑁 

𝑀𝑥 = 50.0 𝑁.𝑚 

𝐹𝑥 = 10.0 𝑘𝑁 

See Figure 

5.24 

See Figure 

5.24 

149.56 

mm2 

249.3 

MPa 

2 

𝑉𝑧 = 1.0 𝑘𝑁 

𝑀𝑥 = 50.0 𝑁.𝑚 

𝐹𝑥 = 10.0 𝑘𝑁 

See Figure 

5.25 

See Figure 

5.25 

148.89 

mm2 

249.7 

MPa 

 
 

Table 5.15. Geometric Properties of the Found Cross Sections for Problem 5 

Run Moment of Inertia 
Torsional 

Constant 

Warping 

Constant 

Shear Center 

w.r.t centroid 

- 
𝑰𝒚𝒚 

(𝒎𝒎𝟒) 

𝑰𝒛𝒛 

(𝒎𝒎𝟒) 

𝑰𝒚𝒛 

(𝒎𝒎𝟒) 

𝑱 

(𝒎𝒎𝟒) 

𝑰𝒘 

(𝒎𝒎𝟒) 

𝒀𝒐 

(𝒎𝒎) 

𝒁𝒐 

(𝒎𝒎) 

1 2566 5458 0 5869 5850 0 0.15 

2 2934 4258 0 5487 2793 0 0.38 
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CHAPTER 6  

 

6. CONCLUSION AND FUTURE WORKS 

 

6.1. Summary 

The optimum topology of the Vlasov beam cross-sections under different loading 

conditions are investigated by the novel method proposed in this thesis. Although the 

main focus is the optimization procedure, a detailed explanation on the finite element 

method for determination of force resultants and stresses over cross-sections is given 

in the formulation chapter. The idea behind the proposed method and the optimization 

process is also mentioned in the optimization formulation section. Even though the 

optimization technique employed in this study resembles the classical BESO method, 

it is different in many respects. In the literature, most of the BESO applications are 

based on mean compliance minimization with a volume constraint. The convergence 

criteria of BESO are determined by predefined volume fractions. However, these are 

not physical limitations of the structure and so their use results in significantly 

different topology for different volume constraints. For this reason, the stress 

limitation for the defined cross-section is introduced in the optimization algorithm as 

a convergence criterion. While the BESO approach is required to start with a full 

domain and the element properties for all elements are changed during the 

optimization process, the proposed technique in this study can start with any domain; 

and, it is sufficient to change only the status of the elements to be removed and added. 

Cross-section optimization is initiated from an estimated initial design starting point, 

from which it continues to evolve, until the maximum stress limit of the section 

converges to the prescribed limit. 

The symmetry design constraint is designated for some problems to determine the 

efficiency of the optimization method. In addition, as it can be seen in the results of 
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case studies, all of the optimized sections maintain structural integrity through 

inverted subroutine controlling the connectivity of the elements. 

Element addition decreases the maximum stress and element removal enhances its 

value. Elements are added to the domain in such a manner that the number of added 

or reintroduced elements is controlled by the inclusion rate, which restricts the number 

of elements to be included in one iteration. In order to fully distribute the stresses 

within the design, the maximum stress of the section must be as close as possible to 

the stress limit. Therefore, a fine-tuning algorithm, which is another improvement 

made in the proposed method, is embedded into the optimization algorithm as 

mentioned in Chapter 4. 

Five numerical examples have been solved in order to validate the proposed method− 

the Evolutionary Growth Algorithm. In the first and second case studies, the 

optimization algorithm was run only once for the specified setup parameters and the 

obtained results are summarized within this body of work. On the other hand, in other 

problems, two optimization runs were performed with different setup parameters in 

order to investigate the effects of initial design domain and magnitude of the applied 

loads on the cross-section topology. 

 

6.2. Conclusion 

In the case studies, a tip loaded cantilevered beam is analyzed for different loading 

conditions. From the results of case studies, inferences can be summarized as follows: 

 The results of Problem 1 and Problem 5 show that the proposed method works 

properly to generate the topology satisfying symmetry design constraint. 

 In all examples, the maximum stress converges to the limit within the desired 

error rate.  

 The beam under only vertical loading results in an “I” type cross-section 

structure when symmetry about the z-axis is introduced. In addition to this, the 
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optimized section is fitted with minimum weight in a maximum design 

domain. 

 When only a twisting moment is applied at the end of the beam and 4 elements 

in the middle of the domain are selected as the initial design, a circular hollow 

cross-section is obtained in the presence of the symmetry constraint. 

 A “C” type cross section structure is obtained when both a vertical load and 

twisting moment are applied. If the twisting moment is increased, a 

nonsymmetrical rectangular box type cross-section is created as the optimum 

solution. 

 In general, it is noted from the numerical examples that if the local minimum 

stress points are distinct, then the final design is dependent on the initial design. 

Otherwise, the final design may not be dependent on the initial design, as in 

Problem 3 and Problem 5. Elements under relevantly lower stress are very 

close to each other in all iterations. Therefore, using a different initial design 

does not change the final topology. 

 

6.3. Future Works 

The lateral torsional buckling constraint has not been considered in the present study. 

This can be included in a future work. Furthermore, a variable cross section design 

considering the entire beam can be carried out by using a 3D design domain consisting 

of cubic finite elements. 
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