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ABSTRACT

DETERMINATION OF STRESSES IN VLASOV BEAM SECTIONS

Erdogan, Semih
Master of Science, Mechanical Engineering
Supervisor: Prof. Dr. Suha Oral

September 2019, 68 pages

In this thesis, the normal and shear stresses in Vlasov beams are determined. The shape
of the considered cross-sections may be arbitrary. For the computation of shear
stresses, two-dimensional triangular finite element formulations are developed. The
stiffness matrices and force vectors are derived for transversal forces, uniform torsion,
and nonuniform torsion. The proposed finite element algorithm is validated through
the analytical solutions, structural engineering books, and related articles. The
numerical examples include beams with different cross-section types such as solid,

thick-walled, closed thin-walled, and open thin-walled sections.

Keywords: Vlasov Beams, Finite Element Method, Normal and Shear Stresses, Cross-

section properties, Warping Function
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VLASOV KiRiS KESITLERINDE GERILIMLERIN BELIRLENMESI

Erdogan, Semih
Yiiksek Lisans, Makina Miithendisligi
Tez Danigmani: Prof. Dr. Suha Oral

Eyliil 2019, 68 sayfa

Bu tezde, Vlasov kirislerinde normal ve kayma gerilmeleri belirlenir. Ele alinan
kesitlerin sekli istege bagli olabilir. Kayma gerilmelerinin hesaplanmasi i¢in iki
boyutlu iiggensel sonlu elemanlar formiilasyonlar1 gelistirilir. Kayma yiiklemeleri,
diizenli burulma ve diizensiz burulmalar i¢in sertlik matrisleri ve yilik vektorleri
tiiretilir. Onerilen sonlu elemanlar algoritmasi analitik ¢oziimler, yapisal miihendislik
kitaplar1 ve ilgili makalelerle dogrulanir. Sayisal 6rnekler, dolu kesitli, kalin duvar
kesitli, kapali ve agik ince duvarli kesitli gibi farkli enine kesit tiplerine sahip kirisler

igerir.

Anahtar Kelimeler: Vlasov Kirisleri, Sonlu Elemanlar Yo6ntemi, Normal ve Kayma

Gerilmeleri, Kesit Alan1 Ozelllikleri, Carpilma Fonksiyonu
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CHAPTER 1
INTRODUCTION

1.1. Introduction

Beams are structural elements used in modeling various engineering structures such
as aircraft wings, aircraft frames, helicopter rotor blades, automobile chassis, and edge
beams in buildings. There are multiple different cross-section types of beams such as
solid, thick-walled, thin-walled closed, and thin-walled open sections. The structural
behavior of beams is characterized by the material they are made of and their
geometry. Geometrical features play an important role in their behavior. The amount
of deflection in a beam is directly related to its length while cross-sectional shape
affects stresses occurring on the beam section. For this reason, the accuracy of cross-
section properties is crucial for reliable stress analysis. While performing beam
analyses under transversal and torsional loadings, it is necessary to obtain complicated
section properties such as the shear center, torsional constant, and warping constant.
For structures having a complex shape, it is difficult to calculate these properties by
analytical means. To compute these parameters, numerical methods such as the
boundary element method, the finite difference method, and the finite element method

are needed.
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Figure 1.1: Representation of Numerical Methods [1]
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Figure 1.2: Uniform Torsion and Non-uniform Torsion [2]

In solid mechanics, it is crucial to comprehend the analysis of structures subjected to
twisting moments correctly. For this reason, torsion has long been the subject of
theoretical and practical interest in this field. The Saint Venant torsion theory [3] is
referred to as uniform torsion and The Vlasov torsion theory [4] is known as
nonuniform torsion. In the historical development of these works, Agustin Cauchy [5]
demonstrated experimentally that non-circular beams under a torsional loading
experience an out-of-plane displacement called warping. Based upon this, Saint
Venant defined an axial displacement, which is a function of the in-plane direction. In
uniform torsion, the warping displacement and angle of twist rate become identical in
all cross-sections. This theory is valid if the beam is free to warp at the ends under
constant torque. However, in more realistic cases, beams usually have boundary
conditions. In other words, the warping and twist can be restrained at one or more
cross-sections. Vlasov presented the nonuniform torsion theory. In this theory, the
torque varies along the beam, or it is not free to warp at any cross-section. In a parallel
manner to this, the angle of twist rate and axial displacement along its axis are not
constant. These effects result in some internal forces such as warping moments and
warping torques. In general, the warping effects are taken into account if the section
type is open thin-walled since it has low torsional rigidities. For a conservative design,
beam structures are analyzed considering not only the effect of Saint-Venant torsion

but also the warping effects for all types of beams.



1.2. Thesis Objective

The purpose of this thesis is to determine cross-section properties and stresses in
Vlasov beam sections using the finite element method. In the formulations of this
study, the stiffness matrices and force vectors for transversal shear forces, uniform
torsion, and non-uniform torsion are offered. For the discretization of the geometry,
the numerical model uses 2D triangular mesh elements. This mesh type makes dealing
with complex cross-sectional shapes possible. In the development of this study,
several engineering software tools are integrated. As a pre-processor, Hypermesh
provides input data with node coordinates and element connectivities of the meshed
geometry. As a processor, Fortran organizes the FEM algorithm and solves the
equilibrium matrix equations. As a post-processor, Tecplot visualizes output data with
stress distributions, shear flow graphs, and warping characteristics. In numerical
examples, beams with solid, thick-walled, open thin-walled, and closed thin-walled
sections are used. Materials defined in the problems are homogeneous, isotropic, and
linearly elastic. The reliability of the presented finite element algorithm is confirmed

by already existing analytical solutions and the literature.
1.3. Thesis Plan

This dissertation is comprised of five chapters. It starts with Chapter 1 introducing the
problem outline, thesis objective, and thesis plan. In Chapter 2, the related studies are
represented in a literature review which focuses on previous works. This chapter also
includes the analytical and numerical approaches to cross-sectional analyses. In
Chapter 3, the formulations are separated into two subchapters. The first part deals
with the internal forces on cross-sections. In the second part of Chapter 3, normal and
shear stress equations are formulated. Chapter 4 verifies the proposed finite element
model by comparing those found in the literature. Finally, Chapter 5 presents a
conclusion as a result of the issues covered in the earlier chapters. This chapter also

addresses recommendations for future researches in this area.






CHAPTER 2

LITERATURE REVIEW

This chapter is comprised of two subchapters that review analytical solutions and
numerical solutions such as the boundary element method, the finite difference
method, and the finite element method. In these subchapters, previous works in the
literature related to the determination of cross-section properties and stresses on cross-

sections are mentioned.
2.1. Analytical Solutions

E. Reissner and W. T. Tsai [6] proposed a mathematical solution to determine the
centers of shear and twist for cylindrical shell beams by combining the Saint Venant
torsion and flexure solutions with an appropriate version of the principle of minimum
complementary energy. Similarly, E. Trefftz [7] and A. Weinstein [8] presented the

analytical formulations of the centers of shear and twist for solid cross-section beams.

W. F. Chen, T. Atsuta [9] offered an analytical solution based on the Laplace equation
for torsion analysis of structures having I-beam, C-beam, and T-Beam cross-sections
by dividing them into rectangular sub-domains. In this study, the authors ignored

corner fillets in the formulation.

Hematiyan and Doostfatemeh [10] presented an approximate analytical method for a
hollow isotropic polygonal shape under torsional loading. This method enabled the
authors to estimate the variation of the shearing stress across the thickness of the beam.
Although this method provided acceptable results for thin-walled and thick-walled

beams, it did not address cover beams with open sections.

Timoshenko, J. Goodier [11] and J. J. Connor [12] explained uniform torsion theory

called Saint Venant Theory in their textbooks in detail. Similarly, non-uniform torsion



theory in the presence of warping shear and normal stresses for thin-walled beams is
addressed in the textbooks of V. Z. Vlasov [4] and Gjelsvik [13].

M. A. Gurel, R. K. Pekgokgoz, M. Kisa [14] proposed an approximated model and
mathematical formulation for the uniform torsion analysis of thin-walled, thick-
walled, and solid cross-sections. In their article, the formulas for the maximum
shearing stress and the angle of twist was derived. They compared the results with
several cross-sections having exact or numerical solutions. According to the obtained
results, the formulations gave highly accurate values for thin-walled sections. For
thick-walled and solid ones, however, this accuracy decreased gradually.

J. Francu, P. Novackova, P. Janicek [15] suggested an analytical solution for the
constant cross-section using the Airy stress function. The contribution dealt with
triangular, rectangular, and some other profiles. In the formulations, the authors solved

the rectangular profile case through Fourier series.
2.2. Numerical Solutions

Katori, H. [16] implemented formulations to determine the shear center of arbitrary
cross-sections using the finite element method. The author derived equations
concerning the warping, angle of twist, shear deflection and Lagrange's multipliers. In
the case study, the change of the coordinates of the shear center and centroid of the
circular cross-sections by circular notches of various diameters were investigated.
This problem was validated by the analytical solution of W.J. Strong, and T.G. Zhang
[17].

B. D. Mixon [18] developed a finite element tool for the calculation of beam cross-
section properties. In this thesis, warping independent and warping dependent cross-
section properties were achieved using three-node triangles and six node triangles.
The results were validated with Beam Tool of ANSY'S which is a commercial software

program that is highly useful in determining said properties.



G. H. Holze, C. P. Pulver, and Y. G. Giorgis [19] divided cross-section properties into
basic and advanced ones such that the basic properties were area and centroids, and
the advanced properties were torsional constants and the shear centers. They
developed a boundary element method to solve the equations of Laplace and Poisson.

F. Gruttmann, R. Sauer, and W. Wagner [20] proposed approximate calculations of
shear stresspes in prismatic beams exposed to pure torsion and torsion-free bending
using the finite element method. For numerical calculations, Dirichlet boundary
conditions of torsion-free bending problems are converted into Neumann boundary

conditions.

D. Bani¢, G. Turkalj, J. Brni¢ [21] developed a two-dimensional finite element
formulation for the stress analysis of elastic beams with arbitrary cross-sections
subjected to non-uniform torsion. The element stiffness matrix and load vectors were
obtained by primary warping functions corresponding to uniform torsion and
secondary warping functions to corresponding non-uniform torsion. The accuracy of
the presented algorithm was validated with analytical solutions of I-Beams and C-
Beams [9][22].

A. Stefan, M. Lupoae, D. Constantin, C. Baciu [23] aimed to determine the tangential
stresses of rectangular sections and L-sections subjected to uniform torsion using the
finite difference method. They concluded that the method displayed difficulties in

some areas of use, such as when applied to curved boundary domains.

El Darwish and Johnston [24] applied an approximate method to perform torsion
analyses of some structural shapes, such as T-beams, by using Prandtl's stress function
via the finite difference method. They offered a formulation for the value of the
torsional rigidity and shearing stress at the midpoint of the T-beam flanges. However,

it is impossible to find shearing stress at the web-flange junction fillet by this method.

Lamancusa and Saravanos [25] presented the torsional analysis of hollow square tubes
by a two-dimensional thermal analogy using the finite element method. They

evaluated the dependence of torsional properties on wall thickness. The obtained



results were used to generate closed-form algebraic expressions for maximum shear

stress and torsional stiffness.

Sapountzakis and Mokos [26] developed a boundary element method for bars with
arbitrary cross-sections subjected to an arbitrarily distributed or concentrated twisting
moment. The proposed procedure took into account the warping effects along the

member length.

Walter Pilkey [27], in the book Analysis and Design of Elastic Beams, explained all
forms of loading conditions that can be subjected to beams. Based on these
explanations, two programs named ThinWall and PlotStress were developed; these

programs took advantage of the finite element method.



CHAPTER 3

FORMULATIONS

3.1. Governing Equations and Internal Forces in Beams

In Figure 3.1, a beam with arbitrary cross section is shown in three-dimensional view.
In this thesis, all derivations and solutions are evaluated according to the coordinate
system shown in Figure 3.1.

Figure 3.1: 3-D Representation of a Beam with Arbitrary Cross-section

The governing equations of a beam are

EAW'" — aAT") = —f;

E(L, — 1,V = Lf, + L,f,
- (3.1)
E(L I, — L)WY = Lf, + 1, f,

EL,0" — GJ8" =m,



where 6 is the angle of twist, u, v, w and f, f,, f, are the displacements and the
intensities of distributed forces in x, y, z directions, respectively, m, is the intensity
of distributed torque, AT is the thermal force, E is the elasticity modulus, G is the shear
modulus, a is thermal expansion coefficient of the beam material, A is the area, I,,, I,

I,,, are the second moments of area, / is the torsional constant and I,, is the warping

constant of the cross section.

Then, the stress resultants in a cross section are

N = EA(u' — aAT)

M, = EL,,v" — EL,w"
M, = EL,v" — EL,w"
M, = EI,0"

Sy = ElL,,w"" —EL,v"
S, =ELv" — EL,w" (3:2)

M, = GJ®' —EL,0"

T, = GJO'
T, = —EI,0""
T=T,+T,

where N is the axial force, S, S, are the shear forces, M,, M, are the bending
moments, M,, is the warping moment, T; is the St.Venant torque, T,, is the warping
torque, and T is the total torque acting on the cross section. The resultants are
calculated either by solving the governing equations or by using a computational
method. One of the choices in computational methods is the finite element analysis.
The resultants N, M,,, M,, S, S, are obtained by using the standard bar and Euler-
Bernoulli beam finite elements. The resultants T, T,,, M,, can be obtained by a torsion

finite element.

10



Torsion Finite Element

The weak form of the torsion equation is
jg(EIWB“’ —GJ0" —m,)dx =0

where g(x) is a test function. Using integration by parts, the weak form can be
expressed as

Eleg”@”dx + G]fg’@’dx = (gT)g+ (g'M,)g +ngxdx

where the subscript B indicates the boundaries. Consider a finite element of length L
with node-1 at x = 0 and node-2 at x = L.

The twist angle 6 can be assumed as

0 = 026

where

0= %[(L +2x)(L—x)? Lx(L—x)? x?Q3L-2x) Lx*(x—1L)]

6
61
6,
03

S5 =
Let G be the vector of test functions. Using Galerkin method in which G = 2, the weak
form can be written as

El, f 270" 5dx + GJ f 27T sdx = (QTT)5 + (Q'M,); + f QTm, dx

Let

k, = fn”’ 2'dx and k= fn”:z'dx

11



f=@"); + (n’TMW)B + fnmedx

Then, the element level equilibrium equation can be expressed as

[El, k,, + G]ks]6 = f

Assembling the elements and imposing the boundary conditions, the nodal values of
the twist angle 8 can be determined. Then, the resultants T, T,,, M,, are computed as
T, = G]Q2'8

T, = —EI,Q2"8 3.3)

M, = EI,02"§

In this thesis, the normal and shear stress distributions over a cross section subjected
toN, My, M,, S,, S,, Ts, T,,, M,, are determined.

12



3.2. Determination of Stresses

Triangular Finite Element

Consider a three-node finite element of area a with vertex nodes in a coordinate

system yz.

3(ya. z3)

2(y2,22)
Figure 3.1: Representation of Triangular Element

The triangular coordinates are

i

a
fizg S1+6+83=1

The relations between yz and

c
AR [ I AR P U
$3 bs C3
where
Ay =23 — 23 by =y; =y, C1 = Ya2Z3 — Y323
A =23~ 723 b, =y1 = y3 C2 = Y321 — V173
a3 =7z, — 23 bs =y, =y C3 = V122 — YV2Z4

For area of the triangular element

1
a; = E(a2a3 — asa;)

13

(3.4)

(3.5)

(3.6)

(3.7)



Differentiation

) i a i a

dy LO¢; Lo¢;
i=1 i=1

Note that &; = 1 at node i and zero at nodes j and k. Then, a function f (y, z) can be

interpolated over a triangular domain as

f=¢fi & tés]s

where fn = f (Y, 2n).

Line Integration

A function fi’f} is integrated along an edge ij of length Lijas

1!
jfi[ff! ds =Ly v (3.8)
13}

Area Integration

A function &/¢ ]] &X' is integrated over a triangle of area « as

1K
in[ff!f}fdszza(1+]+1<+2)! (3.9)

Centroid, Cross-Sectional Area, Second Moments of Area

Let the section be discretized by N number of triangular elements. Let’s rs be an

arbitrary frame

14



r

Figure 3.2: yz and rs Coordinates Frame

The cross-sectional area is

N

N
1
A= @y =3 ) (ashs — ashy), (310)
n=1

n=1

Note that

N N
1
deA = Z f(’”1f1 + 128, +1383),dA = 52 an(ry + 12+ 13)y
n=1

A n=1 an

N N
1
deA =Z f(51f1 + 5,8, +5383),,dA = 52 an(s1+ 52 +53)p
n=1 an n=1

A

Then, the coordinates of the centroid C(7, 5) are

N
1 1
T =ZfrdA :ﬂz ap(ry +1ry, +13),
A n=1

N
1 1
§:ZdeA = ﬂz an(s;+ S, +S3)n
A n=1

15



Let yz be a centroidal frame parallel to rs. Then
y=r—r zZ=S—S
And the second moments od area are defined as

I, = szdA =i f(Z1f1 + 2,8, +2383)7dA

A n=1 an

N
— 1 2 2 2
—_ g an(Zl + Zz + Z3 + lez + Z2Z3 + Z3Z1)n

n=1

N
I, = fysz =Z f(}ﬁsﬂ + .8, + y3&3)2dA
A n=1q,

N
1
= Ez @ (Vi + ¥ +y5 +y1v2 + ¥2¥3 + V3Yin

n=1

N
Ly, = — fysz = - z f(Y1'f1 + 262 + ¥383)n (2181 + 2285 + 7383),dA

A n=1q,

1
an [E (7121 + Y222 + ¥323)n

n=1

1
+ E()’lzz + Y221 + Y223 + Y325 + Y371 + Y1Z3)n

Divergence Theorem

(3.11a)

(3.11b)

(3.11c)

Consider a beam section in the yz plane. Let A be the area and B be the boundary of

the cross section. The boundary B consists of the outer boundary B, and the outer

boundaries B;(i = 1, ...,n). Along each boundary, a set of coordinates ns is defined

such that s is tangent to boundary, n is normal to the boundary and xns is a right-

handed coordinate system. n = n,,j + n,k is the unit vector in the direction n.

16



Figure 3.3: Normal Vectors in Arbitrary Cross Section

Let F = F,j + F,k be a vector function. Then,

fV.FdA = fF.ndS

A B
where
V :a +£k

Let g(y, z) be a scalar function. Then,
fV.ngA = ng.nds
A B

Note that

v F—(a'+ak>(F'+ Fk)—a R+ (gF.
9F =\, + 57k ) 9hI + 9F; —ay(gy) L)

ag OF, dg 0F, 0F, 0F, dg dg
by tog, the,v95, 59 5, "5 +(”y@”ﬁ)
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a. d . dg . 9g .
—g($1+£k>.(Fy]+sz)+(ay1+azk).(Fy]+sz)
=gV.F+Vg.F

Then,

](gV.F+Vg.F)dA = ng.nds—> ng.FdA = ng.nds—JVg.FdA
A B A B A
Let F = Vf where f = f(y, z) is a scalar function. Then,

ng.Vf dA = ngf.nds—ng.VfdA

A B A

- ngzf dA = ngf.nds—ng.VfdA

B A

Consider N number of functions g,(n =1, ..., N). Let

g = [91(}’»2) 91(}"2) gN(YIZ)]

Then,

ngVZf dA = ngVf.nds—ngT.VfdA (3.12)
A B A
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3.2.1. Stresses due to Normal Force and Bending Moments
The normal stress due to axial force N and bending moments M,, and M, is

N

Oxx = 1 + m [My(IzZ + Iyzy) - M,(I,z + Iyzy)] (3.13)

3.2.2. Stresses due to Shear Forces

Consider a beam cross section in the yz plane. Let the shear forces S, and S, act

through the shear center 0. Therefore, there is no twisting in the section. The stresses
on the section are the normal stress o, and the shear stresses 7,, and t,,. The

equilibrium requires that

00y N 0Ty N 0Ty,
0x dy 0z

=0

Figure 3.4: Shear Center and Centroid in Arbitrary Cross Section

Noting that
1
Oxx = 2 [My(lzzz + Iyz)’) - Mz(lyyz + Iyz)’)]
(Iyylzz - Iyz )
M}, =S,
M, =S,

19



we get

0Tyy 0Ty,

3y "oz - o2

where

h(y,z) =

(I . —1] 2) [Sy(IZZZ + IyzY) + SZ(IyyZ + Iyzy)] (3.14)
yylzz = lyz

Let ¢ (y, z) be a stress function such that

dg dg
Tey = 5= and Ty, = s

dy

Then, the governing equation is obtained by substituting eg. (2) and eq. (3) into eq.
(4)

0%p 0% )

a—yz-l‘ﬁ——h(y,z)—)V o+h=0

The Cauchy’s relation can be written on the boundaries as

Oxx Txy Txz]TO0 0

7, 0 0lln,] lo

noting that the outer and inner boundaries of the beam are stress free. The second and
third rows are identically satisfied. The first row gives

TyxyNy + TyzN; =0

which can be written as

dp 0do
dy 0z

o o
Eny + E

This condition applies to both outer and inner boundaries.

n
nZ=O—>[ “nﬂ=0—>V<p.n=OforBi(i=0,1,...,N)

The weak form is

fg(Vz(p+h)dA=O
A

Consider N number of functions g,,(n = 1, ..., N). Let

g=9:0.2) 9.(v,2) .. gy 2)]

20



Then,
ij(V2 @+h)dA=0 ngVZ pdA = — nghdA
A

A A

rearranging
_—

Using the Green-Gauss Theorem,

ng.Vz pdA =ngV¢.nds—ngT.V¢dA

A B A

Then, the weak form can be written as
j VgT.V pdA = f 9 Vp.nds — f gThdA
A B A

The first integral on the right-hand side is zero due to the boundary condition
Ve.n = 0. Then, the weak form is

ngT.V pdA = nghdA

A A

The solution of the equation (7) is carried out with the finite element formulations.
Finite Element Formulation

Assume the stress function within the nt" element as

@1
p=1[5 & &l|92|=Pq
]
Then,
9] by [ 08 0
_ oyl 1 lay ay ayll|
V‘P—qu—|a|[€1 & &3] —|a P P |<,02
- 2] i ﬁ ﬁj @3
lazJ dz 0z 0z
@1
1ra a, aj
Bq_ZA[bl b, b3] z;

In Galerkin method, the test functions are chosen that
_(')(p P-V VP =B
= g = s = =
g dq g g

Then, the weak form can be written for a finite element as
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f BTBqdA = f PThdA
A A

Then, the element level equilibrium equations are

kq=f
where
k = j BTBdA
(3.15)
1 (aqay + b1by) (ajaz + biby) (ajas + bibs)
yy (azaqy + byby) (azay + byby) (azas + bybs)
(azay + bsby) (aza, + bsby) (azas + bsbs)
f = f PThdA
a
Sy r S, T
= W.f P (Iyyy + IyZZ)dA +W.f P (IZZZ + Iyzy)dA
yy'zz ~lyz - yylzz —lyz - (3.16)

A 211

1 2 1] [(s Ly +S Iyz)

= 5 YZ

41
+ (Sylpz + Sylyz) [22]
Z3

As a result, the shear stresses in the element due to shear force S are calculated as

@1

1 [al a, a3] (3.17)

] = Ba = 24lb, b, b

3

Shear Center

The torque created by 7, and 7, is

T = f(szy - TxyZ) dA = Z Ay [(sz)nﬁ - (Txy)nZ]
4 n=1

(3.18)

| =

N
3 Z sz()’1 +y, +y3) - Txy(Zl +2z; + 23)]
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Nothing that, for the present three-node element, the shear stresses z,,, and 7,, are
constant over the element. The shear center 0(y,, z,) is a point in the cross-sectional
plane such that the shear forces acting through it do not cause twisting of the section.
Then, y, is determined by taking S; # 0 and S, = 0, and z, is determined by taking S,
#0and S;=0as

T T

y0=S—Zandzo=—g (3.19)

The shear center is also the twist center about which a section rotates under the action

of a torque.
3.2.3. Stresses due to Saint Venant’s Torque

Consider uniform torsion such that 8’ is constant and 8 = 6x. In this situation, torque
and angle of twist rate are constant along the beam. In addition, the warping

displacement is dependent of y and z coordinates, and independent of x coordinate.

Then, the displacements are

u=awl'
v=—(z—2y)0' (3.20)
w=(y—y)0

where @(y, z) is the warping function. Then, the nonzero strains and stresses are

(03 (0@
ny=9(@—2+zo> sz:9<£+3’_3’0)

, (00 (0@
Ty = GYyy = GO (E—Z+ZO> Ty = GYyy = GO <£+y—yo)

Then, St. Venant torque is defined as

T, = f (Tazy — Txyz) dA = GJO’
A
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where

0D o
]=j[(}’_3’0)6_(:—(2—20)£+(3’_Y0)2+(Z—Zo)2]d14

I 0w
_ 2 2 _ _ — -
=1, +1, + A(y5 + z5) +Af [(y Yo) PP (z — zy) 3y dA

is the torsional constant of the section.
The equilibrium condition gives

dy 0z dy? = 0z?

Thus, the governing equation is obtained as V2 @ = 0
Cauchy’s relation gives the boundary conditions as

0w 0w
(E—Z+Zo)ny+(£+y—yo>nz=0

dw o
- (@) ny, + (5) n, =(z—- Zo)ny —(y = yo)n,

Let 2 = (z — zp)n, — (y — yo)n,
Then, boundary condition is Vo.n = 4

This condition must be satisfied along external and internal boundaries B; (i =
0,1,..,N)

The weak form is obtained by using the governing equation as

f gTV2 BdA =0
A

Using the divergence theorem
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ngVZ wdA = ngV&ndS—ngT.V&jdA = ng/ldS—ngT.V&JdA
B A B

A

Then, the weak form becomes

j VgT.VidA = f g7 ds

A A

Finite Element Formulation

Assume the warping function within an element as

o=Pq=1[§ & 53[ ]

Then,

Recall that g = P - Vg = VP = B. Then, the weak form can be written for a finite
element as

f B"BqdA = f PT2dS

a B

where 8 denotes the element boundary. Then, the element level equilibrium equations

are kq=f
where
- f [B]7BdA
a
1 (ayaq + byby) (aia; + biby) (aias + bibs) (3.21)
Ta (azay + byby) (azay + byby) (azas + bybs)
(azay + bsby) (aza; + bsby) (asas + bsbs)

The force vector can be expressed as

f=Ffu+fatfan (3.22)
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where f;; is the force vector related with the edge ij. Note that the normal vector

components for the edge ij are

7 Ly ’ Ly

Then, f;; can be evaluated as follows:

If the edge-12 is not on the boundary, then

0
fiz = [O]
0

If the edge-12 is on the boundary, then
1 r[&
fi2 = I, f & [ [(2181 + 228, — 20) (25 — 21) + (V181 + Y282 — ¥o) (2 — y1)1ds
1
i2 LO

If the edge-23 is not on the boundary, then

0
fa3 = [0]
0

If the edge-23 is on the boundary, then

0
fa3 = Li f [EZ] [(228, + 2383 — 20) (23 — 25) + (328, + V383 — Vo) (¥ — ¥,)]ds
23 £

If the edge-31 is not on the boundary, then

0
fa1 = [0]
0

If the edge-31 is on the boundary, then
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31
1
fs1= L_31 j [O] [(258; + 218 — 20) (21 — 23) + (V38 + Y181 — Yo) (y1 — ¥3)]ds

N
1
dA = 3_2 an(al + 62 + 63)71
n=1

| =

1w @y
Joar=3Y [ & f3][§2 -

A n=1gq, w3

Then, the warping function is normalized as w = @ — . And, @ is replaced by w in

all equations. Note that, within a finite element

[9¢]
loy|_o _ [a_“’ a_“’]_ T pT
Ilawl_v“’_Bq_’ 3y 9z1-98B
0z

Then, for a section discretized by N number of finite elements, J can be expressed as

dw Jw
l=Iyy+IZZ+A(yg+Zg)+J-[(y_YO)£_(Z_ZO)@]dA
A

N
Zog — Z
=Ly + 1, + A2 +22) + Z f [qTBT ° ]l dA

= Yo (3.23)
=L, + 1, + A(y§ + z¢)
N a, b
1 VPl r3z,—z, — 2z, — 2
+_§ W, w0, wllas b [ 0 1 2 3]
6 (1 2 3][2 b2 y1+Y2+y3— 3y
n=1 as 3

The shear stresses at point (y,z) in an element due to St. Venant torque T, are

evaluated as
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dw
Tyy ,{E_Z-I_ZO} ) Zy—Z T Zo—Z
[sz =G0 50 |= 69 Bq+[y—yo] =7|Bat y—yo]
15, tY Yol

_TS 1 [al a, a3] 21 ZO—Z] (324)
~ J[24lby by bs wz +Y‘Y0

3.2.4. Stresses due to Warping Torque and Warping Moment

If 6'=6"(x), then the torsion is non-uniform. In this situation, torque and angle of twist
rate is not constant along the beam. Furthermore, the warping displacement is

dependent of x, y, and z coordinates.

The normal stress in the warping is

o, = Ew@"’

The warping moment M,, and warping torque T,, are defined as

M, = fax wtds = EI,0"
y

T, = -M, = —EL,0"

Then, the normal stress due to warping moment M,,, is

M w, + w, + w3

Ox = I_W(wn)ave where (wn)ave = 3 (3,25)
w

The equilibrium requires that

0Tyy 0Ty, 00y 0Tyy 0Ty, 00, T,
= O = — = —E 9”’ = —
ay + 0z + 0x - dy + 0z dx @ Iww

Let ¢(y, z) be a stress function such that
_ 09 d¢

Txy —E and Tyz :E
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Then, the governing equation is obtained as

azd) azd) TW 2 TW
a—yz-l‘ﬁ—awﬁv (;b—aa)—o

The Cauchy’s relation can be written on the boundaries as
TyayNy + Ty, = 0> Vep.n=0

This boundary condition applies to both outer and inner boundaries. Then, the weak

formis
T, T,
ng (V2¢> —I—w>dA =0- ngVZd)dA —jg I—wdA =0
A w A A
Using the Green-Gauss theorem and imposing the boundary conditions
ngVqudA = ngqu.ndS—J-VgT.V(pdA = ngT.V¢dA
A B A A
Then, the weak form is
Ty
ngT.qudA = —I—nga)dA =0
w
A A

Finite Element Formulation

Assume the stress function within an element as

(o
p=Pq=1[5 & &l [d)z]
$3

2Ab b,

V=VPq=— [, ][¢2

Recall that Vg = VP = B. Then, the weak form can be written for a finite element as
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fBTB dA=—T—WfPT dA
q I W
w

a

Then, the element level equilibrium equations are kq = f

(ayay + byby) (aja, + biby) (ajas + bybs)

k= jBTBdA =12 (aza, + byby) (aya, + byby) (ayas; + bybs) (3.26)
(asa, + bsby) (asza; + bsb,) (asas + bsbs)
j 2 1 1] [ ]
=—— | PTwdA=—"-1 2 1 3.27
121 11 2 (3.27)
The shear stresses in an element due to warping torque T,, can be calculated as
[99]
Tey] _ |0y ] _ — I 2
[sz] |0q§| Vo =Bq = 2a by bz (3:28)
6ZJ
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CHAPTER 4
NUMERICAL EXAMPLES

4.1. Solid Sections
4.1.1. Rail Section

An A100 Crane Rail is a type of crane used for railroads. It can be exposed to different
loadings such as transversal and torsional forces. In this example, the rail section is
subjected to the shear force in the negative z-direction. The problem is compared with
the German code DIN 536 Design Specification [28], and the article “Shear Stresses
in Prismatic Beams with Arbitrary Cross—Sections” [20]. The cross-section properties
are matched with said German design specifications [28], and the warping function,
shear stress, and shear flows are checked with the aforementioned article by F.
Gruttmann, R. Sauer, and W. Wagner [20]. In Figure 4.1, the loading type and meshed
geometry are shown. The cross section is discretized by 1791 elements. The

geometrical data for an A100 Crane Rail is given in Appendix A.1.

V4

1 S, = —1000 N
y Jv

®
(Yo, 20)

Figure 4.1: Loading Type and Meshed Geometry for the Rail Section

In Table 4.1, the warping constant among cross-section properties is compared with
the article [20] while other parameters are tested with the DIN 536 Design

Specifications [28] since the warping constant is not available in the said article.
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Table 4.1: Comparison of Cross-section Properties for the Rail Section

Article and DIN

Property Name Present Study 536 Error (%)
Area (mm?) 0.95013E+04 0.94700E+04 0.33
Centroid, yc (mm) 0.00000E+00 0.00000E+00 0.00
Centroid, z (mm) 0.42477E+02 0.42100E+02 0.89
Shear Center, ys (mm) 0.00000E+00 0.00000E+00 0.00
Shear Center, zs (mm) -0.98812E+01 -0.98000E+01 0.82
Inertia, lyy (mm) 0.86852E+07 0.85600E+07 1.44
Inertia, 1z, (mm) 0.13378E+08 0.13450E+08 0.54
Torsional Constant (mm?®) 0.67555E+07 0.67070E+07 0.72
Warping Constant (mm®) 0.39299E+10 0.39940E+10 1.63

Having done the comparison of the cross-section parameters, the rail is analyzed under
shear force. In Figure 4.2, the distribution of the shear flows is shown. They have
higher intensity in the middle corner regions. According to Figure 4.3, the article [20]
obtains the maximum shear stress value as -0.41 MPa. Likewise, the study conducted

herein resulted in -0.39 MPa. As seen in the figure, the upper and lower zones are

stress-free.

=222 22 NS

Figure 4.2: Comparison of Shear Flows for the Rail Section
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Figure 4.3: Comparison of the Shear Stresses for the Rail Section (MPa)

Lastly, the warping function is plotted in Figure 4.4. At its maximum value, the article
[20] obtains 1888 mm?, and the study conducted for this thesis results in 1889 mm?.
As seen in the figure, the cross-section warps at the corner zones.

Figure 4.4: Comparison of the Warping Functions for the Rail Section (mm?)

In this example, the obtained results show that cross-section properties, the shear flow
diagram, shear stress values, and warping functions are consistent with those in the

article [20] and the design specification document [28].
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4.1.2. Elliptical Section

In Timoshenko and Goodier’s book [11], an elliptical cross-section under a torsional
moment is solved analytically. In this problem, solved herein, results for torsional
shear stresses and warping functions are compared to the values in this book. The
analytical formulations in Timoshenko and Goodier’s book are given below.
Respectively, a and b denote the long radius and short radius. M, stands for applied

torque in the problem. These parameters are shown in Figure 4.5.

a
Figure 4.5: Geometrical Parameters and Meshed Model for the Elliptical Section

The torsional shear stresses and warping function in the book [11] are formulated as:

2M,z 2M,y
by = T b3 Tz = 103D (4.1)
(b* — a?)yz
= ‘- 4.2
@ (b% + a?) (42)

Following the analytical formulations, the finite element model is investigated. The
cross-section is discretized by 2966 elements in Figure 4.5. To illustrate the inputs
clearly, the geometrical data are given in Table 4.2. Based on these data, the shear
stresses and warping function are solved by the formulations in Timoshenko’s book

and the FEM Study.

34



Table 4.2: Input Values for the Elliptical Section

Symbols Inputs Values
M, Torsional Moment (N.mm) 10000000
G Shear Modulus (MPa) 28000
b Short Radius (mm) 30
a Long Radius (mm) 50

In Figure 4.6 and Table 4.3, the shear stress distribution and maximum shear stress

values are illustrated, respectively.

tau xy

140
112
' 84
56
28
0
-28
-56
-84
-112
-140

Figure 4.6: Shear Stress Distribution over the Elliptical Section (MPa)

Table 4.3: Comparison of the Shear Stresses over the Elliptical Section

The Book [11] Present Study

Stress Component  Location (y,z) (MPa) (MPa) Error (%)
Ty 0, b) -141.471 -139.941 1.08
Ty 0, -b) 141.471 140.047 1.01
Tyz (a 0) -84.882 -84.304 0.68
Tyz (-4 0) 84.882 84.243 0.75
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Ty —PresentStudy ——The Book [11] T,, ——PresentStudy ——The Book [11]
142.000 85.000

140.000 84,000 /———_—_—_
138.000 //—’—__ 83.000

136.000 82,000

134,000 81.000

132.000 80.000

500 1000 1500 2000 2500 3000 3500 4000 500 1000 1500 2000 2500 3000 3500 4000
The number of elements The number of elements

Figure 4.7: Variations of the Stresses in terms of the Number of Elements (MPa)

In this problem, a convergence test is performed to get the optimum stress results by
increasing the number of mesh elements. In Figure 4.7, the variations of the shear

stresses in the y and z directions are shown, respectively.

Table 4.4: Comparison of the Warping Functions over the Elliptical Section

The Book [11] (mm?) Present Study (mm?) Error (%)
Maximum Warping Function
Value 352.941 352.551 0.11
Minimum Warping Function
Value - 352.941 - 352.498 0.13

Lastly, Figure 4.8 shows that warping functions have the absolute maximum values at
the corner regions. These values range between 352.941 mm? and -352.941 mm?. As
shown in Table 4.4, the errors found for maximum and minimum warping values are
0.11% and 0.13%, respectively.
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4.1.3. Variable Section

In this example, a beam having a variable cross-section is investigated under a
distributed torsional moment. The dimensions of the cross-section are presented in
Figure 4.9. This example was previously solved by Sapountzakis using the Boundary
Element Method described in the author’s article [26]. In this article, torsional and
warping rigidities are obtained for the chosen sections. Moreover, the variations of
normal and shear stresses along the beam due to Saint VVenant torque, warping torque

and warping moment are shown. The material properties are given in Table 4.5.

X
_.~"3a

AN

n

A

a

[=8.0m

t'}'n,= IkNm/m

a=30cm

Figure 4.9: Geometrical Dimensions for the Beam of Variable Cross-section [26]

37



Table 4.5: Material Properties for the Beam of Variable Cross-section

Symbols Name Values
E Elastic Modulus (MPa) 30000
G Shear Modulus (MPa) 12500
v Possion Ratio 0.20

Firstly, the comparisons for torsional rigidity and warping rigidity are made with
Sapountzakis’s article [26]. In its formulized form, the torsional rigidity is defined as
G.]; whereas, the warping rigidity is identified as E. I,,. While the torsional rigidities

are checked in Table 4.6, the warping rigidities are matched in Table 4.7.

Figure 4.10: Cross-sections located at Fixed End 1 (left), Middle, Fixed End 2 (right)

In this example, the constraint at the larger cross-section is called fixed end 1 while
the restriction at the smaller cross-section is referred to as fixed end 2. According to
Table 4.6 and Table 4.7, there is a minor difference between BEM solution and FEM

solution.
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Table 4.6: Comparison of Torsional Rigidities for the Beam

Location BEm-?xgon FEI(\l/I\LSnc]):‘lrJ]';i)on Difference (%)
Fixed End 1 3.29340E+14 3.33728E+14 1.33

Middle 2.60920E+14 2.64285E+14 1.29
Fixed End 2 1.89960E+14 1.92541E+14 1.36

Table 4.7: Comparison of Warping Rigidities for the Beam

Location BE:\,/I\li:)L:Zion FE(I\l/I\LSn(:Ir:Ei)on Difference (%)
Fixed End 1 3.05950E+19 3.04767E+19 0.39

Middle 1.35690E+19 1.34889E+19 0.59
Fixed End 2 3.98450E+18 3.93471E+18 1.25

Then, internal forces experienced along the beam must be determined. For this
purpose, the beam is divided into 10 elements and 11 nodes, as in Figure 4.11. Each

element has a length of 800 mm.

8000 mm

800 mm

gl R
(C]

8

5 6 7

4

B @
N Q-
(=]
H
H

Figure 4.11: Discretization of the Beam
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In Table 4.8, loads such as the SV torque, warping torque, and warping moment are
tabulated for each node. It is clear that the maximum warping loads are appeared at
the fixed ends. Disparately, the SV torque does not exist at these locations. Moreover,
the warping loads have relatively smaller values at middle nodes than at fixed nodes.

Table 4.8: Internal Forces for the Beam

Node Number St. Venant Torque (N)  Warping Torque (N)  Warping Moment (N)

1 0.0000E+00 3.8622E+06 -1.2351E+09
2 3.3104E+06 2.5269E+05 3.7362E+06
3 2.7205E+06 9.7921E+03 5.8948E+07
4 1.9313E+06 -4.5165E+03 5.8022E+07
5 1.1302E+06 -5.3237E+03 5.3892E+07
6 3.2838E+05 -5.3941E+03 4.9559E+07
7 -4.7379E+05 -5.4000E+03 4.5201E+07
8 -1.2763E+06 -5.4104E+03 4.0834E+07
9 -2.0790E+06 -5.6644E+03 3.6389E+07
10 -2.8534E+06 -2.8539E+04 2.7270E+07
11 0.0000E+00 -2.7426E+06 -4.8216E+08

After determining the internal forces, a cross-sectional analysis is carried out for each
section. First, the change of the shear stress along the beam for point A is investigated.
Then, the variation of the normal stress over the beam for point B is examined.

Additionally, the stress graphs are obtained for the maximum stress cases.
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Figure 4.12: Variation of the Shear Stresses along the Beam at Point A

In Figure 4.12, the change of the shear stresses along the beam due to St. Venant torque
and warping torque are illustrated for point A. The maximum stress arising from the
warping torque is found as -70.371 kPa at fixed end 2. In Sapountzakis’s article this
value is attained as -73.774 kPa. Moreover, the maximum value for the St. Venant
torque is obtained as -40.043 kPa while the BEM solution results in -43.332 kPa. As
such, the results found as a consequence of this thesis, as displayed in Figure 4.12, are
significantly close to the results found by Sapountzakis. Besides, it is easily deduced
from the graph in Figure 4.12 that the contribution of the shear stress due to warping

torque should not be ignored.
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|tau|

Figure 4.13: The Absolute Resultants of the Warping Shear Stresses (kPa)

In Figure 4.13, the absolute shear stress values for the warping torque are illustrated.
At point A, the absolute value is observed as 73.774 kPa. Based on this figure, shear
stress is not observed in the middle zone; this shear stress free zone is shaped like a

circle.
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Figure 4.14: The Absolute Resultants of the St. Venant Shear Stresses (kPa)
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In Figure 4.14, the absolute shear stress values for the St. VVenant torque are displayed.

At point A, the magnitude of the stress is stated as 43.332 kPa. Also, it is obvious that

stress is concentrated at the innermost corners.
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Figure 4.15: Variation of the Normal Stresses along the Beam at Point B

Lastly, the distribution of the normal stresses along the beam due to the warping

moment is depicted in Figure 4.15 for point B. Based on this graph, the normal stress

reaches the maximum value at fixed end 2, as it does for the warping shear stress. At

this location, the normal stress is read as 154.667 kPa from the graph. In the BEM

solution [26], it was found as 158.219 kPa. Furthermore, as it is seen in both Figure

4.12 and Figure 4.15, the effects of the warping decrease away from the fixed ends.
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In Figure 4.16, the normal stress values due to warping moment are shown. At point
B, the value is read as 154.667 kPa. Based on the figure, the maximum stress values

occur at the outer corner regions.
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Figure 4.16: Distribution of the Normal Stresses (kPa)

44



4.2. Thick-walled Sections
4.2.1. Hollow Square Section

Structural elements with hollow square cross-sections are commonly used in several
engineering systems such as automotive chassis, truss and framed structures,
mechanisms, and robot arms. The torsional behavior of a square having hollow tubing
sections is an important design consideration in many mechanical systems. If this
section has thin walls, the analytical solutions for the torsional constant and torsional
shear stress can be found in various design handbooks [25]. On the other hand, in the
case of thick-walled cross-section, the problem must be solved by numerical methods,
such as finite element analysis. In Figure 4.17, the change of torsional constant is
shown in terms of the thickness/length ratio to decide whether the cross-section is thin-
walled or thick-walled.

thickness

length

Figure 4.17: Hollow Square with Uniform Thickness

Thin walled Theory formulations by Roark [29] are;

] =t(a—1t)° (4.3)

Tmax = T/Zt(a — t)2 (4.4)
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Figure 4.18: Distribution of the Torsional Constant in terms of Thickness/Length

As seen in Figure 4.18, when the thickness/length ratio is higher than 0.075, the values
of torsional constants found by thin walled theory and within this study differ by 5%.
In addition to this, when the thickness/length ratio is 0.240, the torsional constant starts
to decrease. In other words, the thin-walled theory is strictly not applicable after this
ratio. Lamanusca and Saravanos [25], and this study reach the same values at each

point.

Z

L.

Figure 4.19: Discretization of the Hollow Square
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Accordingly, in order to be able to evaluate a thick-walled problem the
thickness/length ratio is selected as 0.250. Figure 4.19 depicts a hollow square with a
60 mm length and 15 mm thickness. The cross-section is discretized by 1211 elements.
The applied load is 5x10° Nmm. The torsional constant and maximum shear stress
values are compared with the article “The Torsional Analysis of Bars with Hollow
Square Cross-Sections” by Lamanusca and Saravanos [25]. Said authors generated an

algebraic formulation for torsional stiffness and maximum shear stress.

tau xy

Figure 4.20: Shear Stress Distributions for the Hollow Square (MPa)

In Figure 4.20, according to the results, the maximum shear stresses are obtained as
112.3 MPa. This value is found as 110.1 MPa in the aforementioned article [25].
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4.3. Thin-walled Open Sections
4.3.1. Channel Section

Channel beams are widely used in many engineering applications such as building
structures and aircraft frames. The example problem analyzed herein is compared to
the thesis entitled “Finite Element Stress Analysis of Elastic Beams under Non-
Uniform Torsion” [21]. The example was validated analytically by a similar example
in Chen and Atsuta [9]. The geometrical data for the example problem is given in
Figure 4.21.

My g 20Mm E .

L d0mam

Figure 4.21: Channel Beam Problem under Torsional Moment [21]

Firstly, the internal forces along the beam are calculated. These forces are the St.
Venant Torgue, warping torque, and warping moment. Then, the normal and shear
stress values are obtained for the A-B-C-D-E-F section cuts. The comparisons of

stresses are at x =0, x = 1/10, and x = .
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Figure 4.22: Distribution of the Angle of Twist

As can be seen from Figure 4.22, the angle of twist reaches a maximum value of
0.0302 rad. This value is the same as the aforementioned article [21].
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Figure 4.23: Distribution of the Saint Venant Torque
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Figure 4.25: Distribution of the Warping Moment
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As illustrated in Figure 4.23, Figure 4.24, and Figure 4.25, the maximum values of
warping moment and warping torque are at the fixed end while the maximum value
of Saint Venant Torque is obtained at the free end. Thus, the warping normal and shear
stresses reach high values at the fixed point, but shear stresses due to Saint Venant

torque have high values at the free end.

sgm xx
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Figure 4.26: Stress Distribution for the Warping Moment at the fixed end (MPa)

Based on Figure 4.26, the magnitude of the normal stress peaks at the tip of the upper
flange. The region at which the lower flange and the web intersects is stress-free. In
Table 4.9, the stress values for section cuts A, C, E, and F are tabularized. These values

are compatible.
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Table 4.9: Comparison of the Warping Normal Stresses for the Channel Section

Section Location Numerical (MPa) = Analytical (MPa)
A-A 18.39 18.07
C-C atx=0mm -12.98 -12.82
E-E (fixed end) 18.69 18.87
F-F -58.99 -59.58
A-A 10.41 9.92
C-C -7.41 -7.03
E-E at x= 100 mm 10.19 10.36
F-F -33.34 -32.70
A-A 0.00 0.00
C-C at x = 1000 mm 0.00 0.00
E-E (free end) 0.00 0.00
F-F 0.00 0.00

tau xz

[

Figure 4.27: St

L,
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Table 4.10: Comparison of the St. Venant Shear Stresses for Channel Section

Section Location Numerical (MPa) = Analytical (MPa)
B-B atx=0mm 0.00 0.00
D-D (fixed end) 0.00 0.00
B-B 6.27 6.79
D-D at x = 100 mm 6.27 6.79
B-B at x = 1000 mm 13.91 14.97
D-D (free end) 13.91 14.97

Figure 4.28: Stress Distribution for the Warping Torque at fixed end (MPa)

Table 4.11: Comparison of the Warping Shear Stresses for the Channel Section

Section Location Numerical (MPa) = Analytical (MPa)
B-B atx=0mm 1.32 1.27
D-D (fixed end) 0.81 0.92
I o
B-B at x = 1000 mm 0.00 0.00
D-D (free end) 0.00 0.00
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The analysis results are consistent with the analytical solutions for St. Venant shear
stresses, warping shear stresses, and warping normal stresses.

Figure 4.29: Shear Flows under St. Venant and Warping Torque

In Figure 4.29, the shear flows are indicated for shear stresses due to St. Venant and
warping torques, respectively. In areas shown by red circles, stress concentration is

observed. This undesired aspect is handled by filleting or chambering the radius.
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4.4. Thin-walled Closed Sections
4.4.1. Multicell Section

Multicell sections are selected as thin-walled closed sections. This example is
compared with a thin-walled analytical solution. The cross-section has outer
dimensions of 60 mm x 100 mm, and a length of 300 mm. The wall thickness is 3 mm.
In addition, both inner walls are centered according to the parallel walls. The material
properties are given in Table 4.12.

Figure 4.30: 3D Representation of the Multicell Section under Applied Loadings

Table 4.12: Material Properties for the Multicell Section

Symbols Name Values
E Elastic Modulus (N.mm) 80000
G Shear Modulus (MPa) 28000
v Possion Ratio 0.25
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In Figure 4.31, the cross section is represented as thin-walled by its midlines. The
cross-section is discretized by 2314 elements.

57 mm

97 mm

Figure 4.31: Thin-walled Representation of the Multicell Section

In Figure 4.32, the numbering used in the thin-walled solution is shown. In this figure,
s denotes the distance from the starting point.
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Figure 4.32: Numbering for the Thin-walled Solution
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Table 4.13: Comparison of the Cross-section Properties for the Multicell Section

Property Name Thin-walled Solution Present Study Difference (%)
Centroid, yc (mm) 51.344 51.208 0.26
Centroid, z; (mm) 28.500 28.500 0.00

Shear Center, ys (mm) -2.844 -2.569 6.15
Shear Center, z; (mm) 0.000 0.000 0.00
Area (mm?) 1.24100E+03 1.22250E+03 1.49
Inertia, I,y (mm®) 6.11624E+05 6.06000E+05 0.92
Inertia, Iy, (mm?) 0.00000E+00 0.00000E+00 0.00
Inertia, 1, (mm*) 1.36485E+06 1.35735E+06 0.55
Torsional Constant (mm?®) 1.19103E+06 1.22202E+06 2.60
Warping Constant (mm®) 4.02331E+07 4.30505E+07 7.00

In Table 4.13, a comparison of the thin-walled solutions and those found in the present
study is made. In Table 4.14, internal forces are obtained for the free end. Based on
these forces, a cross-sectional analysis is performed to determine the normal and shear

stresses.

Table 4.14: Internal Forces for the Multicell Section

Internal Forces Values (N)

N 10000
Sy 0

S, -3000
M, 285000
M, -456560
T -506832
T,, 345226
M, 3647112
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In Figure 4.33, the distribution of the warping functions and warped section are
visualized. In Table 4.15, the maximum and minimum warping function are compared
to the analytical solutions for Point 1 and 5.

warping 2 \J/

Figure 4.33: Distribution of the Warping Functions for the Multicell Section (MPa)

Table 4.15: Comparison of the Warping Functions for the Multicell Section

Thin-walled Solution Present Study

. 1 0,
Point (mm?) (mm?) Difference %
W Minimum 1 -359.026 -365.704 1.83
arping Function
Maximum 5 359.026 365.483 1.77

Warping Function

In Figure 4.34, the distribution of the shear stresses due to T, and T,, are illustrated,
respectively. In Table 4.16, the shear stress values for S, S,, T, and T,, are matched

with the analytical solutions for Point 2.
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Figure 4.34: Distribution of the Shear Stresses of the Multicell Section (MPa)
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Table 4.16: Comparison of the Shear Stresses of the Multicell Section

Thin-walled Solution Present Study Difference

Forces Point (MPa) (MPa) %
Sy, Sz 2 -2.669 -2.517 5.70

T 2 -15.278 -15.312 0.22

T, 2 -54.894 -53.993 1.64

In Figure 4.35, the distribution of the normal stresses due to N, M,, M, and M,, are
shown, respectively. In Table 4.17, the normal stress values for N, M,,, M, and M,,

are checked with the analytical solutions for Point 8.

sgm xx sgm xx
N & My & Mz A

Table 4.17: Comparison of the Normal Stresses of the Multicell Section

Thin-walled Solution Present Study Difference %

Forces Point (MPa) (MPa)
N,M,, M, 8 36.611 36.505 0.29
M, 8 32.981 31.695 3.90

In this example, the cross-section properties, warping functions, normal stresses, and
shear stresses are compared with the thin-walled analytical solutions. All results are

appropriately similar.
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CHAPTER 5

CONCLUSIONS

5.1. Summary

The proposed finite element algorithm allows for conducting stress analyses of elastic
beams with arbitrary cross-sections subjected to combined loadings. This study has
consisted of five chapters, namely the Introduction, Literature Review, Formulations,
Numerical Examples, and this chapter entitled, Conclusions. In Chapter 1, beams as a
structural element are identified. The importance of cross-section properties and the
uniform and non-uniform torsion theories are clarified. Moreover, the purpose and
content of the thesis are expressed. In Chapter 2, related studies are offered in the form
of a literature review by focusing on previous works. This chapter also includes the
analytical and numerical approaches used to perform cross-sectional analyses. In
Chapter 3, the formulations are given for the determination of internal forces and
stresses. In the first part, equivalent loads are found at any cross-section along the
beam. In the second part, 2D analysis is performed to obtain cross-section properties,
warping functions, normal stresses, and shear stresses. In Chapter 4, beams with
different cross-section types are analyzed to demonstrate the range of the applications

of this study.

5.2. Conclusions

The results obtained in the examples affirm the developed finite element algorithm.
All results are in a good agreement. In some problems, there are slight differences
between analytical solutions and numerical solutions due to the number of elements
and stress concentrations. These differences can be reduced by increasing the number

of elements, and/or filleting or chamfering the sharp corners. The developed
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formulations can aid mechanical engineers in regards to stress analysis of cross-

sections while taking into consideration the warping effects.

5.3. Future Works

The effects of large axial forces on bending and torsion have not been covered in the
present study. These effects can be included in future works.
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APPENDICES

A.1. DIN 536 Design Specification

UDC 621.87:625.143.1-034.14-423 DEUTSCHE NORM September 1991
Crane rails DIN
Haot rolled flat bottom crane rails (ype A) 536
Dimensions, section parameters and steel grades Part 1
Kranschianen; Malle, statische Werta, Suparsedes December 1874 adition.

Stahlgorten fiir Kranschienen mit Fulflansch Form A

In keeping with current practice In standards published by the Infernational Crganization for Standargization (150), a comma
hes been uged throdghout &5 the decimal marker.

Dimensions in mm

1 Scope and field of application

Thiz standard specifies requirements for hot rolled crane rails with a flat bottom (type A), with the dimensiona specified in
table 1 and made from stesl with the properties specified in clause 4.

2 Dimensions and designation
21 Designation

£

\.EF_'_ =
by
&

Centra of gravity —_ =

Shear centre
e
< TR %f‘[ >

E by

Figure 1: Type A crane rail

Thyssenkrupp Stahl AG (EA-PL-KND):
Wandedibigung . DIN-Markblatt 3 Ziffer 1

Designation of a flat bottom crane rall (type A) complying with this standard, with a head width, & of 100 mm (8 100) and
made from stesl with a minimum tensde strength of B0 Nfmm?:

Crane rail DIN 536 = A100 = 690

A W pat of thie slandard may ba reproduced withou! the prior pemisaion of DM Dautschies insfifal Ay Normeeg e V. Berin,
In pase of doubd, the Gaman-lingsegs argined should be consutted 2 Iho authorititive tast.

Continued on pages 2 1o 5,

Bouih Variag GeebH, Barlin, has the axclisve ight of sals lor German Standands (DW-Ronmes). DN 538 Parr 1 Engi, Price group &
o7
Eadua Ha, D108
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2.2 Dimensions and tolerances

2.2.1 Crane rails shall be of the sizes and be subject to the limit deviations and geometrical tolerances specified in table 1. Any
values for which no tolerance is specified shall be regarded as approximate values.

Table 1: Dimensions, limit deviations and geometrical tolerances (cf. subclause 2.2.1)

Crane k by by |ba| | fa|fa Ry By | ha |11 [12®)| 13 | 71a | 15 | 16 [ta) | 12D
rail Limnit- Limit- Limit-
symbol devia- devia- devia-
tions tions tions
A 45| 45| +oe |125| *3° | 54|24 |145[11 | 8| 55| +1 |24 |20 | 4400 3| 4| 5| 4| 2 |*8°
A 55| 65| zos |150| *3° | e8| a1 [175/125) o | 65| =1 |285[25 | 5400 5| 5| 6| 5| 2 |*9°
A 65| 65 o8 |175] *1° | 78|38 |20 [14 | 10| 75| +1 |34 |30 | 6400 5| 5| 6| 5| 2 [*3°
A 75| 75| =08 [200| *% | 90| 45|22 [154| 11| 85| =1 |3905)e5 | 8500 6| 6| 8| 6 |2 |78°
A100 [100| =1 |200| *Z2 |100| 60 |23 [165) 12 | 95| +15 |455[40 |10 |500| 6| 6| 8| 6 | 3 |*8®°
A120 |120] +1 [220| *3 [120| 72|30 |20 |14 |105| +15 |555|47.5| 10 |600| 6|10 |10| 6 [ 3 |*&°
A150 150 =1 [220] % | - |80 |315) - | 14 [150| =15 |645[50 | 10 [800| 10 (30 |20| 6 | 3 [*2°
1) Cf subclauses 222 and 224.  2) Cf. subclauses 2.2.3 and 224.  3) Cf. Explanatory notes
3.2 The mass of crane rails, as a function of the section parameters, shall be as specified in table 2.
Table 2: Mass and section parameters
Crane rail Mass Section parameters?)
symbol in k il:n € €2 Ay Ay A, L Iy I Sy S,
ym 9 cm cm cm? cm? cm? cm? cm? om? cm? cm?
A 45 221 3,33 4,24 28,2 17,0 9,6 39 20 170 22,88 26,12
A 55 318 3,90 491 40,5 248 14,6 88 178 337 3845 48,64
A 65 431 447 5,61 54,9 33,7 20,2 173 319 606 60,18 69,22
A 75 56,2 5,04 629 716 441 26,9 31 531 1011 88,41 | 102,09
A 100 743 5,29 6,27 94,7 658 416 666 856 1345 | 128,78 | 141,58
A120 100,0 5,79 6,53 1274 971 58,5 1302 1361 2350 | 187,23 | 22235
A 150 1503 7.73 848 1914 153,6 1071 2028 4373 3605 | 412,00 | 342,60
1) In accordance with DIN 1080 Parts 1 and 2, the symbols have the following meaning.
Ay cross-sectional area
Ay, A, surfaces subjected to shear
Iy second moment of area (torsion)
Iy, I, second moments of area (flexure)
8y, S, static moments of parts of cross sections delineated by and related to the principal axes
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