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ABSTRACT

A STUDY ON COUNTERMEASURES ON AES AGAINST SIDE CHANNEL ATTACKS

Cenesiz, Damla
M.S., Department of Cryptography
Supervisor : Prof. Dr. Ferruh Ozbudak

August 2019, [37] pages

Side Channel Attacks have a important role for security of cryptographic algorithm. There
are different method which include Threshold Implementation to protect against these kind of
attacks. In this thesis, we study certain countermeasures to side channel attacks for AES. We
start with a survey on Side Channel Attacks for block ciphers and we mentioned attack models
for AES. We give also partical attention Treshold Implementation properties and construction
methods. We also give some details of subfield construction and Threshold Implementation
of AES.

Keywords: Side channel attack, S-box, AES, Subfield
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YAN KANAL ANALIZLERINE KARSI AES ICIN GELISTIRILEN KORUMA
YONTEMLERI UZERINE BIiR CALISMA

Cenesiz, Damla
Yiiksek Lisans, Kriptografi Boliimii
Tez Yoneticisi  : Prof. Dr. Ferruh Ozbudak

Agustos 2019, [37] sayfa

Yan kanal analizi ataklari, giiniimiiz kriptografik algoritmalar1 i¢in tehdit olusturmaktadir.
Altsinir gerceklemesinin de icinde oldugu yan kanal analizi ataklarina karsi bir¢ok yontem
bulunmaktadir. Bu ¢alismada belirli yan kanal analizi saldirilarina karsi, AES sifreleme yon-
temi igin gelistirilen belirli bir koruma yontemi calisilmistir. Oncelikli olarak blok sifrelere
uygulanan yan kanal analizi ataklariyla ilgili aragtirma yapilmistir ve AES igin olusturulan
baz1 atak modelleri incelenmistir. Daha sonrasinda Altsinir Ger¢eklemesi’'nin dzellikleri in-
celenmigtir ve AES i¢in kullanilan Altsinir Gergeklemeleri ve AES algoritmasinin altcisim
yapilanmasi ile ilgili detayli bilgiye yer verilmistir.

Anahtar Kelimeler: Yan kanal Analizi, S-kutusu, AES, Altcisim
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CHAPTER 1

INTRODUCTION

Cryptographic algorithms include encryption algorithm, plaintext-ciphertext pairs and key
and must provide four properties such that confidentially, data integrity, authentication and
non-repudation. If a device use cryptographic algorithm for security of information, then this
device is called a crytographic device. These devices can be smart cards, FPGA, id card,
computer and some other devices.

Kerchoff’s law assummes that cryptographic algorithm process is known. Only key is kept
as a secret. Therefore, breaking a cryptographic algorithm generally means obtaining secret
key. If there is no attack to get secret key, then the algorithm is considered secure in practice.
If the currect technologies is not enough to break a cryptographic algorithm, the algorithm is
called computationally secure.

Not only cryptograhic algorithm security but also device characteristic are so important for
the security of an algorithm. Because there are some methods to obtain secret key which are
called Side Channel Attacks. The most known of these attack is Power Analysis Attack[16]
and the attack is applicable with very few and cheap equipment. This method is first shown
by Kocher in 1998 [[11], then this attack type has been popular. After that, protection methods
against these attack has been developed for algorithms used today. One of the protection
algorithm is Threshold Implementation [19]] method which was proved reliability against first
order power analysis attacks. [9] [[L]

In this thesis, first chapter is consists of side channel attacks on cryptographic devices. Also,
power analysis attacks method and model construction of attacks on AES are detailed. In
second chapter, AES algorithm and subfield construction [[12]] [[7]] details of AES Substitution
Box are given. In the third chapter, Threshold Implementation properties are explained.[14]
Construction method of Threshold Implementation are shown with explanatory examples.
In the last part of thesis, a Threshold Implementation of AES [[13] [[1] is given in detailed
and functions are used in this implementation and analyzed from the points of Threshold
Implementation properties and construction methods.



1.1 Side Channel Attacks on Cryptograhic Devices

All efforts try to obtain key are named an attack. These attack are divided into two groups:
passive and active attacks.

Passive attacks attempt to obtain secret information by examining the chracteristic of a cryp-
tographic device such as power, EM , and time consumption without interfering the device.

Active attacks attempt to device by direct intervention. Behaviours as a result of this attack
inform about secret information.

There is an also different classification of attack types. Invansive attack, can be embedded to
cryptographic devices. There is no restriction in this attack type to obtain secret key. Invansive
attack start with analyzing different part of device. By using probe, different part of device
is attained. If probing is just used to observe data signal, this attack is passive attack also. In
Semi-invansive attack, secret information is attempted to obtain from memory cells without
probing. Active semi-invansive attack cause a fault in the device by using electromagnetic
field, x-ray etc.

Non-invansive attacks are also called side channel attacks. Some non-expensive devices
would be enough for these kind of attacks. Side channel attacks does not affect the algortihm
process.In this thesis, power analysis attack, one of the most important side channel attack, is
mentioned in detail. Power analysis attack is big threat for cryptographic devices because the
attack use only a oscilloscope and computer to attack. [

1.1.1 Power Analysis Attacks

In 1998, Power analysis attack is introduced by Kocher.[[11] This attack tries to get the secret
key by measuring power consumption. The attacker needs some equipments; a oscilloscope
to collect power consumption and a computer to analyze obtaining data for revealing secret
key. There are mainly three types of power analysis attacks simple power analysis, differential
power analysis and correlation power analysis. [25]]

Control Power
Measurement

Esoeu

Oscﬂloscope
—_ Control
., -y
4 *,‘fx Plaintext-Ciphertext

Cryptographlc Device
(FPGA)

Figure 1.1: Side Channel Attack General Concept



1.1.1.1 Simple Power Analysis

Simple power analysis attack to obtain secret key by using power consumption of crypto-
graphic devices. For this attack, details of implementation of cryptographic algorithm must
be known and get a trace or few traces. In practice, this type of attack is not enough for suc-
cesful attack. At the same time, this attack helps to understand which algorithm works in the
device. The attack is used with the other attack types.

1.1.1.2 Differential Power Analysis

By using large number of traces, this attack does not need information about the cryptographic
device. It is enough to know which algorithm works in the device. This attack search for data
dependency with power consumption. The attacker use statistical techniques after measuring
power consumption.

Firstly, depending on algorithm characteristic, the attacker tries to decide intermediate value.
Intermediate value which must depend on known plaintexts or ciphertexts and a part of secret
key. After the deciding intermediate value of attack, power consumption are measured during
encrypting known plaintexts. S]]

Let the attacker has n different plaintexts and P = (P, P, ..., P,) be the set of plaintexts ,
T = (T1,T>, ..., T,) be traces set and length of all T; block is t and T; = (T;1, T2, ..., Tit)
represent point on trace.

Next, power models are constituted for every possible key values according to intermediate
values f(p, k) of this encryption. To find model power traces, Hamming Distance model or
Hamming Weight model is used.

PP .| P | P
Table 1.1: Set of Plaintexts

Ky | Ky | | Koy | K |
Table 1.2: Key possibilities

For all key possibilities, intermediate values are calculated by

f(P, K1) f(P,K) ... f(P,Kp)
f(Py, K1) f(Py,K3) .. f(Py,Kp)
(P, K1) f(Pn,K2) .. f(Py,Kp)

nxm
Table 1.3: Intermediate values of the attack

and traces for every plaintext are ;



Tin Tio ... Tig
T271 TQ’Q T27t

Tn,l Tn,2 Tn,t nat
Table 1.4: Traces T; ; of all plaintexts

Results by statistical analysis for all P; by correlation coefficient ;

Ry R1,2 Rl,t
Ro1  Rop Ry,
R ng Rmﬂ:

maxt

Table 1.5: Results

The highest values of the results show which key is probably used to encrypt selected in-
termediate value. If the all results are raughly same, attacker must measure more power
consumption to reveal secret key.

Difference of Means : examines the relationship between power measurement and inter-
mediate values of the attack by take into account least significant bit or most significant bit.
[22]

Let intermediate value of this algorithm be output of s-box. Firstly, the s-box output are
calculated for all key possibilities by known plaintext. Two groups are set according to least
significant bit. Mean of measurements are calculated for two groups. After difference of
these means for all key hypothesis are calculated, analyzing of these differences give best key
hypothesis.

1.1.1.3 Correlation Power Analysis

Correlation power analysis attack is statistical power analysis attack by using Pearson correla-
tion coefficient. Compared to differential power analysis, CPA attack need less power traces.

[4]

Using plaintext(or ciphertext) and a part of key, intermediate value f(p, k) are generated.
Power models of intermediate values are calculated by Hamming Weight or Hamming Dis-
tance model for all key possibilities.

Definition 1. Hamming Weight: is the number of ones in the binary sequence and denoted by
HW (z) = #1

where v € F3}!



Definition 2. Hamming Distance: is the number of different bits between two binary se-
quences

HD(z,y) =#1 of zdy

where x,y € F3

Power measurements are taken during cryptographic algorithm. After measurement of power
consumption, Pearson correlation coefficient is used for relation between power model and
real power consumption.

Definition 3. Pearson Correlation Coefficient: Let x; and y; are in different data groups, n

. . 1 ¢
is sample size and T = — E x;, Y has also same structure. Then,
n
=1

Ywyitrgn -y yi—yy

r= (1.1)

(Z x;2 +nx? — 2% Z xl> (Z yi2 + ny? — ZyZyZ)

is Pearson Correlation Coefficient. r can have a value between -1 and 1 and shows that

relationship between two data groups;

e is strong negative when r is -1.
® is strong positive when r is 1.
e does not exist when 0.

If r values are close enough to these values, they give information about the relationship

between two groups.

1.1.2 Power Analysis Attacks Models for AES

AES algorithm is resistant to mathematical attacks and used in many cryptographic devices.
This algorithm is sensitive to side channel analysis due to the features of the device used
and how it is implemented. There are hypothesis power models using Hamming weight and
Hamming distance which can be used for both DPA and CPA attacks for AES.

1.1.2.1 First Round Attack Model

First round attack model is constituted by using plaintext and S-box operation. AES has a 0"
round which is just consist of adding round key.



P=P|P|..|Pu|Ps5|
Table 1.6: A plaintext 128 bit length with 16 byte representation

Let P be a plaintext and 128 bit length . Firstly, inverse shift operation is applied.

All key possibilities k is applied for every plaintext. Let K; = i where i € F5;

Ki= ko | By | .| k| s |
Table 1.7: A key possibilities 128 bit length with 16 byte representation

Then,

P+ Ki= Py+ko | Pitky | Potke| | Ptk | Pis+kis

After the adding key operation, output of S-box [A.5]is calculated with the table for every key
hypothesis.

Input: byte plaintext[nxl], int n , int out[nx256]
begin

byte state[nxl]

state=plaintext

for counter=0 to n-1 do

for key=0 to 255 do

state[counter]+key

sbox (state)+plaintext

T - ¥ O

hamming weight (state)
10 end for

11 end for

12 out state

13 end

Then, Hamming Distance of plaintexts and S-box [JA.5]] output of P + k;’s are calculated. For
every plaintexts, hypothesis power models are calculated with 256 key possibilities. Relation
between power traces and hypothesis power models are examined with Pearson Correlation

Coefficient[[T.T]].

1.1.2.2 Last Round Attack Model

The lack of column mixing in the final round of AES is a weakness for side channel analysis.
The power model should be created with the S-box, which is the nonlinear, dependent to key
and encrypted text operation of the AES algorithm.

Let C be a ciphertext and 128 bit length . Firstly, inverse shift operation is applied.



C’:’ 00‘01‘..-‘014‘015‘
Table 1.8: Set of Ciphertexts

= By Inverse Shift Operation

Cmvfshift:‘ Co ‘ Cs ‘ Cho ‘ Cis ‘ Cy ‘ Cy ‘ Cu ‘ (s ‘ Cs ‘ Ci3 ‘ Cy ‘ Cr ‘ Cha ‘ G ‘ Ce ‘ Cn ‘
Table 1.9: Inverse Shift Results

After the inverse shift operation, all key possibilities k apply to every ciphertext. Let K; = ¢
where i € F3 and all length of K; is 8 bit.,

Ki:’ ko‘h‘--.‘km‘k’m‘

Then,

Cinv—shift + K; :’ Co + ko ‘ Cs + k1 ‘ Cro + ke ‘ ‘ Cs + ks | C11+ k15

The inverse of this table of this process for all entries is given in Appendix A because inverse
s-box [|A.6] is necessary to use in the last round attack. Let index of S-box be x then z** entry
give the result inverse S-box of x € GF(2%)

1 Input: byte ciphertext[nxl], int n , int out[nx256]

2 begin

3 byte state[nxl]

4 state=ciphertext

5 for counter=0 to n-1 do

6 for key=0 to 255 do

7 stl=invshift (state[counter]) +key
8 st2=inverse sbox (state)
9 state +stl

10 hamming weight (state)

11 end for

12 end for

13 out state

14 end

Then Hamming Distance of Cjy,y—shift + k; and S-box outputs of Cjpy—shift is calculated.
For every 8 bit of ciphertexts, there exist 256 hypothesis power models. Real power mea-
surements and the relationship between these hypothesis power models are examined with

Pearson Correlation Coefficient [T.1]



1.1.2.3 S-Box Input Output Model

This is also an Hamming Distance model 2] Since the confusion part of the AES in both the
key schedule and the algorithm itself is provided by the s-box, all hypothesis power models
are generated by the substitution box of AES.

Likewise [I.I.2.1] all key possibilities k is added to every plaintext. After the adding key
operation, output of S-box is calculated with the table [[A.5]] for every key hypothesis. For the
construction of the hypothesis power model, s-box output and input are summed.

1 Input: byte plaintext[nxl], int n , int out[nx256]

2 begin

3 byte state[nxl]

4 state=plaintext

5 for counter=0 to n-1 do
6 for key=0 to 255 do

7 state[counter]+key
8 sbox (state)

9 statetplaintext+key
10 hamming weight (state)
11 end for

12 end for

13 out state

14 end

Three power analysis attack models for AES which is implemented as unprotected against
side channel attacks are given in above. These attacks also depend number of power traces
and characteristic of cryptographic devices. Since there is no mix column operation in the last
round of AES, it creates a weakness against side channel attacks. Therefore, the last round
attack amoung these three attack models provides the best correlation with power consump-
tions. In other attack models, correlation will be more powerful if more suitable power traces

are taken.



CHAPTER 2

AES ALGORITHM AND SUBFIELD S-BOX CONSTRUCTION

2.1 Preliminaries

Definition 4. Field:By commutative ring R, an object R # & together with second binary
operation

+:RxR— R
. RxR— R

Having this properties;

e {R,+} is an abelian group : +(a,b=a+b)

e .(a,b) = a.b under this operation 3 unit element denoted by 1, with denoted the prop-
erty that a.1 = l.a = a ¥V € R. R is commutative ring with R* = R\0. Then, R is
called a field and it is usually denoted by F'. If F has finite elements, then it is called
finite field. [15]

Definition 5. Extention of field: K is an extension of F, then K is a vector space over F. dim
K over F is called degree of the extension F C K and denoted by [K : F] = dimp ¢

F C K field extension, « is algebraic over F of 3 monic polynomial
g(x) = 2™ +a12™ ' + ...+ a, € F[z] suchthat g(a) =0

Definition 6. Trace: Let F be a finite field and F' = Fyn and K = F,, then trace of F over K

is
n—1 ‘
Trp (o) = Z a?
i=0

Definition 7. Norm: Let F' = Fy» be a finite field over K = F,; and norm of F over K is

n—1
Np\r (o) = H a
i=0



Definition 8. Polynomial Basis: Let o be a primitive element of F over K, then
{1,a,0% a3, ...,a" 1}
is a polynomial basis of F over K.

Definition 9. Normal Basis: Let F be a extension of K with degree n. Then, a € F
2 n—1
{a,09,07 ...;07 '}
is a normal basis of F over K.[\I7|]

Definition 10. Boolean Function: Let f(x) : F'} — F is a Boolean function which maps n
bits to a single bit.

f(x) = c1fi(x) + cafa(x) + ... + cnfn()

where c; are constant.

Definition 11. S-box: S-box can be considered as a vector of Boolean functions. Let S(x) :
F3' — F3" be a S-box which maps n bits to m bits. Each entry of S(x) is a Boolean function.

Definition 12. Affine function: Let f(x) = c1fi(x) + cafa(x) + ... + cnfn(zx) + Cis an
affine function where f(x) : ' — F5 and C'is a constant in F5. If C' = 0, then this function

is called linear function and denoted by l. = cx

2.2 Block Ciphers

Block cipher is a cryptographic encryption method which works by dividing plaintext into
blocks with fixed length. All blocks divided according to this method will be encrypted
seperately, and the ciphertext will be obtained by the sequence of these blocks. [[18]]

For obtaining good block cipher depends on diffusion and confusion properties. Diffusion
means that a character of a plaintext is changed then several characters of ciphertext should
change. Confusion each character of the ciphertext should depend on several parts of key.

Permutation and substitution satisfy these two properties. There are two main structures of
block ciphers. One of the structures is Substitiution Permutation Network(SPN). The structure
is constituent of Advanced Encryption(AES). [23]

2.2.1 Advanced Encryption Standard and S-box Construction

AES which is the most widely used algorithm in block cipher, is a symmetric encryption
algorithm. [3] In 2002, AES found a place among the encryption algorithms. AES is called
Rijndael by the developers of this algorithm Vincent Rijmen and John Daemen. AES with
128 block length uses 128 bit, 192 bit and 256 bit length key alternatively. All operations are
applied to 4x4 matrices. According to key length, the number of cycle change.

10



Key length | Number of Rounds
128bit 10
192b:t 12
256bit 14

Table 2.1: Key sizes of AES algorithm

Each round consists of four layers in the AES algorithm. The algorithm’s input output and
matrices are 128 bits. These matrix is 4x4 and each entry is 8 bit length. Firstly, 128 bit data

is converted to a 4x4 matrix.

Let plaintext be [Py, Py, P», ..., Pi5] and all P; is 8 bit. Matrix form is

PR P P P
Py P P I
Ps Py P Pn
Py Pi3 Py Pis
Table 2.2: 128 bits plaintext matrix construction

There are four basic steps called layers respectively.

1. ByteSub(S-Box)
2. ShiftRow
3. MixColumn

4. AddRoundKey

Rjindael Encryption 0 round is consists of AddRoundKey, 9 rounds of all four layers and

the final round without Mixcolumn.

2.2.1.1 Substitution Box

For the subfield construction, we examine S-box construction of AES. We can describe the
operations in GF(28) = Fy[x]/ < 2% + 2% + 23 + 2 + 1 >. For computing ByteSub, we first

compute the inverses of the entries of our matrix start with plaintext * = r7xgr5x4T3T2T1 20
1 _

where x; € {0,1} and 2 € GF(2%). Then, compute the inverse of x, i.e compute 71 =
Y7YeYsyaysy2y1yo = Y-

Let Sbox(z) = S = s756555453525150, then

11



50 10001111 Yo 1
51 11000111 U1 1
So 11100011 Y 0
ss | | 11110001 Y3 0
sa | [ 11111000 y4+0
S5 01111100 s 1
S6 00111110 Y6 1
s7 00011111 yr 0

Note that if & = g + gz + ... + arz’ € GF(28) then, o' = By + Brz + ... + frz’ = B
such that o..3 = 1modf (). In order to compute !, Euclidean algorithm for polynomials
is used.

2.2.1.2 Shift Row

The four rows of the state matrix are shifted cyclically. The method is that i*” row is shifted i
times

Soo  Sor So2  Sos Soo Sor So2  Sos
S0 Su S12 Si3 . S11 S12 S13 Sio
Soo So1 Soa Sas Soo  Soz Sop  So1
S30 S31 S32 Ss3 S33 Ss0 S31 Ss2

Table 2.3: Shift Row operation

2.2.1.3 Mix Columns

Mix columns operation, which is a polynomial multiplication operation, is used for diffusion
of this algorithm.

zx z+1 1 1 Soo  So1 Soz2  Sos Moo Mor Moz Mos
1 r z+1 1 S Sz S13 Swo | | M M2 Mz My
1 1 r x+1 Soo Saz Soo Sar | | M Moy May My
r+1 1 1 T S33 S30 S31 S32 M3 Mso Mz Ms

Table 2.4: Mix Column operation
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2.2.14 Add Round Key

The main 128 bit key creates 4x4 matrix of key bytes. For the other round keys are obtained
by 4 columns of this matrix.

Koo Ko1 Koz Kos
Ky K2 Kiz Ky
Ko Koz Ko Ko
K33 Kz Kz Kz

Table 2.5: Key expanded matrix

Let columns of the matrix be numarized by C; where i € {0, 1, ...,43}. Then the construction
of the other round keys;

o i # 0(modd) — C; = Ci_y & Ciy

e i Z0(modd) = C; =Ci_s ®T(Ci—1)

T is a transformation which is consists of cyclic, substitution box and addition round constant.
Firstly, take a column of the key matrix then shift cyclically. Let

a b S(b)
= b N c N S(c)
c d S(d)
d a S(a)

After this operation, round constant of key operation is calculated by (i) = (00000010)(%) €
GF(28)

2.3 S-box with Subfield Construction

S-box of AES is consists of GF(2%) multiplication with polynomial basis and constant addi-
tion. Irreducible function is ® + 2* + 23 + 2 + 1 and « be a root of this polynomial. Then
the polynomial basis is [a”,a% a’, a*, a3, a2, o, 1]. Finding inverse element in GF(2%) is a
hard operation and calculated by Euclidean algorithm. The inverse operation in GF'(2%) can

be calculated by combination of some subfield operations. [3] [[6]

Firstly, a element Y € GF(2%) can be shown over GF(2%) as Y = y; + yo and multiplica-
tion is calculated modular f(x) = 22 + rx + v 2 degree irreducible polynomial. Polynomial
basis of GF(28)/GF(24) is [z, 1] and normal basis is [22", 2] = [216, 2] [12] [20]
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f@)=2?+rz+v=(z+X)(x+ X
so trace and norm equal to

T?“GF(QS)/GF(24) =r=X+X'% and NOTmGF(28)/GF(24) =V = (X)(XlG)

2.3.1 Inverse GF(2%) over GF(2%)

Firstly, inverse operation in G F(2%) over GF(2%) be defined for construction of the S-box.
Let Y = 41y +%o and D = dyy + do be inverse of g € GF(2%). For this inversion in the sub-
field GF(2*) an inversion, three multiplication, bitwise sum (), squaring and multiplication
with norm are necessary. By the normal basis construction;

If D is inverse of Y, then Y D = mod(x? + rz + v)

YD = (y1z + yo)(diz + do)mod(2? + rx + v)
1= y1d1x2 + y(y1do + yod1) + yodomod(m2 +rz + )
1= yidiz® + y(y1do + yod1) + yodo + yrda (z* + ra + v)
1 = (y1do + yod1 + y1dir)x + (yodo + y1d1v)
1=0x+1
Because of the YD =1 = 0x + 1;
0 = (y1do + yod1 + y1d17) 2.1)
1 = (yodo + y1d1v) (2.2)
by [2.1)and [2.2] equations are multiplied by yo and y; respectively
0 = y1yodo + (Y5 + y1yor)da (2.3)
y1 = y1yodo + yivds (2.4)

By equation [2.2| multiply with 1, y1y0do = y1 + yd1v and from equaiton equations in
below are obtained.

y1 = (¥§ + yiyor + yiv)dy
y1do = (v + yiyor + yiv)dy

Then, the inverse of Y in figure [2.1}
dy = (y¢ + yayo + yiv) 'y (2.5)
do = (yiv + yayor +u3) " (wo + ya7) (2.6)

By and equation [d1, dp| ,which represent the element Y, are ;

V= (X" + yoX) ™ = (d1 X0 + doX) (2.7)
= [((v x (y1 +%0)?) + y1y0) " + yo] X' (2.8)
+[((v x (y1 +90)*) + y1vo) ' +y1]X (2.9)
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Y1 y2

di dp

Figure 2.1: GF(28) inversion on subfield G F(24)

2.3.2 Inverse GF(2%) over GF'(2?)

Equations [2.8] and [2.9] and figure [2.1] show that inverse in GF'(28) include GF(2*) inverse
operation.

For the inversion G F'(2%) over G F(2?), irreducible polynomial s(z) = 22 + Tz + N is used
for multiplication operations. In GF (2*%) of y = G1z + Go and d = D1z + Dy be inverse of
y then,

yd = (GlDo + GoD1 + GlDlT)Z + GoDg + G1D1N
Then

Dy = (G2N + G1GoT + G2) ™'y
Do = (GIN + G1GoT + G3) ™Y Gy + G4 T)

2.3.3 Inverse GF(22) over GF'(2)

Similarly GF(22) of G = g1w + go D = hiw + hg be inverse of G and the irreducible
polynomial is t(w) = w? +w + 1

1 =GD = (g1ho + goh1 + g1h1)w + (goho + g1h1)
hi = (g7 + 9190+ g5) ‘o1
ha = (g} + g190 + g3) (g0 + 1)
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h1 h2

Figure 2.2: GF(2?) inversion on subfield GF(2)

2.3.4 Multiplication G F(2*) over GF(2?)

For the GF(2*) multiplication, operations in G F'(22) are necessary. This operation 3 multi-
plication, 4 addition and multiplication with norm. Other operation in G F'(2%) is combination

of squaring and multiplication with scalar.

yd = (G1Z* + Go) x (D1Z* + Dy)
= [N x [(G1 4 Go) x (D1 + Dg)] + (G1 x Dy)] Z*
+ [N x [(G1 + Go) x (D1 + Do)] + (Go x Do)| Z
=P Z*+ Pz
where
Py = [N x [(G1 + Go) x (D1 4 Dg)] + (G1 x Dy)]
Py =[N x [(G1 4+ Go) x (D1 4 Do)] + (Go x Dy)]

2.3.5 Multiplication GF(22) over GF(2)

Multiplication in the G F'(22) has the same structure only multiplication by norm is different.
Trreducible polynomial of GF(22)/GF(2)is t(x) = w?4+w+1. Then, Normgp22)/ar2) =
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Trgre2)/ar@e) =1
GD = (g1w? + gow)(diw?* + dow)
= g1di(w® + 1) + ww(g1do + godo) + godow®
= w’g1d1 + w|(g0 + g1)(g0 + d1)] + godow
= w?g1d1 + (w® +w)(go + g1)(do + di1) + godow
= w”(g1do + god + godo) + w(godr + grdo + g1dy)

2.3.6 Squaring GF(2%)

Squaring in GF(2%) is the last operation to calculate inverse in GF(2%) where irreducible
polynomial is 22 + Tz + N = (z + Z)(2 + Z%),T = Z + Z* and N = ZZ*. For the
squaring, some calculations are necessary;
22 =Tz+N
2t =T22% + N?
=2+ T?N + N?

T=z:'+2 (2.10)
NT = Nz* + Nz 2.11)

N N
N = ?24 + 57 (2.12)

LetY = Gi12* + Goz
Y? = G328 4+ G322
=G12® + G3(Tz + N)
=GHT2*+ N)+G3(Tz+ N)
= G272 + Gz + N(G? + G2)

N N
=G3T2* + G322 + (?24 + ?z)(G% +G2) By2.12

=2 |GIT + (G} + G%)Jz\f] +2 [G%T + (Gl + G%)%
Let T'=1
=24 [G} + (G + G})N] + 2 [GE + (G} + G})N]
For the squaring in GF(2*%), squaring in GF(22) is also needed. Squaring in GF(22) where
irreducible polynomial is w? + w + 1 = 0 and G = gow + g1
6" = gt + 3
= gow’ + g1
=go(w+1)+q
= gow + (go + 91)

17



Substitution Box of AES was constructed by using normal basis subfield operations. G F'(2%)
inverse operation with a normal basis was consists of an inversion and three multiplication in
GF(2%), bitwise sum (&), squaring and multiplication with norm in G F'(22)
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CHAPTER 3

THRESHOLD IMPLEMENTATION

3.1 Threshold Implementation

In this section, some definitions and properties about Threshold Implementation. Then, these
properties are applied to some examples. Threshold Implementation is a method applied to
function. Input of these function must be satisfied two properties which are Correctness and
Uniform Masking. These properties are also used by all masking methods. Functions of
Threshold Implementation depends on three properties constitutively.[2]. Threshold imple-
mentation is based two information sharing methods in below.

Definition 13. Multiparty Computation: Let n different parties [Py, Py, ..., P,| has different
input [x1,x2, ..., x,|. Then, Multiparty computation is a protokol let that P; only learns the

value y; where f(x1,22,...,Zn) = (Y1,Y2, -, Yn)

Definition 14. Shamir Secret Sharing Scheme: [24] Let secret information S be [S1, Sa, ..., Sp].
This information is shared that if the knowledge of k parts of secret are enough to know secret

S, then k — 1 part does not reveal any information about S.

This method is called threshold scheme and denoted by [k, n]. The case of k = n requires all
parts of secret to compute S. Threshold implementation use the case of k = n

These two definitions are the basis of Threshold Implementation. Let f(x) = y where F3' to
F3", firstly sensitive variable x is shared;
Definition 15. (Sharing) Let X € F™ and s be number of shares.To share all entities of
X = (z,y,2, .y t);

1. Generate random bit shares of entity up to s — 1 and then,

2. st share be equal to E;ill =gx;tosatisfyx =x1+T2+...+Ts, Yy =y1+y2+... +ys

et =11+t 4+ ...+ ts.

This method is also used in Boolean Masking. Then, I= (21,9, ..,x) is called share vector
of sensitive variable of x and x; denote the share vector without x; term where ¢ € 1,2, ..., s.
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Property 1. LetN(f) =#{z = (x1,22,...,25) 1 x1+ 22+ ..+ s =z € F}. IfN(f) =n
wheren € Z Nz € F™, then the masking is uniform.

In words, if for each sensitive value X, number of share vectors of x is constant, then this
masking is uniform.

A d™ order masking of a variable x is obtained by seperating d 4+ 1 random z; where
i € {1,2,...,d + 1}. Given sharing of input, threshold implementation can apply linear
and nonlinear function with using this sharing. [[10]

F = (f1, f2, ..., ft) is vector of functions where f; component function and ¢ is the number of
component functions. For the threshold implementation, Vf; : F" — I}, must satisfied three
properties.

Property 2. (Correctness) Let F(X) =Y =Yi+ Yo+ .. +Yi= fi+ fo+ ...+ f V

Example 1. Let F(x,y,2) = zy + 2
F(x1, 22,73, Y1, Y2, Y3, 21, 22, 23) = f1 + fo + f3 where

J1 = T2y2 + v2ys + T3y2 + 22

J2 = T1y3 + z3y1 + T3Y3 + 23

f3=121Y2 + Toy1 + 191 + 21
fitfotfo=(ri+a+ta)(yi+y2+ys)+z1=ay+=z

3.1.1 Threshold Implementation of Linear Functions

Let [(xz) = y be linear function over GF'(2). If s is the number of shares. Then input and
output shares;

T=T1Pr2Pb..Pxs and y=y1BYy2b ... B Ys.

By the linearity of the function;

Y=n Sy &..0ys =1Uz1) dl(z2) & ... & l(zs) = l(2)

Like above equation, threshold implementation of linear function is constructed by applying
the function to different shares of x.

3.1.2 Threshold Implementation of Nonlinear Functions

To construct a nonlinear function F'(X) = Y where X € Fj* and Y € FJ according

to Threshold Implementation need two more properties Noncompleteness and Uniformity of
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function.

Property 3. (Noncompleteness) If all F; is independent from at least one x;, then F' satisfy
non-completeness property of Threshold Implementation.

z1 = Fl(x%x?n coy Ty Y25, Y35 -5 Yns )

2 = F2($17$37 vy Ty Y1, Y35 -0 Ynys )

Zn = Fn(.%'l, .%'2, AR xn—lv yl; 927 -~-7yn—17 )

In Example|l} all component are independent from at least a share of input.

Corrollary 1. A d'h degree function can be shared with at least d + 1 shares to satisfy
noncompletenesss property.

While these properties are easily satisfied, it is not easy to provide the next feature that gives
near-linear qualification to the Threshold Implementation functions.

Property 4. Let X € FJ"andY € F@ with F(X) =Y

N(a,b,c,...) = #{(xs,yj,...) : Fi(...) = a, F2(...) = b,,...F(...) = k where i,j €
{1,...,s}} and t is number of shares. F has uniformity if and only if N(a;,b;,...,k;) =
N(aj, bj,....k;) where a; Db; B c; ® ... D ki = a; Dbj Dc; D ... D k; where Vi, j € {1,..,t}

Example 2. F(X,Y) = XY with four shares First order noncompleteness Threshold Imple-

mentation)

= (T3 +24)(Y2 +Y4) T Y2+ 22+ Y4

fi=( ) )

fo=(r1+x3)(y1 +ya) +y1 + 21+ ya

fs=(za+z4)(y1 +vya) + Y2 + Y3 + 2 + T3 + 14
( )( )

fa=(r1+22)(y2+y3) +1 +yz+ 21+ 23+ 24

f=f1® fo® f3& f1 | Times of appearance
0 20
1 12
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3.1.3 Methods for Construction Threshold Implementation
3.1.3.1 Direct Sharing

Direct Sharing is a method to construct functions which satisfy three properties of Thresh-
old Implementation. By this method, first two properties are easily satisfied. However, this
method does not guarantee to give component functions which satisfy uniformity.

Construction 1. First order direct sharing construction for quadratic functions: Let [ :
t

3 — FJ" be a quadratic function. [ = Z fi » where t is the share of share number of
i=1

S S
function and © = Z Ti, Y = Z y; where s is the share number of input. Then,
i=1 i=1

e Ifthe linear term exists, then {i} and {i+ 1} share of term, these shares are in {i — 1}

component function.

e Quadratic terms with only {i} shares and {i,i + 1} shares are in also {i — 1}*" com-

ponent function.

3 3
Example 3. (Quadratic Example) Let F(z,y) = xy + y and © = Z xiandy = Z Yi
i=1 i=1
J1 = may2 + x2ys + T3y2 + Y2;
J2 = x3y3 + x3y1 + T1y3 + y3;
f3 = x1y1 + T1Y2 + T2Y1 + Y135

{f1, fa, f3} | Total | x=y=0 | x=0,y=1 | x=1,y=0 | x=1,y=1
000 21 7 0 7 7
001 5 0 5 0 0
010 5 0 5 0 0
011 9 3 0 3 3
100 5 0 5 0 0
101 9 3 0 3 3
110 9 3 0 3 3
111 1 0 1 0 0

For the higher degree functions, there is no method directly. However, similar method can be

used for higher degree function.
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Construction 2. First Order Direct Sharing for Cubic Functions:

t
Let f : I} — F3" be a cubic function, f = Z fi, where t is the share of share number of

i=1
s

S S
function and x = Z T,y = Z Yi, and z = Z z; where s is the share number of input.
i=1 i=1 i=1
Then;

o Ifthe linear term exists, then {i + 1} share of inputs are in {i*"} component function.

o [f the quadratic term exists, then {i + 1,7 + 1} ,{i + 1,7 + 2} ,{i + 1,7 + 3} and

i+ 3,4+ 2 are in also {i'"} component function.

o Cubic terms whose first and second entries indexes are {i+1,i+2}, with mixed indexes
such as {i+1,i+2,i—1} and the last one {i—1,i—1,i+2} are also in {i"} component
function.

4 4
Example 4. (Cubic Example) Let F(x,y) = zyz + yz and © = Zmi, y = Z% and
i=1 i=1

4

Z:E Z5

i=1

J1 = Tayoza + Taysza + TaY223 + T2Y324 + T2Ya2s + Toyezat
T2Yaz2 + T2Ysza + T2Y323 + Tay322 + T3Ya22 + TaYy223+
T3Y224 + TaY323 + T4Ya23 + T4y324 + Y222 + Y223 + Y224 + Y423
Jo = T3y323 + T3Yaz3 + T3Y324 + T3Y421 + T3Y124 + T3Y321+
T3Y123 + T3Y121 + T3Yaz4 + T1Y423 + T4Y123 + T1Y324+
T4Y321 + T1Yaza + T1Y124 + T1Y421 + Y323 + Y324 + Y321 + Y324
f3 = Tayaza + TaY124 + T4Ysz1 + Tay122 + Tay221 + Tayszo+
T4Y224 + TaY2Zo + T4Y121 + T2Y124 + T1Y224 + T2Ys21+
T1Y422 + T2Y121 + T2Y221 + T2Y122 + Y424 + Y421 + YaZ2 + Y221
J1=z1y121 + X1Y221 + T1Y122 + T1Y223 + T1Y322 + T1Y123+
T1Y321 + T1Y323 + T1Y222 + T3Y221 + T2Y321 + T3Y122+

Toy123 + T3Y222 + T3Y322 + X3Y223 + Y121 + Y122 + Y123 + Y322

After constructing component functions, the hardest part is obtaining uniformity so, there are
some methods to provide uniformity of shared functions.
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3.1.3.2 Remasking

Definition 16. Remasking: Let F' : F' — F3" be function. Then component functions of F
t

will be { f1, fo, ..., ft} where F' = Z fi and the components f; does not satisfy uniformity.
=1

e Generate t — 1 random number such that my, ms, ..., my_1 to add f; components where
ie{0,1,....t —1}

t—1
e Add my to last component fi where m; = Z m;
=1

1*:f1+m1
5 = fo+mp

t1
ft*=f1+zmi

It is last choice to construct uniform sharing functions for Threshold Implementation because

of the fact that finding fresh random numbers is expensive operation.

3.1.3.3 Increasing the number of input shares

To keep cost low, share number must be kept minimum but it is not possible for every func-
tion. Increasing number of input creates new spaces to find function construction. By direct
sharing method, uniform function construction cannot be obtained everytime. By increasing
the shares, function which is satisfied all properties can be founded.

4 4 4
Example 5. Let F(z,y) :yz—l—mandm‘:Zmi,y:Zyiandz:Zzi
i=1 i=1 i=1
fi=x2+ (y2 +ys +ya)(z2 + 23 + 24)
fo=m3+y1(23 + 24) + 21(y3s + va) + 121
J3 =24 +y122 + Y221

Ja=x1
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3.1.3.4 Correction Terms

After satisfying property 1 and 2, using correction terms expand the possible sharing func-
tions. In some cases, it may be more useful than increasing share of input. [21]

Definition 17. Correction term is a term which is that can be added than more than one
component to construct uniform functions. Let F' : F§' — F3" and deg(F') = d. Then;

o For the noncompleteness property, (w.l.o.g) terms with (i,j) indices, can be used as a
correction term in all components except f;, f; component function

e [f there is no bound about term degree, higher degree terms is usable as correction

term.

Corrollary 2. For the first order direct sharing of function with degree d, up to d-1 degree
terms are used as a correction term to satisfy all properties.

Example 6. Let F' = XY and because of the noncompleteness property x4 and y4 can be

used as a correction term.

Fi=(z2®x3®24)(y2 D y3) D ya
Fy = (v1 @ 23)(21 D ya) © (11y3) D 24
F3 = (22 ® x4) (21 @ ys) ® (x192) B 24 D ya4

3.2 Threshold Implementation of AES algorithm

Security of Threshold Implementation is proved against first order power analysis attacks and
is applicable for all algorithms used. Providing all the features of Threshold Implementation
becomes difficult as degree of function increases. AES algorithm works in GF(28) field.
Even if the first order Threshold Implementation is used for the AES algorithm, at least 9
shares function must be used. Assuming that this function exists, it will need large area on
embedded devices such as a smart card.

After Canright construction, it was possible to protect the AES algorithm with Threshold
Implementation. There different types of Threshold Implementation for AES. In this section,
A Threshold Implementation is applied to the AES algorithm and S-box construction will be
discussed.

3.2.1 Raw Implementation

Threshold Implementation has become feasible after Canright construction for AES. In appli-
cations in implemented in embedded devices, it is important that the algorithm takes up little
area and works in a short time. Therefore, there is a trade off between share numbers and
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time consuming of Threshold Implementations of AES. In Raw Implementation, the number
of shares was kept small and as constant as possible.

AES is consist of four layers. Before these four operation plaintext are shared by four shares.
The most important reason is that all operation is in GF(2*). After that two shares is used for
Add Round Key operation which is the 0" round operation, then these two shares are added
to any two shares of plaintexts. By the same way, Mix column operation is worked for two
shares simultaneously.

Implementation of Substition Box, which is important and nonlinear part of AES, is detailed
and functions of Raw Implementation of AES is analyzed in terms of constructiom method
and properties of Threshold Implementation. Lastly, Shift row operation is implemented as
normal version.

3.2.1.1 Raw Implementation of AES S-Box

GF(29) GF(24)

s ] N i
¥ = GF (29 = multiplier
e 124 =
~ 18124 . —&1 L
GF(2Y i) inverter | g4i®
multiplier - @ @ — ™ SE(24)
multiplier
1* phase L 294 phase N 3" phase

Figure 3.1: Raw Implementation of AES S-box|[1]

Raw implementation of S-box use GF'(2%) tower field construction for nonlinear operation. It
is known that 3 times GF'(2*) multiplication, a GF (2%) inverse and a G F(2%) square scalar
are used for construction of S-box.

Linear Map and Inverse Linear Map(Change of Basis): Linear map and inverse linear
map in figure represent transformation of basis from polynomial basis to normal basis and
vice versa. Any z element in G F(2%)is represented by polynomial basis in AES algorithm.
However, Raw Implementation use normal basis construction so input of S-box must be rep-
resented by normal basis before S-box operation.

Let = be element GF'(2®8) then x can be represented as a vector over GF'(2).

r =29+ 2100 + x20¢2 + x3a3 + 1:4044 + m5a5 + xﬁa(), a:7a7

where {a, a, a?,a?,a* a5 o’ o’} is polynomial basis and normal basis from GF(2°) to

GF(2%) be [y*%,y]. Then, for construction of normal basis in Appendix A [Table A.1].
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y=y12' + yow
= (G12* + Gp2)2'0 + (G122 + Goo2)x
= [(Brw® + Bsw)z" + (Bsw® + Baw) 2]z’ + [(Bsw® + ow)2* + (Biw® + Bow)2]y
= Brw?2 Y% + Bewz'y'® + Bsw?zy'® + Bawzy' + Bswzay + fowzy + Prwdzy + Bowzy

Inverse linear map shows changing basis from normal to polynomial in Appendix A [Table
A2].

After this converting, Square scalar and GF'(2*) Multiplication are applied to 4 shares of 8-bit
inputs.

GF(2*) Multiplication: Firstly 4 shares of the s-box input ,which are shared at the begin-
ning of algorithm, are used as input of GF'(2%). Every input of multiplication has 4 shares
such as £1 = 211 ® 12 ® 713 ® w14. Then, at the end of G F(2%) multiplication, there exist
3 output shares for all component G F'(24).

Letx = (21,2, 23, T4, T5, T¢, T7, Tg) is vectorial representation of any element  in G F'(2%)
and x; be most significant bit and xg be least significant bit. Then,

F= (:Ch Z2,xs3, .%'4)(.%'5, Ze6,I7, .1'8)
is GF(2*) multiplication

F1 = 125 + 3xs5 + 2475 + X226 + T3x6 + T127 + ToT7 + X377 + Tax7 + 128 + 3T
Fy = xoxs + 2325 + 2106 + T2T6 + T4T6 + X177 + X3T7 + T2 + 4T
F3 = 2125 + 20w5 + 2325 + X425 + X176 + T3T6 + T1T7 + T2x7 + T3T7 + T1X8 + T4xg

F4 = X1%5 + I3y + T2Xg + T4Zg + Ir1x7 + T4X7 + o8 + Ir3x8 + TATg

where F, Fy, F3, Fy are component functions of F'. Threshold Implementation function is
applied to all terms in this components such that zox5 is shared by 4-3 TI function below.
After the sharing operation, there are 3 shares for every component function so, there are 12
shares for F, Fy, F3, F end of the sharing

F=N+F+F;= XZ'Xj where X; = x;1 DxijoDxizDxig and Xj =2;1Pxj2Px;3Dx4
(]

F = (.TZQ D x5 P $¢4)(1‘j2 D xjg) D x4

Fy = (21 ® 23)(2j1 © xja) © (123) D Tig

F3 = (242 ® wia)(xj1 @ xja) ® (xi12j2) O Tia ® Tja

This function is constructed by using increasing number of input and decreasing number of
output. At the same time, correction term is used to satisfy the all properties.
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f=f1® fo® f3® f4 | Times of appearance
0 48
1 16

When implementing this cascaded and parallel functions, one of the things that need attention
is uniformity of function is still satisfied. The same function as a composite function may
result in loss of uniformity.

4 4 4
Example7. Let F(X,Y)=XY +YZand X =) 2;,Y =» yiand Z =) z
i=1 i=1 =1

fi=(xa+x3+xg)(y2 +y3) +ya + (y2 + ys + ya) (22 + 23) + 24
fo=((z1 +23)(y1 +y4)) + 213 + 24 + (Y1 +y3)(21 + 24)) + Y123 + Ya
fa=(x2a+x0)(y1 +ya)) + 192 + x4 +ya+ ((y2 +ya) (21 + 24)) + v122 + 24 + Y4

f=f® fo® f3 f1 | Times of appearance
0 768
1 256

4 4 4
Lt F(X,Y)=XY+2Y =(X+ Z)Y and X =Y 2;,Y =Y yiandZ = z
=1 =1 =1

fi=(z2+ w3+ 24)(y2 +y3) +ya+ (22 + 23+ 22) (Y2 + y3) + va
fo=((x1 +x3)(y1 +ya)) + z1y3 + x4+ (21 + 23) (Y1 +ya)) + 2193 + 24
fa=((xa+za)(y1 +ya)) +x1y2 + x4+ ya + (22 + 24)(y1 + v4)) + 2192 + 24 + Y4

{f1, f2, f3, fa} | Times of appearance
000 1152
001 384
010 384
011 1152
100 128
101 384
110 384
111 128

Threshold implementation of GF'(2*) inverse operation need 5 shares. Before inverse opera-
tion there are three output shares from G F'(2%) multiplication. Two more shares is necessary
for invertion. Square scalar is a linear operation and work in parallel for two shares. However,
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there is no guarantee for the uniformity of these two functions’ outputs. Because if outputs
of these two functions are supposed same functions output, uniformity is not satisfied. It is
known that GF'(2*) multiplication is uniform so masking output of square scalar is enough.
Therefore, random variables [r1, r2|are added for two output of square scalar. Then, 1 + 9
is added to one output of G F'(2%) multiplication.

GF(2%) Inverse Function Inverse for the € GF(2%) where the component functions are

Y1 = wox3wy + 2203 + T2 + T123 + X3
Yo = 212324 + 173 + T4 + T2x3 + T2T4
Y3 = 212429 + 1174 + 22 + 123 + 71

Y, = zix3200 + 2123 + T2 + X124 + Toxy

By using 5 shares Threshold Implementation below, first order resist implementation of in-
verse operation is formed. This Threshold Implementation is applied to bitwise operation.

Let I'=XYZ + XY + Z[1]

F=F+F+F+F+F;
Fy = [(w2 + a3+ 24+ 25)(y2 + y3 + ya +ys) (22 + 23 + 24 + 25) |+
(w2 + @3 + 24 +25) (Y2 + Y3 +ya +y5)] + 22
Py = [z1(ys + ya +y5) (23 + 24 + 25) + y1(23 + 24 + 25) (23 + 22 + 25)+
21(x3 + 24+ o5) (Y3 + Y4 + ys) + T1y1(23 + 21 + 25)+
T121(Y3 + ya + ys) + y121(w3 + T4 + 25) + T1Y121]+
[21(ys + Y4 +ys5) + y1(x3 + 24 + 5) + T191] + 23
F3 = (r1y122 + T1y221 + 29121 + T1Y222 + Tay1 22+
ToY221 + T2Y124 + T1Y224 + T1Y4a22 + TaYaz1+
T4Y122 + TaY221 + T1Y225 + T2Y125 + T1Ys522+
T2Y521 + Tsy1 22 + Ts5y221) + (T1y2 + Y172) + 24
Fy = (z1y223 + T1y322 + T2y123 + T2y321 + T3Y122 + T3Y221) + 25

F5:,21

f=hH®f2® f3P f1 | Times of appearance
0 768
1 1280
Table 3.1: Uniformity of 5-5 shares function
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This first order noncompleteness 5 shares Threshold Implementation is also constructed by
increasing input and output shares but correction term is not used. Squaring scalar part is just
copied for two different shares because multiplication has 3 output and inverse operation need
5 shares. For the output of square scalar algorithm two random numbers in GF'(24) are used.

For the GF'(2*) multiplication after inverse operation, 3 random variables are added to outputs
of inverse operation because multiplication inputs must be uniform and need 4 shares. By
adding one output to another one, 4 input shares is obtained and by the 3 random 4-bit numbers
uniformity is satisfied. In totally, 5 random 4-bit numbers are used for the S-box operation.

After the last two G F'(2%) multiplication, 3 output shares are gotten. The last operation is the
inverse linear operation is converting basis from normal basis to polynomial basis. The other
operations of AES are needed two shares so, one of the three shares whic are the S-box output
is added to one of the others.

Operation except s-box works on two shared input. 24 random bits are used to increase
number of shares for substitution box of other rounds.

There are three types for the construction of AES with Threshold Implementation. Raw Im-
plementation of AES use minimum share numbers for the implementation and based for the
others.
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CHAPTER 4

CONCLUSION

Side channel attack is a parameter for testing security of an cryptographic algorithms and
devices. Power analysis attack is an important role symmetric and asymmetric cryptographic
algorithm. There are so many side channel attack types for AES which is most widely used
cryptographic algorithm.

In this thesis, in Chapter 1, we research side channel attack and we investigate that power
analysis attack are used especially for AES. We mentioned and compare according to reveals
of AES algorithm that three of these attacks when the algorithm is implemented without any
protection for SCA.

In Chapter 2, we give details of subfield construction for substitution box of AES which is
necessary to countermeasure Threshold Implementation against side channel attack for AES.

In Chapter 3, we focused on properties and construction methods of Threshold Implementa-

tion with explanatory examples.

In conclusion, Threshold Implementation functions which are used for AES are examined. A
Threshold Implementation of AES whose security is proved against first order power analysis
attack and base for other type TI of AES is detailed.
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APPENDIX A
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Table A.1: Converting Polynomial Basis to Normal Basis
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Table A.2: Converting Polynomial Basis to Normal Basis
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Table A.3: Converting Normal Basis to Polynomial Basis

0112122312232 3314
122 3 2 3 3423343 445
122 3 2 3 3423343 445

233434453445 45 56

122 3 2 3 3423343 445

233434453445 45 56

233434453445 45 56

3445 45 56 45565667
122 3233423343445

23 3 43445 3 445 45 56

23343445 3445 4556

3445 4556 45565667

23343445 3445 4556

3445 4556 45565667

3445 4556 45565667

4556566 7566767738

Table A.4: Hamming Weight Table For All Elements in GF'(2%)
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